当前位置: 仪器信息网 > 行业主题 > >

模拟海水中痕量溴

仪器信息网模拟海水中痕量溴专题为您整合模拟海水中痕量溴相关的最新文章,在模拟海水中痕量溴专题,您不仅可以免费浏览模拟海水中痕量溴的资讯, 同时您还可以浏览模拟海水中痕量溴的相关资料、解决方案,参与社区模拟海水中痕量溴话题讨论。

模拟海水中痕量溴相关的资讯

  • 赛默飞发布地表水和饮用水中痕量生物胺的检测方案
    2015年3月3日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布的地表水和饮用水中痕量生物胺的检测方案。腐胺、尸胺、组胺、亚精胺和精胺是最常见的五种生物胺,摄入过量将会诱发恶心、心悸、呼吸紊乱等强烈过敏反应,甚至危害生命安全。我国水产品卫生标准GB2733-2005就曾明确限定了市售、非活水产品中组胺的含量。目前生物胺的准确定量测定方法主要有气质联用、液相色谱法和离子色谱法等。其中仅离子色谱法无需将生物胺经过繁琐的柱前衍生或预衍生处理,以离子交换分离为基础,简单而迅捷地实现了这五种生物胺的分离测定。毛细管离子色谱的诞生,标志着离子色谱进入了低消耗、低成本、高效率时代。其微升级的流量,极大地降低了淋洗液的消耗,配合淋洗液自动发生装置使用,有效地保证了各种突发事件发生时,离子色谱总能在第一时间内完成对应的应急样品测定。赛默飞地表水和饮用水中痕量生物胺的检测方案,采用通用高压离子色谱ICS-5000+为依托,选用高效阳离子交换分离柱IonPac CS19,以甲基磺酸淋洗液发生器在线产生甲基磺酸溶液,梯度淋洗,完成了地表水、自来水样品中痕量腐胺、尸胺等五种常见生物胺的分离分析。方法重复性较好,准确性较高,在所选定条件下,可准确完成地表水、自来水中痕量腐胺、尸胺、组胺、亚精胺和精胺的分离测定工作。通用高压离子色谱ICS-5000+产品详情:www.thermo.com.cn/Product6544.html 下载应用纪要请点击:www.thermo.com.cn/Resources/201501/211561786.pdf---------------------------------------------关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站 www.thermofisher.cn
  • 以简驭繁 “质”汇匠心 | 赛默飞即将重磅推出痕量元素分析双新品
    赛默飞ICP-MS前世今生 世界首台ICP-MS诞生,与赛默飞有着密不可分的联系。随后出现的碰撞反应池技术、具有质量筛选功能的碰撞反应池以及超强干扰消除三重四极杆技术,在ICP-MS干扰消除发展史上画下浓墨重彩的一笔。但在痕量元素ICP-MS分析日趋复杂的今天,样品基质多元化、高基体样品应用拓展及短时间内高质量数据交付压力等,导致如何进一步简化ICP-MS分析工作流和提升实验室生产力,一定程度上依然面临着严峻的挑战。客户食品样品基质类型实在太多了,还会涉及高盐类样品检测饮用水、地表水、废水和海水等各类水质样品TDS 波动范围非常大客户客户为评价盐湖开采价值,实验室新任务是要用ICP-MS进行盐湖卤水中锂和低浓度杂质含量精准检测每周实验室需完成数千个样品分析,有点打脑壳客户客户进行计划外维护时,意外的中断增加样本分析成本的同时降低了实验室生产力 赛默飞新品发布# On March 8, 2023 2023年3月8日,赛默飞将重磅推出创新型电感耦合等离子体质谱仪和自动进样器,在重塑复杂基体样品极限应用和全面简化痕量元素分析工作流程的同时,确保客户获得高质量的数据结果。
  • 质谱助力亲水性藻毒素痕量检测研究取得新进展
    近年来,自然资源部第一海洋研究所科研人员利用所公共分析测试平台的大型仪器,通过系统的方法学研究,攻克了天然淡水资源及海水中多种痕量高亲水性藻毒素精准检测的技术瓶颈。近日,研究结果先后在环境科学与生态学期刊《总体环境科学》和《化学层》上发表。近几十年来,全球地表水及近海水生环境有害藻华发生频率和危害明显增加,尤其是蓝藻和甲藻释放的藻毒素一定程度上影响了饮用水安全和渔业资源的健康发展。加强对天然水体中高亲水性藻毒素的监/检测技术,有利于对高亲水性藻毒素潜在的生态风险进行客观评估,并将大大促进我国对饮用水、农业用水及海洋养殖环境等天然水体中藻毒素的全面监测和污染防控。针对这些情况,第一海洋研究所科研人员创新地将石墨化碳黑离线固相萃取技术与亲水相互作用在线固相萃取技术相结合,对天然水体样品中的多种亲水性藻毒素进行两步高效富集,采用超高效液相色谱-三重四极杆串联质谱技术进行精确定量,二维液相色谱-四级杆飞行时间质谱辅助定性鉴别,成功建立了适用于天然水体中15种主要亲水性蓝藻毒素同步精准测定的新方法。据介绍,该方法仅需80mL天然水样品即可实现鱼腥藻毒素-a、柱孢藻毒素、石房蛤毒素、新石房蛤毒素、N-磺酰氨甲酰基类毒素、脱氨甲酰基类毒素以及各种膝沟藻毒素等的鉴别和准确定量。与国外报道的方法相比,该方法大幅提升了可检测亲水性藻毒素的种类,并且方法的灵敏度显著提高。该研究系首次基于两步固相萃取富集技术和液质联用分析技术,实现了天然水体中各类高亲水性蓝藻毒素高灵敏度检测,可为我国淡水资源及近海水生环境亲水性藻毒素污染监测、预警提供技术支撑。
  • 饮用水中痕量重金属的快速检测方法介绍
    p style="text-align: center "strong饮用水中痕量重金属的快速检测/strong/pp style="text-align: center "上海仪电科学仪器股份有限公司/ppstrong摘要:/strong饮用水中痕量重金属的快速检测是分析测试技术上的一个难点。本文尝试使用阳极溶出伏安法,实现了饮用水中痕量重金属离子的检测。结果显示,饮用水中痕量的铅、镉和汞离子可以通过阳极溶出法进行检测,其检测下限可以达到ppb级。与其他分析测试技术相比,阳极溶出伏安法具有设备体积小,操作简单,使用成本低廉等独特优点,使得其在饮用水的现场快速分析中拥有广阔的应用前景。/ppstrong关键词:/strong饮用水,重金属,阳极溶出伏安法/pp /ppstrong一、实验原理/strong/pp长期以来电化学溶出伏安法一直被认为是检测水环境中痕量重金属的一个有效方法[8]。溶出伏安法是基于电化学原理进行的(如图1)。在一定电压条件下,先将溶液中的待测元素通过还原反应沉积在电极表面,随后通过施加反向电压,使沉积在电极表面的重金属发生氧化反应而溶解,形成峰电流,峰电流的大小或峰面积与被测金属离子浓度成正比。由于电沉积过程中的富集作用,溶出伏安法可以达到1 μg/L以下的检测下限。/ppbr//ppbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/09550700-f887-41a8-947c-4d9cb9759796.jpg" title="1.png" style="width: 402px height: 309px " width="402" vspace="0" hspace="0" height="309" border="0"//pp style="text-align: center "strong图1. 溶出伏安法原理图/strong/ppstrong二、 使用仪器/strong/pp便携式重金属分析仪(SJB-801,上海仪电科学仪器股份有限公司),工作电极为玻碳电极,辅助电极为铂电极,参比电极为银/氯化银双盐桥电极;纯水机(GT-30,上海仪电科学仪器股份有限公司);微量进样器(WKYVI-1000,上海求精生化试剂仪器有限公司);分析天平(BSA224S,德国赛多利斯科学仪器有限公司)。/ppstrong三、溶液和试剂/strong/pp铅标准溶液(标准物质编号GBW(E)082058,浓度1000mg/L),镉标准溶液(标准物质编号GBW(E)082061,浓度1000mg/L),汞标准溶液(标准物质编号BW085523,浓度100mg/L)采购自深圳市华测标准物质研究所,使用18.2 MΩ实验室超纯水稀释到指定浓度。/pp铅/镉电解液、汞电解液、汞清洗液、镀金液等为便携式重金属分析仪的配套试剂,由上海仪电科学仪器股份有限公司提供。/pp浓硝酸、浓盐酸等试剂为分析纯,采购自国药集团试剂有限公司。/ppstrong四、操作过程/strong/pp1、电极的准备/pp工作电极:工作电极为玻碳电极。每次使用之前需要在抛光绒布上加抛光粉进行打磨,并用去离子水冲洗,处理好的工作表面应该覆盖一层均匀的水膜。/pp参比电极:参比电极为饱和氯化钾式银/氯化银双盐桥电极。第一次使用参比电极时,配置好内溶液,打开加液塞将配备好的参比内溶液加入到参比电极内腔中(注意参比内腔要保留一小段空隙),然后将该参比电极在盛有饱和氯化钾溶液的保护瓶中浸泡至少1小时,最好浸泡一上。参比电极平时不用时要塞上加液塞和底部浸泡在保护瓶中,保护瓶中要保持有饱和氯化钾溶液。每次使用前,将电极的保护瓶拿掉用水将氯化钾溶液清洗干净,开始测试时,将加液塞打开。/pp对电极:对电极为铂电极,一般不需要处理,可直接使用。/pp2、重金属离子的分析/pp溶出伏安法测定铅、镉、汞标准溶液:准确量取超纯水100mL至烧杯中,加入1mL铅镉电解质溶液,取20mL溶液至测量杯中。仪器选择“铅镉”测定模式,扫描溶出伏安法曲线,测定结束后,记下峰面积。随后依次添加10μL、20μL、30μL、40μL20mg/L铅镉标准溶液,重复扫描操作,记录峰面积值。仪器选择“预镀金膜”模式,在镀金液中完成金膜于都操作。准确量取超纯水100mL至烧杯中,加入汞电解质溶液20mL,取20mL溶液至测量杯中。仪器选择“汞”测定模式,扫描溶出伏安曲线,测定结束后,记下峰面积。随后分别添加5次40μL 1mg/L铅镉标准溶液,重复扫描操作,记录峰面积值。/pp饮用水中铅、镉、汞的测定(标准曲线法):测定水中铅和镉离子时,先使用40 μg/L和100μg/L两种标准溶液对仪器进行标定。准确量取自来水样100mL至烧杯中,加入铅/镉电解质溶液1mL。量取20mL测试水样至测量杯中。仪器设定为测定“铅镉”,测定3次浓度值,记下数据;测定结束后,往测量杯中添加20μL 20mg/L铅/镉离子标准溶液,测定3浓度值,记下数据。测定水中汞离子时,先对工作电极进行预镀金膜操作,随后使用4 μg/L和10μg/L两种标准溶液对仪器进行标定。准确量取自来水样100mL至烧杯中,加入汞电解质溶液20mL。量取20mL测试水样至测量杯中。仪器设定为测定“汞”,开始测定3次浓度值,记下数据;测定结束后,往测量杯中添加40μL 1m g/L汞离子标准溶液,测定3次浓度值,记下数据。/pp饮用水中汞的测定(二次添加法):准确量取自来水样100mL至烧杯中,加入汞电解液20mL得到测试水样。量取20mL测试水样至测量杯中。选定测定金属“Hg”,选择标准添加法,设定第一次和第二次分别添加40μL 1mg/L汞标准液,确认后开始测量,测试结束后,记下测定的汞离子的浓度值。/ppstrong五、结果与讨论/strong/pp1、溶出伏安法测定铅、镉、汞标准溶液:/pp为验证溶出伏安法对于重金属铅、镉离子的测量性能,对0μg/L、10μg/L、30μg/L、60μg/L、100μg/L铅镉标准溶液进行分析测试。由于支持电解液中含有一定浓度的铋离子,在富集过程中,铅离子、镉离子和铋离子可以在玻碳电极表面形成共沉积。在随后的伏安扫描过程中,几种元素又可以被氧化和释放,形成尖锐的溶出峰,如图2所示。铅离子和镉离子的溶出电位分别为-0.5V和-0.8V,峰形尖锐,对称性较好,相互之间不产生干扰,因此铅离子和镉离子可以使用溶出伏安法同时测定。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/5b435af9-24f2-4698-9f3c-c62f714dd98a.jpg" title="2.png"//pp style="text-align: center "strong图2 铅离子和镉离子标准溶液的测定曲线/strong/pp采用峰面积作为相应信号,根据峰面积和浓度关系,绘制标准曲线(图3),R2分别为0.9961(Pb),0.9952(Cd),标准曲线的线性均良好,可见在0-100μg/L的浓度范围,铅离子和镉离子可以通过溶出伏安法进行同时测量。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/066e6e59-eae1-4430-baa3-d45c431d2e2a.jpg" title="3.jpg" style="width: 600px height: 194px " width="600" vspace="0" hspace="0" height="194" border="0"//pp style="text-align: center "strong图3(a)铅离子标准曲线;(b)镉离子标准曲线/strong/pp汞离子标准溶液使用类似的方法进行分析。为提高汞离子的富集效果,在富集和测定前,需要对玻碳电极进行预镀金膜操作。该操作可以通过使用仪器自带的预镀金膜模式和镀金液进行。随后,不同浓度的汞离子标准溶液通过循环伏安法进行分析测试,结果如图4A所示。汞离子在金膜上的溶出电位约为0.55mV,峰形较好,对称性良好。/pp汞离子的标准曲线如图4B所示,R2为0.9878,标准曲线线性良好,可见浓度范围在0-10μg/L的汞离子,可以通过溶出伏安法进行测量。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/6512c3c9-4202-40c0-91fb-7e5f1e594607.jpg" title="4.jpg"//pp style="text-align: center "strong图4 (A)汞溶出伏安曲线;(B)汞离子标准曲线/strong/pp2、饮用水中铅、镉、汞含量的测定/pp饮用水中铅镉汞离子含量采用标准曲线法进行测定,结果如表1所示。饮用水中的铅离子浓度约为1.90μg/L,重复性为± 0.4μg/L;镉离子浓度约为0.01μg/L,重复性为± 0.01μg/L;而饮用水中的汞离子浓度极地,低于溶出伏安法的最低检出限。/pp为验证溶出伏安法在饮用水中测定的可靠性,在饮用水样品中添加铅、镉、汞离子标准溶液,使得离子浓度分别提高了20μg/L、20μg/L和2μg/L。加标后的样品溶液在同样方法下进行测试,结果显示,对于铅离子、镉离子和汞离子,其加标回收率分别为98%,81%和50%。通过三种离子加标回收率,可以看出,标准曲线法在测定饮用水中铅、镉离子时,回收率较高,测试具有较高的可靠性。而对于饮用水中的汞离子,标准曲线法的测试回收率较低,测试可靠性和误差较大,这可能是由于饮用水中背景离子的存在干扰了汞离子的富集和测试过程。/ppstrong表1 使用标准曲线法测定饮用水中铅、镉、汞离子/strong/ptable width="577" cellspacing="0" cellpadding="0" border="1"tbodytr style=" height:25px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="86" height="25"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"测定离子/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="175" height="25"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"水样/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="200" height="25"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"测定值/span/pp style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"(/spanspan style=" font-family:' Arial' ,' sans-serif' "μg/L/spanspan style="font-size:15px font-family:宋体")/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="116" height="25"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"回收率/span/p/td/trtr style=" height:4px"td rowspan="2" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="86" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"铅/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"饮用水/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "1.90/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.40/span/p/tdtd rowspan="2" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="116" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "98%/span/p/td/trtr style=" height:4px"td style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"加标水样(加标/spanspan style=" font-family:' Arial' ,' sans-serif' "20 ug/L/spanspan style=" font-family:宋体")/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "21.40/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.40/span/p/td/trtr style=" height:19px"td rowspan="2" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="86" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"镉/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"饮用水/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "0.01/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.01/span/p/tdtd rowspan="2" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="116" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "81%/span/p/td/trtr style=" height:19px"td style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"加标水样(加标/spanspan style=" font-family:' Arial' ,' sans-serif' "20 ug/L/spanspan style=" font-family:宋体")/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "16.20/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.20/span/p/td/trtr style=" height:19px"td rowspan="2" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="86" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"汞/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"饮用水/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "0.00/span/p/tdtd rowspan="2" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="116" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "50%/span/p/td/trtr style=" height:19px"td style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"加标水样(加标/spanspan style=" font-family:' Arial' ,' sans-serif' "2 ug/L/spanspan style=" font-family:宋体")/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "0.99/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.6/span/p/td/tr/tbody/tablep二次添加法是电化学分析中的常用方法,该方法通过将一定已知浓度的标准溶液加入到待测样品中,通过对加标前后的样品溶液进行分析建立标准曲线,从而进行浓度分析。由于该方法标准曲线的建立是在样品溶液背景下进行的,可以降低实际样品中背景离子的干扰,实得测量结果更准确。饮用水样样品、以及加标后的饮用水样品使用二次添加发进行了分析测试,结果显示,使用二次添加法进行测试时,汞离子测试的回收率提高到了92%,相对于标准曲线法,其测试的可靠性和准确性得到了大幅提高。/pp表2 使用二次添加法测定饮用水中汞离子含量/ptable width="570" cellspacing="0" cellpadding="0" border="1"tbodytr style=" height:32px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="83" height="32"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"测定离子/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="180" height="32"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"水样/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="170" height="32"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"测定值(/spanspan style=" font-family:' Arial' ,' sans-serif' "μg/L/spanspan style=" font-family:宋体")/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="137" height="32"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center line-height:115%"span style=" line-height:115% font-family:宋体"回收率/span/p/td/trtr style=" height:19px"td rowspan="2" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="83" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"汞/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="180" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"饮用水水样/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="170" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "0.00/span/p/tdtd rowspan="2" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="137" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center line-height:115%"span style=" line-height:115% font-family:' Arial' ,' sans-serif' "92%/span/p/td/trtr style=" height:7px"td style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="180" height="7"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"加标水样/span span style=" font-family:宋体"(/spanspan style=" font-family:' Arial' ,' sans-serif' "2 ug/L/spanspan style=" font-family:宋体")/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="170" height="7"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "1.83/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.16/span/p/td/tr/tbody/tablepstrong六、结论/strong/pp本文研究了阳极溶出伏安法在重金属离子铅、镉、汞测定中的应用。对标准溶液的测定结果表明,阳极溶出伏安法在0-100 ug/L的范围内可以实现铅、镉离子的同时检测,在0-10 ug/L的范围内可以实现汞离子的检测,结果呈现良好的重复性和线性相关性。阳极溶出伏安法可以被应用到生活饮用水中痕量重金属的检测中来。通过简单的两点校准,饮用水中的铅离子和镉离子即可被同时检测,其加标回收率在80%-100%,显示出方法具有较好的可靠性。由于饮用水中背景离子的干扰,汞离子使用标准曲线法测定的回收率仅为50%。二次添加法可以显著降低样品的背景干扰,通过采用二次添加法,饮用水中汞离子测量的可靠性和准确性得到明显改善,其测定回收率提高到92%。/pp本文使用基于溶出伏安法的便携式重金属分析仪,测定饮用水中的铅、镉、汞离子含量。实验中重金属的质量浓度和与阳极溶出的峰面积呈良好的线性关系,获得较高的回收率,实验结果较为满意,符合快速检测的要求。该设备操作简单,便于携带和操作,灵敏度和准确度高,选择性好,运行费用低,体积小,特别适合现场的快速检测。/ppbr//ppstrong作者:/strong孟旭,工程师,18616817423,mengxu@lei-ci.com, br//ppstrong通讯地址:/strong上海市嘉定区安亭镇园大路5号。/p
  • 安捷伦 ICP-MS 期刊 | 水中痕量放射性同位素的新法规:使用 MS/MS 模式的 ICP-MS/MS 分离峰重叠
    ICP-MS 期刊自 1999 年创刊,每季度发布一期,集中向读者分享安捷伦 ICP-MS 在各个领域的研究进展。直至今日,ICP-MS 期刊已经推出75期,它们凝聚了安捷伦 ICP-MS 超过30年的研发精华。如今“安”家 ICP-MS 期刊在中国以及全世界范围已拥有大批粉丝。为了方便众多粉丝阅读,我们特在安捷伦官方微信上开辟了“安家 ICP-MS 期刊“专栏,并不定期向您推荐 ICP-MS 期刊精选往期内容。希望通过这些生动的研究故事,使您更好地了解安捷伦 ICP-MS 产品及其应用,以期今后安捷伦产品能够更好地服务于您,并在您的检测和科研的工作中助您实现成就。本期推荐阅读内容水中痕量放射性同位素的新法规:使用 MS/MS 模式的 ICP-MS/MS 分离峰重叠放射性同位素分布于整个环境中。一些放射性同位素(包括 Ra、Rn、Th 和 U)天然存在于岩石中的放射性矿物( 如花岗岩)中。超铀元素 Pu、Np 和 Am 等其它放射性同位素则是人造的。这些元素可能有意或无意地从核电站、工业、医疗和家用产品(如烟雾报警器)的废物处理中释放。河道中的放射性核素可能进入家庭饮用水供应,因此受到严格监管。国际标准化组织 (ISO) 近期颁布了一项新标准 ISO 20899:2018,用于使用 ICP-MS 测定水中的 239Pu、240Pu、241Pu 和 237Np。即使经过化学分离,含有 Np 和 Pu 的样品通常也含有 U。由于相邻 238U 峰拖尾,因此使用单四极杆 ICP-MS 难以进行 237Np 和 239Pu 的超痕量分析,痕量及超痕量 237Np 的测量受到样品内存在的铀的严重干扰。本文介绍了使用 Agilent 8900 ICP-MS/MS 测定10 mg/L U 基质中超痕量 Np 的方法。本方法使用配备 O2 反应气的 8900 ICP-MS/MS将 Np 质量转移为 NpO2,除了将峰尾与 238U 分离之外,还解决了可能影响 237Np 的超痕量浓度分析的各种低浓度 UHx 干扰。访问 https://www.agilent.com/zh-cn/products/icp-ms/icp-ms-systems ,了解安捷伦 ICP-MS 系统。图 1. 10 ppm 铀基质中的 237Np(NpO2 形式)校准曲线扫描下方二维码,关注“安捷伦视界”公众号,获取更多资讯。
  • 前沿应用丨在线 SPE-LC-ICP-MS检测环境样品中超痕量二价汞和烷基汞
    汞(Hg)是一种剧毒持久性污染物,广泛存在于环境介质和生物体中,包括植物、动物甚至人体中,汞的形态决定其毒性和迁移转化能力。但环境介质中汞的浓度较低,多为ppt量级。因此需要发展可对环境中超痕量汞的定性定量检测方法。 高效液相色谱(HPLC)-电感耦合等离子体质谱(ICP-MS)可以用来对多形态汞进行检测,且其与离线的预富集联用的方法可用于对环境样品中的低浓度的汞进行检测,预富集的方法包括液液微萃取,固相萃取(SPE)。然而,离线固相萃取富集-HPLC-ICP-MS的检测方法会浪费部分富集的汞,阻碍灵敏度的进一步提高。因此本文采用在线固相萃取富集-HPLC-ICP-MS的装置和方法,实现了环境样品中超痕量二价汞和烷基汞的富集分离检测。 岛津在线SPE-LC-ICP-MS系统 应用实例首先使用富集活化试剂活化富集萃取小柱,再将超痕量的二价汞和烷基汞的溶液1 ng L-1注入至富集萃取小柱上进行富集,最后使用洗脱试剂对富集在柱上的汞溶液进行洗脱并注入至液相分离柱中进行色谱分离后进入ICP-MS中进行定量检测,流程示意图如上图所示。另外,对本方法用于超痕量二价汞和烷基汞的富集检测进行方法学评估,结果如下表所示。 注:a:样品量为5mL。RSD是基于多次测量0.5 ng L-1的二价汞和烷基汞得到的相对标准偏差。 在本方法中,CH3Hg(II)、Hg(II)和C2H5Hg(II)在超痕量(0.2-10 ng/L)和低浓度(10-1000 ng/L)的条件下均获得了良好的线性。此外,该方法也具有很好的重现性,CH3Hg(II)多次测量的相对标准偏差(RSD)为4.0%,Hg(II)为7.9%,C2H5Hg(II)为2.5%(n = 7)。位于pg/L水平的低检测限(LOD)和定量限(LOQ)使得本方法适用于天然水中超痕量的二价汞和烷基汞的检测。 进一步对海水、河水和湖水中的二价汞和烷基汞进行了分析,以验证在线固相萃取富集检测方法的可行性和准确性,见下图。结果表明Hg(II)是这些天然水中主要形态的汞,其浓度为0.46至1.30 ng/L。在湖水中,也检测到超痕量的CH3Hg(II),为0.07 ng/L。 另外,我们在水样中添加1 ng/L的CH3Hg(II)、Hg(II)和C2H5Hg(II),以评估该方法的回收率,见下图。在这些环境水体中,Hg(II)、CH3Hg(II)和C2H5Hg(II)的回收率分别为82-106%、100-101%和82-88%。这一结果表明,本方法可用于分析自然水体中的超痕量二价汞和烷基汞,准确度高。 结论 岛津在线SPE-LC-ICP-MS系统适用于天然水中超痕量的二价汞和烷基汞的检测,其方法的稳定性、准确性及回收率均满足方法学要求,可用于环境研究及环境常规监督检测。 本文内容非商业广告,仅供专业人士参考。
  • 有害痕量元素排放清单:为控污治污提供科学依据
    10月8日,国际烟草控制政策评估项目(ITC)组织公布的科研报告显示,我国13个卷烟品牌被检测出含有重金属(砷、镉、铅等),其含量与加拿大产香烟相比,最高超出三倍以上。  据《重庆商报》报道:香烟中的重金属可能来自烟草产区土壤中。相关研究表明:生物从环境中摄取重金属,可以经过食物链的生物放大作用逐级富集,并通过食物等形式进入人体,引发人体某些器官和组织产生病变。  有害痕量元素及其化合物排放已成为大气污染控制的一个新兴而前沿的研究领域。在国家自然科学基金的资助下,北京师范大学副教授田贺忠带领的研究小组对我国2005~2020年能源利用及有害痕量元素排放发展趋势进行了研究,为我国掌握典型有害痕量元素污染排放现状及空间、行业分布特征提供了基础数据,并为国家和地方政府制定相关痕量元素污染排放法规、标准及技术与经济政策等提供了科学依据。  痕量元素引关注  上世纪50年代,日本熊本县水俣湾附近发现了一种奇怪的病,这种病最初出现在猫身上,被称为“猫舞蹈症”。病猫步态不稳,抽搐、麻痹,甚至跳海死去,被称为“自杀猫”。随后不久,发现也有人患有这种病。患者由于脑中枢神经和末梢神经被侵害,口齿不清、步履蹒跚、面部痴呆、手足麻痹或变形、视觉丧失,严重者精神失常,或酣睡,或兴奋,身体弯弓高叫直至死亡。这种怪病就是日后轰动世界的“水俣病”。  “日本发生的水俣病(汞污染)和骨痛病(镉污染)等都和有害痕量元素污染有关。”田贺忠说,“尽管痕量元素在空气中含量很小,但它的浓度超过一定范围就会显示出极大的毒性。许多痕量元素毒性极大,而且化学稳定性好,具有迁徙性、沉积性。它们不仅会引发人体呼吸系统的严重疾病,而且会污染水资源、土壤,造成生态环境的破坏。”  1990年,美国在《清洁空气法(修正案)》中列出了189种有害空气污染物,其中包括11种痕量元素(空气中含量很少的元素,如锑、砷、铍、铬、铅、锰、汞、镍、硒等)。在这11种痕量元素中,汞、砷、硒三种挥发性有害痕量元素的排放污染尤其引人关注。  有研究者发现,近10年来北欧、北美内陆偏远地区无明显工业污染源的湖泊中,鱼体内汞浓度的升高是由于大气汞沉降造成的。  美国环境保护署的报告称:燃烧装置排放的大气污染物中主要是有害的有机成分如苯并芘(BaP)、硫化物、氮氧化物、未燃烬可燃物以及重金属元素,它们几乎是造成所有癌症的原因,其中尤其以亚微米级颗粒形式存在的重金属排放物具有最大的威胁性。  汞、砷、硒等属于挥发性有害痕量元素,在高温燃烧或热解过程中不会被分解,而是挥发成蒸气,进而在烟道下游温度降低时通过结核、凝结、冷凝等过程形成许多亚微米颗粒。研究表明,尽管亚微米颗粒仅占燃煤总飞灰质量的5%左右,却富集了总痕量元素质量的13%~61%。汞、砷、硒等痕量元素主要富集在这些亚微米颗粒表面,这些亚微米颗粒很难被各种常规的污染控制装置有效捕获。它们大部分会随同亚微米颗粒排放到大气中,而这些亚微米粒子在大气中主要以气溶胶形式存在,不易沉降,而且上面富集的大部分有毒痕量元素也难于被微生物降解,可长时间停留在大气中,不仅影响大气能见度,而且通过呼吸系统进入动植物和人体内并不断蓄积,并可转化为毒性很强的金属有机化合物,还会通过干湿沉降过程进入水体和土壤,从而对水和土壤生态环境产生污染危害。  因此,大气汞、砷、硒等挥发性有毒痕量元素污染排放、迁移、沉降及控制等,也成为国际学术界关心的大气污染防治新兴研究热点之一。  燃煤:排放痕量元素祸首  美国环保局(USEPA)科学家Linak曾指出:元素周期表中几乎没有什么元素不存在于煤中,它们都是煤的重要组分,根据其含量不同,通常可将煤的元素组分划分为主量元素、次量元素和痕量元素三大类。其中,包括多种有毒痕量元素,如硼、铍、锗、镉、钴、铜、锰、铅、镍、汞、铬等。其中,汞、砷、硒、铅、镉、铬等元素对环境的危害最大。  化石燃料和矿物中的痕量元素在高温燃烧或熔炼过程中因各痕量元素的浓度、赋存状态以及操作工况的差异所表现的热行为不同,其挥发性也表现不一。但在所有条件下,汞、砷、硒都具有挥发性。  “由于汞极易挥发, 在燃烧过程中极难控制,燃煤排放被认为是最大的人为大气汞污染源。大气中颗粒汞主要结合在细颗粒物上, 对人体的危害更大。特别是环境中任何形式的汞均可在一定条件下转化为剧毒的甲基汞。进入环境中的汞会产生长期的危害, 所以汞是煤中最主要的有害微量元素之一。”田贺忠说。  砷是一种蓄积性元素,是当前环境中使人致癌的最普遍、危害性最大的物质之一。砷可通过呼吸道、消化道和皮肤接触等进入人体,随血流分布于肝、肾、肺、脾、骨骼、肌肉等部位,特别易于在毛发、指甲中蓄积,从而引起慢性中毒。尽管砷在煤中的含量很低,但由于煤消耗量巨大,煤中砷长期排放的积累不仅对燃煤电厂附近产生污染,而且可通过远距离的传输对比较遥远的生物产生负面影响。  “我们的研究发现,抚顺、沈阳、兰州、贵阳、成都、重庆等城市的大气中砷含量高于其他地方就和燃煤有关。西南地区由于高砷煤的使用,曾造成3000多例砷中毒事件。”田贺忠说。  燃煤是大气中硒的主要来源。据估算,全球发电用煤所排放的硒量占人为硒排放量的50%以上。燃煤也是造成一些地区土壤、水、植物中硒含量过高的原因。硒对于动植物和人类来说是一种必需的微量元素,但硒含量过高同样会危害人体健康。在我国陕西安康、湖北恩施等地发生的人、畜硒中毒事件,就是由于开采和使用当地的富硒石煤所造成的。  弄清排放总量及时空分布  目前,我国正处于工业化社会的初期阶段,国民经济的快速发展和大规模基础设施建设,需要大量的电力、钢铁、水泥以及有色金属等材料,这就需要消耗大量的化石能源和矿物资源。  2008年我国用于直接燃烧的煤炭约27.4亿吨。另外,钢铁冶炼、有色金属冶炼、水泥生产、化工等行业对金属和非金属矿物的烧结熔炼过程也会使矿物中的有害痕量元素挥发,并富集在微细颗粒物上释放到大气中,从而对人体健康和生态环境产生危害。  “国外曾有学者指责中国燃煤对大气的影响。然而,由于种种原因,目前我国还缺乏对这些典型有害元素污染现状的全面认识,燃烧和工艺生产设施上缺少专门的污染控制措施,使得国家制定相关的法规、标准及污染控制对策缺乏有效依据。另外,有害痕量元素在大气中的传输扩散不仅与物理过程有关,还涉及更复杂的化学反应和二次污染,对有害痕量元素污染排放清单的研究是进一步开展有害痕量元素污染物传输、沉降、污染源排放标准、控制技术研究开发重点,也是制订控制对策的基础。因此,非常有必要开展我国有害痕量元素污染排放清单的研究。”田贺忠说。  据介绍,排放清单研究能定量得到各种源排放总量及其时空分布,是描述污染物排放特征的有效方法。田贺忠等人针对目前我国缺乏对汞、砷、硒等典型有害元素大气污染排放状况认识的现状,采用排放因子法,通过现场测试调查、文献调研、专家咨询等手段,进而根据国民经济活动水平、能源生产消费状况、有色冶金等各部门生产活动水平等,以及各种装置或工艺过程污染控制水平等因素,在国内首次比较全面系统地建立了1980~2007年我国典型有害痕量元素汞、砷、硒大气排放清单及历史趋势。  该小组以2005 年为基准年,利用部门分析法对2005年至2020年能源利用及有害元素排放发展趋势开展了情景分析。重点研究了各省区燃煤大气典型有害痕量元素(汞、砷、硒等)排放量。按经济部门、燃料类型、燃烧方式和污染控制技术对排放源进行分类,确定各类排放源的排放因子和能源消费量。研究各省区生产原煤、洗精煤、焦炭和型煤的痕量元素含量,建立各省区间原煤、洗精煤、焦炭和型煤的传输矩阵,从而确定各省区消费原煤、洗精煤、焦炭和型煤的有害元素含量。研究人员结合各省区内各类排放源的排放因子、燃料消费量和燃料中痕量元素含量,计算出其排放量,进而给出各省区和全国燃煤大气典型有害痕量元素污染排放清单。  此外,该小组还将对各地区的有色金属冶炼、钢铁、水泥生产、废物处置、生物质燃烧等非燃煤源导致的典型有害痕量元素排放情况进行估算,进而与燃煤源排放清单相加,即可获得中国人为源导致的大气典型有害痕量元素污染物排放清单,并进一步通过网格化处理,利用GIS技术得到中国有害痕量元素的空间分布特征。  该研究有助于了解和掌握我国典型有害元素排放现状、趋势、时空分布特征等,可作为进一步开展有害元素的环境空气质量模拟和生态环境及人体健康影响的基础,并可为国家和地方政府制定相关法律、法规及技术经济政策提供科学依据。
  • 海水中的纳米颗粒
    纳米科技在为现代生活提供各种高性能产品的同时,也对环境造成了严重的负担。之前的文章中,我们一起学习了饮用水、湖泊水、废水等水体中的纳米颗粒的单颗粒ICP-MS的测定过程,了解到纳米颗粒的无处不在。那么“大海啊,全是水”的海水中,是不是也一定存在着纳米颗粒呢但是,海水和其他水体不一样,含有更多的“盐分”,也就是基体不同。通常,在ICP-MS 分析中,分析之前需要稀释具有较高基体的样品,以免对仪器产生影响。然而,纳米颗粒在环境样品中的溶解和聚合取决于基体,且样品基体组成和浓度(例如溶解有机质(DOM)和离子强度)对其具有极大影响。因此在处理纳米颗粒时,稀释可能触发转化,这意味着获得的结果可能无法准确反映样品中纳米颗粒的初始状态。为降低环境样品或其他高溶解固体含量样品在分析前稀释的必要性,PerkenElmer提供了适用于NexION系列ICP-MS(5000/2000/1000/350/300)的全基体进样系统(AMS)。这套系统包含一个耐高盐雾化器和一个带有氩气稀释气接口的雾室。稀释气的流速由独立的氩气通道控制,气流方向与雾化气流向垂直,以获得最佳的混合效果。可获得高达200倍的稀释比,避免了离线手工稀释的繁琐操作和随之而来的污染和误差。对于不需稀释的样品,只需将稀释气关掉,无需取下稀释气管路。借助AMS系统,对无需稀释的样品和需要稀释200倍以内的样品分别进行分析之间,无需对仪器再次进行参数优化。本文中,我们将探索模拟海水样品中金纳米颗粒的分析,并利用AMS 功能避免人为稀释,并讨论仪器配置条件对单颗粒ICP-MS进行精确和准确颗粒分析的影响。样品在超高纯(UHP)水中以1,2 和3 ppb 浓度制备离子金(Au+)标准品,并且在超高纯水中按60000 颗/mL制备60 nm 的金纳米颗粒标准品(NIST 8013)。使用标准参考物质(CASS-6,加拿大国家研究委员会)制备海水样品,并掺入60000 颗/mL的60 nm NIST 金纳米颗粒。在分析之前不进行进一步的样品稀释。实验所有分析均在NexION 2000 ICP-MS 上进行,并使用表1 中所示的进样附件和参数。全基体进样系统(AMS)的气流量设定为0.4 L/ 分钟,即10 倍稀释,可在未经任何人为稀释的情况下分析未稀释的海水,从而简化样品制备,并确保样品基体中纳米颗粒的完整性。实验结果如下图所示,在几种不同的AMS 气流量下精确确定NIST 60 nm 金颗粒的粒径,证明如果使用相应的离子校准,AMS 不会影响粒径测量的准确度。AMS 气体流量对NIST 8013 60 nm 金纳米颗粒测量粒径的影响。AMS 气体流量对NIST 8013 60 nm 金纳米颗粒测量粒径的影响将金纳米颗粒分别添加到海水和去离子水样品中并进行测量。下图显示了添加到海水和去离子水中的60 nm纳米颗粒的粒径分布,两者基本没有差异。结果表明,适当的仪器参数设置和AMS降低了基体效应,从而能够在复杂的环境基体(如海水)中进行准确精准的纳米颗粒测量,而无需与离子校准标液进行基体匹配。这种能力简化了流程,增加了可用性,最重要的是,由于消除了液体稀释的需要,可在分析样品中获得纳米颗粒的准确结果。未稀释的海水(a)和去离子水(b)中的NIST 8013 60 nm金纳米颗粒的粒径分布未稀释的海水(a)和去离子水(b)中的NIST 8013 60 nm金纳米颗粒的粒径分布结论使用配备了全基体进样系统(AMS)的PerkinElmer的NexION 2000 ICP-MS,可以无需考虑用水稀释导致的纳米颗粒状态的转化对于测量结果的影响,精确测量海水(典型的复杂基体)中纳米颗粒粒径大小和浓度,无需手工稀释样品。想要了解更多详情请扫描二维码《使用全基体进样系统和单颗粒ICP-MS快速测定海水中纳米颗粒》
  • 南海海洋研究所热带海洋生物资源与生态重点实验室研究团队:痕量铝影响海洋碳循环与气候变化研究获进展
    近日,中国科学院南海海洋研究所热带海洋生物资源与生态重点实验室研究团队联合德国赫姆霍兹基尔海洋研究中心、英国帝国理工学院、加拿大国立科学研究院等,采用痕量金属洁净培养技术、55Fe同位素示踪方法,开展了多项实验,发现痕量铝添加可以显著提高受铁限制硅藻的叶绿素合成速率、光合效率和生长率。该研究揭示了痕量铝有益于铁限制海洋硅藻叶绿素合成的新现象,为铁铝假说提供了新证据,也为在南大洋等铁限制海域开展海洋铝施肥负排放技术研究提供了重要基础。相关研究成果以Promoting effects of aluminum addition on chlorophyll biosynthesis and growth of two cultured iron-limited marine diatoms为题,发表在《湖沼与海洋》(Limnology and Oceanography)上。铝是地壳中含量最高的金属元素,普遍存在于各种环境与生物体。然而,目前尚未发现铝具有确切的生物学功能。铝在淡水和土壤中的浓度可达mmol/L,相较而言,海水中溶解铝的浓度要低几个数量级,常处于痕量水平。中国科学院南海海洋研究所热带海洋生物资源与生态重点实验室研究团队从十多年前开始关注铝添加对海洋浮游植物生长的影响,开展了一系列现场和室内实验研究,发现痕量铝添加可促进海洋浮游植物固碳,增强生源碳向深海输出、埋藏封存,从而影响海洋碳汇效能,进而调节气候变化。有证据表明,过去80万年,通过沙尘沉降输入到南大洋的铝与铁通量与冰期-间冰期气候回旋存在密切关联。通常认为,南大洋浮游植物生长受铁限制,铁输入的变动被认为是调节碳汇与气候变化的关键因子。研究人员发现,铝与铁协同作用,很可能是南大洋等海域碳输出、埋藏的关键,因而提出了“铁铝假说”,指出铝与铁一样,可能是调控海洋碳循环和碳汇形成的关键因子,在冰期-间冰期气候变化过程发挥重要作用。研究团队证实痕量铝添加显著提高硅藻净固碳量,降低颗粒有机碳分解速率。根据铁铝假说,研究团队提出“海洋铝施肥”观点,认为这有可能发展成为潜在高效的负排放技术与方法,并预测南大洋等受铁限制的高营养盐低叶绿素海域是开展铝施肥及铁铝同时施肥的理想区域。然而,在大规模现场施肥实验之前,仍需要在不同时空尺度上检验海洋铝施肥的效能及其潜在环境影响。痕量铝添加如何影响铁限制浮游植物尤其是硅藻的生长,是需要解答的关键问题之一。这些结果表明,铝可能会促进叶绿素的生物合成,有利于叶绿素受限硅藻的光合效率和生长。我们推测,添加 Al 可通过促进超氧化物介导的细胞内叶绿素生物合成,提高细胞内铁的利用效率。研究工作得到国家留学基金、广东省自然科学基金、南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项等的支持。
  • 莱伯泰科利用全自动固相萃取系统实现海水中石油的检测
    日前海洋污染越来越受到社会的关注,频频出现漏油事件。只要存在污染,对于环境测试实验室就面临巨大的商业压力---增加样品处理量、缩短处理周期、获得可重复实验结果、数据更准确显示其测试水平。另外,实验室操作人员使用有机溶剂量和暴露在有机溶剂环境里越来越受限制。能够加快样品分析、降低对环境和人体危害的实验技术充分显示其优越性。 分析海水样品中的痕量石油类污染物,固相萃取技术越来越受到人们的关注。相比于液液萃取,它的优点主要包括减少了溶剂使用量和溶剂暴露,节约时间并且提高了工作效率。SPE-DEX 4790 萃取系统 (Horizon Technology)是可编程的多用途的全自动固相萃取系统,能够直接从原始的样品瓶中处理样品。若开始运行,每个4790的萃取单元会自动传输所需的溶剂预活化SPE萃取盘中的吸附剂,上海水样品过萃取盘,然后按设定的空气干燥时间进行干燥,**用所需的溶剂洗脱萃取盘使样品中的目标分析物收集到收集瓶中。 本文采用SPE-DEX 4790 萃取系统萃取海水中的石油类污染物,并采用不同的测定方法来测定比较。相关实验报告请下载:http://www.instrument.com.cn/netshow/SH100523/down_173433.htm
  • 拉曼智能模块如何解决常规拉曼毒品痕量检测难题?—拉曼光谱仪痕量解决方案
    拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,根据每种分子如人类指纹一样,都有其独特的光谱指纹,可以很好的识别分子物质,当前,随着拉曼光谱技术的发展,各样式拉曼检测仪不断涌现,如便携式科研拉曼检测仪、手持式拉曼检测仪等。它们为拉曼技术的推广提供了条件。  普识纳米在现有常规拉曼技术研究的基础之上,针对不同拉曼检测仪性能不同导致的采集拉曼谱图与比对标准谱图差异大,拉曼检测仪物质识别能力不强、检测限等问题,设计并开发了通用拉曼智能识别模块,解决了拉曼谱图的自适应采集、多维度校准和多核加速技术等问题,提高了谱图识别的准确性和速度。  拉曼智能模块对常规拉曼升级包括以下几点:  (1)针对信号强度不确定性样品,设计了拉曼自动积分控制算法,通过实时评价拉曼信号的信噪比或峰强,自动控制拉曼积分时间、激光功率等参数,使得针对不同的样品,不同性能的拉曼信号采集模块都能自动获得高质量的拉曼谱图数据。  (2)为提高拉曼谱图智能识别算法的通用性和准确度,设计了多维度的拉曼谱图校准算法,在对拉曼谱图进行滤波去噪的基础上,设计了基于多物质的标定的拉曼位移校准方法和相对强度校准方法,改进了不同性能拉曼信号采集模块获得的拉曼谱图的特征信息差异,从而提高了谱图识别的准确性。  (3)基于嵌入式系统,实现了智能识别算法的并行加速。通过采用多核多线程并行处理、哈希表数据库检索方法等,提高了拉曼谱图智能识别算法的计算速度,大幅提高了智能识别模块的性能。  (4)同时还开发了基于串口通讯的通信桥,实现了基于http通讯的前后端程序在串口下的通信。 本文开发设计了微型的拉曼智能识别模块,编写了算法和控制程序,进行了实验分析和算法验证,表明了拉曼智能识别模块能适配不同性能的拉曼光谱检测模块,可以提供离线式和在线式的拉曼谱图快速识别服务。  根据以上四大方面升级,解决了不同厂家常规拉曼的数据匹配问题,结合普识纳米SERS增强技术,完美实现了常规拉曼毒品痕量检测难题。  例如第三代毒品“芬太尼”,常规拉曼是无法检测芬太尼类强荧光干扰和低浓度的两大核心问题,集合普识纳米SERS智能处理器,升级后灵敏度可达ppb级别(可以在毒贩或者吸毒人员摸过的纸币上面采样)。基于拉曼光谱SERS原理,采用独特的便携设计,具有简单、精准、高效、便携等特点。满足现场使用需求,并可根据要求支持扩容升级万条数据库,还可以随时自建谱图库,检测新出现的芬太尼。
  • 大连化物所痕量植物激素分析研究获得进展
    p  近日,中国科学院大连化学物理研究所微型分析仪器研究组研究员关亚风、副研究员耿旭辉团队在微量样品中痕量植物激素分析检测研究中取得新进展。该团队发展了一种微型基质固相分散(microscale MSPD)萃取的前处理方法,能够有效地处理亚毫克级植物样品,方法简单、重复性好且收率高。同时,研究团队研发了一种新型的衍生试剂用于柱前衍生,从而极大地提高了赤霉素的质谱检测灵敏度。相关研究成果发表在Analytical Chemistry上。/pp  植物激素是植物体内合成的调控植物生长发育的信号分子,准确检测植物体内激素的种类和含量对于深入揭示植物生命现象具有至关重要的作用。近年来,随着“植物激素作用的分子机理”自然科学基金重大研究计划的启动,国内大批的研究机构投身到植物激素的分析研究中来。但由于某些激素,尤其是赤霉素在植物体内的含量极低,而且植物体内的代谢物组成非常复杂,基质干扰严重,使得样品前处理过程变得十分繁琐。加之,激素调控的信号传导和生物化学过程通常具有组织(或器官)特异性,因此,测定激素在植物体内的时空分布具有重要意义。解决这一问题的关键在于测定微量样品中的痕量植物激素。/pp  研究团队针对极少量植物样品(亚毫克级),发展了一种新型的micro-scale MSPD方法,这种方法集研磨、浸提、净化于同一离心管中,不需要任何样品转移步骤,有效地降低了前处理过程中的损失。同时,针对赤霉素本身离子化效率低,研究人员研发了一种新型的衍生试剂3-溴丙基三甲基溴化铵(BPTAB),通过化学衍生后,检测灵敏度提高3至4个数量级,是目前的最好水平。这种衍生试剂具有低毒性,这一性质使得其在后续的研究中具有很好的应用潜力。该团队将此方法运用到单片拟南芥叶中赤霉素分布的分析中,实现其空间分布测定,空间分辨率达2X2mm2。此外,该方法对于其他酸性植物激素的时空分布测定也具有适用性。/pp  上述研究工作得到国家自然科学基金委的资助。/pp style="text-align: center "img title="1.jpg" src="http://img1.17img.cn/17img/images/201709/insimg/a8f9dc25-9b87-4d68-b0cb-809b6717f3e1.jpg"//pp style="text-align: center "strong大连化物所痕量植物激素分析研究取得进展/strong/pp/pp 论文题目:Spatial Profiling of Gibberellins in a Single Leaf Based on Microscale Matrix Solid-Phase Dispersion and Precolumn Derivatization Coupled with Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry/pp/p
  • 新疆理化所在痕量肼超快响应荧光传感方面取得重要进展
    肼是农医药、化学化工及航天军事领域的重要原料,其易挥发、高毒等特性可严重损伤人体肺部、肾脏及中枢神经系统。鉴于肼对环境生态与生命健康领域的巨大威胁,其快速、高灵敏、准确检测对保障生产和生命安全、提升环境和社会预警能力具有重要意义。而提高肼检测响应速度是实现其快速预警的关键,也是该领域的难点。中国科学院新疆理化技术研究所爆炸物传感检测团队长期致力于痕量危化品检测方法研究,在危化品光学探针设计、识别检测原理方面取得了一系列研究成果(Angew. Chem. Int. Ed. 2022, e202203358、Adv. Mater. 2020, 32, 1907043、Adv. Sci. 2020, 7, 2002991)。团队近期针对危化品肼的快速定性检测难题,提出了一种探针识别位点与肼分子间非共价相互作用的精确调控策略,成功实现了肼的超快荧光点亮检测。研究人员从反应型荧光探针与目标物分子相互趋近角度出发,以探针识别位点与肼分子间非共价相互作用为着眼点,通过带有不同吸电子基团的R-苯甲酸与荧光素分子间的酯化反应,构建了系列以酯键为识别位点的荧光探针分子F-R(R=-CN、-NO2、-F)。系统的密度泛函理论计算与分子动力学模拟表明,利用R基团的不同吸电子性质控制酯键识别位点表面电荷性能,从而精确调控了识别位点和肼分子间的非共价作用力强度。该调控策略有效增强了两者在反应前相互趋近过程的结合效率,进而显著提升了检测体系的响应速度。相比较于已报道的荧光点亮型探针分子(响应时间范围:600-3600 s),本研究中调控优化后的F-CN探针分子实现了对肼2-3 s内的超快荧光点亮检测。该研究成果有望为基于识别位点与目标物亲和力调控提升反应型荧光探针体系响应速度提供理论和实验指导,为环境检测领域的快响应探针定向设计提供崭新思路和理论依据。相关研究成果发表于Cell Press出版社旗下期刊Cell Reports Physical Science上,中科院新疆理化所为唯一完成单位,博士研究生李继广、马志伟和雷达博士为共同第一作者,窦新存研究员为通讯作者。该工作得到了国家自然科学基金面上项目、中科院西部之光人才项目、中科院青促会人才项目、中科院从0到1原始创新项目、新疆维吾尔自治区杰出青年基金等项目的资助。文章链接:https://doi.org/10.1016/j.xcrp.2022.100878F-R系列荧光探针识别位点调控策略
  • 中石化自主开发微痕量气体组分同位素分析新技术
    近日,石油勘探开发研究院无锡石油地质研究所实验研究人员应用自主开发的微痕量气体组分同位素分析新技术,对鄂尔多斯盆地的富烃类气藏、云南腾冲的温泉气、济阳坳陷地区二氧化碳气藏中的气体进行氢同位素分析,收到让地球化学研究人员满意的分析效果。历经40多年发展的无锡石油地质研究所实验研究中心在稳定同位素分析领域方面有着深厚的技术积累,逐步形成具有特色的同位素分析技术系列,得到国内外同行认可。面对油气勘探研究需要和目前同位素分析技术难题,在上级的支持下,这个所不断更新实验技术装备,引进3台不同型号的稳定同位素质谱仪,包括与其相配套的水平衡装置、预浓缩装置、气相色谱仪等先进设备。   同时,这个所着力加强技术创新和新技术的开发应用,坚持将传统技术方法与创新分析技术相结合,在原有稳定同位素分析技术的基础上,通过将稳定同位素质谱仪与其相配套的设备互相联接,成功开发了新同位素分析技术。  燃烧/高温裂解元素分析仪与稳定同位素质谱仪(Delta V)联机使用碳—氮、氢—氧同位素连续测定技术,可进行批量样品分析,具有样品量小、检测速度快、准确度高的特点,能满足沉积有机质碳、氢、氧、氮4种元素同位素组成的分析要求。使用燃烧装置能够实现一次进样同时检出样品中碳、氮同位素组成的目标,而使用裂解装置可同时在线测定其氢、氧同位素组成,还可用于水中氢氧同位素分析。  预浓缩装置与稳定同位素质谱仪(MAT253)联用测定微痕量气体组分的同位素分析技术,能满足低浓度甲烷气样品的碳氢同位素分析,同时利用天然气中各个组分在低温下被特定填料吸附的物理性能差异,对天然气中微痕量氢气的富集与分离,有效消除天然气中微痕量氢气同位素分析的技术瓶颈,为幔源流体中氢的地球化学研究提供有力技术支撑。  据悉,稳定同位素分析新技术的开发与应用,为石油天然气地质研究提供了丰富的地球化学信息,在油气成因类型判识、油气源对比、运移示踪和成藏机理研究等方面发挥着独特作用,深受课题科研攻关人员和油气田生产单位的欢迎。
  • 中国计量院“超痕量物质精密测量关键技术及应用”荣获国家科技进步二等奖
    p  分析化学中的“超痕量”是指物质含量在10-9g/g及以下的极微小量。单细胞成分量、早期肿瘤诊断标志物含量、高纯标准物质中杂质含量等往往都在超痕量级。检出并准确量化这些超痕量物质往往有着“见微知著”的效果。例如,单细胞成分量间的超痕量差异很可能是区别细胞功能、判断细胞是否病变的依据 血液中超痕量的诊断标志物则可能是肿瘤和心脑血管疾病等早期诊断的最有效途径。然而,“超痕量”已接近主流分析测试方法的检出极限,更难以在样品量极少、基质复杂的情况下保障超痕量成分测量的可靠和稳定。/pp  为此,中国计量科学研究院(简称“中国计量院”)针对超痕量物质精密测量的系统解决方案、核心技术和关键部件,与复旦大学等单位联合展开技术攻关。经近六年的努力,项目组成功开辟了超痕量物质精密测量的新途径,破解了关键测量环节的世界技术难题,将目标分析物的检出限下拓至主流方法的千分之一。项目组自主研发的核心器件和测量系统,成功将我国相关仪器的自主研制能力提升至国际领先水平,为我国物质科学、生命科学重大研究的突破提供了有力支撑。日前,中国计量院领衔的“超痕量物质精密测量关键技术及应用”项目获得了2017年度国家科技进步二等奖。/pp style="text-align: center "img width="500" height="676" title="001.jpg" style="width: 500px height: 676px " src="http://img1.17img.cn/17img/images/201801/noimg/ced4e547-3372-4c84-854b-a44fa0f88ab6.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong图1 项目负责人方向研究员在国家科学技术奖励大会现场/strong/span/pp  据项目负责人、中国计量院院长方向研究员介绍,对全技术链条的系统创新和对关键环节的重点攻关是项目取得突破的两大核心。项目组首先从主流色谱-质谱技术路线各个环节出发,分析了制约测量精度的根本原因,提出了以气相离子为研究对象、基于离子精确测量技术的全新测量系统模型。与此同时,项目建立了基于超算的多物理场离子运动模拟仿真系统,促进了全研发过程多种新技术、新方法的快速验证、优化和实现。在此基础上,项目聚焦系统关键环节,成功构建了可精确调控的多物理场,发明了新场型调控离子操控新技术,研制出系列关键部件和三类基于不同原理的科学装置,实现了离子选择性高效传输、富集和精准分离,最高离子富集效率可达10000倍。/pp  项目还针对弱极性、易降解化合物,研制出高效的辉光放电离子化装置,实现了纯物质中全杂质的精确扣除,大幅提升了我国基准纯物质的自主研制水平,2种生命科学领域标准物质定值方法被国际发布为参考方法,彰显了我国化学计量的国际地位和水平。项目针对单细胞分析中样品量极少、基质复杂等难题,开发出基于电场诱导解析电离离子化的独特科学装置,成功实现了pL(10-12L)级单细胞中基质和待测分子的分离,检测限达fmol(10-15mol)以下,可同时观测到单细胞中上千种代谢物含量的极微小变化,为我国生命科学前沿和尖端研究提供了可靠支撑。/pp style="text-align: center "img title="002.jpg" src="http://img1.17img.cn/17img/images/201801/noimg/eff03197-7557-449c-9ee8-e58c8df88845.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "图2 三类科学装置国际首创、核心技术国际领先/span/strong/pp  除支撑计量科学、生命科学等前沿尖端研究外,项目组与相关科研单位和企业合作,聚焦质谱仪器新产品自主研发、技术升级和产业化,依靠创新引领我国基础前沿研究自主装备能力和原始创新水平,形成的关键技术和部件应用于多个企业和多种质谱仪的研制,在一些重要领域打破国外垄断,增强了国产质谱仪器的国际竞争力。/p
  • 赛默飞推出色谱及痕量元素分析药物分析解决方案
    2014年6月26日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日推出色谱及痕量元素分析药物分析解决方案。全球范围内的制药行业正面临着严峻的挑战:许多常用的药品专利到期,而开发一种新的药物代价高昂、耗时长,且往往需测试超过10,000种化合物才有一种得到最终的上市批准;全球各地政府都在控制医疗成本;国际机构正在对风靡全球的生物制药寻求统一的监管控制等。在这些挑战之下,全球医药市场萎靡。 赛默飞了解制药行业各个环节的需求并可提供帮助。无论是新药的发现及开发,还是后期的制造、分析及控制,每个环节都可提供优质的技术和服务,提高您的工作效率并降低成本。我们拥有的分离和检测技术可为制药行业中遇到的各种复杂的分析难题提供全方位的解决方案。 赛默飞色谱以及痕量元素分析产品,将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为药物分析创造出全新的可能性,帮助客户解决在分析领域所遇到的复杂问题与挑战,促进制药行业发展,提高实验室生产力。色谱及痕量元素分析药物分析解决方案 制药行业全面解决方案 此次赛默飞推出的药物分析解决方案以产品为单位共分为五个章节:离子色谱、液相色谱、元素分析、气相/气质、加速溶剂萃取。每一章节均介绍了该类仪器的原理,赛默飞产品的特点和典型的应用案例。全文共呈现了约90个典型应用,涵盖了化药、中药、抗生素、生化药物、生物制品、药用辅料等几乎所有的药物种类;分析类型包括了有效成分、有关物质、降解产物、溶剂残留、有毒有害元素以及方法比较等方面,系统地展现了赛默飞在药物分析领域全面且无可挑剔的解决方案,是我们为制药行业提供的又一利器。下载色谱及痕量元素分析药物分析解决方案请点击:http://www.instrument.com.cn/netshow/SH100650/down_323500.htm 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、 Life Technologies、 Fisher Scientific 和 Unity Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com。赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。为了满足中国市场的需求,现有8家工厂分别在上海、北京、广州和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn。
  • “起底”有毒有害痕量元素大气排放
    不管是资源利用还是污染控制,摸清家底都是基础且必须的工作。近日,北京师范大学教授田贺忠团队基于多源数据融合,评估了“大气十条”(《大气污染防治行动计划》)实施期间,不同排放控制措施对各部门有毒有害痕量元素大气排放变化的驱动。并利用大气传输模型及暴露风险评价模型,量化分析了典型行业(燃煤、冶金等)排放变化对有毒有害痕量元素大气暴露浓度及健康风险的影响。5月1日,相关论文在《一个地球》在线发表。痕量元素大气传输及暴露风险示意。受访者供图痕量元素关乎健康国际癌症研究机构(IARC)曾将砷、镍、镉、六价铬、铅、钴、锑及其化合物认定为致癌物质。这些重金属元素在大气中含量极少,但具有毒性、累积性和致癌性的特点,长期暴露在较高浓度有害痕量元素大气环境中,会对人体呼吸系统、心血管系统等构成严重威胁。2013年9月,国务院印发《大气污染防治行动计划》,多措并举展开大气污染防治。从重点行业整改关停,到全面整治小锅炉、控制机动车保有量、治理餐饮污染,再到大力发展清洁新能源。一系列举措很快显现成效,我国重点区域空气质量明显好转,重污染天气大幅度减少。2017年,第一次全国污染源普查对减排效果有了整体了解,但这些减排措施如何影响我国大气中有害痕量元素排放、其暴露浓度水平及相关健康风险仍不清楚。“‘大气十条’中的治理措施和围绕该措施进行的普查主要针对颗粒物、二氧化硫和氮氧化物等常规大气污染物,实际上我们还应该关注其中对人体健康危害较大的有毒有害微量元素,比如砷、铅、镉等。”田贺忠告诉《中国科学报》,“这项研究基于多源数据融合,建立了中国有毒有害痕量元素网格化大气排放清单模型,评估了不同排放控制措施对各部门、各省区有毒有害痕量元素排放变化的驱动,并利用大气传输模型及暴露风险评价模型,量化分析研究了典型行业排放变化对有害痕量元素暴露浓度及健康风险的影响。”“协同减排”效益明显“总体来讲,‘大气十条’实施期间有毒有害痕量元素的排放减少成效明显,但其风险依然值得关注。”田贺忠说。通过调查研究全国燃煤电厂、黑色金属冶炼、有色金属冶炼、水泥生产、垃圾焚烧电厂等典型工业排放源的点源排放量及各省煤炭消耗量和装机容量空间分布,研究人员发现,中国五大城市群(华北平原、长三角、珠三角、川—渝和汾渭平原)有害痕量元素排放量占全国总排放量的42%;五大城市群以外,湖南、内蒙古、云南、辽宁及河南省也是有害痕量元素排放量较高省份;“大气十条”期间,全国11种有害痕量元素年均暴露浓度约减少28.1%。其中,燃煤部门的排放削减对钴、砷、硒、铬和锌浓度减少的驱动最显著,贡献在50%以上;而黑色金属冶炼部门的排放变化则主导了镉和铅浓度的降低。“尽管如此,2017年中国有毒有害痕量元素污染依然严重。较高的痕量元素浓度主要集中在中国东部、华北和西南部分地区。”该论文第一作者、海南大学南海海洋资源利用国家重点实验室副研究员刘姝涵(北师大环境学院博士)说,“此外,六价铬的全国年均浓度比国家空气质量标准高出15倍,其中最大值出现在山东省。砷、镍元素浓度在山东省和上海市略高于标准限值。”研究发现,“大气十条”期间,7种致癌元素的全国年均致癌风险下降了约39.5%。其中钴、六价铬和砷元素下降幅度最大。然而,2017年,有害痕量元素年均致癌风险值仍超过阈值,较高致癌风险主要出现在中国东部。山东和上海砷和镍元素致癌风险分别达风险阈值的9倍和1.6倍。情景分析表明,2012年至2017年,燃煤部门排放变化主导了致癌风险降低,带来了1.5×10-6 致癌风险的下降。黑色金属冶炼和有色金属冶炼部门排放变化分别带来了0.8×10-6和0.3×10-6 致癌风险的下降。“‘大气十条’主要针对PM2.5等常规污染物展开,但对有害痕量元素起到了很好的‘协同减排效益’。”田贺忠解释说,“燃煤电厂超低排放改造等重点工业行业的除尘、脱硫、脱硝工艺升级改造同时减少了有害痕量元素排放。”多源数据融合显威力“‘大气十条’的施行,不但减排效果显著,还推动了各行业部门相关信息的公开,这为我们进行定量研究提供了很多基础数据。此外,地理信息技术、数字化和人工智能技术的发展,也让我们使用‘多源数据融合’,进行更精细的‘点源化’研究成为可能。”田贺忠说。进行污染物调查研究,过去的数据来源单一,通常统计年鉴等宏观数据不显示排放源的具体位置。近年来,随着各行业信息公开化程度不断提高,各省、区,各行业、企业,甚至一些协会、组织也会从不同的角度披露一些重点排放源的信息和数据。这些数据虽然源自不同部门,服务于不同对象,甚至数据侧重点、统计方法、呈现方式各不相同,但经过数据清洗和技术处理,这些不同来源的数据却可以相互补充验证。“比如,各省的统计年鉴和月度统计公报中有每年和每月水泥产量数据,我们会结合当地的经济数据,结合水、煤、电量等相关数据信息,排污许可证允许排量等,通过多渠道分析研究,弄清它的排放量。”田贺忠补充说,“了解一家企业使用什么生产工艺装备,掌握它的除尘、脱硫、脱硝技术路径,知道它消耗了多少煤和原材料等信息,就可以建立一套技术方法去核算它排放多少砷、铅、镉等元素,这就是‘多源数据融合’。”利用这些数据,研究人员将我国主要燃煤电厂、黑色冶炼、有色冶炼、水泥生产、垃圾焚烧等重点工业源进行精确经纬度定位,利用各种直接和间接的数据,结合当地GDP、人口、土地利用、交通流等数据,再通过实地调研和现场实测等抽样验证,利用数理统计分析方法精确核算出趋近实际的排放量,并将其精准定位在网格上。“重金属成分的健康风险是精细控制空气污染的先决条件。”该论文匿名审稿人评价说,“本文的创新贡献在于提供了最新的排放清单和健康风险估计。该研究基于对具体措施的效益评估,为减缓有毒有害痕量元素污染和相关健康风险提供了关键见解。为中国实施清洁空气和低碳政策下精准控制有毒痕量元素提供了科学依据,也为其他国家和地区量化痕量元素排放提供了参考。”
  • 赛默飞色谱及痕量元素分析技术呼和浩特交流会成功召开
    赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。客户包括医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与工业过程控制行业等,赛默飞提供从试剂耗材至各种实验室分析仪器及在线监测系统等的产品及服务。 目前,制药、食品、环境行业正面临行业内越来越严格的要求以及样品种类及检测指标日益繁多所带来的巨大挑战,为进一步让客户了解我们在检测分析方面的成功应用,帮助您在研发实验室及生产线上建立有效的分析检测方案。赛默飞世尔科技色谱质谱部日前在内蒙古呼和浩特市举办赛默飞世尔科技色谱及痕量元素分析技术交流会,为各行业的用户带来液相、气相、离子色谱、元素分析、样品前处理的最新技术及解决方案,受到了呼和浩特各个行业专家、领导和分析工作者的欢迎,共有160余位来宾参加了本次会议。 本次会议内容主要围绕2012年4月最新推出的ICS-4000集成型毛细管离子色谱仪、液相色谱、Trace GC-1300气相色谱仪、气质联用等色谱技术以及赛默飞卓越的痕量元素分析产品原子吸收光谱仪、ICP-MS展开,详细的介绍了赛默飞世尔科技最新的检测方法和解决方案,受到了与会来宾的热烈欢迎。 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额120亿美元,员工约39,000人。主要客户类 型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助 客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com关于赛默飞中国赛默飞世尔科技进入中国发展已有30年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳等地设立了分公司,目前已有超过 1900名员工、6家生产工厂、5个应用开发中心、2个客户体验中心以及1个技术中心,成为中国分析科学领域最大的外资企业。赛默飞的产品主要包括分析仪 器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,目前国内已有6家工厂运营,苏州在建的大 规模工厂2012年也将投产。赛默飞在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位 于上海的中国技术中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;遍布全国的维修服务网点和特别成立的维修服务中心,旨在提高售后服务 的质量和效率。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • 美国TraceDetect痕量金属分析仪登陆德祥
    美国TraceDetect(微检)公司以化学传感器的微处理技术而著称,目前是世界上最专业的重金属分析仪表制造商。 公司具有Nano-Band电极*技术并研制出系列重金属分析仪,可对水样中的金属含量快速测定,灵敏度为全球最高,可达ppt级。 三大产品线 便携式: Nano-Band Explorer II-------------------专门用于分析现场水样中的痕量金属浓度◆ *的Tri-TrodeTM电极技术,集Nano- Band的工作电极、参比电极和辅助电极于一身◆ 测试金属种类:铅、铜、镉、锌、砷、汞◆ 测试过程简单快速◆ 与ICP-MS具有极好的相关性(+/-10%)◆ 支持多种测量及技术(溶出伏安法、循环伏安法、安培测量法、氧化还原电位、离子电极等)◆ 自动生成报告 全自动:SafeGuard------------全自动痕量分析技术,操作简单且功能强大当把样品放入仪器后,只需轻轻一按&ldquo 开始测量&rdquo 按钮,就可在30分钟内给出1ppb精度的数据◆ 全自动化操作,自动传输,确保操作者的安全◆ 采用Nano- Band*技术◆ 测量种类:砷、铅、镉、汞、铜、锌◆ 与ICP/MS有极好的相关性◆ 内置数据存储器可自动生成报告并将结果存档现推出最新的SafeGuard II& III:可应用于更多金属的监测---------铜、铅、镉、锌、镍、钴、铬、钒、锑、铁 在线式:Arsenic Guard--------------在线总砷分析仪,对砷监测提供了完整的过程控制*台完全自动化,监测饮用水中砷含量在线分析仪。◆ 全自动在线操作◆ 消除操作误差,精度达1ppb◆ 与ICP-MS具有极好的相关性(+/-10%)◆ 最多可支持四个样品流◆ 全自动数据采集和自动化信息数据管理系统界面◆ 低操作成本,易于维护和保养还根据客户的不同需求推出Metal Guard----------------在线金属分析仪可分别用于铜、铅、镉、锌、镍、钴、铬、硒、钒、锑、铁的在线监测 应用:饮用水------------- TraceDetect提供适用于各种市场和应用的产品类型废水---------------- 通过自动化与在线监测控制砷处理费用和步骤的完整性食品饮料---------- 可视配料、工艺路线和产品的污染物检测工业---------------- 在你的控制下进行现场产品污染物和过程残留污染物的识别学术研究------------即时、准确、低成本进行实验室或现场金属测量半导体---------------金属污染物的在线检测,防止灾难性的产量损失,降低废物处理成本矿产业---------------在确保员工和社会健康与安全的同时,降低运营成本 更多产品请登陆德祥官网:www.tegent.com.cn德祥热线:4008 822 822邮箱:info@tegent.com.cn
  • 5月18日,东莞安装安捷伦气相,电感耦合等离子体质谱仪-痕量金属元素分析技术的选择
    2021年5月18日,东莞某第三方检测公司购买我司安捷伦气相色谱 GC, 型号:6890N+ECD+NPD; 安捷伦电感耦合等离子体质谱仪 ICP-MS, 型号:7500CX ,安装调试完毕,感谢客户的支持与认可。1安捷伦气相色谱 GC 6890N+ECD+NPD 实物图片: 安捷伦气相色谱 GC 6890N内置局域网 (LAN) ,使您能够通过站点共享商业和科学数据,以便快速作出正确的决策。这种6890N气相色谱仪具有所有工业的研究和方法开发所需的灵活性和性能,耐用且可靠,适合用于那些需要多个色谱柱或阀、特定进样口或检测器、宽温度范围的常规方法。应用范围:为石油化工、食品分析、环境监测、医药溶剂残留等领域提供了完备的气相色谱仪器解决方案 1安捷伦电感耦合等离子体质谱仪 ICP-MS 7500CX 实物图片: ICP-MS已被公认为痕量金属元素分析技术的选择。当今的常规实验室要求比ICP-OES更为灵敏,比石墨炉原子吸收 (GFAAS)更为快速的分析技术。ICP-MS 可满足上述两方面的需求,它具有更宽的工作范围,并可同时测定能生成氢化物的元素及痕量Hg,同时还具备半定量及同位素比分析能力。ICP-MS又可作为一种极为理想的多功能的检测器,与色谱和激光技术联用。安捷伦电感耦合等离子体质谱仪 ICP-MS 7500CX 应用领域包括:--环境样品分析,包括自来水、地表水、地下水、海水以及各种土壤、废弃物等的分析--半导体材料分析--玻璃、陶瓷和矿冶等样品分析--地质学研究--生物食品及医药临床研究--核材料分析--石油化工样品分析--法医应用与研究--环境毒理、生命科学等领域的元素价态、形态分析
  • 清华大学团队模拟日本核污水排海:240天到达我国沿海
    2023年8月22日,日本首相岸田文雄宣布,将从24日开始向海洋排放福岛第一核电站核污染水。东京电力公司已公布了向海洋排放的详细步骤。按计划,排放前在处理过的水中加入大量海水,如果确认浓度降低到预想的水平,将在17天内排放第一批共7800吨核污染水。2023年度预计排放约3.12万吨,氚总量为5兆贝克勒尔,约为东电年计划排放量上限(22兆贝克勒尔)的两成。今天上午,一则“有研究模拟日本核污水排海扩散过程:240天到达中国沿海,1200天后覆盖北太平洋”的消息,引发网友热议。据了解,该研究来自清华大学的团队。2021年,清华大学就污水排放做了核废水在太平洋扩散机理的实验。清华大学深圳国际研究生院海洋工程研究院张建民院士、胡振中副教授团队从宏观和微观两种不同的角度分别建立了海洋尺度下放射性物质的扩散模型,并实现了福岛核废水排放计划的长期模拟。氚的宏观扩散模拟结果宏观模拟结果表明,核废水在排放后240天就会到达我国沿岸海域,1200天后将到达北美沿岸并覆盖几乎整个北太平洋。随后,污染物一边在赤道洋流的作用下沿着美洲海岸向南太平洋快速扩散,另一边通过澳大利亚北部海域向印度洋转移。值得注意的是,尽管污染物的排放位置是在福岛附近,但随着时间的推移,污染物高浓度区域将沿着35°N线附近向东延伸,从开始的东亚附近海域扩散到北美附近海域。在第2400天时,中国东南沿岸海域主要呈现浓度较低的浅粉色,而北美西侧海域已经基本被浓度较高的红色覆盖。三个沿海城市及它们附近的污染物浓度变化研究人员进一步选取了日本宫崎、中国上海和美国圣迭戈这三个沿海城市进行对比,从污染物浓度变化曲线图中可以发现,在第4000天时圣迭戈附近的污染物浓度大约为0.01个单位,这一数值已经是宫崎的三倍左右、上海的40倍左右。出现这一现象的原因主要是日本附近强烈的洋流作用,福岛处于日本暖流(向北)和千岛寒流(向南)交汇的地方,所以大部分污染物不会沿着陆地边缘向南北方向迁移,而是随着北太平洋暖流向东扩散。这一结果也意味着,在核废水排放的早期,应主要考虑它对亚洲沿岸的影响。但在后期,由于北美沿岸海域的污染物浓度将持续高于大部分东亚沿岸海域,需要重点关注北美沿岸海域的受影响情况。氚的微观扩散模拟结果除宏观扩散外,研究人员还从微观角度进行了氚的扩散模拟。与宏观扩散分析注重污染物的整体分布不同,微观扩散分析更加关注污染物个体的行为,也因此它能够支持污染物的扩散路径分析。例如,对模拟结果中到达沿岸海域的某三个污染物微粒,以400天为取样间隔,得到它们的运动轨迹。基于这些运动轨迹,可以知道美洲沿岸海域的污染物主要通过横跨太平洋到达。部分污染微粒的运动轨迹值得注意的是,根据日本的排放计划,一单位氚污染物的浓度大约对应每立方米0.29贝可,相比于氚在海洋中的背景浓度来说不算大。然而,这项研究对于污染物长期扩散的预测、核废水排放计划的合理应对以及后续放射性物质浓度的监测仍具有重要意义。在该研究的基础上,还需要通过进一步试验来探究生态环境对于放射性物质的敏感性,确定放射性物质浓度增加对于海洋生态环境和人类生活环境的影响程度,从而最终判断排放核废水这一行为对于整个海洋和人类的影响。相关成果以《福岛核事故处理水的排放——宏观与微观模拟》(Discharge of treated Fukushima nuclear accident contaminated water: macroscopic and microscopic simulations)为题发表在《国家科学评论》(National Science Review)期刊上。
  • 中科院大化所痕量植物激素分析研究取得新进展
    p  近日,中科院大连化物所关亚风研究员、耿旭辉副研究员带领微型分析仪器研究团队在微量样品中痕量植物激素分析检测研究中取得新进展。该团队发展了一种微型基质固相分散(microscale MSPD)萃取的前处理方法,能够有效地处理亚毫克级植物样品,同时研发了一种新型的衍生试剂用于柱前衍生,从而极大地提高了赤霉素的质谱检测灵敏度。相关研究成果发表在美国化学会上。/pp  植物激素是植物体内合成的调控植物生长发育的信号分子,准确检测植物体内激素的种类和含量对于深入揭示植物生命现象具有至关重要的作用。近年来,随着“植物激素作用的分子机理”自然科学基金重大研究计划的启动,国内大批的研究机构投身到植物激素的分析研究中来。但由于某些激素,尤其是赤霉素在植物体内的含量极低,而且植物体内的代谢物组成非常复杂,基质干扰严重,这就使得样品前处理过程变得十分繁琐。加之,激素调控的信号传导和生物化学过程通常具有组织(或器官)特异性,因此,测定激素在植物体内的时空分布具有重大意义。解决这一问题的关键在于测定微量样品中的痕量植物激素。/pp  该团队针对极少量植物样品(亚毫克级),发展了一种新型的micro-scale MSPD方法,这种方法集研磨、浸提、净化于同一离心管中,不需要任何样品转移步骤,方法简单、重复性好且收率高,有效地降低了前处理过程中的损失。同时,针对赤霉素本身离子化效率低,研发了一种新型的衍生试剂3-溴丙基三甲基溴化铵(BPTAB),通过化学衍生后,检测灵敏度提高3至4个数量级,是目前的最好水平。而且这种衍生试剂具有低毒性,这一性质使得其在后续的研究中具有很好的应用潜力。该团队将此方法运用到单片拟南芥叶中赤霉素分布的分析中,实现其空间分布测定,空间分辨率达2X2mm2。此外,该方法对于其他酸性植物激素的时空分布测定也具有适用性。/pp/p
  • 赛默飞成功举办新疆、内蒙色谱与痕量元素分析技术交流会
    中国,乌鲁木齐,呼和浩特,2013年9月23日&mdash &mdash 科学服务领域的世界领导者,赛默飞世尔科技(以下简称:赛默飞)于今秋9月23日和25日分别在新疆乌鲁木齐、内蒙古呼和浩特举办色谱与痕量元素系列技术交流会,为当地客户带来液相、气相、质谱、离子色谱、元素分析、样品前处理的最新技术及解决方案。在乌鲁木齐和呼和浩特,分别有来自各行业130位和120余位客户参加了上述两地的技术交流会,会议取得了理想的效果。 赛默飞色谱质谱技术工程师为与会者做了《赛默飞液相色谱技术及其在食品安全、制药、研究领域等方面的应用》报告。在报告中,工程师着重介绍了赛默飞独特的专利技术Corona ultra RS电喷雾检测器(CAD)。作为近期发展最快的HPLC通用型检测技术,其适用范围广,能分析任何非挥发性物质,具有高度灵敏性,检测低至ng级,性能良好得到公认,目前世界上许多制药、化学、食品饮料和化妆品行业使用该检测器应用于开发和生产环节。 随后,赛默飞色谱质谱技术工程师为客户介绍了今年新发布的产品iCAP 7000 系列 ICP-OES。该产品可对大通量样品中的痕量元素进行低成本多元素同时分析,大大简化了工作流程,满足广大客户最低的成本和最高质量数据的要求,应用领域十分广泛。工程师以药品分析为例,说明iCAP7000在制药行业的重要应用,对感冒药溶于水的粉末样品进行分析,通过准确度、精密度和市内精密度实验,得出仪器检出限比限值低50倍,重复性结果良好的实验结论。 作为实验室使用频率最高也是安装最多的仪器,气相气质分析仪最为广大分析人员所熟知,针对该产品,工程师为大家带来了《赛默飞气相气质在环境分析和食品分析中的应用》报告,介绍了划时代的Trace1300 系列GC。作为世界上第一台模块化气相色谱仪,其能提供无与伦比的速度与分析效率,专利模块和千洞炉箱设计,大大提高分析效率,对于含量低的分析物 (目标物)也具有高精密度和高灵敏度。并且具有扩展容易和升级灵活诸多优点,而且能够通过业界领先的变色龙软件控制和操作。 新疆技术交流会现场 内蒙技术交流会现场 会议气氛十分热烈,现场观众踊跃发言交流,就液相、气相、质谱、离子色谱、元素分析、样品前处理的最新技术及解决方案等主题展开深入的讨论。此次交流会进一步增强了与客户的沟通,解答了很多客户提出的问题,也收集了很多的宝贵建议,这些信息对赛默飞的产品研发及客户服务将会起到重要的推动作用。 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2400名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过400 名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • Merck提供Milli-Q实验室超纯水对LC-MS分析痕量荷尔蒙的重要性
    水质对 LC-MS 分析痕量荷尔蒙的重要性前言随着分析仪器灵敏度不断提高,超痕量的物质也很容易被检测出来,所以实验人员也越来越重视试剂的纯度。如果用含有痕量杂质的水做LC-MS流动相,或制备标样和空白样 品,会导致错误的结果或者数据分析的困难。在很多国家,从环境中(也包括水路)检测出医药产品的存在。饮用水中存在痕量荷尔蒙的报道也越来越多,而这一类化合物很难被传统的水处理方法去除。这也影响到了LC-MS级别纯水,因为无论瓶装或直接纯化的LC-MS级别水都是由自来水制得。 目的本文的目的是研究无论自来水有没有被痕量激素污染,制备 LC-MS 级别超纯水的实验室纯水系统的适用性。 样品制备和检测方法样品收集:自来水:世界上多个国家自来水,包括西班牙、法国、芬兰、中国和印度超纯水:来自世界多个国家实验室纯水系统制备的LC-MS级别超纯水,包括西班牙、法国、芬兰、中国和印度。水样在运输及测试过程中必须使用硅酸盐玻璃器皿。 水纯化系统:1.波兰和印度: Milli-Q Integral with Millipak final filter (EMD Millipore)2.法国: Milli-Q Integral with LC-Pak final filter3.中国和西班牙:Elix and Milli-Q Advantage with Millipak final filter 水纯化系统生产的超纯水质量参数:印度:TOC: 48 ppb, Resistivity: 18.2 MΩcm,25C 其他国家:TOC5ppb, 电阻率18.2 MΩcm ,25C 样品前处理:使用SPE(LiChrolut EN, EMD Millipore)或Phenomenex Strata -X(用于西班牙样品)1.SPE活化:5mL 甲醇(LiChrosolv LC-MS, EMD Millipore)2.上样:15 mL/min,10 min 真空干燥3.洗脱:3mL甲醇,蒸发至1mL材料和方法:仪器: nLC-MS系统:HPLC:Agilent 1290nMS:Agilent 6420 QQQnHPLC仪器参数:Ø色谱柱:Purospher STAR RP-18 endcapped(2μm) Hibar HR 50-2.1 mm(EMD Millipore)Ø流速:0.5 mL/minØ进样量:样品40μL, 标样10μLØ溶剂A:含有1%乙酸的Milli-Q超纯水Ø溶剂B:高纯度乙腈(LC-MS LiChrosolv, EMD Millipore)Ø梯度(min,%B):TimeA%B%0100%02100%050100%60100%9100%013100%0 nMS参数: Capillary 4000 V, Nebulizer 37 psi, Drying gas N2, 7.5 /min, 300o C ESI+, MRM荷尔蒙检测:水样品中检测出如下荷尔蒙:结果与讨论:从污水处理厂流出的水中检测出低浓度(ng/L)荷尔蒙,这些水被直接排放至水路中,甚至被作为饮用水。如果自来水中存在痕量荷尔蒙,就要在超纯水应用于激素类物质的检测用于制备样品和标样,以及作为LC-MS流动相和空白之前,确保能够被纯水系统除去。使用标准加入法可以检测时9种不同的荷尔蒙。 荷尔蒙分析的方法检出限(MDL)为12-36 pg/L。使用LC-MS/MS检测出(IDL)的荷尔蒙浓度(图1、2和3):1.Estradiol: 法国样品 265.40 ng/L 西班牙样品 297.92 ng/L2.Androsterone: 法国样品 515 ng/L, 西班牙样品1635 ng/L*西班牙样品*( 可能样品中存在荷尔蒙类似物使得检测含量过高)3.Corticosterone: 中国样品 14.91 ng/L相对应的,在这些水样对应的超纯水样品中并没有检测出荷尔蒙(MDL: 12-36 fg/L, IDL: 0.4-1.1 pg)结果和讨论:图1. 法国和西班牙自来水样品中Estradiol 的LC-MS/MS结果(左图)和Milli-Q纯水结果对比(右图,标样为1ppm的Estradiol)图2. 法国和西班牙自来水样品中Androsterone 的LC-MS/MS结果(左图)和Milli-Q纯水结果对比(右图,标样为1ppm的Androsterone)图3. 法国和西班牙自来水样品中Corticosterone 的LC-MS/MS结果(左图)和Milli-Q纯水结果对比(右图,标样为1ppm的Corticosterone) 结论w自来水中可能含有痕量荷尔蒙。为了满足实验室应用要求,自来水要通过各种纯化手段制备成超纯水。w作为水纯化系统的进水中如果可以检测出荷尔蒙(或类似物),在超纯水系统制备的纯水中已检测不出该类物质。w为LC-MS/MS实验选择合适的超纯水资源可以确保得到高质量的数据。w可以依靠正确的安装和良好的维护纯水系统来满足实验室LC-MS/MS分析对超纯水高质量的要求。
  • Prodigy直流电弧光谱仪对痕量元素的分析
    利曼中国LEEMANCHINA国内第一台直流电弧光谱仪在湖南株洲硬质合金集团分析测试中心顺利安装调试成功后,在高纯金属及疑难样品分析领域引起了巨大震撼!解决了长期以来对于一些难熔物质特别是氧化钨,碳化硅,陶瓷等复杂样品的分析,无须消解和稀释,可直接对粉末状、线状和屑状样品进行分析。完美解决了ICP、AAS样品消解的麻烦和缺点。利曼中国LEEMANCHINA推出的Prodigy直流电弧光谱仪继承了光谱领域数十年的经验沉淀和技术积累,沿用了Prodigy高端ICP光谱仪最新科技成果,将直流电弧这项古老而又经典的分析技术带入了全新的应用领域额。一经推出,即广受好评,向广大用户展示了最新仪器理念、尖端分析测试技术,提供了尖端的实验室疑难技术解决方案。直流电弧光谱仪测定高纯镍、高纯钨、高纯钼以及高纯石墨中的痕量元素高纯镍主要用于制造合金,也用于制造国内和世界范围内的消费产品如充电电池、磁铁、催化剂及硬币(5美分)等。粉末状的镍可以与铁粉、铜粉等金属混合,用于增强汽车零件的密度,如离合器、转子和齿轮等。 钼是银灰色金属,熔点为2623 º C,是元素周期表中的第六高熔点。钼很容易形成结实稳定的碳化物,当其在空气中加热到600 º C时便形成了挥发性氧化物。无论是纯钼还是钼合金,当温度达到1900º C时,其强度和机械稳定性使其有着广泛的应用。钼以纯金属存在时,常被用于制作灯丝、高温炉部件以及耐磨性反射镜和光学元件。钼的合金态最基本的应用就是出现在不锈钢和合金钢中。这些材料通常应用于制造低摩擦耐磨的汽车部件、天然气输送管、铸铁、工业催化剂、阻燃剂以及汽轮机部件等。 钨是一种脆性、高密度、灰白色金属,具有良好的导电性,其熔点比其它所有纯金属都要高。除了碳以外,钨的熔点是元素周期表中所有元素中最高的。无论是在纯金属还是在合金中,钨的良好的导电性及热性能使得其在很多领域中得到应用。在非合金形式应用中,钨常用于制作弧焊电极、灯丝和高性能汽车配件。另外,在电气、航天器和高温应用领域都有比较广泛的应用。在合金应用领域,钨增强了材料的硬度和拉伸强度,可以应用于制作耐磨工具、x射线管、高温合金和工业催化剂等。 石墨是现存最软的矿物质之一,而且是电的良导体。除此之外,石墨具有不可思议的热稳定性(熔点3650 º C)并且是极好的热导体。大部分天然石墨被加工成粉末用于制造如钢、润滑油、工业涂料、橡胶和塑料助剂、制动器衬片、电池、电极以及气冷核反应堆等材料。 以上材料中的痕量元素常规分析方法如ICP光谱、ICP质谱等分析手段需要克服分析前样品的消解处理难题,消解过程通常复杂且费时,而且增加了样品制备过程中的污染的风险,严重的干扰以及缺少对应的标样,往往严重影响分析数据的正确度及分析进度,是目前分析领域的难题,利曼Prodigy直流电弧技术的推出,很好地解决了此困境,为分析手段增添了新的手段与方法。 直流电弧光谱仪允许固态形式的以上样本进行直接分析,不需要溶样,大大地加快了样品的准备和分析速度。直接分析不需要进行样品稀释,获得了比其它分析手段更好的检测限。以下为相关检出限数据:高纯钨的检测限: 检测限的计算方法是7次校正空白测量值的标准差的3倍。 元素波长(nm)最低检测限(ppm)Ag328.0680.025Al309.2710.40As234.9841.2B249.7730.11Be313.0420.012Bi306.7721.2Ca396.8470.34Cd214.4380.30Co345.3510.54Cr284.9840.25Cu324.7540.063Fe259.9400.95Ga294.3641.0Ge303.9060.14K766.4910.42Li670.7840.34Mg279.5530.083Mn257.6100.045Mo313.2596.4Na589.5924.3Ni310.1550.096Pb261.4180.51Sb217.5890.47Si252.4120.25Sn317.5020.68Sr407.7712.8Ti308.8030.086V318.5401.0Zn213.8560.37 高纯钼中元素的检测限:元素波长(nm)最低检测限(ppm)Ag328.0680.14As193.7592.9B249.6780.54Ba455.4042.8Be234.8610.11Ca396.8471.0Cd226.5020.33Co352.9814.3Cr427.4803.0Cu327.3960.37Fe259.9401.4Ga294.3641.3Ge270.9634.6Mg285.2130.11Mn257.6100.83Na588.9950.09Ni305.0823.1P253.56520Pb283.30714Sb217.5891.1Se203.9854.2Si251.61212Sn283.9993.4Te214.2752.5Ti334.9411.3Tl535.0463.5V437.92426Zn206.1910.02Zr349.6214.3 高纯镍中痕量元素的检测限:元素波长(nm)检测限(ppm)元素波长(nm)检测限(ppm)Ag328.0680.12Li670.7840.50Al309.2710.48Mg279.5530.37As193.7593.2Mn257.6100.095B249.6780.49Mo317.0350.56Ba493.4090.45Na588.9950.97Be234.8610.18P253.5651.1Bi306.7720.28Pb283.3070.31Ca393.3660.55Sb217.5891.7Cd214.4380.32Se203.9854.6Co238.8922.6Si251.6120.78Cr283.5630.58Sn283.9990.24Cu327.3960.055Sr407.7713.5Fe259.9400.44Te214.2751.0Ga287.4240.21Ti334.9410.49Ge270.9630.59V318.5400.44In325.6091.7Zn334.5021.6K766.4912.4Zr339.1983.8石墨中痕量元素的检测限:元素波长(nm)检测限(ppm)元素波长(nm)检测限(ppm)Al308.2160.13Mn259.3730.008As193.7590.32Na589.5920.73B249.7730.027Ni341.4770.005Ca396.8470.32P253.5650.055Cd226.5020.021Pb283.3070.026Cr283.5630.010Sb231.1470.034Cu327.3960.043Si252.4120.22Fe259.9400.021Sn283.9990.006Ga294.3640.014Ti337.2800.027K766.4910.61V309.3110.008Li670.7840.020Zn213.8560.009Mg285.2130.058 Trace elements analysis in high purity Tungsten, molybdenum, Nickle and granite by Prodigy DC- Arc .
  • 专注超痕量气相色谱,构建完整生态系统——访ASD总裁Andre Lamontagne
    ASD总部位于加拿大,在气体检测领域拥有几十项国际专利,在气相色谱和气体分析领域具有悠久的创新历史,是气相色谱领域的技术领先和创新者。ASD在色谱领域深耕30多年,始终专注于超痕量气相色谱的研发和创新。超痕量气相色谱检出限极低,广泛应用于氢能、半导体等行业,例如,ASD曾为北京“2022冬奥会”提供燃料电池用氢在线检测系统,同时公司还与中石化、中石油、北京低碳清洁能源研究院、中科院上海应用物理所、天然气研究院等用户紧密合作。此外,其解决方案在工业气体、制药和实验室等领域也应用广泛。ASD运用专业知识,在重要领域帮助客户控制质量并提供最佳解决方案,以应对各种挑战。ASD总裁Andre Lamontagne先生在接受仪器信息网采访的时候谈到,ASD在色谱领域的解决方案具有显著优势,从接头、阀门、检测器到色谱平台,掌握色谱领域关键技术。除了气相色谱仪方面的开发和创新外,ASD还为超痕量气体分析提供一个完整的生态系统。公司不仅销售全集成气相色谱解决方案,还为整个气相色谱界提供优质技术和组件,为气相色谱仪器的可靠性和质量做出贡献。详细内容见视频:
  • 诚邀您参加赛默飞世尔科技色谱及痕量元素分析技术交流会——潍坊
    赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。我们的客户包括医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与工业过程控制行业等,提供从试剂耗材至各种实验室分析仪器及在线监测系统等的产品及服务。 制药、食品、环境行业正面临行业内越来越严格的要求以及样品种类及检测指标日益繁多所带来的巨大挑战,为进一步让您了解我们在检测分析方面的成功应用,帮助您在研发实验室及生产线上建立有效的分析检测方案。赛默飞世尔科技色谱质谱部将举办赛默飞世尔科技色谱及痕量元素分析技术交流会,为您带来液相、气相、离子色谱、元素分析、样品前处理的最新技术及解决方案,诚邀您的参与。 赛默飞世尔科技色谱及痕量元素分析技术交流会&mdash &mdash 潍坊时间:2013年3月20日(周三) 9:00-15:00 地点:潍坊鸢飞大酒店 8号会议室(奎文区 四平路31号,0536-8068888)乘车路线:17/20/环16路到&ldquo 风筝广场&rdquo 或&ldquo 东苑公园&rdquo 站下 讲座内容: 内容报告人 09:00-09:20今日赛默飞世尔科技汪琼市场推广经理 09:20-10:10赛默飞世尔液相色谱技术及应用郑喆 产品专员 10:10-10:20茶歇 10:20-11:10赛默飞GC/GC-MS在药物分析和食品安全中的应用李景林应用工程师 11:10-12:00赛默飞毛细管离子色谱的最新应用及划时代的离子电荷检测器马超产品专员 12:00-13:00午餐13:00-13:20赛默飞色谱耗材新产品及其典型应用洪浩专业色谱耗材应用工程师 13:20-14:10赛默飞金属元素检测的完美解决方案柳育良产品专员 14:10-15:00赛默飞原子光谱产品(ICP-MS)的痕量元素分析应用解决方案陈建敏博士 产品主管 回 执参加交流会:姓名: 单位: 科室: 参加人数: 联系电话: 传真: 邮箱: 请您在会前以传真、电话、电子邮件、短信等方式确认您的到会,以便于我们统计资料、纪念品及用餐的人数。联系人:李女士 010-64436740-8201,18500030920 马先生 010-64436740-8108,18618244639Email:christine.li@thermofisher.com, yu.ma@thermofisher.com 传真:010-64432350、64434148 赛默飞世尔科技色谱与质谱 市场部
  • 诚邀您参加赛默飞世尔科技色谱及痕量元素分析技术交流会——淄博
    赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。我们的客户包括医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与工业过程控制行业等,提供从试剂耗材至各种实验室分析仪器及在线监测系统等的产品及服务。 制药、食品、环境行业正面临行业内越来越严格的要求以及样品种类及检测指标日益繁多所带来的巨大挑战,为进一步让您了解我们在检测分析方面的成功应用,帮助您在研发实验室及生产线上建立有效的分析检测方案。赛默飞世尔科技色谱质谱部将举办赛默飞世尔科技色谱及痕量元素分析技术交流会,为您带来液相、气相、离子色谱、元素分析、样品前处理的最新技术及解决方案,诚邀您的参与。赛默飞世尔科技色谱及痕量元素分析技术交流会&mdash &mdash 淄博时间:2013年3月21日(周四) 9:00-15:00 地点:淄博蓝海国际大饭店 五洲厅(张店区高新技术产业开发区鲁泰大道48号,0533-3579999)乘车路线:58/125/126251/345路到&ldquo 山东电泵&rdquo 站下 讲座内容: 内容报告人 09:00-09:20今日赛默飞世尔科技汪琼市场推广经理 09:20-10:10赛默飞世尔液相色谱技术及应用郑喆 产品专员 10:10-10:20茶歇 10:20-11:10赛默飞GC/GC-MS在药物分析和食品安全中的应用李景林应用工程师 11:10-12:00赛默飞毛细管离子色谱的最新应用及划时代的离子电荷检测器马超产品专员 12:00-13:30午餐13:00-13:20赛默飞色谱耗材新产品及其典型应用洪浩专业色谱耗材应用工程师 13:20-14:10赛默飞金属元素检测的完美解决方案柳育良产品专员 14:10-15:00赛默飞原子光谱产品(ICP-MS)的痕量元素分析应用解决方案陈建敏博士 产品主管 回 执参加交流会:姓名: 单位: 科室: 参加人数: 联系电话: 传真: 邮箱: 请您在会前以传真、电话、电子邮件、短信等方式确认您的到会,以便于我们统计资料、纪念品及用餐的人数。联系人:李女士 010-64436740-8201,18500030920 马先生 010-64436740-8108,18618244639Email:christine.li@thermofisher.com, yu.ma@thermofisher.com 传真:010-64432350、64434148 赛默飞世尔科技色谱与质谱 市场部
  • 赛默飞世尔科技色谱及痕量元素分析技术厦门交流会邀您参加
    赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。我们的客户包括医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与工业过程控制行业等,提供从试剂耗材至各种实验室分析仪器及在线监测系统等的产品及服务。 制药、食品、环境行业正面临行业内越来越严格的要求以及样品种类及检测指标日益繁多所带来的巨大挑战,为进一步让您了解我们在检测分析方面的成功应用,帮助您在研发实验室及生产线上建立有效的分析检测方案。赛默飞世尔科技色谱质谱部将举办赛默飞世尔科技色谱及痕量元素分析技术交流会,为您带来液相、气相、离子色谱、元素分析、样品前处理的最新技术及解决方案,诚邀您的参与。赛默飞世尔科技色谱及痕量元素分析技术交流会&mdash &mdash 厦门时间:2012年9月25日(周二) 上午9:00-12:30 地点:厦门牡丹国际大酒店 五楼国际会议厅1 (厦门市思明区莲前西路568号,0592-5955888)乘车路线:乘公交5、19A、19B、26、28、30、91等路到&ldquo 西林云顶&rdquo 站下讲座内容: 内容报告人9:00-9:20今日赛默飞世尔科技刘静市场部经理9:20-10:20赛默飞原子光谱产品(AA,ICP&ICP-MS)的痕量元素分析应用解决方案陈建敏 博士 产品主管10:20-10:25茶歇10:25-11:15全新气相色谱、气质联用及快速溶剂萃取技术在食品药品分析中的应用崔晓亮博士 产品专员11:15-11:50我们继续引领市场&mdash &mdash 揭开ICS-4000毛细管离子色谱的面纱裴子健离子色谱产品主管11:50-12:30赛默飞独具特色的液相色谱技术介绍刘晓达博士 高级生命科学专家12:30-13:30午餐 回 执参加交流会:姓名: 单位: 科室: 参加人数: 联系电话: 传真: 邮箱: 请您在会前以传真、电话、电子邮件、短信等方式确认您的到会,以便于我们统计资料、纪念品及用餐的人数。联系人:乐女士 010-64436740-8201,18611591687 马先生 010-64436740-8108,18618244639Email:xiwei.yue@thermofisher.com, yu.ma@thermofisher.com 传真:010-64432350、64434148 赛默飞世尔科技色谱与质谱 市场部
  • 赛默飞世尔科技色谱及痕量元素分析技术福州交流会邀您参加
    赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。我们的客户包括医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与工业过程控制行业等,提供从试剂耗材至各种实验室分析仪器及在线监测系统等的产品及服务。 制药、食品、环境行业正面临行业内越来越严格的要求以及样品种类及检测指标日益繁多所带来的巨大挑战,为进一步让您了解我们在检测分析方面的成功应用,帮助您在研发实验室及生产线上建立有效的分析检测方案。赛默飞世尔科技色谱质谱部将举办赛默飞世尔科技色谱及痕量元素分析技术交流会,为您带来液相、气相、离子色谱、元素分析、样品前处理的最新技术及解决方案,诚邀您的参与。赛默飞世尔科技色谱及痕量元素分析技术交流会&mdash &mdash 福州时间:2012年9月26日(周三) 上午9:00-12:30 地点:福州美伦华美达大饭店 四楼展宏厅(福州市鼓楼区北环西路118号,0591-87883999)乘车路线:乘坐公交310、308、10、87、91、107、109路至&ldquo 长冠城&rdquo 站下讲座内容: 内容报告人9:00-9:20今日赛默飞世尔科技刘静市场部经理9:20-10:20赛默飞原子光谱产品(AA,ICP&ICP-MS)的痕量元素分析应用解决方案陈建敏 博士 产品主管10:20-10:25茶歇10:25-11:15全新气相色谱、气质联用及快速溶剂萃取技术在食品药品分析中的应用崔晓亮博士 产品专员11:15-11:50我们继续引领市场&mdash &mdash 揭开ICS-4000毛细管离子色谱的面纱裴子健离子色谱产品主管11:50-12:30赛默飞独具特色的液相色谱技术介绍刘晓达博士 高级生命科学专家12:30-13:30午餐 回 执参加交流会:姓名: 单位: 科室: 参加人数: 联系电话: 传真: 邮箱: 请您在会前以传真、电话、电子邮件、短信等方式确认您的到会,以便于我们统计资料、纪念品及用餐的人数。联系人:乐女士 010-64436740-8201,18611591687 马先生 010-64436740-8108,18618244639Email:xiwei.yue@thermofisher.com, yu.ma@thermofisher.com 传真:010-64432350、64434148 赛默飞世尔科技色谱与质谱 市场部
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制