当前位置: 仪器信息网 > 行业主题 > >

模型壁面反射光影响

仪器信息网模型壁面反射光影响专题为您整合模型壁面反射光影响相关的最新文章,在模型壁面反射光影响专题,您不仅可以免费浏览模型壁面反射光影响的资讯, 同时您还可以浏览模型壁面反射光影响的相关资料、解决方案,参与社区模型壁面反射光影响话题讨论。

模型壁面反射光影响相关的资讯

  • 镀膜片基底背面反射的影响——低反射率样品表征
    当光线照射到两种介质的分界面上时,一部分光线改变了传播方向返回原来的媒介中继续传播,这种现象称为光的反射。在自然界中,光的反射存在着镜面反射、漫反射和逆反射三种现象。光的反射示意图镜面反射是在光线入射到一个非常光滑或有光泽的表面上时发生的。光线在物体表面反射的角度和入射的角度,度数相同但方向相反。如果物体的表面和光源成精确的直角,那么反射光线会完整地反射回光源方向。光的漫反射是一种最常见的反射形式。漫反射发生在光线入射到任何粗糙表面上, 由于各点的法线方向不一致,造成反射光线无规则地向不同的方向反射。只有很少一部分光线可以被反射回光源方向,所以漫反射材料只能给人眼提供很少的可视性。逆反射(背面反射)是指反射光线从靠近入射光线的反方向,向光源返回的反射。当入射光线在较大范围内变化时,仍能保持这一特性。当石英片上镀膜后,石英片的逆反射会对镜面反射的结果有明显的影响。本文采用日立的UH4150紫外可见近红外分光光度计、5°绝对反射附件和60mm积分球测试分析逆反射的影响。 下面是2种不同工艺需求的测试数据图:左图为同一批次的2个镀膜样品,变量为基底是否进行了涂黑处理。通过数据可以明显的发现:涂黑处理后的反射率明显降低,在1370nm附近的反射率约为0.3%,这是因为涂黑处理使得基底的背面反射(逆反射)尽可能地消除。 右图为另一种工艺的产品,直接对样品进行测试,不需要额外的处理,可以得到1300 ~ 1600 nm范围内反射率低于0.2%的效果,符合产品的预期。一般遇到测试反射率低于0.5%的指标需求时,建议使用标准片测试。×总结根据测试的目的需求,基底是否处理对实际的测试结果有很大影响。样品的反射率测试,需要考虑背面反射的影响。日立的紫外可见近红外分光光度计UH4150结合镜面反射附件,可以准确的表征低反射率的样品性能。——the end——公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • ASD | 利用新鲜葡萄浆果的反射光谱测量估算葡萄浆果中的可溶性固形物总含量
    在葡萄栽培与酿酒工业中,可溶性固形物总含量(Total Soluble Solids, TSS)是衡量果实成熟度和品质的关键指标。不同品种的葡萄因其遗传特性和生长环境的差异,其TSS含量存在显著变化。准确估算各品种葡萄的TSS含量,对于预测酒的品质、调整酿造工艺以及确定最佳采收时机均具有重要意义。那么,如何能够准确估算葡萄的TSS含量呢?跟随小编,一起来看看下面这篇论文给出了怎样的答案。摘要 ABSTRACT可溶性固形物总含量(TSS)是决定葡萄最佳成熟度的关键变量之一。在这项工作中,基于漫反射光谱测量,开发了偏最小二乘(PLS)回归模型,用于估算Godello、Verdejo(白葡萄)、Mencía 和Tempranillo(红葡萄)等葡萄品种的TSS含量。为了确定TSS预测的最适合光谱范围,对四个数据集进行了回归模型的校准,其中包括以下光谱范围:400–700 nm(可见光)、701–1000 nm(近红外)、1001–2500 nm(短波红外)和400–2500 nm(全光谱范围)。我们还测试了标准正态变量变换技术。使用留一交叉验证评估了回归模型,评估指标包括均方根误差(RMSE)、决定系数(R2)、性能与偏差比(RPD)和因子数(F)。红葡萄品种的回归模型通常比白葡萄品种的模型更准确。最佳的回归模型是针对Mencía(红葡萄)得到的:R2 = 0.72,RMSE = 0.55 °Brix,RPD = 1.87,因子数 n = 7。对于白葡萄,Godello取得了最佳结果:R2 = 0.75,RMSE = 0.98 °Brix,RPD = 1.97,因子数 n = 7。所使用的方法和得到的结果表明,可以使用漫反射光谱和将反射值用作预测变量的回归模型来估算葡萄中的TSS含量。结果 RESULT葡萄的反射率是使用ASD FieldSpec 4 地物光谱仪进行测量,该仪器可检测350–2500 nm光谱范围内的反射率。葡萄样品(每个葡萄品种60个样品,每个样品有100颗浆果)散布在黑色容器芯中(17 × 17 cm)。从4个不同的数据中获取了100颗浆果的反射数据(在每次测量之前将样品顺时针旋转90°)。然后对反射数据进行预处理,得到4次数据的平均值。图1. 利用ASD地物光谱仪获取光谱数据的流程图2展示了四种葡萄品种的平均反射值范围以及原始数据(图2a)和SNV转换数据(图2b)的TSS反射值。在图2a中,红葡萄品种(Mencía和Tempranillo)具有非常相似的光谱特征。虽然在可见光范围内的反射值相似,但从波长675 nm处可以看出一些差异,最大和最小反射值分别约为895 nm和1080 nm,以及675 nm和960 nm。白葡萄(Godello和Verdejo)的光谱特征与红葡萄不同,但彼此非常相似。Godello和Verdejo在可见光-近红外范围的570 nm、830 nm和890 nm处具有最高的反射值。在这个范围内,反射值呈现轻微差异,尽管它们具有相同的光谱特征。从波长1160 nm开始,四种葡萄品种的反射值是相同的。图2 四种葡萄品种(Mencía、Godello、Tempranillo和Verdejo)采样浆果的平均光谱范围图3 Godello、Mencía、Tempranillo和Verdejo葡萄品种在使用原始数据(实线)和SNV转换数据(虚线)进行PLS回归时加权回归系数在全光谱范围内的分布。对四个品种的酿酒特性进行了交叉验证。黑线表示零相关性,并为了清晰呈现而偏移了3.0单位图4 利用原始光谱反射数据进行每个波长的简单线性相关性葡萄糖度(TSS)相关图。图5 利用原始(a–d)和SNV转换(e–h)反射数据进行的偏最小二乘回归(PLS)的均方根误差(RMSE)值。所有图应用相同的颜色刻度(请参阅右侧图例)。结论 CONCLUSION采用漫反射光谱测量方法,利用偏最小二乘(PLS)回归模型估计了四种葡萄品种(Godello、Verdejo、Mencía和Tempranillo)的总可溶性固形物(TSS)含量。基于所获得的结果,红葡萄品种的TSS含量估算最佳,特别是Mencía。用于TSS预测的最适宜光谱范围是近红外(NIR)范围(701–1000 nm)。在此光谱范围内获得了最高的R2和RPD值,以及最低的RMSE和F值。在所有光谱范围内,对数据进行SNV转换进一步改善了模型的评估指标结果。用于估算TSS的最佳变量(图5)分别位于860 nm处,波长201 nm的Godello;883 nm处,波长232 nm的Mencía;916 nm处,波长230 nm的Tempranillo;以及1055 nm处,波长230 nm的Verdejo。这些最佳点呈现出最低的RMSE值。研究表明,通过光谱测量的反射值,可以迅速、非侵入性地进行现场测量,从而估算TSS含量。
  • 中国大鲵近红外反射光谱(NIRS)研究获得新进展
    近期,陕西省动物研究所大鲵科研团队与美国孟菲斯动物学会、密西西比州立大学联合攻关的&ldquo 利用近红外技术判定大鲵性别的研究&rdquo 项目取得了部分成果,在英国IM出版社的新闻通讯部分(2015年第26卷第2期)发表,并被选做杂志封面。  NIR 讯息是国际近红外光谱学协会的新闻通讯,提供最新的近红外界内新闻。它以全面,有趣的文章展示近红外光谱学的实际应用。  近红外反射光谱研究,是通过扫描样品的近红外光谱,可以得到样品的特征信息,收集数据建立模型,进而对未知样品进行准确预测。利用近红外光谱技术分析样品具有方便、快速、高效、准确和成本较低,不破坏样品,不消耗化学试剂,不污染环境等优点,广泛应用于动物生理、营养、健康,特别是动物行为、数量统计、繁殖和疾病等方面。此技术将为我国大鲵研究提供新的技术和手段。  Near infrared reflectance spectroscopy studies of Chinese giant salamanders in aquaculture production  Carrie K. Vance, Andrew J. Kouba, Hong-Xing Zhang, Hu Zhao, Qijun Wang and Scott T. Willard  http://www.impublications.com/content/nir-news-table-contents?issue=26_2  大鲵近红外扫描
  • 基于177.3nm激光的真空紫外光调制反射光谱仪
    CPB仪器与测量栏目最新发文:基于177.3nm激光的真空紫外光调制反射光谱仪,此装置将有望成为高效无损地探测宽禁带半导体材料电子能带结构高阶临界点的有效光学表征手段,并广泛用于超宽禁带半导体材料及其异质结的电子能带结构研究。光调制反射光谱是通过斩波器周期性地改变泵浦光源对样品的照射来测量半导体材料反射率相对变化的一种光谱分析技术。由于所测差分反射率作为能量的函数在材料电子能带结构的联合态密度奇点附近表现出明显的特征,光调制反射光谱已成为研究具有显著电子能带结构的半导体、金属、半金属及其微纳结构和异质结等材料联合态密度临界点的重要实验技术之一。光调制反射光谱中所使用的泵浦激光的光子能量一般要高于被研究材料的带隙,随着第三代宽禁带与超宽禁带半导体材料相关研究和应用的不断深入,需要更高能量的紫外激光作为光调制反射光谱的泵浦光源。目前国际上已报道的光调制反射光谱系统中,配备的泵浦光最大光子能量约5 eV,尚未到达真空紫外波段。因此,迫切需要发展新一代配备高光子能量和高光通量的泵浦光源的光调制反射光谱仪,使其具备探测超宽带隙材料的带隙和一般材料的超高能量临界点的能力。中科院理化所研制的深紫外固态激光源使我国成为世界上唯一一个能够制造实用化深紫外全固态激光器的国家,已成功与多种尖端科研设备相结合并取得重要成果。此文详细介绍了由中科院半导体所谭平恒研究员课题组利用该深紫外固态激光源搭建的国际上首台真空紫外光调制反射光谱仪(图1)的系统设计和构造,将光谱仪器技术、真空技术、低温技术与中科院理化所研制的177.3 nm深紫外激光源相结合,同时采用双单色仪扫描技术和双调制探测技术,有效避免了光调制反射光谱采集中的荧光信号的干扰,提高了采集灵敏度。该系统将光调制反射技术的能量探测范围从常规的近红外至可见光波段扩展至深紫外波段,光谱分辨率优于0.06 nm,控温范围8 K~300 K,真空度低至10-6 hPa, 光调制反射信号强度可达10-4。通过对典型半导体材料GaAs和GaN在近红外波段至深紫外波段的光调制反射信号的测量对其探测能力进行了性能验证(图2)。此装置将有望成为高效无损地探测宽禁带半导体材料电子能带结构高阶临界点的有效光学表征手段,并广泛用于超宽禁带半导体材料及其异质结的电子能带结构研究。该系统基于中科院半导体所承担的国家重大科研装备研制项目“深紫外固态激光源前沿装备研制(二期)”子项目“深紫外激光调制反射光谱仪”,目前已经初步应用于多种半导体材料在深紫外能量范围内的能带结构和物性研究,并入选《中国科学院自主研制科学仪器》产品名录,将有望在推动超宽禁带半导体材料的电子能带结构研究、优化超宽禁带光电子器件的性能方面发挥重要作用。图1. 深紫外激光调制反射光谱仪图2. 177.3 nm(7.0 eV)激光泵浦下的GaAs在1.2 eV至6 eV内的双调制反射光谱及对应能级跃迁
  • 微型光谱仪之反射检测
    1、技术简介  光在两种物质分界面上改变传播方向又返回原来物质中的现象,叫做光的反射。正是因为光在物体表面发生的反射,我们的眼睛才能感知到周围的世界的颜色与景象。反射是通过光入射到物体表面后在不同波长段的反射率差异引起。光谱仪获得的反射光谱信息就像人眼所见到的视觉内容一样,但是光谱信息更为数据化、更客观。反射测量可以测试物体的颜色,或者通过判定物体的反射光谱差异进行多样品的筛选和品控。 镜面 粗糙表面图5.1 反射原理图  2、 应用说明  由于某些检测样本的特殊性,不能完全依赖于化学方法进行检测,反射光谱模型作为一种迅速、高性价比的检测方法,可以作为化学分析方法在其他应用领域的替代方案,甚至可以直接用来测试粉末状样品。反射光谱检测方法不能判定是否适用于被测目标样本的原有模样,所以还是需要尝试多次对照测试它们的反射光谱,提高光谱数据的准确性。  化学分析的方法可以用来提高最低检出限,并确定掺杂成分,但是光学的方法可以进行预先的快速查看与筛选。将反射光谱检测与化学计量学相结合,利用可见光和近红外漫反射光谱提供快速、无损的检测。在实际检测中,可以分析不同的样本之间的差异。数学上来说,主成分包含在了定义的所有波长多维空间的范围内。主成分使我们能够获得多维数据集和重要维度,然后从无意义的噪音中分离出有意义的信息。  食品安全:香料检测,香蕉成熟度分析,芒果与鳄梨区分检测等   自然环境:水体汞污染监测,农作物分析等  3 、典型产品和配置  颜色检测配置:  1. 光谱仪  2. 光源  3. 积分球:积分球可以180° 收集样品表面的反射光,所以它能尽可能多地收集样品表面的反射光。反射式积分球还能使用在弯曲表面,或者颜色测量。它能将样品表面发射的光很好地在积分球内部进行匀化,然后再耦合到光谱仪。反射光通过圆形的入射光孔径进入积分球,然后经过分球内壁涂抹的特殊涂层材料的均匀反射。图2 积分球示意图  4. 反射探头:当需要快速测量样品或者应用在样品表面非常小的采样点时,反射探头既可以测量镜面反射,也可以测量漫反射,而且可以基于光源和光谱仪的配置不同,选择不同类型的扩大波长范围的反射探头。探头的发射光和反射光是同一方向的,接收到的光是反射光的一部分,所以使用反射探头测量反射光谱是一种相对测量。图3 反射探头  5. 采样附件(光纤、滤光片、透反射支架、动态样品台等):透反射支架用来固定反射探头的标准配件,同时也可以用于透射测量。使用透反射支架,可以有效地减少光源对样品的过度加热,对于生物样品或者有机样品,还有那些低熔点的样品非常重要 动态样品台,基于样品台旋转或者直线移动来对样品进行测量,并获得测量的平均信号。这种测量方式避免了结果的多样性,提高了样品测量的均一性结果,特别是对于谷物、种子和土壤类等不均一的样品,是比较理想的选择。 图4 反射支架和样品台  6. 准直透镜:在做反射测量时,准直透镜可以使用在光纤的末端来准确地固定入射光和反射光的角度。镜面发射或者漫反射都可以使用这样的测量方式,但是我们需要固定夹具来对测量系统进行固定。准直透镜必须预先调焦来避免光束的发散,来保证获得更好的光谱。  7. 光谱仪控制软件图5 反射检测典型配置  典型配置  典型产品:高灵敏度光谱仪,光源,滤光片,积分球,透反射支架,动态样品台,准直透镜  4 、应用文章  4.1 香料掺假检测图6 不同香料检测光谱  4.2 香蕉成熟度检测图7 不同成熟度香蕉光谱图  4.3 芒果与鳄梨区分检测图8 芒果与鳄梨检测光谱  4.4 基于SPR快速检测花生过敏源图9 过敏源光谱  4.5 无人机智能农业检测 图10 无人机农业检测光谱图  4.6 农作物成分检测图11 农作物成分光谱图  4.7 水体汞污染监测图12 水体检测光谱图(来源:海洋光学)
  • 基于步进扫描的光调制反射光谱方法及装置获国家专利授权
    近日,一种“基于步进扫描的光调制反射光谱方法及装置”近日获得国家知识产权局专利授权。该专利由中科院上海技术物理研究所邵军、陆卫等科研人员发明。该装置包括傅立叶变换红外光谱测量系统、作为泵浦光源的激光器、以及联结傅立叶变换红外光谱仪中探测器与电路控制板的锁相放大器和低通滤波器,置于样品与激光器之间光路上的斩波器,从而使连续泵浦激光变为调制激光,并馈入锁相放大器的输入参考端来控制锁相。该方法使用上述装置进行光调制反射光谱测量,包括消除泵浦光的漫反射信号以及泵浦光产生的光致发光信号的干扰;消除傅立叶频率和增强中、远红外波段微弱光信号的探测能力三个功能。经过对分子束外延生长GaNxAs1-x/GaAs 单量子阱样品和Ga1-xInxP/AlGaInP多量子阱材料的光调制反射光谱实际测试。表明本发明显著提高探测灵敏度和光谱信噪比,并具有快速、便捷的优点,特别适用于中、远红外光电材料微弱光特性的检测。
  • 国际漫反射光谱会议(IDRC2024)已可注册,设有学生差旅奖和青年科学家奖申请
    自1982年起,国际漫反射光谱会议(International Diffuse Reflectance Conference,简称IDRC)在Gerry Birth的精心组织下首次召开。这一盛会致力于为来自工业界的参与者提供深度洞见,覆盖了一系列关键议题,包括行业当前面临的挑战、挑选适宜光谱仪的策略、采纳标准时需考量的要素,以及预见光谱学技术的未来发展趋势。在这个平台上,供应商们将展出他们最先进的仪器和技术设备,而海报展示环节则进一步激发了与会者间的交流与探讨,这些讨论往往热情持续,甚至延伸至正式会议日程之外。该会议在每隔一年的8月初举行。目前,国际漫反射光谱会议(IDRC2024)已可注册,设有学生差旅奖和青年科学家奖申请。时间:2024年7月27日-8月2日地点:美国田纳西大学联系人:CNIRS President (曹楠宁): nanningcao@gmail.comIDRC 2024 Chair: David W. McIntosh dmcintos@utk.edu注册链接如下:https://cnirs.clubexpress.com/content.aspx?page_id=22&club_id=409746&module_id=638562(如果打不开可能需要VPN,实在不行的话可以联系CNIRS President (曹楠宁) nanningcao@gmail.com,提供网站截图等各种信息)其他简介:田纳西大学邻近著名的大雾山(Great Smoky Mountains),到大雾山国家公园(The Great Smoky Mountains National Park)仅仅不到一小时的车程。夏天风景尤其优美,也有各种丰富的户外活动,非常适合家庭度假旅游。
  • 便携式红外衰减全反射光谱仪用于食品分析测试
    合适的食品质量检测方法十分重要,科学家利用众多方法来测试不同的污染物。最近一种红外衰减全反射(IR-ATR)仪器在食品检测领域流行起来,它可以在几乎不需要样品制备的情况下获取倏逝场吸收,同时促进对任何聚集状态中的分析物的无损分析。食品安全控制概念 | 图片来源:© Alexander Raths - stock.adobe.com最近发表在《应用光谱学》杂志上的一项研究介绍了一种便携式的红外衰减全反射(IR-ATR)食品分析设备,可用于分析食品行业中有重要意义的物质。该系统的核心是了解脂质中脂肪酸(FAs)的组成;由于正常的脂质成分是表征鱼类等食品的质量的特征指标,但易受环境因素如水质、捕捞季节和温度的影响,因此跟踪脂肪酸是理解脂质的真实特征以及它们如何影响食物质量的关键。该系统还使用了霉菌毒素和有机溶剂作为代表进行了测试。霉菌毒素是与真菌污染相关的有害次生代谢物,它们的存在可能对人体和家畜的健康产生有害影响,因此检测它们对于食品安全至关重要。至于有机溶剂,食品行业主要将其用于从食品基质中提取成分,但由于传统方法性能优越,导致绿色提取方法不太受欢迎。这两种物质对于食品加工都是必不可少的,这也解释了为什么除了脂肪酸之外,IR-ATR 系统还主要针对它们进行测试。用傅立叶变换红外光谱仪(FT-IR)对便携式IR-ATR设备与传统实验室IR-ATR设备进行了对比测试,以展示前者系统的潜在优势。使用了三种类型的模型系统,每种系统内都含有不同的样品:溶解在水中的N,N-二甲基甲酰胺((CH3)2NCH)(DMF)、溶解于乙醇中的硬脂酸(C17H35CO2H)以及溶解于甲醇中的DON(C15H20O6)。这些分析物作为典型的化合物类别,在中红外(MIR)光谱图中具有特征波段。通过两种系统的比较证实了的两者的多个因素,包括霉菌毒素的检测、FAs的分析以及有机溶剂的定量。值得注意的是,便携型系统的分析性能与标准型系统分析能力一致。然而,在该系统投入大规模使用之前仍需要进一步的工作要做。科学家在研究中指出:“未来研究旨在分析更复杂的系统,包括真正的鱼类样品和各种含有真菌污染物/霉菌毒素的谷类作物提取物,并采用先进的数据分析方法来开发无需标记的快速筛查方法。”
  • 基于地物光谱应用,干旱胁迫下的水稻反射率表现
    水资源短缺是目前制约农业生产的一个全球性问题,近年来,全球水资源供需矛盾更加突出。对于中国而言,有43%的面积为干旱和半干旱地区,并且中国的水量分布在时间和空间上也存在非常巨大的不均衡性,这使得中国的水资源供需矛盾更加尖锐,是中国农业生产面临的最?大危机之一。自21世纪以来,中国每年都会发生大强度的干旱,受灾面积往往波及数个省,如2010年西南地区发生的大旱灾,有将近5000000hm2的农作物受害,造成190多亿元的经济损失。水稻作为中国第?一大粮食作物,研究不同干旱胁迫对水稻的影响以及研发出抗干旱品种对农业发展尤为重要。在遥感领域中,为了研究各种不同地物或环境在野外自然条件下的可见和近红外波段反射光谱,需要适用于野外测量的光谱仪器。地物光谱仪在户外主要利用太阳辐射作为照明光源,利用响应度定标数据,可测量并获得地物目标的光谱辐亮度 利用漫反射参考板对比测量,可获得目标的反射率光谱信息。实验过程及结果本实验旨在理解不同干旱胁迫下水稻基本型的表现,测量了10种在不同干旱威胁水平下导致相对含水量(RWC)不同的水稻的光谱数据,如图1所示。图1该实验显示了不同干旱胁迫下水稻的反射率模式。1) 在水稻含水量(RWC)降低时,由于1400nm和1900nm这两处水吸收特征峰减弱,导致近红外区域反射率增加。2) 对于350-700nm波长区域也有着类似的变化,在叶绿素a和叶绿素b的吸收范围中,反射率随着RWC降低而升高。3) 其次,随着RWC的降低,1400-1925nm波长向较短波长移动,且反射率增加。4) 在810-1350nm的海绵状叶肉中的散射也反映出反射率随RWC降低而增加的相同趋势。5) 最?后,在1100-2500nm波段位置的吸收也是一个强烈的吸收区域,随着RWC降低,叶片枯萎主要通过新鲜叶片中的水,其次是通过如蛋白质、木质素和纤维素的干物质而变得更加明显。结论这项实验的结果表明不同干旱威胁下的水稻的光谱反射率具有明显且规律的特征。因而可根据特征位置的差异建立预测模型,在精?准的模型分析下定量的分析出水稻含水量乃至干旱威胁程度,最终用于开发抗旱水稻品种的研究,为我国的农业生产作出巨大的贡献。
  • 如何测量绝对反射与相对反射?
    1. 前言光照射到物体上,由于物体的表面不同,通常会发生两种反射,镜面反射和漫反射,如图所示。图1 光在物体表面的反射示意图对于玻璃、镀膜基板、滤光片等表面光滑的零部件,镜面反射率是评价其光学特性的重要参数,测定反射率最常用的仪器是紫外可见近红外分光光度计。日立紫外产品线丰富,波长测试范围涵盖紫外可见区域到近红外区域,可以满足样品不同波长下的测量需求。2. 应用数据镜面反射根据测量方式的不同,分为相对反射率和绝对反射率。客户需要根据样品特征,选择不同的测量方式。日立具有5°到75°固定入射光角度的镜面反射附件,适用于多种样品的镜面反射测量。图2 绝对反射测量图3 相对反射测量绝对反射率通常使用V-N法进行测量,直接获得样品的反射特性,应用广泛。但是对于低反射率的样品,使用相对反射测量,可以有效扩大动态范围。 2.1 石英基板的相对反射率测量 • 测量附件图4 5o 相对反射附件• 测量结果 使用紫外可见分光光度计U-3900 的5o相对反射附件,以BK7玻璃为参考标准品测定石英基板的相对反射光谱。结果表明石英基板的相对反射率约为80%。 图5 石英基板的相对反射率通过日立U-3900的选配程序包,使用相对反射率得到转换后的绝对反射率,如下图所示。如果直接测定石英基板的绝对反射率,光谱易受噪声影响。图6 石英基板转换后的绝对反射率2.2 铝平面镜和金平面镜的绝对反射率金平面镜表面涂有金膜,该金膜在红外区域具有高反射率。铝平面镜是表面涂有铝膜,在可见光区到近红外区有较高的反射率和较小的角度依赖性。两者常作为相对反射测量时的标准面。• 测量附件图7 5 o绝对反射附件• 测量结果 使用紫外可见近红外分光光度计UH4150的5°绝对反射附件分析了金平面镜和铝平面镜的绝对反射率。 图8 金平面镜和铝平面镜的绝对反射率 结果表明,在可见光区域,铝平面镜的反射率超过80%。金平面镜的反射率在可见光区域较低,但其在近红外区域的反射率较高。因此在测量样品的相对反射率时,如果需要关注近红外区域,可以使用在近红外区具有高反射率的金平面镜作为标准面。 3. 结论样品的镜面反射率有两种测量方式,相对反射率和绝对反射率。对于低反射性样品,使用相对反射附件测量其相对反射率,可以获得信噪比良好的光谱,如玻璃基板上薄膜的反射率。对于通常的样品,可以直接使用绝对反射附件测量其绝对反射率。日立提供多种镜面反射测量附件,还可根据客户需求量身定制,满足各种样品的镜面反射率测量。
  • 激光雷达:技术概述-漫反射目标在测试和校准高级驾驶辅助系统 (ADAS) 中的作用
    作者:Pro-Lite Technology Ltd 产品经理 Russell Bailey 和 Labsphere Inc 首席技术专家兼产品营销经理 Greg McKee图1 激光雷达激光雷达是一项成熟的技术,越来越多地部署在消费产品和无人驾驶车辆中。LIDAR 是 Light Detection And Ranging 的首字母缩写词。激光雷达系统已经使用了 50 多年,但直到最近,此类系统的成本仍使它们无法在大众市场中广泛应用。尽管雷达在自动驾驶汽车技术(例如自适应巡航控制系统)中被广泛应用,但LIDAR被认为是驾驶员辅助汽车的首选传感器,因为它可以精确地映射位置和距离,从而检测小物体和3D成像。它使用带有飞行时间感应的脉冲激光和固态光来测量距离。激光雷达系统的表征要求在宽反射率动态范围内补偿传感器对脉冲激光或固态光水平的响应。为此,需要使用已知和稳定反射率的大面积反射率漫反射目标板。Labsphere(蓝菲光学)的Permaflect漫反射涂层目标板,范围从5%到94%的反射率,使汽车制造商 OEM 及其供应商能够在广泛的环境条件下表征和校准其 LIDAR 系统。图2 Labsphere(蓝菲光学)的Permaflect漫反射涂层目标板激光雷达技术激光雷达最基本的形式是激光测距仪,自20世纪80年代以来已广泛应用于军事应用。激光测距仪由一个脉冲激光器(发射器)和一个光电探测器(接收器)组成。测距仪的设计可精确测量距离(所谓的“测距”),主要测量激光脉冲被反射和接收到探测器所花费的时间(这被称为“飞行时间”测量)。测距仪对准目标物并发射激光脉冲。激光击中目标,被散射,并且一部分反射光由探测器测量。由于光速非常精确,因此可以非常精确地测量测距仪和目标物之间的距离。更先进的激光雷达系统使用相同的原理,但使用光学和移动或多个探测器在二维中映射目标。这些系统通常每秒脉冲数千次,每秒可以探测到数千个点。分析该点云的数据可以创建目标区域的准确映射。激光雷达的工作方式类似于雷达和声纳,它们分别使用无线电波和声波。来自雷达和声纳的数据可用于以类似方式映射周围环境,但激光雷达系统使用的是较短波长的红外辐射,而不是较短波长的无线电波。由于使用的波长较短,激光雷达测量比雷达更准确。部署在自动驾驶汽车上的激光雷达系统通常使用扫描激光束和闪光技术来测量空间中相对于传感器的 3D 点。这些激光雷达系统通常每秒发射数千个激光脉冲,以便车辆可以对行人和其他车辆等障碍物做出反应。激光雷达允许自动驾驶汽车以高精度、高分辨率和长检测距离传送和接收物体和周围环境的反射光。目前正在开发更先进的 AI(人工智能)系统,用来预测车辆和行人路径,并做出相应反应。当您将 LIDAR 数据与定位信息(使用 GPS 或类似信息)相结合时,您就可以全面映射车辆周围环境。激光雷达的性能在很大程度上取决于所使用的激光功率和波长。出于安全原因,可使用的激光功率有一个上限。在没有更高的激光功率的情况下,你可以使用更高灵敏度的探测器,或者使用波长延伸到更远的红外(IR)的激光。由于现有激光器的技术成熟,通常使用的波长为850nm、905nm或1550nm。1550nm激光比其他选择更安全,因为超过1400nm的红外辐射不会再通过眼睛的角膜,所以不会聚焦在视网膜上,但因水对1550nm的光吸收较强,1550nm要求更多的功率来补偿。消费电子产品和自动驾驶汽车中的激光雷达激光雷达作为关键性技能与摄像头系统和其他传感器一起在自动化中应用。激光雷达系统已经在专业测绘和相关应用中商用多年。然而,直到最近几年,激光雷达才变得越来越普遍,这主要是由于自动驾驶汽车应用(无人驾驶汽车)需要更小、更便宜的设备。自上世纪90年代初以来,激光雷达已作为自适应巡航控制的基础应用于半自动驾驶汽车,而激光雷达首次应用于自动驾驶汽车是在2005年。在消费电子领域,最新一代的 Apple iPad Pro(以及现在的 iPhone 12 Pro)已将 LIDAR 传感器集成到其摄像头阵列中,专门用于成像和增强现实 (AR) 应用。LIDAR 传感器可使 iPad 正确解析真实物体相对于由相机阵列成像的 AR 物体的位置。AR 还处于起步阶段,因此 LIDAR 在智能手机和其他消费设备上的应用还有待观察,但人们对为专业应用开发的 AR 产生了极大的兴趣,其中 LIDAR 可以成为非常有用的增强功能。专业 AR 的应用多种多样,从帮助仓库工人找到最快、最安全的路径到所需零件,到辅助工程师了解复杂维修的过程。这些应用中的激光雷达可精确定位和对齐,这对于任何需要高精度的应用都很重要。漫反射目标板在激光雷达系统测试与标定中的作用多年来,Pro-Lite 和Labsphere(蓝菲光学)多年来使用漫反射板一直在支持开发 LIDAR 系统开发。Labsphere(蓝菲光学) 更紧凑的 Spectralon 漫反射目标板通常被军方用于测试激光测距仪。精确校准的光谱反射率与近朗伯(漫反射)反射率相结合,意味着对于这些应用,您有一个准确性、重复性的漫反射目标板可在实验室或现场测试您的系统。用于更大规模测绘或自动驾驶汽车应用的激光雷达系统需要更大的目标区域。由于大多数自然物体都会漫反射光线,因此 Labsphere (蓝菲光学)的漫反射材料是用户的自然选择,可以提供质量保证、现场测试和比较。Labsphere(蓝菲光学) 开发了 Permaflect 目标板,以满足对大面积、耐用和光学稳定目标板材料的需求。大的漫反射目标板尺寸(标准尺寸高达 1.2m x 2.4m)与校准的光谱反射率数据相结合,可以精确测量 LIDAR 范围。在 100m、200m、300m 等长距离测试距离内,则需要更大的目标板来反映目标上具有代表性的点数。Permaflect 是一种喷涂漫反射涂层,可以将其应用于大面积或 3D 形状,从而可以模拟真实世界的物体。现实世界中很少有物体像目标面板一样平坦,因此 Permaflect 涂层物体可以实现可重复的近朗伯反射率水平,例如,可以应用于人体模型以模拟行人。图3 Labsphere(蓝菲光学) Permaflect 喷涂人体模型LIDAR 漫反射目标板通常部署在室外,因此随着时间的推移,当漫反射目标板的表面暴露在大气中时,可以预期校准的反射率值会出现一些漂移。Labsphere (蓝菲光学)的漫反射材料易于清洁。为了考察是否有反射率的下降,可以使用校准的反射率计(“反射率计”),它可原位测量漫反射目标板反射率并将红外反射率的任何变化考虑到内。漫反射目标板反射率的变化将直接影响测量范围。下图显示了不同漫反射目标板反射率水平范围内反射率变化对测量范围的影响。反射率的微小变化会对较低反射率目标板的测量范围产生很大影响。例如,如果目标板的反射率从5%降低到 4%,则原先 300 m的测量范围将下降到30 m。实时了解情况发生的方法是测量目标板的反射率,然后根据此调整修正您的计算。图4 Labsphere (蓝菲光学)漫反射板反射率测试仪(反射率计)图5 在300nm波长下对物体反射率进行距离测量的模拟灵敏度Labsphere(蓝菲光学) 的激光雷达反射仪套件就是为满足这一要求而开发的。这款手持式反射计测量测量在三个波长(使用可互换的 850nm、905nm 或 1550nm LED)中的8°/半球反射率。观看Labsphere 视频库中的短视频。这可用于验证 Permaflect 目标板或测试 LIDAR 系统的任何其他对象的反射率。图6 Labsphere 开发了 Permaflect 漫反射目标板,以满足对大面积、耐用和光学稳定漫反射目标板材料的需求。
  • 透射与反射测量技术关键工具及颜色测量方法
    在现代科学研究和工业应用中,精确的物质性质测量是至关重要的。特别是在材料科学、光学工程以及生物医学领域,透射测量与反射测量技术的应用日益增多,它们在各自的领域内发挥着不可替代的作用。透射测量是指测量光线通过物质后的强度变化,以此来分析物质的特性;而反射测量则是基于光线打到物质表面后反射回来的光强变化进行分析。这两种测量技术虽然操作原理不同,但都旨在通过光与物质的相互作用来揭示物质的内在属性。一、透射测量与反射测量的比较分析透射式和反射式分光光度计均能利用光源的闪烁特性,覆盖360至750纳米范围内的全部波长光线进行照射。通过对透射光或反射光的测量,这些设备能够创建出色彩的量化图谱(即色彩“指纹”)。在反射光谱中,主要波长决定了颜色的属性。紫色、靛蓝及蓝色属于短波段,波长介于400至550纳米之间;绿色处于中波段,波长在550至600纳米;而黄色、橙色及红色表示长波段光。对于光亮增白剂(OBA)和荧光剂这类特殊物质,它们的反射率甚至可以超过100%。反射式分光光度仪通过照射光源至样本表面并记录以10纳米步长测得的反射光比例,以此来分析颜色。这种方法适用于完全不透明的物质,通过反射光的量化,可以准确测量其色彩。而配备透射功能的分光光度仪则是通过让光穿透样本,使用对面的探测器来捕获透过的光。这一过程中,探测器会测量透射光的波长及其强度,并把它们转换成平均透射率的百分比,以量化样本的特性。尽管反射模式能够用于分析半透明表面,但准确了解样本的透明度是必须的,因为这直接关系到最终数据的准确性。二、样品确实不允许光线穿透吗?测量透射率与评估不透明度并不总是等同的,因为不透明度涉及两个方面:是否能遮挡视线穿过的表面或基质,以及材料允许光线通过的程度。通常,您可能会认为您的手是不透光的,从某种角度来看,这是正确的。然而,当您把手电筒紧贴手掌并开启时,会发现光线能够从手的另一侧透射出来。半透明与透明材质的本质区别半透明材料允许光线穿透,却不允许清晰的视线通过。举个例子,经过蚀刻处理的浴室塑料门便是半透明的。相比之下,透明材料,如普通的玻璃板,可以让人从一侧清楚地观察到另一侧的物体。三、实际应用及解决方案考虑到涂料,当其涂布于墙面时,其不透明性足以覆盖下层材料,阻止透视效果。但要准确评估涂料的不透明度,我们需采用对比度分析法。一旦应用于基底,涂料通常表现出高不透明度,使得Ci7500台式色差仪成为其测量的理想工具。至于塑料,虽然肉眼看来我们可能无法通过塑料样本看穿,但它们可能具备一定的光透过性。比如,外观不透明的塑料瓶,在未经测试前其真实透光性难以判断。以过氧化氢瓶为例,其内容物若暴露于阳光下会迅速分解,因此这类瓶子通常呈棕色,以屏蔽阳光。然而,置于强烈光源下,这些瓶子是能透光的。鉴于成本考虑,过氧化氢瓶的制造尽量保持不透明。在纺织品的应用上,选择分光光度仪时需考虑具体的使用场景。美国纺织化学师与印染师协会(AATCC)推荐将样品折叠至四层以确保不透明度的测量。这一方法对于测量厚实的织物如灯芯绒裤或棉质卷料足够有效,但对于透明或薄的半透明尼龙材料,采用其他量化技术可能更为合适。请记住,在测量特定允许一定光线透过的纺织品时,按照ASTM的203%遮光测试标准,必须使用具备透射功能的分光光度仪进行测量。Ci7600台式分光光度仪、Ci7800台式分光色差仪和Ci7860台式色差仪均支持透射和反射模式测量,它们为需要同时评估不透明与半透明样本的应用场景提供了理想解决方案。这些设备能够执行三种主要测量方式:①直接透射测量:针对完全透明的样本设计,如塑料拉链袋和清晰的玻璃板。②全透射测量:适合那些允许光线穿透但视线模糊的半透明样本,比如橙汁、洗涤液以及2升容量的塑料瓶。③雾度测量:针对那些能够散射光线的半透明样本,如汽车尾灯的塑料覆盖件,这类样本散射红色光线,而不直接显露灯泡和灯丝。若您的需求仅限于测量完全不透明的表面,Ci7500台式色差仪或许更符合您的需求。然而,如果您的主要测量对象为不透明表面,偶尔也需测量一些允许光线透过的物体,那么具备透射测量功能的设备,如Ci7600台式测色仪或更高端的型号,将是更合适的选择。四、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 日立应用|平板液晶电视中反射膜的光学评估
    液晶电视给我们的生活增添了更多光彩,几乎每家每户都在使用液晶电视获取信息或娱乐消遣。其中增亮膜、反射膜、扩散膜、导光板等是液晶模组的重要组成部分。分光光度计是检查光学组件特性的有利工具,今天我们重点介绍平板液晶电视中反射膜的评估。液晶模组内部结构液晶模组中的反射膜通过将光从导光板反射到正面来提高亮度。因此要求反射膜具有极好的反射特性,从而对光进行有效的利用。反射膜使用日立紫外-可见-近红外分光光度计UH4150搭配5°绝对反射附件、积分球检测器评估液晶显示屏中的反射膜。实验测量了三种反射膜的反射率,结果如图4所示。5°绝对反射附件 三种反射膜的反射光谱各反射膜的光反射率光源:D65视角:2°结果表明,样品C有最高的反射率,可以更好的利用光,增加显示的亮度和效果。日立紫外-可见-近红外分光光度计UH4150具有优异的平行光束特征,确保反射率和透过率的准确测定,大型样品仓和多种多样的附件,满足液晶模组中不同组件的评估。 UH4150公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 太阳能材料反射率测定方法
    材料的表面反射率是目前太阳能行业中最常关注的测试项目之一。这类测试所涉及到的样品种类繁多,包括金属反射涂层、半导体材料与涂层以及防护玻璃上面的防反膜等。很多材料的反射同时包含了镜面反射和漫反射两种类型,这对测试方法是否能将光谱干扰降到最低、获得准确的反射率数据提出了挑战。材料表面的反射类型:A.镜面反射;B.漫反射镜面反射镜面反射率可以用不同类型的镜面反射附件(例如VW型反射附件、VN型反射附件和通用反射附件URA)进行测量。VN型反射附件(单次样品反射)和VW型反射附件(两次样品反射)是根据背景(V)和样品(N和W)测量模式的几何光路而命名。背景和样品测量模式切换过程中镜子的移动是手动操作的。URA是一种可变角度、单次样品反射的VN型附件,其中镜子的移动和入射角度的选择完全由软件控制电子步进马达自动调节。PerkinElmer的通用反射附件URA漫反射漫反射率可以用积分球进行测量。测试光线分别经过参比光路和样品光路中的光学元件,通过Spectralon积分球表面开口,进入球体内部的参比窗口和样品反射窗口。积分球体积越大,开口率越小,测试准确率越高。PerkinElmer 150mm积分球内部检测器前面安装了具有Spectralon涂层的挡板,避免了样品初次反射光线进入检测器。PerkinElmer的150mm积分球及光路示意图■ 测试样品 样品描述1镜面反射成分很少的漫反射材料2反射强度较低的镜面涂层3中等反射强度的镜面涂层4反射强度较高的镜面半导体材料■ 光谱结果 样品1(左上)、2(右上)、3(左下)、4(右下)的光谱。黑色曲线为150mm积分球测量结果,红色曲线为60mm积分球测量结果,绿色光谱曲线为URA测量结果。样品1:150mm积分球测量的光谱强度更高,因为该积分球的窗口面积比例低于60mm积分球。因此更多的样品漫反射光线可以被收集起来,更接近准确值。样品2:150mm积分球测量结果与URA附件测量结果非常接近。60mm积分球测量结果的反射率偏高,这是因为热点区域主导并且富集了检测器所测量的光线。此外,积分球内部的漫反射光线很少,因此基本没有光线通过开放窗口逃离。样品3:60mm积分球测量的光谱存在波长漂移和强度平移的问题。150mm积分球与URA附件测量的光谱之间存在一些不规则的差异。样品4:60mm积分球和URA附件的测试结果差异明显(5%R),150mm积分球与URA附件所测量的样品光谱也不再重叠。结论镜面反射非常强或者完全是镜面反射的样品需要使用URA、VN或者VW等绝对镜面反射率附件进行测量。太阳能行业的一些材料具有很强的镜面反射,但是也含有少量的漫反射成分。对于这种类型的样品,可以使用150mm积分球来测量。通过测量铝镜消除热点产生的光谱干扰,获得可以接受的绝对反射率数据。如果样品与参比铝镜的反射率比较接近,可以获得最佳的测试结果。更多详情,请扫描二维码下载完整应用报告。
  • 如何精确测定LED灯反射板的反射率?
    前言LED灯具有长寿命、安全可靠、节能环保等优点,在家用照明设备、显示屏、公共设施场所以及景观装饰等方面应用广泛,如汽车上的照明设备、景区内各种图案的装饰灯。LED灯通常由光源、外壳组成,光源装有反射板可以有效利用光源的能量,因此反射板的反射率会直接决定LED灯的光利用效率。而评价反射板的反射率,常用的检测仪器是紫外分光光度计。检测实例我们选取了生活中常见的一种LED灯,拆开发现反射板的四周是弧形表面,为获得准确的反射率,要对中间的平整表面进行测定,如图中红色圆圈标注的位置。但这个位置的直经只有5mm,如此小的测量位点,要使仪器光源的光斑中心完全照射到测定位置非常困难。图1 LED灯的反射板为了解决这类微小样品的测定难题,日立特别研发了微小样品全反射/漫反射测量系统定制附件,确保光源的光斑中心完全照射到测定位置。而且日立UH4150紫外-可见-近红外分光光度计的样品仓空间足够大,可以轻松安装这个附件。 测定时使用铝制平面镜作为标准参考,利用铝制平面镜的绝 对反射率将LED灯反射板的反射率的相对值转换为绝 对值,得到的反射板的全反射光谱如图所示。图2 LED灯反射板的反射光谱测定结果表明该反射板的反射率高达90%,可以有效利用LED灯光源的光通量,提高照明效率。 想获取更多信息,请拨打电话:400-630-5821。
  • 光的反射和折射定律改变将衍生新型光学元件
    中国学生在哈佛大学做博士后研究发现  人工界面改写光的反射和折射定律  光的折射和反射定律是几何光学的基础。但是美国哈佛大学物理学家用一系列实验演示了光线的传播可以不遵从这些经典定律。这意味着,或许有一天当你用一块平面镜端详自己容貌时,看到的却是哈哈镜的变形效果。  光在不同介质中的传播速度不一样。当一束光从空气中斜射向水中,光束的传播方向会发生改变,这就是所谓的折射现象。它的准确表述即折射定律是很多年前由物理学家斯涅尔、数学家笛卡尔以及费马确立的。这一定律表明,光线在界面的折射角仅由光在两种物质中的传播速度决定。而早在古希腊时期由欧几里德发现的反射定律更简单:光的反射角等于入射角。  经典的反射和折射定律都很自然地认为一个界面仅仅是区分两种物质的理想边界,换句话说,是两种介质而不是它们的截面影响了光的传播。哈佛大学研究人员的创新在于意识到界面可以成为决定光的传播的因素。他们的实验表明,精巧设计的界面能够干预光的传播。  研究人员利用硅片和空气界面处一层薄薄的金属阵列来演示一系列违背经典反射和折射定律的现象。这个阵列中的每个组成单元都类似微小的英文字母“V”,其大小和间距都远小于光的波长以及入射光束横截面的尺寸。这些“V”字形的单元的大小、夹角和朝向都不同,这样设计是为了控制光波和不同单元的相互作用时间:每个金属“V”都类似一个光的陷阱,能够将光波“囚禁”一段时间再释放出来。  阵列的设计使得这个“囚禁”时间沿界面从右向左线性增加,这样即使垂直入射,光束不同部分经历不同的时间延迟,透射以及反射光束就不再沿着垂直于界面的方向传播了。而当光以倾斜的角度入射,按不同的“界面”设计,反射和折射光可以被操纵朝向任何方向。反射角不一定等于入射角,反射光甚至可以被“反弹”回光源方向,而不是像一般情况那样折向远离光源方向。这就是平面镜可以有哈哈镜的效果的原因。  这项成果2日发表在美国新一期《科学》杂志上,第一作者虞南方目前在哈佛大学工程和应用科学学院做博士后研究,虞南方2004年本科毕业于北京大学电子学系,2009年在哈佛大学获博士学位。  利用界面来控制光束不同部分的时延是一个具有革新意义的概念。虞南方告诉新华社记者,他们已用这种人工界面产生了“光涡旋”,这种奇异的光束在空间里螺旋前进,因而可以用来操纵旋转微小的悬浮颗粒。他预计,这一概念将衍生出一系列有用的光学元件,比如可以纠正相差的超薄平面聚焦镜片、可以采集大范围入射阳光的太阳能汇聚装置。哈佛大学目前已就这一成果提出专利申请。
  • 教你如何测定微小样品的透过率、反射率
    随着机器的小型化趋势,光学部件也在不断微小化,如摄像镜头中的透镜、传感器部件、光盘中的拾音器组件等。因此微小样品的准确测量十分必要。要准确获得这些微小样品的测定,需要缩小入射光束,以使光斑照射到样品上。日立开发了各种微小样品测量附件,为光电领域提高解决方案。1. 微小样品的透过率测量使用日立UH4150选配微小样品透过率测定附件和全积分球,利用φ1 mm 掩光膜即可测定透镜的透射率。图1 小尺寸透镜的外观 图2 两种透镜的透过光谱 微小样品透过率测定附件由聚光透镜、参比光束光阑以及微小样品支架构成,可准确测定微小样品和任意微小零配件的透射率。微小样品支架可搭载最大直径为φ20mm的样品,标配φ3mm的掩光膜,用户也可选配φ1mm的掩光膜等。图3 微小样品透过率测定附件 2. 微小样品镜面反射率的测定手机镜头和车载摄像头中图像传感器的红外截止滤光片尺寸微小,使用UH4150选配微小样品5度绝对反射附件即可测定滤光片的反射率。图4 红外滤光片的镜面反射光谱 可以看到滤光片在可见区的反射率低,在近红外区的反射率较高。微小5 °镜面绝对反射附件由反射附件、聚光透镜、参比光束光阑以及微小样品支架构成。与5 °镜面反射附件(标准)相比,样品位置的光束较小,支持微小样品反射光谱的测定。图5 微小样品反射率测定附件3. 微小样品的全反射率测定使用日立UH4150 搭配微小样品全反射/漫反射测量附件,测量了LED灯反射板的全反射率。图6 LED灯的反射板测定时使用铝制平面镜作为标准参考,利用铝制平面镜的绝 对反射率将LED灯反射板的反射率的相对值转换为绝对值,得到全反射光谱如图所示。图7 LED 灯反射板的全反射光谱测定结果表明该反射板的反射率高达90%,可以有效利用LED灯光源的光通量,提高照明效率。综上案例,使用具有大型样品室的日立紫外可见近红外分光光度计UH4150,容易构建不同样品的光学测量系统,可搭配多种附件,实现低噪音测定微小样品。拨打 4006305821,获取更多信息
  • ASD | 应用PROSPECT模型提取叶片生化性状的适用性研究
    PROSDM:PROSPECT模型与光谱导数和相似性度量相结合从双向反射率中提取叶片生化性状的适用性叶片生化性状为理解植物光合功能、动态生长、养分循环和初级生产提供了有价值的信息。叶片叶绿素含量(Cab)、类胡萝卜素含量(Cxc)、含水量(Cw)和干物质含量(Cm)是四个重要的叶片生化性状,与植物光合作用、氮素、胁迫和衰老等健康和生长状态密切相关。能够对这些叶片生化性状进行高通量测量的方法对于表征植物生理状态和关键功能过程至关重要。PROSPECT模型是目前更常用的叶片辐射传输模型之一,可从叶片定向半球反射因子(DHRF)光谱来提取叶片生化性状,然而,在应用于叶片双向反射因子(BRF)光谱提取叶片生化性状方面尚待探索。叶片表面反射率和各向异性性状的存在可能是限制PROSPECT从叶片BRF光谱评估叶片生化性状的主要问题。基于此,在本研究中,研究者们提出了一个方法,整合了PROSPECT模型、光谱导数和相似性度量(SDM),称为PROSDM,去除了叶片BRF和DHRF光谱的差异,并从叶片BRF光谱提取了叶片生化性状。具体目标是:(1)通过PROSPECT反演调查叶片BRF和DHRF光谱差异随波长的变化以及对Cab、Cxc、Cw和Cm提取的影响,(2)开发PROSDM消除BRF和DHRF光谱差异,从叶片BRF光谱与PROSPECT和PROCOSINE以及PROCWT的比较来提取Cab、Cxc、Cw和Cm以及(3)评估PROSPECT、光谱子域、光谱噪音和模型参数范围对PROSDM性能的影响。为了获得各种叶片生化性状和反射率,作者收集了具有不同生长阶段、营养状况和种植区域的植物物种的10个数据集,包括1个测量数据集和9个公开获取数据集。从油菜(Brassica napus L.)、水稻(Oryza sativa L.)和柑橘(Citrus aurantium L.)随机采集2279个植物叶片,利用ASD FieldSpec 4测量叶片反射率,获得数据集#1。从EcoSIS光谱库中获得具有各种叶片光谱和生化性状的9个公开的数据集。其中,7个数据集的BRF光谱由ASD地物光谱仪(Analytical Spectral Devices, Inc., Boulder, CO, USA)搭配ASD叶片夹测量。 表1 数据集描述。Dataset#1是本研究中测得的,Dataset#2-#10是在线https://ecosis.org获取的。BRF和DHRF光谱的光谱区域是400-2500 nm。【结果】 平均BRF和DHRF光谱差异(a)以及这些差异对平均BRF光谱的贡献(b)。油菜(红线)在Dataset#1中获得,其他植物物种在Dataset#5中获得。 通过考虑非波长依赖性f(a,d)和波长依赖性f(b,c,e,f)两种情况,利用一阶(a-c)和二阶(d-f)导数的叶片BRF(绿线)和DHRF(橙线)光谱之间的差异。 利用PROSPECT反演(a–d),PROCOSINE反演(e–h),PROCWT-S4( i–l)和基于全光谱域PROSPECT-PRO 的PROSDM(m–p)的所有数据集(Dataset#1-#10)中Cab (a,e,i,m) ,Cxc (b,f,j,n), Cw (c,g,k,o) 和Cm (d,h,l,p)测量值和估算值比较。 【结论】 本研究中,作者提出了PROSDM这种新方法用来从叶片BRF光谱来提取叶片生化性状。结果发现光谱导数可以消除BRF和DHRF光谱的非波长依赖性差异。当BRF和DHRF光谱的差异随波长变化时,光谱导数仅能去除部分差异,而曼哈顿距离(MD)补偿了光谱导数的限制,进一步减少了差异。结果,PROSDM从叶片BRF光谱准确提取了不同植物物种的Cab、Cxc、Cw和Cm。与标准的PROSPECT反演需要利用带有积分球的光谱仪测量叶片DHRF光谱不同,PROSDM扩展了PROSPECT到叶片BRF光谱的应用,以提取叶片生化性状。它可利用不同手持式光谱仪和叶片夹原位提取叶片生化性状。 在全光谱域,PROSDM-SED实现了Cab和Cxc的更优提取,RMSE分别为7.64 μg/cm2 and 2.77 μg/cm2,PROSDM-FMD产生了Cw(RMSE = 0.0041 g/cm2)和Cm(RMSE = 0.0024 g/cm2)的更好估计。与PROSPECT相比,PROSDM提取的Cab、Cxc、Cw和Cm RMSE分别降低了20.33%,29.34%,25.45%和44.19%。结果表明,PROSPECT和PROCOSINE以及PROCWT的Cab、Cxc、Cw和Cm提取精度受到光谱饱和度、PROSPECT反演、光谱子域以及模型参数范围的影响很大。适当的光谱子域和模型参数范围可以改善不同反演方法的提取结果。这需要从实地测量和报告的研究中了解叶片生化和结构性状的先验信息。与这些反演方法相比,所提出的PROSDM在减轻Cab、Cxc、Cw和Cm提取的负面影响上具有很大潜力。对于不同的PROSPECT版本,建议利用PROSPECT-PRO从叶片BRF光谱提取叶片生化性状。 未来研究需要基于叶片BRDF模型测量叶片BRF光谱的光谱和方向变化,将BRDF模型与所提出的PROSDM耦合可以改善对BRF和DHRF光谱变化的表征。此外,由于植物物种BRF和DHRF光谱的差异变化,在不同的数据集中PROSDM不能获得一致性提取结果。预计更多的工作将集中在理解不同视角和照明角度下植物叶片光学特性的变化。期望PROSDM可以应用在不同的尺度上,提高其在遥感、生态和环境研究中的适用性。点击如下链接,下载原文:PROSDM:PROSPECT模型与光谱导数和相似性度量相结合从双向反射率中提取叶片生化性状的适用性
  • 基于16 × 4阵元的CMUT面阵,实现高效率、高质量三维超声反射成像
    与传统工艺制作的压电块体型超声换能器相比,电容式微机械超声换能器(CMUT)具有阻抗匹配特性良好、带宽大、体积小等优势,在医学超声成像和无损检测方面得到了广泛应用。三维超声反射成像通常需要利用CMUT线阵的机械移动实现对被测物的多维度扫描,但这一方法往往难以实现较小距离的移动,并且存在一定的误差。利用CMUT面阵对被测物进行扫描可以同时获取多维度的超声反射信号,从而减少测试工作量,并且能够准确获取被测物的三维信息。然而,目前国内关于利用CMUT面阵进行非接触式三维超声反射成像的研究鲜有报道。据麦姆斯咨询报道,为了解决上述挑战,来自中北大学的研究人员提出了利用基于16 × 4阵元的CMUT面阵进行B模式及二次谐波三维成像测试的方法,以得到伪影水平更低、重建偏差更小的超声反射图像。相关研究成果以“基于16 × 4阵元CMUT面阵的三维超声反射成像”为题发表在《微纳电子技术》期刊上。CMUT面阵的制备及工作原理研究人员分别利用绝缘体上硅(SOI)和二氧化硅(SiO₂)晶圆制备了CMUT振动薄膜和真空腔,并且在真空环境中通过晶圆键合形成CMUT面阵。图1 CMUT剖面图及阵元图图2 基于16 × 4阵元的CMUT面阵实物图CMUT的工作原理是通过在上、下电极之间施加直流偏压,从而产生感应静电力将顶部薄膜拉向底部电极。当CMUT处于发射模式时,将交流电压信号叠加在直流偏压上会激励薄膜振动,实现电能和机械能的转换,产生超声信号;当CMUT处于接收模式时,在上、下电极之间施加直流偏压,在超声波的作用下,薄膜会产生振动,从而使得电容值发生改变,通过检测这一变化即可实现超声信号的接收。图3 CMUT工作原理仿真及实验平台搭建该研究利用基于Matlab的k-Wave光声仿真工具箱对基于16 × 4阵元的CMUT面阵进行超声反射成像仿真。整个仿真区域介质为硅油,被测物为一块长和宽均为3 cm、厚1 cm的铝块,铝块与CMUT的距离为3 cm,CMUT阵元间的距离为1 mm。此外,采用单个阵元发射、所有阵元接收,即一发多收的扫描方式对铝块进行扫描。图4 基于16 × 4阵元的CMUT面阵及被测铝块仿真模型随后,研究人员在仿真的基础上搭建了基于16 × 4阵元的CMUT面阵的超声反射成像测试系统。采用面阵上第二条线阵的单个阵元发射、所有阵元接收的方式进行实验测试。实验使用信号发生器和功率放大器驱动CMUT面阵发射超声波,并且利用示波器观察超声反射信号波形。图5 基于16 × 4阵元的CMUT面阵超声反射成像测试系统示意图及超声反射成像实测图仿真及实验结果研究人员采用B模式及二次谐波两种成像算法分别对被测铝块的超声反射信号进行处理,以获取其三维图像及对应的二维切面。结果显示,基于16 × 4阵元的CMUT面阵的反射成像系统能够确定铝块的位置。此外,基于B模式成像算法和二次谐波成像算法所获取的成像结果中,铝块与CMUT面阵的距离重建偏差分别为3.63%及1.47%。图6 被测铝块二维反射成像结果图7 被测铝块三维反射成像结果综上所述,该研究搭建了基于16 × 4阵元的CMUT面阵的三维超声反射成像系统,以获得误差小、信噪比高的超声反射图像。采用单个阵元发射、所有阵元接收的收发方式对铝块进行了相关测试与仿真,利用B模式及二次谐波成像算法对超声回波信号进行处理,获取了被测物的二维切面及三维图像。仿真和实验结果均可以较清晰地确定铝块的位置,与实际情况相符。为了对比两种算法的成像效果,研究人员计算了铝块与CMUT面阵的距离重建偏差。计算结果显示,B模式及二次谐波成像算法的仿真距离重建偏差分别为0.63%和0.4%,实验重建偏差分别为3.63%和1.47%,二次谐波图像的距离重建偏差均小于B模式图像的距离重建偏差。总之,该研究证明了所提出的基于16 × 4阵元的CMUT面阵的三维超声反射系统可实现对被测物的三维成像。论文信息:DOI:10.13250/j.cnki.wndz.2023.03.010
  • 遮阳装置对室内热舒适性影响检测方案
    现代的建筑物,为了最大限度的利用太阳光来改善室内环境,往往会使用大面积的窗户甚至是玻璃幕墙。美国研究人员分别对通过墙体与玻璃进入室内的太阳辐射量进行对比结果显示,通过玻璃进入室内的太阳辐射量是墙体的30倍以上。而如果采取一定的遮阳措施,热量通过将明显减少,可见适当的遮阳设计对减少太阳辐射是十分有效的。同时遮阳板可以避免阳光直射,产生眩光和房间局部过热,改善室内光环境质量。针对目前一些建筑物建筑能耗居高,推广应用新的节能技术,建筑隔热保温是重要的内容,它代表着建筑节能技术的发展方向,而遮阳技术就是建筑隔热保温通风技术的代表。 环保和节能是各个国家面临的重要课题,不仅是一个国家能否发展的重要因素,也是人类身体健康的重要保障。目前,针对此有JGJ/T 151《建筑门窗玻璃幕墙热工计算规程》、JGJ26-95《民用建筑节能设计标准(采暖居住建筑部分)》、GB/T 2680-94《建筑玻璃 可见光透射比、太阳光直接透射比、太阳能总透射比、紫外线透射比以及有关窗玻璃参数的测定》已经执行,还有正在编制的中华人民共和国建筑行业工业标准《建筑遮阳对室内环境热舒适与视觉舒适性能的影响及其检测方法》。 岛津公司使用岛津UV-3600、积分球附件和日射透射率测定软件建立了测定建筑遮阳装置的反射率和透射率的方案。利用该方案可以根据正在制定的中华人民共和国建筑工业行业标准计算建筑遮阳装置的遮阳系数,以评价该遮阳装置对室内热舒适性的影响。使用岛津UV-3600和积分球附件可以方便地测定建筑玻璃和遮阳布的紫外-可见-近红外波段的透过及反射光谱,并使用日射透射率测定软件计算其日光和可见光的透射比和反射比,根据国标中公式和常数可以得到玻璃构件对太阳辐射的遮蔽系数,对于评价建筑玻璃的性能有很好的意义。 欲知详情请点击&mdash &mdash 紫外可见近红外分光光度计、积分球附件和日射透射率测定软件评价遮阳装置对室内热舒适性的影响。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 蓝国祥先生在我国光散射研究方面的贡献
    南开大学是国内开展光散射研究得比较早的单位之一。早在1935年,我校的沈寿春先生就与吴大猷、饶毓泰先生合作,在北京大学开始了拉曼光谱研究。抗日战争时期,在昆明西南联大,沈寿春和吴大猷二位先生合作研究了硝酸镍氨晶体的拉曼光谱,考察了晶体场对硝酸根离子的效应。解放后,在沈寿春先生领导下,陈文驹、王之仁等老师较早开始了拉曼光谱的工作,研究最多的是有机磷化合物。1965年教育部决定在北大、复旦、南开三校成立固体能谱科研组,由复旦的谢希德先生牵头,合作开展半导体的基础研究,教育部定期给三校下达研究经费。张光寅先生利用该项经费,购买了一台在当时很先进的英国产的Hilger E612型拉曼光谱仪。该仪器采用石英棱镜分光,光源是汞弧光灯,记条仪是笔式的。但在十年文革期间三校的固体能谱研究组都中断了研究工作,这台光谱仪就一直闲置到20世纪七十年代末。此时南开物理系固体物理教研室正式恢复,固体能谱研究组也就合并到固体物理教研室。当时固体物理教研室主要从事激光技术所需要的非线性光学晶体钽酸锂和铌酸锂的研究及其光学器件的研制。时任教研室主仼的是王华馥先生和副主仼张光寅先生。蓝国祥教授是王华馥先生研究组的成员,当时研究组主要从事非线性光学晶体基础性方面的研究。鉴于蓝国祥教授有扎实的晶体学和晶格动力学的基础知识,又从事晶格振动光谱的研究,从仪器设备、晶体样品的选取和基础知识的储备这三方面考虑,都具备了开展非线性光学晶体激光光谱研究的条件。因此,王华馥先生决定由蓝国祥先生和青年教师李兵承担此项课题的研究,王先生还把他的第一个博士研究生分配到该课题组一起参加研究工作。课题组对Hilger E612光谱仪进行了改造,配置了自行研制的氩离子激光器,开始了非线性光学晶体的拉曼光谱研究。当课题组获得第一批研究成果时,正好迎来1981年在厦门大学召开的全国第一届光散射学术会议,课题组在会议上宣读了相关的研究成果。虽然参加此次学术会议的单位不少,但受制于当时的科研条件,国内有条件开展光散射研究的大学和研究单位毕竟比较少,能提供研究论文的单位并不多。在南开,有很多位老师从事过光散射的研究,力量非常之强,据了解到的,还有陈文驹、陈亭、张春平、刘思敏等多位老师,涉及多种材料。例如,非线性光学晶体偏硼酸钡、钽酸锌锂、铌酸锂和钽酸锂等,关注压力、温度对晶体结构的影响;利用拉曼光谱研究晶体中的电磁激元、铁电性质、铁弹性质,缺陷和非晶化过程等;随着表面增强效应的发现,我校也开展了表面增强光谱的研究,首次观察了吸附于银胶体表面的邻菲啰啉等分子的表面增强拉曼光谱。在从事光散射研究的几十年过程中,蓝国祥教授对待研究生宽严相济,以身作则,学生深刻体会到研究者应该具备的素养和追求。蓝先生带领组内老师和学生,在国内外学术期刊上发表论文百余篇,取得了丰硕的成果。非线性光学晶体的拉曼光谱一直是南开固体教研室关注的重点。对于铌酸锂和钽酸锂的光谱研究非常细致深入,取得一些重要的结果。铌酸锂和钽酸锂室温下是铁电晶体,属于三角晶系的单轴晶体。为获得钽酸锂晶体的异常声子的色散,在蓝先生的指导下,老师和学生精心设计实验方案,共制备11个不同取向的样品,用来获得波矢与光轴成不同夹角的光谱。由于钽酸锂和铌酸锂的折射率约2.1左右,所以表面反射率高达14%。为了消除内反射光引起的附加散射,在样品的表面上镀了增透膜(SiO2)。经过细致的实验测试和严谨的理论分析,获得了钽酸锂晶体的全部13个异常声子,也对之前相关研究报道中的疑点进行了澄清;通过分析测试钽酸锂晶体的变温拉曼光谱,结合中子衍射的晶体结构数据,做出了钽酸锂的铁电相变是有序-无序型的推论,并用结构相变的先兆丛团理论给予解释。20世纪80年代我国的紫外非线性光学晶体的研制得到了飞速发展,例如偏硼酸钡(BBO)、三硼酸锂(LBO)以及三硼酸铯锂(CLBO)等。蓝国祥教授带领课题组的师生对这些晶体的室温、低温以及高压下的光谱进行了较为全面的研究,利用层状和阴离子基团模型,并结合群论和理论计算分析对晶体的外振动、内振动以及阴离子基团的特征振动谱进行了识别和确认。BBO晶体单晶高压拉曼光谱的研究表明了在50 Kbar的压力下拉曼光谱发生突变,预示着存在由压力导致的结构相变。获得非晶材料的传统方法有多种,如熔体急冷,蒸发沉积和离子注入等。上世纪90年代,蓝国祥教授研究组开始利用拉曼光谱进行晶态物质在高压下非晶化转变的研究,先后研究了硼酸盐(硼酸钡、硼酸锂),锗酸盐(锗酸铅、锗酸锂、锗酸铜),以及铌酸锂、钽酸锂等晶体的高压拉曼光谱,在原子水平上研究了这些晶体的非晶态转变机制。对于硼酸盐而言,是由于硼酸基团被破坏,导致结构发生塌缩,由晶态变成非晶态。课题组另外的一项重要工作是有关碳材料的制备和拉曼光谱研究,包括石墨、石墨插入化合物,C60碱金属插入化合物,碳纳米管等。其中一个非常重要和难度很大的问题是单壁碳纳米管的呼吸模谱峰的认定。因为呼吸模的频率与碳管的直径密切相关,困难的原因在于样品中碳管的直径和类型不是单一的;另外,用可见和近红外光激发的单壁碳纳米管拉曼光谱中存在共振散射效应,使得谱峰数目较多且随激发光波长而变化,所以将这些谱峰归属于何种碳管不是显而易见的。为了进行这种认定,我们计算了一系列碳管的电子态密度、呼吸模的频率,并考虑到双共振增强效应,建立了一个图表法,可以对单壁碳纳米管光谱中的呼吸模特征峰进行指认。这种指认包括管子类型的确定,是金属的还是半导体的,是扶手椅管、锯齿管还是一般的手性管,当然也可确定碳管的直径和指数。SPEX 1403 激光拉曼光谱仪(小图:实验室自制的碳纳米管制备装置)为了给研究生开展晶格振动光谱研究打好基础,张光寅先生率先开设了晶格振动光谱课程,并编写了讲义,两年后由蓝国祥先生接替讲授晶格振动光谱学直到退休。这本讲义经过多年的教学积累和反复修改,著成《晶格振动光谱学》一书,由高等教育出版社出版。该本书先后发行了两版,成为教育部研究生教学的推荐用书。无论是科学研究还是教书育人,先生对中国光散射事业的发展都做出很大的贡献。从第一届厦门光散射会议开始直到退休前的第十一届,没有错过一届会议;从第二届光散射会议开始担任光散射专业委员会副主任;退休前一直担任《光散射学报》副主编,全心全力支持学报的发展。80年代国内很多学校科研单位都购置了Spex系列的谱仪,南京大学物理系也有一台Spex激光光谱仪,在使用过程中缺少了一个小部件,张明生老师就向南开大学物理系借用这个部件。考虑到我们这个部件休置不用,就送给南京大学。这也是先生一直秉承的理念:兄弟院校之间和同行之间要有相互帮助和团结的精神,不要彼此拆台闹予盾。参加1999年8月第十届全国光散射学术会议师生合影留念(长春)先生退休多年,留给我们后辈做人做学问的精神一直在,激励我们前行!文中所述纯属个人点滴所见,不当之处,欢迎斧正!作者:南开大学物理学科学院 王玉芳教授
  • 2021数理科学部发布X射线反射镜等10个重大项目指南,拟资助5个
    8月5日,国家自然科学基金委员会发布“十四五”第一批重大项目指南及申请注意事项。其中,2021年数理科学部共发布10个重大项目指南,拟资助5个重大项目,项目申请的直接费用预算不得超过1500万元/项。2021年数理科学部共发布10个重大项目指南如下:“超大型航天结构空间组装动力学与控制”重大项目指南“材料长效使役性能高通量表征的力学理论与实验方法”重大项目指南“活动星系核反馈在星系演化中的作用”重大项目指南“致密天体活动与爆发的宽能段时变与能谱研究”重大项目指南“基于强太赫兹源的声子调控诱导电子新结构与物性研究”重大项目指南“基于铌酸锂薄膜的超高速多维光场调控及其应用基础研究”重大项目指南“粲夸克衰变中标准模型的精确检验”重大项目指南“基于LHAASO实验的粒子天体物理前沿问题研究”重大项目指南“先进核能系统中材料的若干协同损伤作用机理研究”重大项目指南“高精度X射线反射镜的关键科学与技术问题”重大项目指南10个重大项目指南关键内容如下:“超大型航天结构空间组装动力学与控制”重大项目指南一、科学目标瞄准超大型航天结构的减重设计和空间组装需求,提出满足在轨动力学要求的组装结构轻量化设计新理论;建立空间组装过程的“轨道-姿态-结构”耦合动力学新模型,揭示空间组装过程的耦合动力学演化新规律;提出空间组装过程的“轨道-姿态-结构”一体化稳定控制新理论;探索解决超大型航天结构动力学试验“天地一致性”问题的新方案。二、研究内容(一)超大型航天结构的轻量化和可控性设计。(二)超大型航天结构空间组装过程的动力学演化。(三)空间组装过程轨道-姿态-结构一体化稳定控制。(四)空间组装过程动力学与控制的地面模拟试验。“材料长效使役性能高通量表征的力学理论与实验方法”重大项目指南一、科学目标建立基于全场分析的梯度材料表征力学理论,发展多重物性宏微观高通量测试技术,通过结构与性能关系的多尺度机理研究和机器学习,构建材料短时数据与长效使役性能之间的映射关系,实现对其使役寿命的精准预测,应用于具有重要战略意义的高速列车车轴材料和全固态电池材料。二、研究内容(一)基于梯度样品全场分析的高通量表征力学理论。(二)梯度样品宏观层次高通量表征实验方法。(三)梯度样品微观层次高通量表征实验方法。(四)机理驱动的使役行为跨时空尺度映射。“活动星系核反馈在星系演化中的作用”重大项目指南一、科学目标获得不同光度活动星系核风的观测证据、以及风的速度、质量流与活动星系核光度的定量关系;将低红移星系气体的探测深度和中高红移星系的光谱数量提高一个数量级,并结合数值模拟,得到在不同红移处星系以及星系际介质的各种性质,特别是星系的恒星形成率、气体含量、星系际介质的X射线、发射和吸收线,及其与活动星系核反馈的内在关系;发展并完成星系尺度上的高分辨率数值模拟程序,获得不同的反馈模式分别对星系中气体和恒星形成率的影响以及风与辐射各自在反馈中起到的作用;将基于最真实和准确的活动星系核物理,完成一组包含新模型的宇宙学数值模拟,大幅改进目前的宇宙学尺度星系形成与演化研究。二、研究内容(一)活动星系核风的观测研究:反馈的内边界条件。(二)星系尺度上的活动星系核反馈:观测研究。(三)星系尺度上的活动星系核反馈:数值模拟研究。(四)星系外大尺度上的研究:观测约束以及宇宙学数值模拟。“致密天体活动与爆发的宽能段时变与能谱研究”重大项目指南一、科学目标发现几百个伽马射线暴,建立MeV能区高统计性的伽马暴样本,理解伽马暴相对论喷流的伽马射线辐射机制;监测上百例引力波、高能中微子、快速射电暴等爆发现象,揭示它们的爆发机制以及黑洞、中子星等致密天体的并合物理过程和机制;系统地获得十余个吸积中子星双星和黑洞双星的高能X射线时变和能谱演化特征和分类,理解黑洞周围的吸积过程、相对论喷流的产生以及硬X射线辐射机制;测量约十个致密星(中子星或者黑洞)的基本参数(质量、磁场、自转),理解致密天体的基本性质;开展银道面巡天,监视约200个X射线天体的活动,发现致密天体硬X射线新的活动并且开展后随观测证认研究。二、研究内容(一)极端天体爆发的物理机制。(二)黑洞X射线双星系统吸积与喷流过程。(三)中子星X射线双星系统吸积盘与中子星相互作用。(四)河内宽能段的巡天监测和后随观测研究。“基于强太赫兹源的声子调控诱导电子新结构与物性研究”重大项目指南一、科学目标围绕声子调控诱导电子新结构与新奇物性的研究目标,在研究手段上发展必要的突破现有太赫兹光源性能极限的强场产生新方法,实现具有宽频(整体频谱范围覆盖0.1-50 THz)、强场(场强突破GV/m)、高重复频率、频谱连续可调等优异特征的强场太赫兹光源,并通过人工微结构实现太赫兹近场强光场微区再增强条件;重点开展强场下非平衡态电子的多自由度(电、热、磁、光、谷、轨道)动力学物理过程研究,揭示光子与各量子激发在超强太赫兹光场范畴内的相互作用新机理(如电子、声子及光子复合激发机理);探索实现声子态调控的远离平衡态的新型量子态(如高温超导相、拓扑量子相、Floquet量子态等)及化学反应(如合成氨反应)的远离平衡态相干操控新效应。二、研究内容(一)强场太赫兹源调控电子行为的理论研究。(二)超强太赫兹光场构筑及实验方法研究。(三)强场太赫兹源对量子材料相干调控研究。“基于铌酸锂薄膜的超高速多维光场调控及其应用基础研究”重大项目指南一、科学目标针对片上全域光场快速调控的需求,通过超限制备技术突破铌酸锂薄膜新微纳结构、少层结构加工工艺,利用铌酸锂材料自身的多重特性,实现对光场以及部分相干光场的多维度超高速调控,实现对光场的强局域与非线性调控;发展基于电光效应的人工微结构光场多维调控新方法,并阐明其物理机理。从基础铌酸锂薄膜材料微纳加工技术开始,到片上集成光子器件,最后到片上光场快速调控,建立不同于现有光场调控的新体系。二、研究内容围绕基于铌酸锂薄膜的超高速多维光场调控技术,发展基于电光效应的人工微结构光场多维调控新机理与方法;突破现有微纳加工技术的能力限制,开展铌酸锂薄膜刻蚀机理及微纳芯片制造工艺研究,利用高品质铌酸锂薄膜光场调控芯片实现超高速多维光场调控及其应用。(一)铌酸锂刻蚀机理及铌酸锂薄膜微纳芯片制造技术。(二)铌酸锂薄膜莫尔晶格结构中光场局域及片上非线性增强。(三)铌酸锂薄膜少层微纳体系时空光场多维联合调控。(四)基于铌酸锂薄膜的光场相干性快速调控及应用。“粲夸克衰变中标准模型的精确检验”重大项目指南一、科学目标利用BESIII采集的海量粲强子样本,特别是在3.773 GeV采集的20 fb-1的数据,充分发挥近阈粲强子成对产生、背景低和量子关联等独特优势,开展中性粲介子量子关联特性的研究,精确测量相关不同末态的平均强相位差和CP本征态成分比例,为CKM矩阵的相角的精确测量提供关键参数;精确测量CKM矩阵元和,检验CKM矩阵的幺正性,探索新的CP破坏来源;精确测量粲强子衰变常数和半轻衰变形状因子,与格点QCD理论计算值比较,刻度格点QCD计算,探寻超出标准模型新现象;系统地研究粲强子的强子末态衰变,研究强子谱学和末态相互作用,检验夸克味对称性;研究粲强子衰变,高精度检验轻子普适性,寻找稀有或禁戒的衰变过程,精确检验标准模型理论、寻找超出标准模型的新物理;在理论上发展和完善非微扰能区的格点QCD计算和有效理论模型,理解粲强子弱衰变的动力学,检验相关的唯象模型,提高对粲强子衰变中CP破坏、衰变常数和形状因子等理论预言的精度。二、研究内容(一)阈值处中性粲介子量子关联性研究。(二)粲强子的强子末态衰变机制研究。(三)精确测量CKM矩阵元和粲介子衰变常数。(四)精确测量粲介子半轻衰变形状因子和检验轻子普适性。(五)粲强子衰变中探索新粒子和新相互作用。“基于LHAASO实验的粒子天体物理前沿问题研究”重大项目指南一、科学目标瞄准银河系内1015eV宇宙线起源这一重大问题,基于LHAASO实验数据精确测量每个超高能伽马射线源的辐射能谱、空间分布和时变,联合国内外射电、光学、X射线等设备数据完成相应天体源的多波段观测和分析,建立和优化多波段辐射模型,研究带电粒子在天体中的加速过程与辐射特征,寻找宇宙线起源和加速证据,同时基于LHAASO数据完成银盘弥散伽马射线、膝区宇宙线分成分能谱和宇宙线大尺度各向异性测量,建立宇宙线在银河系内的起源、加速和传播的整体图像。二、研究内容(一)超高能伽马射线源的搜寻与测量。(二)伽马射线源多波段多信使研究。(三)伽马射线源内的粒子加速、辐射与输运过程的研究。(四)星际介质中弥散伽马射线相关物理研究。(五)基于宇宙线的能谱和各向异性测量研究其起源和传播。“先进核能系统中材料的若干协同损伤作用机理研究”重大项目指南一、科学目标瞄准服役于聚变能等先进核能的典型材料,充分利用国内大型托克马克、高热负荷测试和多束离子辐照等装置,厘清高能中子-嬗变氢氦、中子辐照-粒子流-热负荷两类协同损伤作用的耦合机制;阐明多种因素作用下材料遭受的协同损伤效应的机理;建立能够模拟上述协同损伤作用的实验与计算模拟方法;基于计算和实验模拟,实现在聚变堆等综合服役环境下国产低活化钢、氧化物弥散强化(ODS)钢、钨基合金等关键材料的筛选及性能评估。二、研究内容(一)高能中子辐照的离位损伤与氢、氦对材料的协同损伤作用机制研究。(二)高能中子辐照离位损伤与热负荷、粒子流对聚变堆第一壁协同损伤的作用机制研究。(三)多因素协同损伤效应的长时大尺度计算模拟方法建立。(四)聚变中子-氢-氦协同效应的多离子束模拟实验方法建立。“高精度X射线反射镜的关键科学与技术问题”重大项目指南一、科学目标基于超高精度反射镜表面形貌对相干X射线波前传输的影响,研究单晶硅纳米形貌的原子级构建规律,揭示超强X射线辐照下单晶硅材料和薄膜的损伤机理及力热变形机制;建立跨尺度全频谱纳米表面形貌的在线和离线高精度表征方法,发展大尺寸超高精度反射镜的复合加工技术和集成技术,实现相干X射线波前的在线实时操控和自适应主动补偿;形成具有自主知识产权的X射线高精度反射镜的全链条创新技术体系。二、研究内容(一)大尺寸复杂轮廓单晶硅纳米精度表面形貌构造规律研究。(二)全频谱纳米形貌的综合检测评估方法研究。(三)高亮度相干X射线与材料表面相互作用机制。(四)光机集成系统中跨尺度表面形貌的多物理场影响规律研究。
  • ASD | 利用高光谱反射率预测温带落叶阔叶树木的叶片性状
    ASD | 利用高光谱反射率预测温带落叶阔叶树木的叶片性状:通用模型可适用于整个生长季节吗?追踪生长季和地理区域中叶片性状的变化是理解陆地生态系统功能的关键。野外光谱法是原位监测叶片功能性状的有力工具,在农业、林业和生态学中都有许多应用,例如,叶片光谱已用于表征许多叶片理化特性,预测倍体水平,估计叶龄,甚至可以预测入侵植物对凋落物分解的影响。但目前尚不清楚是否可以开发通用统计模型来根据光谱信息预测性状,或是否需要根据条件变化进行重新校准。特别是,生长季多个叶片性状同时变化,是否可以从高光谱数据成功预测这些时间变化是一个悬而未决的问题。基于此,为了填补研究空白,在本研究中,一组国际研究团队利用标准实验室方法(包括光捕获和生长:N(%),δ15N(‰),δ13C(‰),叶绿素,可溶性C(%)和叶片含水量(LWC);防御和结构:每单位面积的叶片质量(LMA g m-2)、总C(%)、半纤维素(%)、纤维素(%)、木质素(%)、总酚类(mg g-1)和单宁(mg g-1);岩石衍生营养素:P(%)、K(%)、Ca(%)、Mg(%)、Fe(μg g-1)、Mn(μg g-1)、Zn(μg g-1)和B(μg g-1))和叶片光谱(利用光谱范围为350-2500 nm的ASD FieldSpec 3进行测量,在350-1000 nm,采样间隔为1.4 nm,在1000-2500 nm,采样间隔为2 nm)追踪了整个生长季的变化,研究了温带落叶树木多种叶片性状和光谱特性之间的联系。旨在回答以下问题:(1)常见物种叶片的理化性状在生长季如何变化?(2)叶片反射率在生长季如何变化?(3)生长季叶片理化性状和光谱之间是否存在可预测的关系,从而使叶片光谱能够不受时间限制地远程追踪森林生态系统功能的变化?然后评估叶片光谱是否可以在季节效应的影响下稳定地捕获叶片性状,为通过机载和星载传感器的高光谱成像进行大尺度叶片性状调查奠定基础。【结果】理化性状和光谱在整个生长季变化很大,虽然6月和9月之间收获的成熟叶片变化较小。重要的是,叶片光谱可以准确预测大多数叶片性状的季节性变化,成熟叶片的预测精度通常较高。然而,对于一些性状,PLSR估算模型因物种而异,单一PLSR模型不能用于物种水平的准确预测。8个落叶树种叶片光谱及其变异性(平均反射率(a)和变异系数(b))的季节模式。2017 年 5 -10 月,不同季节对英国剑桥Madingley林地21种叶片性状全/特定光谱数据最佳PLSR性能的影响。2017 年 5-10 月,不同物种对英国剑桥Madingley林地21种叶片性状全/特定光谱数据最佳PLSR性能的影响。【结论】叶片光谱可成功预测整个生长季多种功能性叶片性状,为机载和星载成像光谱技术监测和绘制温带森林植物功能多样性奠定了一定基础。请点击下方链接,阅读原文:https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650309890&idx=1&sn=9bddcb74cbb31a26c18ad6aee87f4344&chksm=bee1a9fd899620ebd02f200799a9370626a1d8b6fee07375ad2580b562fa8ad686a495393775&token=1524960455&lang=zh_CN#rd
  • 石墨烯缺陷工程的重要一员——表面等离子体激元反射
    石墨烯是近年来受到广泛关注的二维材料,具有特的物理化学性质,在信号传感、物质检测、和能源电池领域都有着广阔的应用前景。2016年9月,南开大学许京军、蔡卫老师研究团队在国际期刊 2D Materials上公开发表题为“Tailorable re?ection of surface plasmons in defect engineered graphene”的全文文章,通过探讨缺陷改变石墨烯光、电、热性质的可能性,提出了对石墨烯纳米尺度下的等离子激元性质进行操控的思路,为未来纳米光电设备的实现开辟新篇。(a) NeaSNOM测量原理示意图 (b)NeaSNOM的AFM成像显示了石墨烯缺陷处的形貌结构 (c)NeaSNOM的纳米显微光学成像展示了该区域的表面等离子波传播图样许京军、蔡卫老师研究团队先设计了离子束对石墨烯缺陷边界的操控可行性,并通过AFM等常规测量手段对这一设想进行了重复验证,检验其可行性。该研究团队对石墨烯表面等离子波在缺陷边界的传播进行了深入研究,通过NeaSNOM提供的可靠等离子激元成像手段,他们近场等离子激元成像图中观测到了靠近边界的明显干涉条纹。通过典型的石墨烯楔形结构,边界处的等离子激元的有效散射波通过操控的缺陷得到了大的增强。在缺陷边界处的等离子激元反射次得到清晰观测,证实了这些缺陷在表面等离子波传播中散射中心的作用。不同程度缺陷石墨烯中等离子激元传播和反射的研究在入射激光波长为10.653um下,不同程度缺陷石墨烯中等离子激元传播和反射的研究。其中,等离子激元干涉峰值被定义为M,在边界处衰减比例为0.28,实验结果与理论数值得到了很好的拟合。该研究团队证明了通过引入离子束在石墨烯缺陷边界处改变等离子激元的反射的结论,他们认为缺陷可以作为有效的等离子激元传播散射中心,通过缺陷程度的控制可以实现对等离子激元的操控,这一研究结果有效开创了控制表面等离子波的新篇章。参考文献:Luo W, Cai W, Wu W, et al. Tailorable reflection of surface plasmons in defect engineered graphene[J]. 2D Materials, 2016, 3(4): 045001.本文涉及的研究过程及实验结果均以原著作为准。相关产品:超高分辨散射式近场光学显微镜:http://www.instrument.com.cn/netshow/C170040.htm纳米傅里叶红外光谱仪Nano-FTIR:http://www.instrument.com.cn/netshow/C194218.htm
  • 定制镜面反射测量附件
    1. 镜面反射附件可以用来干什么呢? 镜面反射与我们的日常生活密切相关,如利用镜面反射进行照明和聚集能量的日光灯灯罩、高原上的太阳灶,另外,一些显示器面板,如电脑、手机的显示屏,需要使用增透膜(AR涂层),减少镜面反射,从而让屏幕的画面更清晰,减少鬼影和光斑。 在研发生产或质量检测中,需要对这些元件进行镜面反射测定,据此评价它们的性能。由于这些元件的种类多样,需要测定不同固定角度下的镜面反射,因此定制不同入射角的镜面反射附件可以直接测定不同元件的镜面反射率,提高评价效率。可用于测定光学玻璃,塑料,滤光片,镜子等样品。能够为从事玻璃,滤光片及化学领域的客户带来解决方案。2.镜面反射附件是什么样子的呢? 日立紫外-可见-近红外分光光度计UH4150在镜面反射测量中,可以提供4种固定入射角的标准选配附件,分别是5°,12°,30°和45°。凭借丰富的研发经验,日立可以定制不同固定入射光角度的镜面反射附件。附件的详细信息,请点击以下链接。https://www.instrument.com.cn/netshow/sh102446/s926340.htm有任何关于日立定制附件的问题,请拨打: 400-630-5821
  • 如何测定潜望式镜头中棱镜的反射率?
    1. 前言智能设备的功能日益多元化,如人脸识别、测距、AR功能等。其中,相机在追求高分辨的同时,还要求外形小巧、高倍率变焦。传统相机镜头通过与智能设备垂直放置,实现高倍变焦,但变焦倍率越高,所需焦距越长,需要占用一定的纵深空间安装镜头,造成镜头部分较厚。图1 传统镜头示意图现在大多数手机制造商通过搭载潜望镜式镜头,实现了相机的小巧与高倍率变焦。潜望镜式镜头平行于智能设备安装,并通过棱镜改变光路方向,将焦距所需要的厚度转化为与智能设备平行的长度,同时实现了超薄化与高倍率变焦。图2 潜望式镜头的示例因此,测定潜望式镜头中棱镜的反射率至关重要,但棱镜元件尺寸很小,准确测定其反射率需要专业的附件。日立紫外可见近红外分光光度计UH4150可以选配微小棱镜测定附件,并通过专业定制支架测定潜望镜式镜头中的棱镜。2. 应用数据附件:微小棱镜附件,标配两种样品支架,适用于5~6mm立方体和7~20mm立方体;偏振附件图3 微小棱镜附件本次实验使用定制支架测定两种尺寸为5mm的直角棱镜。直角棱镜巧用临界角,可以使光路偏转90度。测定时,采用偏振附件求出S偏振和P偏振的反射率,分别计算出S、P偏振光的平均值。图4 两种棱镜的反射光谱测定结果表明即使是微小棱镜,也可得到低噪音的光谱,从而有效评价样品的光学特性。3. 总结棱镜是常用的光学元件,日立UH4150凭借优异的平行光束性能,通过安装精密的微小棱镜附件,可为小尺寸棱镜的光学评价提供准确的解决方案。
  • 重磅!Nature封面:“中国天眼”挑战星际磁场标准模型
    1月6日,《自然》杂志以封面文章形式发表了被誉为“中国天眼”的500米口径球面射电望远镜(FAST)的最新成果。在该成果中,中国科学院国家天文台研究员李菂等领导的国际合作团队,通过FAST平台,采用原创的中性氢窄线自吸收方法,首次获得原恒星核包层中的高置信度的塞曼效应测量结果。研究发现,星际介质具有连贯性的磁场结构,异于标准模型预测,为解决恒星形成三大经典问题之一的“磁通量问题”提供了重要的观测证据。《中国科学报》了解到,这是FAST产出的系列重大成果之一。自2020年1月11日通过国家验收至今,FAST已运行近两周年。基于超高灵敏度的明显优势,它已成为中低频射电天文领域的观天利器。《自然》杂志封面 中国科学院国家天文台供图又一重磅,挑战星际磁场标准模型磁场在恒星、行星和生命的产生中发挥着重要作用,过程复杂。“磁通量问题”是恒星形成经典三大问题之一,分子云的星际磁场强度测量是全球天文界的共同挑战。恒星诞生于分子云中,分子云中的致密区域发生塌缩,最终形成恒星。恒星磁场的标准模型认为,在恒星形成过程中,磁场和重力是相互抗衡的力量,在分子云密度高的地方,重力越大,磁场也越强。按照这一模型,重力和磁场不断拉扯,以至于恒星形成需要上千万年。测量分子云的星际磁场强度并不是件容易的事。目前,可用于测量磁场强度的唯一手段就是“塞曼效应”。1896年,荷兰物理学家塞曼发现,把产生光谱的光源置于足够强的磁场中,磁场作用于发光体使光谱发生变化,一条谱线会分裂成几条偏振化的谱线。根据光谱的变化,科学家就可以反推出磁场的强度。但是,探测分子云的塞曼效应难度很大。“分子和磁场的作用普遍非常弱,塞曼效应也非常弱。”李菂说。为更好地测量出星际磁场,李菂团队另辟蹊径,原创出一种通过测量氢原子的谱线来测量星际磁场的方法——中性氢窄线自吸收方法。“原子对磁场的响应会比分子强。氢原子是宇宙中丰度最高的元素,广泛存在于宇宙的不同时期,也是不同尺度物质分布的最佳示踪物之一。”李菂说。FAST为李菂等人提出的新方法创造了应用的机会。“FAST是探测暗弱中性氢源的利器。”李菂说。通过FAST,研究人员测量了L1544分子云包层的磁场强度,首次实现了原创的中性氢窄线自吸收方法塞曼效应的探测,也实现了利用原子辐射手段来探测分子云磁场的“从0到1”的突破。研究人员发现,与标准模型的预测结果不同,星际介质从恒星外围的冷中性气体到原恒星核,具有基本一致、连贯性的磁场结构。“由此,我们将恒星形成的时间从上千万年减少到百万年。”李菂说。这一研究成果引起了国际学者的关注。未参与此项研究的美国伊利诺伊大学教授理查德克鲁切尔评价:“通过观测中性氢窄线自吸收的塞曼效应,FAST首次揭示了在恒星形成的早期阶段,磁压不足以阻止引力收缩,这与恒星形成的标准理论不一致。这一发现对于理解恒星形成的天体物理过程至关重要,并显示了FAST在解决重大天体物理问题方面的潜力。”运行两年,FAST产出一系列大成果从2020年1月11日通过国家验收至今,两年来,FAST好消息频传。仅2021年,FAST就产出了不少重要成果。2021年10月14日,《自然》发表了FAST获得迄今最大快速射电暴爆发事件样本的成果。快速射电暴(FRB)是宇宙中最明亮射电爆发现象,由于起源未知,它成为天文学研究的热点。国家天文台科研人员领导的国际合作团队,利用FAST对快速射电暴FRB121102进行观测,在约50天内探测到1652次爆发事件,获得迄今为止最大的快速射电暴爆发事件样本,超过此前本领域所有文章发表的爆发事件总和。这一成果还首次揭示出快速射电暴爆发率的完整能谱及其双峰结构。“FAST多科学目标巡天已经发现至少6例新快速射电暴,为揭示这一宇宙中神秘现象的机制、推进这一天文学全新领域的发展作出独特的贡献。”国家天文台副研究员王培说。2021年5月,《天文和天体物理学研究》发表了FAST持续发现毫秒脉冲星的成果。发现脉冲星是国际大型射电望远镜观测的主要科学目标之一,国家天文台研究员韩金林领导的FAST重大优先项目“银道面脉冲星快照巡天”在不到两年时间内,累计观测了约620个机时,完成了计划搜寻天区的8%。澳大利亚科学院院士曼彻斯特评价:“发现这么多脉冲星令人印象深刻”“发现如此众多毫秒脉冲星是一个显著的成就”。“截至目前,该项目新发现279颗脉冲星,其中65个为毫秒脉冲星,在双星系统中的有22颗。”韩金林说。2021年12月,《中国科学》以封面及编辑点评文章形式发表了FAST开展多波段合作观测的成果。在这项成果中,国家天文台科研人员领导的国际合作团队,将FAST与高能波段的重要空间天文设施——费米伽马射线天文台大视场望远镜(Fermi-LAT)相结合,进行天地一体化协同和后随观测,发现了多颗脉冲星。多波段合作观测不仅开启了FAST脉冲星搜索新方向,而且打开了研究脉冲星电磁辐射机制的新途径,为研究中子星星族演化和探测引力波提供了更多样本。面向未来,观天利器正摩拳擦掌FAST频繁产出大成果,与其运行效率和观测质量密不可分。“一年来,中科院深入贯彻落实习总书记重要指示精神,全力做好FAST的开放运行和科学研究工作,在第一时间就成立了FAST科学委员会、时间分配委员会、用户委员会,统筹规划科技方向,遴选重大项目,制定数据开放的政策,充分发挥FAST的科技效果,促进重大科技成果产出。”中科院副院长、党组成员周琪院士说。在体制机制的保障下,2021年,FAST的年观测时长超过5300小时,已远超国际同行预期的工作效率,为FAST科学产出起到重要支撑作用。“2021年,FAST一半的机时用于优先和重大科学项目,45%的时间用于自由申请的项目,10%的时间用于国际开放项目,5%的时间用于应急观测。”中科院院士、国家天文台研究员武向平说,“FAST正在考虑面向全国中小学生开放1%的观测时间,目前相关申请、遴选方法仍在讨论之中。”他介绍,FAST的优先科学目标包括研究快速射电暴的物理机制、搜寻脉冲星、利用脉冲星测时阵列探测引力波、通过21厘米中性氢辐射探测星系和宇宙大尺度结构。此外,FAST的另一使命是寻找地外文明,包括寻找第二地球、截获外星人通信以及寻找生命分子。2021年3月31日,FAST正式向全球开放共享,向天文学家征集观测申请。此次征集收到来自不同国家共7216小时的观测申请,最终14个国家(不含中国)的27份国际项目获得批准,并于2021年8月启动科学观测。“中国射电望远镜发展坚持走‘独立自主’与‘国际合作’的道路。”武向平说。关于未来,武向平表示,FAST将在快速射电暴起源与物理机制、中性氢宇宙研究、脉冲星搜寻与物理研究、脉冲星测时与低频引力波探测等方向,产出深化人类对宇宙认知的科学成果。相关论文信息:https://www.raa-journal.org/raa/index.php/raa/article/view/4877/6013https://doi.org/10.1038/s41586-021-04159-xhttps://doi.org/10.1038/s41586-021-03878-5https://doi.org/10.1007/s11433-021-1757-5
  • 基于光线模型的成像系统标定与三维测量进展
    一、背景介绍:机器视觉可称为人工智能的“慧眼”,成像系统的标定又是机器视觉处理的重要环节之一,其标定精度与稳定性直接影响系统工作效率。在传统机器视觉与摄像测量标定领域,小孔透视模型仍存在高阶透镜畸变无法完备表征和多类复杂特殊成像系统不适用的问题。而基于光线的模型以成像系统聚焦状态下每个像素点均对应空间一条虚拟主光线为前提假设,通过确定所有像素点所对应光线方程的参数即可实现标定与成像表征,可避免对复杂成像系统的结构分析与建模。基于该光线模型,研究院相关课题组发展了各类特殊条纹结构光三维测量方法与系统,实验证明光线模型可通用于多类复杂成像系统的高精度测量,是校准非针孔透视成像系统的有效模型,可作为透视模型的补充。二、光线模型Baker等人最早提出了一种可表征任意成像系统的光线模型[1],认为图像是像素的离散集合,并以一组虚拟的感光元件“光素”表示每个像素与某像素相关联的空间虚拟光线间的完整几何特性、辐射特性和光学特性,如图1所示。因此,光线模型的标定即确定出所有像素点对应的光线方程,无需严格分析和构建成像系统的复杂光学成像模型,具备一定的便携性和通用性,从一定程度上也可避免镜头畸变的多项式近似表征引入的测量误差,为非小孔透视投影模型成像系统的表征提供了一种新的思路。图1 成像系统的光线模型示意图三、基于光线模型的条纹结构光三维测量在条纹结构光投影三维测量领域,光线模型一方面可作为三维重建的光线方案,用于表征大畸变镜头、光场相机、DMD投影机、MEMS投影机等多类特殊结构的成像与投影装置,可发展新的基于光线模型的条纹结构光三维测量方法与系统;另一方面,发掘光线模型在结构光测量中的优势,光线模型对克服投影与相机的非线性响应、大畸变镜头成像下提升三维重建精度具有优异的效果。3.1 Scheimpflug小视场远心结构光测量系统光线模型与三维测量课题组开发了小视场远心结构光测量系统,采用Scheimpflug结构设计确保公共景深覆盖,如图2所示。考虑到远心镜头属平行正交投影、Scheimpflug倾斜结构造成畸变模型非中心对称,因此,提出一种基于光线模型的非参数化广义标定方法[2]。系统中相机与投影机成像过程均采用光线模型表征,标定其像素与空间光线对应关系,计算光线交汇点坐标,实现三维重建。图3展示了系统实物图与五角硬币局部小区域的三维测量结果,测量精度为2 μm。图2 Scheimpflug小视场远心结构光测量系统图3 测量系统实物图与五角硬币局部的三维测量结果3.2光场相机的光线模型标定与主动光场三维测量课题组发展了基于主动条纹结构光照明的光场三维测量方法与系统。光场相机通过在传感平面前放置微透镜阵列,实现光线强度和方向的同时记录,由于存在微透镜加工误差、畸变像差、装配误差等复杂因素影响,光场相机完备表征与精密标定是个难题。课题组提出光线模型表征光场成像过程[3],即将光场相机内部看作黑盒,直接建立像素m与所对应的物空间光线方程l的参数,如图4所示。并通过标定光场所有光线与投影条纹相位的映射关系实现被测为物体的高精度三维测量,考虑光场多角度记录特点,构建基于条纹调制度的数据筛选机制,实现了场景的高动态三维测量,如图5所示,黑色面板与反光金属可同时重建。图4 光场成像模型图5 主动光场高动态三维测量3.3 DMD投影机与双轴MEMS激光扫描投影机的光线模型标定与三维测量基于微机电系统(MEMS)激光扫描的投影机以小型化、大景深的优势被应用于条纹投影测量系统,如图6(a)所示。但由于其依赖激光点的双轴MEMS扫描投影图案,不依赖镜头成像,透视投影模型表征会存在一定误差。此外, DMD等依赖镜头成像的投影机,大光圈设计也会影响小孔透视投影模型的表征精度。对此,课题组采用光线模型表征投影机[4],并提出了一种基于投影机光线模型的条纹投影三维测量系统标定方法,该方法根据双轴MEMS投影的正交相位对光线进行识别追踪,利用投影光线与相机构建的三角测量实现了三维重建。进一步发现:由于投影光线的相位一致性特性,光线模型可显著抑制系统非线性响应引起的测量误差,图6(b)展示了单目系统在3步相移条件下(未额外矫正非线性响应),分别使用透视投影模型与光线模型对石膏雕塑的三维重建结果,可见光线模型对非线性响应影响具有免疫性。图6 双轴MEMS激光扫描投影原理和石膏雕塑三维重建结果(3步相移,左图为透视投影模型,右图为光线模型)3.4单轴MEMS激光扫描投影机光线模型标定与三维测量单轴MEMS投影机将激光点扫描拓展为面扫描大幅提升了投影速率,可应用于动态测量。针对单轴MEMS投影机无透镜结构使得针孔模型不适用、单向投影无法提供正交相位特征点的问题,课题组提出一种基于等相位面模型的系统标定方法[5],推导出了相机反向投影射线与该等相位面交点处的三维坐标值与相位值间新的映射函数,实现了快速三维重建。图7展示了使用高速相机搭建的单目测量系统和重建场景,投影采集速率为1000 frame/s,采用4步相移与雷码图相位展开,三维重建速率为90 frame/s。后续为适应更高速率测量应用,可将单目扩展为双目或多目系统,采用单帧解调相位和多极线约束相位展开等方法减少投影图像数量,提升三维测量速率。图7三维测量系统与动态重建场景3.5大畸变镜头成像的光线模型标定与三维测量针对传统低阶多项式不能完备表征大畸变镜头的问题,课题组采用光线模型表征大畸变镜头相机成像,并提出一种完全脱离对相机和投影机内参依赖(透视模型依赖相机与投影机内参)的光线与条纹相位映射的三维重建方法。通过直接标定相机光线与条纹相位的倒数多项式映射系数,避免了繁琐耗时的对应点搜索与光线插值操作。图8为装配4 mm广角镜头的光线标定结果与标准球三维测量结果,可见由于广角镜头畸变较大,光线模型较透视模型重建质量有所提升。图8 广角镜头光线标定与标准球三维测量数据的拟合误差分布(a)透视投影模型,(b)光线映射模型四、总结光线模型通过确定所有像素点所对应光线方程的参数实现标定与成像表征,从而避免了对复杂成像(投影)系统的结构分析与建模,解决了特殊条纹投影三维测量系统的标定与重建问题,同时在条纹投影三维测量的系统非线性相位误差抑制和精度提升上展示出优异性能。在结构光三维测量的未来发展中,可进一步扩展光线模型三维测量的方法与应用,提升测量精度、效率与通用性,解决各类特殊复杂场景中的应用测量问题。参考文献[1] Baker S, Nayar S K. A theory of catadioptric image formation[C]//Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), January 7, 1998, Bombay, India. New York: IEEE Press, 1998: 35-42.[2] Yin Y K, Wang M, Gao B Z, et al. Fringe projection 3D microscopy with the general imaging model[J]. Optics Express, 2015, 23(5): 6846-6857.[3] Cai Z W, Liu X L, Peng X, et al. Ray calibration and phase mapping for structured-light-field 3D reconstruction[J]. Optics Express, 2018, 26(6): 7598-7613.[4] Yang Y, Miao Y P, Cai Z W, et al. A novel projector ray-model for 3D measurement in fringe projection profilometry[J]. Optics and Lasers in Engineering, 2022, 149: 106818.[5] Miao Y P, Yang Y, Hou Q Y, et al. High-efficiency 3D reconstruction with a uniaxial MEMS-based fringe projection profilometry[J]. Optics Express, 2021, 29(21): 34243-34257.课题组简介:本文作者:刘晓利 ,杨洋 ,喻菁 ,缪裕培 ,张小杰 ,彭翔 ,于起峰 ;深圳大学物理与光电工程学院深圳市智能光测与感知重点实验室。以于起峰院士领衔的深圳大学智能光测图像研究院主要研究方向包括大型结构变形与大尺度运动测量、超常光学测量与智能图像分析、计算成像与三维测量以及多传感器融合感知与控制等。
  • 三维表面模型可视化软件Vayu 1.0发布
    包括古生物学在内,众多科研领域已经在前所未有的精度和广度上大规模应用X射线计算机断层扫描以及三维重建技术,随之对生成的三维表面模型的可视化效果方面也提出了更高的需求。目前大部分三维重建处理软件在处理三维表面模型方面能力较弱,已有的三维表面模型软件通常未对生物学三维表面模型数据作相应的优化,且在使用上往往存在上手困难,操作复杂,无法处理大数据文件等问题。 Vayu 主界面与部分案例展示针对以上问题,为了提升化石和现代生物成像数据的可视化效果,中国科学院古脊椎动物与古人类研究所卢静研究员团队自主研发了专门用于处理三维表面模型的新的免费软件Vayu 1.0,并在《古脊椎动物学报》上详细介绍了该软件的基本功能、操作流程以及相关案例展示。Vayu 1.0主要针对化石及现代生物成像数据可视化需求进行优化,可以广泛应用于古生物、生命科学、医学、考古等多学科领域三维表面模型的可视化乃至虚拟空间交互等方向。Vayu 1.0软件提供了一整套针对三维表面模型的编辑、渲染、标注、分析等可视化工具,同时自带VR模式以及快捷的动画制作方法,让使用者能在最短时间内掌握对三维表面模型进行快速渲染和动画制作,为三维表面模型的可视化提供了新工具。Vayu 1.0还包含虚拟现实(VR)模式和一站式动画制作平台等多种可视化工具,为各领域的三维表面模型渲染与可视化提供了新发展方向和思路。除此以外,Vayu 1.0在博物馆科普教育与学校教育等领域也可以提供广泛的应用场景。 Vayu 三维可视化渲染动画展示Vayu 现代鲨鱼身体内部三维结构VR动画该研究得到了中国科学院院战略性先导科技专项(B类)、国家自然科学基金优秀青年基金等项目的资助。论文链接:http://www.vertpala.ac.cn/CN/10.19615/j.cnki.2096-9899.221020软件下载链接: http://admorph.ivpp.ac.cn/download.html
  • 近红外引领果蔬分选技术实现飞跃
    为了多方位展现我国在近红外光谱领域的最新成果,仪器信息网和近红外光谱分会计划合作制作《近红外光谱新技术/应用进展》网络专题,同时也以此献礼近红外分会成立10周年,并寄语2021年国际近红外大会。我是受益于近红外分会和仪器信息网的人,感恩无限。愿借此机会,把自己多年来对近红外在果蔬品质无损检测方面的认识和认知与大家共享。中国农业大学 韩东海教授  1. 前言  以前我不论是指导学生科研还是学会报告话题都比较大,宏观且泛泛。论述宏观有利于扩宽人们的视野,开阔思路,但不能解决具体问题。今天着重讲些细节,有些属于经验之谈,直击要点,但略显有点理论支撑不足。我认为两者均不可或缺,只是每个人的发展阶段不同从而导致的需求不同而已。  本文对于研究果蔬品质无损检测的专家学者也许能有些帮助,而对于其他研究方向的如能有所参考就是万幸了。  近红外是个多学科交叉的结晶,不同专业背景、不同经历会有不同体会,有不妥之处,望多多指正。  2. 果蔬分选简介  先简单介绍一下果蔬分选。果蔬分选包括两大独立要素。一个是大中小的级别分选,一个是优良中差的等级分选。大果中有优良中差,优果中有大中小。近红外在果蔬分选上的应用始于二十世纪80年代末。之前的果蔬分选主要是级别分选,部分用机器视觉或依靠人工按照外观颜色进行等级分选。外观颜色与内部品质有一定的相关性,但难以达到生产要求。一是误判率较高,二是有些果蔬无法实施,例如猕猴桃等。而且那时的设备大小宽窄尺寸基本是固定的,不能轻易更改。  近红外在果蔬内部品质检测上的应用使得分选设备发生了革命性的变化。首先,实现了内部品质等级无损检测,大大地提升了分选设备功能,从这个意义上讲,近红外引领果蔬分选技术实现了飞跃式发展;二是设备结构大为简化,大小宽窄可自由组合,就像积木一样。  3. 近红外与果蔬检测可谓绝配  近红外与众多物料有着非常完美的结合。例如烟草、饲料、石油化工、医药。果蔬也是其中一例,不过内涵却与其它不同。  首先是波长范围。果蔬水分约为80-90%,水果糖度在10-20°Brix之间。其他成分虽然很多,但含量很少。1100nm以下的短波近红外适用于果蔬类高水分物料。  其次是光谱采集方式。果蔬内部质量无损检测除了糖度以外,还要检测内部褐变、糖心等,必须采用透射方式采集光谱。短波近红外穿透力强,加之,1100nm以下属于硅检测器范围,仪器造价比铟镓砷要便宜很多,这又为大量普及应用创造了有利条件,为量大利薄的农产品销售提供了强有力的支撑,因此是最佳选择。  最后是光源功率。果蔬品质无损检测手持和便携以及台式专用仪器的电源功率,LED最小,卤素灯小则1-2W,大则12W。而用于在线检测时,1秒钟要检测5-6个果蔬,西瓜每秒3-4个,扫描时间短,需要配置高达200-300W大功率光源,检测西瓜时甚至达到2000W。  4. 近红外首先在水果在线检测上发力  1989年,日本三井金属矿业株式会社EI推进事业部在冈山县一宫农协推出了世界上第一台桃果实糖度在线漫反射无损检测分选设备,1992年又相继推出了苹果、梨的检测系统。之后,杂贺技术研究所、MAKI制作所、NIRECO也研制出类似设备,继而在日本大面积推广。  基于漫反射原理的检测主要用于薄皮水果诸如苹果、梨、桃等,而用于柑橘检测则效果不佳,于是又研发出基于透射原理的检测,一直延续至今。随着检测项目的增加,由单一的糖酸度向内部褐变、糖心、水浸、局部失水、空洞等多指标同时检测延伸,落叶果及西瓜甜瓜类果实则主要采用漫透射方式。特殊情况时,苹果和葱头需要在两个位置同时采集光谱。  现在日本SHIBUYA精机株式会社成为果蔬分选设备厂家中的一支独大,从核心部件光谱仪等内外品质评价系统到输送装箱码垛以及控制系统全部独自生产,近江度量衡株式会社部分自主,部分外协。三井、杂贺、NIRECO则只生产内外品质评价系统。  果蔬内部品质近红外在线检测技术因能直接解决农业生产问题,并带来经济效益和社会效益,在先进国家政府的资助下得到大面积推广应用,仅日本至少有4000个大型果蔬分选设施正在运行。  5. 近红外光谱采集方案多种多样  果蔬物料尺寸有大有小,果肉有薄有厚,糖酸度有高有低,且分布不均。由此产生若干检测个性化方案。例如光谱采集方案就有如下之多,图1- 6。  图1和图2光源和检测器布置相同,但物料放置及输送环节有别。图1托盘不但能平稳地输送西瓜,避免磕碰,而且还可遮挡杂散光进入检测器。依据西瓜、甜瓜类的生理结构,花萼处果皮最薄,花萼冲下放置,有利于获取更多的内部信息。由于菠萝果心粗大,横置更妥,且输送更平稳。  图3和图4的光源与检测器设置一样,但样品放置和光谱采集细节有所不同。西红柿的果柄影响信息接收,如图3所示,故倒置。由于物料内部组织构造差异很大,苹果肉质均匀密实,而西红柿则有外果皮、中果皮、果浆、胎座,少许空腔,各组织之间光特性差异大,造成散射不均。为此,苹果光源布置向赤道下方照射,靠苹果赤道直径大来遮挡杂散光(图4)。而西红柿则照射上半球,以利获得更多有效信息。  图5和图6的光源和检测器设置相同。图5为常规布置,而图6采用了特殊透镜,缩小了光斑大小,因为柑橘比葱头体积小,这样可有效避免杂散光进入检测器。这只是一个公司的方案,加上其他公司的独具匠心的思考,采集方案层出不穷。  6. 检测对象、检测项目和检测精度  表1列出了来自三井金属计测公司的透射模式部分检测对象和检测项目,这些检测对象检测项目早已成熟,转为常规。其他公司,如SHIBUYA精机、近江度量衡、NIRECO、杂贺技研均能实现,包括一些没有列入的检测对象和检测项目。即使如此,有些项目也不是百分之百正确检出,例如局部褐变误判率较高。但是小果实,例如樱桃、草莓,个别水果,如葡萄,诸如此类的近红外在线分选技术暂不多见。表1 透射模式检测对象及检测项目1)  由于在线检测所用光源功率较大,能确保获得足够强的有效信息,故检测精度一般高于便携和手持仪。以SHIBUYA精机株式会社在线内部检测装置为例,各种水果的糖度检测精度如表2所示。表2 糖度检测精度2)对象苹果梨蜜桔桃西瓜西红柿柿子甜瓜SEP0.280.330.340.370.420.500.610.74  由表2可知,苹果检测精度最高,甜瓜最低。这个趋势与其他厂家基本一致。也就是说,苹果是最好检测的,而果肉厚内心甜的甜瓜最难检测。一般消费者对于糖度相差0.5Brix以内难以察觉,故水果检测精度SEP如能达到0.5就能满足生产要求。  日本的水果品质普遍较高,好吃已经不是问题。为了适应新的国际形势,加大水果竞争力度,日本政府正在组织产学研攻破果蔬功能成分在栽培、管理、在线无损检测方面的难题。苹果重点提高花青素含量,西红柿是番茄红素,柑橘是β-隐黄素,胡萝卜是番茄红素和β-胡萝卜素。由于这些成分含量比较少,近红外检测存在一定难度。番茄红素已经实用化,其他几个成分仍在努力中。  7. 水果手持、便携、台式专用仪器发展势头强劲  2000年,FANTEC开始销售世界上第一台水果专用便携仪FRUIT TESTER-20,时间不长又推出FQA NIR GUN手持仪(图7)。便携仪和手持仪主要用于科学研究,同时也为那些生产量小的个体果农带来福音,因为花几十万或百万日元就能达到几个亿的设备功能,只是生产效率无法相比。  同年,KUBOTA公司首先推出了台式仪,其后又推出便携仪,从2019年7月始,对原有机型进行升级换代,如图8和图9。这两款仪器社会保有量估计在1000台左右,也是本人认为最好用的仪器。  这台仪器的日本水果模型拿到中国无需修正,可直接使用,预测值准确稳定,该仪器像素点只有254个,糖度模型采用的是4-5个波长的MLR。本人实验室在北京奥运前购买了一台,十几年过去了,现在还在使用中,中途只更换过电源开关。我曾问过这台仪器的研发部长石桥先生,他说,因为内置波长横纵坐标自动校正功能,所以仪器预测值才稳定。横坐标校正方法已经成熟,但纵坐标措施不多,也许谁掌握了纵坐标校正技术,谁就能占领市场。  N1(图10)从2009年开始销售,由于产品精制,价格便宜,至2017年8年间共销售648台。最为特殊的是该仪器采用了不受杂散光影响的TFDRS法(TFDRS:Three-Fiber-based Diffuse Reflectance Spectroscopy),1点照射,2点接收。通过2个漫反射强度比计算相对反射率,进而获得相对吸光度比。该吸光度比不受漫反射光路的变化影响,且与水果糖度呈直线相关。该检测模型建立在标准样品基础上进行模拟,推导出方程,然后用水果进行验证,故在实际应用中,不需进行参比测量,不需进行模型维护,是这一种全新思维,不同于传统方法。  PAL光传感器是最新系列水果手持糖度仪(图11),采用LED光源进行糖度无损检测。目前应用对象分别为苹果、梨、桃、葡萄、迷你西红柿。从2017年开始销售以来,不到一年就售出400台,该公司的销售目标是1万台。  还有几种正在出售的台式仪和手持仪。  QSCOPE-DT功能最强大,不但可以预测糖酸度,也可检测内部品质。Amaica-Pro 与KUBOTA台式仪一样,检测糖酸度的同时也可称重,把级别和等级分选元素集于一体,是小型果蔬分选仪典型代表。CD-H100采用滤光片技术,物美价廉,缺点是仪器台间差较大,建模任务艰巨。  我认为,在台式、便携、手机水果专用仪器中,SACMI的台式仪适应性最广,如图12。因为这台仪器采用了8个20W的卤素灯,功率强大。内部采用不锈钢锥形挡板,将光源与检测器分隔在圆锥挡板内外。光源在锥形板外向上照射,结构上保证了杂散光不能进入检测器。检测器在圆锥挡板内,当水果放置在锥形挡板顶端时,橡胶圈的密封阻挡了反射杂散光的进入。这种漫透射设计加上大功率,不论是内部成分还是内部病变的检测均能胜任,是个科研好帮手,就是价格偏贵。  8.样品真值测量  真值测量往往被轻视,特别是像水果类的样品,不论是品种间、还是种类间差异都比较大,没有深入了解细致筹划,将影响建模效果。因为建模预测精度永远不可能超过实测精度。以如下两个案例进行说明。  甜瓜光谱采集位置是花萼处,故在花萼处取ф40mm(因为环形光源直径是ф38mm)果肉打碎后取果汁测量糖度,如图13所示。  图14是柑橘糖度实测值图解。充分考虑样品生化特性,整体榨汁,再经过滤实测值更准确。  9. 展望未来  近红外在果蔬品质检测方面的应用已经30年了,技术细节在不断完善进步,但整体思维模式有待突破。  上面介绍的都是近红外光谱在果蔬品质无损检测上的应用,近年来,近红外图像也取得了长足进步。近红外激光正在发挥着特殊作用。随着LED光源,特别是近红外区域LED连续光源的研制成功、光谱仪小型化、微型化、量子光谱仪的问世、无线通讯、  5G数据快速传输、人工智能等方方面面的突飞猛进,局部照射,多点测量,攻破尚存顽症指日可待。  10.总结与寄语  编辑审阅初稿后提出“日本的果品筛选技术对中国近红外技术在果品检测方面有什么经验借鉴?这方面的内容可否给大家稍微总结一下?”我觉得编辑的建议很好,也很重要,关键是我的能力有限,担心难以胜任。  首先,中国的近红外仪器必须走专用化发展之路,这一点大家已经取得共识,不再赘述。  其次,近红外专用仪器必须走共同合作研发之路,这一点大家也不会有异议。  最后,各个环节必须精益求精,方能广为应用。以水果为例归纳如下:  1)仪器不但要提高信噪比,还应在水果主要成分糖酸吸收波段800-950nm间提高灵敏度,以期获得更多有效信息。  2)不论是254个像素还是1024个,波段区间应有所侧重。考虑到水果颜色或者说叶绿素(670mm)有时也是检测指标之一,650nm-970nm区间更适合水果。  3)漫透射、透射因扩展性好已成为光谱采集的主流。同时,消除大小影响的配套措施不可或缺。  4)透射能量谱一旦低于10%,检测器有可能在检测限以下,此时,吸光度与样品浓度不符合朗伯比尔定律。要么加大光源功率,要么提高仪器灵敏度、要么延长积分时间等加以调整。  5)日本几大果蔬内部品质近红外无损检测系统均为各自专利产品,这是核心,也是关键。  国内从事近红外研究生产应用的专家学者工程师高达数千人,经过二十几年的实践和积累,近红外技术在中国的大范围推广应用、厚积薄发之日已经迎面扑来。  参考文献  1. https://www.mitsui-kinzoku.co.jp  2. SHIBUYA精机株式会社宣传资料  3. http://www.sacmi.com/  4. KUBOTA KBA100使用说明书(中国农业大学 韩东海)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制