当前位置: 仪器信息网 > 行业主题 > >

模型燃气轮机

仪器信息网模型燃气轮机专题为您整合模型燃气轮机相关的最新文章,在模型燃气轮机专题,您不仅可以免费浏览模型燃气轮机的资讯, 同时您还可以浏览模型燃气轮机的相关资料、解决方案,参与社区模型燃气轮机话题讨论。

模型燃气轮机相关的论坛

  • 【分享】涡轮机和离心机有什么不同

    离心机:是利用离心力,分离液体与固体颗粒或液体与液体的混合物中各组分的机械。 适用范围: 1、将悬浮液中的固体颗粒与液体分开。 2、将乳浊液中两种密度不同,又互不相溶的液体分开,例如从牛奶中分离出奶油。 3、用于排除湿固体中的液体,例如用洗衣机甩干湿衣服。 4、分离不同密度的气体混合物(特殊的超速管式分离机)。 5、对固体颗粒按密度或粒度进行分级(沉降离心机),利用不同密度或粒度的固体颗粒在液体中沉降速度不同的特点。 涡轮机:利用流体冲击叶轮转动而产生动力的发动机,按流体的不同而分为汽轮机、燃气轮机和水轮机,广泛用做发电、航空、航海等的动力机。 涡轮机是如何工作的? 涡轮增压器实际上是一种气体压缩机,通过压缩气体来增加进气量。它是利用高温高压的气体惯性冲力来推动涡轮室内的涡轮,涡轮又带动同轴的叶轮,叶轮压送由管道送来的蒸汽,使之增压进入汽缸。蒸汽推动转子高速旋转,带动发电机或者其他设备工作。 离心机依靠高速旋转的离心力来分离比重不同的物体,而涡轮机依靠流体的膨胀来做功。

  • 汽轮机油的含水量最高不能超过多少?

    根据国家标准 GB/T7596-2008《电厂运行中汽轮机油质量》水分不能大于100ppm。个别汽轮机厂家使用自家的标准,规定汽轮机油的含水量最大不能超过500ppm(也即0.05%)。在进行汽轮机油含水量测试时,推荐使用卡尔费休法,尤其是要求较为严格或者比较重要的设备。卡尔费休法的优点是检测精度高,含水量极少的情况下都能准确检测出来,并且三种状态下的水分都能检测。在进行设备维护时,要特别注意重要设备,定期做好油液监测工作,其中就包括含水量的监测。越重要的设备,要求的含水量越低。为了防止汽轮机油进水,应保持良好的密封,其次可以使用一些专门的配件,例如带干燥剂的呼吸帽,可以有效防止水分进入油箱。油箱底部的游离水要及时排掉,最好能经常检查油箱状态,如果条件允许,最好买一个脱水滤油机。

  • 【重磅出击】离心式压缩机的发展历程

    核心提示:0  引言  第一台工业上使用的离心压缩机是在人类迈入 20 世纪时与早期的燃气轮机一0  引言  第一台工业上使用的离心压缩机是在人类迈入 20 世纪时与早期的燃气轮机一同出现的。其中一些工作是由发明第一台燃气轮机的 Elling 在 1903 年完成的。在 20 世纪初期,这些压缩机也被应用在过程工业中。最早应用的是钢铁厂中的高炉鼓风机。例如,某设备制造商(OEM)将第一台 7 系列的离心压缩机在 1912 年销售给了位于美国密苏里州圣路易斯的 Scullin 钢铁公司。即使按照现在的标准衡量,这些鼓风机也是大型的设备。虽然在功能上相同,但是以前压缩机中的基本部件如:轴承、密封、叶轮和扩压器等与现在压缩机中复杂内部部件相比,还是有很大的不同。  提高制造方法是发展现代高性能离心压缩机的一个重要因素。如果不能精确加工出为了提高性能所设计的复杂型线,那么应用现代尖端分析和设计技术就显得意义不大。能够取得当前的高效率水平,与现在的制造方法是密不可分的。不过,这种看法最初并不被认同。  在离心压缩机发展的初期阶段,设计水平在一定程度上受到了当时制造方法的限制。设备制造商在进行设计时,不得不使用当时较为有限的几种方法,包括机械加工(即车削、三轴铣制)、联接(即焊接、铆接)和铸造。  机械加工技术当时只有车削和三轴铣制。这两种方法只能加工非常简单的二维型线,并被应用在大多数离心压缩机上,但是无法满足大流量和(或)高马赫数的要求。设备制造商必须使用焊接或铸造,来制造应用在较高流量场合的更复杂的型线。事实上,直到 20 世纪 50 年代末、 60 年代初,焊接叶轮还没有被大量的使用。因此,早期离心压缩机的叶轮主要是铸造或者是铆接的。一些最早期的铆接叶轮可以追溯到 20 世纪 20 年代。  同样,定子部件也是焊接或铸造的。由于当部件相同时,重复铸造可以降低成本;当时提高性能不是考核的关键,大多数设备制造商倾向于使用铸造方法。压缩机机壳使用铸件的方式,直到 20 世纪 50 年代还较为普遍。不过铸造部件表面粗糙的特性,决定了在使用它的时候,必须牺牲一些空气动力学性能,但是并不阻碍它可以大量被应用在工艺压缩机中。当时甚至整个通流部分均可以由铸件组成。之后,通流部分部件开始较少使用铸件,而是用焊接、螺栓连接、或铆接的型式来制造。  在这些早期压缩机中,其主要性能指标只是简单地压缩气体,能量消耗不是主要考核点。随着高能耗所造成的高成本和设备制造商们的竞争升级,越来越有必要开发高性能的离心压缩机。  过去60年来 , 压缩机最高效率的发展过程见图 1 。图中曲线表示流量系数φ大于 0.080 的离心压缩机基本级。当基本级流量系数较小时,由于各种损失的影响,其最高效率相对较低。从图中可以看出,在 20 世纪 50 年代的最高效率大多分布在 70%~75% 。那时的能源相对丰富,没有人在意性能相对低的离心压缩机。但是随着 20 世纪 70 年代中期能源危机的爆发,用户与压缩机制造商开始注重降低能量消耗,使得原动机和压缩机的性能大大提高,压缩机效率达到了80%~85% 。在90年代和本世纪初,效率得到进一步发展,可以接近 90% 。但是多级离心压缩机工业正在逼近由 90%~92% 的理论多变效率决定的效率极限。因此,想要设计出效率高于 92% 的多级工艺离心压缩机几乎是不可能的。显然,牛顿定律和热力学定律就决定了压缩机不可能达到100%的效率。此外,还有一些基本损失(即二次流、边界效应、泄漏、气流角度偏差、轴承磨擦等)在基本级中是不可避免的。这些基本损失会将多级离心压缩机的效率限制在90%~92%。 http://www.fajiaoguan.cn/file/upload/201203/15/20-34-19-19-1.jpg   对比最初的几十年发展阶段,最近十几年来效率的提高幅度相对较小,显然这是由于效率已经被提高至趋于极限,即使大量的投入也很难取得显著提高。未来的提高方向可以有下列几种:( a )考虑从前被认为是次要的、忽略的性能影响因素,如泄漏通道;( b )开发更先进的空气动力学零部件;( c )融合轴流和离心技术。通过这些方法可能获得更高的级或整机效率,但是可能要牺牲一些流量范围。虽然现在所谓的理论效率极限也有可能被打破,不过可以预见,在未来十年的发展中,效率的提高不会像从前有 5% 或 10% 的提高,而只能是 0.1% , 0.5% 或 1% 逐渐地提高了。核心提示:1 空气动力学  在离心压缩机中的主要空气动力学部件有进口涡室、进口导叶、叶轮、扩1 空气动力学  在离心压缩机中的主要空气动力学部件有进口涡室、进口导叶、叶轮、扩压器、弯道、回流器、出口涡室和旁流(或级间抽、加气)部件等。所有这些部件均伴随着制造和分析方法的提高而得到了优化。下面按照它们对性能影响的重要性的顺序,从高到低地对这些部件进行详细探讨。1.1  叶轮  离心压缩机获得较高的性能需要优秀的空气动力学设计,而离心式叶轮是其中最为重要的部件。由于被压缩气体所得到的全部能量均是由叶轮传递而来的,所以如果没有很好设计的叶轮,离心压缩机整机性能或每个压缩级是无法取得较高效率的。在过去几十年内,效率的提高,大多通过制造和设计手段的改进来不断完善叶轮型线而取得的。  早期的叶轮是通过焊接、钎焊,铆接或铸造所制造的。每种制造方法都会限制叶轮的几何形状,从而限制其性能的获得。在 20 世纪五六十年代,设备制造商开始制造焊接式叶轮。焊接叶轮主要有两种类型:两件焊和三件焊。在两件焊的结构中,叶轮的叶片是被三轴铣制在轮盖(或轴盘)上,再以角焊缝型式与轴盘(或轮盖)焊接为一体;由于是三轴铣制,叶片型线实际上是二维的,即由圆形、椭圆或其它二维几何形状组成。这样的结构严重限制了空气动力学的设计,但是这就是当时三轴铣制所能够取得的。此外,为了进行角焊缝焊接,流道必须有足够的宽度来使焊具进入(通常 15.25mm 或更大)。因此,窄流道的小流量系数的叶轮是无法用焊接来制造,而只有通过贯穿叶片的铆接或铸造来实现,见图2。http://www.fajiaoguan.cn/file/upload/201203/15/20-35-10-14-1.jpg 当叶轮的流量系数较大时(φ

  • HZD-B-5一体化振动变送器

    HZD-B-5一体化振动变送器是一种固定安装的在线振动测量装置,主要用于对振动速度值的测量。其输出形式为4mA~20mA标准电流,与振动值的大小成正比。可直接输入到PLC/DCS中,从而组成一个能对诸如离心泵、往复式压缩机、离心机、冷却塔、工业风机、电动机及燃气轮机等设备进行监测和保护的系统。本装置采用了传感器与仪器本体一体化的设计。HZD-B-5一体化振动变送器适用场合能对诸如离心泵、往复式压缩机、离心机、冷却塔、工业风机、电动机及燃气轮机等设备进行监测和保护。二.HZD-B-5一体化振动变送器技术参数量 程振动幅度:*0~200um;0~500um;0~1000um振动烈度:0~10.0mm/s;*0~20.0mm/s;0~50.0mm/s1、 频率响应:5 ~ 500 Hz2、 自振频率:10Hz3 、输出电流:4~20mA4 、输出阻抗:≤500Ω5 、工作电压:DC24V6 、HZD-B-5一体化振动变送器连线方式:二线制(DC24V电源与4~20mA共用2根线)或三线制(地、电源、输出)7 、最大加速度:10g8 、测量方向:垂直或水平9 、使用环境:温 度 -40℃~85℃ 相对湿度 ≤90%10、 外形尺寸:φ45×80(mm)11 、重 量: 约450g12 、安装螺纹:M16×1.5三.HZD-B-5一体化振动变送器安装1 安装位置:垂直或者水平安装于被测振动点上,以变送器底部M16×1.5×20螺纹固定。四.HZD-B-5一体化振动变送器选型指南(1) HZD-B-5-W-A□量程范围:A□:1-0~200um;2-0~500um;3-0~1000um (振动幅度)(2) HZD-B-5-L-A□量程范围: A□:1-0~10.0mm/s;2-0~20.0mm/s;3-0~50.0mm/s

  • 热机械疲劳试验机

    热机械疲劳(TMF)系统热机械疲劳是工业机械和结构中暴露在随时间变化的温度条件和机械载荷下的部件失效的主要原因。TMF会影响一系列的部件,包括飞机和船舶发动机、用于发电的燃气轮机和用于天然气和石油管道的压缩机的部件或火车车轮和制动器。热机械疲劳试验系统能够复制这些部件的真实服役条件,并模拟同时出现的热应变和机械应变的复杂影响。TMF测试比等温疲劳LCF测试更复杂,因为温度波动,通常有更高的加热速率,以及从总测量应变中提取热和机械应变成分。TMF试验大多在高温或真空条件下进行,采用相内、相外或机械和热循环相结合的方式。ASTM E2368-04和ISO 12111标准以及EUR22281规范规定了应变控制热机械疲劳试验的标准做法。[img]https://ng1.17img.cn/bbsfiles/images/2023/02/202302040606429197_4718_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/02/202302040606433070_5719_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/02/202302040606432743_7388_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/02/202302040606432802_5619_1602049_3.png[/img]

  • 润滑油成分分析

    [font=&][size=16px][color=#333333]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-37745.html[/url]服务背景[/color][/size][/font][font=&][color=#333333][/color][/font][font=Verdana, Arial, Tahoma][color=#333333] 润滑油是设备的血液,在摩擦部件中起着降低摩擦、减轻磨损的重要作用,同时,润滑油还能润滑机械设备运动部件、清除污染物、密封防漏等,对机械平稳正常工作形成保护,机械设备的“健康状况”和“使用寿命”等重要信息都可以从在用润滑油的质量、润滑油状态分析中获得。在投入使用前,需要对润滑油进行专业的项目检测,并生成专业的检测报告,下面为大家介绍一下润滑油检测的相关知识[/color][/font][font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font]润滑油成分分析报告 1.制定机构:中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会,标准编号:GB11120-201,标准名称:涡轮机油,实施日期:2012.6.01,内容简介:该标准规定了在电站涡轮机润滑和控制系统,包括蒸汽轮机、水轮机、燃气轮机和具有公共润滑系统的燃气/蒸汽联合循环涡轮机中使用的涡轮机油的技术指标也适用于其他工业或船舶用途的涡轮机驱动装置的润滑 2.指定机构:国家技术监督局,标准编号:GB12691-1990,标准名称:空气压缩机油,实施日期:1991.11.01,内容简介:系统使用的涡轮机油。 3.制定结构:国家技术监督局,标准编号:GB13895-1992,标准名称:重负荷车辆齿轮油GL-5(适用于下高速冲击负荷,高速低扭矩和低速高扭矩干那个况下使用的车辆齿轮),实施日期:1993.11.1,内容简介:该标准规定了一精致矿物油,合成有或一者混合油为基础油、加入多种添加剂配制而成的重负荷车辆齿轮油的技术条件。

  • 润滑油成分分析

    [sub]点击链接查看更多:[url=https://www.woyaoce.cn/service/info-37745.html]https://www.woyaoce.cn/service/info-37745.html?[/url][font=&][size=16px][color=#333333]服务背景[/color][/size][/font][font=&][color=#333333][/color][/font][font=Verdana, Arial, Tahoma][color=#333333] 润滑油是设备的血液,在摩擦部件中起着降低摩擦、减轻磨损的重要作用,同时,润滑油还能润滑机械设备运动部件、清除污染物、密封防漏等,对机械平稳正常工作形成保护,机械设备的“健康状况”和“使用寿命”等重要信息都可以从在用润滑油的质量、润滑油状态分析中获得。在投入使用前,需要对润滑油进行专业的项目检测,并生成专业的检测报告,下面为大家介绍一下润滑油检测的相关知识[/color][/font][font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font]润滑油成分分析报告 1.制定机构:中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会,标准编号:GB11120-201,标准名称:涡轮机油,实施日期:2012.6.01,内容简介:该标准规定了在电站涡轮机润滑和控制系统,包括蒸汽轮机、水轮机、燃气轮机和具有公共润滑系统的燃气/蒸汽联合循环涡轮机中使用的涡轮机油的技术指标也适用于其他工业或船舶用途的涡轮机驱动装置的润滑 2.指定机构:国家技术监督局,标准编号:GB12691-1990,标准名称:空气压缩机油,实施日期:1991.11.01,内容简介:系统使用的涡轮机油。 3.制定结构:国家技术监督局,标准编号:GB13895-1992,标准名称:重负荷车辆齿轮油GL-5(适用于下高速冲击负荷,高速低扭矩和低速高扭矩干那个况下使用的车辆齿轮),实施日期:1993.11.1,内容简介:该标准规定了一精致矿物油,合成有或一者混合油为基础油、加入多种添加剂配制而成的重负荷车辆齿轮油的技术条件。[/sub]

  • 【求助】各位大侠,小弟求助!!!

    求助:ASTM D910 航空汽油技术规范ASTM D975 柴油技术规范ASTM D1152 甲醇ASTM D1835 液化石油气ASTM D1836 商品已烷ASTM D2880 燃气轮机用燃料油ASTM D3734 高闪点芳烃石脑油ASTM D3735 VM—P石脑油ASTM D4150气体燃料及相关术语ASTM D4175 石油、石油产品和润滑剂的相关术语ASTM D2668 红外吸收法测定绝缘油中叔丁基对甲酚和叔丁基对苯酚的实验方法ASTM D5445 商品储运图示标志的标准规定ASTM D5797 汽车火花塞点火发动机用燃料乙醇ED70-ED85的标准规范ASTM D6985用于军用船舶的中间馏分燃油规范ASTM D1718 乙酸异丁酯ASTM D1719 异丁醇ASTM D3131 乙酸异丙脂ASTM D4814 汽车火花点燃发动机燃料技术规范感谢万分

  • 【求助】(剩余1)真诚求助译文两篇

    【序号】: 1【作者】: 掘部羊春(日本)王一陆(翻译)【题名】:平衡降流型凝汽器【期刊】:汽轮机凝汽器文集(哈尔滨电站设备成套设计研究所)【年、卷、期、起止页码】: 1987,112~117【序号】: 2【作者】: 杨琴科,B M 阿勃拉莫夫(俄罗斯)沈杏初,张卓澄(翻译)【题名】: 汽轮机凝汽器的水模型研究【期刊】:机械译丛【年、卷、期、起止页码】: 1964,147~156

  • 【转帖】中华人民共和国国家标准批准发布公告 2009年第5号

    中华人民共和国国家标准批准发布公告 Announcement of Newly Approved National Standards of P.R.China 2009年第5号(总第145号) 序号 标准号 标准名称 代替标准号 批准日期 修订日期 实施日期 1 GB 437-2009 硫酸铜(农用) GB 437-1993 1964-12-11 2009-04-27 2009-11-01 2 GB/T 1531-2009 铜及铜合金毛细管 GB/T 1531-1994 1979-04-20 2009-04-15 2010-02-01 3 GB/T 2085.3-2009 铝粉 第3部分:粉碎铝粉 2009-04-15 2010-02-01 4 GB/T 2481.2-2009 固结磨具用磨料 粒度组成的检测和标记 第2部分:微粉 GB/T 2481.2-1998 1981-02-17 2009-04-23 2009-12-01 5 GB/T 3228-2009 螺栓螺母用装配工具 冲击式机动四方传动套筒的尺寸 GB/T 3228-2000 1982-10-22 2009-04-13 2010-01-01 6 GB/T 4666-2009 纺织品 织物长度和幅宽的测定 GB/T 4666-1995,GB/T 4667-1995 1984-09-07 2009-04-21 2009-12-01 7 GB 4839-2009 农药中文通用名称 GB 4839-1998 1984-12-27 2009-04-27 2009-11-01 8 GB/T 5324-2009 精梳涤棉混纺本色纱线 GB/T 5324-1997 1985-08-28 2009-04-21 2009-12-01 9 GB/T 5325-2009 精梳涤棉混纺本色布 GB/T 5325-1997 1985-08-28 2009-04-21 2009-12-01 10 GB/T 5326-2009 精梳涤棉混纺印染布 GB/T 5326-1997 1985-08-28 2009-04-21 2009-12-01 11 GB/T 6102.2-2009 原棉回潮率试验方法 电测器法 GB/T 6102.2-1985 1985-06-12 2009-04-23 2009-09-01 12 GB/T 6409.2-2009 超硬磨料制品 金刚石或立方氮化硼磨具 形状和尺寸 GB/T 6409.2-1996 1986-05-20 2009-04-23 2009-12-01 13 GB/T 6609.2-2009 氧化铝化学分析方法和物理性能测定方法 第2部分:300℃和1000℃质量损失的测定 GB/T 6609.1-2004,GB/T 6609.2-2004 1986-07-24 2009-04-15 2010-02-01 14 GB/T 6609.27-2009 氧化铝化学分析方法和物理性能测定方法 第27部分:粒度分析 筛分法 GB/T 6609.27-2004 2004-02-05 2009-04-15 2010-02-01 15 GB/T 6609.30-2009 氧化铝化学分析方法和物理性能测定方法 第30部分:X射线荧光光谱法测定微量元素含量 2009-04-15 2010-02-01 16 GB/T 6609.31-2009 氧化铝化学分析方法和物理性能测定方法 第31部分:流动角的测定 2009-04-15 2010-02-01 17 GB/T 6609.32-2009 氧化铝化学分析方法和物理性能测定方法 第32部分:a-三氧化二铝含量的测定 X-射线衍射法 2009-04-15 2010-02-01 18 GB/T 6609.33-2009 氧化铝化学分析方法和物理性能测定方法 第33部分:磨损指数的测定 2009-04-15 2010-02-01 19 GB/T 6609.34-2009 氧化铝化学分析方法和物理性能测定方法 第34部分:三氧化二铝含量的计算方法 2009-04-15 2010-02-01 20 GB/T 6609.35-2009 氧化铝化学分析方法和物理性能测定方法 第35部分:比表面积的测定 氮吸附法 2009-04-15 2010-02-01 21 GB/T 6609.36-2009 氧化铝化学分析方法和物理性能测定方法 第36部分:流动时间的测定 2009-04-15 2010-02-01 22 GB/T 6609.37-2009 氧化铝化学分析方法和物理性能测定方法 第37部分:粒度小于20μm颗粒含量的测定 2009-04-15 2010-02-01 23 GB 7411-2009 棉花种子产地检疫规程 GB 7411-1987 1987-03-14 2009-04-27 2009-10-01 24 GB 7413-2009 甘薯种苗产地检疫规程 GB 7413-1987 1987-03-14 2009-04-27 2009-10-01 25 GB/T 7920.17-2009 钢筋加工机械 术语 GB/T 7920.17-1987 1987-06-12 2009-04-13 2010-01-01 26 GB 8370-2009 苹果苗木产地检疫规程 GB 8370-1987 1987-12-09 2009-04-27 2009-10-01 27 GB 8371-2009 水稻种子产地检疫规程 GB 8371-1987 1987-12-09 2009-04-27 2009-10-01 28 GB/T 8491-2009 高硅耐蚀铸铁件 GB/T 8491-1987 1987-12-28 2009-04-01 2009-12-01 29 GB/T 8878-2009 棉针织内衣 GB/T 8878-2002 1988-03-01 2009-04-21 2009-12-01 30 GB/T 9437-2009 耐热铸铁件 GB/T 9437-1988 1988-06-25 2009-04-01 2009-12-01 31 GB 10457-2009 食品用塑料自粘保鲜膜 GB 10457-1989 1989-03-22 2009-04-27 2009-12-01 32 GB/T 10489-2009 轻型燃气轮机 通用技术要求 GB/T 10489-1989 1989-03-22 2009-04-13 2010-01-01 33 GB/T 11066.10-2009 金化学分析方法 硅量的测定 钼蓝分光光度法 2009-04-15 2010-02-01 34 GB/T 11066.6-2009 金化学分析方法 镁、镍、锰和钯量的测定 火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法 2009-04-15 2010-02-01 35 GB/T 11066.7-2009 金化学分析方法 银、铜、铁、铅、锑、铋、钯、镁、锡、镍、锰和铬量的测定 火花原子发射光谱法 2009-04-15 2010-02-01 36 GB/T 11066.8-2009 金化学分析方法 银、铜、铁、铅、锑、铋、钯、镁、镍、锰和铬量的测定 乙酸乙酯萃取-电感耦合等离子体原子发射光谱法 2009-04-15 2010-02-01 37 GB/T 11066.9-2009 金化学分析方法 砷和锡量的测定 氢化物发生-原子荧光光谱法 2009-04-15 2010-02-01 38 GB/T 12144-2009 氧化铽 GB/T 12144-2000 1989-12-29 2009-04-23 2010-02-01 39 GB/T 13560-2009 烧结钕铁硼永磁材料 GB/T 13560-2000 1992-07-09 2009-04-23 2010-02-01 40 GB 13650-2009 杀螟硫磷乳油 GB 13650-1992 1992-09-01 2009-04-27 2009-11-01 41 GB/T 13748.20-2009 镁及镁合金化学分析方法 第20部分:ICP-AES测定元素含量 2009-04-15 2010-02-01 42 GB/T 13748.21-2009 镁及镁合金化学分析方法 第21部分:光电直读原子发射光谱分析方法测定元素含量 2009-04-15 2010-02-01 43 GB/T 13818-2009 压铸锌合金 GB/T 13818-1992 1992-11-05 2009-04-01 2009-12-01 44 GB/T 13821-2009 锌合金压铸件 GB/T 13821-1992 1992-11-05 2009-04-01 2009-12-01 45 GB/T 13832-2009 安哥拉兔(长毛兔)兔毛 GB/T 13832-1992 1992-11-24 2009-04-23 2009-09-01 46 GB/T 13835.1-2009 兔毛纤维试验方法 第1部分:取样 GB/T 13835.1-1992 1992-11-24 2009-04-23 2009-09-01 47 GB/T 13835.2-2009 兔毛纤维试验方法 第2部分:平均长度和短毛率 手排法 GB/T 13835.2-1992 1992-11-24 2009-04-23 2009-09-01 48 GB/T 13835.3-2009 兔毛纤维试验方法 第3部分:含杂率、粗毛率和松毛率 GB/T 13835.3-1992 1992-11-24 2009-04-23 2009-09-01 49 GB/T 13835.4-2009 兔毛纤维试验方法 第4部分:回潮率 烘箱法 GB/T 13835.4-1992 1992-11-24 2009-04-23 2009-09-01 50 GB/T 13835.5-2009 兔毛纤维试验方法 第5部分:单纤维断裂强度和断裂伸长率 GB/T 13835.5-1992 1992-11-24 2009-04-23 2009-09-01 51 GB/T 13835.6-2009 兔毛纤维试验方法 第6部分:直径 投影显微镜法 GB/T 13835.6-1992 1992-11-24 2009-04-23 2009-09-01 52 GB/T 13835.7-2009 兔毛纤维试验方法 第7部分:白度 GB/T 13835.7-1992 1992-11-24 2009-04-23 2009-09-01 53 GB/T 13835.8-2009 兔毛纤维试验方法 第8部分:乙醚萃取物含量 GB/T 13835.8-1992 1992-11-24 2009-04-23 2009-09-01 54 GB/T 13835.9-2009 兔毛纤维试验方法 第9部分:卷曲性能 GB/T 13835.9-1992 1992-11-24 2009-04-23 2009-09-01 55 GB/T 13981-2009 小型风力机设计通用要求 GB/T 13981-1992 1992-12-17 2009-04-13 2010-01-01 56 GB/T 14099.3-2009 燃气轮机 采购 第3部分:设计要求 2009-04-13 2010-01-01 57 GB/T 14099.8-2009 燃气轮机 采购 第8部分:检查、试验、安装和调试 2009-04-13 2010-01-01 58 GB/T 14100-2009 燃气轮机 验收试验 GB/T 10490-1989,GB/T 14100-1993 1993-01-13 2009-04-13 2010-01-01 59 GB/T 15033-2009 生咖啡 嗅觉和肉眼检验以及杂质和缺陷的测定 GB/T 15033-1994 1994-04-12 2009-04-03 2009-09-01 60 GB/T 15114-2009 铝合金压铸件 GB/T 15114-1994 1994-07-20 2009-04-01 2009-12-01

  • 近三年来发布的有关声学与振动国家标准

    标准号标准名称代替标准号实施日期声学 GB/T 25078.1-2010 声学 低噪声机器和设备设计实施建议 第1部分:规划 2011-04-01 GB/T 25078.2-2010 声学 低噪声机器和设备设计实施建议 第2部分:低噪声设计的物理基础 2011-04-01 GB/T 10491-2010 航空派生型燃气轮机成套设备噪声值及测量方法 GB/T 10491-1989 2011-03-01 GB/T 25371-2010 铸造机械 噪声声压级测量方法 2011-03-01 GB/Z 25425-2010 风力发电机组 公称视在声功率级和音值 2011-01-01 GB/T 25516-2010 声学 管道消声器和风道末端单元的实验室测量方法 插入损失、气流噪声和全压损失 2011-05-01 GB/T 25612-2010 土方机械 声功率级的测定 定置试验条件GB/T16710.2-1996 2011-03-01 GB/T 25613-2010 土方机械 司机位置发射声压级的测定 定置试验条件GB/T 16710.3 -1996 2011-03-01 GB/T 25614-2010土方机械 声功率级的测定 动态试验条件GB/T 16710.4 -1996 2011-03-01 GB/T 25615 -2010土方机械 司机位置发射声压级的测定 动态试验条件GB/T 16710.5 -1996 2011-03-01 GB 16710-2010土方机械 噪声限值 GB 16710.1 -1996 2012-01-01 GB/T 25982-2010客车车内噪声限值及测量方法 2011-05-01 GB/T 3449-2011声学 轨道车辆内部噪声测量 GB/T 3449-1994 2012-05-01 GB/T 5111-2011声学 轨道机车车辆发射噪声测量 GB/T 5111-1995 2012-05-01 GB/T 7584.3-2011声学 护听器 第3部分:使用专用声学测试装置测量耳罩式护听器的插入损失 2012-05-01 GB/T 14369-2011声学 水声材料样品插入损失、回声降低和吸声系数的测量方法 GB/T 14369-1993 2012-05-01 GB/T 27763-2011声学 评价工作间声学性能的空间声场分布曲线的测量方法及参量表述 2012-05-01 GB/Z 27764-2011声学 阻抗管中传声损失的测量 传递矩阵法 2012

  • 近红外的模型转移

    我们知道在近红外的实际应用中,在某一近红外仪(称源机)上建立的校正模型,即便在另外一台与源机相同功能的近红外仪(称为目标机)上使用时,因各仪器测量的光谱有差异,模型不再适用,计算结果偏差很大或根本无法使用,解决这类问题的过程称为模型转移,也称为仪器标准化。众所周知建立近红外校正模型时往往需要测量大量样品的化学值或基础性质作为数据基础,投入大、成本高,因此使用模型转移技术实现模型共享和有效利用非常必要。模型转移可克服样品在不同仪器上的量测信号(或光谱) 间的不一致性,通过信号处理以消除仪器对量测信号的影响 ,不仅使已有模型具有较好的动态适应性,而且可以减少因重复建模造成的人力、物力、财力以及时间的浪费。大家在模型转移过程中遇到过什么问题,或有什么好的经验及建议,欢迎一起讨论。下面的四篇英文文献都是近红外模型转移的一些介绍

  • 【分享】医学中的数学模型

    [size=3][font=宋体]一、医学数学化的发展历史[/font][/size][size=3][font=宋体] [/font][/size][size=3][font=宋体]数学应用于生命科学研究的历史可追溯到17 世纪。1615 年英国医生哈维(Farvey W)在研究心脏时应用流体力学知识和逻辑推理方法推断出血流循环系统的存在,18世纪欧拉利用积分方法计算了血流量问题,这些都是历史上应用数学研究生命科学的突出事例。但是,真正大范围地将数学应用于生命科学与医学研究则出现在20世纪中叶。1935年,Mottram对小白鼠皮肤癌的生长规律进行了研究,认为肿瘤细胞总数N随时间的变化速度与N成正比,并获得了瘤体在较短时间内符合指数生长规律的研究成果。1944 年奥地利著名物理学家薛定谔(Schrodinger E)出版了《生命是什么》(What is life)一书,应用量子力学和统计力学知识描述了生命物质的重要特征。在薛定谔的影响下,沃森(Watson JD)和克里克(Crick FHC)利用当时对蛋白质和核酸所做的射线结晶学研究以及其他与DNA结构有关的研究,于1953年建立了DNA超螺旋结构分子模型,验证了薛定谔的设想。在书中,薛定谔还利用非平衡热力学从宏观的角度解释生命现象,认为生命的基本特征是从环境中取得“负熵”,以使生物系统内的熵始终处于低水平。20多年后,普律高津(Prigogine I)等人提出耗散结构理论,将对生命系统的研究推广到薛定谔预言的领域,为此普律高津于1977年荣获了诺贝尔奖。作为医学领域的最高奖项,诺贝尔医学和生理学奖背后的许多数学影像也许更能说明数学在生命科学中的巨大潜力:英国生理学家、生物物理学家Hodgkin和Huxley建立了神经细胞膜产生动作电位时膜电位变化的模型,揭示了神经电生理的内在机制,因而于1963年共享诺贝尔奖;基于二维雷当变换(Radon transform)创建CT成像理论的美国科学家Cormack AM获得了1979年的诺贝尔奖,丹麦科学家Jerne NK则应用数学原理研究免疫网络理论获得1984年的诺贝尔奖。这些奖项有力地表明现代生命科学的研究离不开数学,数学在其中所起的作用和影响越来越重大,高层次的成果往往有赖于合理的数学模型的建立。[/font][/size][size=3][font=宋体] [/font][/size][size=3][font=宋体]数学不仅推动了人们探索生命世界的步伐,事实上两者结合已经产生了多个十分活跃的学科。1901年Peanson 创建生物统计学后,概率论与数理统计方法在医学上得到了非常广泛的应用,如目前常用的显著性检验、回归分析、方差分析、最大似然模型、决策树概率分布、微生物检测等,都属于基于统计学原理的数学模型及分析。1931年,Volterra在研究食物链的基础上,应用微分方程组研究生物动态平衡,完成了《生态竞争的数学原理》,开创了生物数学(biomathematics)这一新的分支。近年来,可视人及虚拟人的研究、计算医学(computational medicine/biology)、生物信息学(bioinformatics)、生理组学(Physiome)等新的学科及领域的出现,使数学这一工具在生物医学研究中的作用日益突出。[/font][/size][size=3][font=宋体] [/font][/size][size=3][font=宋体]生物系统是一个动态系统,作为世界上最复杂的系统之一,它具有调节机制复杂、多输入、多输出等特点,而且由于很多变量或参数很难在体测量及控制,仅仅通过实验研究来揭示其间的复杂关系,会非常困难且不易得到一致的结论。建立生物系统的数学模型,有利于获得生物系统的动态与定量变化,帮助阐明生物医学中有关作用机制等基础性问题,同时通过模型及仿真实验不仅可以得到正常状态,还可以获得异常或极端异常状态下的生理变化预测,以及代替一些技术复杂、代价高昂或难以控制和重现的实验,为临床或特定条件下的方案设计提供预测及指导。此外,从伦理学的角度,人们也希望医学研究中能够减少实验动物的数量,减轻临床试验中人体试验对象不必要的痛苦,因此生理系统的仿真与建模在生物医学领域中的研究中日益受到重视。目前,包括呼吸、血压、体温、各种调节系统等,都已建立了相应的数学模型,并进行了相应的模拟实验。针对特定应用的模型,如细胞动力学、药物动力学模型、生物种群生长模型、神经网络、心血管模型、临床计量诊断模型等,也不断呈现并得到应用。在本节下面的内容中,我们将以应用最为成功的模型之一,药物动力学模型为例,说明医用数学模型的建立过程。[/font][/size][size=3][font=宋体] [/font][/size][size=3][font=宋体]二、医用数学模型实例:药物动力学模型[/font][/size][size=3][font=宋体] [/font][/size][size=3][font=宋体]药物动力学(pharmacokinetics)是定量研究药物在生物体内吸收、分布、排泄和代谢等过程的动态变化规律的一门学科。于1937年由Teorell开创,主要内容是应用动力学原理、体外实验数据以及人体生理学知识,结合数学模型,定量研究药物在体内的运转规律,为药物的筛选提供指导。[/font][/size][size=3][font=宋体] [/font][/size][size=3][font=宋体]众所周知,新药研发过程费用昂贵、时间冗长、淘汰率高,大约有90%的候选药物在临床期间被淘汰,主要原因有口服吸收性差、生物利用度低、半衰期过短等等。为提高新药研究效率和安全性、降低药物研发成本,药物动力学模型已为全球各大制药公司应用。传统的新药研发流程中,药物动力学的应用主要在药物研发的中后期,近年来,人们开始在药物研发的早期对其药物动力学特性进行模拟研究,以尽早淘汰药物动力学参数不理想的候选药物,提高研发效率、降低成本。比如药物虚拟筛选(virtual screening)就是指在化合物合成前,先通过计算机模拟预测其药动学相关特性,进行初步筛选。此外,药物动力学模型在研究药物处置及作用机制、治疗药物监测及个体化用药、新药开发等方面也发挥着重要作用。[/font][/size][size=3][font=宋体] [/font][/size][size=3][font=宋体]药物动力学的数学模型包括房室模型、非线性药物动力学模型、生理药物动力学模型、药理药物动力学模型、统计矩模型等。下面以最常用的房室模型,结合前面所述的建模步骤,对药物动力学模型的建模过程进行分析描述。[/font][/size][size=3][font=宋体] [/font][/size][size=3][font=宋体](一)背景和问题表述[/font][/size][size=3][font=宋体] [/font][/size][size=3][font=宋体]药物进入机体后,在随血液输送到各个器官和组织的过程中,不断地被吸收、分布、代谢,最终被排出体外。药物在血液中的浓度,即单位体积血液中药物的含量,称为血药浓度。血药浓度的大小直接影响到药物的疗效。因此,药物动力学研究的主要对象是血药浓度随时间变化的规律——药时曲线,建模目的是建立能反映药物在体内分布的数学模型及参数,并能反映给药方式、给药时间间隔、给药剂量等对分布的影响。[/font][/size][size=3][font=宋体] [/font][/size][size=3][font=宋体](二)模型构建[/font][/size][size=3][font=宋体] [/font][/size][size=3][font=宋体]上述问题属于人体与外界以及人体内部的物质交换问题,研究这类问题最常用的是房室模型。药物动力学的房室分析方法将人的机体看做由不同房室构成的系统,每个房室代表药物在其中分布大致均匀的组织或体腔。如血液及供血丰富的肝、心、肾在特定情况下可视为一个房室,而血供不足的组织如肌肉、皮肤等可视为另一个房室。为了进行严格数学描述,常对模型做如下假设:①房室具有固定容量,且药物在每个房室内的分布是均匀的;②各房室间可进行物质交换,且至少有一个房室可与外环境进行交换;③房室间的物质交换或药物转移服从质量守恒定律,即系统中物质总量的改变等于输入总量与输出总量之差;④线性假设:药物的转移速率与药物浓度成正比。[/font][/size]

  • 卷积神经网络模型发展及应用

    卷积神经网络模型发展及应用

    [b]卷积神经网络模型发展及应用转载地址:[/b]http://fcst.ceaj.org/CN/abstract/abstract2521.shtml [img]https://oss-emcsprod-public.modb.pro/image/editor/20220802-9243a15c-bcd6-4a63-921e-932f257a1e05.png[/img][img=,690,212]https://ng1.17img.cn/bbsfiles/images/2022/08/202208021122351500_3641_5785239_3.png!w690x212.jpg[/img]深度学习是机器学习和人工智能研究的最新趋势,作为一个十余年来快速发展的崭新领域,越来越受到研究者的关注。卷积神经网络(CNN)模型是深度学习模型中最重要的一种经典结构,其性能在近年来深度学习任务上逐步提高。由于可以自动学习样本数据的特征表示,卷积神经网络已经广泛应用于图像分类、目标检测、语义分割以及自然语言处理等领域。[b]首先分析了典型卷积神经网络模型为提高其性能增加网络深度以及宽度的模型结构,分析了采用注意力机制进一步提升模型性能的网络结构,然后归纳分析了目前的特殊模型结构,最后总结并讨论了卷积神经网络在相关领域的应用,并对未来的研究方向进行展望。[/b]卷积神经网络(convolutional neural network,CNN) 在计算机视觉[1- 5]、自然语言处理[6- 7]等领域已被广泛 应用。在卷积神经网络兴起之前,主要依靠人工针对特定的问题设计算法,比如采用 Sobel、LoG(Laplacian of Gaussian)、Canny、Prewitt 等[8- 11]算子进行边 缘 检 测 ,采 用 Harris、DoG(difference of Gaussian)、FAST(features from accelerated segment test)、SIFT (scale invariant feature transform)等[12-15]用于角点等特 征检测,并且采用传统分类器如 K近域、支持向量机、 稀疏分类器等[16- 18]进行分类。特征提取和分类器的 设计是图片分类等任务的关键,对分类结果的好坏 有着最为直接的影响。卷积神经网络可以自动地从 训练样本中学习特征并且分类,解决了人工特征设计 的局限性。神经网络的思想起源于1943年McCulloch 和 Pitts 提出的神经元模型[19],简称 MCP 神经元模 型。它是利用计算机来模拟人的神经元反应的过 程,具有开创性意义。此模型将神经元反应简化为 三个过程:输入信号线性加权、求和、非线性激活。1958 年到 1969 年为神经网络模型发展的第一阶段, 称为第一代神经网络模型。在 1958 年 Rosenblatt 第 一次在 MCP 模型上增加学习功能并应用于机器学 习,发明了感知器算法[20],该算法使用 MCP 模型能够 采用梯度下降法从训练样本中自动学习并更新权 值,并能对输入的多维数据进行二分类,其理论与实 践的效果引起了神经网络研究的第一次浪潮。1969 年美国数学家及人工智能先驱 Minsky在其著作中证 明感知器本质上是一种线性模型[21],只能处理线性分 类问题,最简单的异或问题都无法正确分类,因此神 经网络的研究也陷入了近二十年的停滞。1986 年到 1988 年是神经网络模型发展的第二阶段,称为第二 代神经网络模型。1986 年 Rumelhart 等人提出了误 差反向传播算法(back propagation algorithm,BP)[22]。BP 算法采用 Sigmoid 进行非线性映射,有效解决了 非线性分类和学习的问题,掀起了神经网络第二次 研究高潮。BP 网络是迄今为止最常用的神经网络, 目前大多神经网络模型都是采用 BP网络或者其变化 形式。早期神经网络缺少严格数学理论的支撑,并 且在此后的近十年时间,由于其容易过拟合以及训 练速度慢,并且在 1991 年反向传播算法被指出在后 向传播的过程中存在梯度消失的问题[23],神经网络再 次慢慢淡出人们的视线。1998 年 LeCun 发明了 LeNet-5,并在 Mnist 数据 集达到 98%以上的识别准确率,形成影响深远的卷积 神经网络结构,但此时神经网络的发展正处于下坡 时期,没有引起足够的重视。从感知机提出到 2006 年以前,此阶段称为浅层 学习,2006 年至今是神经网络的第三阶段,称为深度 学习。深度学习分为快速发展期(2006—2012 年)和 爆发期(2012 年至今),2006 年 Hinton 提出无监督的 “逐层初始化”策略以降低训练难度,并提出具有多 隐层的深度信念网络(deep belief network,DBN)[24], 从此拉开了深度学习大幕。随着深度学习理论的研究和发展,研究人员提 出了一系列卷积神经网络模型。为了比较不同模型 的质量,收集并整理了文献中模型在分类任务上的 识别率,如图 1所示。由于部分模型并未在 ImageNet 数据集测试识别率,给出了其在 Cifar-100 或 Mnist数 据集上的识别率。其中,Top-1识别率指的是 CNN 模型预测出最大概率的分类为正确类别的概率。Top-5 识别率指的是 CNN 模型预测出最大概率的前 5 个分 类里有正确类别的概率。2012 年,由 Alex Krizhevshy 提出的 AlexNet给卷 积神经网络迎来了历史性的突破。AlexNet 在百万 量级的 ImageNet数据集上对于图像分类的精度大幅 度超过传统方法,一举摘下了视觉领域竞赛 ILSVRC2012的桂冠。自 AlexNet之后,研究者从卷积神经网 络的结构出发进行创新,主要有简单的堆叠结构模 型,比如 ZFNet、VGGNet、MSRNet。堆叠结构模型通 过改进卷积神经的基本单元并将其堆叠以增加网络 的深度提升模型性能,但仅在深度这单一维度提升 模 型 性 能 具 有 瓶 颈 ;后 来 在 NIN(network in network)模型提出使用多个分支进行计算的网中网结 构模型,使宽度和深度都可增加,具有代表性的模型 有 Inception 系列模型等;随着模型深度以及宽度的 增加,网络模型出现参数量过多、过拟合以及难以训 练等诸多问题。ResNet 提出残差结构后,为更深层 网络构建提出解决方案,随即涌现出很多残差结构模 型,比如基于 ResNet 改进后的 ResNeXt、DenseNet、 PolyNet、WideResNet,并且 Inception也引入残差结构 形成了 Inception-ResNet-block,以及基于残差结构并 改进其特征通道数量增加方式的 DPResNet;与之前 在空间维度上提升模型性能的方法相比,注意力机 制模型通过通道注意力和空间注意力机制可以根据 特征通道重要程度进一步提升模型性能,典型的模 型为 SENet、SKNet 以及 CBAM(convolutional block attention module)。传统的卷积神经网络模型性能十分优秀,已经 应用到各个领域,具有举足轻重的地位。由于卷积 神经网络的模型十分丰富,有些模型的结构或用途 比较特殊,在本文中统称为特殊模型,包括具有简单的结构和很少参数量的挤压网络模型 SqueezeNet,采 用无监督学习的生成对抗网络模型(generative adversarial network,GAN),其具有完全相同的两路网络 结构以及权值的孪生神经网络模型 SiameseNet,以 及通过线性运算生成其他冗余特征图的幽灵网络 GhostNet。由于卷积神经网络的一系列突破性研究成果, 并根据不同的任务需求不断改进,使其在目标检测、 语义分割、自然语言处理等不同的任务中均获得了 成功的应用。[b]基于以上认识,本文首先概括性地介绍了卷积 神经网络的发展历史,然后分析了典型的卷积神经 网络模型通过堆叠结构、网中网结构、残差结构以及 注意力机制提升模型性能的方法,并进一步介绍了 特殊的卷积神经网络模型及其结构,最后讨论了卷 积神经网络在目标检测、语义分割以及自然语言处 理领域的典型应用,并对当前深度卷积神经网络存 在的问题以及未来发展方向进行探讨。[img=,690,387]https://ng1.17img.cn/bbsfiles/images/2022/08/202208021123119824_325_5785239_3.png!w690x387.jpg[/img][/b][img]https://oss-emcsprod-public.modb.pro/image/editor/20220802-51d3c121-d787-4a08-a7a4-a7f9ecb3a33d.png[/img][b]转载文章,如有侵权,请联系我删除[/b]

  • 模型更新与维护

    [font=宋体][font=宋体]在模型的应用过程中,原料种植环境和工艺条件等的改变或调整都会导致模型不再适用,这时就需要进行模型的更新和维护。模型的更新过程需要收集多个有代表性的新样本,然后,按照常规建模流程添加到原模型校正集中,重新建立模型。如果进行了模型更新则需要重新进行验证过程。对模型更新验证集的要求与新建模型时相同,原有的验证集样本可以用于新模型的验证,但是,必须补充代表新范围或新类型的样本。读者可参考分子光谱多元校正定量分析通则[/font] [font=Times New Roman](GB/T[/font][/font][font='Times New Roman'] 29858[/font][font=宋体][font=Times New Roman]-[/font][/font][font='Times New Roman']2013[/font][font=宋体][font=Times New Roman])[/font][font=宋体]。[/font][/font]

  • 模型相关系数

    前几天看到坛里的一则帖子:《从一次曲线看二次曲线》,很简单地表达了自己的看法:相关系数与拟合模型无关。我自己也编写过原子吸收软件,很清楚相关系数是怎样算出来的。根据《数学手册》上的定义,相关系数只与自因变量的统计特性有关,而与所用的拟合模型是没有关系的。不过帖主“冰山”同学很快就贴出某软件的截图反驳了我的观点,贴图上很清楚显示不同的拟合模型有着不同的“相关系数”。这是什么回事呢?要搞清楚这个问题,需要搞清楚一个概念,即何为相关系数?其实相关系数是表示两个变量的相关程度的,一个模型中的自因变量如果存在单调性,如变量A增加则变量B增加(或者减小),以及相反,变量A减小则变量B减小(或增加),我们说两个A与B变量之间存在很强 的相关性。那么相关性的大小有如何计算呢?人们用的是线性相关系数R,它是一个衡量自因变量之间线性关系的一个指标。如果线性相关系数等于1或者-1,说明因变量可以用自变量的一次方程完美表达。因此,线性相关系数和所选择的拟合方程式确实是没有关系的,因为它只对线性方程有意义。那么如何比较两条工作曲线的优劣了。通常,人们会用剩余误差来说明工作曲线的质量。所谓剩余误差,指的是对所有实验样本的因变量与模型估计值之差的平方求和,不过这个数值有些主观,因为它与因变量的取值范围有关。例如,显然,一个取值在1000附近的变量显然比在0.1 附近取之的变量有大得多的误差,因此更“客观的”指标是所谓的“相对剩余误差”,即总剩余误差除以变量变异数(所有实验样本的变量与其算术平均值之差的平方求和)所得之结果。很显然,这个“相对剩余误差”(Qse)越小,拟合质量越好,它与所选择的拟合方程模型是相关的。对于线性拟合模型,Qse^2和R^2之和恰好等于1,所以在线性拟合模型中,常用线性相关系数的平方来说明拟合质量,因为这个值越大(越接近1),拟合质量越好,这很符合人们的思维习惯。对于非线性拟合方程,所谓的相关系数已经不适用了,于是,人们用1减去Qse^2杜撰出一个“相关系数”,更确切地说,这个系数实际上是“模型相关系数”。个人认为,分析软件中的相关系数,还是用“模型相关系数”更加合适。

  • 聚烯烃油粘度指数分析

    内燃机油质量落后。国外2一4个档次在我国基础油结构中,Hvl以上产品仅占63%左右,MHI产品占25%以上,这样的结构不利于油品升级换代的要求。从石蜡基基础油质量上分析,有些企业还存在1SOSN蒸发损失不合格,500SN氧化安定性合格率较低等问题。目前,我国还不能生产按照美国API分类标准第三类(l组)很高粘度指数的基础油硫含量0.03m%,饱和烃含量90m%,粘度指数VI大于120的基础油,还缺少聚烯烃油。  我国的成品润滑油中中高档的比例虽然已超过50%,而国外发达国家生产的润滑油中高档油几乎是100%。内燃机油是润滑油的主要产品,1997年全国内燃机油占成品总量的36.6%,与国外先进水平相比,我国内燃机油质量水平约落后2一4个档次。例如,我国虽然已研制出SF级汽油机油,但实际的使用多数在SD级以下,而美国1995年SH级汽油机油占8S%,1998年使用sJ级汽油机油;我国柴油机油虽已经研制出cD级,但实际的使用多数在CC级以下,而美国大部分已经使用CF一4级,正在研制PC一7级,日本和欧洲与美国几乎同步发展。  我国内燃机油中多级油的比例由1996年的9.1%上升到1999年的19.1%,而国外多级油比例要占50%一70%。部分燃料油质量不能满足用户要求目前,部分企业生产的燃料油在金属含量、清洁度及相容性等还不能满足电力行业用于燃气轮机和锅炉的限制要求;国产250号燃料油在日用玻璃行业尤其是中高档玻璃制造的使用中被认为粘度偏大,杂质高,水分大。

  • 关于ARIMA模型

    ARIMA模型一般是利用预测变量的过去值、当前值和误差值进行预测。那么如何利用含有自变量的ARIMA模型进行预测?模型阶数的确定方法还是一样的么?模型的参数怎么确定呢?有什么软件可以实现还是继续用eviews?希望高手帮助解答,谢谢。

  • 用于激光颗粒测试技术的非球形颗粒的椭圆衍射模型

    用于激光颗粒测试技术的非球形颗粒的椭圆衍射模型

    用于激光颗粒测试技术的非球形颗粒的椭圆衍射模型任中京 王少清( 山东建材学院科研处 济南250022)提要:激光颗粒大小测试的结果与颗粒形状密切相关。通过对椭圆衍射谱的研究, 提出在激光粒度分析中以椭圆谱代替球形颗粒谱。计算机模拟计算与对金刚砂实测的结果表明椭圆衍射模型可以有效地抑制粒度反演结果的展宽, 更准确地获得非球形颗粒群的粒度分布。关键词 激光衍射, 椭圆模型, 颗粒大小分析, 颗粒形状, 反演1 引言  由于颗粒大小对粉末材料的重要影响, 颗粒粒度测试在建材、化工、石油等许多领域已经成为一种不可缺少的检测技术。由于颗粒形状的多样性, 无论何种测量方法, 均需要颗粒模型。通常假定颗粒为球体, 与被测颗粒等体积的球体直径称为粒径, 或称等效粒径 。然而球体模型在激光衍射(散射) 粒度分析技术中却遇到严重困难—对非球形颗粒测试常常产生较大误差, 表现为所测得的粒度分布较真实分布有展宽且偏小。来自日本和美国的颗粒测试报告也有相同的倾向 。从光学原理上看,激光粒度分析技术是通过检测颗粒群的衍射谱来反演颗粒群的尺寸分布的。非球形颗粒的衍射谱与球体有很大不同: 前者是非圆对称的, 而后者是圆对称的。欲使二者具有可比性需要新的物理模型, 新的模型应满足: 1) 更加逼近真实颗粒;2)对一系列颗粒有普遍的适用性;3)可给出衍射谱解析式;4)在激光测粒技术中能校正颗粒形状引起的测量误差;5)能函盖球体模型。本文将证明椭圆衍射模型是满足以上条件的最佳选择。2 非球形颗粒衍射模型的椭圆屏逼近颗粒虽然是三维物体, 但是在激光测粒技术中其横截面是使光波发生衍射的主要几何因素, 因此只需研究与入射光垂直的颗粒横截面。球体衍射模型即是取颗粒的体积等效球的投影圆作为该颗粒的衍射模型。如图1 所示, 将形状任意颗粒的横截面视为一衍射屏。可分别做出其轮廓的最大内接圆和最小外接圆。设外圆直径为2b, 内圆直径为2a。分别以2a, 2b 为长短轴做椭圆。下面将证明该椭圆屏即为与图1 所示的颗粒横截面等效的非圆屏的最佳解析逼近。2. 1非圆屏与椭圆屏的几何关系由图1 可见,与非球颗粒相对应的椭圆屏的面积S e 恰好为其横截面外接圆与内接圆面积的几何中值,而与该椭圆屏面积相等的圆( 面积等效圆) 的直径Do 恰好为其长短轴2a 与2b 的几何中值。http://ng1.17img.cn/bbsfiles/images/2013/05/201305281105_441929_388_3.jpg此颗粒对球体的偏离可用形状系数K 表示, K 定义为:K=b/a[fon

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制