当前位置: 仪器信息网 > 行业主题 > >

纳米保鲜膜

仪器信息网纳米保鲜膜专题为您整合纳米保鲜膜相关的最新文章,在纳米保鲜膜专题,您不仅可以免费浏览纳米保鲜膜的资讯, 同时您还可以浏览纳米保鲜膜的相关资料、解决方案,参与社区纳米保鲜膜话题讨论。

纳米保鲜膜相关的资讯

  • 保鲜膜国家标准二度延期
    海鲜鱼肉存放冰箱、微波炉里热菜热饭,几乎家家户户都会用到保鲜膜。对保鲜膜的质量安全,消费者自然是十分关心。10月16日,记者获悉,原定于今年9月1日正式实施国家强制性标准《食品用塑料自粘保鲜膜》,再次延期实施。记者在采访中了解到,广大市民期盼保鲜膜标准尽早出台,让食品真正实现安全、健康。  新规出台 遭遇两次延期  据了解,《食品用塑料自粘保鲜膜》强制性国家标准于2009年4月17日发布。标准中明确规定:保鲜膜应标识产品的材质或种类、氧气透过率、二氧化碳透过率、透湿量及净卷重的公称值 保鲜膜应标有食品用字样 对于聚氯乙烯自粘保鲜膜(PVC)应标有“不能接触带油脂食品”、“不得微波炉加热”、“不得高温使用”等使用警示语 如保鲜膜标称可微波炉加热使用时,应标志“可微波炉使用”字样及加热方式、最高耐温温度等内容。  质检部门介绍,该标准最早定于去年12月1日正式实施。为给予一定缓冲期,国家标准委将实施日期延期至2010年9月1日。如今第二次延期,因为行业部门表示现在还需要做相关的风险评估,企业没有相关的检测手段和设备,没法提供数据,造成标准无法执行。延期的信息近期将发布公告。  记者在采访中了解到,目前市场上出售的保鲜膜可分为三类。一种是聚乙烯(PE)膜,主要用于食品包装,包括在超市采购的半成品。第二种是聚氯乙烯(PVC)膜,也可用于食品包装,但对人体的安全性有一定影响。第三种是聚偏二氯乙烯(PVDC)保鲜膜,用于包装熟食、火腿等。  走访市场 三无膜仍在卖  10月16日,记者在大学路北京华联超市发现,该超市有10多种不同品牌的保鲜膜、保鲜袋,价格从几元到几十元不等,都标明了“食品用”,材质主要是聚乙烯(PE)膜,此外还有少量二氯乙烯(PVDC)保鲜膜。记者在朝阳路的一家超市发现,该超市的食品用保鲜膜多为PE材料。在走访南宁市多家超市、商场后,记者并未发现遭受使用安全争议的PVC材质的保鲜膜、袋。其中,90%的食品用保鲜膜、袋都为PE材质,或是HDPE(高密度聚乙烯)、LDPE(低密度聚乙烯)材质。大部分PE材质的食品用保鲜膜、袋都有“适用于冰箱或微波炉”、“加热时避免直接接触食物”、“含油多食物请勿直接包裹放入微波炉”等标识。  虽然各大商场超市对于销售中的食品用保鲜膜已经进行了明确标识,但是在部分熟食和水果销售摊位,用于包装遮挡食品的保鲜膜仍然来历可疑。甚至有的包装用保鲜膜属于三无产品。  在长堽路一家综合市场,记者看到市场内的切片装水果和熟肉制品都是用保鲜膜直接包裹包装的。在这些保鲜膜上,记者没有看到任何关于材质和用途的相关标识。大卷的保鲜膜直接卷在机器的卷轴上,只要有顾客需要,服务员就会麻利地撕下一块保鲜膜,直接覆盖在食品上。刚刚出炉的烤鸡烤鸭也是如此。当记者询问保鲜膜是否符合食品安全规定时,服务员表示自己也不清楚。“现在市场上挺多商贩都用这种保鲜膜。150元钱就能买一大卷,应该没有什么危害。”服务员表示。  如何选购 市民有点“懵”  “一直以为保鲜膜都差不多,很少注意到还有包生食熟食、油脂非油脂之分,也不知道国家出台了新规定,以后得留个心眼了。”17日,正在超市选购保鲜膜的张女士说。  对于新标中保鲜膜的种种区分,记者随机问询了几位市民,得到的答复也多是“不清楚”。记者从超市一位女导购员口中了解到,很多市民选购保鲜膜时,还是按照购买普通食品的习惯,看日期、价格或是QS标志等。而对于外包装上标注的诸如“不能与高油性食品直接接触”等警示性文字大多没有在意。  记者就食品用保鲜膜的使用安全问题采访了20名市民,9成市民都表示没有专门关注保鲜膜的安全问题及其用途的细分,选购时多注重保鲜膜的规格和价格。南宁市民樊女士告诉记者,买保鲜膜主要是看大小,另外就是看它是否实惠实用,“能摆在超市里出售,就不会有安全问题吧?”  对于《标准》中所规定的内容,樊女士表示有困惑:“氧气透过率、二氧化碳透过率……这些东西太专业。希望保鲜膜标准早日出台,市民今后才能参考保鲜膜上特别标注的警示语,根据用途来判定购买什么品种的保鲜膜,让食品真正实现安全、健康。”  面对林林总总的保鲜膜品种,专家建议,消费者尽量选择耐高温的PE保鲜膜而不是PVC保鲜膜。并尽量避免食品与保鲜膜直接接触。同时,用微波炉加热食品时,尽量采用专门的微波炉加热器皿,避免用保鲜膜直接包裹食品加热。
  • 多品牌保鲜膜含禁用塑化剂
    专家呼吁尽快出台PVC膜国标 最好使用PE膜  7月28日央视《每周质量报告》曝光称,国家禁用的有毒塑化剂有可能藏身保鲜膜之中,流向百姓餐桌。国际食品包装协会也于7月28日发布报告,在被调查的16种PVC保鲜膜样品中,有15种样品检出国家明令禁止使用的增塑剂DEHA。在加热食品时,这种物质会加速释放,影响内分泌系统。对此,专家呼吁尽快出台PVC保鲜膜国家标准,并提醒消费者,最好选购使用PE保鲜膜。  保鲜膜含塑化剂遇油溶解  北京市民毕女士最近经常从超市购买肉类熟食,这些熟食在超市里都会用保鲜膜包裹。细心的毕女士发现,一些熟食放了几天后,保鲜膜上出现了一层油乎乎的东西。毕女士用的是聚氯乙烯保鲜膜,也被称为PVC保鲜膜。专家透露,由于生产工艺需要,PVC保鲜膜在制作过程中,会加入大量增塑剂,即塑化剂。塑化剂遇油溶解,毕女士发现的不明油脂状物质很有可能就是保鲜膜中所含的塑化剂。  在随机调查北京十家大中型商超后发现,半数超市都存在使用PVC保鲜膜直接包裹生肉和熟食的情况,营业员们大多认为只要不包裹热的熟食就可以使用PVC保鲜膜。  目前食品保鲜膜按照材质分为聚乙烯(PE保鲜膜)、聚氯乙烯(PVC保鲜膜)、聚偏二氯乙烯(PVDC保鲜膜)。其中,PVC和PE保鲜膜是使用最为普遍的两类。PE保鲜膜主要是在各类超市销售,而PVC保鲜膜则主要是在超市的生鲜、散装食品区做食品包装,此外各类宾馆饭店等集团客户采购使用较多。在各类保鲜膜中,PVC由于价格便宜、透明度高、黏性好,所占市场份额最大,达到六七成。  16个品牌15个含禁用塑化剂  国家质检总局早在8年前就特别强调:禁止企业用塑化剂DEHA生产食品用保鲜膜。市场上销售使用的PVC保鲜膜到底用的是什么样的塑化剂?北京凯发环保技术咨询中心分别从北京、上海、广州三地购买了市场上销售的所有品牌的PVC保鲜膜,共16个品牌,送往国家权威检测机构,检测结果令人震惊&mdash &mdash 16种样品中,有15个样品中检出禁用的增塑剂DEHA,行业最大的几家企业的产品几乎全部落马,其中最低超过检出线98倍,最高超过检出线472倍,平均超出检出线200多倍。  有研究表明,允许添加的塑化剂一般在常温环境下相对稳定,但DEHA可在常温下从保鲜膜中释放并渗入到食物中,尤其是在包装脂肪含量较高的食物(如奶酪和肉类)时更易释放。在加热食品时,保鲜膜中的DEHA还会加速释放。国际肿瘤研究中心将DEHA划分为三类致癌物,对人体的危害性不容忽视。食品安全专家董金狮称,塑化剂导致内分泌系统紊乱,主要的现象是雌性激素分泌增加,导致女性性早熟、男性不育症,特别对婴幼儿的生殖器发育有很大影响。  DEHA充当DOA成行业潜规则  央视记者长达数月调查后发现,PVC保鲜膜生产行业笼罩着多层迷雾,迷雾的背后则是一个涉及保鲜膜行业和其上游化工产业的谎言。  根据国家质检总局发布的公告,PVC保鲜膜在生产过程中允许加入的塑化剂是DOA。但由于两种原料之间价格相差巨大,不少增塑剂生产企业将禁止使用的增塑剂DEHA产品,贴上了允许使用的增塑剂DOA的包装,冒充合格原料提供给保鲜膜生产企业。而保鲜膜生产企业出于降低成本、提高利润的考虑,睁一只眼闭一只眼,不做深究。  鉴别PVC保鲜膜和PE保鲜膜  1.看颜色。整卷颜色泛黄的为PVC材质,白色的为PE材质。  2.手揉搓。PE保鲜膜一般黏性较差,用手揉搓后容易打开,而PVC保鲜膜则黏性较好,用手揉搓不易展开。  3.烧一下。PE保鲜膜用火点燃后,迅速燃烧,离开火源也不会熄灭 而PVC保鲜膜不易点燃,离开火源后会熄灭,且有刺鼻异味。  专家呼吁:尽快出台国标  调查组发现,PVC保鲜膜上所标示的执行标准五花八门,有轻工标准、欧盟标准,还有查不到的标准,有的甚至没有标注执行标准。作为一种重要的食品包装材料,PVC保鲜膜一直没有国家标准,企业可以自行选择标准,从而避开针对国家禁用塑化剂的检测以及国家标准可能会对使用范围所做的限制。  专家呼吁,有关部门应尽快实施保鲜膜国家标准,同时加大对保鲜膜的塑化剂检测,强化对商场超市使用保鲜膜情况的检查。专家也提醒消费者,最好选购使用PE保鲜膜。如果用PVC保鲜膜,则最好不要直接用于包装肉食、熟食以及含油脂的食品,也不宜直接用微波炉加热。
  • 部分保鲜膜塑化剂超标76倍
    切开的西瓜、分好的熟食通常都会包上一层保鲜膜,这平时不起眼的保鲜膜,质量如何呢?国际食品包装协会六七月间对欧尚超市金四季店、锦绣大地农副产品批发市场等大型超市和批发市场销售和使用的保鲜膜进行了深入调查,结果发现有3种保鲜膜中的塑化剂DEHP用量超标,有的超标达76倍。  在此次取样检测的7个PVC保鲜膜样品中,检测出DEHP的企业有“北京伟益高分子化学有限公司”生产的常青树保鲜膜,DEHP检出量超标76倍 “理研食品包装(江苏)有限公司”生产的保鲜膜,DEHP检出量超标31倍 “林帕克包装(常州)有限公司”生产的“林帕克”保鲜膜,DEHP检出量超标近6倍。  据了解,目前市场上常用的保鲜膜有两种,一种叫PE保鲜膜,另一种叫PVC保鲜膜。相比较而言,PVC保鲜膜更透明,粘性更强。在生产过程中,PVC保鲜膜中会添加增塑剂,也叫塑化剂。塑化剂很容易迁移到油性食物中,2005年,国家质检总局就已明确禁止企业用PVC食品保鲜膜直接包装肉食、熟食及油脂食品。  不过,调查发现,超市在使用保鲜膜时,果蔬区的保鲜膜大部分是PVC材质,而熟食、鲜肉区使用的保鲜膜PE、PVC两种材质均有,而且超市工作人员并不知道PVC保鲜膜的明确使用范围。  为何PVC保鲜膜如此受青睐?国际食品包装协会常务副会长董金狮说,PVC的透明度比PE好,包装后不容易结雾 其次,由于PVC中含有塑化剂,包装的粘度强于PE 最重要的是PVC的成本更低廉。  如何识别和选购保鲜膜?专家教了记者一招:看保鲜膜的包装上有没有产品说明,有没有“QS”标志、编号和生产厂家详细地址 如果写着聚氯乙烯(PVC)或者是没有写材质的话,尽量不要选购 查看保鲜膜整卷的颜色,泛黄色的为聚氯乙烯(PVC)材质,白色的为聚乙烯(PE)材质 超市销售的保鲜膜一般是PE保鲜膜,而批发市场销售的保鲜膜则大多数为PVC保鲜膜。
  • 塑化剂超标保鲜膜网上仍卖 最高超标76倍
    前段时间,台湾“致命添加剂”塑化剂引起的饮料安全事件使得人心惶惶。塑化剂过量并不仅仅存在食品中,人们常见的食品保鲜膜也是残留的源头。近日,国际食品包装协会抽查了市面上常见的7个品牌PVC保鲜膜,发现有5个品牌存在塑化剂超标或违规添加的情况。而南方日报记者调查发现,这些被曝光的品牌保鲜膜尽管在超市难觅踪迹,但在网上以及一些批发市场仍有销售。  抽检  塑化剂最高超标76倍  据了解,目前市面上常有的保鲜膜主要有PE、PVC两种,其中PVC保鲜膜因有塑化剂,被国家《产业结构调整指导目录(2011年本)》列为限制类别,且规定“不能直接包装肉食、熟食及油脂食品”。  但检测发现,有4种保鲜膜样品含有DEHA。总计起来,因塑化剂不符合规范的保鲜膜有5个品牌。  调查报告显示,在此次取样检测的7个PVC保鲜膜样品中,“常×树保鲜膜”DEHP检出量为116mg/kg,超标76倍,“理×保鲜膜”DEHP检出量49.1mg/kg,超标31倍,“林×克保鲜膜”DEHP检出量为10.3mg/kg,超标近6倍。  调查还发现,PVC保鲜膜标志不规范,没有明确标示“不能直接包装肉食、熟食及油脂食品”,只有一种明示“禁止用于微波炉”、“产品不含DEHA”,大部分PVC保鲜膜没有明确保质期,有的甚至没有生产日期和材质。  调查  购物网站依然大卖  南方日报记者走访广州市内万×、百×等多家超市,货架上零售的家庭用保鲜膜均为独立包装,未见有pvc保鲜膜的踪迹,且包装盒上都有标明pe材质以及执行的产品标准。然而在购物网站搜索,PVC保鲜膜仍然在许多网店大卖,包括被抽检塑化剂超标的几个品牌都仍然有售,每家网店一个星期下来已有数笔交易,而且都是整箱购买,不分开零售。  在这些PVC包装膜的产品介绍上,不但没有说明不能包装熟食,还宣称“环保无公害,透明度好,适合保鲜各种食品”。这些分布于广州、深圳、东莞等地的网店,其实体店地址大多在当地的日用品、一次性餐具批发市场,店主坦言,这些保鲜膜主要是配送到全国各地的超市、商场等。  国际食品包装协会秘书长董金狮分析认为,超市零售的保鲜膜一般是聚乙烯(PE)保鲜膜,独立包装 而批发市场销售的保鲜膜则大多数为聚氯乙烯(PVC)保鲜膜。这是因为PVC保鲜膜成本更低、透明性能更好,粘贴性也更强,便于大量手工操作。而记者走访时也发现,从手感和外观上均难以区分超市上包装熟食的保鲜膜为何种材质。  小知识  如何识别和选购  1.看保鲜膜的包装上有没有产品说明,有没有“QS”标志、编号和生产厂家详细地址,如果上面标注着PE保鲜膜或者聚乙烯保鲜膜,就可以放心使用 如果写着聚氯乙烯(PVC)或者是没有写材质的话,那就尽量不要选购   2.查看保鲜膜整卷的颜色,泛黄色的为聚氯乙烯(PVC)材质,白色的为聚乙烯(PE)材质   3.聚乙烯(PE)保鲜膜一般黏性和透明度较差,用手揉搓以后容易打开,而聚氯乙烯(PVC)保鲜膜则透明度和黏性较好,用手揉搓以后不易展开   4.PE保鲜膜用火点燃后,火焰呈黄色,迅速燃烧,离开火源也不会熄灭,有滴油现象,有蜡烛燃烧的味道,而聚氯乙烯保鲜膜不易点燃,火焰根部有淡淡的绿色且冒黑烟,离开火源后会熄灭,而且有强烈刺鼻的异味。
  • 保鲜膜新国标12月起实施
    保鲜膜能否用于微波炉加热,是否能接触带油脂食品,消费者今后选购时可以一目了然了。来自国家标准委消息,《食品用塑料自粘保鲜膜》新国标将于12月1日起实施。  据悉,该保鲜膜新国标由国家质检总局发布,将替代1989年施行至今的《聚乙烯自粘保鲜膜》标准。新国标将食品用保鲜膜分为聚乙烯(PE)膜、聚氯乙烯(PVC)膜、聚偏二氯乙烯(PVDC)膜等几类,并规定保鲜膜应标明净卷重公称值和“食品用”字样。  新国标还要求,PVC保鲜膜应标有“不能接触带油脂食品”、“不得微波炉加热”、“不得高温使用”等警示性语言等。其他类别的保鲜膜,如可用于微波炉加热,应注明“可微波炉使用”、加热方式及最高耐温温度。  PVC保鲜膜曾传出致癌传闻。专家对此解释说,PVC本身没有毒害。在常态下,PVC不会对人体造成危害。但PVC保鲜膜在微波炉加热后或包装过热及油性大的食品,会析出有害物质氯化氢,会对人体造成伤害。
  • 保鲜膜国家标准9月1日实施
    《食品用塑料自粘保鲜膜》国标下月实施,哪种保鲜膜能用于微波炉加热,哪种能接触带油脂食品,消费者今后选购时都能一目了然。  该标准今年9月1日施行。标准将食品用保鲜膜分为聚乙烯 (PE)膜、聚氯乙烯(PVC)膜、聚偏二氯乙烯(PVDC)膜等三类。其中明确规定,可用于包装食品的保鲜膜必须标识“食品用”字样 PVC保鲜膜应标有“不能接触带油脂食品”、“不得微波炉加热”等警示性语 而可用于微波炉加热的保鲜膜,应注明“可微波炉使用”、加热方式及最高耐温温度等。  记者昨走访见到,在一些大型卖场里,部分品牌保鲜膜已更换了新包装,标明了相关提示字样。
  • 警惕“毒”品 湿巾保鲜膜吸管都含毒
    消毒湿巾本身就是细菌源、PVC保鲜膜含有增塑剂,一次性发泡餐盒沾油加热就有毒、五颜六色的吸管危害健康……   核心提示  户外净手常用湿巾,家庭加热、保存食物常用保鲜膜,上班族谁没有吃过盒饭?用五颜六色的吸管喝果汁、饮料、牛奶,更不用说了,那不仅是孩子们的最爱,小白领们也个个难逃……可是,看了记者调查的结果,你要当心了:也许这些东东,正在毒害着你的健康。  劣质湿巾无法“消毒”  春天来了,不少人开始外出旅游。很多人用湿巾擦手擦脸擦水果。殊不知,湿巾选不对路反而会误事。  “没想到在酒店用了一下湿巾,回到家中眼睛就有了问题。”近日,郑州的刘先生在一酒店用餐时,用了酒店提供的独立包装的湿巾擦了擦手和眼睛,可吃完饭没过多长时间,他感觉眼睛不但发痒还干涩。第二天一早,他发现自己不但变成了“兔眼”,而且疼痛难忍,无奈之下只好去医院检查,结果诊断为“红眼病”。  记者走访市场发现,在部分湿巾的外包装上,很难找到“卫生消准字、执行标准、生产单位厂址、批号”俱全的产品。  据了解,消毒湿巾的产品分两类:一类是产品自身经过消毒,但不具备消毒其他物品的功能 另一类湿巾不仅“自己”被消毒,对擦拭对象也有消毒功能,但对大部分细菌不具有杀灭作用,甚至有些湿纸巾本身就细菌超标。  “目前市场上的一些消毒湿巾存在两个问题,一是细菌超标,二是添加荧光增白剂、工业级香精等物质。”著名环保专家、国际食品包装协会秘书长董金狮教授说,优质湿巾会有一种柔和淡雅的香味,没有任何刺激性气味,多采用无纺布,质地洁白,没有任何杂质,劣质湿巾会有明显的杂质。在使用中,优质湿巾不会起毛,劣质湿巾则有明显起毛,有刺激性气味。  董金狮提醒人们,选购湿巾时,一定要看标志、生产企业名称、执行标准、生产日期、有效日期等,一个也不能少。  PVC保鲜膜、一次性发泡餐盒有毒  对于保鲜膜,大家并不陌生,很多家庭常用保鲜膜封住碗碟口放进冰箱,或者将保鲜膜包裹的食物放进微波炉加热。  3月12日中午,记者在丰乐路一水果摊前看到,摊主切开一个西瓜后,顺手拿起一个大卷的保鲜膜熟练地覆盖在西瓜的横切面上。“根据国标规定,保鲜膜一般有3种材质,即PE(聚乙烯)、PVC(聚氯乙烯)、PVDC(聚偏二氯乙烯)。”董金狮说,其中,PE和PVDC这两种材质的保鲜膜对人体安全,因为PVDC材质价格相对较贵,所以市场上的保鲜膜以PE材质为主。  “那种特别透亮的保鲜膜就是PVC保鲜膜,在加工生产过程中一般会添加35%左右的增塑剂。”董金狮说,PVC保鲜膜不能接触带油脂的食品,不能在微波炉中加热,不能在高温下使用,否则增塑剂就会溶解出来,进而影响婴儿发育,导致一些女孩的性早熟,或男性不育症。  对于PVC和PE保鲜膜用肉眼辨别不太容易,但也有方法。董金狮说,特别透亮的是PVC保鲜膜,不透亮的是PE保鲜膜 PVC保鲜膜韧性强,大幅度拉伸不易断,容易粘在手上,PE保鲜膜柔软,韧性较差 PVC保鲜膜燃烧时会冒浓烟,而且呛鼻子,PE保鲜膜燃烧状态跟蜡烛较像。  同样,很多人使用的一次性餐盒,也可能存在安全隐患。  记者在一家小吃店购买了一份卤面要求打包。老板拿出准备好的一次性塑料餐盒进行打包,记者观察发现,餐盒的盖子上印有“环保餐盒”字样,但没有国家规定的QS标志。  “一次性发泡塑料餐具的原材料是聚苯乙烯,含有苯乙烯单体、二聚体等低聚物,长期摄入会损伤生育功能,造成残疾。”董金狮说,一次性发泡餐具不适合盛装含油多的产品,也不适合在100摄氏度以上使用,更不适合在微波炉中加热。  董金狮说,有些一次性发泡塑料餐具企业为了欺骗消费者和执法人员,还在产品模具或包装上印制“降解餐盒”、“环保餐盒”等字样。要辨别是否为合格的一次性餐盒,先看有没有QS标志,之后要用手摸 如果是软绵绵的,轻撕就破裂,遇热变形还渗漏,一折会出白印的,就不是环保餐盒。  吸管越鲜艳危害越大  每到早晨的上班高峰期,都会看到匆匆忙忙的人们,手上拿着各式各样的早点,边走边吃,并用吸管喝着豆浆、牛奶。然而,这小小的塑料吸管可能存在着极大的危险。  记者在市内一批发市场(注:黄河小商品批发市场)的塑料制品摊位看到,一些吸管的透明包装袋上什么字都没有,既没有厂家,也没有生产日期 还有一包包彩色吸管,包装上也是没有任何图案和文字 除了一些三无吸管外,有少部分吸管的外包装上标有生产厂家,而且标明了QS标志。  随后,记者走访了几家大型超市,发现那里的吸管包装袋上详细标明了材质、保质期、生产商、联系电话、生产许可标志,还明确了耐热和耐冷温度。记者平均算了一下,每根将近1角钱,是批发市场价格的5倍。  “吸管的原料一般是高密度的PE(聚乙烯),而PE原料分为食品级和非食品级的,食品级的要比非食品级的贵。”董金狮说,“三无”塑料吸管的生产原料可能用的是工业级PE,或是废塑料等,容易产生低分子的有害物质,长期使用会影响人体肝脏,导致血液疾病或神经系统疾病。  “有些无良商家为了掩盖用废塑料制作的吸管的杂色,会给吸管染色。”董金狮说,染色的颜料里面通常含有铅、镉等重金属和苯胺类的有机染料,对肝脏、肾脏都可能造成伤害,遇热后会分解出来。因此,颜色越鲜艳,安全隐患越大。  如何挑选优质吸管呢?  董金狮说,首先是“看”,看生产包装袋上的信息,生产日期、保质期、生产许可和编号(QS标志) 再辨颜色,五颜六色的尽量别买,颜色深的要特别引起注意 最后要“闻”,在吸管未接触饮料前要闻一闻有无刺鼻的异味,如有异味,说明肯定是问题吸管。
  • 《食品用塑料自粘保鲜膜》标准实施
    保鲜膜是广州市民最常见的家中用品之一,但仍有许多消费者不知道保鲜膜不能加热、不宜包裹油脂类食品。不过,今后消费者购买保鲜膜将会“一目了然”,了解哪些保鲜膜可用来包装食品及包装注意事项。  由国家质检总局和国家标准化管理委员会发布的《食品用塑料自粘保鲜膜》将从12月起正式实施。新标准与原标准相比,增加了对原料的技术要求,对于使用的树脂要求必须为“食品级”原料。而且,可用于包装食品的保鲜膜将标识“食品用”字样,并将标示出“不能接触带油脂食品”、“不得微波炉加热”、“不得高温使用”等警示性语言。  据了解,聚氯乙烯(pvc)膜也是可用于食品包装的一种保鲜膜,但对人体的安全性有一定影响。而在新标准中,商家用pvc保鲜膜直接包装肉食、熟食及油脂食品的行为被明令禁止。
  • 质检总局:现有国标允许DEHA用于保鲜膜等制品
    国家质检总局对保鲜膜中含塑化剂到底合不合法作出回应,称现有国标允许DEHA用于保鲜膜等制品  7月28日,央视《每周质量报告》曝光称,在北京、上海和广州市场销售的16种PVC(聚氯乙烯)保鲜膜中,15种含有“禁用”塑化剂DEHA(己二酸二乙基己基酯),报道中援引国家质检总局2005年第155号公告中的要求,即“禁止DEHA用于保鲜膜等食品包装”。  该消息一经爆出,引发消费者的普遍担忧,同时也有众多媒体纷纷对PVC制品“开炮”。针对这一舆论热点,质检总局监督司有关负责人在接受记者采访时予以回应:根据现有国标GB9685-2008(简称新标准),DEHA为合法添加剂。  据介绍,质检总局2005年第155号公告发布于2005年10月25日,该公告根据GB9685-2003(简称旧标准)要求,允许DOA(己二酸二辛酯)使用量为35%,并且禁止DEHA用于保鲜膜等食品包装,依据的是旧标准对DEHA和DOA作为塑化剂的使用有不同要求。但新标准已替代旧标准,旧标准已经废止。在新标准中对DEHA和DOA用于PVC制品的要求已经发生变化,DEHA和DOA均被允许用于PVC制品的生产。  如此看来,部分机构仅以国家质检总局2005年第155号公告中的要求,向社会发布对PVC保鲜膜市场的质量安全状况,显然是混淆概念。国家食品安全风险评估中心风险交流部副研究院钟凯也认为,标准适用于所有食品包装材料,DEHA“禁用”根本站不住脚。  那么质检总局的第155号公告是否仍然有效呢?质检总局监督司的答复是:现行有效的PVC保鲜膜的相关标准为新标准《食品容器、包装材料用助剂卫生标准》,而且标准作为食品安全国家标准,具有强制性,因此2005年质检总局155号公告中涉及标准相关要求也将发生变化。目前,国家质检总局在食品容器及包装材料监管工作中,已要求各地严格依据新标准对添加剂的要求开展日常监管工作。  除此以外,消费者也普遍关注DEHA与DOA的危害性。据营养专家介绍,DEHA和DOA为同分异构体,DEHA不溶于水,可溶于有机溶剂,如酒精、油脂类,直接接触油脂类食品可造成其溶出,但渗透程度和接触时间及温度有关系,而DOA相对于DEHA更加稳定,所以只要使用时注意方法,PVC保鲜膜并不可怕。  记者查阅新标准了解到,该标准对DEHA和DOA用于PVC制品生产的使用量和迁移量的要求是相同的,即在保鲜膜等PVC制品的生产中,DEHA和DOA的最大使用量均为不超过35%。根据检测结果,所谓DEHA“超标”最严重的400多倍,含量23.6%,仍然低于标准规定的DEHA使用量(含量)35%,并未超标。  对于化工企业以DEHA代替DOA的情形如何认定的问题,质检总局监督司有关负责人表示,国家质检总局将依据新标准,允许生产企业将DEHA和DOA用于PVC保鲜膜的生产,但最大使用量和特定迁移量均应符合新标准的要求。
  • 塑料保鲜膜有必要使用摩擦系数仪测试湿态下的摩擦系数吗
    塑料保鲜膜是家庭和商业厨房中常用的食品包装材料,它的主要作用是保护食品免受污染,减少水分蒸发,并在一定程度上隔绝氧气,延长食品的保质期。摩擦系数是衡量材料表面滑爽性的一个重要参数,尤其在包装和运输过程中,它影响着材料的堆叠、展开和使用便利性。湿态下摩擦系数测试的必要性使用环境:在实际使用中,塑料保鲜膜可能会暴露在潮湿环境中,或者用于包裹含水食品,因此测试湿态下的摩擦系数可以更准确地模拟实际使用条件。产品性能:湿态下的摩擦系数可能会与干态时有所不同,这可能会影响保鲜膜的使用性能,如开合的便利性、包装的密封性等。质量控制:通过测试湿态下的摩擦系数,制造商可以对产品进行更全面的质量控制,确保其满足不同条件下的使用要求。安全标准:某些食品安全标准或包装材料标准可能要求测试材料在不同条件下的性能,包括湿态下的摩擦系数。消费者体验:湿态下的摩擦系数直接影响消费者在使用保鲜膜时的体验,如易拉性、易撕性和易铺展性。摩擦系数仪的选择和测试设备选择:选择能够进行湿态测试的摩擦系数仪,确保设备可以模拟潮湿环境并准确测量摩擦系数。测试条件:设定合适的测试条件,包括湿度、温度和测试速度,以确保测试结果的准确性和可重复性。样品准备:按照标准要求准备样品,确保样品的代表性和测试的有效性。数据记录:记录测试过程中的数据,包括摩擦系数、测试条件等。结果分析:对测试结果进行分析,评估塑料保鲜膜的湿态摩擦性能,并与干态性能进行比较。结论虽然塑料保鲜膜在干态下的摩擦系数测试是常规的质量控制步骤,但进行湿态下摩擦系数的测试同样重要。这不仅可以提供更全面的产品性能评估,还可以确保产品在实际使用中的性能满足消费者的期望和安全标准的要求。因此,使用摩擦系数仪测试塑料保鲜膜湿态下的摩擦系数是有必要的,它有助于提升产品质量和消费者满意度。
  • 保鲜膜、塑料等一次性餐饮具新国标今起实施
    PVC保鲜膜在微波炉加热后会析出有害物质氯化氢、汉堡的包装纸可能会析出油墨、一次性纸杯可能是来源不明的回收废纸生产出来的……随着近半年来一系列与食品包装安全密切相关标准的陆续实施,人们逐步认识到,食品“贴身衣物”安全的重要性丝毫不亚于食品本身的安全。从明天开始,保鲜膜、塑料一次性餐饮具的新国标开始实施,今后消费者选购保鲜膜等食品包装材料将更加一目了然。  纸杯过白、过软、图案模糊都是劣质表现  劣质纸杯用料 来源不明回收废纸  在此之前,国家质检总局还要求从9月1日起,所有食品纸用包装、容器等必须通过“QS”市场准入才能上市销售,这些食品“贴身衣物”包括:纸袋、纸杯、纸餐具,汉堡、三明治等熟食的包装纸,曲奇饼的烤盘纸,甚至小小袋泡茶的包装纸……  当中一次性纸杯的安全性至今没能引起消费者的足够重视,不少市民告诉记者:“有些纸杯一加水就软塌塌的,如果装热水还有股味,但也没有特别在意,叠起两个纸杯一起用就是了。”还有很多消费者认为印刷在纸杯表面的文字图案不会有害,但他们忽略了纸杯都是重叠包装的,纸杯的外层直接和另外一个纸杯的内层紧密接触,劣质油墨很可能就因此留在纸杯内侧,成为威胁人们健康的“隐形杀手”。  据悉,由于目前纸杯还没有统一的国家标准,纸杯质量参差不齐,有的使用来源不明的回收废纸生产,有的为了掩盖纸的颜色,人为加入具有致癌作用的荧光增白剂,特别是目前行业标准对油墨没有要求,企业为了省钱就会使用苯及重金属超标的劣质油墨进行印刷。对此专家提醒:一次性纸杯过白、过软、图案模糊都是劣质表现,选购有“QS”的纸杯也就显得更为重要。  “可降解”一次性餐具并不等于环保产品  能否降解不重要 关键要卫生无毒  同样是接触食品的包装容器,明起实施的还有《塑料一次性餐饮具通用技术要求》。新国标对塑料一次性餐饮具的耐热水性能、耐热油性能、漏水性能、负重性能以及微波炉耐温性能等都作了具体的规定。同时要求:一次性使用的餐盒、盘、碟、刀、叉、勺、筷子、碗、杯、罐、壶、吸管等一次性餐具,不能乱标“可降解”等字样,因为可降解餐具并不等于环保产品。  新国标最大的亮点是承认了不可降解塑料餐具的合法身份,因为现阶段一些企业过于追求餐具的可降解性,导致产品反而达不到卫生要求。可降解的餐具往往使用光敏剂,稳定性差的餐具就会产生对人体有害的酮类。此外,降解餐具的使用性能也差,容易吸水渗油,使用不方便。  PVC、PE等不同材质保鲜膜要清楚标明警示性语言  用PVC保鲜膜减肥 增塑剂会沁入皮肤  明起实施的《食品用塑料自粘保鲜膜》规定:可用于包装食品的保鲜膜将标志“食品用”字样 PVC保鲜膜仅适合用于包装生鲜食品,应标有“不能接触带油脂食品”、“不得微波炉加热”、“不得高温使用”等警示性语言 其他类别的保鲜膜,如可用于微波炉加热,应注明“可微波炉使用”、加热方式及最高耐热温度。  对此规定消费者很是欢迎,因为PVC、PE等材质不同的保鲜膜适用范围不同,有的只能用作冰箱保鲜纸,有的可以冰箱、微波炉两用,但普通消费者根本记不住区分要领。此次新国标给了消费者一个一目了然。  但记者昨天走访广州部分商场、超市看到,还有不少去年、年初生产的食品保鲜膜未按新规定标注,对此有关部门表示,对这些产品给予了一定的市场消化期,但明起生产的食品保鲜膜就必须严格遵照新国标。  采访中记者也看到,不少路边小店仍在使用不可加热或包裹油炸食品的塑料袋盛放滚烫的食物,但鲜有消费者提出抗议,目前监管部门也未介入。不仅如此,国际食品包装协会常务副会长兼秘书长董金狮近期还提醒消费者注意:有些美容院使用PVC保鲜膜包裹身体进行减肥也是很危险的,因为PVC保鲜膜含有大量增塑剂,而有些增塑剂通过皮肤进入人体会对健康有害,甚至影响内分泌。
  • 《食品用塑料自粘保鲜膜》强制性新标准九月实施
    用保鲜膜把食品一包,然后放进微波炉加热或冰箱冷藏,这样的生活习惯已很平常。可保鲜膜分为哪几种?是不是所有的保鲜膜都可以在微波炉内加热?这些问题你注意过吗?9月1日起,由国家质检总局和国家标准委联合发布的国家强制性新标准GB 10457-2009《食品用塑料自粘保鲜膜》将正式实施。专家提醒,保鲜膜种类不同适用范围也不同,认清“真面目”,才能正确使用,使厨房生活安全又健康。  新国标扩大了原材料范围,将食品用保鲜膜分为聚乙烯 (PE)膜、聚氯乙烯(PVC)膜、聚偏二氯乙烯(PVDC)膜等三类。其中,PE材质的保鲜膜主要用于食品包装,在超市采购的半成品都用的这种包装,它的防潮性、透气性好,适于包装短期存放的花生、饼干、新鲜果蔬、冷冻食品等,但其阻气性较差,不宜用来包装对阻气性特别是阻氧要求较高的油脂类等食品 PVC材质的保鲜膜只能有限使用,可以用来包装蔬菜等,但不能直接包装肉食、熟食及油脂食品,且不得微波加热、不得高温使用 PVDC膜则用于包装熟食、火腿等,它的成本高,因此市面上较少见。  依据新标准,保鲜膜应标识产品的材质或种类、氧气透过率、二氧化碳透过率、透湿量及净卷重的公称值 保鲜膜应标有食品用字样 对于聚氯乙烯自粘保鲜膜(PVC)应标有“不能接触带油脂食品”、“不得微波炉加热”、“不得高温使用”等使用警示语 如保鲜膜宣称可微波炉加热使用时,应标志“可微波炉使用”、加热方式及最高耐温温度等。  目前大连市几家大型超市销售的部分品牌保鲜膜已更换了新包装,旧包装产品正逐步退出市场。市质监局标准化信息中心专家告诉记者,消费者在购买保鲜膜时,只要掌握一定方法,还是可以辨别其种类的。肉眼看:PE材质的透明性较差,颜色发白,被覆盖的食物看上去模糊不清 PVC材质的光泽度好,看上去清晰透彻,对光照有点淡黄色。用手拉:PE材质的较为柔软,但韧性较差,拉伸后可断裂 PVC材质的韧性强,能够大幅度拉宽拉长却不会折断,而且容易粘在手上。用火烧:PE保鲜膜点燃后,火焰呈黄色,迅速燃烧,有蜡烛燃烧的味道 而PVC保鲜膜用火点燃后火焰呈黄绿色,没有滴油现象,离开火源后会熄灭,而且有强烈刺鼻的异味。用水浸:由于两者的密度不同,PE保鲜膜浸入水中后会浮上来,而PVC保鲜膜浸入水中会沉下去。
  • 食品用塑料自粘保鲜膜的标准发布
    2009年1月23日,中国国家标准化管理委员会(SAC)发布了食品用塑料自粘保鲜膜的标准。规定了食品用塑料自粘保鲜膜的定义和术语、产品分类、标识、要求、检验方法、检验规则及标志、包装、运输、贮存。本标准适用于以聚乙烯、聚氯乙烯、聚偏二氯乙烯等树脂为主要原料,通过单层挤出或多层共挤的工艺生产的食品用塑料自粘保鲜膜。
  • 食品用塑料保鲜膜国标将9月1日起实施
    《食品用塑料自粘保鲜膜》新国标将于今年9月1日起正式实施。新标准对各类保鲜膜的使用、材质、规格等方面进行了明确规定,这将使企业间的竞争更加激烈,产品质量好、品牌知名度高的企业赢得市场的机会将更大。
  • 《食品用塑料自粘保鲜膜》国家标准延期实施
    从国家标准化管理委员会了解到,原定于2009年12月实施的国家标准《食品用塑料自粘保鲜膜》(GB10457-2009)实施日期延期至2010年9月1日。
  • 火锅店菜品如何保鲜?菜品展示柜保鲜喷雾机
    火锅店菜品如何保鲜?菜品展示柜保鲜喷雾机【新闻导读】众所周知,大家吃火锅讲究的就食材新鲜程度,火锅的大部分食材都是半成品上桌,新不新鲜是可以一看就能看出来的,顾客对食材新鲜的程度尤为关注。火锅店应该建立严格而健全的存储保鲜措施,让顾客吃到新鲜、有口感的食品。  但是保鲜也要因菜而异,不是每种食材的保鲜条件都是一样的,储存需要将不同食材的储存条件弄清楚,这样才能妥善的储放。根茎蔬菜类、调理腌肉及内脏类、新鲜内脏类、熟卤内脏类、水发干货类、 干货类、复合肉品类。由于火锅店经营模式比较独特,菜品通常要摆放在冷藏展示柜里,接触空气时间较长,面积 也较大,所以如何保存菜品成为了让烹友们头痛的问题。  那么,火锅店菜品如何保鲜?常见的保鲜膜方法,只适合家用 保鲜库是大型批发市场采用的 而作为普通火锅店来说,每天会更新蔬菜,保鲜的周期一般在十几个小时内。为了在这十几小时内蔬菜不丢失水分,可采用市场上常见的保鲜喷雾机,补充店内空气湿度,以减少水分的流失。这种方法在我国西北部地区的火锅店比较常见,在干燥的季节里,我国东部地区也有一些对品质要求高的店铺在采用。  有很多火锅店引进正岛SJ系列菜品展示柜保鲜喷雾机及ZS系列菜品喷雾保鲜机在菜品展示台上雾气中浮现的蔬菜水果,看上去就像清晨刚从果园菜地里摘下来一样新鲜。其喷出的雾气,一来可以保持低温,二来能均匀保持水分,而且还令不少顾客好奇不已,经雾化的水汽可使空气保持一定的湿度和低温,使青菜水果常置于鲜嫩保质之中。  正岛SJ-J3000菜品展示柜保鲜喷雾机及SJC-J3000菜品喷雾保鲜机在机身设计上,采用了不锈钢机身,运行平稳,耐久性强 具有体积小、雾化效果好、雾量大小可调以及安装方便、操作简单等功能特点,非常适用于对新鲜蔬果进行喷雾加湿保鲜:  1、延长蔬果寿命、保持蔬果鲜嫩色泽、提高蔬果的视觉效果   2、保留蔬果原有口感,防止蔬果枯萎变黄、延长蔬菜新鲜度   3、避免蔬果水分和重量的流失,大大增加蔬果的保鲜期   4、吸引顾客购买欲、增加购买人气,增大商家销售利润   正岛SJ-J3000菜品展示柜保鲜喷雾机及SJC-J3000菜品喷雾保鲜机不仅可安装于风幕柜、冷柜、保鲜柜、展示柜,还可安装于蔬菜架、菜台上对新鲜蔬菜、水果进行喷雾加湿,从而达到非常好的保鲜保湿效果。欢迎您查询火锅店菜品如何保鲜?菜品展示柜保鲜喷雾机的详细信息!  正岛SJ-J3000菜品展示柜保鲜喷雾机及SJC-J3000菜品喷雾保鲜机技术参数:  正岛ZS-20菜品展示柜保鲜喷雾机及ZS系列菜品喷雾保鲜机控制方式,技术参数:  正岛SJ系列菜品展示柜保鲜喷雾机及ZS系列菜品喷雾保鲜机常用规格及适用长度参考如下:  1、SJ系列:喷雾量3kg/h →单面0~3.0m→双面0~1.5m   2、ZS-10: 喷雾量3kg/h →单面0~3.0m→双面0~1.5m   3、ZS-20: 喷雾量6kg/h →单面3.6~6.0m→双面1.2~3.0m   4、ZS-30: 喷雾量9kg/h →单面5.0~9.0m→双面2.4~5.0m   5、ZS-40: 喷雾量12kg/h→单面7.0~11.0m→双面4.8~7.0m   6、ZS-60: 喷雾量18kg/h→单面12.0~18.0m→双面7.0~12.0m   7、ZS-80: 喷雾量24kg/h→单面18.0~24.0m→双面12.0~14.0m   综上所述:如果火锅店提供的蔬菜不新鲜,那么你的火锅店的生意只能是越来越差,要知道,现如今大家在对待吃的方面那是非常讲究的。蔬菜不新鲜是因为失去水分干枯,所以要想给蔬菜保鲜,那么就要及时补充蔬菜失去的水分。 运用正岛SJ系列菜品展示柜保鲜喷雾机及ZS系列菜品喷雾保鲜机是个很好的方法,将水雾化后喷洒到蔬菜的表面,这样就能保证蔬菜的新鲜度了,延长蔬菜的销售时间;因此,这也是很多生意红火的火锅店经营食材保鲜的秘诀所在!以上关于火锅店菜品如何保鲜?菜品展示柜保鲜喷雾机的全部内容是正 岛 电 器提供的,仅供大家参考!
  • 我国科学家造出“纳米纸”实现应用功能“百搭”
    浙江大学的科学家用滤纸和二氧化钛薄膜制作出一种新型“纳米纸”,这种材料能继续与多种化学分子结合并展现不同特性,实现材料应用上的“百搭”。  “通过前体物溶液浸润再水解的方式,可以让二氧化钛薄膜包裹在滤纸的纳米纤维上,之后再用含有其他化学分子的溶液继续浸润纳米纸,就能制造出不同用途的新材料。”浙江大学化学系教授黄建国和他的研究团队从2007年开始着手创制环保、高效、成本低廉、制作简单的“百搭”材料,实验室常备的滤纸和二氧化钛两种常见的材料成为他们的首选。  肉眼看来,纳米纸的外观与普通滤纸没有差别,但功能却有了极大差异,黄建国说:“滤纸由无数的纤维素纤维组成,自然形成的精细结构非人力所及,而二氧化钛水解后产生的羟基具有足够的化学活性,能够和绝大多数的分子相结合,这两个材料的特性共同决定了纳米纸‘万金油’的特点。”  不久前,黄建国在纳米纸纤维上“铺”了一层名为“萘胺”的染料,让纳米纸变身为一遇亚硝酸盐就变色的检测试纸。“这种纳米纸轻薄灵敏,色彩的浓淡则表明了亚硝酸盐浓度的高低,对于检测食品中的亚硝酸盐浓度非常有效。”这项研究于2月18日在线发表于英国《皇家化学学会进展》期刊。  黄建国介绍说,纳米纸还可用于检测水体中汞离子、氟离子的含量,甚至用于检测DNA的特定序列段。而将碳氟链化合物与纳米纸组合而成的防菌纳米纸,还可用于食品保鲜与包装。由于碳氟链化合物不亲油,也不亲水,于是纳米纸也变得“油水不沾”,细菌也因此无法在纳米纸上停留。  “纳米纸是一个理想的平台,可以针对具体问题设计出相应的材料,绝不仅局限于目前进行尝试的几个方向。”黄建国说,下一步他将尝试把纳米纸进行必要处理后用于癌症、糖尿病等疾病的便捷检测。
  • 使用OLS5100激光共聚焦显微镜对功能性薄膜进行检测
    食品包装、工业材料和医疗应用中使用的薄膜表面具有各种特性,如透明度、光泽度、防水性、防污性和非粘附性。表面处理和加工工艺用于增加各种表面功能。为了评估薄膜的表面处理和加工质量,测量表面粗糙度至关重要。这项检测会测量薄膜表面细微不平整的粗糙度,并对其进行数值量化。测量表面粗糙度的一种方法是使用3D激光共焦显微镜。在一次实验中,我们试图使用聚乙烯薄膜(食品保鲜膜)和抗静电薄膜来验证薄膜中的静电和表面粗糙度之间是否存在关系。为了进行粗糙度测量,我们使用了LEXT OLS5100 3D激光共聚焦显微镜。继续阅读以了解结果!目视比较抗静电薄膜与聚乙烯薄膜的表面状况我们能够使用OLS5100 3D激光共聚焦显微镜目视确认了这两种薄膜的表面状况。OLS5100 显微镜使用405 nm紫激光束扫描样品表面以采集3D数据。该系统与可适应405 nm波长并减少像差的专用LEXT物镜配对,可以清晰地捕获传统光学显微镜和普通激光显微镜难以捕获的精细图案和缺陷。光学系统也是非接触式的,因此,即使是薄膜等柔软样品,也无需担心会造成表面损坏。红色激光(658 nm:0.26 μm 线距)与紫色激光(405 nm:0.12 μm 线距) 在此图中,您可以清楚地看到聚乙烯薄膜的表面没有奇特的形状,并具有轻微的不平整。相比之下,抗静电薄膜则存在周期性亚微米到几十纳米的锯齿状不平整。50倍物镜下的聚乙烯薄膜(食品保鲜膜)与50倍物镜下的抗静电薄膜 量化抗静电薄膜与聚乙烯薄膜的表面状况接下来,通过使用相同的3D激光共聚焦显微镜测量表面粗糙度,量化了这两种薄膜表面的视觉不平度差异。在这一步中,重要的是选择合适的透镜来观察样品,以获得较为可靠的测量结果。得益于Smart Lens Advisor,OLS5100显微镜可以轻松确定*所选物镜是否适合样品。在本例中,系统确定专用LEXT 50倍物镜适用于薄膜的粗糙度测量。显微镜使用50倍物镜测量这两种薄膜时获得了以下结果:测量中值得注意的粗糙度参数为Sq、Sz、Sa、Sdr和Sal。以下是对这些参数的概括说明:Sq(均方根高度)、Sz(最大高度)和Sa(算术平均高度)这些参数表示与平均表面相比的不平度大小。在本例中,值较大的抗静电薄膜表示不平度较大。Sdr(界面扩展面积比)Sdr表示表面积的增长率。在本例中,具有较小Sdr值的聚乙烯薄膜表面积较小。相比之下,由于表面的不平度较大,抗静电薄膜的表面积较大。Sal(自相关长度)虽然大多数参数评估的是高度方向的粗糙度,但Sal是少数关注横向(如条纹和颗粒密度)的参数之一。Sal值越小表示形状越陡、颗粒越细。相反,Sal值越大则表示表面的不均匀形状越平缓。因此,我们可以得出结论,抗静电薄膜的Sal值越小,在不均匀表面上的颗粒状越精细。用表面粗糙度数据测定薄膜静电静电量的三个主要决定性因素是接触面积、摩擦力和湿度。在本文中,我们重点关注的是与表面粗糙度密切相关的接触面积。一般来说,物体之间的接触面积越大,产生的静电荷就越多。在这个实验中,我们可以看到物体之间接触面积小的抗静电薄膜比接触面积大的聚乙烯薄膜产生的静电小。与聚乙烯薄膜更光滑的表面相比,抗静电薄膜较大的不平度减小了接触面积。您可以在下面看到电荷量与表面粗糙度数据的关系:抗静电薄膜与聚乙烯薄膜(食品保鲜膜)
  • 应用专题 |【气调保鲜】MOCON买肉攻略
    MAP买肉攻略忙完了一天工作,你来到超市,是否也会陷入不知道吃啥的囧境?国家统计局发布了2019年中国粮食总产量数据6.6亿吨;此外,我国每年还要向全球进口一亿吨粮食。反观我们的邻国印度,粮食总产量大概只有中国的一半,可是他们大量的出口大米和牛肉(有望在未来几年成为最大的牛肉出口国)。那么问题来了,为什么都是13亿人口的两个国家,我们的粮食消费是印度是5倍?答案是,我们爱吃肉!根据养殖业提供数据,生产1kg牛肉需要消耗5kg的谷物,而猪肉和鸡肉的数字大概在3kg和1.5kg左右。真相就在这里,相比97%国民是素食主义者的印度,我们是一个无肉不欢的国度。我们是有多能吃肉?听到这个问题,我脑袋里立刻想起,“不管~我要吃肉肉,就要吃肉肉......“这首洗脑神曲,而这首歌能流行是因为它唱出了真相。所以,今天膜康想跟大家探讨下,怎么成为一个合格的foodie。下面开始我们的正题,MAP买肉攻略。PART 01冷鲜肉是怎么练成的?二师兄4个月短暂的一生即将迎来最有意义的时刻,它们被赶到屠宰场,等待它们的是以下流程:体检洗热水澡休息十几个小时进入全自动XX生产线(中间过程省略)冷却排酸分割出售*注意:热鲜肉生产流程约等于红色字体部分在生产自动化和物流现代化的帮助下,我们有可能吃到24hr以内的猪肉。那么冷鲜肉和热鲜肉比谁好吃呢?答案是大部分冷鲜肉比杀猪菜更好吃!因为冷鲜肉排出了杀猪时,猪体内因紧张而产生的大量乳酸。但是冷鲜肉端上餐桌的时间却不如热鲜肉短。如何保持新鲜,就是我们要考虑的下一个问题。PART 02冷鲜肉的保鲜秘籍M.A.P.?怎么能看出超市里的哪块肉最好?膜康教大家一个秘诀——看包装!在超市的冷柜里,您能找到一种托盒封装的猪肉或者牛肉,精美的印刷,干净的外观,里面装的肉透着一份多汁和新鲜。它们就是MAP气调保鲜肉。什么是M.A.PMAP是指气调包装技术。又称之为气体包装或替换氧气保鲜包装技术。MAP是一种通过采用更换包装内部气体浓度环境,对食品包装进行改良,使得食品在预计的保质期内保持新鲜与吸引力的一种技术。简单说就是1、用合适阻隔的盒子和薄膜封装新鲜的肉和果蔬;2、把包装在里面的气体成分换成其他比例;3、在这种环境里,里面的食物保持持久的新鲜这里举一个气调包装牛肉的例子:大理石花纹,鲜红的颜色,是一块好牛肉的标志。牛肉中含有大量的血红蛋白,在缺氧的环境里,血红蛋白失去活性,变成暗灰色。比如你把冷柜里的肉牛翻过来,它下面一层的颜色就是灰色的。毕竟价钱这么贵,灰色的怎么行???于是,气调包装登场了!膜康通过大量实验发现,在包装里充入大量氧气(80%)会有极大的延长牛肉保持色泽的时间。而剩下的20%空间,用CO2气体作为细菌的繁殖抑制剂,更进一步的保障了冷鲜肉的货架期。于是,一块好牛肉的定义就诞生了: 好肉源 + 好部位 + MAP = 好口感看到这里,你是不是已经知道怎么挑选肉肉了呢?那么气调包装还可以用在哪些食物 ?PART 03M.A.P.气调包装的应用? 类型作用1猪肉,牛肉,羊肉,鸡肉保鲜2听装和袋装配方奶粉防胀包3热带水果呼吸作用4熟食鸭脖,鸭掌防腐5其实还有很多写在最后膜康公司正在为众多MAP生产商提供详细而完善的解决方案。膜康MAP气调产品家族关于阿美特克MOCON阿美特克MOCON公司总部位于美国明尼阿波利斯, 自1966年成立以来一直是全球包装材料渗透率和包装完整性测试仪器的领导品牌,提供给全球客户全面的包装质量控制和最佳的产品货架期研究解决方案,产品包括氧气/水蒸气渗透率测试仪、MAP顶空气体分析仪、MAP气体配混器及泄漏检测仪等。阿美特克是电子仪器和机电设备的全球领导者,年销售额约为50亿美金。为材料分析、超精密测量、过程分析、测试测量与通讯、电力系统与仪器、仪表与专用控制、精密运动控制、电子元器件与封装、特种金属产品等领域提供技术解决方案。全球共有18,000多名员工,150多家工厂,在美国及其它30多个国家设立了100多个销售及服务中心。
  • 浙江大学科学家造出新型纳米纸
    浙江大学科学家造出新型纳米纸 浙江大学的科学家用滤纸和二氧化钛薄膜制作出一种新型“纳米纸”,这种材料能继续与多种化学分子结合并展现不同特性,实现材料应用上的“百搭”。 “通过前体物溶液浸润再水解的方式,可以让二氧化钛薄膜包裹在滤纸的纳米纤维上,之后再用含有其他化学分子的溶液继续浸润纳米纸,就能制造出不同用途的新材料。”浙江大学化学系教授黄建国介绍,肉眼看来,纳米纸的外观与普通滤纸没有差别,但功能却有了极大差异。黄建国说:“滤纸由无数的纤维素纤维组成,自然形成的精细结构非人力所及,而二氧化钛水解后产生的羟基具有足够的化学活性,能够和绝大多数的分子相结合,这两个材料的特性共同决定了纳米纸‘万金油’的特点。” 不久前,黄建国在纳米纸纤维上“铺”了一层名为“萘胺”的染料,让纳米纸变身为一遇亚硝酸盐就变色的检测试纸。“这种纳米纸轻薄灵敏,色彩的浓淡则表明了亚硝酸盐浓度的高低,对于检测食品中的亚硝酸盐浓度非常有效。” 他介绍,纳米纸还可用于检测水体中汞离子、氟离子的含量,甚至用于检测DNA的特定序列段。而将碳氟链化合物与纳米纸组合而成的防菌纳米纸,还可用于食品保鲜与包装。由于碳氟链化合物不亲油,也不亲水,于是纳米纸也变得“油水不沾”,细菌也因此无法在纳米纸上停留。YSRIBIO1330人CCAAT增强子结合蛋白α(C/EBPα)ELISA试剂盒Human CCAAT/enhancer binding protein alpha,C/EBPα ELISA Kit YSRIBIO1331人基膜聚糖/内腔蛋白(LUM)ELISA试剂盒Human lumican,LUM ELISA KitYSRIBIO1332人Na+/H+交换体3(NHE3)ELISA试剂盒Human Na+/H+ exchanger 3,NHE3 ELISA KitYSRIBIO1333人孤腓肽(OFQ/N)ELISA试剂盒Human orphanin FQ/nociceptin,OFQ/N ELISA KitYSRIBIO1334人基质裂解素(ST1)ELISA试剂盒 Human Stromelysin-1,ST1 ELISA KitYSRIBIO1335人基质裂解素(ST2)ELISA试剂盒 Human Stromelysin-2,ST2 ELISA KitYSRIBIO1336人基质裂解素(ST3)ELISA试剂盒 Human Stromelysin-3,ST3 ELISA KitYSRIBIO1337人脂氧素A4(LXA4)ELISA试剂盒 Human Lipoxin A4,LXA4 ELISA KitYSRIBIO1338人蛋白酶3特异性抗中性粒细胞胞质抗体(PR3-ANCA)ELISA试剂盒Human proteinase-antineutrophil cytoplasmic antibody,PR3-ANCA ELISA KitYSRIBIO1339人β-促脂素(β-LPH)ELISA试剂盒 Human β-lipotropic hormone,β-LPH ELISA KitYSRIBIO1340人脂磷壁酸(LTA)ELISA试剂盒 Human lipoteichoic acids,LTA ELISA KitYSRIBIO1341人乙胺碘呋酮(AD)ELISA试剂盒 Human amiodarone,AD ELISA KitYSRIBIO1342人唾液酸(SA)ELISA试剂盒 Human Sialic acid,SA ELISA KitYSRIBIO1343人鞘磷脂(SM)ELISA试剂盒 Human sphingomyelin,SM ELISA KitYSRIBIO1344人尿游离皮质醇(UFC)ELISA试剂盒 Human urinary free cortisol,UFC ELISA Kit
  • 苏州纳米所在大载流、高导电碳纳米管复合薄膜研究方面获进展
    导体材料是信息交互、电能传输和力、热、光、电、磁等能量转换的基础性材料,在航空航天、新能源汽车、电力线路等领域具有重要应用价值。随着大功率器件的发展,对轻量化、大载流、高导电性材料的需求越来越迫切。单根单壁碳纳米管(SWCNT)拥有极高的载流能力和电导率,载流能力比传统金属铜高出2~3个数量级,电导率更是银的1000倍以上。然而,当SWCNT组装成宏观薄膜的时候,由于碳管间电子/声子散射的影响,载流能力和电导率会显著降低,从而制约SWCNT薄膜在大功率器件领域的应用。 针对上述问题,中国科学院苏州纳米技术与纳米仿生研究所研究员康黎星等提出并研制了新型大载流、高导电碳纳米管复合薄膜材料。研究团队采用化学气相输运法将CuI均匀高效地填充到SWCNT管腔中,制备出CuI@SWCNT一维同轴异质结。SWCNT对CuI具有保护作用,保持了CuI的电化学活性,使其能够在恶劣的酸性环境和长期电化学循环下保持稳定性。研究通过电学测量发现,CuI@SWCNT薄膜相较于SWCNT薄膜具有更优的电导率和更强的载流能力,其载流能力提升4倍,达到2.04×107 A/cm2,电导率提升8倍,达31.67 kS/m。  SWCNT填充CuI后,SWCNT中电子流向CuI,导致SWCNT的费米能级降低;同时,CuI@SWCNT一维范德华异质结中SWCNT的结构未被破坏,载流子依然保持高效的传递速率,进而使得CuI@SWCNT薄膜具有更高的导电性和载流能力。CuI@SWCNT复合薄膜在未来高功率电子器件、大电流传输等应用中具有潜力。 相关研究成果以CuI Encapsulated within Single-Walled Carbon Nanotube Networks with High Current Carrying Capacity and Excellent Conductivity为题,发表在《先进功能材料》(Advanced Functional Materials)上。研究工作得到国家重点研发计划和国家自然科学基金等的支持。
  • 郭光灿院士领衔 石墨烯纳米谐振器研究取得新突破
    p  记者从中国科技大学获悉,该校郭光灿院士领导的中科院量子信息重点实验室在纳米机电系统(NEMS)方面取得最新进展。该实验室与美国加州大学团队合作,在研究两个石墨烯纳米谐振器的模式耦合过程中,创新性地引入第三个谐振器作为声子腔模,成功地实现了非近邻的模式耦合。相关研究成果发表在近日出版的《自然通讯》上。/pp  纳米谐振器具有尺寸小、稳定性好、品质因子高等优点,是信息存储和操控的优良载体。为了实现不同谐振模式之间的信息传递,需要先实现模式间的可控耦合。近年来,国际上不同研究组针对同一谐振器中的不同谐振模式以及近邻谐振器之间的模式耦合机制进行了深入研究。然而,对于如何实现非近邻的、可调的谐振模式耦合,国际上一直未见相关报道。/pp  针对这一难题,研究组设计和制备了三个串联的石墨烯纳米谐振器,每个谐振器的谐振频率可以通过各自底部的金属电极进行大范围的调节,因此只要设定合适的电极电压就可以实现三个谐振器的共振耦合。研究组首先测量到了两个近邻谐振器之间的模式劈裂,证明了在该串联结构中近邻谐振器可以达到强耦合区间,这为进一步探索第一个和第三个谐振器之间的耦合创造了条件。经过实验探索,研究组发现当把中间谐振器的共振频率调到远高于(或远低于)两端谐振器的共振频率时,两端谐振器之间不能发生模式劈裂,即二者耦合强度非常小 但是当中间谐振器的共振频率逐渐靠近两端谐振器的共振频率时,两端谐振器逐渐产生模式劈裂,且劈裂值逐渐增大。/pp  该实验是首次在纳米谐振器体系中实现谐振模式的非近邻耦合,对于纳米机电谐振器领域的发展具有重要的推动意义,并且为将来在量子区间利用声子模式进行信息的长程传递创造了条件。/ppbr//p
  • NSSC 2019召开——顶尖院士专家领衔群议石墨烯/器件纳米技术前沿
    p  strong仪器信息网讯/strong 2019年8月5-6日,由天津大学颗粒与纳米系统国际研究中心(TICNN)主办的津京冀纳米科学青年科学家论坛(NSSC 2019)在天津大学如期召开。会议邀请到多名石墨烯、器件相关领域世界顶尖科学家与国内青年科学家,大家齐聚一堂,不分国界,共同探讨石墨烯等二维材料合成、制备以及相关电子学器件的研发、物理机制及纳米技术的前沿科学问题和未来发展方向。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/5b33c1a6-65eb-4d26-a575-5a2d387ea125.jpg" title="IMG_8727.jpg" alt="IMG_8727.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "论坛现场/span/pp  天津大学颗粒与纳米系统国际研究中心的本次论坛活动,得到多位顶尖科学家参加,包括美国佐治亚理工学院董事教授、美国国家工程院院士、中国工程院外籍院士、香港科学院创院院士,被业界广泛誉为“现代半导体封装之父”的汪正平教授 美国佐治亚理工学院董事会教授、石墨烯电子学的开拓者和奠基人Walter A. de Heer教授等。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/edf8c346-2a20-4ef0-9db0-7bdf8ae961a8.jpg" title="IMG_8655.jpg" alt="IMG_8655.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "天津大学纳米中心执行主任马雷教授主持会议/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/2038f83e-febb-49a1-b5ac-13afde7180c3.jpg" title="IMG_8677.jpg" alt="IMG_8677.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "美国佐治亚理工学院董事教授汪正平/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "演讲题目:Composition Tuned Hybrid Perovskites: From Materials Engineering & Device Design for Efficient,Stable Perovskite Solar Cells/span/pp  钙钛矿太阳能电池组成包括钙钛矿结构化合物等。钙钛矿材料如甲基铵卤化铅和全无机铯铅卤化物,生产成本低,制造简单。/pp  (1)在传统的顺序沉积中,致密的PbI2薄膜可能阻碍MAI溶液在整个PbI2薄膜上的扩散,从而导致钙钛矿和TiO2之间界面中未反应的PbI2残留。为解决PbI2残留问题,汪正平团队开发了一种合成多孔PbI2薄膜的新方法。从PbAc2和MAI的前体开始,摩尔比1:2,在加热条件下释放热不稳定的CH3NH3(CH3COO),从而由于体积收缩而在PbI2膜中产生孔隙。加载MAI溶液后,p-PbI2将改善PbI2向钙钛矿的转化。/pp  (2)另外,spiro会引起不稳定,也是这种器件结构中最昂贵的材料。研究人员已经做出一些努力来开发新的HTL来代替spiro,它主要分为两类:合成更新的有机材料和开发低成本的无机材料。然而,复杂的合成过程可能阻碍有机材料的大规模生产。另一方面,含有PbS和CuI HTL的PSC存在低效率的问题,并且CuSCN可以与钙钛矿反应。在这方面,汪正平团队提出一种替代的p型材料:NiO。低温溶液处理的NiOx HTL可以显着提高整个器件的稳定性。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/9cece423-7f33-4e23-ac99-6311b8c8bdb0.jpg" title="IMG_8739.jpg" alt="IMG_8739.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "天津大学颗粒与纳米系统国际研究中心、美国佐治亚理工学院董事会教授Walter A. de Heer /span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "演讲题目:Epigraphene for Graphene Based Nanoelectronics/span/pp  外延石墨烯,其研究的主要原因是外延石墨烯有望在一些关键领域(速度、能源效率和器件密度)成功替代硅电子技术。高目标的定位向世界上最先进的技术提出了挑战,显然需要很长的时间才能实现。从一开始,佐治亚理工学院的石墨烯项目(在石墨烯剥离之前的几年)的开拓性工作就专注于这一目标,并取得了系列成功。它是唯一符合可行纳米电子平台最基本要求的石墨烯电子平台:它必须基于单晶衬底,并且工艺必须是可扩展的。这些条件是超高规模集成和再现性所必需的,正如过去70年硅电子产品奇迹般的发展所表明的那样。/pp  事实上,外延的缺乏最终导致剥落的纳米图案器件是绝缘体,而外延石墨烯纳米结构可以在微米尺度上弹射,即使边缘在结晶学上不完美。报告中,佐治亚理工学院Walter A. de Heer团队,与天津大学颗粒与纳米系统国际研究中心马雷团队合作,在SiC的非极性面上的外延石墨烯的发展,其具有与在碳化硅中蚀刻的沟槽的侧壁上生长的石墨烯纳米带非常类似的边缘状态传输特性。电子传输由单通道边缘状态支配,平均自由程超过15μm,是石墨烯层的约1000倍。观察到涉及边缘态的异常量子霍尔效应。同时,天津大学颗粒与纳米系统国际研究中心的石墨烯小组,在近期已经实现了从碳化硅晶柱到300微米晶体的全套工艺流程。/pp  非极性外延石墨烯平台允许相互连接的纳米结构按照传统模式形成一维网络。在低温下,法布里 - 珀罗振荡明显,表明在很大距离上的相位相干性可以用于未来互连的相位相干器件。尽管传输的物理性质尚未完全了解,但很明显,这一发现为非传统石墨烯纳米电子技术提供了一条独特而可行的途径。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/36636a53-aa4b-4aa6-a8b5-35827505efd6.jpg" title="IMG_8817.jpg" alt="IMG_8817.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "天津大学李小英教授/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "演讲题目:SU(1,1) nonlinear interferometer and its Application/span/pp  近年来,一种新型的非线性干涉仪(NLI)引起了人们的广泛关注。与传统干涉仪不同,NLI利用光参量放大器进行波的分裂和组合。结果表明,NLIs在许多方面都优于传统干涉仪。特别地,非线性光学过程对波混合的参与允许不同类型的波的相干叠加。这种混合方式是传统干涉仪无法实现的,传统干涉仪的相干组合依赖于线性分束器。李小英介绍NLIs在原子自旋波、光波、声波等各种波中的性质,以及在量子计量、量子信息和量子态工程中的应用。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/00da5e33-3a36-40ae-ac81-f74a784a4b40.jpg" title="IMG_8842.jpg" alt="IMG_8842.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "奥地利约翰开普勒大学孙立东副教授/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "演讲题目:Real Time Monitoring of the Growth of Nano-Structures/span/pp  差示光谱学是一种用于探测表面和界面结构的通用技术。相比传统表面分析技术,这种技术具有表面敏感、非破坏性、不受真空条件的限制等优势。因此,这些方法非常适合于各种环境条件下的地表过程的原位研究。报告中,孙立东讨论了差示光谱学技术在监测和精确控制包括金属团簇、有机薄膜和二维过渡金属双卤代烷在内的纳米结构中的应用。最后,还介绍了荧光显微镜作为实时监测有机薄膜生长的原位探针的新应用。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/88aa35d8-e3e0-4892-a470-84f322f99463.jpg" title="IMG_8870.jpg" alt="IMG_8870.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "韩国帕克原子力显微镜副总裁Sang-Joon Cho /span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "演讲题目:Non-contact AFM with Self-Optimizing and Pinpoint Scan Control for Quantitative Nano-Metrology/span/pp  与光镜、电镜等显微镜相比,原子力显微镜(AFM)测量绝对尺寸时缺乏准确性和重复性、操作参数设置的复杂等限制了其被广泛采用。然而,由于研究和表征创新纳米材料的强烈需求,AFM分析的重要性日益增加。非接触模式AFM,采用前馈算法、Hann函数和双伺服系统,提高了x-y扫描的精度,保持了尖锐的尖端,针对非接触模式的扫描参数,帕克原子力显微镜开发了自优化算法,很大限度地减小了用户技能变化和用户对AFM测量的影响。此外,精确扫描控制可最大限度地减少磁性和电气测量的地形影响,并有助于定量表征纳米材料。Sang-Joon Cho在报告中演示了生物材料的定量纳米力学映射,以及半导体和光伏材料的纳米电子映射。表明,AFM的定量分析为控制材料各方面的发展开辟了新的途径,有助于提高效率、降低失效和成本。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/d412c221-a204-47ae-8121-57a8dfe36db5.jpg" title="IMG_8936.jpg" alt="IMG_8936.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "复旦大学包文中教授/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "演讲题目:Wafer-Scale Devices and Circuits Based on 2D Transition Metal Dichalcogenides/span/pp  广泛研究的TMDs材料,如MoS2和WSe2,由于其二维特性和良好的电子输运特性,可通过大规模的合成方法获得,非常稳定,并具有优越的门控性能,显示了数字和射频电子的光明前景。报告中,包文中首先介绍了大规模控制合成MoS2, MoTe2和PtSe2的各种方法,以及为实际电子应用实现晶片级,均匀和高质量连续薄膜必须克服的主要障碍。并重点讨论了晶圆级TMD薄膜的兼容器件制造工艺,主要是关于场效应晶体管的电接触层和介电层的形成。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/fefcee17-c922-4f24-9a5d-45779b564a82.jpg" title="IMG_8995.jpg" alt="IMG_8995.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "日本产业技术综合研究所前副所长Kiyoshi Yokogawa /span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "演讲题目:Application of SPM for Surface Science/span/pp  由于利用扫描探针显微技术(SPM)在原子尺度上表征表面结构的创新工作,Bennig和Rohrer于1986年获得诺贝尔物理学奖。该方法为纳米技术的建立奠定了基础。Kiyoshi Yokogawa介绍了其实验室利用SPM在表面科学中的应用:1)新碳——利用STM方法在大气中发现了由六边形和五边形组成的热处理富勒烯碳五边形,并发现了碳的新表面相石墨的环状上层结构 2)特高压下金属表面清洁——通过UHV-STM观察到Nb的1x1结构,即干净的表面,只有这样才能制造出干净的表面,因为Nb是非常活跃的氧或氢的金属。在清洁表面后,喷射氢气,观察气体对表面的影响 3) MFM的金属相——应变诱发的马氏体是HE形成的原因,但在电镜下不易识别,因此使用MFM对该相进行观察,发现双晶界处形成了马氏体,从而引起HE。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/8121f556-9a42-479d-94a1-de689ddd3486.jpg" title="IMG_9020.jpg" alt="IMG_9020.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "日本丰田工业大学Masamichi Yoshimura教授/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "演讲题目:Alcohol Assisted Thermal Reduction of Graphene Oxide/span/pp  通过还原氧化石墨烯(GO)制备石墨烯是一个快速发展的研究领域,因为它能够大量生产石墨烯以用于广泛的应用。然而,由于GO的固有缺陷,利用GO制备原始石墨烯类材料仍然有许多挑战。到目前为止,有很多相关克服挑战的研究工作,如在非常高的温度下退火(约1800摄氏度),或在外部碳源存在下还原等。Masamichi Yoshimura介绍了在醇存在下GO(通过改进的Hummers方法合成)的退火导致石墨烯,或更精确地恢复还原的氧化石墨烯(RGO),具有改善的电性质。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/aced3828-3c52-4aab-a352-a1b5c36ccd0e.jpg" title="IMG_9070.jpg" alt="IMG_9070.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "南开大学何明教授/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "演讲题目:High Temperature Superconducting Microwave Devices and Systems/span/pp  高温超导器件和系统具有插入损耗低、噪声低、选择性高等优点,具有较高的灵敏度和抗干扰性能。它们在无线通信、国家安全、医学、材料科学、卫星通信等诸多领域有着广泛的应用。目前,高温超导微波接收机前端子系统已成功应用于深空探测、卫星通信、雷达系统等领域。何明介绍了薄层超导薄膜、高温超导滤波器及其在微波系统中的应用进展。还分享了高温超导微波系统的小型化及单芯片集成技术等。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/192d46de-602e-4594-9c8b-97f09f20c3b4.jpg" title="IMG_9095.jpg" alt="IMG_9095.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "云南大学杨鹏教授/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "演讲题目:Few Layered PtS 2 and its Properties/span/pp  近年来,MoS2和WS2(Group 6)等层状过渡金属二卤代烃(TMDs)的研究取得了很大的进展。然而,对于属于其他TMDs的研究却很少。杨鹏报告中介绍到,采用化学气相沉积法制备了大面积少层析的pt2(Group 10)。然后分别用原子力显微镜(AFM)、拉曼光谱(Raman)、极化拉曼光谱(偏振拉曼光谱)、光致发光(PL)、场效应晶体管(FET)和范德堡(van der Pauw)等方法对这些层数较少的PtS 2进行了表征。结果表明,pt2具有很高的载流子迁移率和温度依赖性拉曼光谱,在先进的光电器件中具有潜在的应用前景。(实验过程,得到天津大学天津纳米颗粒与纳米系统国际研究中心相关表征设备的协助)/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/ac55ffa7-f88d-4c48-a46a-de222078b300.jpg" title="IMG_9132.jpg" alt="IMG_9132.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "天津大学孙志祥副教授/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "  演讲题目:Nanoscale Defect Effects in Sr2IrO4 Probed by Low-Temperature Scanning Tunneling Microscopy/span/pp  Sr2IrO4作为莫特绝缘体与铜酸盐的母体化合物具有许多相似之处。有许多预测认为适当掺杂可能会产生高温超导相。然而,缺陷/掺杂诱导绝缘子向金属过渡(IMT)的机理还有待进一步研究。报告中,孙志祥介绍了利用低温扫描隧道显微镜针对Sr2IrO4的相关研究,利用原子分辨表面形貌,识别出不同类型的内在表面缺陷。在隧穿光谱中还观察到电荷转移行为。同时,通过比较其他类似化合物的结果,也讨论了IMT的一般机理。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/450413ff-6b99-4794-9125-a0f08497d060.jpg" title="IMG_9143.jpg" alt="IMG_9143.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "首都师范大学王贺/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "演讲题目:Ferromagnetic Tip Induced Unconventional Superconductivity in Weyl Semimetal/span/pp  王贺于2016年在北京大学获得博士学位,随后在天津大学天津纳米颗粒与纳米系统国际研究中心马雷教授团队进行博士后工作,2018年加入首都师范大学。本次报告内容主要介绍了其博士和博士后期间的相关研究内容。外尔半金属表面诱导超导性为研究拓扑超导性提供了一个很有前途的平台,这是目前凝聚态物理研究的一个热点。通过实验发现,在TaAs单晶中,铁磁尖的硬点接触法可以诱导非常规的超导性。铁磁尖诱导超导态的磁输运测量显示出量子振荡,揭示了点接触的拓扑性质,并显示出铁磁与诱导超导态的相容性。进一步证明显示,铁磁尖诱导的超导态隧穿输运的点接触谱可以用拓扑超导机制来解释。考虑到新型超导电性外尔半金属材料在实验中难以实现,研究结果为通过硬点接触法将拓扑半金属材料与铁磁性材料结合起来研究非常规超导电性提供了一条新的途径。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/240b5740-d2ed-4849-9d5a-8f359ac78f66.jpg" title="IMG_9168.jpg" alt="IMG_9168.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "帕克原子力显微镜美国分部总裁Keibock Lee /span/pp  Keibock Lee简单分享了帕克原子力显微镜公司“Enable nanoscle advances for the betterment of our world”的愿景,公益基金方面,除了Park AFM Scholarships奖学金,还透露即将面向年轻教授推出Startup Professorship Award。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/8bf0a2fc-2d53-49c1-a481-70dc3c2342a2.jpg" title="讨论.png" alt="讨论.png"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "会上讨论/span/pp  继会议首日13个精彩报告后,会议第二日,接着进行了16个主题报告,继续就石墨烯等二维材料合成、制备以及相关电子学器件等纳米科学问题进行了进一步讨论。/pp  本次会议,由于正值天津大学天津纳米颗粒与纳米系统国际研究中心(以下简称:TICNN)全面运行一周年之际。于是,会议间隙,在马雷老师的讲解下,与会者共同参观了纳米中心,切身体会到纳米中心一年来的建设成果。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 822px " src="https://img1.17img.cn/17img/images/201908/uepic/44f794aa-c5ff-4ef6-861f-558da1525215.jpg" title="参观1.png" alt="参观1.png" width="600" height="822" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "纳米中心参观花絮一/span/pp  天津纳米颗粒与纳米系统国际研究中心由天津大学于2015年10月批准建立,次年,马雷教授回国全身心投入到中心的建设。2018 年 7 月 22 日,TICNN正式全面运行。与传统研究中心不同,天津大学纳米中心在整个创建过程中,实现了诸多原创性仪器设备的搭建,并形成一系列自主知识产权。中心目标为力求建设成为世界一流的石墨烯电子学、团簇物理学和柔性电子学的国际化研究平台。三个主要研究方向分别为外延石墨烯电子学,团簇物理学,先进功能性碳材料及柔性可穿戴电子学。/pp  在短短一年时间里,在马雷老师的带领及其团队的共同努力下,纳米中心现已建设成为功能日益完善的国际化研究中心,纳米中心各类大型实验设备的调试安装已经进入尾声,在为校内外科研同行提供了丰富便捷的公共测试服务的同时,实现了设备仪器与技术工艺的全面共享。其次,纳米中心自主设计并建造了 3 套自由团簇研究系统用以深入系统地研究自由团簇的电子结构、高激发态寿命及其内壳层的电子结构....../pp  更多关于“天津大学天津纳米颗粒与纳米系统国际研究中心”的建立背景、快速发展现状,请点击以下视频全面了解:/pscript src="https://p.bokecc.com/player?vid=854F7B100766EDD09C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=5B1BAFA93D12E3DE&playertype=2" type="text/javascript"/scriptp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 822px " src="https://img1.17img.cn/17img/images/201908/uepic/c88bf30e-a610-4964-8f9f-7faee747c703.jpg" title="参观2.png" alt="参观2.png" width="600" height="822" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "纳米中心参观花絮二/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/39b22286-1a43-4a58-b370-5eaa00fc8ab4.jpg" title="IMG_8811.jpg" alt="IMG_8811.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "Coffee Break /span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/007c9911-d592-48d7-8625-3fb05e07fe4f.jpg" title="IMG_9190_副本.jpg" alt="IMG_9190_副本.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "合影留念/span/p
  • 自支撑纳米级碳膜的制备研究
    成果名称自支撑纳米级碳膜的制备研究单位名称北京大学联系人马靖联系邮箱mj@labpku.com成果成熟度□研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产成果简介:在低能核物理、激光核物理、原子核化学试验等科研工作中,都需要用到自支撑薄膜作为靶膜、剥离膜或X 射线过滤器,这些膜的厚度范围覆盖几十纳米到几十微米。因此自支撑薄膜的制备成为这些实验成功与否的关键问题之一,这方面的研究已经成为核科学技术、材料科学与物理学的研究热点。此外,随着近年来激光驱动离子加速的兴起,人们发现激光轰击固体靶可以有效地加速质子到很高的能量(例如100MeV质子),从而可以提供一种台面大小的装置,用于取代体积庞大的常规离子加速器。这不仅对高能物理加速器具有重要意义,还可以显著降低癌症治疗等应用型加速器的体积和造价,而纳米级薄膜正是激光驱动粒子加速的关键元件。2011年,北京大学物理学院颜学庆教授申请的&ldquo 自支撑纳米级碳膜的制备研究&rdquo 项目获得第三期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。课题组利用阴极弧沉积方法在平面硅、玻璃和载波片上成功制备了厚度可以精确控制的纳米级碳膜,精确度达到(± 1nm)。该碳膜能够与基底分离,并被放到带孔的金属模板上。此外,课题组还为其将要开展的激光离子加速实验和串列加速器研究提供了厚度小于10nm的固体靶材。目前相关工作已经顺利结束,此项工作的成果已经申请了专利并有相关论文发表,课题组研制的自支撑薄膜将在低能核物理、激光核物理、原子核化学试验和激光驱动离子加速等科学研究中进行推广。2012年,该项目获得了科技部国家重大科学仪器设备开发专项支持。应用前景:不仅对高能物理加速器具有重要意义,还可以显著降低癌症治疗等应用型加速器的体积和造价,而纳米级薄膜正是激光驱动粒子加速的关键元件。知识产权及项目获奖情况:已申请专利。
  • 我国碳纳米X射线成像技术获进展
    成像装置图  日前,由中科院深圳先进技术研究院承担的国家科技支撑计划“基于碳纳米X射线发射源的CT系统研发”课题团队利用自主研发的碳纳米管薄膜,成功地获取首张X射线二维成像图。专家组认为这是我国在碳纳米管X射线源成像研究方面取得的突破性进展和成果。  据介绍,碳纳米管X射线源是近几年发展起来的,被认为是具有革命性的新型X射线源。碳纳米管X射线源创新性地用碳纳米管场发射阴极取代热阴极,从而使该X射线源具有可控发射、高时间分辨、低功耗且易于集成等诸多优势。这些优势将给X射线CT带来结构上的突破。其中,最具潜力的方向之一即基于碳纳米管X射线源阵列的静态扫描CT。该CT以电子式的扫描取代传统的机械转动来获取不同角度的图像,可消除机械转动带来的成像伪影,缩短扫描时间,从而减少病人的辐射剂量,提高CT扫描的图像精度。  经过近两年的技术攻关,中科院深圳先进院医工所劳特伯医学成像中心研究团队制备出性能优异的碳纳米管薄膜并研制了基于新光源的X射线成像系统。自主研发的碳纳米管薄膜发射电流密度已达到国际先进水平,研制的X射线源成像系统获得了首张X射线二维成像图。团队目前正在进一步提高阴极稳定性、优化射线源结构,以期开展CT的三维成像。
  • 添加纳米线让锂离子电池更安全
    p style="text-indent: 2em "无论手机、笔记本电脑、还是电动车辆都离不开锂离子电池,它是“点燃”我们日常生活的重要能源。然而近些年,锂离子电池却因为实实在在的着火事件而引起了舆论的关注。怎样才能开发出更为安全的电池呢?据科学家在ACS期刊的纳米板块发表的文章介绍,在电池中加入纳米线不仅可以提升电池的耐火性,同时也能提升电池其他方面的性能。/pp style="text-indent: 2em "在锂离子电池中,锂离子通过电解质往返穿梭于两电极之间,传统锂离子电池的电解质是盐和有机溶剂构成的液体,很容易蒸发,是造成火灾的隐患。因此,学者们将研究的重心转向了固态电解质。被提议担起固态电解质的“人选”有很多,然而这些物质大多或稳定性不够,或不能满足大规模生产的需要,二者不可得兼。这其中,聚合物电解质因其良好的稳定性、低成本和灵活性而被认为是担当固态电解质的潜力股,但是它的导电性和力学性能却较差,因此,科学家们通过添加一系列化合物来设法提升聚合物电解质的性能。陶新永和他的研发团队制备出的硼酸镁纳米线恰好就具有良好的力学性能和导电性,如果把硼酸镁纳米线加入到固态电解质中,是否电池也会被赋予相应的良好特性呢?陶新永的团队对此十分好奇。/pp style="text-indent: 2em "他们在固体电解质中混合了5、10、15、20重量百分比的硼酸镁纳米线并进行实验观察,发现硼酸镁纳米线确实可以提升电解质的导电性,这种提升与离子通过电解质的速度和数量息息相关,离子通过电解质的速度越快,快速通过的数量越多,电解质的导电性能就越好。此外,硼酸镁纳米线的添加还使得电解质能够承受更大的压力。研究团队还测试了加入硼酸镁纳米线后电解质的可燃性,发现它几乎不可燃烧。而由硼酸镁纳米线强化的固态电解质与阴阳极配对所构成的电池,在速率性能和循环容量上都比电解质中不含硼酸镁纳米线的电池有所提升。/p
  • 导热性能提升150%的硅同位素纳米线
    有电的地方就会产生热量,而这正是缩小电子设备的一个主要障碍。一个改变游戏规则的发现,可以通过传导更多的热量来加速计算机处理器的发展进程。TEM图像显示涂有二氧化硅(SiO2)的 28Si 纳米线。来源:Matthew R. Jones 和 Muhua Sun/莱斯大学科学家们已经验证了一种硅同位素(28Si)纳米线新材料,其热导率比先进芯片技术中使用的传统硅材料高出150%。这种超薄硅纳米线器件可以使更小、更快的微电子技术成为可能,其热传导效率超过了现有技术。由有效散热的微芯片驱动的电子器件反过来会消耗更少的能源——这一改进可以减轻燃烧富含碳的化石燃料产生的能源消耗,这种能源消耗导致了全球变暖。“通过克服硅导热能力的天然局限性,我们的发现解决了微芯片工程中的一个障碍,”报道此新研究成果的科学家 Junqiao Wu 说(课题组主页,https://wu.mse.berkeley.edu)。Wu 是加州大学伯克利分校材料科学系的一名教师科学家和材料科学与工程教授。01热量在硅中缓缓流动我们使用的电子产品相对便宜,因为硅 - 计算机芯片的首选材料 - 既便宜又丰富。可是,尽管硅是电的良导体,当它被缩小到非常小的尺寸时,它就不是热的良导体——而当涉及到快速计算时,这对微小的微芯片来说却是一个巨大问题。艺术家对微芯片的渲染。来源:dmitriy-orlovskiy/Shutterstock每个微芯片中都有数百亿个硅晶体管,它们引导电子进出存储单元,将数据比特编码为1和0,即计算机的二进制语言。电流在这些辛勤工作的晶体管之间流动,而这些电流不可避免地会产生热量。热量会自然地从热的物体流向冷的物体。但是热流在硅中变得很棘手。在自然形式中,硅由三种不同的同位素组成 - 化学元素的形式,其原子核中含有相同数量的质子,但中子数量不同(因此质量不同)。大约 92% 的硅由同位素 28Si 组成,它有14个质子和14个中子;大约 5% 是 29Si,有14个质子和15个中子;只有 3% 是 30Si,相对重量级为14个质子和16个中子,合作者 Joel Ager 解释道,他拥有 Berkelry Lab(伯克利实验室)材料科学部门的高级科学家头衔,也是 UC Berkeley(加州大学伯克利分校)材料科学与工程的兼职教授。左起:Wu Junqiao 和 Joel Ager。来源:Thor Swift/伯克利实验室 Joel Ager 的照片由加州大学伯克利分校提供作为声子,携带热量的原子振动波,在蜿蜒穿过硅的晶体结构时,当它们撞击 29Si 或 30Si 时方向会发生改变,它们不同的原子质量“混淆”声子,减慢它们的速度。“声子最终看到了这个表象,并找到了通往冷端以冷却硅材料的方法,”但这种间接的路径允许废热积聚,这反过来又会减慢您的计算机速度,Ager 说。02迈向更快、更密集的微电子学的一大步几十年来,研究人员推测,由纯 28Si 制成的芯片将克服硅的导热极限,从而提高更小、更密集的微电子器件的处理速度。但是,将硅提纯成单一同位素需要付出高昂的代价和能量水平,很少有设施可以满足 - 更没有哪家工厂能专门制造市场上可用的同位素材料,Ager 说。幸运的是,2000年代初的一个国际项目使 Ager 和杰出的半导体材料专家 Eugene Haller 能够从前苏联时代的同位素制造厂采购四氟化硅气体 - 同位素纯化硅的原料。(Haller 于1984年创立了伯克利实验室的美国能源部资助的电子材料项目,并曾是伯克利实验室材料科学部门的高级科学家和加州大学伯克利分校材料科学和矿物工程教授。)这直接导致了一系列开创性的实验研究,包括 2006 年发表在《自然》杂志上的一项成果,其中 Ager 和 Haller 将 28Si 塑造成单晶,他们用它来证明量子存储器将信息存储为量子比特或量子位,单位存储的数据同时作为 1 和 0 的电子自旋。99.92% 28Si 晶体的光学图像,伯克利实验室科学家 Junqiao Wu 和他的团队使用这种材料制备纳米线。来源:Junqiao Wu/伯克利实验室随后,用 Ager 和 Haller 提纯的硅同位素材料制成的半导体薄膜和单晶显示出比天然硅高 10%的热导率——这是一个进步,但从计算机工业的角度来看,可能不足以证明花一千多倍的钱用同位素纯硅制造一台计算机是合理的,Ager 说。但 Ager 知道,硅同位素材料在量子计算之外具有的科学重要性。因此,他把剩下的东西存放在伯克利实验室一个安全的地方,以备其他科学家可能的不时之需,因为他推断,很少有人有资源制造甚至购买到同位素纯硅。03用 28Si 实现更酷的技术之路大约三年前,Wu 和他的研究生 Ci Penghong 试图找到提高硅芯片传热速率的新方法。制造更高效晶体管的其中一项策略,涉及使用一种称为环栅场效应晶体管(Gate-All-Around Field Effect Transistor,GAAFET)的技术。在这些器件中,硅纳米线堆叠以导电,并同时产生热量,Wu 解释到。“如果产生的热量不能迅速排出,该器件将停止工作,这就像在没有疏散地图的高楼中发出火灾警报一样,”他说。FinFET(鳍式场效应晶体管)和环栅场效应晶体管(GAAFET)结构示意图。来源:Applied Materials但硅纳米线的热传递甚至更糟,因为它们粗糙的表面 - 化学处理的疤痕 - 更容易分散或“混淆”声子,他解释说。由硅纳米线桥接的两个悬浮垫组成的微器件的光学图像。来源:Junqiao Wu/伯克利实验室“然后有一天我们想知道,如果我们用同位素纯 28Si 制造纳米线会发生什么?”Wu 说。硅同位素不是人们可以在公开市场上能够轻松购买到的东西,有消息称,Ager 仍然在伯克利实验室储存了一些少量的硅同位素晶体,且仍然足以分享。“希望有人对如何使用它有一个很好的想法,” Ager 说,“如 Junqiao 的新研究就是一个很好的例证。”04纳米测试后的惊人大揭秘“我们真的很幸运,Joel 碰巧已经准备好了同位素富集的硅材料,正好可用于这项研究,”Wu 说。利用 Ager 提供的硅同位素材料,Wu 研究团队测试了 1 mm 尺寸的 28Si 晶体与天然硅的导热性 - 他们的实验再次证实了 Ager 和他的合作者几年前的发现 - 块状 28Si 的导热性仅比天然硅好 10%。尽管块状晶体硅具有相对较高的热导率(室温下 κ∼144 W/mK),但当其尺寸减小到亚微米范围时,由于声子显著的边界散射,κ 会受到强烈抑制。60 K 条件下,115 nm 尺寸的硅纳米线,κ~16 W/mK, DOI: 10.1063/1.1616981;300 K 条件下,31-50 nm 尺寸的硅纳米线,κ~8 W/mK,DOI: 10.1103/PhysRevLett.101.105501。现在进行纳米级别测试。Ci 使用一种化学蚀刻技术制造了直径仅为 90 nm(十亿分之一米)的天然硅和 28Si 纳米线 - 大约比一根人类头发细1000倍。为了测量热导率,Ci 将单根纳米线悬浮于两个装有铂电极和温度计的微加热器垫之间,然后向电极施加电流以在一个垫上产生热量,然后通过纳米线流向另一个垫。“我们预计,使用同位素纯材料进行纳米线的热传导研究结果只会有 20% 的增量效益,” Wu 说。但 Ci 的测量结果让他们都感到惊讶。28Si 纳米线的热导率提高不是 10% 甚至 20%,而是比具有相同直径和表面粗糙度的天然硅纳米线好 150%。这大大的超出了他们的预期,Wu 说。纳米线粗糙的表面通常会减慢声子的速度,那这是怎么回事呢?莱斯大学(Rice University)的 Matthew R. Jones 和 Muhua Sun 捕获的材料高分辨率 TEM(透射电子显微镜)图像发现了第一条线索:28Si 纳米线表面上的玻璃状二氧化硅层(SiO2)。而纳米线导热性研究的知名专家 Zlatan Aksamija 领导的马萨诸塞大学阿默斯特分校(University of Massachusetts Amherst)研究团队计算模拟实验表明,同位素“缺陷”(29Si 和 30Si 的不存在)阻止了声子逃逸到表面,其中 SiO2 层会大大减慢声子的速度。这反过来又使声子沿着热流方向保持在轨道上 - 因此在 28Si 纳米线的“核心”内不那么“混淆”。(Aksamija 目前是犹他大学(theUniversity of Utah)材料科学与工程副教授。)“这真的出乎意料。发现了两个独立的声子阻断机制 - 表面和同位素,以前被认为彼此独立的 - 现在协同作用,这使我们在热传导研究中获得了非常令人惊讶的结果,却也非常令人满意,“Wu 说。“Junqiao 和团队发现了一种新的物理现象,”Ager 说,“对于好奇心驱动的科学研究来说,这是一个真正的胜利。这真的是太令人兴奋了。”研究小组接下来计划将他们的发现推进到下一个阶段:研究如何“控制,而不仅仅是测量这些材料的热传导性能”,Wu Junqiao 说。莱斯大学、马萨诸塞大学阿默斯特分校、深圳大学和清华大学的研究人员参与了研究工作。这项工作得到了美国能源部科学办公室的支持。原文信息Giant Isotope Effect of Thermal Conductivity in Silicon Nanowires,Penghong Ci, Muhua Sun, Meenakshi Upadhyaya, Houfu Song, Lei Jin, Bo Sun, Matthew R. Jones, Joel W. Ager, Zlatan Aksamija, and Junqiao Wu,Phys. Rev. Lett. 128, 085901 (2022)https://doi.org/10.1103/PhysRevLett.128.085901
  • 石墨烯和石墨表面的共价修饰纳米图案
    石墨烯和石墨表面的共价修饰纳米图案研究人员在本文中展示了一种共价修饰的方法,并由此在石墨烯以及高定向热解石墨(HOPG)的表面成功地控制了纳米图案的形成过程。他们在对制得的样品进行了纳米级的表征后发现可以通过改变电化学反应的条件来调控所得纳米图案的尺寸。这种可以在表面构建纳米图案结构的方法使得目前电子产品微型化这一趋势可以进一步发展,同时也有益于其它各种各样纳米技术的应用。虽然目前已经存在一系列的自下而上的技术(也就是从单个分子的基础上搭建特定结构 )并被应用于在石墨烯以及HOPG基底上形成纳米图案结构。但是这些结构通常由非共价键形成,因此其稳定性受到很大的局限。 由来自比利时、越南和英国的科研人员组成的团队报道了一种通过共价修饰来控制纳米图案形成的方法。石墨的表面暴露在电解液中,而电解液包含了芳基重氮盐 NBD(4-nitrobenzenediazonium)以及TBD(3,5-bis-tert-butylbenzenediazonium)。然后在电化学池中通过循环伏安法以及计时电流法进行接枝反应。 研究人员通过原子力显微镜(AFM)和扫描隧道显微镜(STM)对样品进行了表征并在修饰后的石墨烯或HOPG表面发现了近乎圆形的斑点。这种结构被称为”nanocorrals”,研究人员认为其是由实验过程中在近表面形成的气泡引起的。AFM图像表明这种nanocorral的直径(约为45-130 nm)以及密度(20−125/μm2)可以通过分别改变电化学活化条件以及电解质比例的方法来进行人为调控。 这一实验方法可以十分便捷的制备出可调控的图形结构,可以在纳米约束反应中用作微小的“培养皿”。这种方法还可以促进超分子自组装领域以及其它表面反应的研究。Instrument usedCypher ES Techniques used研究人员通过循环伏安法制得样品后,借助了牛津仪器快速扫描AFM Cypher ES,以轻敲模式(tapping mode)对样品的表面形貌进行了纳米级的表征。Cypher ES具备着对样品环境进行精确控制的能力,在本实验中研究人员由此保持了样品处于32°C的恒温下。除了精确的多元环境控制功能,Cypher ES还具备着快速扫描、简单易用以及优于传统AFM的空间分辨率等优点。 Citation: Thanh Phan, Hans Van Gorp, Zhi Li et al., Graphite and graphene fairy circles: a bottom-up approach for the formation of nanocorrals. ACS Nano 13, 5559 (2019). https://doi.org/10.1021/acsnano.9b00439 Note: The data shown here are reused under fair use from the original article, which can be accessed through the article link above.
  • 基于石墨烯的纳米电子平台问世
    纳米电子学领域的一个紧迫任务是寻找一种可替代硅的材料。美国佐治亚理工学院研究人员开发了一种新的基于石墨烯的纳米电子学平台——单片碳原子。发表在《自然通讯》杂志上的该技术可以与传统的微电子制造兼容,有助于制造出更小、更快、更高效和更可持续的计算机芯片,并对量子和高性能计算具有潜在影响。石墨烯器件生长在碳化硅衬底芯片上。图片来源:佐治亚理工学院  研究人员称,石墨烯的力量在于其平坦的二维结构,这种结构由已知最强的化学键结合在一起。相较于硅,石墨烯可微型化的程度更深、能以更高的速度运行并产生更少的热量。原则上,单一的石墨烯芯片要比硅芯片内可封装更多器件。  为了创建新的纳米电子学平台,研究人员在碳化硅晶体基板上创建了一种改良形式的外延石墨烯,用电子级碳化硅晶体生产了独特的碳化硅芯片。  研究人员使用电子束光刻来雕刻石墨烯纳米结构并将其边缘焊接到碳化硅芯片上。这个过程机械地稳定和密封石墨烯的边缘,否则它会与氧气和其他可能干扰电荷沿边缘运动的气体发生反应。  最后,为了测量石墨烯平台的电子特性,研究团队使用了一种低温设备,使他们能够记录从接近零摄氏度到室温下的特性。  团队在石墨烯边缘态观察到的电荷类似于光纤中的光子,可在不散射的情况下传播很远的距离。他们发现电荷在散射前沿着边缘移动了数万纳米。而先前技术中的石墨烯电子在撞到小缺陷并向不同方向散射之前,只能行进约10纳米。  在金属中,电流由带负电的电子携带。但与研究人员的预期相反,他们的测量表明边缘电流不是由电子或空穴携带的,而是由一种不同寻常的准粒子携带的,这种准粒子既没有电荷也没有能量,但运动时没有阻力。尽管是单个物体,但观察到混合准粒子的成分在石墨烯边缘的相对侧移动。  团队表示,其独特的性质表明,准粒子可能是物理学家几十年来一直希望利用的粒子——马约拉纳费米子。
  • 【网络讲堂参会邀请】如何沉积纳米粒子 ——纳米粒子单层膜沉积实用指南
    如何沉积纳米粒子——纳米粒子单层膜沉积实用指南 纳米颗粒的二维致密单层膜沉积是多种技术和科学研究的基础。例如,纳米粒子单层膜可以作为传感器上的功能层,也可以用来生产用于纳米球光刻的胶体掩模。但是,怎样才能高效、可靠地得到具有三维自由度的纳米颗粒溶液,并将这些颗粒限制在横跨大基底的(二维)单层中呢?传统的纳米颗粒沉积技术纳米颗粒沉积技术种类繁多。一些相对简单和快速的方法包括溶剂蒸发、浸渍镀膜和旋涂镀膜。然而,这些技术可能会浪费大量的纳米颗粒,并且无法有效控制纳米颗粒的密度和配位结构。溶剂蒸发溶剂蒸发容易产生所谓的咖啡渍圈环效应,这种效应是由马朗戈尼流动引起的。这将导致不均匀沉积,中心的纳米粒子沉积稀疏,而边缘则形成多层纳米粒子沉积。 浸渍镀膜另一方面,如果只是用纳米粒子覆盖基底,浸渍镀膜将是一种很好的技术。然而,使用这种方法沉积纳米颗粒单分子层是非常具有挑战性的。同时,浸渍镀膜需要大量的纳米颗粒,这在处理昂贵纳米颗粒材料时将成为一个大的限制因素。 旋涂镀膜旋涂镀膜也是一种很有吸引力的方法,因为它易于规模化放大,而且在半导体工业中是一种众所周知的技术。然而,使用这种方法,薄膜的质量和多个工艺参数紧密相关,如:自旋加速度、速度、纳米颗粒的大小、基材的润湿性和所用溶剂。这使得对薄膜属性的精确控制变得非常困难。而且,一般旋涂镀膜需要大量的纳米颗粒溶液。 气液界面的单层镀膜在这里,气液界面沉积纳米颗粒单层提供了一种高度可控的沉积方法,可以将其沉积在几乎任何基底上。纳米颗粒被限制在气液界面,界面面积逐渐减小,使得纳米颗粒更加紧密地聚集在一起,从而可以实现控制沉积密度的目的,因为单位区域面积沉积的纳米颗粒的数量很容易计算,这样对纳米颗粒的需求量就会大大降低。 单层薄膜形成后,可以通过简单的上下提拉基底即可将界面上的薄膜转移到基底上。 在线网络研讨会报名如果您对如何制备纳米颗粒单分子膜感兴趣,想获取更多这方面的知识,请报名参加由伦敦大学学院的Alaric Taylor博士举办的题为“纳米颗粒单分子层薄膜沉积实用指南”的网络研讨会。报告人Alaric Taylor简介:Alaric Taylor博士是伦敦大学学院工程和物理科学研究委员会(EPSRC)研究员,他在纳米光子材料的制造,尤其是通过在气-液界面开发胶体单层自组装方面有很高的造诣。 报告内容:? 详细讲解纳米颗粒沉积的具体操作? 指出需要注意的事情? 讲述纳米颗粒沉积的技巧 报告时间:2018年9月13日下午3:00(北京时间)报名联系:如需参会,请填好下列表格中的信息发送至,邮箱:lauren.li@biolinscientific.com;姓名单位邮箱电话特别提醒:因为可能会涉及电脑、系统、耳机等调试问题,建议大家提前5-10分钟进入链接。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制