当前位置: 仪器信息网 > 行业主题 > >

纳米复合物

仪器信息网纳米复合物专题为您整合纳米复合物相关的最新文章,在纳米复合物专题,您不仅可以免费浏览纳米复合物的资讯, 同时您还可以浏览纳米复合物的相关资料、解决方案,参与社区纳米复合物话题讨论。

纳米复合物相关的论坛

  • 聚电解质复合物纳米胶束的合成及性能研究

    【序号】:1【作者】: 张亚南【题名】:聚电解质复合物纳米胶束的合成及性能研究【期刊】:江南大学 【年、卷、期、起止页码】:2015【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD201501&filename=1014370567.nh&uniplatform=NZKPT&v=N8nmz_MTeIseDPCQglHFnPjs2A0-D2ZMflhoJYxzpAWDFqMpWg7IUqNHLX8MEBZH

  • 中科院长春光机所全球首创“纳米荧光炸弹”

    近日,中科院长春光机所在国际上首次提出超级碳纳米点的概念,并研制出基于超级碳纳米点的水触发“纳米荧光炸弹”。复合该“纳米荧光炸弹”的纸可以实现喷水荧光打印、指纹汗孔荧光采集等多种实际应用。  荧光成像可作为一种有效的技术方法,在数据存储、数据安全和临床诊断等领域具有重要应用。该方法很大程度上依赖于新型智能发光材料的开发。近年来,一种新型的碳纳米材料,即荧光碳点的出现,使原本非发光的碳材料表现出优异的发光特性,引起国际上极大关注。  以往碳纳米点的研究主要针对单个碳纳米点的发光特性。中科院长春光机所研制出基于“超级碳纳米点”的水触发“纳米荧光炸弹”,使得碳纳米点材料成为一种新型的智能发光材料。这种“超级碳纳米点”遇水会分解成独立的小尺寸碳纳米点,进而会导致其光致荧光增强。这种“超级碳纳米点”的纸复合物,会产生快速的水诱导光致发光增强现象,“超级碳纳米点”复合纸可作为无墨打印纸进行喷水荧光打印,实现更加环保的信息存储和信息加密。这种成本低、环保、全新的碳基纳米材料,还可以用在医疗和诊断领域。通过在“超级碳纳米点”复合纸上按压手指,可以快速、精确地采集指纹上处于激活状态的汗孔分布图,实现个人指纹信息更加安全、可靠的采集及个人健康的诊断。

  • 小角x射线散射-纳米结构表征

    小角x射线散射(small angle x-ray scattering)SAXS是分析材料纳米结构的理想工具,适用于液体和固体等不同种类的样品分析.对尺度在1~100nm的超分子结构内部排列方式的准确理解有助于解释材料的宏观性质进而实现可控制备。。SAXS分析能提供的信息举例:聚合物和纳米复合物► 形状和内部结构► 结晶度► 周期性纳米结构► 取向性纤维► 内部结构► 结晶度► 比表面积► 取向性及其分布催化剂► 比表面(孔隙度)► 颗粒尺寸及分布► 结晶度表面活性剂与分散体系► 胶束尺寸和形状► 乳液形状和内部结构► 囊泡壁的内部结构► 颗粒集结成核现象液晶► 尺寸(分布)和形状► 聚集的有序度► 取向性生物材料► 蛋白质在溶液中的结构信息(形状、尺寸)► 内部结构► 聚集状态► 分子量

  • 【转帖】无机纳米粒子复合乳液的研究进展!

    无机纳米粒子复合乳液的研究进展 王玉玲,邓宝祥 (天津工业大学材料科学与化学工程学院,天津300160) 摘要:对纳米SiO2复合乳液的合成制备作了详细的综述,介绍了共混法、插层法、溶胶-凝胶法和原位分散聚合法,概述了纳米SiO2对复合材料性能的影响及其特性和发展。 关键词:纳米粒子 SiO2 聚丙烯酸 复合乳液 0引言 乳液型复合材料具有价廉、安全无污染及使用方便等特点,在胶粘剂、涂料、皮革、纸张、纤维、纺织等领域已得到广泛应用。但是乳胶膜在某些性能上存在缺点,例如,耐候性差、硬度低、胶膜冷脆热粘等,这样其应用性就会受到限制。如果在聚合物乳液中加入无机纳米粒子制成无机纳米粒子复合乳液,利用纳米材料的特性制备性能优异的复合乳液,则在乳液性能上会有很大的提高,使这种复合乳液比单纯的有机乳液具有更好的应用前景。 这种复合乳液属于有机-无机复合材料,它并非是无机相与有机相的简单加合,而是由无机相与有机相在纳米范围内结合而成,在这两相的界面上有着或强或弱的各种物理键和作用(范德华力、氢键等),这种作用赋予材料各种优异的特性。纳米级材料本身具有的特性效应,SiO2表面具有不饱和的残键及不同键合状态的—OH,促使分子呈现出三维结构形态。同时,也是由于这种三维硅石结构,庞大的比表面积和纳米效应,表面严重的配位不足,表现出极强的活性,所以,对色素粒子的吸附力很强,紧紧包裹在色素粒子的表面,形成屏蔽作用,大大降低了因紫外光的照射而造成的色素衰减,这样就能大大提高涂料的附着力与耐候性。 1纳米粒子的分散方法 纳米粒子由于颗粒小,其表面原子比率很高,比表面积大,所以颗粒间往往会通过范德华力、氢键以及一些共价键的作用而互相吸引,形成二次粒径,三次粒径,即团聚体。这种团聚现象就会使纳米粒子失去其独特性,因此合理经济的分散方法十分重要。 1.1物理机械分散法 利用机械搅拌或超声波的方式使纳米粒子均匀分散。 1.2化学试剂添加法 通过加入表面活性剂等化学试剂降低界面之间的张力,添加吸附稳定剂形成界面膜包覆纳米颗粒,即立体保护作用。 2纳米粒子复合乳液的合成方法 有关纳米复合乳液的制备方法,文献报道最多的有:共混法、插层法、溶胶-凝胶法和原位分散聚合法。 2.1共混法 这种方法是先制备出各种形态的纳米粒子,再通过各种方法(例如机械搅拌、超声波等)将其与制备好的乳液直接共混,是制备纳米杂化材料最简单的方法。为防止纳米粒子团聚,需对其表面进行处理。张宝华等通过超声分散仪将纳米SiO2直接与制备好的PUA离聚物乳液共混制得了复合乳液。用激光粒度分布仪检测表明SiO2在复合乳液中呈现纳米尺寸分布,且发现共混法制得的复合乳液能显著改善涂膜的紫外光吸收性能、热学性能及机械性能。曾丽娟等以无机系硅溶胶为主,有机高分子乳液为辅,二者共混改性硅溶胶苯丙复合涂料,所得的涂料具有无机涂料和有机涂料的特性,又弥补了两者的不足,是非常有前途的环保涂料。并在这篇文章中介绍了最佳共混条件的优化选择,以及颜填料、助剂的选用对涂料性能的影响。 2.2插层法 插层复合法是制备聚合物基无机杂化材料的一种重要方法。利用层状无机物(如硅酸盐类粘土、石墨、V2O5、Mn2O3、二硫化物等)作为无机相主体,将单体或聚合物作为客体插入主体的层间,制得插层型杂化材料。用这种方法制备无机纳米粒子复合乳液主要又分为下面3种。 2.2.1嵌入原位聚合方法 先将高分子单体和层状无机物分别溶解到某一种溶剂中,然后单体在外加条件(如氧化剂、光、热、电、引发剂等)下发生原位聚合,利用聚合时放出的热量克服硅酸盐片层间的库伦力而使其剥离,从而使纳米尺度硅酸盐片层与高分子物基体以化学键的方式结合。王一中、李同年分别以此法制备了聚甲基丙烯酸甲酯(PMMA)/蒙脱土(MMT)和聚苯乙烯(PS)/蒙脱土(MMT)嵌入混杂材料 LeewookJang和范宏制备了苯乙烯-丙烯腈(SAN)/MMT纳米复合材料 官同华等合成了聚甲基丙烯酸甲酯(PMMA)/蒙脱土(MMT)纳米材料,并对其性能进行了表征 金星等采用双-苯基二甲基十八烷基溴化铵(TBDO)作为有机插层剂对钠基蒙脱土进行了有机化处理,该有机化的蒙脱土粒子在苯乙烯单体中很容易地分散并形成稳定的胶体溶液。通过对分散由蒙脱土的苯乙烯进行自由基聚和制备了聚苯乙烯-蒙脱土纳米复合材料,X衍射和透射电镜研究表明形成了原位插层型和部分插层部分剥离型纳米复合材料。且其与纯聚苯乙烯相比,具有更高的相对分子质量,较低的玻璃化转变温度(Tg)和优良的热稳定性。

  • 【技术@创新】科技日报:我科学家合成世界首例单晶碲化物纳米带

    在国家自然科学基金委、科技部、中国科学院的大力支持下,中国科学院长春应化所稀土化学与物理院重点实验室张洪杰研究员课题组,在一维碲化锑纳米材料合成方法的开发方面取得了重大突破,有关研究成果发表在近期的美国化学会杂志上。 表面活性剂辅助的水热合成方法在制备一维纳米材料方面展示出了超凡的能力。同时它还具有操作简单,可控性强,产物均匀,结晶性好,绿色环保等大量优点。因此,该方法在纳米材料合成中被广泛采用。然而,由于碲源的选取和原料与水反应等方面的困难,这种方法始终未能在碲化物纳米材料合成中获得成功。张洪杰研究员等人将这种方法进行了一系列改进,终于得到了世界上首例单晶碲化物纳米带。他们选用在氮气保护的条件下得到的碲氢化钠水溶液作为碲源;同时还运用酒石酸与易与水反应的锑盐形成稳定的复合物,从而确保了其水溶液中含有大量的锑离子。通过调节加入表面活性剂的浓度实现了对碲化锑产物形貌的控制。这一研究成果为获得其它低维碲化物纳米结构材料提供了一个良好的思路。所获得单晶碲化锑纳米带极有可能会具有更为优良热电性能。审稿人一致认为该研究成果对材料科学领域具有极其重要的贡献。碲化锑是一种具有较高优值ZT(figureofmerit)的热电材料。大量理论与实验结果显示将热电材料制成低维纳米结构将会极大地提高其性能。因此,开发一种合成低维碲化锑纳米材料简单可控的合成方法在功能材料研究领域也具有重大意义。

  • 【创新】我科学家合成世界首例单晶碲化物纳米带

    在国家自然科学基金委、科技部、中国科学院的大力支持下,中国科学院长春应化所稀土化学与物理院重点实验室张洪杰研究员课题组,在一维碲化锑纳米材料合成方法的开发方面取得了重大突破,有关研究成果发表在近期的美国化学会杂志上。表面活性剂辅助的水热合成方法在制备一维纳米材料方面展示出了超凡的能力。同时它还具有操作简单,可控性强,产物均匀,结晶性好,绿色环保等大量优点。因此,该方法在纳米材料合成中被广泛采用。然而,由于碲源的选取和原料与水反应等方面的困难,这种方法始终未能在碲化物纳米材料合成中获得成功。张洪杰研究员等人将这种方法进行了一系列改进,终于得到了世界上首例单晶碲化物纳米带。他们选用在氮气保护的条件下得到的碲氢化钠水溶液作为碲源;同时还运用酒石酸与易与水反应的锑盐形成稳定的复合物,从而确保了其水溶液中含有大量的锑离子。通过调节加入表面活性剂的浓度实现了对碲化锑产物形貌的控制。这一研究成果为获得其它低维碲化物纳米结构材料提供了一个良好的思路。所获得单晶碲化锑纳米带极有可能会具有更为优良热电性能。审稿人一致认为该研究成果对材料科学领域具有极其重要的贡献。碲化锑是一种具有较高优值ZT(figureofmerit)的热电材料。大量理论与实验结果显示将热电材料制成低维纳米结构将会极大地提高其性能。因此,开发一种合成低维碲化锑纳米材料简单可控的合成方法在功能材料研究领域也具有重大意义。来源:科技日报

  • 纳米生物:创新在起跑线

    ——国家863计划纳米生物技术主题专家张阳德教授访谈录编者按:岁末年初,我国纳米生物领域出现了几件大事:2007年12月31日,中国医药生物技术协会纳米生物技术分会在深圳宣告成立。工程院院士何继善、科学院院士姚开泰等全国近百名专家参加。2008年2月,中国纳米生物技术分会在北京举行第一届委员大会,卫生部纳米生物技术重点实验室主任、卫生部肝胆肠外科研究中心主任、中南大学生物医学工程研究院院长张阳德教授,选举为首届主任委员。大会选举了中国工程院陈志南院士、中国科学院曾益新、魏于全、姚开泰院士、江雷教授5位专家为副主任委员。郭应禄院士等35名业内专家为常务委员。这个汇集我国纳米生物领域的医学、化学、微电子、精密机械加工的专家组成的强大团队,将整合科技界、产业界纳米生物技术的资源,开展国家“863计划”纳米生物技术研究的攻关和实施。为此,我们邀请张阳德教授阐述了我国开发纳米生物技术尤其是在医学应用的战略和关键问题。先发制人,后发制于人记者:科学的交叉与融合,产生了一些新兴的领域。其中纳米生物技术与医用材料,就属于这样的领域。作为国家863计划纳米生物技术的主题专家,你如何看待当今纳米生物技术的发展现状?张阳德:即使你比刘翔跑得还要快,你也得与对手站在同一条起跑线上。我们在现代科技与产业的一些方面,落后于西方发达国家,这并不是我们跑得不够快,而是因为没能站在同一个起点。纳米生物技术是纳米科技与当代生物医学多学科结合的产物,是当代生物技术的前沿和热点。尤其在医药卫生领域有着广泛的应用和巨大的产业化前景。当今国际,由纳米药物载体,纳米生物传感器,纳米生物临床检测诊疗手段引发的新技术革命方兴未艾。据预测,到2010年,纳米生物技术对美国GDP的贡献将达到万亿美元,在日本的市场规模也将达到30万亿日元。在中国这样的人口大国,市场前景更加不可限量。纳米生物技术在医学临床应用,将成为我国重要的战略高技术领域,直接影响着国民经济和社会发展,关系到国家安全和人民健康。记者:目前这一领域中各国的竞争趋势如何?张阳德:先发制人,后发制于人。抢占战略制高点,向来是发达国家发展战略高技术的一个原则。从2000年开始的美国国家纳米技术行动计划,将纳米生物医疗列为突破重点。美国国家卫生研究院(NIH)2001年专门组织了“纳米科技与生物医学”的研讨会,提出了“纳米科技将导致新的生物学和生物工程”的结论。美国NIH在2002年度科研项目计划中,超过50%%的经费是针对生物反恐怖的,其中多数项目的完成希望借助纳米科学技术。美国国家癌症研究所(NIC)的计划是希望借助纳米科学技术,主要包括纳米颗粒材料技术以及纳米传感器技术,形成一些新的、针对恶性肿瘤的早期诊断与治疗技术。欧盟2002年正式推出了第6框架计划(2002~2006年),旨在将科学发展的成果转化为产业界的实际竞争优势。纳米生物技术的研究重点包括先进的药物传递方式、具有生物实体的纳米电子学、生物实体的界面、生物实体的电子探测、生物分子或复合物的处理操纵和探测。

  • 俄科学家合成出一种光控纳米复合材料

    中国科技网讯 据俄罗斯科技网近日报道,莫斯科国立大学精细化工技术学院、俄罗斯科学院生化物理研究所和化学物理问题研究所的三个顶尖科研小组宣布,他们利用光敏配合基和硒化镉,成功合成了一种光控纳米复合材料。这种复合材料的性能可以通过改变特定波长的光照射而发生变化,可用于“智能”光敏控制设备。相关论文发表在《俄罗斯纳米技术》杂志上。 通过光线照射使光敏配合基的性能发生有针对性的变化,这是当前非常热门的研究领域。通常,这一研究领域的成果将有助于建立一些智能设备的原型,如分子光开关、光控逻辑模块、检测离子的传感器设备等等。研制出的最终产品将应用于生物信息学、纳米医学和其他一些应用科技领域。 科学家们成功地将配合基分子固定在硒化镉纳米粒子的表面,从而形成了复合连接。其中无机纳米硒化镉(科学家称之为量子点)具有荧光控制的特点。所谓荧光控制,是指一些原子和分子具有吸收较高能量的光子,然后释放能量较低光子的特殊能力,例如一些荧光染料,它们能够吸收太阳辐射出的不可见紫外线,然后自身发出可见光。这种光线的颜色很饱和,我们在舞厅里常常会看见这种荧光灯发出的光芒。硒化镉量子点的荧光特性毫不逊于有机荧光分子,后者在生物学和医学上广泛得以使用。例如,量子点发出的波长取决于纳米粒子的大小,通过改变纳米粒子的大小就可以指定它们发出波长的频谱区域,这一特性有助于建立具有良好灵敏度和清晰度的单分子光敏系统,其在纳米级无机量子点的研究中被广泛应用。 在此项研究中,科学家使用一个直径为3.7纳米的硒化镉粒子,这种纳米粒子尤其善于吸收最大波长为585纳米的可见光。光敏配合基根据光的影响而改变其配置能力,进而改变硒化镉量子点的荧光光谱和大小。在原始复合材料中可明显观察到波长598纳米的量子点荧光。用短波照射复合材料后,材料的配置发生变化,开始发出波长为670纳米的荧光。如果把复合材料放置在黑暗中或用可见光照射一段时间,配合基分子会自动恢复到原始状态,而复合材料也趋于最初的荧光特点。基于此原理,他们获得了这种通过改变特定波长的光照射来控制属性的复合材料。此外,这种变化是可逆的,复合材料可以很容易地返回到其原始状态。这一研究结果对构建光敏智能控制系统原型具有良好前景,可用于特殊领域的光敏开关。(记者 曲键) 《科技日报》(2012-05-26 二版)

  • “纳米荧光炸弹”诞生记

    http://i8.hexunimg.cn/2014-12-22/171641519.jpg在可见光(a)和可见兼紫外光(b)照射下,用纯水墨盒和HP-46 三色墨盒打印在“超级碳纳米点”复合纸上的照片。http://i6.hexunimg.cn/2014-12-22/171641520.jpg  水触发“超级碳纳米点”复合纸的荧光增强机制图 长春光机所供图  本报记者 杨琪  中科院长春光机所副研究员曲松楠带领团队在“超级碳点”的研究中引入超分子科学思想,日前在国际上首次提出“超级碳纳米点”的概念,研制出了基于“超级碳纳米点”的水触发“纳米荧光炸弹”。  水滴可以做什么?答案五花八门,而来自中国科学院长春光机所的曲松楠团队给出的答案则令人惊叹—水滴可以触发“纳米荧光炸弹”!  “当这种"超级碳纳米点"遇到水,就会分解成独立的小尺寸碳纳米点,进而导致荧光增强,使得碳纳米点材料成为一种新型的智能发光材料。”长春光机所副研究员曲松楠告诉《中国科学报》记者。他们在国际上首次提出“超级碳纳米点”的概念,并研制出基于“超级碳纳米点”的水触发“纳米荧光炸弹”。  复合该“纳米荧光炸弹”的纸可以实现喷水荧光打印、指纹汗孔荧光采集等多种实际应用,相关结果发表在国际著名期刊《先进材料》上。  曲松楠告诉记者,这种成本低、环保、全新的碳基纳米材料还可以用在医疗和诊断领域。“我们在碳点的研究中引入超分子科学的思想,相信"超级碳点"的研究将会走得更远,不断给人们带来新的发现。”他说。  提出新概念  研究人员告诉记者,荧光成像作为一种有效的技术方法,在数据存储、数据安全和临床诊断等领域具有重要应用。该方法很大程度上依赖于新型智能发光材料的开发。近年来,一种新型的碳纳米材料,即荧光碳点的出现,使原本非发光的碳材料表现出优异的发光特性,引起广泛关注。  曲松楠带领科研团队自2012年便开展了对新型荧光碳点的研究工作,在逐步深入研究的同时也在开发其应用价值。  最初,他们研制出具有较好绿色荧光特性的碳点,并证明其可作为环保型的荧光墨水。之后,他们对这种碳点的发光特性进行深入研究,研制出具有较纯绿光发射和低自吸收特性的碳点,并实现了碳点在绿光波段的光泵浦激光。最近,这支团队在国际上首次提出“超级碳纳米点”的概念,并研制出基于“超级碳纳米点”的水触发“纳米荧光炸弹”,使得碳纳米点材料成为一种新型的智能发光材料。  “碳点研究最重要的环节是不断创新,不断寻求碳点研究思想的突破,不断推进碳点研究的实际应用。”曲松楠说。  曲松楠解释说,这种“超级碳纳米点”是由部分烷基链修饰的碳纳米点在甲苯中自组装而成。由于聚集导致其荧光淬灭,表现出极弱的荧光。这种“超级碳纳米点”遇水会分解成独立的小尺寸碳纳米点,进而会导致其光致荧光增强。  “同时,这种"超级碳纳米点"的纸复合物会产生快速的水诱导光致发光增强现象。"超级碳纳米点"复合纸可作为无墨打印纸进行喷水荧光打印来实现更加环保的信息存储和信息加密。”他说。  未来将有更多惊喜  曲松楠所带领的这支队伍成员都非常年轻,年龄基本都在30岁左右。在长春光机所鼓励创新的氛围下,他们自发组建形成团队,充满了干劲和激情。  团队成立初期,遇到的最大挑战是在有限的科研条件下能否做好碳点研究。  他们是幸运的。“研究所的发光学及应用国家重点实验室给了我们200万元的科研经费支持,同时也在其他方面给我们提供了帮助,这都让我们可以踏实地做科研。”曲松楠说。  曲松楠明白,要让成员充满信心,就必须让每一个人看到自己所研究成果的价值。“有了信心就有了凝聚力,就有了动力”。  他们最近发表了一篇成果论文,研究工作主要是由一名刚加入该团队的博士生完成的。实际上,这位成员前期并未从事过碳点的研究,而从最初布置实验到文章投稿,他仅用了半年时间就掌握了全部要领。  这段时间里,曲松楠与他一起做实验,不断激发他的科研兴奋点,让他看到自己研究工作实实在在的价值。“当成果陆续发表后,大家的信心就更加充足了,所有的辛苦没有白费。”  “今年,我们团队的"碳点"研究获得了首批中国科学院卓越青年科学家项目240万元的科研经费支持。这为我们团队继续发展提供了重要保障。有了这样的支持,虽然工作很辛苦,但是大家对"碳点"的研究更加有信心!”曲松楠说。  他们不仅探索前沿科技,同时也重视研究成果的实际应用价值。  碳纳米点的最大优势是其原料广泛、制备成本低、环境友好、光稳定性好等优点。喷水打印是一种新型、环保的技术,主要是利用水敏材料水致诱导吸收的变化实现信息的打印。  “具有喷水荧光信息打印的纸张鲜有报道。我们基于"超级碳点"体系实现了水诱导荧光增强,制备出了具有水致荧光增强特性的"超级碳点"的复合纸。”他说。这种“超级碳点”复合纸通过普通喷墨打印机进行喷水打印和简单指尖按压即可获得永久的、光稳定性好的、高质量的荧光信息打印和指纹汗孔荧光图像的采集,在荧光信息存储、信息安全防护和医疗诊断等领域都具有潜在应用。  未来,这支年轻的团队将针对碳点发光机制、光电特性调控、自组装行为调控、光电器件研制等几个方面开展深入研究,紧密围绕碳点体系的实际应用,推进碳点研产学的快速发展。  《中国科学报》 (2014-12-22 第6版 进展)

  • 利用高速分散机分散太阳能电池耐刮涂层的纳米复合型材料

    工作原因,最近翻译了一份稿件,发出来分享一下,原文附在最后,欢迎大家批评斧正!摘要柔性太阳能电池的表面涂层要求是高性能的紫外固化丙烯酸酯纳米复合材料。他们的合成不仅是一个微调的化学步骤,同时要求分散和研磨的过程。已申请专利的气相二氧化硅原位硅烷化在德国VMA公司的TORUSMILL®研磨分散机的帮助下表现得最好。从VMA实验室系列分散研磨机参数的可比性更简单方便的帮助从实验室试样放到规模生产。简介非凡的挑战要求非凡的解决方案:柔性太阳能电池要受到阳光、风力和各种外界因素几十年的摧残。要承受这些极端的要求,表面涂层必须柔韧,耐磨和耐划伤。当然,高透明度,成本效益和避免底材温度过高这些性能也是需要的。由于同时要求高的生产效率和低的工艺温度,优异性能的紫外光固化丙烯酸酯系统是首选。通过加入无机粒子,可使得丙烯酸酯配方的耐刮性和耐磨性可以进一步提高。只要填充度低于的阈值为25%体积(大约与40%质量百分比一致,因为无机颗粒的密度更高)则被认为是表面硬度与填充度呈线性过程。涂料表面硬度的提高比期望的颗粒硬度要低(图1)。直到超过渗流阈值,即颗粒不能再滑动,总硬度成为颗粒和基体的加权和。超过了渗流阈值,另一方面也就意味着这个系统不再搅动。插图1很明显地显示了理论状况,这就是众所周知的冶金过程。http://muchongimg.xmcimg.com/data/bcs/2016/1125/2685408_1480061742_165.gif图1: 提高填充度的紫外光固化纳米复合材料的微硬度的改善随质量百分比显示。插图显示了硬度和填充度的体积百分比在整个范围内的理论关系。突出的区域对应于主图中显示的数据。分散技术如果不是粒子本身的硬度,那是什么决定了不同填充度的硬度变化呢?这是由颗粒与基体之间的相互作用及矩阵,这受到粒子的表面处理,也即分散技术相互作用的控制。最不理想的情况是,微硬度随填充度的增加而降低,我们最近在实验室研究的一个水性纳米粒子丙烯酸酯系统(数据未显示)就是这种情况。另一方面,为了实现最大的颗粒基质相互作用的原位表面改性的硅烷化是在莱布尼茨研究所研发的。这一专利的概念是基于著名的化学反应与一个新过程的组合。颗粒表面硅烷化包括前体步骤(通过相应的烷氧基硅烷的水解形成的硅醇基取代)和硅烷醇与表面羟基缩合来结合扩散,从而提供表面活性。因为这些过程是丙烯酸酯基的自身反应,并不需要不确定的反式扩散。最后,每个颗粒都有了自己的硅烷均匀包裹,再交联与基体形成坚硬的质膜。如太阳能电池所用的透明薄膜,就需要非常精细的纳米颗粒。操作会产生气相二氧化硅纳米粒子(Degussa的气相二氧化硅比表面积至少200m2/g,即Aerosil200和Aerosil380)未经表面处理的这些粒子通常作为一种触变剂,百分之几的质量足以将清漆变成高粘度的腻子。这种效果当然也发生在中纳米复合材料的合成过程:纳米颗粒必须计量并慢慢加到有丙烯酸酯的TORUSMILL® 研磨分散机 中,该型号的分散机具有高扭矩力的引擎,并能满负荷运转。随着分散的开始并在表面反应的辅助下,纳米复合材料的粘度再次下降。当降低转矩力,机器上会显示出综合数值,告知操作员什么时候恢复供给二氧化硅纳米颗粒。一个完全自动化的耦合转矩控制和粒子计量已经应用在TORUSMILL® TM500中。透明清澈的纳米复合材料——使用TORUSMILL®使用传统的分散机是不可能得到完全透明清澈的清漆而且完全没有附聚物的。这就是TORUSMILL®专利系统的关键之处,分散机的预分散与研磨砂的创新结合,能有效地对基料先作预分散,之后用高性能的珠磨作研磨,不再需要转移基料:已经合成了纳米粒子超过20%质量百分比的透明清澈的纳米复合材料。透明清澈的意思是通过半米厚的纳米复合材料,仍能看到放在桶底的硬币上的字母。TORUSMILL®系列为纳米复合材料的合成线路的发展提供了极大的便利。 TORUSMILL® TM 10已经大批量运用在10L的规模原料下,也已经有了一些经验,更大的机器通常需要用更多的时间。很快将会大批量生产100L的型号 (图2是TM100) 或者是半吨规模的(TM500)。这种方式就是购买原材料从实验室小样到试生产到扩大规模生产的时理步骤。最终的产品通过在TORUSMILL®上的IOM系统生产的丙烯酸酯纳米复合材料表现出令人惊讶的低粘度,使我们制造出高填充度且涂层柔韧耐磨的太阳能电池。柔性太阳能电池还在试生产阶段,而丙烯酸酯纳米复合材料已经由莱比锡的Cetelon Nanotechnik成吨大批量生产并由WKP Unterensingen进一步加工成了耐受性极强、超细克拉级的箔。VMA TM砂磨分散机http://muchongimg.xmcimg.com/data/bcs/2016/1125/2685408_1480061743_427.gif图2: 来自VMA Getzmann的TORUSMILL®TM100安装在能在IOM研制纳米合成材料的AFM扫描仪前面,这台扫描仪能展示颗粒被碾磨成坚硬骨料(70nm)的合成过程。http://muchongimg.xmcimg.com/data/bcs/2016/1125/2685408_1480061743_367.gifFig. 3:柔性电池和尺子比较.

  • 磷脂复合物液相分析和制备问题

    最近在做磷脂复合物,查了许多文献,大部分都是用氯仿溶解计算复合率,想问一下计算复合率,洗脱溶剂只能氯仿吗可以用别的吗,选择的要求是什么,还有如果用液相检测磷脂复合物药物的含量,需要用什么溶剂将它溶解,才能保证测的是磷脂复合物中药物含量,麻烦帮助解答一下,谢谢

  • 【求助】用EBSD研究碳纳米管/高分子复合材料合适吗

    所里准备要买一个扫描电镜, 我们目前是做碳纳米管/高分子符合材料的。老板对EBSD很感兴趣, 想通过EBSD观察碳纳米管在高分子基体中的排列,取向情况。考虑到碳纳米管虽然算晶体,有规则晶格排布。但是尺寸太小了啊。用EBSD能获得碳纳米管的相关信息吗。另一个问题还有高分的结晶程度通常很低, 所以EBSD对它的作用应该不大把。看了很多资料,EBSD通常用于陶瓷, 金属的, 因为他们都有规则的晶体结构, 能得到好的结果。但是很少有用在高分子上的。而且找了半天的资料, 也没有EBSD在研究碳纳米管上的应用。这里请教达人,用EBSD研究碳纳米管/高分子复合材料 合适吗。下周要给老板回话, 告诉他要不要买这个EBSD 探头, 着急啊,谢谢了

  • 高分子复合物研究进展

    【序号】:2【作者】: 陈俊华1蒲迪1周洋【题名】:高分子复合物研究进展【期刊】:广州化工. 【年、卷、期、起止页码】:2015,43(10)【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2015&filename=GZHA201510013&uniplatform=NZKPT&v=vaeHr1oF6kdnNS_Ovj956AwA9so69ltmsganFMzdLYJwEOjexxgDWnyO8_9bIxzq

  • LC-ESI-MS研究蛋白质复合物

    LC-ESI-MS研究蛋白质复合物

    LC-ESI-MS研究蛋白质(多聚体)复合物的实验中,LC用水作流动相,蛋白质及复合物带太多水分子而使质谱图复杂,而不易看到蛋白质和小分子配体的结合,而用酸水作流动相,又常遇到蛋白复合物被破坏的问题,请问有没有好的分析策略?向各位请教啦,谢谢!从图上可以看出右方四聚体部分的多电荷质谱图复杂,带有较多水分子。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_648498_1634433_3.png

  • 纳米片材料性质

    [font=微软雅黑][size=10.5000pt]由于纳米单元层都是一个动力学独立的片状颗粒,其空间位阻被降到最低,因此可以与任意大小的微粒同纳米层实现组装,进而合成一系列利用常规方法不能抽取的插层化合物,特别是插入体积非常大的客体分子。[/size][/font][font=微软雅黑][size=10.5000pt][font=微软雅黑]此外,剥离得到的纳米层通过剥离[/font]/重组技术可以制备新的纳米功能薄膜、纳米功能积层材料、有效高比表面积的催化材料材料以及有机-无机复合材料等。[/size][/font][font=微软雅黑][size=10.5000pt]期待合成的纳米材料在磁性材料、选择性催化剂、选择性吸附剂,锂离子二次电池正极材料等方面得到广泛应用。[/size][/font][align=left][b][font=微软雅黑][size=12pt]层状化合物及分类[/size][/font][/b][/align][font=微软雅黑][size=10.5000pt]随着纳米复合材料的深入研究,另一类多功能的无机层状化合物已成为合成功能性复合材料重要的前驱物或基本组成单元。无机层状化合物的各类繁多,一般以层状主体是否带电来进行分类。[/size][/font][font=微软雅黑][size=10.5000pt]阴离子型层状化学物:是指层间具有可交换阴离子或中性分子的层状结构主体,且层状主体构架是带正电荷的。其中比较有代表性的主要是:水滑石、类水滑石。它们的主体成份一般是由两种金属的氢氧化物构成,因此又称其为双金属氢氧化物。[/size][/font][font=微软雅黑][size=10.5000pt]阳离子型层状化合物:是由带负电结构单元通过共用边、角、面形成的层状框架或网络。片层电荷补偿是通过层间可移动的阳离子如钾离子或者纳离子等或中性分子来实现。其中比较有代表性的是蒙脱土、绿土、磷酸盐、硅酸盐、钛酸盐和砷酸盐和铌酸盐。[/size][/font][font=微软雅黑][size=10.5000pt][font=微软雅黑]中性层状化合物:即层状主体结构是电中性的。这类化合物层与层之间是范德华力维持,研究较多的是石墨、层状双硫氧化物、[/font]V[/size][/font][sub][font=微软雅黑][size=10.5000pt]2[/size][/font][/sub][font=微软雅黑][size=10.5000pt]O[/size][/font][sub][font=微软雅黑][size=10.5000pt]5[/size][/font][/sub][font=微软雅黑][size=10.5000pt]等。[/size][/font]

  • 国家纳米中心等提出的新型纳米药物设计有望突破经典理论

    中科院纳米生物效应与安全性重点实验室(国家纳米科学中心和中国科学院高能物理研究所共建)的赵宇亮、陈春英等科研人员的实验研究工作与IBM周如鸿研究员的理论模拟相结合,在肿瘤高效低毒纳米药物的研究方面,取得重要的进展(PNAS, 109, 15431, 2012)。这是继2010年和2011年后,该研究组在《美国国家科学院院刊》发表的又一研究成果。 该研究组在2004年发现,原来设计为新一代MRI医学造影剂的含Gd金属富勒烯具有高效抑制肿瘤生长的功能。通过表面化学修饰,研究人员得到了几乎没有毒副作用的Gd@C82(OH)22。它不杀死肿瘤细胞,而是通过调节肿瘤细胞周围的微环境(改善肿瘤细胞生长的“土壤”),把肿瘤细胞“监禁”起来。通过近9年的动物实验和细胞实验研究发现,这种新的方法,不仅抑制肿瘤生长,也高效抑制肿瘤转移。 进一步的动物实验和分子动力学模拟研究发现,Gd@C82(OH)22纳米药物与靶分子的相互作用过程与药物设计的经典理论不同,Gd@C82(OH)22纳米颗粒并不作用于靶分子基质金属蛋白酶(MMP)的活性位点。Gd@C82(OH)22分子首先自身通过氢键相互作用形成棒状排列的纳米颗粒,然后通过纳米颗粒扩散运动接近靶分子的疏水区域,产生非特异性的疏水相互作用,而这只是一个过渡态。最终纳米颗粒和靶分子MMP之间通过氢键作用和疏水作用形成特异性结合。这种特异性结合区域在MMP的疏水区域,而不是传统的活性位点。 该研究结果第一次提出的新型纳米药物的设计有可能超越经典的理论和传统的思路:在传统的“锁眼”以外,靶分子可以为纳米颗粒(而非传统的“分子”)药物提供更为广阔的结合区域。这大大拓展了设计新型药物的可能性。 目前全世界在纳米药物领域的研究主要用纳米颗粒作为载体载带现有的药物,而把Gd@C82(OH)22纳米颗粒直接作为肿瘤治疗药物(不需要载带传统药物),到目前为止还是第一次。该实验室通过近9年的系统研究,已经完成8个肿瘤模型的动物实验。除了深入开展该研究中的抑制肿瘤新机制外,2012年高能所已建成一条中试生产线,并正在推进临床前研究的相关工作。http://www.cas.cn/ky/kyjz/201211/W020121123539967315650.jpg 图:新型纳米药物的设计有可能超越经典的理论和传统的思路:在传统的“锁眼”以外,靶分子可以为纳米颗粒(而非传统的“分子”)药物提供有更为广阔的结合区域。这大大拓展了设计新型药物的可能性。

  • 纳米技术改善难溶性药物吸收前景光明

    纳米技术改善难溶性药物吸收前景光明  近日,由中国药学会和美国药学科学家协会主办、沈阳药科大学和辽宁省药学会承办的“第二届亚洲阿登制药技术研讨会暨中国药学会药剂专业委员会2010年学术年会”在沈阳召开,会议主题为“难溶药物的剂型策略”。在为期3天的研讨中,与会专家表示,改善难溶性药物的溶解度,促进药物的吸收,提高药物的生物利用度是药剂学领域亟待攻克的难题,而纳米技术这一助推器有助于加速该难题的解决,我国学者应加强相关研究。  溶解度成为制约瓶颈  药物的溶解性是影响药物生物利用度的重要因素之一,难溶性药物因在水中的溶解度小,难以被机体吸收,导致生物利用度较差。随着组合化学、基因技术、高通量筛选技术等在药物研发中的广泛应用,大量具有活性的候选药物被发现。但是,沈阳药科大学崔福德教授表示,由于存在水溶性差的缺陷,四成左右的侯选药物不能上市而限制了其在临床充分发挥疗效。据估计,全球每年约有650亿美元的药品因生物利用度差而造成治疗费用与疗效比例的严重失调。而实际上,许多难溶性药物有着很强的生物活性,在治疗肿瘤、心血管疾病等领域有着良好疗效。因此,如何提高药物的溶解度和吸收率,成为药剂学研究的热点与难点,迫切需要发展新的制剂技术和剂型来解决这一问题。  崔福德介绍,当前,在药剂学研究中提高难溶性药物的溶解度和溶解速率有多种方法,如加入助溶剂、增溶剂和亲水性介质(适用于液体制剂);制成固体分散体和包含物(适用于固体制剂);制成微粒分散系统(适用于液体和固体制剂);还可以采取减少粒径的措施,比如做成药物的纳米结晶(适用于各种剂型)。  “但是这些方法都有一定的局限性。”中国药学会药剂专业委员会主任委员、北京大学药学院张强教授具体分析说,比如成盐类的方法就只适用于一些难溶性弱酸或弱碱类药物,而不适用于所有分子结构的药物;加入助溶剂和亲水性物质的方法,可供选择的溶剂等也是有限的;增溶剂主要是表面活性剂,毒性问题也限制了其使用;包合物同样存在可供选择的品种较少和毒性问题;固体分散体也有老化现象和需要使用大量赋型剂的缺陷;而费用较高和稳定性问题又限制了微粒化方法的使用。  新技术助力难题解决  解决上述问题,纳米技术的应用优势日益显现:纳米化使药物的粒度大大减小,表面积大大增加,水溶性差的药物在纳米载体中可形成较高的局部浓度;药物的黏附性增强,在吸收部位的滞留时间延长;纳米载药系统可以提高药物的透膜能力和稳定性,也有利于提高药物的生物利用度,特别是对于生物药剂学分类体系(BCS)Ⅱ类(低溶解度、高通透性)和Ⅳ类(低溶解度、低通透性)的药物,这一技术越来越受到国内外一些研究机构、制药公司的青睐。  在药剂学领域,一般将制剂中纳米粒子的尺寸界定在1~1000纳米范围,主要包括纳米载体与纳米药物两个方面。纳米载体是指溶解或分散有药物的各种纳米粒,如纳米乳、聚合物纳米粒(纳米囊或纳米球)、脂质纳米粒等;纳米药物则是指直接将原料药物加工成的纳米粒,实质上是微粉化技术、超细粉技术的发展。  张强介绍,纳米乳/微乳是一种由水、油、表面活性剂和一些复合表面活性剂自组装成的粒径小于100纳米的半透明溶液,其易于制备、相对稳定,而且可使大多数水不溶性药物的生物利用度提高显著。自1943年被报道以来,纳米乳/微乳已经得到了广泛的研究,但上市的产品却不多,1995年诺华公司上市了环孢素A的微乳产品,在临床迅速得以推广。现在上市的同类品种还有雷帕霉素自微乳化给药系统。  纳米粒(纳米球或纳米囊)一般是指由天然或合成的高分子材料制成的、粒径在纳米级的固态胶体微粒,可用于包裹亲水性药物,也可包裹疏水性药物,具有在胃肠道中稳定、药物不易被破坏,以及能够调整药物的理化性质、释放和生物学行为等优点。自1976年Birrenbach等人首先提出了纳米粒和纳米囊的概念后,目前以合成高分子材料为聚合物的纳米粒研究得最为广泛。但张强遗憾地表示:“30多年来,这个研究领域没有取得实质性的突破,无论是口服制剂还是注射制剂都没有产品上市。”而天然聚合物的纳米粒所使用的材料包括壳多糖、白蛋白、右旋糖苷、明胶等,其中以口服壳聚糖纳米粒的研究最为广泛。值得一提的是,白蛋白结合紫杉醇纳米粒注射混悬液2005年上市,成为制剂领域的一个重大突破;但口服给药方面仍没有产品面市。  脂质纳米粒是以生物相容性良好的脂质材料为载体,将药物溶解、包裹于脂质核或是吸附于纳米粒表面的新型载药系统。第一代脂质纳米粒是固体脂质纳米粒(SLN),其性质稳定、制备较简便,具有一定的缓释作用,主要适合于难溶性药物的包裹;随后又发展了第二代纳米结构脂质载体(NCL),解决了第一代脂质纳米粒载药量不佳的问题,稳定性也更好。张强谈到,近年来,对脂质纳米粒的研究也相当广泛,特别是第二代脂质纳米粒自1999年开始研究以来,在外用领域如化妆品领域进展很快,开发程度好于脂质体,但至今还没有用于临床的产品。  在表面活性剂和水等附加剂存在下直接将药物粉碎加工成纳米微粒,可以提高药物的吸收或靶向性,特别适合于大剂量的难溶性药物的口服吸收和注射给药,能增加溶出度,提高生物利用度,增加稳定性。此外,它无需载体材料,只有少量的表面活性剂,安全性更高。此类技术分为纳米混悬剂和纳米结晶制备技术。其中,纳米结晶制备技术发展较快,目前已有5种产品利用这种技术生产并在美国上市,包括惠氏公司的Rapamune(西罗莫司)、默克公司的Emend(阿瑞吡坦)、雅培公司的Tricor(非诺贝特)以及Par公司的Megace ES(甲地孕酮)等。

  • 【求助】关于青霉素降解产物-蛋白质复合物的知识

    关于国家十一五计划的 乳制品质量安全控制技术研究与产业化示范中青霉素降解产物-蛋白质复合物方面哪位大侠能介绍一下吗?介绍几篇文献也行不胜感激 因为我查了很多文献都没有这方面的知识 都没找到不清楚到底是与哪种蛋白形成了什么复合物

  • 纳米复合水凝胶在人工软骨中的研究进展

    【序号】:5【作者】:萧彤1陈怡霏1黄江鸿【题名】:纳米复合水凝胶在人工软骨中的研究进展【期刊】:中国科学:化学. 【年、卷、期、起止页码】:2022,52(02)【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=Eo9-C_M6tLlgikj-qfs2HPRWPJ33NVgyt8XiNtdtH1GGiuGhgm9GNMx4L2k65pZ893iJQWQtsB2zHDsY_R-qhN-yfse83H2L_H7HjKjRhaWAJT60_sa8B_czoWv_x-HVaZNolNq76wjx1sHivEfPvQ==&uniplatform=NZKPT&language=CHS

  • 如何用NMR证明主客体复合物的形成?

    客体分子与主体分子形成复合物后屏蔽效应增加,理论上来讲应该使化学位移降低但是这样的证明方式总感觉不大充分请问是否还有其他的NMR的证明方法?谢谢!

  • 【转帖】纳米材料几个热点领域的新进展

    纳米材料几个热点领域的新进展  一、纳米组装体系的设计和研究  目前的研究对象主要集中在纳米阵列体系;纳米嵌镶体系;介孔与纳米颗粒复合体系和纳米颗粒膜。目的是根据需要设计新的材料体系,探索或改善材料的性能,目标是为纳米器件的制作进行前期准备,如高亮度固体电子显示屏,纳米晶二极管,真空紫外到近红外特别是蓝、绿、红光控制的光致发电和电子发光管等都可以用纳米晶作为主要的材料,国际上把这种材料称为“量子”纳米晶,目前在实验室中已设计出的纳米器件有Si-SiO2的发光二极管,Si掺Ni的纳米颗粒发光二极管,用不同纳米尺度的CdSe做成红、绿、蓝光可调谐的二极管等。介孔与纳米组装体系和颗粒膜也是当前纳米组装体系重要研究对象,主要设计思想是利用小颗粒的量子尺寸效应和渗流效应,根据需要对材料整体性能进行剪裁、调整和控制达到常规不具备的奇特性质,这方面的研究将成为世纪之交乃至下一个世纪引人注目的前沿领域。纳米阵列体系的研究目前主要集中在金属纳米颗粒或半导体纳米颗粒在一个绝缘的衬底上整齐排列的二维体系。   纳米颗粒与介孔固体组装体系近年来出现了新的研究热潮。人们设计了多种介孔复合体系,不断探索其光、电及敏感活性等重要性质。这种体系一个重要特点是既有纳米小颗粒本身的性质,同时通过纳米颗粒与基体的界面隅合,又会产生一些新的效应。整个体系的特性与基体的孔洞尺寸,比表面以及小颗粒的体积百分比数有密切的关系。可以通过基体的孔洞将小颗粒相互隔离,使整个体系表现为纳米颗粒的特性;也可以通过空隙的连通,利用渗流效应使体系的整体性质表现为三维块体的性质。这样可以根据人们的需要组装多种多样的介孔复合体。目前,这种体系按支撑体的种类可划分为:无机介孔和高分子介孔复合体两大类。小颗粒可以是:金属、半导体、氧化物、氮化物、碳化物。按支撑体的状态也可分为有序和无序介孔复合体。  二、高性能纳米结构材料的合成  对纳米结构的金属和合金重点放在大幅度提高材料的强度和硬度,利用纳米颗粒小尺寸效应所造成的无位错或低位错密度区域使其达到高硬度、高强度。纳米结构铜或银的块体材料的硬度比常规材料高50倍,屈服强度高12倍;对纳米陶瓷材料,着重提高断裂韧性,降低脆性,纳米结构碳化硅的断裂韧性比常规材料提高100倍,n-ZrO2+Al2O3、n-SiO2+Al2O3的复合材料,断裂韧性比常规材料提高4-5倍,原因是这类纳米陶瓷庞大体积百分数的界面提供了高扩散的通道,扩散蠕变大大改善了界面的脆性。  三、纳米添加使传统材料改性  在这一方面出现了很有应用前景的新苗头,高居里点、低电阻的PTC陶瓷材料,添加少量纳米二氧化铣可以降低烧结温度,致密速度快,减少Pb的挥发量,大大改善了PTC陶瓷的性能,尺度为60nm的氧化锌压敏电阻、非线性阀值电压为100V/cm,而4mm的氧化锌,阀值电压为4kV/cm,如果添加少量的纳米材料,可以将阀值电压进行调制,其范围在100V~30kV之间,可以根据需要设计具有不同阀值电压的新型纳米氧化锌压敏电阻,三氧化二铝陶瓷基板材料加入3%--5%的27nm纳米三氧化二铝,热稳定性提高了2——3倍,热导系数提高10%——15%。纳米材料添加到塑料中使其抗老化能力增强,寿命提高。添加到橡胶可以提高介电和耐磨特性。纳米材料添加到其他材料中都可以根据需要,选择适当的材料和添加量达到材料改性的目的,应用前景广阔。  四、纳米涂层材料的设计与合成   这是近1—2年来纳米材料科学国际上研究的热点之一,主要的研究聚集在功能涂层上,包括传统材料表面的涂层、纤维涂层和颗粒涂层,在这一方面美国进展很快,80nm的二氧化锡及40nm的二氧化钦、20nm的三氧化二铬与树脂复合可以作为静电屏蔽的涂层,80nm的BaTiO3可以作为高介电绝缘涂层,40nm的Fe3O4可以作为磁性涂层,80nm的Y2O3可以作为红外屏蔽涂层,反射热的效率很高,用于红外窗口材料。近年来人们根据纳米颗粒的特性又设计了紫外反射涂层,各种屏蔽的红外吸收涂层、红外涂层及红外微波隐身涂层,在这个方面的研究逐有上升的趋势,目前除了设计所需要的涂层性能外,主要的研究集中在喷涂的方法,大部分研究尚停留在实验室阶段,日本和美国在静电屏蔽涂层、绝缘涂层工艺上有所突破,正在进入工业化生产的阶段。  五、纳米颗粒表面修饰和包覆的研究   这种研究主要是针对纳米合成防止颗粒长大和解决团聚问题进行的,有明确的应用背景。美国已成功地在ZrO2纳米颗粒表面包覆了Al2O3在纳米Al2O3表面包覆了ZrO2,SiO2表面的有机包覆,TiO2表面的有机和无机包覆都已在实验室完成。包覆的小颗粒不但消除了颗粒表面的带电效应,防止团聚,同时,形成了一个势垒,使它们在合成烧结过程中(指无机包覆)颗粒不易长大。有机包覆使无机小颗粒能与有机物和有机试剂达到浸润状态。这为无机颗粒掺入高分子塑料中奠定了良好的基础。这些基础研究工作,推动了纳米复合材料的发展。美国在实验室中已成功的把纳米氧化物表面包覆有机物的小颗粒添加到塑料中,提高了材料的强度和熔点。同时防水能力增强,光透射率有所改善。若添加高介电纳米颗粒,还可增强系统的绝缘性。在封装材料上有很好的应用前景。

  • 【求助】如何刻蚀我制备的聚合物复合物

    制备了环氧树脂、聚己内酯及in situ生成的SiO2复合物,想通过SEM看清楚三者的分布情况,请问该如何使用化学刻蚀?需要指出的是,三者之间都有化学键作用。 或者介绍我其他表征方法也行。谢谢!

  • 新型纳米药物设计有望突破经典

    新型纳米药物设计有望突破经典新型纳米药物的设计有可能超越经典的理论和传统的思路:在传统的“锁眼”以外,靶分子可以为纳米颗粒(而非传统的“分子”)药物提供有更为广阔的结合区域。这大大拓展了设计新型药物的可能性。中科院纳米生物效应与安全性重点实验室(国家纳米科学中心和中国科学院高能物理研究所共建)的赵宇亮、陈春英等科研人员的实验研究工作与IBM周如鸿研究员的理论模拟相结合,在肿瘤高效低毒纳米药物的研究方面,取得重要的进展(PNAS,109,15431,2012)。这是继2010年和2011年后,该研究组在《美国国家科学院院刊》发表的又一研究成果。 该研究组在2004年发现,原来设计为新一代MRI医学造影剂的含Gd金属富勒烯具有高效抑制肿瘤生长的功能。通过表面化学修饰,研究人员得到了几乎没有毒副作用的Gd@C82(OH)22。它不杀死肿瘤细胞,而是通过调节肿瘤细胞周围的微环境(改善肿瘤细胞生长的“土壤”),把肿瘤细胞“监禁”起来。通过近9年的动物实验和细胞实验研究发现,这种新的方法,不仅抑制肿瘤生长,也高效抑制肿瘤转移。 进一步的动物实验和分子动力学模拟研究发现,Gd@C82(OH)22纳米药物与靶分子的相互作用过程与药物设计的经典理论不同,Gd@C82(OH)22纳米颗粒并不作用于靶分子基质金属蛋白酶(MMP)的活性位点。Gd@C82(OH)22分子首先自身通过氢键相互作用形成棒状排列的纳米颗粒,然后通过纳米颗粒扩散运动接近靶分子的疏水区域,产生非特异性的疏水相互作用,而这只是一个过渡态。最终纳米颗粒和靶分子MMP之间通过氢键作用和疏水作用形成特异性结合。这种特异性结合区域在MMP的疏水区域,而不是传统的活性位点。 该研究结果第一次提出的新型纳米药物的设计有可能超越经典的理论和传统的思路:在传统的“锁眼”以外,靶分子可以为纳米颗粒(而非传统的“分子”)药物提供更为广阔的结合区域。这大大拓展了设计新型药物的可能性。 目前全世界在纳米药物领域的研究主要用纳米颗粒作为载体载带现有的药物,而把Gd@C82(OH)22纳米颗粒直接作为肿瘤治疗药物(不需要载带传统药物),到目前为止还是第一次。该实验室通过近9年的系统研究,已经完成8个肿瘤模型的动物实验。除了深入开展该研究中的抑制肿瘤新机制外,2012年高能所已建成一条中试生产线,并正在推进临床前研究的相关工作。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制