当前位置: 仪器信息网 > 行业主题 > >

纳米晶体机械性能

仪器信息网纳米晶体机械性能专题为您整合纳米晶体机械性能相关的最新文章,在纳米晶体机械性能专题,您不仅可以免费浏览纳米晶体机械性能的资讯, 同时您还可以浏览纳米晶体机械性能的相关资料、解决方案,参与社区纳米晶体机械性能话题讨论。

纳米晶体机械性能相关的论坛

  • 【讨论】纳米晶体之间的取向关系

    有人做过纳米晶体之间取向关系的工作吗?我查了一下文献,一般都是利用电子衍射花样确定析出相和基体之间的取向关系,关于纳米晶体之间的取向关系的文章没查到。有人做过类似的工作或知道类似的文献吗?

  • 【资料】中美科学家首次制备二十四面体铂纳米晶体

    催化活性是目前商业铂纳米催化剂的4倍科技日报2007年5月10日讯:厦门大学化学化工学院孙世刚和美国佐治亚理工学院王中林等科学家采用新的电化学方法,首次制备出具有高表面能的二十四面体铂纳米晶粒催化剂,显著提高了铂纳米催化剂的活性和稳定性,在能源、催化、材料、化工等领域具有重大意义和应用价值。5月4日出版的美国《科学》杂志以长篇报道刊登了这项最新成果。 二十四面体是一种十分罕见的晶体形状,在自然界中,仅金刚石、萤石和铜矿等极少数矿物能以不完美的二十四面体形式存在。 上述研究发展了一种新的电化学方法,能够控制纳米晶体的表面结构和生长,合成具有高表面能的金属纳米晶体。 中美团队的电催化研究证实,所制备的二十四面体铂纳米晶体对甲酸、乙醇等有机小分子燃料电氧化的催化活性是目前商业铂纳米催化剂的2到4倍,在燃料电池、电催化等领域中具有重大应用价值。 孙世刚和王中林认为该研究的重大意义在于:所发展的表面结构控制生长的电化学方法可以拓展到其他铂族金属,如钯、铑等,也可以运用到制备其他高指数晶面组成的不同形状的金属纳米晶体。这将丰富纳米晶体表面结构控制生长的内涵,深化对金属晶体生长规律的认识,不仅开辟了一条通过控制纳米粒子表面原子排列结构提高催化剂性能的崭新途径,也将模型电催化剂的基础研究推进到实际催化剂设计和研制过程中的一个重大进展。 《科学》杂志的3位评审人认为,这一科研成果不仅指明了一种控制纳米粒子生长使高指数晶面暴露在外的新思路和新方法,而且将导致异相催化中的新发现。

  • 机械性能还是力学性能?无论在概念上还是在文字翻译上都是以机械性能为宜。

    这是材料学科中十分重要的术语,讨论和搞清楚其概念非常有必要。“机械性能”还是“力学性能”都由 Mechanical properties翻译来的,无论在概念上还是在文字翻译上都是以机械性能为宜。这在下述文献中说得很明白:赵中平, 王博, 卜梦婕.金属材料机械性能辨析 . 机械工业标准化和质量, 2013(10):32-34赵中平, 卜梦婕, 王博《力学性能还是机械性能》. 标准科学,2013, 475(12):77-80 赵中平 周蔷 王博, 卜梦婕 Mechanical properties 中文名的演变过程及其定义.中国科技术语.2015(1)43-46概要说明如下:该术语出自ASTM E6,其中MP的定义:“材料在力作用下显示的与弹性和非弹性反应相关或包含应力—应变关系的性能”。乍看该定义,好像容易理解为“力学性能”,但在MP定义下都有注解:Discussion-Theseproperties often been referred to as “physical properties”, but the term“mechanical properties” is preferred. 这注解正是为避免上述误解才加以说明:一般会从物理(力学)角度去理解,但还是称作机械性能为宜,否则无需这样注解。同时,周知用力做的功称为机械功,动能与势能的和是机械能,利用力学原理制成的装置称为机械,不称力学机,那么根据上述定义,利用力学原理或受物理力作用得到的性能称为机械性能,就是我国语言的约定俗成。从概念上说,MP的各种性能都是为满足机械(零件)的设计、制造、检验和使用所需的性能,理当称为机械性能。日本也称“機械的性質”,JIS G0203-2009《鉄鋼用語》第4107条“機械的性質 引張強さ…クリープ強さなど,機械的な変形及び破壊に関係する諸性質。对照英文 mechanical property。”英文有翻译问题,但日本和台湾地区都将其定名“机械性质”,这是国际共识。

  • 【分享】GB/T 3098.1~20 紧固件机械性能

    GB/T 3098.1-2000 紧固件机械性能 螺栓、螺钉和螺柱GB/T 3098.2-2000 紧固件机械性能 螺母 粗牙螺纹GB/T 3098.3-2000 紧固件机械性能 紧定螺钉GB/T 3098.4-2000 紧固件机械性能 螺母 细牙螺纹GB/T 3098.5-2000 紧固件机械性能 自攻螺钉 GB/T 3098.6-2000 紧固件机械性能 不锈钢螺栓、螺钉和螺柱 GB/T 3098.7-2000 紧固件机械性能 自挤螺钉 GB/T 3098.8-1992 紧固件机械性能 耐热用螺纹连接副GB/T 3098.9-2002 紧固件机械性能 有效力矩型 钢六角锁紧螺母 GB/T 3098.10-1993 紧固件机械性能 有色金属制造的螺栓、螺钉、螺柱和螺母 GB/T 3098.11-2002 紧固件机械性能 自钻自攻螺钉GB/T 3098.12-1996 紧固件机械性能 螺母锥形保证载荷试验GB/T 3098.13-1996 紧固件机械性能 螺栓与螺钉的扭矩试验和破坏扭矩公称直径1~10mm GB/T 3098.14-2000 紧固件机械性能 螺母扩孔试验GB/T 3098.15-2000 紧固件机械性能 不锈钢螺母 GB/T 3098.16-2000 紧固件机械性能 不锈钢紧定螺钉 GB/T 3098.17-2000 紧固件机械性能 检查氢脆用预载荷试验 平行支承面法 GB/T 3098.18-2004 紧固件机械性能 盲铆钉试验方法GB/T 3098.19-2004 紧固件机械性能 抽芯铆钉GB/T 3098.20-2004 紧固件机械性能 蝶形螺母 保证扭矩---------------------------------------------------------------------下载地址: http://www.instrument.com.cn/download/shtml/062492.shtml

  • 机械性能测试的朋友请进

    有关于机械性能测试的朋友请团结一下,4077说了 提建议的用户达到20个就可以考虑 我们一起提议恢复材料试验机这个栏目

  • 美用纳米电子材料研制出半机械肌体组织

    可用于检测肌体内部的细胞活动而无任何不良反应2012年08月29日 来源: 科技日报 作者: 田学科 华凌 中国科技网讯 美国哈佛大学8月27日宣称,该校科学家成功研发出一种新技术,可以向工程化人体组织植入一种具有功能性、生物相容性的纳米级三维网状物,首次研制出半机械组织。这种纳米级“支架”与细胞一起被植入肌体后,可发育成肌体认同的组织,用以检测肌体内部的细胞活动变化而无任何不良反应。 一个与生物工程组织有关、长期受到关注的问题是,如何研制出一个系统,能够在其被植入肌体后感应肌体组织的化学或电学变化,同时还可以为研究人员提供一种方法,来直接刺激工程化组织并测定细胞的反应。 “目前我们对生命系统监控与干预的方法非常有限。只能使用电极测量细胞或组织中的活动,但这会伤害到细胞和组织。”项目领导者、哈佛大学化学教授查尔斯·M·利伯说,“利用这项新技术,我们能够在生物系统的同一级别上进行同样的操作而不会伤害到它们。当然,将组织与电子器件合并起来最为困难之处是,如何将组织底端与电子器件顶端连接起来。” 此项研究是从寻找一个二维基质开始的。首先,研究人员将有机聚合物网丝缠绕在纳米线周围,作为重要的感应元件;然后,在网状物中建造了一个与纳米线感应元件相连的纳米电极,使纳米线晶体管能够测定细胞的活动而不伤害它们。这样二维基质的问题就解决了。研究人员获得的这个网状海绵体(或网丝),能够被折叠或者卷曲到需要进入的三维体之中。网状物的构建过程与微芯片的蚀刻过程相似。 由于自主神经系统记录着身体中pH值、化学、氧和其他要素的情况,并且在需要的时候作出反应,因此,研究人员选择使用自主神经系统来建造纳米线。使用心脏细胞和神经细胞,研究人员成功地将纳米网状物植入组织,而且不影响组织内细胞的发育和活动;通过使用植入器件的方法,研究人员可以检测出组织深层细胞发出的电信号,并且测量到心脏和神经组织中药物带来的信号变化。他们表示,使用这一技术可同样测量植入的生物工程血管内外pH值和其他生物化学或细胞环境的变化,如对炎症、局部缺血的反应等。 研究人员认为,该项技术成果的潜在应用领域很多,近期即可用于制药产业。研究人员能够使用该技术,在三维组织而不是细胞培养的薄层上更为精确地研究药物作用的最新发展。将来,该技术还可用于检测人体对电刺激或药物产生的内部变化和相应反应。 该研究成果发表在8月26日出版的《自然·材料》杂志上。(记者 田学科 华凌) 《科技日报》(2012-8-29 二版)

  • 玩具物理机械性能检测样品分配作业指导书

    根据CNAS-CL17,检测和校准实验室能力认可准则在玩具领域的应用说明,对于原始数据记录和检测报告上的检测数据,应能清楚的表达出该数据对应的测试样品及具体测试部位。特别是对于玩具的机械物理性能测试项目,同一个样品上可能进行许多项测试,此时,以你刚刚用图示的方式清楚的表达记录上的数据与样品的溯源关系。哪位仁兄涉及玩具物理与机械性能检测领域,你们有没有玩具样品分样的作业指导书,同时,在报告上是怎么体现数据与样品间溯源关系的。谢谢

  • 【分享】纳米机械的过去和未来

    【分享】纳米机械的过去和未来

    纳米机械的过去和未来George M. Whitesides 在纳米技术所允诺的成果中,微型机械总是非常引人注目。它们的吸引力是直截了当的。大的机械——飞机、潜艇、焊接机器人、烤面包机——毫无疑问是非常常用的。如果有人带着设计这些机械的理念去设计尺寸非常小的装置,又有谁知道它们能干什么呢?想象一下两种微型机械——一种和已有的机械类似,另一种则是全新的——它们已经得到了广泛的关注。前者是一个纳米尺度的潜艇,尺度仅有数十亿分之一米——这大约是数十个或者数百个原子的长度,这种机器尽管存在着争议,然而可以应用在医学方面,它可以在血液中穿行,寻找患病的细胞然后杀死它们。  第二种机械——所谓的装配工——是一个更加激进的主意,它是由未来学家K. Reic Drexler提出的。这种机器没有与宏观物体的相似性(这是考虑其最终实用性的非常重要的一个事实)。它将是一种新型的机械——一种万用制造者。它可以制造任何结构,包括它自身,通过原子尺度的“抓取和放置”:一套纳米尺度的钳子将会从环境中抓取单个原子,然后把它放在适当的位置。Drexler的设想预示着社会将因为微型机械而永远改变,这些机械可以在几个小时内制造一台电视机或者一台电脑,而根本不花一分钱。然而它也有危险的一面。装配工自我复制的潜力导致了所谓的“灰色粘质”产生的可能性:无数的自我复制纳米装配工制造了无数它们自身的复制品,这个过程毁灭了地球。  纳米尺度机械的主意有道理吗?它们能被制造出来吗?如果可以,较之较大尺度的“表兄弟”,它们能够被有效的缩小吗?或者它们是否通过不同的法则运转?事实上,它们是否会毁灭地球?  在我们回答这些令人感兴趣的问题的时候,我们还要问一个更普通的问题:什么是机械?在许多的定义中,我认为机械是一个“执行任务的装置”。更进一步,一个机械有一个设计;它是由以下的过程所创立的:它使用动力;它依靠自身被制造出来时所包含的信息而运作;尽管机械通常被认为是人类设计和意图的产物,为什么一个具有一种功能的复杂的分子系统不可以被称作一个机械,即便它是进化,而不是设计的产物?  撇开目的论的观点,如果接受这个更广泛的定义,纳米尺度的机械已经存在,以功能分子组件的形式存在于活的细胞当中——诸如蛋白质或者RNA分子(它们也是分子的集合)和细胞器(小的“器官”)——具有巨大的多样性和复杂程度。这个关于纳米尺度机械是否存在的问题,在若干年前生物学家已经做出的肯定的回答。现在问题是:未来纳米机械最有趣的设计是什么?它们会带来风险吗?  细胞有一些与人类尺度机械相类似的分子机械:细菌细胞膜上的旋转马达转动着它的轴,从外表看来它类似于一个电动机。另外一些(分子机械)勉强类似于我们所熟知的机械:一个RNA和蛋白质的组合——核糖体——如同工厂流水线一般制造蛋白质。一些分子机械与宏观的机械没有明显的相似性:一种蛋白质——拓扑异构酶——可以解旋缠绕在一起的双股DNA。这些细胞器在细胞中的制造过程——一种高效的大分子合成,包含分子的自我装配——可以作为经济和组织的模型,它完全不像装配工所暗示的那种毫无理性的方式。[img]http://ng1.17img.cn/bbsfiles/images/2008/07/200807212324_99479_1644912_3.jpg[/img] 鞭状尾部:它存在于很多细菌中,由纳米马达驱动[img]http://ng1.17img.cn/bbsfiles/images/2008/07/200807212324_99480_1644912_3.jpg[/img]

  • 【讨论】“机械性能”和“力学性能”有什么不同?

    冬季在力学性能试验机版提出一个问题 :“机械性能”和“力学性能”有什么不同?(http://www.instrument.com.cn/bbs/shtml/20090601/1924360/ ) 有朋友说是一样, 亦有朋友说是广义与狭义的分别。我想从英文的角度探讨一下。英文书中有关应变(strain)、硬度(hardness)等性能都归于Mechanical property, 我记忆中没见过像force property之类的其他英文词组。 另外Physics 中有Heat, Sound, Mechanics各分支, 其对应中文是物理学中有热学、声学、力学。 可见:Mechanics : 力学Mechanical property : 力学性能“机械性能”一词的出现, 可能是有人将Mechanical property直译。话又说回来, “机械性能”和“力学性能”在中国流传了很久, 学术界或工程界是否赋与其新的内函, 发展成广义与狭义的分别就不得而知了。

  • 电子与碳纳米管间存在内在自旋—机械耦合

    中国科技网讯 在高精度磁感应探测、量子计算机等方面,电子自旋都发挥着重要作用。据物理学家组织网近日报道,德国康斯坦茨大学科学家从理论上研究了将电子自旋和碳纳米管量子点耦合在一起的可能性,结果显示,碳纳米管机械振动会极大影响它所捕获电子的自旋状态,而碳纳米管本身也会受到电子自旋的影响。研究人员指出,发现这种内在的强自旋—机械耦合对研究磁性与物质纳米传感器、量子计算及其他纳米应用设备具有重要意义。相关论文发表在近日出版的《物理评论快报》上。 研究人员从理论上让自旋轨道和碳纳米管量子点耦合在一起。在论文中,他们设想把一段碳纳米管悬置在一个沟槽上,让纳米管发挥声子腔的功能。而后通过一种类似于天线的形式从外部接近共振器来促发共振,将电荷和碳纳米管耦合在一起,碳纳米管由于固有的硬度而按照自身频率振动起来。通过检测其振幅,就能检测出代表耦合的理想自旋态。 该校物理系教授盖多·博卡德解释说,即使接近绝对零度(-273.15摄氏度),温度也会对系统行为造成影响。此外,系统退相干还受声子放射(一种量子化的声波放射)的影响,使自旋松弛。在原子—光量子系统中,自旋松弛就像是自发放出一个光子,但原子自发放射可以用光腔来抑制,光腔具有强耦合机制,能让光子在消失之前,在足够长的光腔中被吸收、放射许多次。 “这就是纳米机械共振的概念。”博卡德解释说,“在我们的研究中,碳纳米管作为声子腔能产生与此类似的效应。如果共振器模型与自旋反转所需的塞曼能量相共振,量子信息就会在自旋和声子之间来回转移;如果不共振,自旋量子比特的寿命就会得到延长。而后者也是量子信息处理器所要研究的。” 该研究的重要影响还在于它能提高纳米管在传感应用方面的性能。博卡德说,磁感应是以电子自旋对外部磁场的敏感度为基础的。当电子自旋和机械共振器(比如振动碳纳米管,通过对电子的限定而携带一个电荷)耦合时,可以用电学方法读取这一信号。反之,当一个小物体放在共振器上时,其共振频率会发生变化,频率变化又会影响自旋,可以通过一种自旋感应电传检测设备读取。物质感应探测就是利用了这种频率变化。 研究人员表示,他们正在考虑下一步把该研究用于量子信息处理过程,让自旋发挥量子比特作用。“量子力学的一个基本问题是它能适用于多大的物体,让该物体保持在量子叠加状态。我们知道,电子和单个原子有量子性质,而我们日常生活中的宏观物体却没有。问题是我们能在多大程度上应用量子法则。”博卡德说,“我们的研究是在单个电子自旋和一个较大物体的机械运动之间生成量子纠缠,这一结果有望在自旋读取研究、新的量子相干、自旋—自旋耦合机制等方面打开新的大门。”(常丽君) 《科技日报》(2012-05-31 二版)

  • 【分享】纤维的机械性能

    机械性能 纺织纤维在各种外力的作用下,和种变形的性能称为纺织纤维的机械性能。外力作用包括拉伸、压缩、弯曲、扭转、磨擦等各种形式。 纺织纤维的机械性能应包括纤维的强度、伸长、弹性、耐磨性、弹性模量等。纤维的强度:纤维的强度是指纤维抵抗外力破坏的能力,它在很大程度上决定了纺织商品的耐用程度。 纤维的强度可用纤维的绝对强力来表示,它是指纤维在连续增加负荷的作用下,直至断裂时所能承受的最大负荷。其法定讲师单位为牛顿(N)或厘牛顿(cN)。过去习惯用克力或公斤力表示。 由于纤维强力的与纤维的粗细有关,所以对不同粗细的纤维,绝对强力无可比性,因此,常用相对强度来表示纤维的强度。相对强度是指单位线密度(每特或每旦)纤维所能承受的最大拉力。法定计量单位为牛/特(N/tex)或厘牛/特(cN/tex)。过去习惯用克力/旦表示。 纤维的弹性:纤维及其制品在加工和使用中,都要经受外力的作用,并且产生相应的变形。当外力的作用去除后,纤维的一部分变形可恢复,而另一部分变形则不会恢复。根据纤维的这一特性,可将纤维的变形为成三个部分,即当外力去除后能立即恢复的这部分变形称急弹性变形;当外力去除后,能缓慢地恢复的这部分变形称缓弹性变形;当外力去除后,不能恢复的这部分变形称塑性变形。 纤维的弹性就是指纤维变形的恢复能力。表示纤维弹性大小的常用指标是纤维的弹性回复率或称回弹率。它是指急弹性变形和一定时间的缓弹性变形占总变形的百分率。纤维的弹性回复率高,则纤维的弹性好,变形恢复的能力强。用弹性好的纤维制成的纺织品尺寸稳定性好,服用过程中不易起皱,并且较为耐磨。如:涤纶具有优良的弹性,其制成的服装具有挺括、耐磨等特性。

  • XRD法表征无定型化合物和纳米晶体

    问一个菜鸟问题,之前看到将XRPD的原始数据用软件转化为Atomic pair distribution function就可以表征纳米晶体和无定型化物,请问这XRPD的原始数据是否需要从特定的XRD衍射仪上得到?还是一般的XRD上得到的数据也能用?Thanks!

  • 【分享】求助热机械性能分析(昆明)

    我在昆明工作,急需要测试几个样品的热膨胀系数,需要用到热机械性能分析,但在昆明没找不到,不知在昆明有没有人可做此类工作。如果昆明没有将样品寄到省外也行。测试费开不开票都无所谓。请各位老虾多多支持!我的邮箱为:ynjhb@163.com或ynjhb@sina.com

  • 冷拔异型钢管中机械性能的检测

    点击链接查看更多:https://www.woyaoce.cn/service/info-22944.htmlCTI工业材料检测服务能够为工业材料领域提供全方位的材料检测(如:力学性能、成分分析、化学分析、金相分析、热学分析、涂镀层性能、老化性能等)、无损检测、失效分析、质量评定和安全评估等服务,适用于金属、高分子等各类原材料以及紧固件、机械零部件、塑料、橡胶等各类成品。同时我们还拥有先进的仪器设备、专业的技术人员,并具备现场抽样和检测的能力。无论您是需要检验材料应用特性、检测材料缺陷、分析失效原因或者研发新材料、进行基础研究,我们都能为您就近提供快速、高效及专业的服务,为材料质量及工程进展提供保证。金属材料测试服务测试对象材料黑色金属(钢铁材料)有色金属特种金属材料其他金属制品行业机械制造能源装备医疗器械交通运输等测试项目化学成分分析机械性能测试金相分析腐蚀性能热学性能&清洁度特色项目无损检测失效分析涂镀层分析焊接工艺评定丨焊接件性能

  • 【分享】新型纳米装置将光子变为机械能

    【分享】新型纳米装置将光子变为机械能

    新型纳米装置将光子变为机械能[img]http://ng1.17img.cn/bbsfiles/images/2009/05/200905231039_151503_1644912_3.jpg[/img]一个名为拉链空穴的小装置能够将激光变为机械能。(图片提供:Matt Eichenfield,Jasper Chan/《自然》)研究人员日前研制出一种纳米装置,能够在遭遇激光时产生振动。这种设备非常灵敏,甚至能够感知单个光子的能量。研究人员相信,它将加速光学通讯系统的发展,同时帮助科学家更为精密地探知物质的一些基本属性。 据美国《科学》杂志在线新闻报道,偏振光束似乎没有实现机械功的能力(这是因为光子作为光波的载体是没有质量的),但是它们在原子水平上却能够达到一个惊人的数量。例如,科学家目前已经能够利用激光捕捉、控制及操作单个的原子。现在的问题是相同的原理是否能够作用于纳米量级——其成分要比原子水平大得多,但在大小上仍然仅相当于一米的十亿分之一。 这也正是美国帕萨迪纳市加利福尼亚州理工学院(Caltech)的一个研究小组试图要解决的问题。首先,研究人员制造了一对外部覆盖着硅微芯片材料的厚度仅为几百纳米的支架。随后,他们利用化学手段在每个支架的表面腐蚀了一连串的小洞。研究小组将这一装置称为“拉链空穴”,这是因为它与一个拉链看起来很像。研究人员在5月14日出版的《自然》杂志上报告说,这些小洞能够引导和捕捉激光束的能量,同时使装置产生振动。而振动的频率取决于激光轰击支架的强度,参与该项研究的Caltech的物理学家Oskar Painter这样表示。 这一装置的表现就像是一部音频扬声器,后者隔膜的振动取决于放大器传送的电子信号的强度。相反,像扩音器一样,拉链空穴能够通过自身的振动改变光的强度。Painter指出,总体而言,这些功能使得拉链空穴能够扮演一部完全由光控制的微型无线电发射机和接收机的角色,但它同时要比类似大小的电子装置拥有更大的操作范围。 德国加兴市马普学会量子光学研究所的物理学家Tobias Kippenberg表示,科学家可以利用这种纳米量级的装置探究物质在量子范围的属性,而这是普通电子装置无法实现的。Painter解释说,由于这种装置的振动发生频率在每秒钟1000万次到1.5亿次之间,因此能够极大地改善原子力显微镜的分辨能力。用这种装置来研究分子和原子,每秒钟可以完成数千次操作。Kippenberg表示:“这种装置在基础研究和新应用上都具有光明的前景。”(

  • SPEX8000系列高能球磨机——真正实现机械合金化和纳米级研磨

    在钨金属里添加铼元素可显著提高材料的低温延展性、高温强度以及高温抗蠕变性能。当前最常用的钨铼合金里铼含量一般在3~5%,同时为了避免再结晶脆化和控制合金微观结构,一般还需要添加钾、铝、硅等合金元素。研究表明增加钨合金中铼的含量可以显著提高其合金强度和硬度,24~27%的铼含量可使钨合金获得最理想的强度和延展性等综合表现性能,且不必添加其他合金成分。但对于含铼24%以上的钨铼合金,采用热机制备方法容易形成σ硬脆相而割裂机体。因此通过机械合金化手段是制备高性能钨铼合金的唯一有效手段。实验过程:将钨粉末和铼粉末按4:1的比例装入碳化钨研磨罐,以避免元素污染,在SPEX8000系列高能球磨机中研磨,并采用X射线衍射和电子显微镜技术实时监测研磨过程。结果表明:研磨14h后,形成了平均尺寸在5~7nm的钨铼过饱和固溶体粉末;研磨24h后,平均尺寸为5~6nm,而且只形成了相当少的σ相。最后将机械合金化手段制备的钨铼纳米晶粉末,通过烧结方法制备出高密度、高纯净的钨铼合金。文献原文见附件。

  • X射线传感器窗口透射膜机械性能测试中的正负压控制解决方案

    X射线传感器窗口透射膜机械性能测试中的正负压控制解决方案

    [size=16px][color=#339999]摘要:针对X射线窗口膜材料机械性能测试中对真空度和高压压力的准确控制需要,本文提出了相应的解决方案。解决方案中采用了薄膜电容真空计、压力传感器、电动针阀、压力调节阀和真空压力PID控制器,与真空泵和高压气源配合,可在膜材料样品两侧形成准确的真空压差、微压差和高压压差,由此为窗口膜材料的杨氏模量、破裂压力和压力循环测试提供所需的真空压力环境。控制器自带的计算机软件可独立进行上述真空压力控制操作,并可显示和存储整个控制过程中的多个参数随时间变化曲线。[/color][/size][align=center][size=16px][color=#339999]~~~~~~~~~~~~~~~~~~~~[/color][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 窗口膜是X射线探测器的核心组件之一,其具有真空密封、透过X射线的功能。窗口膜的机械强度和透过X射线能力是决定X射线探测器性能的重要因素。图1所示为X射线探测器结构示意图。[/size][align=center][size=16px][color=#339999][b][img=01.X射线探测器及其透射窗口,650,241]https://ng1.17img.cn/bbsfiles/images/2023/04/202304130946305619_2340_3221506_3.jpg!w690x256.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 X射线探测器及其机构示意图[/b][/color][/size][/align][size=16px] 探测传感器的稳定及可靠运行需要金属外壳密封,外壳顶部的探测端需要集成化的高透过率窗口,此窗口在保证X射线高透射的前提下,还能保证传感器处于高真空环境。高真空环境下工作,传感器可以有效地被冷却到适宜的工作温度,同时能避免了空气对传感器表面污染。因此,端窗膜至少需要承受一个大气压的压力差,这要求膜具有高的机械强度和稳定性。目前常见的窗口膜材料主要有:铍膜、聚合物膜、金刚石膜、氮化硅膜和石墨化碳膜。[/size][size=16px] 为了测试评价窗口薄膜材料的机械强度和稳定性,需要在X光探测器内外真空压力的模拟环境下,测试膜材料的杨氏模量和爆裂强度,并进行多次压力循环考核试验。图2所示为薄膜材料机械性能测试时的真空压力环境示意图。[/size][align=center][size=16px][color=#339999][b][img=02.窗口膜机械性能测试真空压力分布示意图,500,171]https://ng1.17img.cn/bbsfiles/images/2023/04/202304130946532094_6847_3221506_3.jpg!w690x236.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 窗口膜性能测试时的真空压力环境示意图[/b][/color][/size][/align][size=16px] 在图2所示测试环境中,薄膜样品片固定在一个金属盘上,金属盘上有一已知直径的小孔。将金属盘固定在真空室上,使样品膜的顶面暴露在大气或正压环境中,底面暴露在真空室的可变压力下,通过控制加载的正压和真空度,可在膜样品量程形成一定的压差。膜样品在不同条件下存在三种状态:无压差自然状态、微压差延展状态和高压耐压状态,三种状态如图3所示。[/size][align=center][size=16px][color=#339999][b][img=03.窗口膜压差变形示意图,500,166]https://ng1.17img.cn/bbsfiles/images/2023/04/202304130947126106_6551_3221506_3.jpg!w690x230.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 窗口膜压差变形示意图[/b][/color][/size][/align][size=16px] 在不同的压差状态下,需要对X射线窗口膜材料进行以下三项机械性能测试:[/size][size=16px] (1)在微压差状态下,控制膜顶面上的压力为一个标准大气压,膜的底面为变真空状态,使用浅焦平面显微镜物镜或非接触激光位移探测器等装置测量不同真空度下膜样品中心偏差,根据压差和中心偏差所建立的函数,可以测量得到窗口膜的杨氏模量。[/size][size=16px] (2)机械性能测试的另一个重要指标是薄膜的破裂压力,此时需要将膜样品底面的真空控制为一个大气压,而膜样品顶面压力控制为线性变化高压正压。[/size][size=16px] (3)为了考核膜窗口材料的稳定性,还需要进行压力循环测试,即膜样品两侧压差经历循环变化(10000次,绝压101~103kPa)的考核试验。[/size][size=16px] 由此可以看出,在窗口膜机械性能测试中,需要在膜的两侧形成准确的真空压力及其动态变化控制,为此本文提出以下真空压力控制解决方案。[/size][size=16px] 在图2所示测试环境中,薄膜样品片固定在一个金属盘上,金属盘上有一已知直径的小孔。将金属盘固定在真空室上,使样品膜的顶面暴露在大气或正压环境中,底面暴露在真空室的可变压力下,通过控制加载的正压和真空度,可在膜样品量程形成一定的压差。膜样品在不同条件下存在三种状态:无压差自然状态、微压差延展状态和高压耐压状态,三种状态如图3所示。在不同的压差状态下,需要对X射线窗口膜材料进行以下三项机械性能测试:[/size][size=16px] (1)在微压差状态下,控制膜顶面上的压力为一个标准大气压,膜的底面为变真空状态,使用浅焦平面显微镜物镜或非接触激光位移探测器等装置测量不同真空度下膜样品中心偏差,根据压差和中心偏差所建立的函数,可以测量得到窗口膜的杨氏模量。[/size][size=16px] (2)机械性能测试的另一个重要指标是薄膜的破裂压力,此时需要将膜样品底面的真空控制为一个大气压,而膜样品顶面压力控制为线性变化高压正压。[/size][size=16px] (3)为了考核膜窗口材料的稳定性,还需要进行压力循环测试,即膜样品两侧压差经历循环变化(10000次,绝压101~103kPa)的考核试验。[/size][size=16px] 由此可以看出,在窗口膜机械性能测试中,需要在膜的两侧形成准确的真空压力及其动态变化控制,为此本文提出以下真空压力控制解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 根据上述X射线探测器窗口膜材料机械性能测试对真空压力的要求,所设计的真空压力控制系统结构如图4所示。[/size][align=center][size=16px][color=#339999][b][img=04.X射线探测器窗口膜机械性能测量装置真空压力控制系统结构示意图,690,236]https://ng1.17img.cn/bbsfiles/images/2023/04/202304130947316561_3586_3221506_3.jpg!w690x236.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图4 真空压力控制系统结构示意图[/b][/color][/size][/align][size=16px] 在图4所示的真空压力控制系统中,采用了分体法兰对接密封结构,即顶部和底部法兰通过对接方式将被测窗口膜样品密封夹持在中间位置。其中,顶部法兰提供样品膜上方的高压空间,底部法兰提供样品膜下方的真空空间,并分别配置相应的真空和压力控制装置。通过真空压力控制装置可以精确控制膜样品两侧的压差,为膜样品的机械性能测量提供所需真空压力环境。[/size][size=16px] 真空压力控制系统包括两部分内容:[/size][size=16px] (1)底部法兰真空控制装置:在膜样品下方提供准确可控的真空环境,真空度变化控制范围为绝对压力10~760Torr。采用绝对压力1000Torr量程的薄膜电容真空计测量膜样品下方的真空度,两个电动针阀分别调节进气和排气流量,真空泵进行抽气。真空压力PID控制器采集真空计信号,并根据设定值进行PID比较计算后输出控制信号,由此来自动调节电动针阀使真空度快速达到设定值。[/size][size=16px] (2)顶部法兰高压控制装置:在膜样品上方提供准确可控的高压环境,高压变化控制范围为表压0~1MPa。采用1MPa量程的压力计测量膜样品上方气压,压力调节阀输出所需气压,高压气瓶提供高压气源。真空压力PID控制器采集压力计信号,并根据设定值进行PID比较计算后输出控制信号,由此来自动调节压力调节阀使气压快速达到设定值。[/size][size=16px] 图4所示的真空压力控制系统,可完成窗口膜机械性能测试中的以下三项压差变化控制:[/size][size=16px] (1)杨氏模量的微压差控制:顶部法兰膜样品上方空间保持常压,对底部法兰膜样品下方的空间进行真空度控制,由此在膜样品两侧形成微压差,使膜样品产生变形以提供变形量测量。[/size][size=16px] (2)破裂高压控制:底部法兰膜样品下方空间保持常压,对顶部法兰膜样品上方的空间进行线性高压控制,控制压力从常压开始按照设定速率进行线性升压,并同时记录压力变化曲线。一旦压力升到一定高压产生破裂,则压力测量值会产生突变,由此得到破裂压力值。[/size][size=16px] (3)压力循环控制:关闭进气针阀和全开排气针阀,使底部法兰膜样品下方空间的真空度达到真空泵的抽取极限(如绝对压力1Pa)。然后对顶部法兰膜样片上方空间进行压力交变控制,控制器通过可编程的设定压力程序,使得压力在绝对压力101~103kPa之间周期性交替变化,周期数值可任意设定,如一万次等。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 通过上述真空压力控制解决方案,可实现各种X射线探测器窗口材料机械性能测试中的真空压力准确控制,解决方案具有如下特点:[/size][size=16px] (1)为窗口膜材料多个机械性能参数测试提供相应真空度和高压的准确控制。[/size][size=16px] (2)真空压力控制的整个过程全部自动化,真空压力按照测试要求所输入的设定值进行全自动控制,且具有很高的测量和控制精度。[/size][size=16px] (3)所采用的电动针阀和压力调节阀都具有很高的响应速度,有效缩短了压差稳定时间。[/size][size=16px] (4)真空压力PID控制器配备有相应的计算机软件,通过计算机软件就可独立完成真空压力控制,其中包括参数设置、控制运行、以及控制参数及其随时间变化曲线的自动显示和存储。[/size][align=center][size=16px][color=#339999]~~~~~~~~~~~~~~~~~~[/color][/size][/align]

  • 大家好,谁能帮哥们查查机械性能试验用的试棒是什么规格啊?

    大家好,哥们有个问题想请教各位朋友了,我单位有个德国铸件,因为产品过大,想做理化试验和机械性能试验,可是不知道如何取样,具体尺寸不知道,做化学成分、屈服强度、抗拉强度;延伸率及布氏硬度等我就知道是个圆棒,中间是比较细的两头是粗的交接处有R可是不知道具体尺寸要求,无法取样麻烦各位好朋友给查查吧好吗,谢谢了啊好像得参照GB/T24182-2009金属力学性能试验标准不

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制