当前位置: 仪器信息网 > 行业主题 > >

纳米颗粒表征与定量

仪器信息网纳米颗粒表征与定量专题为您整合纳米颗粒表征与定量相关的最新文章,在纳米颗粒表征与定量专题,您不仅可以免费浏览纳米颗粒表征与定量的资讯, 同时您还可以浏览纳米颗粒表征与定量的相关资料、解决方案,参与社区纳米颗粒表征与定量话题讨论。

纳米颗粒表征与定量相关的资讯

  • 千人大会精彩预告:超微及纳米颗粒分析表征技术百花齐放
    随着纳米科技的迅猛发展,超微及纳米颗粒在材料科学、生物医学、环境科学等领域展现出巨大的应用潜力。然而,要充分发挥超微及纳米颗粒的潜能,离不开对其精准、高效的分析表征技术的支持。这些技术能够帮助科研人员深入理解纳米颗粒的结构、形貌、成分及性能,为纳米材料的设计、合成及优化提供坚实的科学依据。为促进超微及纳米颗粒领域的研究与应用交流,推动纳米科技的创新与发展,仪器信息网联合中国颗粒学会将于2024年7月23-24日举办第五届“颗粒研究应用与检测分析”网络会议,特设“超微及纳米颗粒分析表征”专场。点击图片直达报名页面 会议特邀上海理工大学蔡小舒教授,国家纳米科学中心高级工程师郭玉婷、刘忍肖,以及HORIBA、丹东百特、安捷伦资深工程师,分享颗粒粒度、形貌、浓度、成分、Zeta电位等多元化表征技术及相关国家标准。上海理工大学教授 蔡小舒《纳米颗粒和微纳气泡的粒度、形貌和浓度测量新方法》(点击报名)蔡小舒教授研究领域涉及到颗粒测量、两相流在线测量、燃烧检测诊断、排放和环境监测、生命科学等测量方法、技术和应用的研究。先后负责了两机重大专项项目、973、863、国家自然科学基金重点项目、仪器重大专项项目和面上项目、科技部等纵向项目,欧共体项目、通用电气全球研发中心、日立估算研究中心、美国电力研究院和德国、捷克、波兰等大学的国际合作项目以及企业委托项目。发表论文200多篇,获发明专利20多项。 曾任中国颗粒学会、中国计量测试学会、中国工程热物理学会、中国动力工程学会、上海颗粒学会等副理事长、常务理事、理事、理事长等,担任4个SCI刊物副主编、编委和多个国内学术刊物编委,多个国内外学术会议的名誉主席,主席等。纳米颗粒的粒度和形貌是表征纳米颗粒的最重要参数,也是纳米颗粒应用的最主要参数。对于不同的应用,对纳米颗粒的粒度和形貌有不同的要求。而对于微纳气泡,其粒度和数量浓度以及随时间变化等参数是最重要参数。在纳米颗粒的制备中,一些纳米颗粒的浓度非常高,对其进行稀释可能会影响体系的平衡,破坏了纳米颗粒的结构。为满足对纳米颗粒粒度和形貌表征,微纳气气泡的粒度和数量浓度测量的需要,以及直接测量高浓度纳米颗粒的要求,蔡小舒团队发展了图像动态光散射纳米颗粒粒度快速测量方法,偏振图像动态光散射纳米颗粒形貌及形貌分布测量方法,后向动态光散射高浓度纳米颗粒粒度测量方法和多波长消光法微纳米气泡粒度和数量浓度测量方法等。根据这些方法研制的仪器都采用笔记本电脑供电,可以方便携带到任何需要测量的场合进行测量。本报告将介绍这些测量新方法的原理,以及应用实例。HORIBA(中国)应用工程师 李倩《颗粒表征关键技术新进展》(点击报名)李倩现任HORIBA粒度产品应用工程师。主要负责粒度仪的方法开发以及技术支持,熟练掌握仪器特性及使用维护,为不同应用领域的粒径测试用户开发和优化粒径测试方法、提供解决方案,在半导体、能源、材料、环境、生命科学等多个领域积累了丰富的经验。颗粒表征对产品的研究开发和质量控制发挥着越来越重要的作用,如何根据需求和应用场景选择最合适的测量工具显得尤为重要。为了更好地帮助客户用颗粒表征结果指导自己的研究或生产,本次报告为大家介绍 HORIBA 颗粒表征技术以及相关产品的最新进展。丹东百特仪器有限公司产品总监 宁辉《动态光散射测试功能的延伸》(点击报名)宁辉博士为全国纳米技术标准化技术委员会委员,现任丹东百特仪器有限公司产品总监,具有十几年产品研发和产品应用的研究经历,是一位具有丰富实践经验的颗粒表征技术专家。对于纳米材料的相关应用具有较为深刻的理解。动态光散射技术是一种基于检测颗粒的布朗运动来获取样品的粒径信息的颗粒表征手段。基于传统的动态光散射技术,结合更多的光学和分离手段,可以拓展动态光散射的应用领域和检测能力。在这个报告中,宁辉将介绍动态光散射流动模式,进行高分辨率的粒径测试;窄带滤光片的应用及其对于荧光样品的测试,及其VV和VH模式对于各向异性样品的测试。国家纳米科学中心高级工程师 郭玉婷《单颗粒电感耦合等离子体质谱法检测纳米颗粒国家标准制定及应用研究》(点击报名)郭玉婷为中国科学院纳米标准与检测重点实验室高级工程师,全国标准化教育标准化工作组 (SAC/SWG27)委员,国际标准化组织纳米技术委员会(ISO/TC229)WG2和WG3工作组专家,从事纳米技术标准化及电感耦合等离子体质谱检测研究工作,主持制定六项国家标准,参编《纳米技术标准》书籍,发表多篇科技论文,参与两项国家重点研发计划和一项中科院战略性先导科技专项项目。随着纳米材料和纳米技术产品的广泛使用,纳米颗粒的检测成为纳米技术应用和潜在风险评估的重要环节。单颗粒电感耦合等离子体质谱法使用高时间分辨模式检测、分析速度快、所需样品少、颗粒浓度检出限低,可同时测量稀溶液中纳米颗粒的成分、粒径、粒径分布、数量浓度及溶解离子浓度等。郭玉婷所在实验室牵头制定了单颗粒ICP-MS检测水相中无机纳米颗粒的国家标准,开展了纳米产品和生物组织等复杂基质中纳米颗粒的检测研究。本报告将介绍国家标准内容,交流相关研究进展,以推广该方法在更多领域的应用。安捷伦科技(中国)有限公司工程师 董硕飞《应用单颗粒(sp)ICP-MS法对环境样品中的颗粒物进行定量检测》(点击报名)董硕飞为安捷伦资深原子光谱应用开发工程师,于2012年获得英国帝国理工学院地球化学博士学位,之后分别在美国和法国做博士后研究员。主要研究金属元素的生物地球化学循环,以及其作为环境污染物的分布和传输机制。在2017年加入安捷伦全球市场开发团队后,主要从事ICP-MS新应用方法开发工作,以合作研究的形式开展颗粒物在复杂基体中的分离、检测方法研究,以及应用元素指纹图谱法和同位素示踪法进行源解析等方面的研究,并在相关领域发表论文30多篇。应用单颗粒(sp)ICP-MS技术对纳米颗粒物进行定量分析的方法在近些年趋于成熟,特别是在环境研究领域被更多的研究人员接受。本报告概述(sp)ICP-MS技术对降尘、海水、底泥和土壤中的纳米颗粒物进行分析的研究方案,同时拓展该方法对单细胞中的元素进行定量分析,以及对微塑料颗粒进行分析的应用案例。国家纳米科学中心教授级高级工程师 刘忍肖《量子点材料及产品特性测试方法开发与标准化》(点击报名)刘忍肖主要从事典型纳米材料(量子点、石墨烯、碳纳米管等)特性参数测试方法开发,针对产业应用的国际标准、国家标准的研制,迄今作为负责人/技术骨干共研制国际标准7项、国家标准18项、国家标准物质6项、主导2项VAMAS国际比对、发表学术论文18篇、参编专著3部。作为项目/课题负责人承担十三五、十四五科技部国家重点研发计划、国家自然科学基金青年基金项目标准研制项目等。担任国家标准委审评中心标准审核专家、国际标准化组织纳米专业领域ISO/TC 229、IEC/TC113技术专家,担任全国纳米标委会(SAC/TC279)委员观察员、全国颗粒分委会(SAC/TC168/SC1)委员观察员、全国纳米光电显示技术标准工作组(SAC/TC279/WG10)委员兼秘书长等。量子点作为一类最典型的代表性纳米材料,具有独特的量子尺寸效应并展现出优异的光学特性,现已广泛应用在生物医学、信息显示等产业领域,尤其促生了纳米光电新型显示技术产业的革新升级。本报告针对量子点材料关键特性参数测试分析方法开发、纳米光电显示技术产业应用所关注的量子点部品应用性能评测技术开发、体系性技术标准研制等进行介绍。以上仅是部分报告嘉宾的分享预告,更多精彩内容请查看会议页面:https://www.instrument.com.cn/webinar/meetings/particuology2024/
  • 中科院:“深度学习”赋能SEM\TEM表征纳米颗粒材料形貌
    获取纳米颗粒定量化形貌信息,是科学家研究纳米颗粒材料性能的重要科研途径,对于推动纳米颗粒材料创新十分重要。扫描电子显微镜(SEM)和透射电子显微镜(TEM)是表征纳米颗粒材料形貌的重要工具。   然而,扫描电子显微镜和透射电子显微镜产生的图像,会因为较大的背景干扰和庞大的纳米颗粒数量,使获取纳米颗粒材料形貌信息变得困难。如何在海量而复杂的图像中实时准确地自动获取纳米颗粒定量化形貌信息成为挑战。   针对这一问题,中国科学院沈阳自动化研究所数字工厂研究室王卓课题组提出了一种基于深度学习的通用框架,用于对前述两种电子显微镜所产生图像中的纳米颗粒形貌进行快速、准确地在线统计分析。 该项研究近期获国际学术期刊Nanoscale (影响因子8.307)封面(Outside Front Cover)刊载,文章题目是A deep learning-based framework for automatic analysis of nanoparticle morphology in SEM/TEM images。 纳米颗粒分割模块结构示意图   该通用框架主要包括纳米颗粒分割模块、纳米颗粒形状提取模块和纳米颗粒形貌统计分析模块三个重要组成部分。其中,在纳米颗粒分割模块的设计中,研究人员将轻量化空洞空间池化金字塔模块、双注意力机制和改进的多尺度渐进融合解码器相融合,能够对纳米颗粒形貌特征进行多尺度多维度的快速捕获和融合,提高该通用框架的实时性和准确性。   试验结果表明,研究人员提出的模型在数据集上测试达到86.2%的准确率,并且将模型部署在嵌入式处理器上处理速度可达11FPS,可以满足电镜端的实时处理需求。
  • “纳米颗粒表征及应用技术研讨会”在京召开
    由北京粉体技术协会、英国马尔文仪器有限公司联合举办的“纳米颗粒表征及应用技术研讨会”于2008年12月16日在北京市理化分析测试中心北科大厦报告厅顺利召开,会议内容涉及纳米粒度分布测量、Zeta电位测量、纳米样品分散等技术原理与应用及纳米技术相关标准现状的介绍。“纳米颗粒表征及应用技术研讨会”会议现场  会议伊始,国内粉体行业知名专家胡荣泽先生作了“超微粉粒度分布测量”学术报告:介绍已有的超微粉粒度分布测量方法及超微粉分散方法;解释不同仪器测出结果不一样的原因;详细解释粒度仪的选择要点。胡荣泽先生:“超微粉粒度分布测量”  北京理化测试中心周素红高工在其“纳米技术相关标准现状”报告中,主要介绍标准的分类、与纳米相关的国际标准化组织及国内纳米材料标准化现状及进展。周素红高工:“纳米技术相关标准现状”  以“纳米测量技术最新进展”、“纳米样品分散技术及应用”为主题,马尔文公司专业技术人员的报告内容丰富——涵盖纳米检测技术概述、动态光散射原理和最新进展、静态光散射和分子量的测定、多普勒电泳光散射和Zeta电位测定、颗粒间相互作用和高浓度样品测定等。  在报告中,马尔文公司提到其最新推出的纳米粒度仪Zetasizer APS和Zetasizer μV。这两款新品指向生物领域应用,为蛋白质表征而设计。Zetasizer APS可对行业标准96或384孔载样板中的样品进行自动化动态光散射测量;Zetasizer μV则是对马尔文已有Zetasizer系列产品在应对高灵敏度和小容量测试需求上的补充。  在问题解答环节,多位观众就自身在测试工作中遇到的问题提问,马尔文仪器(中国)公司总经理秦和义先生及马尔文技术人员一一解答,现场交流气氛热烈。部分用户将样品带至会场,递交马尔文公司进行检测。马尔文仪器(中国)公司总经理秦和义先生解答用户问题马尔文公司客服人员解答用户问题  有60余位业内人士到会,从秦先生处获悉,参会人员主要来自大专院校、科研院所及公司企业,一半左右人员是粒度仪用户。  秦先生介绍,该会是马尔文仪器(中国)公司今年以来在颗粒表征技术方面参与主办的第一场学术性质的会议,公司明年将主办更多介绍该领域技术及相关进展的类似会议。
  • 马尔文NanoSight NS300纳米颗粒跟踪分析仪促进纳米颗粒表征
    (2014年6月30日,中国上海)作为全球材料表征领域创新企业,英国马尔文仪器公司最新一代纳米颗粒跟踪分析仪NanoSight NS300自面世以来深受好评。该多功能仪器采用杰出的纳米颗粒跟踪分析(Nanoparticle Tracking Analysis,即NTA)技术,配备全新的增强型荧光检测能力,为从事纳米颗粒表征的科研人员提供更加丰富便捷的解决方案。迄今,在全球已有超过700个用户贡献了1000篇以上第三方NanoSight应用文献。  英国马尔文仪器公司始终致力于以国际领先的技术和多元化的产品系列满足快速变化的市场需求。而最新款NanoSight NS300纳米颗粒跟踪分析仪基于出色的纳米颗粒跟踪分析技术,在分辨能力、检测能力、操作便捷性以及纳米颗粒计数分析等方面整合了独特的创新设计,可对宽分布体系纳米颗粒进行快速实时动态检测。其独特的检测能力在蛋白质聚集、药物传输、外泌体和微泡、纳米颗粒毒理、病毒和疫苗等研究领域具有广泛应用。  &diams 超高分辨率  马尔文NanoSight NS300纳米颗粒分析仪所采用的NTA技术具有独特的高分辨率,提供动态纳米颗粒检测技术,能对悬浮液中粒径范围10nm-2000nm范围颗粒进行粒径、散射光强、计数及荧光检测。相较于传统技术,马尔文NanoSight系列产品的检测分辨率提高了1-2倍。同时,由于对大、小颗粒的敏感程度相同,马尔文NanoSight NS300可帮助科研人员轻松区分出100nm、200nm、400nm、600nm混合体系中不同颗粒粒径分布,结合颗粒的散射强度,绘制出粒径、对应数量分布强度和散射强度的三维图谱,清晰区分粒径相同但材质不同的样品。图:NanoSight超高分辨率  &diams 直观可视  马尔文NanoSight NS300所采用的NTA技术利用激光光源照射纳米颗粒悬浮液,配以全黑背景增强信号对比度,用户通过显微镜就能直接清晰地观察到带有散射光颗粒的布朗运动,并及时获得布朗运动下移动颗粒的视频文件,为未来的进一步研究留存第一手资料。  &diams 荧光识别检测  马尔文NanoSight NS300的另一项优势在于其增强型荧光检测技术,对颗粒进行整体分析。在复杂的检测环境体系中,科研人员可通过荧光过滤片选择性地标记特定颗粒,并利用NTA技术单独对这些颗粒进行定向检测和分析,而不受复杂组分溶液环境影响。此外,完全由软件控制的6位滤光轮自动分析多个荧光标记物,从而节省科研人员的宝贵时间,提升工作效率。  &diams 系统高度集成  除将软硬件设备、摄像头及显微镜等多项设备集于一体外,马尔文NanoSight NS300还整合强大的颗粒检测功能与纳米颗粒分析技术,为纳米颗粒表征提供易于使用的可重复平台。在40cm x 25cm的设备主机内集成了超高灵敏度科研级sCMOS光电传感器、温控单元以及一个四种可选波长的激光。样品池和激光模块也是一个整体,便于移动、清洁,适合高通量检测。  英国马尔文仪器中国区总经理秦和义先生谈及马尔文的核心竞争力时说:&ldquo 马尔文始终坚持以用户为中心,脚踏实地不断探索市场、深入了解客户需求,持续将具有革新意义的各项创新技术带到中国,让客户买到的不只是一个硬件,而是一整套解决方案。&rdquo   马尔文和马尔文仪器是马尔文仪器有限公司的注册商标。  ---完---  关于马尔文仪器  马尔文仪器提供材料表征技术和专业知识,使得科学家和工程师们能够了解和控制分散体系的性质,这些体系包括蛋白质和聚合物溶液、微粒和纳米粒子悬浮液和乳液,以及喷雾和气溶胶、工业散装粉末和高浓度浆料等。马尔文的材料表征仪器用于研究、开发和制造的所有阶段,提供帮助加快研究和产品开发、改善和保证产品品质以及优化过程效率的关键信息。  马尔文的产品体现了最新技术创新的动力以及充分利用现有技术的承诺,应用领域从医药和生物医药到化学品、水泥、塑料和聚合物、能源及环境等。  马尔文的产品和系统被用于检测颗粒大小、颗粒形状、Zeta电位、蛋白质电荷、分子量、分子大小和构象、流变性能和化学组分测定。  马尔文仪器公司总部位于英国马尔文,在欧洲、北美、中国、日本和韩国等主要市场都设有分支机构,在印度设有合资企业,拥有遍布全球的经销网络和应用实验中心。  更多信息,请访问www.malvern.com.cn。
  • 粉体与纳米颗粒表面表征的最新进展技术讲座圆满结束
    9月20日,美国麦克仪器公司在中国石油大学青岛校区逸夫实验楼举办了题为&ldquo 粉体与纳米颗粒表面表征的最新进展&rdquo 的技术讲座,会议吸引了来自中国石油大学、青岛生物能源所以及附近相关研究人员100多人,麦克默瑞提克(上海)仪器有限公司总经理许人良博士就粉体与纳米颗粒表征进行了别开生面的讲解,从基础理论到具体表征方法,从广泛的应用领域到具体某个应用,许总做了深入浅出的诠释。会议期间,广大参会者踊跃提问,许人良博士一一做出解答,并针对常见的问题,给出合理的指导与解释,受到广大参会者的高度评价。会议结束后,广大与会者纷纷表示,收获颇多,希望能多多举办类似的讲座,扩展自己的知识面,解决实际应用问题。 美国麦克仪器成立于1962年,是材料特性实验室分析仪器和服务的领导者,公司生产测量粉末和固体物理特性的自动化实验室仪器,可用于基础研究、产品开发、质量保证和控制的各个阶段。产品应用广泛,可用来检测包括粒度、颗粒形状、表面积、孔容、孔径及孔径分布、材料的密度、催化活性、程序升温反应。 美国麦克仪器产品在1979年进入中国市场,成为中美建交后最早进入中国市场的分析仪器。在为中国用户服务30多年后,于2011年3月在上海成立了麦克默瑞提克(上海)仪器有限公司,专业为中国市场提供美国麦克仪器公司的产品。公司总部设在上海,并在北京、广州、西安分别设有办公室。
  • ICP-TOFMS实验室间比对-以单纳米颗粒表征为例
    搭配高性能飞行时间质谱仪的ICP-TOFMS全谱元素分析仪器在高通量样品,快速成像,瞬时事件等案例中都有广泛的应用,且近年来有非常多的文献报道。该实验方法正在从科研应用向常规业务应用转变。其成功转变的前提条件是仪器的性能不受时间、地点、人员等因素的影响,并能在标准操作流程下给出相似的分析结果。一种常见的评估方法是在不同的实验室中,采用相同的标准样品和标准操作流程,以检验是否能获得相似的结果。类似的比对实验已经在应用传统单杆ICP-MS的多个实验室之间进行过。(Anal. Bioanal. Chem., 2014, 406, 3835–3843;Anal. Chem., 2015, 87, 8809–8817)。 在欧盟Horizon 2020框架下的ACEnano项目支持下,九个安装有不同TOFWERK icpTOF型号仪器的欧美实验室,对基于单颗粒ICP-TOFMS的标准操作程序进行了一次系统性的对比工作。这一工作的目标是评估和验证仪器和方法的可靠性以及可重复性等指标。此项研究近期已在Nanoscale期刊上发表。 实验结果证明,所有九个实验室在使用标准操作程序和TOFpilot软件中专为单纳米颗粒检测开发的工作流程后,都能获得相似的纳米颗粒物信息。以等效质量球形尺寸(mass equivalent spherical size, MESS)这一指标为例,九个实验室给出的结果的标准方差小于16%。在排除明显的离群值后,这一比例进一步可以优于4%。 图1. (a) 各实验室独立使用TOFpilot软件测量并计算出的名义50 nm和名义70 nm铂纳米颗粒物质量结果。(b) 各实验室在将名义50 nm和名义70 nm铂纳米颗粒物转换为质量等效球形尺寸后的对应结果。两条虚线分别代表这两种颗粒物的质量和大小的计算平均值,而浅褐色和蓝色矩形则对应铂纳米颗粒制造商的标定尺寸范围,即46 ± 4 nm和70 ± 4 nm。需要注意的是,图中有些数据点的标准差因错误的误差计算而偏大。(c)根据质量数据标准差重新计算得出的颗粒物直径结果。 这次实验室间比对实验采用的样品是两种不同粒径的铂(Pt)纳米颗粒物(NP)悬浮液,实验包括对其质量,颗粒物数量浓度和同位素比率等进行表征。这两种Pt NP悬浮液均是使用瑞士TOFWERK公司icpTOF仪器测量而得,型号包括2R,R以及S2。实验结果表明无论使用者对软件或icpTOF仪器的熟悉程度如何,九个独立实验室中有七个实验室的数据达到了极好的一致性(图1)。表征结果显示两种纳米颗粒物的质量等效球形大小(MESS)分别为40.4 ± 7 nm和58.8 ± 8 nm。在所有参与的实验室报告的结果中,等效质量球形尺寸的相对标准偏差(RSD)在16%以内。排除掉两个明显的异常值后,RSD优于4%。在粒子质量的测试中,各独立实验室均给出了相吻合的结果,但颗粒物数量浓度的测量结果相对分散,所有结果的RSD接近53%。较相近的尺寸结果和较为发散的数量浓度差异在之前使用传统ICP-MS仪器实验间比对研究中也有类似发现。作者们尝试将颗粒物质量的系统性低估以及较为发散的数量浓度结果归因于颗粒物本身形态(不完全是规则球形,密度不一,也可能是更小颗粒物的聚簇),单颗粒在样品配置和icp进样系统中的可能破损,以及制造商使用的表征方式和仪器(一般采用TEM和DLS等成像统计法,而非icp-MS单颗粒分析)。详细描述可移步全文,或点击左下角‘原文链接’。 而上述结果和讨论恰恰表明,单颗粒ICP-TOFMS可以更准确地表征溶液中金属或合金纳米颗粒的多项参数。单颗粒ICP-TOFMS是基于单个颗粒物所获得信号强度来确定的单颗粒质量,而不是对于整体的平均测量,这就使得单颗粒的信号强度和TEM获得的形态信息结合后能够获得更加精确的颗粒物本身密度。图2. (a),(b)和(c)名义50 nm Pt NPs的测量194Pt/195Pt,196Pt/195Pt和198Pt/195Pt比例的结果以及(d),(e)和(f)名义70 nm 铂纳米颗粒物的测量结果。蓝线代表预期理论值:0.976,0.746和0.022。图中误差棒代表一个标准方差,九个实验室中的七份结果都优于一个标准方差。由于获得的单颗粒物绝对信号强度低(接近检测限值)且非常短(1 ms),颗粒物间信号的相对变化随着颗粒物尺寸减小和同位素丰度的降低而增加。 基于飞行时间质谱仪的ICP-MS可同时对多元素和其同位素测定的优点,本实验还对同位素比率测定的精确度和真实性进行了评估。通过1000个颗粒物的平均结果发现Pt的同位素 194Pt和195Pt的信号强度比率的精确度优于1%,而低丰度Pt同位素比率的精度则受到了计数统计的限制(图2)。在单颗粒基础上进行精确的同位素比率测量对于毒理学和风险评估研究而言越来越重要。对工程纳米颗粒物(ENPs)进行同位素标记正在变得越来越受欢迎,因为它提供了更清晰的手段来区分ENPs和天然纳米颗粒物(NNPs)以及背景信号的影响。材料科学和ENPs制造、地质年代学、考古测量学等其他领域也会受到影响。值得注意的是,虽然考古学中通常通过同位素比率与微量元素相结合的方法来研究古代物体中的原材料来源,然而其需要的同位素比率精度要优于1%。 最后,通过这次九个独立实验室间对比工作,作者们认为单颗粒ICP-TOFMS可以成功地用来高通量确定单颗粒物质量和大小、粒子数浓度和构成元素的同位素比率。而TOFpilot软件中的工作流程和专为单颗粒ICP-TOFMS开发的标准操作程序的有效性也得到了验证。这使得单颗粒ICP-TOFMS的方法在纳米颗粒的分析工具箱中占有一席之地。这次对比实验也为参与实验室能力建设和资质认证提供了一个平台,从而评估他们分别的测量能力和距离基准样品的偏差。同时此次实验也为TOFWERK公司的全部三种型号icpTOF仪器的优秀的性能和稳定性提供了强有力的客观数据支撑。参考文献1 doi.org/10.1039/D3NR00435J
  • 粉体与纳米颗粒表面表征的最新进展技术讲座在复旦大学圆满结束
    3月29日,复旦大学化学西楼1楼多功能厅济济一堂,美国麦克仪器举办了题为&ldquo 粉体与纳米颗粒表面表征的最新进展&rdquo 的技术讲座,会议聚集了来自华东理工大学、上海师范大学、复旦大学、东华大学、上海电力大学、上海交通大学等知名高校以及一些国际国内知名企业参与。此次讲座热度远超我们预期,讲座刚刚开始,会议室就已经爆满,但仍有很多人慕名前来,其中还有孕妇不怕旅途颠簸仍坚持来参加我们的讲座,会议室已经到了站都站不下的地步。面对大家如此强烈的需求,为了不让大家失望,我们和学校联系另开辟了一间会议室,两个会议室讲座同期进行。爆满的会议室 讲座开始,麦克默瑞提克(上海)仪器有限公司总经理许人良博士首先对我们公司做了简单的介绍,接下来,应用部经理钟华博士做了颗粒粉体表征技术的讲座,主要介绍了物理吸附和化学吸附的一些应用知识,对应用过程中一些常见问题以及数据处理的技巧做出讲解,在座人员认真聆听并积极提出自己的疑问,钟华博士耐心解答,逐一解释,受到广大用户的好评。 麦克默瑞提克(上海)仪器有限公司总经理许人良博士就粉体与纳米颗粒表征进行了别开生面的讲解,从基础理论到具体表征方法,从广泛的应用领域到具体某个应用,许人良博士做了深入浅出的诠释。会议期间,广大参会者踊跃提问,许人良博士一一做出解答,并针对常见的问题,给出合理的指导与解释,受到广大参会者的高度评价。会议结束后,仍有部分用户在会议室和许人良博士热烈讨论问题,许人良博士渊博的知识让与会者印象深刻。大家纷纷表示此次会议受益匪浅,讲座中讲到的一些应用技巧可立即应用到实际工作中去。并表达了希望能多举办此类活动的愿望。许人良博士在讲座现场 美国麦克仪器成立于1962年,是材料特性实验室分析仪器和服务的领导者。1962年,美国麦克仪器研制出世界上第一台自动表面积分析仪,1965年,研制出世界上第一台压汞仪,1966年,研制出世界上第一台沉降式粒度分析仪。1982年,研制出世界上第一台全自动物理吸附仪,同年开发出第一台全自动化学吸附仪,1986年,研制出世界第一台六站吸附仪,1991年,研制出第一代带内置控制器的吸附分析仪,......2012年,研制出世界上第一台高精度同时三站微孔物理吸附仪。美国麦克仪器迈着坚实的脚步,引领行业的发展;通过自身研发,创造出一个又一个的奇迹。 美国麦克仪器产品在1979年进入中国市场,成为中美建交后最早进入中国市场的分析仪器。在为中国用户服务30多年后,于2011年3月在上海成立了麦克默瑞提克(上海)仪器有限公司,专业为中国市场提供美国麦克仪器公司的产品。公司总部设在上海,并在北京、广州、西安分别设有办公室。
  • 听清华大学朱永法教授和国家纳米科学中心刘忍肖老师在线讲述“复合/纳米材料的形貌及粒度表征”
    pimg style="WIDTH: 600px HEIGHT: 75px" title="sj0213xuan01_副本.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201511/insimg/8c21f2e9-490e-4a10-b5be-359d731bbccf.jpg" width="600" height="75"//ppstrongspan style="COLOR: rgb(0,0,0)"“复合/纳米材料的形貌及粒度表征”网络主题研讨会/span/strong/ppbr/strongspan style="COLOR: rgb(0,0,0)"会议时间:2015年12月9日 14:00-17:00/span/strong/ppbr/报告日程:/ppbr/span style="COLOR: rgb(112,48,160)"strong报告一:纳米材料的形貌和粒度分析方法及应用/strong/span/ppbr/报告人:朱永法/ppbr/清华大学化学系教授、博导,分析化学研究所副所长,国家电子能谱中心副主任。从事半导体薄膜材料的表面物理化学、纳米材料的合成与性能、环境催化以及光催化的研究工作。/ppbr/报告概要:/ppbr/主要讲述了纳米材料最常用的三种形貌分析方法的原理和应用特点以及粒度分析的方法和在纳米材料研究方面的应用实例。目前最常用的形貌分析方法是扫描电子显微镜、透射电子显微镜和原子力显微镜。扫描电镜视场广,样品制备简单,不会产生信息失真,可以观察形貌以及实现颗粒大小的分布统计。透射电镜可以观察纳米材料的形貌和颗粒大小,但视野范围小,样品制备过程容易产生大颗粒的丢失现象,但可以区分聚集态和一次粒子的信息。原子力显微镜可以观察薄膜的颗粒大小,也可以观察分散态的纳米材料的形貌及大小。此外,还可以测量颗粒的厚度以及薄膜的粗糙度分布。激光粒度仪是测量颗粒大小常用的方法,但无法观察纳米材料的形貌,是一种统计颗粒直径分布,容易失真。此外,很多纳米材料分散在溶液中,可能是水合方式存在,获得的是水合颗粒大小的分布,并不是真实的材料颗粒大小,但可以获得粒度分布的信息。此外,通过XRD和拉曼光谱还可以获得纳米材料晶粒大小的数据。/ppbr/span style="COLOR: rgb(112,48,160)"strong报告二:基于PeakForce Tapping模式的纳米材料表征/strong/span/ppbr/报告人: 孙昊/ppbr/布鲁克中国北方区客户服务主管/ppbr/报告提纲:/ppbr/PeakForce Tapping是由Bruker公司发明的一种新的基本成像模式。与传统的Contact、Tapping模式相比,PeakForce Tapping具有探针-样品作用力小、能够自动优化反馈回路、能够进行定量力学成像等优点。基于PeakForce Tapping模式,Bruker公司发展了一系列扩展成像技术,如智能成像(ScanAsyst),它可以轻易实现绝大部分常见样品的扫描参数自动优化,使刚入门的客户也能非常容易地得到专家级的图像;定量纳米力学成像(PeakForce QNM)可以在扫描形貌的同时实时定量地分析出样品的模量与粘滞力,为纳米力学测量带来了革新;峰值力表面电势测量(PFKPFM)与峰值力导电性测量(PFTUNA)使得在软样品表面同时的电学和力学测量成为可能。在这个Webinar中,我们将介绍基于PeakForce Tapping的一系列新的成像技术在纳米表征中的应用。/ppbr/span style="COLOR: rgb(112,48,160)"strong报告三:纳米材料的粒度表征/strong/span/ppbr/报告人:方瑛/ppbr/HORIBA 应用工程师/ppbr/报告概要:/ppbr/颗粒的尺寸会影响纳米材料的各种性能,而溶液的电位则会影响纳米乳液的稳定性。纳米颗粒分析仪可以表征纳米颗粒的粒径和电位,报告会介绍粒径和Zeta电位的测试原理,重点会介绍颗粒分析在纳米材料中的应用。/ppbr/span style="COLOR: rgb(112,48,160)"strong报告四:尺度表征用纳米标准样品/strong/span/ppbr/报告人:刘忍肖/ppbr/博士,高级工程师,国家纳米科学中心/中科院纳米标准与检测重点实验室,主要工作领域为纳米技术标准化,承担了十余项纳米技术标准制修订、纳米标准物质/标准样品的研制工作;从事与纳米技术相关的标准化科研工作,参与两项国家重大科学研究计划项目和一项质检公益性行业科研专项,承担国家自然科学基金和北京市自然科学基金项目。/ppbr/报告提纲:/ppbr/纳米标准样品概况;尺度表征用纳米标准样品;示例:粒度、台阶高度纳米标准样品。/ppbr/报名条件:仪器信息网个人用户,自助报名当天参会。br/br/span style="COLOR: rgb(255,0,0)"strong报名方式:扫描下方二维码或点击链接。/strong/spanbr/br/img title="12-9纳米材料研讨会.png" src="http://img1.17img.cn/17img/images/201511/insimg/3c15c368-57fd-486a-a4ab-b1df6999103e.jpg"/br/br/仪器信息网“复合/纳米材料的形貌及粒度表征”网络主题研讨会/ppbr/a title="“纳米材料的形貌及粒度表征应用技术”网络主题研讨会" href="http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1749" target="_blank"http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1749/a/p
  • “复合/纳米材料的形貌及粒度表征”网络主题研讨会成功召开
    p 纳米科学和技术是在纳米尺度上(0.1nm~100nm之间)研究物质(包括原子、分子)的特性和相互作用,并且利用这些特性的综合性学科。其最终目的是直接以物质在纳米尺度上表现出来的特性,制造具有特定功能的产品。准确可靠的表征是纳米材料领域的重要基础。/ppbr//pp 12月9日,“复合/纳米材料的形貌及粒度表征”网络主题研讨会成功召开,网络讲堂特邀请清华大学/北京电子能谱中心朱永法教授、中科院纳米标准与检测重点实验室高级工程师刘忍肖老师、 HORIBA(堀场)、弗尔德(莱驰)、布鲁克的资深工程师在线讲解。/ppbr//pp 本次研讨会历时一天,为网友带来5个精彩的专业报告,共吸引235名来自材料检测领域的用户报名参与。本次研讨会的报告视频均已上线,访问a href="http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1749" target="_blank" title="" style="color: rgb(112, 48, 160) text-decoration: underline "span style="color: rgb(112, 48, 160) "strong“复合/纳米材料的形貌及粒度表征”网络主题研讨会/strong/span/a或点击下方报告名称即可在线观看。/ppbr//pp报告内容提要如下:/ppbr//pp报告一:a href="http://www.instrument.com.cn/webinar/video/play/102967" target="_blank" title="" style="color: rgb(112, 48, 160) text-decoration: underline "span style="color: rgb(112, 48, 160) "strong纳米材料的形貌和粒度分析方法及应用/strong/span/a/ppbr//pp清华大学/北京电子能谱中心朱永法教授主要讲述:纳米材料最常用的三种形貌分析方法的原理和应用特点以及粒度分析的方法和在纳米材料研究方面的应用实例。/ppbr//pp报告二:a href="http://www.instrument.com.cn/webinar/video/play/102969" target="_self" title="" style="color: rgb(112, 48, 160) text-decoration: underline "span style="color: rgb(112, 48, 160) "strong纳米材料的粒度表征/strong/span/a/ppbr//ppHORIBA 方瑛老师主要讲述:颗粒的尺寸会影响纳米材料的各种性能,而溶液的电位则会影响纳米乳液的稳定性。纳米颗粒分析仪可以表征纳米颗粒的粒径和电位,报告会介绍粒径和Zeta电位的测试原理,重点会介绍颗粒分析在纳米材料中的应用。/ppbr//pp报告三:a href="http://www.instrument.com.cn/webinar/video/play/102970" target="_blank" title="" style="color: rgb(112, 48, 160) text-decoration: underline "span style="color: rgb(112, 48, 160) "strong动态图像法粒度粒型分析技术/strong/span/a/ppbr//pp弗尔德蔡斌老师主要讲述:上世纪90年代科学家提出了动态图像法颗粒检测技术。德国莱驰于1998年生产了全球第一台动态图像法粒度粒型仪。本报告即针对动态图像法的原理、特点和结构进行介绍,提供给大家一个新的颗粒检测的概念。/pp /pp报告四:a href="http://www.instrument.com.cn/webinar/video/play/102968" target="_blank" title="" style="color: rgb(112, 48, 160) text-decoration: underline "span style="color: rgb(112, 48, 160) "strong基于PeakForce Tapping模式的纳米材料表征/strong/span/a/pp /pp布鲁克孙昊老师主要讲述:PeakForceTapping是由Bruker公司发明的一种新的基本成像模式。与传统的Contact、Tapping模式相比,PeakForceTapping具有探针-样品作用力小、能够自动优化反馈回路、能够进行定量力学成像等优点。本次报告主要介绍基于PeakForce Tapping的一系列新的成像技术在纳米表征中的应用。/pp /pp报告五:a href="http://www.instrument.com.cn/webinar/video/play/102971" target="_blank" title="" style="color: rgb(112, 48, 160) text-decoration: underline "span style="color: rgb(112, 48, 160) "strong尺度表征用纳米标准样品/strong/span/a/pp /pp中科院纳米标准与检测重点实验室高级工程师刘忍肖老师主要介绍纳米标准样品国内外发展概况、尺度表征用纳米标准样品、使用、选择和示例,粒度、台阶高度纳米标准样品等。/pp /pp更多内容,请观看报告视频。仪器信息网注册用户均可免费在线观看。/pp /pp网络讲堂作为科学分析仪器行业的百家讲堂,近期安排其他议题主题研讨会内容如下,根据您的时间尽早报名参与:/ppbr//ppa href="http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1763" target="_blank" title="" style="color: rgb(112, 48, 160) text-decoration: underline "span style="color: rgb(112, 48, 160) "strong2015年12月23日“热分析技术”网络主题研讨会/strong/span/a/ppbr//ppa href="http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1771" target="_blank" title="" style="color: rgb(112, 48, 160) text-decoration: underline "span style="color: rgb(112, 48, 160) "strong2016年01月20日“宝石及贵金属的真假鉴别与检测”网络主题研讨会/strong/span/a/ppbr//pp您在浏览网络讲堂过程中,遇到问题欢迎随时咨询 010-51654077-8123,微信号:378891527/ppbr//ppimg src="http://img1.17img.cn/17img/images/201512/insimg/9d061582-cdb4-445d-8e21-46dddda6efff.jpg" title="0151105140134.jpg" width="600" height="190" border="0" hspace="0" vspace="0" style="width: 600px height: 190px "//ppbr//p
  • 浅谈纳米材料的表征与测试方法
    p style="text-align: justify text-indent: 2em "纳米材料被誉为“21 世纪最重要的战略性高技术材料之一”。随着应用领域的扩大和增强,近年来,纳米材料的毒性与安全性也受到广泛关注。表征与测试技术是科学鉴别纳米材料、认识其多样化结构、评价其特殊性能及优异物理化学性质、评估其毒性与安全性的根本途径,也是纳米材料产业健康持续发展不可或缺的技术手段。/pp style="text-align: justify text-indent: 2em "strong1 纳米材料的表征/strong/pp style="text-align: justify text-indent: 2em "纳米材料的表征是对纳米材料的性质和特征进行的客观表达,主要包括尺寸、形貌、结构和成分等方面的表征。/pp style="text-align: center "span style="color: rgb(0, 112, 192) "纳米材料的表征/span/pp style="text-align: center "strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/2ffdf5f4-5465-4b3a-849e-1934933722b0.jpg" title="纳.png" alt="纳.png"//strong/pp style="text-align: justify text-indent: 2em "strong2 纳米材料的测试技术/strong/pp style="text-align: justify text-indent: 2em "2.1 光子相关光谱法(photo correlation spectroscopy,PCS)/pp style="text-align: justify text-indent: 2em "PCS常用于纳米粒子尺寸及尺寸分布的测试,相关标准已有GB/T 19627 等,其适用于尺寸为3nm~3μm的悬浮液,可获得准确的尺寸分布,测试速度也相当快,特别适合于工业化产品粒径的检测。但采用该方法时,必须要解决好纳米材料的分散问题,须获得高度分散的悬浮液,否则所反映的结果只是某种团聚体的尺寸分布。由于该方法是一种绝对方法,因此测量仪器可以不必校准;但在仪器首次安装、调试期间或有疑问时,必须使用有证标准纳米颗粒分散体系对仪器进行验证。如采用PCS法测定平均粒径小于100nm的、粒度分布较窄的聚苯乙烯球形颗粒分散体系,则要求测得的平均粒径与标定的平均粒径的相对误差应在2%之内。/pp style="text-align: justify text-indent: 2em "2.2 X 射线衍射法(X-ray diffraction,XRD)/pp style="text-align: justify text-indent: 2em "X射线衍射法可用于纳米晶体材料结构分析、尺寸测试和物相鉴定。该方法测定的结果是最小不可分的粒子的平均尺寸;因此,只能得到较宏观的测量结果。此外,采用该方法进行测试时,需要用X 射线衍射仪校正标准物质对仪器进行校正。目前,该方法已建立有关的国家标准包括GB/T 23413、GB/T 15989、GB/T15991 等。XRD物相分析可用于未知物的成分鉴定,但分析的不足之处在于灵敏度较低,一般只能测定含量在1%以上的物相;且定量分析的准确度也不高,一般在1%的数量级。同时,所需要的样品量较大,一般需要几十至几百毫克,才能得到比较准确的结果。由于非晶态的纳米材料不会对X射线产生衍射,所以一般不能用此法对非晶纳米材料进行分析。/pp style="text-align: justify text-indent: 2em "2.3 X 射线小角散射法(small angle X-ray scattering,SAXS)/pp style="text-align: justify text-indent: 2em "SAXS可用于纳米级尺度的各种金属、无机非金属、有机聚合物粉末以及生物大分子、胶体溶液、磁性液体等颗粒尺寸分布的测定;也可对各种材料中的纳米级孔洞、偏聚区、析出相等的尺寸进行分析研究。其测试范围为1~300nm,测量结果所反映的是一次颗粒的尺寸,具有典型的统计性,且制样相对比较简单,对粒子分散的要求也不像其他方法那样严格。但该方法本身不能有效区分来自颗粒或微孔的散射,且对于密集的散射体系,会发生颗粒散射之间的干涉效应,导致测量结果有所偏低。关于该方法的标准有GB/T 13221、GB/T 15988等。为了保证测试结果的可靠性和重复性,应对仪器的性能和操作方法进行校核,一般推荐采用粒度分布已定值的纳米粉末标样或经该方法测定过粒度分布的特定样品进行试验验证,其中粒径偏差应控制在10%以内。/pp style="text-align: justify text-indent: 2em "2.4 电子显微镜法(electron microscopy)/pp style="text-align: justify text-indent: 2em "电子显微镜法是对纳米材料尺寸、形貌、表面结构和微区化学成分研究最常用的方法,一般包括扫描电子显微镜法(scanning electron microscopy,SEM)和透射电子显微镜法(transmission electronmicroscopy,TEM)。/pp style="text-align: justify text-indent: 2em "SEM的特点是放大倍数连续可调,从几倍到几十万倍,样品处理较简单;但一般要求分析对象是具有导电性的固体样品,对非导电样品需要进行表面蒸镀导电层。扫描电镜与能谱仪相结合,可以满足表面微区形貌、组织结构和化学元素三位一体同位分析的需要。能谱仪可对表面进行点、线、面分析,分析速度快、探测效率高、谱线重复性好,但是一般要求所测元素的质量分数大于1%。关于电镜在纳米材料应用中的标准较多,如GB/T 15989、GB/T 15991、GB/T 20307、ISO/TS 10798等。/pp style="text-align: justify text-indent: 2em "TEM法是集形貌观察、结构分析、缺陷分析、成分分析的综合性分析方法,已成为纳米材料研究的最重要工具之一。除了具有与SEM的相同功能外,利用电子衍射功能,TEM可对同素异构体加以区分。相较于XRD,还能对含量过低的某些相进行分析,且可以结合形貌分析,得到该相的分布情况。TEM法的主要局限是对样品制备的要求较高,制备过程比较繁琐,若处理不当,就会影响观察结果的客观性。目前,TEM在纳米材料方面的应用正逐步被开发出来,其相关标准也在不断增加,如GB/Z 21738、GB/T 24490、GB/T 24491、ISO/TS 11888、GB/T 28044等。/pp style="text-align: justify text-indent: 2em "由于电镜法测试所用的纳米材料极少,可能会导致测量结果缺乏整体统计性,实验重复性差,测试速度慢;且由于纳米材料的表面活性非常高,易团聚,在测试前需要进行超声分散;同时,对一些不耐强电子束轰击的纳米材料较难得到准确的结果。采用电镜法进行纳米材料的尺寸测试时,需要选用纳米尺度的标准样品对仪器进行校正。/pp style="text-align: justify text-indent: 2em "2.5 扫描探针显微镜法(scanning probe microscopy,SPM)/pp style="text-align: justify text-indent: 2em "SPM法是研究物质表面的原子和分子的几何结构及相关的物理、化学性质的分析技术。尤以原子力显微镜(atomic force microscopy,AFM)为代表,其不仅能直接观测纳米材料表面的形貌和结构,还可对物质表面进行可控的局部加工。与电镜法不同的是,除了真空环境外,AFM还可用于大气、溶液以及不同温度下的原位成像分析;同时,也可以给出纳米材料表面形貌的三维图和粗糙度参数。除此之外,AFM 还可用于研究纳米材料的硬度、弹性、塑性等力学及表面微区摩擦性能。/pp style="text-align: justify text-indent: 2em "近年来,SPM技术在纳米材料测量和表征方面的独特性越来越得到体现,如GB/Z 26083-2010、国家项目20078478-T-491等。但由于SPM纵向与横向分辨率不一致、压电陶瓷可能引起的图像畸变、针尖效应等,使得还有一些问题有待解决,如SPM探针形状测量和校正、SPM最佳化应用及不确定度评估、标准物质的制备、仪器性能的标准化、数值分析的标准化、制样指南和标准制定等。目前,虽有仪器校正的标准ASTM E 2530和VDI/VDE 2656颁布,但由于标准物质的缺少,在实际操作中缺乏实施性。/pp style="text-align: justify text-indent: 2em "2.6 X 射线光电子能谱法(X-ray photoemissionspectroscopy,XPS)/pp style="text-align: justify text-indent: 2em "XPS 法也称为化学分析光电子能谱(electron spectroscopy for chemical analysis,ESCA)法。从X 射线光电子能谱图指纹特征可进行除氢、氦外的各种元素的定性分析和半定量分析。作为一种典型的非破坏性表面测试技术,XPS主要用于纳米材料表面的化学组成、原子价态、表面微细结构状态及表面能谱分布的分析等,其信息深度约为3~5nm,绝对灵敏度很高,是一种超微量分析技术,在分析时所需的样品量很少,一般10-18g左右即可;但相对灵敏度通常只能达到千分之一左右,且对液体样品分析比较麻烦。通常,影响X射线定量分析准确性的因素相当复杂,如样品表面组分分布的不均匀性、样品表面的污染物、记录的光电子动能差别过大等。在实际分析中用得较多的是对照标准样品校正,测量元素的相对含量;而关于该仪器的校准,GB/T 22571-2008中已有明确规定。/pp style="text-align: justify text-indent: 2em "2.7 俄歇电子能谱法(aguer electron spectroscopy,AES)/pp style="text-align: justify text-indent: 2em "AES法已发展成为表面元素定性、半定量分析、元素深度分布分析和微区分析的重要手段,可以定性分析样品表面除氢、氦以外的所有元素,这对于未知样品的定性鉴定非常有效。除此之外,AES还具有很强的化学价态分析能力。AES的分析范围为表层0.5~2.0nm,绝对灵敏度可达到10-3个单原子层,特别适合于纳米材料的表面和界面分析。但需要注意的是,对于体相检测,灵敏度仅为0.1%,其表面采样深度为1.0~3.0 nm。AES技术一般不能给出所分析元素的绝对含量,仅能提供元素的相对含量;而且,采用该方法进行测试时,需要相应的元素标样,元素鉴定方法在JB/T 6976-1993中已明确给出。/pp style="text-align: justify text-indent: 2em "2.8 其他方法/pp style="text-align: justify text-indent: 2em "除此之外,还有一些其他的测试技术和方法用于纳米材料的表征,如紫外/可见/近红外吸收光谱方法用于金纳米棒的表征(GB/T 24369.1)、紫外-可见吸收光谱方法用于硒化镉量子点纳米晶体表征(GB/T24370)、纳米技术-用紫外-可见光-近红外(UV-Vis-NIR)吸收光谱法表征单壁碳纳米管(ISO/TS 10868)。/pp style="text-align: justify text-indent: 2em "strong3 结束语/strong/pp style="text-align: justify text-indent: 2em margin-bottom: 15px "纵观当前纳米材料的表征与测试技术,要适应纳米材料产业的快速发展,规范化表征和准确可靠测试纳米材料尚存在一定挑战。/pp style="text-align: justify text-indent: 2em "基于此,仪器信息网将于span style="color: rgb(255, 0, 0) "2019年12月18日/span组织举办strong第二届“纳米表征与检测技术”主题网络研讨会/strong(a href="https://www.instrument.com.cn/webinar/meetings/nano2/" target="_blank" textvalue="免费报名中"ispan style="color: rgb(255, 0, 0) "免费报名中/span/iispan style="color: rgb(255, 0, 0) "/span/i/a),邀请该领域专家,围绕纳米材料常用表征和检测技术,从成分、形貌、粒度、结构以及界面表面等方面带来精彩报告,为纳米材料工作者及相关专业技术人员提供线上互动交流互动平台,进一步加强学术交流,共同提高纳米材料研究及应用水平。/pp style="text-align: center text-indent: 0em "a href="https://www.instrument.com.cn/webinar/meetings/nano2/" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/14b28169-cfe6-44ba-8dc5-f47132b97366.jpg" title="540_200.jpg" alt="540_200.jpg"//a/pp style="text-align: justify "a href="https://www.instrument.com.cn/webinar/meetings/nano2/" target="_blank" textvalue="报名链接:第二届“纳米表征与检测技术”主题网络研讨会"strongspan style="color: rgb(255, 0, 0) "报名链接/span/strong:istrongspan style="color: rgb(112, 48, 160) "第二届“纳米表征与检测技术”主题网络研讨会/span/strong/i/a/pp style="text-align: center "strong扫一扫,参与报名/strong/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/d2e686ea-3308-4d6f-8795-e26e3d0f062d.jpg" title="报名.PNG" alt="报名.PNG"//pp style="text-align: center "strong扫一扫,进入纳米表征与检测技术群/strong/pp style="text-align: center "strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/33e39f0a-8ef0-4aeb-b662-03350301ed05.jpg" title="群.PNG" alt="群.PNG"//strong/pp style="text-align: justify "strongi style="margin: 0px padding: 0px color: rgb(127, 127, 127) font-family: 宋体, " arial="" white-space:=""文章摘自:/i/strong/pp style="text-align: justify "strongi style="margin: 0px padding: 0px color: rgb(127, 127, 127) font-family: 宋体, " arial="" white-space:=""span style="font-family: " microsoft="" font-size:="" background-color:=""谭和平, 侯晓妮, 孙登峰, et al. 纳米材料的表征与测试方法[J]. 中国测试, 2013(01):17-21./span/i/strong/p
  • 颗粒表征智能时代已来——马尔文帕纳科超级品牌日成功举办
    2024年6月26日,“颗粒表征迈入智能时代——马尔文帕纳科超级品牌日”活动成功举办。本次活动由马尔文帕纳科和仪器信息网联合举办,吸引2300余人观看,引发热烈讨论与交流。王体壮分享《颗粒、颗粒学与颗粒学会》活动特别邀请中国颗粒学会秘书长王体壮分享《颗粒、颗粒学与颗粒学会》。王体壮以深入浅出的方式,从狭义和广义两个维度,全面而精准地阐述了“什么是颗粒”;系统介绍了颗粒及颗粒群的特性、颗粒学的研究内容,以及中国颗粒学会的服务产品。他总结到,颗粒学是一门融合数学、物理、化学及生物学基本原理的综合性学科,研究自然万物和精神社会当中物质、能量、信息之间的相互转换关系;颗粒学致力于实现多学科交叉、多领域融合,涵盖了物理世界、化工技术、生命科学乃至社会科学等多个领域,包含了所有科学的分支。因此,可以说颗粒源自宇宙,颗粒学连接生活。走进总部:马尔文帕纳科颗粒表征技术的发展随后,马尔文帕纳科总部应用专家团队带领用户一起探索马尔文帕纳科的历史、创新和应用,深入了解马尔文帕纳科颗粒表征技术的发展以及研究、开发和生产的幕后故事。马尔文颗粒表征技术发展历程始于1958年,1970年,公司更是推出了世界上首个数字相关器,使得亚微米颗粒的测量成为现实。随后,一系列经典的颗粒表征仪器型号相继问世,如Mastersizer激光粒度仪系列、Zetasizer纳米粒度仪系列、Spraytec喷雾液滴分析仪、Morphologi静态粒度粒形分析仪系列、OMNISEC凝胶渗透色谱,以及NanoSight Pro纳米颗粒跟踪分析仪等。这些技术的演进不仅彰显了马尔文帕纳科在颗粒表征领域的卓越实力,也为全球用户提供了更为精准、高效的颗粒表征解决方案。走近用户:我眼中的颗粒表征技术紧接着,来自各行各业的马尔文帕纳科用户分享了他们和颗粒表征技术之间的故事,并畅谈了对马尔文帕纳科仪器的使用心得和宝贵建议。 随着应用技术的不断发展,单一的颗粒表征方式往往难以应对日益复杂的样品测试需求,用户在测试过程中也常常为了方法开发或数据质量、异常信号等问题而苦恼,或是疲于应对大量重复测量工作,却得不到具有统计意义的测试结果。为帮助广大用户轻松应对这一挑战,马尔文帕纳科上海应用实验室主管、粒度仪产品线资深应用专家黎小宇,生命科学业务发展部门经理、微量热技术产品经理韩佩韦先后分享了马尔文帕纳科的智能化多维度颗粒表征技术。 黎小宇分享《智能化多维度颗粒表征技术 助您轻松应对粒度分析挑战 -激光衍射和形貌图像篇》马尔文帕纳科与时俱进,在自动化与智能化方向持续创新,通过标准化的测试流程和自动化助手,极大地简化了测试过程;借助先进的机器学习和AI技术,在软硬件功能方面实现了智能化升级,为操作人员提供了从方法建立、结果分析到质量判断的全流程支持,确保了测试结果的准确性。黎小宇深入介绍了马尔文帕纳科微米级别颗粒大小和形状的表征技术,包括Mastersizer 3000+激光衍射仪法粒度仪新品、M4智能自动图像分析仪以及Spraytec喷雾液滴分析仪在自动化和智能化方面的亮点。韩佩韦分享《智能化多维度颗粒表征技术 助您轻松应对粒度分析挑战 -动态光散射和纳米示踪篇》韩佩韦则重点介绍了马尔文帕纳科纳米级颗粒表征技术。常见的纳米颗粒分析方法包括显微镜法和光散射法,但它们各有优劣。为了弥补这些分析技术的局限,马尔文帕纳科创新地开发了原理互补技术,即DLS动态光散射技术和NTA纳米颗粒跟踪技术,能够互补地解决纳米粒径测试的问题,为产品开发、工艺开发、质量控制以及分析方法提供强有力的支持。以上两种技术与智能样品助手组成了马尔文帕纳科的纳米颗粒表征解决方案。该方案采用了先进的智能算法,帮助用户更好地进行数据甄别;同时,配备的智能硬件显著降低了用户错误使用的可能性;通过智能识别,它能够触及人眼和人工操作难以达到的领域;而智能控制则极大地提高了工作效率。蔡厚安分享《智能维保,专业赋能》最后,马尔文帕纳科技术中心经理蔡厚安介绍了一项智能维保服务——Smart Manager 睿联平台。 这是一款针对马尔文帕纳科设备的云服务产品,通过云服务器,该平台能够实时在线监测设备的软硬件工作状态,实现对用户设备软硬件异常状态的即时预警。一旦发现异常情况,平台将迅速主动联系客户,协助进行现场问题排查,有效避免设备停机,从而确保用户的设备运行周期达到最大化,显著提升设备的使用效率和稳定性。更多精彩详见下方专题:马尔文帕纳科超级品牌日专题页面
  • 许人良:颗粒表征领域的十年回顾与展望
    颗粒表征行业过去十数年间从各类表征技术的发展、各工业领域内更广泛的应用、各项技术的标准化程度的提高与普及、新款仪器的问世,到许多商家公司的变更,是本行业半个世纪前随着激光与微电子行业的问世而跨入现代化进程以来变化最明显的。颗粒表征技术的发展回顾现代颗粒表征技术的初始化发端于延伸传统的筛分、光学显微镜、与沉降法粒度测量的下限。那些用于表征10微米以上颗粒的技术,特别是应用于固体颗粒的颗粒表征仪器商业化可以说是早已完成了。近十几年来主要是一些技术细节的进一步改进与应用的进一步推广,例如在3D打印、能量储存(锂离子电池)、药物等很多行业。这方面的最大变化是各类技术的国际标准化、国内标准化与行业标准化的建立与普及,以及各类有证(标准)的国家级与行业参考颗粒物质(RM),包括单分散粒径RM、多分散粒径RM、计数RM、表面积RM、Zeta电位RM等的可利用性。迄今为止国际标准化组织仅颗粒表征技术委员会(ISO TC 24)就已有61个国际标准、1个技术规范、3个技术报告。中国国家标准化管理委员会的颗粒表征与分检及筛网标准化委员会专委会(TC 168)也已有60个国家标准。这些技术在过去十数年内的持续改进发展与一些新技术的问世,主要来自于纳米科学技术发展的推动与将测量粒径下限进一步下推与测量样品浓度上推的需求。表征技术与仪器本身的发展也受益于其他行业的新技术,例如3D打印、光刻与微机电系统已被用于生产颗粒表征仪器的过程;不断发展的各类光源、光导纤维、CCD、CMOS、光电探测器阵列都已成为现代化颗粒表征仪器的一部分。某些测量技术例如传统的库尔特原理(电阻法),进一步扩展了测量的动态范围与测量下限、数值化的脉冲记录可使同一测量除了计数与颗粒体积测定以外,也可用以测定颗粒形状或追踪样品的动态变化。基于同样原理的可调谐电阻脉冲传感法使用在可伸展薄膜上的小孔测量纳米级颗粒,已成功地用于病毒研究,包括新冠病毒研究;利用纳米碳管、3D打印以及小至10纳米的电极,整个电阻法测量可在微芯片上完成。英国科学家在2006年发明的、基于追踪激光照射下悬浮液内纳米颗粒运动的颗粒示踪法是近十年来发展最迅速的基于数量测定的纳米颗粒粒径测定新技术。这个可以包含计数、电泳迁移率测定与荧光分析的新技术可与动态光散射互补,如果能够进一步增宽测量粒径与浓度的动态范围,则一定可以有更广泛的应用前景。传统的动态光散射已突破稀溶液和90度散射角测量的局限,利用光学纤维进行后向散射、多角散射测量,以及多角度整体分析已逐渐成为通例。随着计算机能力的进一步扩展与数据传输速度的提高,动态范围高达1012与采样速度快达10纳秒的芯片相关器或软件相关器取代了传统相关器。越来越多的相关函数反演算法使这一已沉寂了很多年的领域又活跃了起来。打破测量必须在静止液体中进行的限制,在分馏设备的出口处测量在流动液体中单分散分馏成分的动态光散射也取得了可喜的进展。中国科学家在2012年发明的,以CCD或CMOS作为探测器,同时测量动态光散射时间与空间相关性的超快速图像动态光散射方法,利用系综平均取代扩散平均,弥补了传统动态光散射费时、信噪比低的缺点,可以在瞬间(快达1微秒的两幅帧)测出颗粒的平均粒径,已成功地在数秒钟内实时测量了金颗粒的成长。这一测量速度还将随着帧传输速率的增加进一步提高。另一个可注意到的变化是电泳光散射测量zeta电位技术的进一步发展,例如直流与交流电场混用以排除测量中电渗的影响、使用透明电极以测量极高浓度样品中颗粒的zeta电位、用大规模并行相位分析光散射测量蛋白质的电泳、用对称测量增加分辨率等。Zeta电位测量的应用与数据解释也为更多的用户理解与接受。随着越来越多行业对颗粒形状表征的需求,动态图像法,特别是取样方法与图像分析算法与软件也是活跃的热点。颗粒表征仪器企业的并购整合这十几年来最引人注目的可能是颗粒表征仪器行业内商家的整合。据不完全统计,从2000年至今,至少有13家公司的所有权发生了变化,有的是集团内整合,有的是国际兼并,有的是国内并购。随着现代化颗粒表征技术第一代研发人员由于年龄原因的退出、公司所有权变化后的人事变动、以及很多成熟技术的黑盒子化,提供用户支持的第一线应用人员甚至总部的应用支持人员对科学技术知识掌握的深度与广度打了很多折扣,有些人对自己公司的产品知其然而不知其所以然,市场上的竞争也经常脱离应有的科学技术基础。中国颗粒表征领域的发展可喜的是中国颗粒表征领域的发展,无论是对技术的推进(激光粒度法中的很多新型光学设计、图像动态光散射、各类矩阵反演算法等)、应用的普及化(全球最大的激光粒度仪与质控气体吸附表面分析仪的用户群体)、标准化程度(全球数一数二的与颗粒有关的国家标准与颗粒标准物质的类型与数量)、商业化的活跃程度(具有最多业内商家的国家)都随着中国国力的增强与现代化的发展而走在前沿。中国颗粒表征企业也开始进行国际并购,销售渠道越来越宽。颗粒表征技术未来展望展望下一个十年,颗粒表征技术在现有的基础上会在各级标准化的促进下得到更广泛的应用,云数据计算与共享会逐渐推广,表征技术不再限于单参数测量而是在单一测量、或同时测量中得到多个参数,或同一参数在不同条件下测量后对数据进行整体分析。更多的注意力会放在气溶胶、气泡动态测量与在线测量;各类数据挖掘法会用于动态图像法中的图形辨识以用来测量更小与更浓的样品;激光粒度仪将不再局限于球形模型而开始对实际样品尝试非球形模型。作者简介许人良,国际标委会颗粒表征专家。1980年代前往美国就学,受教于20世纪物理化学大师彼得德拜的关门弟子、光散射巨擘朱鹏年和国际荧光物理化学权威魏尼克的门下,获博士及MBA学位。曾在多家跨国企业内任研发与管理等职位,包括美国贝克曼库尔特仪器公司颗粒部全球技术总监,英国马尔文仪器公司亚太区技术总监,美国麦克仪器公司中国区总经理,资深首席科学家。也曾任中国数所大学的兼职教授。 国际标准化组织资深专家与召集人,执笔与主持过多个颗粒表征国际标准 美国标准测试材料学会与化学学会的获奖者 中国颗粒学会高级理事,颗粒测试专业委员会常务理事 中国3个全国专业标准化技术委员会的委员 与中国颗粒学会共同主持设立了《麦克仪器-中国颗粒学报最佳论文奖》浸淫颗粒表征近半个世纪,除去70多篇专业学术论文、SCI援引4700以上、数个美国专利之外,著有400页业内经典英文专著《Particle Characterization: Light Scattering Methods》,以及即将由化学工业出版社出版的《颗粒表征的光学技术及其应用》。
  • 颗粒表征迈入智能时代——马尔文帕纳科超级品牌日精彩抢先看
    超级品牌日专题页面颗粒表征应用范围非常广泛,可以帮助人们了解粉末的流动性和填充性、药物的溶解速率、蛋白质的稳定性、涂料的光学性能等。随着人们对材料的探索不断深入,颗粒表征在科学研究和工业应用中扮演着越来越重要的角色。 马尔文帕纳科作为激光衍射粒度表征的先驱,在颗粒表征领域深耕超过半个多世纪,将颗粒表征技术从最初的针对微米级颗粒进行测量扩展至纳米级颗粒尺度,表征范围也增加了粒形、成分、浓度、Zeta电位、比表面积等物理、化学特性的测量和分析。完整的解决方案,助力科研人员和工业用户进行更精确、更高效的颗粒表征;丰富的行业经验帮助客户用颗粒表征结果指导自己的研究或生产。马尔文帕纳科颗粒表征解决方案 随着应用技术的不断发展,单一的表征方式往往难以应对日益复杂的样品测试需求,用户在测试过程中也常常为了方法开发或数据质量、异常信号等问题而苦恼,或是疲于应对大量重复测量工作,却得不到具有统计意义的测试结果。除了利用不同的测试方法相互补充,智能化成为提升测试能力的关键。马尔文帕纳科在软硬件智能化以及仪器智能化管理方面都做出了自己的尝试并取得了令人满意的结果。6月26日,仪器信息网携手马尔文帕纳科举办“颗粒表征迈入智能时代”超级品牌日。马尔文帕纳科将分享其经验,展示机器学习、智能化、自动化赋予不同颗粒表征方式的巨大能量。John Oude Egbrink(客户成功部门,马尔文帕纳科全球副总裁)邀您参会交流会议日程时间主题嘉宾14:00--14:02活动开场主持人14:02--14:20颗粒、颗粒学与颗粒学会王体壮 中国颗粒学会秘书长14:20--14:30走进总部:马尔文帕纳科颗粒表征技术的发展马尔文帕纳科总部应用专家团队14:30--14:35走近用户:我眼中的颗粒表征技术马尔文帕纳科客户采访14:35--14:40互动抽奖 第一轮精美洗漱包14:40--15:15智能化多维度颗粒表征技术 助您轻松应对粒度分析挑战 -激光衍射和形貌图像篇黎小宇 马尔文帕纳科上海应用实验室主管、粒度仪产品线资深应用专家15:15--15:20互动抽奖 第二轮多功能支架/实验室粒度仪培训名额15:20--15:40智能化多维度颗粒表征技术 助您轻松应对粒度分析挑战 -动态光散射和纳米示踪篇韩佩韦 马尔文帕纳科生命科学业务发展部门经理、微量热技术产品经理15:40--15:55智能维保,专业赋能蔡厚安 马尔文帕纳科技术中心经理15:55--16:00互动抽奖 第三轮 & 结束语双肩包/Mastersizer维护包及Smart Manager 5折优惠券 /售后服务合同5折优惠券注:(实验室培训和售后优惠券的有效期截止今年底,如果中奖者是非马尔文帕纳科用户,可置换为WMF便携餐具套装)扫描二维码报名抢位直播时间:2024年6月26日14:00-16:00;直播平台:仪器信息网3i讲堂参与此次超级品牌日活动,您将看到马尔文帕纳科总部应用专家团队分享的颗粒表征技术发展历史和幕后故事,也将听到马尔文帕纳科用户对颗粒表征分析仪器的心声。在专题报告环节,您将看到智能化多维度颗粒表征技术如何助力客户轻松应对微米及纳米颗粒分析挑战。在客户服务环节,您将对马尔文帕纳科的智能维保服务有更全面的了解。活动中除了定制礼品的抽奖,您还有机会获得维护备件大礼包、实验室粒度仪培训名额、售后服务优惠券等多项独家福利。精彩内容,不容错过,期待您的参与。
  • 2020年颗粒测试与表征仪器新品盘点(23款)
    2020年伊始,新冠疫情爆发,全球经济被按下了“暂停键”。疫情期间,科学仪器企业伸出援手共同抗疫的同时,也在苦练内功、研发新品,迎接“春天”的到来。纵观2020年中国颗粒测试市场,新产品层出不穷,创历年新高,仪器信息网特此盘点了20余款颗粒测试与表征仪器新品,以飨读者。(特别声明:受限于时间与资源,新品盘点范围仅限本网收录的不完全统计,如有遗漏,欢迎补充完善)2020年,颗粒测试与表征仪器新品种类繁多,涉及纳米粒度仪及Zeta电位分析仪、图像粒度粒形分析仪、颗粒计数器、筛分仪、比表面及孔径分析仪、多组分竞争吸附仪、化学吸附仪等。纳米粒度仪及Zeta电位分析仪(1)马尔文帕纳科2020年8月,马尔文帕纳科发布Zetasizer Advance 系列新品,包括Zetasizer Ultra、Zetasizer Pro、Zetasizer Lab三种型号,且每种型号又分为Blue Label和Red Label 两个版本,均可进行颗粒粒度、Zeta电位和分子量分析。2021年1月15日,马尔文帕纳科超级品牌日将线上直播发布 Zetasizer Advance,具有多种创新设计的新品即将揭开神秘面纱,点击下方图片查看详情。(2)HORIBAViewSizer 3000ViewSizer™ 3000 实现了纳米颗粒追踪分析技术的突破性提升,包括特有的照射和检测方法,使得各种尺寸纳米颗粒的可视化、粒径和数量浓度测量成为可能。仪器创新点:1)仪器配备三种波长激光光源,激光功率可调,实现宽分布样品粒径的精确测量;2)特有的样品池设计可实现样品体系的快速混合,且清洗方便;3)荧光模块可实现样品中各组分粒径分布及颗粒数量与比例的测量;4)运用重力沉降原理扩展仪器的粒径测量上限。(3)德国飞驰 A22 NeXTAnalysette 22 NeXT于2020年6月正式上市,用户可根据需求自行选择测量范围:Analysette 22 NeXT 微米型测量范围为0.5–1500μm,能满足大多数常规样品的测量需求;Analysette 22 NeXT纳米型测量范围拓展至0.01-3800μm,测量精度极高,附加的检测器能够灵敏地分辨极小的颗粒。该新品操作和清洗非常简单,分析时间短,具备可靠的测量结果和重复性,还可以记录额外的测量数据如湿法分散过程中体系的温度及PH值。(4)东曹 LENS3东曹生命科学新推出的LenS3多角度光散射检测器为测量合成聚合物、多糖、蛋白质和生物大分子分子量(MW)和回转半径(Rg)提供了革新的解决方案。仪器创新点: 1)采用了创新的光路设计,可以在10°、90°和170°三个固定角度进行光散射测量;2)可以测量小至2nm样品的散射光的角不对称性,远低于目前的检测极限。(5)美国PSS PSS Nicomp 380 N3000 PlusNicomp 380 N3000系列纳米激光粒度仪是在原有的经典型号380DLS基础上升级配套而来,相对于上一代产品,配件选用材料进行升级,配套软件版泵升级,检测速度升级,检测精度升级。其配套粒度分析软件复合采用了高斯(Gaussian)单峰算法和拥有专利技术的 Nicomp多峰算法,对于多组分、粒径分布不均匀分散体系的分析具有独特优势。(6)美国MAS CHDF4000型CHDF4000高分辨率纳米粒度仪采用毛细管流体分离技术(CHDF),用于测量粒径在5nm-2μm 范围内胶体的真实粒度分布(PSD),还可以用来分析多组分的复杂粒度体系,并不需要作出任何假设。另外,该粒度仪样品用量很少,小于1ml即可。 Zeta-APSZeta-ASP为一款高浓度胶体和乳液的特性参数检测仪,可以测试粒径、Zeta电位、滴定、电导等。此仪器对于高达60%(体积)浓度的样品,无需进行稀释或样品前处理,即可直接测量,甚至对于浆糊凝胶、水泥以及其它仪器很难测量的材料都可直接进行测量。 ZetaFinder ZF400型ZetaFinder ZF400 高浓度Zeta电位分析仪采用专门的电动声波振荡技术,可完成非凡的电动测量结果,从而避免了传统的微电泳技术的许多限制和局限。该仪器可同时测量Zeta电位、PH、电导、温度等指标,样品在测量时甚至可以进行滴定操作,并且可以在任何pH值下分析固体、不透明或半透明样品。(7)丹东百特 BT-90+BT-90+纳米粒度仪是丹东百特在BT-90纳米粒度仪基础上,全新开发的测量纳米颗粒粒度及其分布的纳米粒度测试系统,可实现亚纳米至微米范围的准确检测。BT-90+具有极佳的功能扩展能力,除了可以检测颗粒的粒径之外,还具备检测体系的粘度、颗粒之间的相互作用力、温敏材料的温度变化趋势等能力。(8)广州贝拓DLS 90DLS90纳米粒度仪具有极速测量和标准测量两种模式,极速测量模式下,最快可以10s给出测量结果。该仪器采用光子计数级的高精度光电倍增管和集成的光子相关器,配备精确的温控系统,采样时间最短可达100ns,可测量粒径范围低至1nm图像粒度粒形分析仪(1)FlowCam FlowCam 5000CFlowCam 5000C是Fluid Imaging Technologies公司于2020年3月发布的新品,该仪器可通过40+种形态参数表达所测颗粒的尺寸和形状,获得高质量颗粒图像和基于图像直测获得的定量数据,每分钟可分析成千上万个颗粒,是一款高效率、高性价比的颗粒检测仪器。(2)梅特勒-托利多 EasyViewer 400梅特勒-托利多全新发布的EasyViewer 400是一款探头式工具,功能更加强大、分辨率更高、探头尺寸更长,为测量高浓度体系、更小颗粒、透明液滴和颗粒、中试放大提供高效解决方案。该工具无需取样、稀释或备样,测量快速,简单易用,可一键生成报告,具有高分辨率(980nm)、更窄景深、背光光源三大亮点。无论是实验室研发还是中试放大,均可实时在线捕捉高分辨率晶体、颗粒和液滴尺寸、形貌的演变过程,对于科研人员理解机理、优化过程、快速决策扮演着重要的角色,广泛应用于制药、化工等多种领域。颗粒计数器(1)美国PSS FMS AccuSizer 780 OL-NDFMS AccuSizer 780 OL-ND 在线颗粒计数器使用基于光阻法的单颗粒光学传感技术(SPOS)原理,对检测样本不仅仅可以给出粒度分布(PSD),更可以获得颗粒数量(COUNT)。该仪器全自动化工作,无需人工进样,完美解决了自动取样和自动检测两大难题。(2)德国TOPAS LAP 323LAP-323气溶胶粒径谱仪利用双波长光散射技术测试颗粒物粒径和数量分布,采用两个不同波长的激光二极管对颗粒进行测试,分辨率更高,结果数据更准确。此外,该设备还具有集成度高、智能化流量控制、设计紧凑、使用便捷等特点。筛分仪格瑞德曼 AJ200空气筛分仪AJ200适用于颗粒样品的粒度分离、团聚样品的分散,该产品具有特殊喷嘴设计,转速可调,适用于更加广泛的应用条件。创新点:1)气流喷嘴可以转动,保证样品充分流动;2)真空度可手动或自动调节气流压力,确保不同颗粒粉末准确结果 ;3)德国吸尘器,超低静音,功率大效率高。比表面及孔径检测类仪器(1)麦克仪器 ASAP 2425ASAP 2425多站式全自动比表面与孔隙分析具有六个独立分析站,不同于市面上大多数仪器,可同时分析样品,也可独立分析,可在一小时内完成六个BET比表面分析;拥有12个独立的样品脱气站,即一个样品的制备不会影响另一个样品的脱气和分析。用户可选配低比表面积型号(氪气分析)和微孔型号,其中,低比表面积型号可精确测量低表面积材料( 1 m2/g);微孔型号则包括1mmHg 传感器,增强了微孔表征性能。(2)精微高博 TB系列TB系列比表面积及孔径同步分析仪在使用过程中,多个样品共用同一杜瓦瓶、同一气源进行测试分析,可保证分析测试的准确性和重复性,真正实现多站间无差异化分析。独有的Vtech技术融合了Vspace冷自由空间控制技术、Vlevel液氮面控制技术、Vstable稳定测试技术、Vctrl防抽飞控制技术,使得TB系列产品的测试效率更高,测试结果更重复、更稳定,更能满足大孔材料的测试需求。(3)贝士德 BSD-MAB该吸附穿透曲线分析仪自带的热导检测器可测定不同实验条件的双组份的吸附穿透曲线,如不同吸附剂,不同温度,不同压力,不同床层厚度,不同气体浓度,不同穿透流量等;连接色谱或质谱可完成三组分及三组分以上的多组分竞争性吸附、选择性吸附以及置换吸附等测试;可实现吸附剂对ppm级别浓度的TVOC、SO2及NH3等污染气体的吸附测试,尤其适用于吸附剂对室内、车内等环境中微量污染气体吸附性能的评价及吸附相关参数的测定。(4)理化联科 iPore400iPore 400型能同时测定6个样品,并对另外六个样品进行独立地脱气处理,可代替氪吸附完成超低比表面样品的测定,为医药行业尤其是进入药典的药品、电池材料以及3D打印常用金属粉末等超低比表面样品的测试,提供全新解决方案,同时还可以对膜的孔径进行测定。 iPore600iPore 600型能在测定3个微孔样品的同时,独立地对另外六个样品进行脱气,具有两套独立的真空系统,适合高校及研究单位对超微孔材料和微介孔材料的比表面及孔径进行精确分析,可广泛应用于电池材料、金属粉末、固体药物制剂(原料药API及其辅料)等超低比表面样品的质量控制和研发。 iChem 700iChem 700全自动程序升温化学吸附仪可用于对催化剂材料进行TPD、TPR、TPO、TPRx、脉冲化学吸附、催化剂处理、脉冲校准和动态BET比表面分析等,以对催化剂材料的酸碱度、酸碱分布、活性金属分散度、金属与载体的相互作用等进行分析,此外,可配置在线色谱仪,连续对TPRx产物进行定性和定量监测以及对脱附气体的浓度进行检测。
  • 12月9日听朱永法、刘忍肖老师在线讲”纳米材料的形貌及粒度表征“!速度报名!
    pstrong“纳米材料的形貌及粒度表征应用技术”网络主题研讨会/strong/ppstrongbr//strong/ppstrong会议时间:2015年12月09日 14:00 - 17:00/strong/ppstrongbr//strong/ppstrong会议简介:/strong/ppstrongbr//strong/pp纳米科学和技术是在纳米尺度上(0.1nm~100nm之间)研究物质(包括原子、分子)的特性和相互作用,并且利用这些特性的多学科的高科技。其最终目的是直接以物质在纳米尺度上表现出来的特性,制造具有特定功能的产品,实现生产方式的飞跃。纳米科技是未来高科技的基础,而科学仪器是科学研究中必不可少的实验手段。因此,纳米材料的分析和表征对纳米材料和纳米科技发展具有重要的作用。/ppbr//ppspan style="color: rgb(112, 48, 160) "strong部分报告(陆续更新中):/strong/span/ppbr//ppstrong报告一:纳米材料的形貌和粒度分析方法及应用/strong/ppstrongbr//strong/pp报告人:朱永法教授(清华大学/北京电子能谱中心)/ppbr//pp报告概要:/ppbr//pp主要讲述了纳米材料最常用的三种形貌分析方法的原理和应用特点以及粒度分析的方法和在纳米材料研究方面的应用实例。目前最常用的形貌分析方法是扫描电子显微镜、透射电子显微镜和原子力显微镜。扫描电镜视场广,样品制备简单,不会产生信息失真,可以观察形貌以及实现颗粒大小的分布统计。透射电镜可以观察纳米材料的形貌和颗粒大小,但视野范围小,样品制备过程容易产生大颗粒的丢失现象,但可以区分聚集态和一次粒子的信息。原子力显微镜可以观察薄膜的颗粒大小,也可以观察分散态的纳米材料的形貌及大小。此外,还可以测量颗粒的厚度以及薄膜的粗糙度分布。激光粒度仪是测量颗粒大小常用的方法,但无法观察纳米材料的形貌,是一种统计颗粒直径分布,容易失真。此外,很多纳米材料分散在溶液中,可能是水合方式存在,获得的是水合颗粒大小的分布,并不是真实的材料颗粒大小,但可以获得粒度分布的信息。此外,通过XRD和拉曼光谱还可以获得纳米材料晶粒大小的数据。/ppbr//ppstrong报告二:纳米材料的粒度表征/strong/ppstrongbr//strong/pp报告人:方瑛(HORIBA)/ppbr//pp报告概要:/ppbr//pp 颗粒的尺寸会影响纳米材料的各种性能,而溶液的电位则会影响纳米乳液的稳定性。纳米颗粒分析仪可以表征纳米颗粒的粒径和电位,报告会介绍粒径和Zeta电位的测试原理,重点会介绍颗粒分析在纳米材料中的应用。/ppbr//ppstrong报名条件:只要您是仪器信息网注册用户均可参加!/strong/ppbr//ppstrong环境配置:只要您有电脑、外加一个耳麦就能参加。/strong/ppbr//ppspan style="color: rgb(255, 0, 0) "strong扫码报名!一分钟搞定!/strong/span/ppstrongbr//strong/ppstrongimg src="http://img1.17img.cn/17img/images/201511/insimg/f216179f-fbda-408c-a234-8938cb9d2465.jpg" title="纳米材料形貌及粒度表征"//strong/ppbr//ppstrongpc端报名,请点击链接:/strong/ppstrongbr//strong/ppstronga href="http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1749" target="_blank" title="”纳米材料的形貌及粒度表征“网络主题研讨会"http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1749/a/strong/ppbr//p
  • 纳米流式颗粒成像分析仪在脂质体中的应用优势
    纳米流式颗粒成像分析仪是一种先进的单颗粒、多参数、高通量的纳米颗粒定量表征技术。这种分析仪特别适用于脂质体的研究,脂质体是由磷脂双层组成的封闭囊泡,被广泛应用于药物递送、基因治疗、生物成像等领域。下面我们将探讨纳米流式颗粒成像分析仪在脂质体研究中的应用优势。  1. 高分辨率的成像  纳米流式颗粒成像分析仪能够提供单个脂质体的高分辨率图像,这对于研究脂质体的形态、大小、分布等特征至关重要。通过获取清晰的图像,研究人员可以获得关于脂质体结构的直观信息,进而优化脂质体制备条件,提高其在药物递送中的效率。  2. 高通量分析  相比于传统的脂质体分析方法,如电子显微镜或激光动态光散射法,纳米流式颗粒成像分析仪能够以更快的速度处理大量样品,实现高通量分析。这对于筛选最优的脂质体配方或评估不同制备条件下的脂质体性能非常有用。  3. 多参数定量分析  纳米流式颗粒成像分析仪能够同时检测多个参数,如颗粒大小、荧光强度、表面标记等,这对于评估脂质体的功能性非常重要。例如,通过标记特定的表面蛋白或抗体,可以研究脂质体的靶向能力 通过检测荧光信号,可以评估脂质体的载药效率。  4. 实时监测  这种分析仪能够实时监测脂质体在不同条件下的变化情况,比如在不同温度或pH值下脂质体的稳定性,这对于理解脂质体的行为及其在体内环境中的适应性至关重要。  5. 操作简便  与复杂的电子显微镜相比,纳米流式颗粒成像分析仪的操作更为简便,不需要特殊的训练即可进行操作。这使得更多的实验室能够利用这项技术进行脂质体的研究。  6. 应用范围广泛  纳米流式颗粒成像分析仪不仅适用于脂质体的研究,还可以应用于病毒颗粒、外泌体等多种纳米级颗粒的分析。这为跨学科的研究提供了强大的工具。  纳米流式颗粒成像分析仪因其独特的高分辨率成像、高通量分析、多参数定量分析能力以及简便的操作方式,在脂质体研究领域展现出了显著的优势。这些优势有助于推动脂质体技术的发展,使其在药物递送、生物成像等方面发挥更大的作用。随着技术的不断进步,我们可以期待这种分析仪在未来脂质体研究中发挥更重要的作用。
  • 综述:细胞外泌体颗粒表征测量技术新进展
    外泌体最早发现于体外培养的绵羊红细胞上清液中,是细胞主动分泌的大小较为均一,直径为40~100纳米,密度1.10~1.18 g/ml的囊泡样小体。  细胞外泌体携带多种蛋白质、mRNA、miRNA,参与细胞通讯、细胞迁移、血管新生和肿瘤细胞生长等过程并且有可能成为药物的天然载体,应用于临床治疗。然而,测量技术手段的局限限制了外泌体在这些领域的研究进展。所以,在这篇文章中,总结了外泌体的纯化方法,比较了现存各种外泌体测量技术,重点介绍了一种新的测量技术,纳米微粒追踪分析术,在外泌体尺寸和表征研究中的应用。  1. 外泌体提取及方法学评价  到目前为止,仍没有一种方法能同时保证外泌体的含量、纯度、生物活性。  1.1 离心法  这是目前外泌体提取最常用的方法。简单来说,收集细胞培养液以后依次在300 g、2 000 g、10 000 g离心去除细胞碎片和大分子蛋白质,最后100 000 g离心得到外泌体。此种方法得到的外泌体量多,但是纯度不足,电镜鉴定时发现外泌体聚集成块,由于微泡和外泌体没有非常统一的鉴定标准,也有一些研究认为此种方法得到的是微泡不是外泌体。  1.2 过滤离心  过滤离心是利用不同截留相对分子质量(MWCO)的超滤膜离心分离外泌体。截留相对分子质量是指能自由通过某种有孔材料的分子中最大分子的相对分子质量。外泌体是一个囊状小体,相对分子质量大于一般蛋白质,因此选择不同大小的MWCO膜可使外泌体与其他大分子物质分离。这种操作简单、省时,不影响外泌体的生物活性,但同样存在纯度不足的问题。  1.3 密度梯度离心法  密度梯度离心是将样本和梯度材料一起超速离心,样品中的不同组分沉降到各自的等密度区,分为连续和不连续梯度离心法。用于密度梯度离心法的介质要求对细胞无毒,在高浓度时粘度不高且易将pH调至中性。实验中常用蔗糖密度梯度离心法,在离心法的基础上,预先将两种浓度蔗糖溶液(如2.5 M 和0.25 M)配成连续梯度体系置于超速离心管中,样本铺在蔗糖溶液上,100 000 g离心16 h,外泌体会沉降到等密度区(1.10~1.18 g/ml)。用此种方法分离到的外泌体纯度高,但是前期准备工作繁杂,耗时,量少。  1.4 免疫磁珠法  免疫磁珠是包被有单克隆抗体的球型磁性微粒,可特异性地与靶物质结合。同样,在离心法的基础上,预先使磁珠包被针对外泌体相关抗原的抗体(如CD9、CD63、Alix)与外泌体共同孵育,蒸馏水冲洗后,重悬于PBS缓冲液中。这种方法可以保证外泌体形态的完整,特异性高、操作简单、不需要昂贵的仪器设备, 但是非中性pH和非生理性盐浓度会影响外泌体生物活性,不便进行下一步的实验。  1.5 色谱法  色谱法是利用根据凝胶孔隙的孔径大小与样品分子尺寸的相对关系而对溶质进行分离的分析方法。样品中大分子不能进入凝胶孔,只能沿多孔凝胶粒子之间的空隙通过色谱柱,首先被流动相洗脱出来 小分子可进入凝胶中绝大部分孔洞,在柱中受到更强地滞留,更慢地被洗脱出。分离到的外泌体在电镜下大小均一,但是需要特殊的设备,应用不广泛。  2. 外泌体测量各种方法的比较  2.1 电子显微镜  扫描电子显微镜(SEM)的工作原理是以能量为1-30KV间的电子束,以光栅状扫描方式照射到被分析试样的表面上,利用入射电子和试样表面物质相互作用所产生的二次电子和背散射电子成象,获得试样表面微观组织结构和形貌信息。高的分辨率。由于超高真空技术的发展,场发射电子枪的应用得到普及,现代先进的扫描电镜的分辨率已经达到1纳米左右,足够用来进行外泌体尺寸的测量。鉴于SEM的工作特点,在外泌体研究中,能够直接观察到样品中外泌体的形态。并且SEM具有很高的分辨率,能够鉴别不同大小不一的外泌体。但SEM对样品的预处理和制备上面要求较高,样品的准备阶段比较复杂,不适合对外泌体进行大量快速的测量。而且由于外泌体经过了预处理和制备过程,无法准确的进行外泌体浓度的测量。  2.2 动态光散射技术  动态光散射是收集溶液中做布朗运动的颗粒散射光强度起伏的变化,通过相关器将光强的波动转化为相关曲线,从而得到光强波动的速度,计算出粒子的扩散速度信息和粒子的粒径。小颗粒样品的布朗运动速度快,光强波动较快,相关曲线衰减较快,大颗粒反之(图1)。  图1 大颗粒和小颗粒光强波动及相关曲线  在外泌体研究中,动态光散射测量敏感度较高,测量下限为10纳米。相对于SEM技术来说,样品制备简单,只需要简单的过滤,测量速度较快。但是动态光散射技术由于是测量光强的波动数据,所以大颗粒的光强波动信号会掩盖较小颗粒的光强波动信号,所以动态光散射不适合大小不一的复杂外泌体样本的测量,只适合通过色谱法制备的大小均一的外泌体的尺寸测量,并且无法测量样品中外泌体的浓度。  2.3 纳米微粒追踪分析术  纳米微粒追踪分析术(以下简称NTA)是一种比较新颖的研究纳米颗粒的方法,它可以直接和实时的观测纳米颗粒。NTA通过光学显微镜收集纳米颗粒的散射光信号,拍摄一段纳米颗粒在溶液中做布朗运动的影像,对每个颗粒的布朗运动进行追踪和分析,从而计算出纳米颗粒的流体力学半径和浓度。  NTA系统的工作原理是将一束能量集中的激光穿过玻璃棱镜对样品(悬浮颗粒的溶液)进行照射(光路图见图2)。图2 NTA激光光路图    激光光束从较小角度入射进入样品溶液,照亮溶液中的颗粒。配备相机的光学显微镜,被放置在特定的位置上,收集视野中被照亮的纳米颗粒发射出的光散射信号。 样品池有大约500微米的深度,采样点激光照亮宽度为20微米,这个数值和光学显微镜的聚焦的视野深度相匹配。相机会进行60秒的影像拍摄,每秒30个采样画面。颗粒的运动过程被NTA软件进行分析。NTA软件在每幅被记录的画面中鉴别和追踪做布朗运动的纳米颗粒。  根据颗粒的运动速度,通过二维 Stokes-Einstein方程计算颗粒流体力学半径  在方程中2是均方位移,KB是Boltzmann常数 T是溶液的温度,单位是Kelvin;ts是采样时间,例如,1/30 fpsec = 33 msec;&eta 是溶液粘度;dh是流体力学直径。 NTA检测颗粒大小的范围和颗粒本身的折光指数相关。测量的下限取决于被研究颗粒和背景之间信噪比,也就是颗粒的散射光强度和背景的光强差距。颗粒的散射光强度根据Rayleigh散射方程,受到以下因素的影响   其中,d是颗粒的直径,&lambda 是入射光的波长,n是颗粒和溶液的折光系数比。通常来说,生物样品,如外泌体等,折光系数较低,所以测量下限为30-40纳米。  由于NTA技术是直接追踪样品中每一个纳米颗粒,决定了NTA对复杂的样品具有极高的分辨率,为了证明NTA对于复杂样品的分辨能力,我们将100纳米和300纳米两种不同大小的聚苯乙烯颗粒按照5:1的数量混合,使用NTA进行测量(图3A)。尽管其分布图形有一定的重叠,但两种不同大小的纳米颗粒的峰清楚的区分开来。这种对复杂样品的分辨能力对于外泌体这样的研究对象来说是非常重要的。  NTA也能对样品浓度进行直接测量。对一系列浓度为1× 108-8× 108的100纳米单分散样品进行测量,可以看到NTA测量浓度结果和实际浓度存在着很好的线性相关(图3B)。对于多分散体系,测量结果的准确取决于仪器参数的设定(照相机快门速度和光圈),恰当的参数设定可以保证不同大小颗粒都被NTA软件追踪和计算。图3 A. 100纳米和300纳米混合样品NTA测量 B. NTA测量浓度和样品实际浓度线性相关  NTA还具有分析荧光样品的能力,NTA有四种不同波长405纳米, 488纳米, 532纳米和635纳米的激光器可以选择,在搭配相应的滤光片,从而实现对荧光样品的测量。将100纳米的荧光标记的颗粒和200纳米的非荧光颗粒用同一溶剂做成混合样品,使用NTA进行测量(图4),图4中,蓝色的线显示为NTA的光散射模式,可以看到尽管100纳米和200nm纳米颗粒的分布图有重叠,但还是清楚的区分了100纳米和200纳米的峰值。然后使用荧光滤光片进行分析,只观测到100纳米的荧光标记的纳米颗粒(红线) 图4 NTA荧光样品测量  由于外泌体表面有标志物CD9,CD63等跨膜分子的存在,在复杂的背景环境下(如血清中),可以用荧光抗体标记外泌体,在用NTA的荧光测量功能实现在复杂背景下对外泌体的测量。NTA相比较于流式细胞仪的荧光功能,分辨率较高,测量荧光颗粒的下限可以达到30-40纳米,而流式细胞仪的测量下限为400纳米,即使对于最新一代的数码流式细胞仪,其测量下限已经达到100纳米,但由于它仍然建立在监测光信号的基础上,所以测量和准确性和分辨率仍然不可靠。所以在外泌体荧光功能测量上,NTA具有独特的优势。  3. 总结  外泌体作为生物标志物的研究目前处于起步阶段,但临床应用已显示出良好的前景。 在临床诊断中,简单快速的在复杂的生物背景下(如血浆,尿液)测量外泌体浓度,大小和表征数据是必备的要求。目前存在的方法都无法完美的解决这一问题。NTA作为一个相对新的测量技术,具有实时观测,较高的分辨率,准确的浓度测量和荧光测量功能,提供了对外泌体大小和浓度研究的新的思路。  (作者:张帅,英国马尔文仪器公司生物科学专家,负责生命科学相关产品的推广与技术支持。)  注:文中观点不代表本网立场,仅供读者参考。
  • 【视频回放】第四届“纳米材料表征与检测技术”主题网络研讨会
    2021年8月25-26日,由仪器信息网主办的第四届“纳米材料表征与检测技术”主题网络研讨会成功举办,会议吸引领域内近千位听众报名参会。本次会议开设“纳米材料与能源”、“纳米材料与半导体”、“纳米材料与医药”、“纳米材料表征与测试”4个分会场,共邀请到20位纳米材料领域科研、应用嘉宾围绕会议主题作线上报告。部分嘉宾的报告视频可回放,目前,可回放视频已经全部上线,对应回放链接整理如下,欢迎点击学习。8月25日上午 —— 纳米材料与能源报告题目报告嘉宾回放链接高镍层状化合物锂电正极材料的制备与构效关系褚卫国 国家纳米科学中心 实验室主任/研究员不回放光电材料与器件中载流子输运性质的表征与调控陈琪 中科院苏州纳米技术与纳米仿生研究所 研究员不回放固态电解质层成膜机理的显微学分析谷猛 南方科技大学 研究员不回放电沉积制备高性能电解水催化剂及原位拉曼表征严振华 南开大学 讲师回放链接8月25日下午——纳米材料与半导体半导体纳米材料原子尺度结构性能关系的定量透射电子显微学研究李露颖 华中科技大学 教授回放链接宽禁带半导体原子尺度缺陷的加工、模拟与光谱表征徐宗伟 天津大学 副教授回放链接无铅卤化物钙钛矿材料的掺杂调控发光性质研究周伟昌 湖南师范大学 副教授回放链接Wadsley相氧化钒的制备与光电性质谢伟广 暨南大学 教授不回放8月26日上午 —— 纳米材料与医药报告题目报告嘉宾回放链接磁性纳米药物赋能生物磁效应及潜在医学应用孙剑飞东南大学生物科学与医学工程学院 研究员不回放单颗粒/单细胞电感耦合等离子体技术(SP/SC-ICP-MS)在纳米医学中的应用梁少霞珀金埃尔默 原子光谱技术支持回放链接纳米钻石载药、成像和靶向抗肿瘤效应研究李英奇山西大学化学化工学院 教授回放链接口服纳米载体的形状效应戚建平复旦大学药学院 副教授回放链接脂质纳米药物的构建及特性调控及其生物学效应的研究曹志婷中国药科大学 特聘副研究员不回放8月26日下午——纳米材料表征与测试基于单分子荧光显微技术的纳米材料活性测量方法及应用张玉微广州大学化学化工学院 教授不回放基于单分子荧光显微技术的纳米材料活性测量方法及应用刘阳 布鲁克纳米表面量测部 售后应用科学家回放链接多铁/铁电材料原子尺度局域结构的电子显微学研究邓世清北京科技大学数理学院 副教授回放链接基于量子精密测量技术的微观谱学和磁成像仪器及其应用代映秋国仪量子 高级应用工程师回放链接过渡金属硫属化合物纳米结构的可控制备及其表征郝国林湘潭大学物理与光电工程学院 副教授回放链接纳米界面吸附与原位检测陈岚国家纳米科学中心 副研究员回放链接双束电镜-二次离子质谱联用技术在材料研究中的应用何琳上海交通大学 副主任/副研究员不回放
  • 2014上海颗粒学会年会暨颗粒表征应用技术会举办
    仪器信息网讯 在IPB 2014举办期间,由上海市颗粒学会主办、马尔文仪器公司赞助的&ldquo 2014上海市颗粒学会年会暨颗粒表征应用技术会&rdquo 于2014年10月14日上午在上海国际展览中心召开。本次会议旨在加强颗粒材料领域的学术交流,促进本市颗粒领域的科学研究、技术进步和产品开发应用等方面的发展,方便学术界与产业界的交流和合作。会议现场上海理工大学动力工程学院蔡小舒教授主持会议  作为上海颗粒学会理事长,蔡小舒教授就上海市颗粒学会第七届理事会情况向与会人士作了简单介绍。据了解,上海市颗粒学会第七届理事会由19位科研院高校的专家学者及2位颗粒测试仪器公司负责人共同组成,其中9位理事为最新加入的。上海理工大学周骛博士报告题目:图像法颗粒多参数在线测量  目前,简单的粒度测量已经不能再满足用户在生产、科研工作中提出的高要求,而伴随着计算机和图像传感器技术近来的快速发展,基于数字图像处理的颗粒测量技术应运而生,并且发展速度非常迅猛。在当天的报告中,周骛博士介绍到,通过对图像获取硬件的研制和图像处理分析算法的研究,单帧单曝光图像法可用于三维颗粒场多参数在线测量,并且多方法多传感器的结合可以为复杂颗粒系统提供更多信息,如图像法颗粒在线测量参数包括颗粒粒度及分布、速度及分布、颗粒浓度和颗粒流量等。同济大学李建波博士报告题目:基于磁热效应的纳米药物传输系统的制备及其在肿瘤热化疗中的应用研究  鉴于目前肝癌治疗方法的局限性,我国亟需开发更加安全有效的化疗药物载体系统,以提高化疗效果。李建波博士所在团队研发出的高SAR纳米磁流体,具有超顺磁性、良好胶体稳定性和生物相容性等特点。经过实验验证,这种纳米磁流体可对肿瘤细胞可以起到高效的磁热疗作用,并在优化磁场条件下,可通过诱导凋亡的方式消灭肿瘤细胞保证磁热疗的安全性。在这种基础上,该团队还进行了肿瘤的词热化疗协同增效研究与肿瘤耐药性的磁热化疗逆转研究,均获得了良好的实验成果。华东理工大学沈建华博士报告题目:多功能金纳米核壳杂化材料的制备及应用  金纳米粒子具有小的尺寸和高的表面能,结构和性能都不稳定,如果将金纳米与其他材料杂化,不仅能提高Au(金)的特性,还能引入其他材料的特性,例如将Au与Fe3O4杂化后的新型材料,不仅具有Au的催化、生物、光学等性能,同时还拥有Fe3O4的磁分离、核磁显影等优势。在此基础上,沈建华博士所在团队不断尝试研发出的金纳米核壳杂化材料,在催化特性、等离子共振、拉曼增强、生物传感等方面均有着很明显的特色优势。英国马尔文仪器公司梅洁报告题目:纳米颗粒跟踪分析技术(NTA)的原理及其应用  梅洁介绍到,鉴于纳米颗粒很小,不能被显微镜直接观测到,如此可以借助入射激光将颗粒照亮,研究人员就能观察到单个粒子并跟踪其布朗运动轨迹,从而基于单个粒子在短时间内快速制出每个粒子的粒径分布图。该技术可以跟踪每一个纳米颗粒的运动轨迹,以此得到整个样品体系的粒径分布信息,同时实时监测样品的运动、聚集过程。其典型应用表现在蛋白质聚集、药物传输、纳米颗粒毒理、病毒和疫苗等研究领域。华东师范大学卜凡兴报告题目:微/纳米结构材料的界面法合成及性能研究  金属氧化物微纳米结构材料拥有奇特的功能特性,在生物医学、能源催化及纳米器件等领域有广泛应用。而对特殊结构与形貌的金属氧化物材料制备与性能研究,对胶体与界面化学、结晶学等基础研究领域有重要的研究意义。卜凡兴介绍到,通过实验研究发现,液-液两相界面是一个可以有效合成具有特殊形貌的金属氧化物微纳米结构材料的体系,由此合成的具有特殊形貌的微纳米结构材料往往表现出一些特殊的功能特性。
  • 生态环境中心刘倩研究员等在Chemical Society Reviews上合作发表质谱纳米表征的综述文章
    纳米尺度上的表征和追踪对深入理解物质的本质和转化机制具有至关重要的作用。然而,目前的技术仍存在许多局限性,如缺乏准确的分子结构信息、不能实时监测或跟踪中间体、易受基质干扰等。质谱具有强大的定性和定量能力,已展现出成为一种强大的纳米表征和溯源工具的潜力。近年来,中科院生态环境中心环境化学与生态毒理学国家重点实验室江桂斌院士课题组在质谱用于纳米尺度上材料的表征和溯源方面开展了较为系统的研究。基于这些工作,江桂斌课题组刘倩研究员与中科院化学所聂宗秀研究员合作,撰写了题为“Mass spectrometry for multi-dimensional characterization of natural and synthetic materials at the nanoscale”(质谱对天然和合成材料的纳米尺度多维表征)的综述,发表于化学领域著名综述期刊Chemical Society Reviews(DOI: 10.1039/d0cs00714e IF 42.846)。  质谱在纳米尺度多维表征方面的应用概况  论文综述了质谱技术在纳米多维表征中的应用,涵盖了纳米表征的几乎所有方面,充分展现质谱在纳米表征中的潜力。针对纳米材料的多维性质,系统地总结了质谱在天然和人工的纳米材料和纳米结构的粒径和尺寸表征、化学成分和形态表征、分子量分布、表面分析、反应中间体和产物的识别和监测、稳定性和转化过程的监测、源解析和追踪、与生物分子的相互作用及其毒性的评估、动物和人体内的纳米材料的分布和归趋、光电性能的评价等方面的进展及优势。特别针对一些新的应用领域,如质谱成像用于研究生物体内的纳米材料的分布和归趋、稳定同位素用于溯源纳米材料以及纳米材料的风险评估等,进行了详细的介绍和展望。与其他表征技术相比,质谱也具有独特的实时监测和跟踪反应中间体和副产物的能力。本综述有助于更新目前质谱应用的传统观念,而且有望推动质谱技术在包含大气超细颗粒物在内的纳米材料的环境归趋、健康风险评价等方面的应用。  论文链接:https://pubs.rsc.org/en/content/articlelanding/2021/cs/d0cs00714e#!divAbstract
  • 明天开播!千人大会之“电池材料与颗粒分析表征”专场精彩预告
    电池性能的优劣,很大程度上取决于其构成材料的选择与制备工艺,以及材料微观结构的精细控制。颗粒分析表征作为材料科学研究的重要手段,能够揭示材料在纳米至微米尺度的结构特征、化学成分、相变过程及界面效应等关键信息,为电池材料的设计与优化提供科学依据。为促进学术界与产业界的交流,推动电池材料科学与技术的进步,仪器信息网联合中国颗粒学会将于2024年7月23-24日举办第五届“颗粒研究应用与检测分析”网络会议,特设“电池材料与颗粒分析表征”专场。点击图片直达报名页面 会议特邀中国颗粒学会秘书长王体壮致辞,中科院金属所研究员孙振华、北汽新能源高级经理宋冉冉、天目湖先进储能技术研究院吴喜明、清华大学博士研究生左安昊、中科大理化科学实验中心工程师周宏敏分享电池材料结构调控与电化学性能研究、关键指标及表征方法、单颗粒动力学测试方法与材料数据库等。中国科学院金属研究所研究员 孙振华《聚合物基储能材料的结构调控与电化学性能研究》(点击报名)孙振华研究员研究工作主要围绕着锂硫电池和固态电池等新型电池体系,开展关键电极材料、电解质和器件性能研究,相关研究成果在Nature Commun.、Chem. Soc. Rev.、Energy Environ. Sci.、Adv. Mater.等期刊发表SCI收录论文120余篇,被引用12000余次,H-index为53,申请发明专利22项,获授权专利9项。曾获得中国颗粒学会自然科学一等奖(排名第二),入选中国科学院青年创新促进会优秀会员和辽宁省“兴辽人才计划”青年拔尖人才。目前担任中国颗粒学会青年理事,《天津大学学报》编委,SusMat、eScience和中国化学快报的青年编委。聚合物材料在电化学储能材料和器件中具有重要的作用。聚合物材料的结构决定着锂离子在聚合物中的反应和输运行为,从而影响储能器件的性能。针对聚合物材料在锂硫电池电极材料中的应用,该报告系统总结了有机硫聚合物在锂硫电池中的不同功能。在此基础上,报告为聚合物在电化学储能中应用和提高锂硫电池、聚合物固态电池的性能提供了新思路。北京新能源汽车股份有限公司高级经理 宋冉冉《动力电池核心原材料关键指标及表征方法》(点击报名)宋冉冉博士2014年毕业于北京化工大学材料学,2016年入职北汽新能源。10年锂电池材料研发经验,对电芯材料合成制备、表征、电化学原理、材料前瞻技术等有较深入的研究。牵头电芯技术项目开发、负责电芯原材料选型及体系开发工作。本报告针对影响动力电池性能的各项核心原材料关键指标,讲述了指标特征、相关作用机理、表征方法和测试原理等,并对原材料失效进行典型案例分析。天目湖先进储能技术研究院高级工程师 吴喜明 《电池材料形貌、表界面表征方法及应用案例》(点击报名)吴喜明高工硕士毕业于深圳大学材料学专业,具有多年材料显微分析,表面分析、理化测试工作经验,目前在天目湖先进储能研究院从事电镜及表面分析仪器的测试工作,专注于先进分析仪器表征电池材料微观形貌、表面成分,为电池材料、电芯企业提供检测服务。电池材料的形貌、表界面性质对电池性能的发挥起着至关重要的作用,而常规的测试分析手段存在一定的局限性,本报告列举了透射电子显微镜(TEM)、俄歇电子能谱(AES)、X射线光电子能谱(XPS)、飞行时间-二次离子质谱(Tof-sims)等先进表征分析仪器在电池材料分析方面的独特作用,依赖类似高水平的测试技术可以对电池材料进行更加深入、细致的理解。清华大学博士研究生 左安昊《电池材料单颗粒动力学测试方法与材料数据库》(点击报名)左安昊博士担任北京易析普罗科技有限责任公司CEO,主要从事电池材料单颗粒测试方法相关基础研究与产业化工作。在Cell Reports Physical Science、Journal of Power Sources、Journal of Energy Storage、储能科学与技术等期刊上发表学术论文10篇,授权发明专利13项,参与国家自然科学基金、国家重点研发计划等多项课题。曾获国家奖学金、北京市三好学生、江苏省优秀学生干部、清华大学优秀学生干部标兵、清华大学“一二九”辅导员等荣誉以及世界电动车大会优秀论文奖、首届未来颗粒前沿论坛优秀报告奖等奖项。电池材料研发需要快速、精准的性能评价手段,电池模型搭建需要精确的动力学参数输入。目前,业内主要以电极/单体为测试对象,根据电池性能反推材料性能/参数。然而,电池内部含有多种材料、多种物相,传统动力学测试方法仅能得到不同材料各自动力学过程的混合结果,难以确定单因素对材料/电池性能的影响,也不能反映单一材料性能。本报告将介绍一种以材料单颗粒为实验对象的热/动力学性能测试方法。该方法适用于锂离子电池活性材料并具有较高的测量精度,对固态电解质、钠离子电池材料等也具有一定通用性。中国科学技术大学理化科学实验中心工程师 周宏敏《扫描电镜在新能源电池和钙钛矿材料表征中的应用》(点击报名)周宏敏工程师在中国科学技术大学理化科学实验中心从事扫描电镜应用服务及相关技术开发。主持中科院仪器设备功能开发技术创新项目2项,参与863仪器研究项目1项,作为第一发明人获授权专利3项,发表仪器技术及管理文章10余篇。针对新能源电池研究材料如Li,Na,K以及卤素、硫化物的全固态电解质等化学性质活泼的材料,不能接触空气的特点,周宏敏研制了基于气氛保护的传输盒,在扫描电镜仓内真空环境下打开,实现了测试材料从实验室手套箱全程不接触空气进入扫描电镜进行分析表征,支撑了多项成果发表于Nature Communications,Angew. Chem. Int. Ed.,Energy Storage Materials,J. Am. Chem. Soc.等高水平杂志。本报告针对有机无机杂化钙钛矿材料在电子辐射条件下不稳定的难点,将进行OIHP薄膜样品的扫描电镜成像条件探讨研究,采用低加速电压的策略,既保持OIHP表面细节的分辨率又减小辐射损伤,并采用扫描旋转的成像方式较好地解决截面成像易畸形的难点。以上仅是部分报告嘉宾的分享预告,更多精彩内容请查看会议页面:https://www.instrument.com.cn/webinar/meetings/particuology2024/
  • 中国科学院徐明:基于光谱和质谱成像的纳米单颗粒原位分析研究
    在满足目前各种应用需求的前提下,光谱分析仪器和方法也在不断的创新发展中,不论是分子光谱还是原子光谱都涌现了一系列创新的成果,特别是拉曼光谱、近红外光谱、激光诱导击穿光谱、太赫兹、超快光谱、荧光相关光谱、高光谱等相关技术彰显了极具诱惑的市场活力,引领着行业发展的方向。第十二届光谱网络会议(iCS 2023)中,近50位专家报告充分彰显了光谱创新潜力,纷纷展示了一系列的创新成果:从仪器整机到关键部件;从系统集成到方法开发;从大型科研仪器,到用于现场的便携、手持设备;从实验室检测设备,到过程分析技术……为了更好的展示这些创新成果,同时也进一步加深专家、用户、厂商之间的合作交流,会议主办方特别策划《光谱创新成果“闪耀”iCS2023》网络专题成果展,集中展示本次光谱会凸显的创新成果,包括但不限于仪器、部件、技术、方法、应用等。徐明 研究员中科院生态环境研究中心人物简介:徐明,中国科学院生态环境研究中心,研究员,博士生导师。主要从事重金属(离子态、颗粒态)的健康效应、分子靶点及分析方法研究。获国家基金委优秀青年科学基金、入选中国科学院青年创新促进会。主持并参与国家自然科学基金、科技部973、科技部重点研发计划、中国科学院战略性先导科技专项B等9项。发表论文72篇,申请和授权国家发明专利3项。本次会议中,中科院生态环境研究中心徐明研究员分享了《贵金属纳米颗粒的体内示踪与原位成像谱学方法研究进展》(点击回看》》》)引发行业关注。会后,我们也再次邀请徐明研究员分享其团队在纳米颗粒原位分析的系列研究成果。1、成果简介纳米材料已被广泛应用于工业、农业、食品、医药等领域。例如,银纳米颗粒作为抗菌剂被用于病原微生物的消杀,金纳米颗粒因其优良的光学性能和生物相容性被用于疾病诊断与治疗等等。一旦进入生物体内,纳米颗粒会经历复杂的转化过程,包括溶解、聚集、解聚等。纳米颗粒的体内转化会改变其物理化学特性,进而对纳米颗粒的功能产生影响。然而,目前针对纳米颗粒体内转化、分布的原位分析表征极具挑战。通常使用电子显微镜对组织或细胞内的纳米颗粒进行检测,该种方式成本高,操作难,不易于推广。其它成像技术,如质谱、红外光谱、拉曼光谱、荧光光谱等,成像分辨率难以达到纳米级别,无法实现单颗粒分析。针对上述难题,为实现生物组织和细胞中纳米颗粒转化与分布的精确分析,徐明研究员研究团队近期开展了基于光谱成像和质谱成像的纳米单颗粒原位分析研究。成果一:细胞内金纳米颗粒聚集行为的单颗粒成像分析为观测金纳米颗粒(AuNPs)的细胞内聚集行为,我们基于高光谱暗场显微镜(EHDFM)开发了一种单颗粒成像分析新方法。利用局域表面等离子共振现象(LSPR)产生的散射光谱信号,可对AuNPs的聚集程度进行定性和定量分析,实现生物介质中和细胞内AuNPs的原位单颗粒分析(图一)。该方法具有很好的特异性与灵敏度,相关研究成果近期已发表于Journal of Physical Chemistry B(https://doi.org/10.1021/acs.jpcb.2c08289)。图一成果二:利用间充质干细胞进行肿瘤靶向递送金纳米颗粒的原位成像分析为观测金纳米颗粒(AuNPs)的体内行为与分布特征,其团队整合了激光溅射电感耦合等离子体质谱(LA-ICP-MS)和高光谱暗场显微镜(EHDFM)技术,可实现生物组织中AuNPs的定性与定量成像分析(图二)。针对纳米颗粒肿瘤靶向效率低的问题,我们比较了间充质干细胞(MSC)介导的AuNPs肿瘤靶向与增强渗透滞留效应(EPR)间的递送效率差异,证实MSC介导的肿瘤靶向递送效率比EPR效应提高了2.4~9.3倍,可将更多AuNPs递送至肿瘤坏死核心。相关研究成果近期已发表于ACS Nano(https://doi.org/10.1021/acsnano.2c07295)。图二成果三:新型核壳结构纳米探针成像分析银纳米颗粒的胃肠道转化为观测纳米颗粒的体内转化过程,我们开发了一种以星形金纳米颗粒为内核,外层包覆银壳的球形核壳结构纳米探针(Au@AgNPs)。在体内,一旦该探针的银壳发生溶解等转化,就伴随着元素和光谱信号的变化,进而可通过LA-ICP-MS和EHDFM进行成像分析(图三)。利用该纳米探针,其团队成功示踪了颗粒银在小鼠胃肠道中的转化与吸收过程,揭示了颗粒银和离子银的体内行为与分布特征的差异。相关研究成果近期已发表于Advanced Functional Materials(https://doi.org/10.1002/adfm.202302366)。图三2、产业化意向上述相关的成果正在申请国家专利,后续将发展更多面向应用的技术方法和成像探针,欢迎相关的科研与产业合作。3、课题组未来研究计划后续研究中,徐明研究员研究团队将重点开发针对生物分子和纳米材料的质谱、光谱成像技术。
  • 马尔文成功在京举办颗粒表征技术及应用研讨会
    仪器信息网讯 为深入研究探索颗粒表征方法,2014年5月26日,马尔文仪器成功在京举办了&ldquo 颗粒表征技术及应用研讨会&rdquo ,近200位颗粒测试领域的专家及用户出席了会议,仪器信息网作为特邀媒体参会。会议现场  马尔文仪器的大客户经理Stephen Ward-Smith博士、激光衍射产品专家李雪冰博士、生物科学专家张帅博士等人在会上详细介绍了NanoSight NS300纳米颗粒跟踪分析仪、Mastersizer3000激光粒度仪、Zetasizer Nano系列纳米粒度仪、Spraytec高速喷雾粒度仪、Morphologi G3-ID颗粒形状及颗粒化学组分分析仪等产品的技术原理与实际应用。马尔文仪器大客户经理Stephen Ward-Smith博士  激光衍射技术本身简单易懂,但如何能够利用这个技术得到稳定可靠的结果却并非易事。不同的样品特性可能会采取不同的分散测试方法,而不同的分散方法可能面临不同的影响因素,在这些众多的影响因素里,我们该如何选择、判定直至最后找到合适的参数?对此,Stephen博士以湿法分散与干法分散两种常见的分散方式为例,比较了两者之间的优势,并对不同进样方式的方法开发及常见问题等进行了介绍。  湿法分散影响因素较多,在这些影响因素中,溶剂的选择、搅拌速度、超声强度及时间、表面活性剂的使用等是比较关键的影响因素,用户可以通过实验对这些关键影响因素一一考量,确定适合的参数并进行风险评估,直至确定最终的测试方法并进行验证。  同时湿法分散过程中常常会发生溶解、聚集等问题,这些问题如何来判定?有何现象?怎么来解决?对此,Stephen博士做了比较详细的介绍。比如微溶现象最显著的表现就是遮光度下降的同时D10反而逐渐变大,这种反常可能就是颗粒发生了微溶从而导致小颗粒&ldquo 消失&rdquo ,如果发生了这种现象,Stephen博士给出了几种补救方案,比如更换溶剂、使用饱和溶液或者快速测量等方案。当然如果样品出现聚集问题,用户可以通过调整分散泵速以及加入表面活性剂/添加剂来解决,但一定要注意控制气泡的产生。  而干法分散往往是颗粒分散和颗粒破碎之间的一种较量,因此对于分散压力的选择至关重要。Stephen博士表示,干法分散拥有快速、可以测量相当大的样品量的优点。相比湿法分散,干法分散不容易控制,用户可以通过调节分散压力,从而使聚集物分散却不使原始颗粒破碎;过快的进料速率将降低分散系统的效率,用户可以通过优化进料速率,使样品流速保持一致。  Stephen博士建议,干法分散可以通过压力滴定实验来确定实际的分散压力,压力由高到底,通过观察颗粒粒径随压力的变化来判定颗粒的状态,是分散还是破碎,从而找到颗粒分散的最佳压力平台。  会议现场,马尔文仪器特别展示了其NanoSight NS300纳米颗粒跟踪分析仪和Mastersizer 3000激光粒度仪。NanoSight NS300纳米颗粒跟踪分析仪  马尔文NanoSight NS300基于一种独特的纳米颗粒跟踪分析技术(以下简称:NTA),对大小在10&ndash 2000nm范围内的纳米颗粒进行快速可视的动态检测,其测量的参数包括颗粒粒径、浓度和颗粒的聚集。该仪器可以跟踪每一个纳米颗粒的运动轨迹,以此得到整个样品体系的粒径分布信息,同时,实时监测样品的运动、聚集过程。其典型应用表现在蛋白质聚集、药物传输、纳米颗粒毒理、病毒和疫苗等研究领域,因此该仪器是马尔文仪器公司力推的一款颗粒测试表征产品。Mastersizer 3000 超高速智能粒度分析仪  Mastersizer 3000是马尔文仪器公司于2011年隆重推出的一款全新的粒度分析仪,采用全新的折叠式光路设计,量程宽达10nm-3.5mm,准确度和仪器间的重现性均优于1%,配有先进的Aero干法分散附件系列与快速高效的Hydro湿法分散附件系列。现场答疑解惑用户参观仪器(编辑:刘玉兰)
  • 纳米流式检测技术,粒径表征媲美透射电镜——访厦门大学颜晓梅教授
    仪器信息网讯 厦门大学颜晓梅教授团队于2014年9月研制成功第一台纳米流式检测仪原型机,2015年10月第四代原型机研制成功,2016年1月中旬在北京计量科学研究院进行第一次试用,2016年6月第一代科研级纳米流式检测仪完美亮相CYTO 2016国际流式学术大会,2016年10月专业版软件NF Profession 1.0研发成功。纳米流式技术发展处于什么阶段?纳米流式技术成果商业化过程有哪些故事?国产仪器自主创新存在哪些痛点和不足?近期,仪器信息网在ACCSI2021现场特别采访了厦门大学颜晓梅教授,请她就上述问题进行了分享。三年实现快速成果转化,粒径表征媲美透射电镜目前,流式细胞仪在生命科学、临床医学等领域是重要的分析检测工具之一。据颜晓梅教授介绍,纳米流式检测技术是基于流式细胞技术,将检测下限推进到纳米尺度。颜晓梅教授团队首创性地结合瑞利散射和鞘流单分子荧光检测技术,研发成功具有自主知识产权的纳米流式检测技术,实现单个纳米颗粒(7-500 nm)以及外泌体、病毒、细菌、亚细胞器等天然生物纳米颗粒的粒径及其分布、颗粒浓度、和生物化学性状的高通量多参数同时表征。该技术的粒径表征分辨率媲美透射电镜,检测速率高达每分钟上万个颗粒,同时兼备电子显微镜难以实现的生物化学性状分析功能,填补了国际空白。项目团队积极推进技术产业化,成立了厦门福流生物科技有限公司,仅用3年时间就将“纳米流式检测技术”研发成果转化为“中国智造”。 厦门福流生物 纳米流式检测仪点击查看参数详情科学仪器研发平台离不开交叉学科人才培养在采访中,颜晓梅教授强调了复合型科研人才的培养对于国产科学仪器的发展至关重要,科学仪器研制的过程通常是创新技术密集(光、声、电等技术)、管理复杂的活动,需要不同学科的交叉融合,尤其成果转化过程也需要金融、市场等背景支持。因此培养兼具科研、工程和管理能力的复合型人才对于国产科学仪器成果转化具有推动作用。提高纳米医药业核心竞争力,纳米流式未来可期据颜晓梅教授介绍,纳米流式检测技术不仅应用于传统的生命科学、临床医学领域,还在食品药品安全以及能源材料等领域发挥重要作用。并且纳米流式检测仪产业化项目技术密集、附加值高、成长空间大、带动作用强,是纳米医药业核心竞争力的集中体现。 据悉,厦门福流生物科技有限公司生产的纳米流式检测仪目前已经出口到全球顶尖的医疗机构、科研单位和高科技企业,如梅奥诊所(Mayo Clinic,2018年全美排名榜首的医院)、美国德州大学安德森癌症中心(MD Anderson Cancer Center,全球排名第一的肿瘤科研与临床研究机构)、约翰霍普金斯医学院、美国国立卫生研究院(NIH)、外泌体诊断和治疗应用开发领军企业Codiak Biosciences公司、瑞士联邦理工学院(欧陆第一理工大学)、诺和诺德(世界领先的生物制药公司)、瑞典哥德堡大学、德国马尔堡大学、悉尼大学、台湾大学、复旦大学等。
  • 化学所开发出单纳米颗粒可视化检测新方法
    纳米尺度物体的可视化检测在纳米材料表征、自组装、化学合成和生物医学诊断等领域具有重要应用价值。常规的荧光显微技术虽然能够实现分子水平检测,但需要荧光探针标记,且存在光漂白等问题。 在科技部、国家自然科学基金委、中国科学院、北京市科委和北京分子科学国家研究中心的支持下,化学研究所绿色印刷院重点实验室宋延林课题组近年来围绕纳米绿色印刷技术制备了多维度纳米光子结构,并对其生物检测应用开展了系统研究,实现了无标记、超灵敏地定量检测。研究发现,当病原体特异性地结合在纳米光子结构上时,会产生散射共振增强作用,显著改变散射光的颜色,可以在10分钟内实现快速检测。不仅如此,纳米光子结构的光学信号可对0 到 1.0 x 105 PFU mL-1 范围内的病原体进行实时响应,检测限降低到 ~1 PFU μL-1。该方法无需荧光标记,也不需要昂贵的实验仪器和专业的技术人员,为发展简便的高灵敏光学生物检测平台提供了新的思路(Chem. Rev. 2022, 122, 5, 5144–5164 Angew. Chem. Int. Ed. 2021, 60, 24234;Adv. Mater. Interfaces 2022, 2102164)。 最近,宋延林研究团队基于纳米印刷技术发展了一种快速、无标记、可便携的单纳米颗粒可视化检测方法(图1)。印刷制备的一维纳米结构在可见光区域具有独特的光学共振特性。研究发现,当一维纳米结构的尺寸大于临界值时,散射和衍射信号均出现在可见光区域,能够显著放大纳米尺度物体的光学信号,突破传统的光学衍射极限。基于此,利用普通的光学显微镜甚至手机可以直接观察到单个小至50 nm的物体或缺陷,实现了光学可视化检测多种纳米结构。进而在一维纳米结构表面修饰特异性抗体,实现了实时检测、计数测量生物体液环境中的单个病原体颗粒。与已经报道的纳米尺度光学检测方法相比,该方法操作简单、成本低、可便携,且广泛适用于不同纳米材料和结构,在自组装、微流控监测、集成光子和生物传感等领域具有广泛的应用前景。相关成果近日发表于Matter期刊(https://doi.org/10.1016/j.matt.2022.03.013),论文第一作者是张泽英和赵茂雄,通讯作者是宋延林研究员和苏萌副研究员。 图1 基于印刷一维纳米结构实现单纳米颗粒的可视化检测
  • 马尔文携多款创新颗粒表征解决方案亮相CPhI China
    2014年6月24日,中国上海&mdash &mdash 全球材料表征领域的领先企业英国马尔文仪器公司将携多种创新表征解决方案参加2014年6月26日至28日于上海举办的世界制药原料中国展(CPhI China),展示马尔文在制药领域的创新技术与产品,包括引领业界的最新产品Zetasizer Nano ZSP动态光散射(DLS)仪器、明星产品Mastersizer 3000 激光衍射粒度分析仪及经典产品Insitec在线粒度分析仪等。  随着中国制药行业的快速发展,药物开发、制药配方与药品生产等关键领域对分析技术的需求日益增长。马尔文仪器公司积极致力于为制药行业提供创新技术及产品研发,有效表征颗粒大小、颗粒形状、化学特性、分子量、分子分布与浓度等多项参数,缩短药物开发到药物生产时间,以可靠快速的测量与分析结果助力医药行业不断向前发展,进一步增强中国制药领域的整体技术实力与市场竞争力。  马尔文公司在本次世界制药原料中国展将带来三款颗粒表征领域领先产品:Zetasizer Nano ZSP动态光散射(DLS)仪器、Mastersizer 3000 激光衍射粒度分析仪以及Insitec在线粒度仪系列。  马尔文Zetasizer Nano ZSP是马尔文Zetasizer Nano系列最高规格的产品,拥有系列产品中最高的测量灵敏度。其独特的蛋白质测量功能可帮助生物制药行业研究人员在进行蛋白质抗原体抗体分析时,在极低的浓度范围内检测微小颗粒。同时,马尔文Zetasizer Nano ZSP新增强的微流变分析功能可以帮助用户在高剪切情况下检测弱结构样品的流变学特性(如粘弹性)。图:马尔文Zetasizer Nano ZSP动态光散射(DLS)仪器  马尔文Mastersizer 3000 激光衍射粒度分析仪是世界上备受推崇的颗粒测量仪的最新一代产品,可适用于干湿样品的测定,量程宽达0.01~ 3500 &mu m而无需更换投镜。其独特的光学系统,将高超的性能融入到极其小巧的体积中,并配备精心设计的样品分散系统,其中全新革命化设计的Aero系统充分体现了干法分散技术的最高水平。在制药行业,颗粒的大小会影响药物有效成分和人体对药物的吸收,而马尔文Mastersizer 3000可帮助科研人员轻松获取可靠的粒度测量分析。图:马尔文Mastersizer 3000 激光衍射粒度分析仪  此外,马尔文Insitec在线粒度分析仪具有在线连续粒度分析功能,可进行高性价比的工业工艺监控。其适用的工艺流范围非常广泛,从干粉到温度又高又粘的浆料,再到喷雾及乳剂,无论每小时处理的材料量是几毫克还是几百吨,该系统均能得心应手。  展会期间,三位来自马尔文公司的业界专家,包括马尔文粒度粒形分析全球产品经理Paul Kippax博士、马尔文全球业务经理Paul Davies以及马尔文中国区总经理秦和义先生将出席活动,现场与参展观众进行互动交流。其中,Paul Kippax博士将就&ldquo 运用以形态变化为导向的拉曼光谱分析作为工具对口腔颗粒制剂进行产品结构分析&rdquo 进行主题演讲,分享更多马尔文在制剂颗粒表征方面的创新成就。  &ldquo 作为全球最大的仿制药市场,中国医药市场即将迎来制药史上专利药品到期最多的时期。面对这一重要契机,马尔文通过设立生物科学开发计划(BDI)项目,积极研发满足中国医药分析实际需求的产品技术,及定期举办生物制药行业专题研讨会等多种方式,与中国制药业领导者密切合作,不断推进中国制药分析和研发水平。&rdquo 马尔文中国区总经理秦和义先生说道,&ldquo 此外,马尔文致力于提供基于先进仪器的制药行业一体化解决方案,以满足客户全方位的制药分析需求。&rdquo   世界制药原料中国展将在上海新国际博览中心拉开帷幕,与CPhI展同期举办的还有2014世界医药合同定制服务中国展,第九届世界制药机械、包装设备与材料中国展,2014世界生化、分析仪器与实验室装备中国展等。  欲先睹马尔文仪器产品风采、了解更多世界领先的药物研发表征技术,请莅临世界制药原料中国展CPhI 2014马尔文展台(展位号:西五馆W5,E18展位)。  马尔文和马尔文仪器是马尔文仪器有限公司的注册商标 。---完---  关于马尔文仪器  马尔文仪器提供材料表征技术和专业知识,使得科学家和工程师们能够了解和控制分散体系的性质,这些体系包括蛋白质和聚合物溶液、微粒和纳米粒子悬浮液和乳液,以及喷雾和气溶胶、工业散装粉末和高浓度浆料等。马尔文的材料表征仪器用于研究、开发和制造的所有阶段,提供帮助加快研究和产品开发、改善和保证产品品质以及优化过程效率的关键信息。  马尔文的产品体现了最新技术创新的动力以及充分利用现有技术的承诺,应用领域从医药和生物医药到化学品、水泥、塑料和聚合物、能源及环境等。  马尔文的产品和系统被用于检测颗粒大小、颗粒形状、Zeta电位、蛋白质电荷、分子量、分子大小和构象、流变性能和化学组分测定。  马尔文仪器公司总部位于英国马尔文,在欧洲、北美、中国、日本和韩国等主要市场都设有分支机构,在印度设有合资企业,拥有遍布全球的经销网络和应用实验中心。  更多信息,请访问www.malvern.com.cn。
  • 纳米电镜表征技术的“倍增器” ---访北京科技大学冶金与生态工程学院方克明教授
    在“纳米”技术愈来愈广泛地开发应用的同时,人们可能会提出这样的问题∶如此微小的“纳米”是用何种科学手段检测的?北京科技大学方克明教授经过20多年的研究,探索出了一种新的方法———   “纳米”这个名词越来越引起人们的兴趣。大家知道“纳米”是一个非常微小的长度单位。具体地说,一纳米约一根头发粗细的万分之一。纳米技术应用到传统产品中,会极大地改善产品的性能。例如,碳纳米管是由一层或若干层碳原子卷曲而成的管状“纤维”,直径只有几到几十纳米。比重只有钢的六分之一,而强度却是钢的100倍。如果把碳纳米管制成绳索,是从月球上挂到地球表面而惟一不被自身重量所拉断的绳索。  笔者日前在采访中了解到,北京科技大学冶金学院博士生导师方克明教授经过20多年的研究,在纳米表征技术方面取得了新的突破,探索出了用透射电镜或高分辨电镜对纳米材料进行表征的全新的样品前处理方法。该技术采用金属包埋法可以从纳米材料中切取纳米尺度的薄膜而不会破坏物质的原有组织结构,然后用透射电镜或高分辨电镜研究纳米材料的微观形貌和微观结构。该技术的成功为我国纳米技术的发展提供了一种重要的检测手段,它荣获第十二届全国发明展览会金牌奖并取得了国家专利,目前在国内外处于该领域的领先水平。  纳米材料包括纳米颗粒及其以纳米颗粒为基础的材料;纳米纤维及其含有纳米纤维的材料;纳米界面及其含有纳米界面的材料。纳米材料的性能与其微观结构有着重要的关系。因此研究纳米材料微观结构的表征对认识纳米材料的特性,推动纳米材料的应用有着重要的意义。  透射电镜是研究材料的重要仪器之一,在纳米技术的基础研究及开发应用中也不例外。但是用透射电镜研究材料微观结构时,试样必须是透射电镜电子束可以穿透的纳米厚度的薄膜。单体的纳米颗粒或纳米纤维一般是透射电镜电子束可以直接穿透的。研究者通常把试样直接放在微栅上进行透射电镜观察。但是由于纳米颗粒或纳米纤维容易团聚,因此,用这种方法常常得不到理想的结果,有些研究内容也难以实施。比如∶纳米颗粒的表面改性的研究,纳米纤维的横切面研究都比较困难,研究界面问题则有更大的难度。因此,纳米材料的透射电镜研究,其样品制备问题是一个值得探讨的重要课题。目前,国内外已有一些比较成熟的方法可以把相对宏观的试样即用普通方法可以切割、磨抛的试样制成透射电镜电子束可以穿透的薄膜;但是,还没有其他成熟的技术可以把相对微观的试样即用普通手段不能直接切割、磨抛的试样制成透射电镜电子束可以穿透的薄膜。有些研究工作为了采用透射电镜这一重要手段,把试样研磨成透射电镜电子束可以穿透的超细颗粒,这不仅破坏了试样的原位组织,而且由于超细颗粒很难分散,常常得不到满意的研究结果。对此,方克明教授进行了研究,探索了一种比较适用的制样方法。该方法可以从纳米颗粒或微米颗粒中直接切取可以进行透射电镜研究的薄膜,对进行纳米纤维横切面观察或纳米界面观察的制样也有很高的效率。  这一技术的特点是从纳米或微米尺度的试样中直接切取可供透射电镜或高分辨电镜研究的薄膜。试样可以为简单颗粒或表面改性后的包覆颗粒,对于纤维状试样,既可以切取横切面薄膜也可以切取纵切面薄膜。对含有界面的试样或纳米多层膜,该技术可以制备研究界面结构的透射电镜试样。技术的另一重要特点是不损伤试样的原始组织。制膜过程中不使用高温,不接触酸碱,必要时也可以不接触水或水溶液。特别需要指出的是,实现这项技术的实验设备很容易获得,且操作简捷,容易掌握使用,无需严格培训,因此非常便于推广应用。  在谈及这项技术创新意义的时候,方教授举了个例子。迄今为止,报道碳纳米管的研究文章很多,而报道实心碳纳米纤维的研究文章却很少。这也许是客观事实,但也有可能是一种假象。因为有些纤维由于内外层结构不同,往往容易把实心纤维描述为管状纤维。因此在研究微米级尺寸的纤维时,如果不能从纤维中直接切取可供透射电镜研究的纳米级厚度的薄膜,用透射电镜研究其微观结构是有困难的。而方教授开发的这一方法正好解决了从微米级、纳米级纤维试样中切取可供透射电镜研究的薄膜这一技术难题。  据方教授介绍,现在上述技术已广泛应用于多项课题研究,如:沸石颗粒中半导体纳米团簇组装过程的研究;纳米碳纤维微观结构的高分辨电镜研究;纳米颗粒微观结构与尺寸的表征;多层膜层间结构的透射电镜研究;粉体颗粒表面改性的研究;电容钽粉颗粒渗氧层及介质膜的研究;铸铁中各种石墨微观结构的研究等。  结语:随着分析仪器自动化程度的日益提高,样品前处理技术在分析测试过程中占有越来越重要的位置,样品处理的好坏直接影响到最终的分析结果,因此,可以这样认为,精当的样品制备方法已成为当今材料表征技术的“倍增器”。  联系电话:010-62332426  E-mail:FKM66@Hotmail.com  单位地址:北京科技大学理化系
  • 国际在线研讨会—多维颗粒表征 (LUM)
    2021年1月27日至29日,Erlangen合作研究中心(CRC1411) -“颗粒产品设计”,2045优先项目 -“工业精细颗粒系统的高度特异性,多维组分化” 与德国LUM公司联合举办了一个关于颗粒系统多维表征的国际研讨会。来自工业以及学术界的专家将使用最新技术和最新开发的方法来探讨多维粒子表征的现状。 第六部分的分散体的沉降分析第二环节,Dietmar Lerche教授将给大家介绍“分析离心技术的进展 - 纳米颗粒的多维表征”,届时会结合LUMiSizer新的多波长功能做相关的分析。 参加研讨会是免费的,但必须注册才能通过ZOOM登录在线活动。 有关更多信息和注册信息,请扫描二维码访问以下研讨会网站链接: 注册成功后会收到会议详细内容,注册截至时间为2021年1月24日德国时间24时。 本次在线研讨会的官方语言为英语,时间为德国当地时间。 下面是3天的会议议程:
  • 【好书推荐】《颗粒表征的光学技术及应用》
    颗粒业内有句行话:万物皆颗粒。鸟瞰各行各业,还真难找得到一个不与颗粒打交道的领域。甚至表面上看起来与颗粒毫无关系的行业,人们其实也一直在与颗粒材料打交道。例如,编程码工使用的键盘是用塑料颗粒材料制成的,显示器的荧光粉本身就是颗粒;再如,音乐作曲者使用的纸张、笔墨也都与颗粒有关。几乎所有材料,从原料到成品,总有一个阶段处于颗粒态。由于颗粒材料的多样性与多分散性,人们甚至将颗粒称为物质的第五态, 颗粒材料的物理特性表征也具有与其他化学分析、物理测量不同的独特性。颗粒与材料品质紧密相关。例如,巧克力的颗粒度需要与味蕾之间的距离吻合,可口可乐中风味液滴的密度必须与水一致,牙膏中碳酸钙的硬度与颗粒度要适当,定时释放肥料颗粒的大小与溶解度有一定的规格等。如何表征颗粒?技术概貌:颗粒表征技术成百上千,仅粒径测量就曾有400多种。现在仍在普遍使用的表征颗粒粒度、数量、表面特性、内部孔径的技术就有十几种。这些技术有着相当广泛的日常应用,例如新材料的研发过程、生产过程的质量控制、或商业贸易上下家的衡量指标等。仅在中国,每年新安装的各类颗粒表征仪器据估计当在数千台甚至上万台。不足:颗粒表征作为对各行各业如此重要的领域,现有的高等教育却很少涉及,甚至专门教授与这些技术有关基础知识的研究生课程也不太多见,集中论述这些技术的中文书籍更是少之又少。现状:这一实践与教育的脱节,造成了很多在工作中涉及颗粒表征的工作者不完备的专业知识体系与错误的应用实践,例如在用动态光散射测量纳米颗粒粒径或用电泳光散射测量颗粒表面电位时,用纯净水进行样品稀释,或者在激光粒度法测量颗粒粒度时,用高压气体分散药物晶体。颗粒材料领域专著出版扫码即可优惠购买为了填补上述空白,为广大颗粒表征技术使用者提供普及版读物,作者精心挑选了当今应用最广的六种颗粒表征技术,从历史起源、物理原理、数学基础、仪器构造、操作要点、数据处理阐释等方面对这些技术做了全面的介绍。这六种方法分别是光学计数法、激光粒度法、光学图像分析法、颗粒跟踪分析法、动态光散射法、电泳光散射法,它们都与光与和颗粒之间的作用有关。对光与和颗粒作用的系统研究始于1936年化学诺贝尔奖获得者彼得• 德拜(数学家大卫• 希尔伯特的学生阿诺尔德• 索末菲的第一位博士生)1908年的博士论文。作为这些技术的铺垫知识与辅助资料,颗粒表征中的样品准备、基本数据统计知识、光散射在颗粒表征中的基本原理、几乎所有其他常用的颗粒表征技术,以及这些技术的标准化现状,也特别另立章节介绍。这是一本别无二版的、系统介绍当代颗粒表征技术的专著。本书可供欲了解与掌握当代颗粒表征技术的教师、本科生、研究生、科学家、技术专家、仪器操作人员阅读与学习参考,为他们提供坚实的颗粒表征理论基础与丰富的实践参考。读者不但可以从中学习这些技术的物理基础以及仪器工作原理,而且通过了解每种技术的实际操作与实用细节,可以在应用过程中避免常犯的错误,不断改进仪器操作的正确性、测量数据的准确性、重复测量的精确性。本书作为进入颗粒表征技术领域的引荐读物,除了汇集了作者经年累积的丰富知识与资料外,还引用了上千篇中外文献。这些跨越两个多世纪(1809—2021)的文献,除了与该技术的最初发明有关的以及里程碑式的重要论文,还有大量与这些技术的最新动态与发展有关的报道,为有志于进一步探索发展颗粒表征技术、成为承前启后新一代的颗粒人提供一些可借鉴的方向与途径。 作者简介本书作者 许人良作者专业背景:在过去半个世纪里,作者许人良在德拜的关门弟子朱鹏年与当代荧光胶体化学大师魏尼克的教诲指导下,除了进行高分子物理与胶体化学的研究,还从搭建全角度动静态光散射仪器为起点,涉足纳秒级相关器、米氏理论的收敛分析、拉普拉斯转换的技术探讨、光导纤维频移器等颗粒表征的多个领域,发明了从电泳光散射测量中剥离布朗运动以得到真实表面电荷分布曲线的方法以及颗粒表征方面的数个专利,填补了颗粒在水中的德拜长度与水化层厚度之间关系的实验验证空白,其中的一些论文几十年来一直在不断地被引用。进入美国首台动态光散射仪器生产公司后,作者曾先后在全球三家主要颗粒表征仪器公司内担任技术、商务、管理的各类主要职务,对多种仪器的设计、试验、投产、应用有第一手感性认识与全方位了解;作者并在过去近30年中,参与制定了多项颗粒表征技术的国际标准、美国国家标准以及中国国家标准,时刻关注着这一领域的最新发展。目录预览第1章 颗粒体系与颗粒表征 / 0011.1 颗粒与颗粒体系 / 0011.2 样品制备 / 0061.3 颗粒测量数据及其统计分析 / 018参考文献 / 032第2章 光散射的理论背景 / 0352.1 光散射现象与技术 / 0352.2 光散射理论要点 / 0392.3 其他光学技术 / 059参考文献 / 069第3章 光学计数法 / 0813.1 引言 / 0813.2 仪器构造 / 0833.3 测量结果与数据分析 / 098参考文献 / 108第4章 激光粒度法 / 1134.1 引言 / 1134.2 仪器 / 1214.3 数据采集与分析 / 1414.4 测量精确度与准确性 / 153参考文献 / 161第5章 光学图像分析法 / 1695.1 引言 / 1695.2 图像获取 / 1715.3 图像分析 / 1815.4 颗粒形状表征 / 1875.5 仪器设置、校准与验证 / 193参考文献 / 196第6章 颗粒跟踪分析法 / 1996.1 引言 / 1996.2 仪器与测量参数 / 2006.3 样品与数据 / 2086.4 颗粒跟踪分析法的其他考虑因素 / 217参考文献 / 219第7章 动态光散射法 / 2217.1 引言 / 2217.2 仪器组成 / 2237.3 数据分析 / 2417.4 测量浓悬浮液 / 263参考文献 / 269第8章 电泳光散射法 / 2818.1 引言 / 2818.2 zeta电位与电泳迁移率 / 2828.3 电泳光散射仪器 / 2898.4 数据分析 / 3068.5 相位分析光散射 / 315参考文献 / 317第9章 颗粒表征的标准化 / 3239.1 文本标准 / 3249.2 标准物质、参考物质与标准样品 / 3329.3 标准化组织 / 345参考文献 / 349第10章 其他颗粒表征技术概述 / 35110.1 电阻法:计数与粒度 / 35110.2 沉降法:粒度 / 35810.3 筛分法:分级与粒度 / 36110.4 色谱方法:分离与粒度 / 36310.5 超声分析 / 36610.6 气体物理吸附:粉体表面积与孔径 / 37010.7 压汞法:孔径分析 / 37410.8 空气渗透法:平均粒度 / 37510.9 毛细管流动孔径分析法:通孔孔径 / 37510.10 气体置换比重测定法:密度 / 37710.11 核磁共振技术 / 37810.12 流动电位测量:zeta电位 / 37910.13 共振质量测量:计数与粒度 / 38010.14 亚微米气溶胶测定:计数与粒度 / 38110.15 颗粒表征技术小结 / 381参考文献 / 382附录1 符号 / 392附录2 Mie理论的球散射函数 / 395附录3 常用液体的物理常数 / 397附录4 常用分散剂 / 402附录5 用于分散一些粉体材料的液体与分散剂 / 404
  • AFSEM原位微区表征系统 助力新型纳米探针构筑及纳米热学成像研究
    获取材料甚至是器件整体的热学特性,是相关研究与开发当中非常有意义的课题。随着研究对象特征尺寸的不断减小,研究者们对具有高热学分辨率和高水平方向分辨率的表面温度表征方法以及与之相应的仪器的需求也日益显著。在诸多潜在的表征技术当中,扫描热学显微镜(Scanning Thermal Microscopy)是其中颇为有力的一种,它可以满足特征线度小于100 nm的研究需求。然而,这种表征方法,对纳米探针的结构及功能特性有比较高的要求,目前商用的几种纳米探针受限于各自的结构特点,均有一定的局限性而难以满足相应要求,也就限制了相应表征方法的发展与应用。着眼于上述问题,奥地利格拉茨技术大学的H. Plank团队提出了基于纳米热敏电阻的三维纳米探针,用于实现样品表面温度信息的超高分辨表征。相关成果于2019年六月发表在美国化学协会的期刊ACS Applied Materials & Interfaces上(ACS Appl. Mater. Interfaces, 2019, 11, 2522655-22667. Three-Dimensional Nanothermistors for Thermal Probing.)。 图1 三维热学纳米针的概念、结构、研究思路示意图 H. Plank等人提出的这种三维纳米探针的核心结构是一种多腿(multilegged)纳米桥(nanobridge)结构,它是利用聚焦离子束技术直接进行3D纳米打印而获得的,因而可以直接制作在(已经附有许多复杂微纳结构与微纳电路、电的)自感应悬臂梁上(self-sensing cantilever, SCL)。由于纳米桥的每一个分支的线度均小于100 nm,因而需要相应的表征策略与技术来系统分析其纳米力学、热学特性。为此,H. Plank研究团队次采用了有限元模拟与SEM辅助原位AFM(scanning electron microscopy-assisted in situ atomic force microscopy)测试相结合的策略来开展相应的研究工作,并由此推导出具有良好机械稳定性的三维纳米桥(垂直刚度达到50 N/m?1)的设计规则。此后,H. Plank引入了一种材料调控方法,可以有效提高悬臂梁微针的机械耐磨性,从而实现高扫描速度下的高质量AFM成像。后,H. Plank等人论证了这种新式三维纳米探针的电响应与温度之间的依赖关系呈现为负温度系数(?(0.75 ± 0.2) 10?3 K?1)关系,其探测率为30 ± 1 ms K?1,噪声水平在±0.5 K,从而证明了作者团队所提出概念和技术的应用潜力。 图2 三维热学纳米针的制备及基本电学特性 文中在进行三维纳米探针的力学特性及热学响应方面所进行的AFM实验中,采用了原位AFM技术,堪称一大亮点。研究所用的设备为奥地利GETec Microscopy公司生产的AFSEMTM系统,AFSEMTM系统基于自感应悬臂梁技术,因此不需要额外的激光器及四象限探测器,即可实现AFM的功能,从而能够方便地与市场上的各类光学显微镜、SEM、FIB设备集成,在各种狭小腔体中进行原位的AFM测试。此外,通过选择悬臂梁的不同功能型针,还可以在SEM或FIB系统的腔体中,原位对微纳结构进行磁学、力学、电学特性观测,大程度地满足研究者们对各类样品微区特性的表征需求。着眼于本文作者的研究需求来讲,比如探针纳米桥的分支在受力状态下的力学特性分析,只有利用原位的AFM表征技术,才可以同时获取定量化的力学信息以及形貌改变信息。当然,在真空环境下使用原位AFM系统表征微区的力、热、电、磁信息的意义远不止于操作方便或同时获取多种信息而已。以本文作者团队所关注的微区表面热学分析为例,当处于真空环境下时,由于没有减小热学信息成像分辨率的、基于对流的热量转移,因而可以充分发挥热学微纳针的潜能,探测到具有高水平分辨率的热学信息。 图3 利用AFSEM在SEM中原位观测nanobridge的力学特性 图4 将制备所得的新型纳米热学探针安装在AFSEM上,并在SEM中进行原位的形貌测量:a)SEM图像;b)AFM轮廓图像
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制