当前位置: 仪器信息网 > 行业主题 > >

纳米钛酸镁

仪器信息网纳米钛酸镁专题为您整合纳米钛酸镁相关的最新文章,在纳米钛酸镁专题,您不仅可以免费浏览纳米钛酸镁的资讯, 同时您还可以浏览纳米钛酸镁的相关资料、解决方案,参与社区纳米钛酸镁话题讨论。

纳米钛酸镁相关的论坛

  • 帮忙解析纳米钛酸钡的HRTEM图

    帮忙解析纳米钛酸钡的HRTEM图

    成出20纳米左右钛酸钡,XRD显示立方相,Raman显示有四方相,希望能从HRETM图获得相的信息、暴露的晶面、生长速率最快的晶面。典型2个HRTEM图如下:http://ng1.17img.cn/bbsfiles/images/2014/03/201403200835_493717_2788584_3.pnghttp://ng1.17img.cn/bbsfiles/images/2014/03/201403200835_493718_2788584_3.png

  • 纳米二氧化钛的抗菌原理

    纳米二氧化钛在光催化作用下使细菌分解而达到抗菌效果的。由于纳米二氧化钛的电子结构特点为一个满 TiO2的价带和一个空的导带,在水和空气的体系中,纳米二氧化钛在阳光尤其是在紫外线的照射下,当电子能量达到或超过其带隙能时。电子就可从价带激发到导带,同时在价带产生相应的空穴,即生成电子、空穴对,在电场的作用下,电子与空穴发生分离,迁移到粒子表面的不同位置,发生一系列反应,吸附溶解在 TiO2 表面的氧俘获电子形成O2 ·,生成的超氧化物阴离子自由基与多数有机物反应(氧化) 。同时能与细菌内的有机物反应,生成 CO2和 H2O;而空穴则将吸附在TiO2表面的 OH和H2O氧化成·OH,·OH有很强的氧化能力,攻击有机物的不饱和键或抽取H原子产生新自由基,激发链式反应,最终致使细菌分解。TiO2 的杀菌作用在于它的量子尺寸效应,虽然钛白粉(普通 TiO2)也有光催化作用,也能够产生电子、空穴对,但其到达材料表面的时间在微秒级以上,极易发生复合,很难发挥抗菌效果,而达到纳米级分散程度的TiO2,受光激发的电子、空穴从体内迁移到表面。只需纳秒、皮秒、甚至飞秒的时间,光生电子与空穴的复合则在纳秒量级,能很快迁移到表面,攻击细菌有机体,起到相应的抗菌作用。在紫外线作用下,以0.1mg/cm3浓度的超细TiO2可彻底地杀死恶性海拉细胞,而且随着超氧化物歧化酶(SOD)添加量的增多,TiO2光催化杀死癌细胞的效率也提高;用TiO2光催化氧化深度处理自来水,可大大减少水中的细菌数,饮用后无致突变作用,达到安全饮用水的标准。在涂料中添加纳米二氧化钛可以制造出杀菌、防污、除臭、自洁的抗菌防污涂料,可应用于医院病房、手术室及家庭卫生间等细菌密集、易繁殖的场所,可有效杀死大肠杆菌、黄色葡萄糖菌等有害细菌,防止感染。因此,纳米纳米二氧化钛能净化空气,具有除臭功能。 纳米二氧化钛抗菌特点:对人体安全无毒,对皮肤无刺激性;抗菌能力强,抗菌范围广;无臭味、怪味,气味小;耐水洗,储存期长;热稳定性好,高温下不变色,不分解,不挥发,不变质;即时性好,纳米二氧化钛抗菌剂仅需1h就能发挥效果,而其他银系抗菌剂效果则需约24h;纳米二氧化钛是一种永久性维持抗菌效果的抗菌剂;具有很好的安全性,科用于食品添加剂等,与皮肤接触无不良影响。

  • 【求助】寻求从强碱(NaOH)溶液中的分离 悬浮纳米钛酸盐粉体 方法?

    寻求从强碱(NaOH)溶液中的分离 悬浮纳米钛酸盐粉体 方法?小弟用水热法作纳米钛酸盐无机粉体。溶液是强碱NaOH,由于粉体太细漂浮在溶液中,长时间静置也不能沉淀,过滤也要几个小时,很难洗去粉体中占付的碱溶液。我听说人家用醋酸滴定可以加快沉淀,试了效果不明显。请问那些做过纳米粉的前辈,能有什么快速分离纳米粉体的好方法。十分感激!!

  • 【资料】纳米碳酸钙在涂料行业中的应用现状与展望

    中国化工网2007年3月13日报道:纳米材料是指晶体粒径为纳米级的多晶体材料,具有小尺寸与高浓度晶界两个重要特征,通常大晶体的连续能带分裂成接近分子轨道的能级,产生了小尺寸的量子隧道效应,同时由于其高浓度晶界及界面原子受力不均衡性增加产生了界面效应,这两种效应导致材料在力学性能、磁性能、光学性能、电性能及热力学特征发生突变。将纳米材料应用于涂料中,由于成膜基料、颜填料及助剂等分子中存在着诸多的活性点,这些活性点可能会与纳米粒子表面的活性点之问发生强烈的相互作用,从而有可能形成致密而稳定的涂层,使涂膜的物理化学性能显著提高。碳酸钙是一种无毒、无刺激、无气味的白色软质填料,在涂料工业中,其易于与各类聚合物相容,热稳定性好,是最常用的原料之一,在成膜物中起着骨架作用。近年来随着纳米技术的兴起,将纳米碳酸钙应用于涂料中以期改善涂料性能是涂料界关注的热门话题之一,尤其是国内众多万吨级的纳米碳酸钙生产线的建成,更是迫切需要寻找包括涂料在内的一系列领域中获得应用,然而纳米碳酸钙直接应用于涂料中,存在以下缺陷:颗粒表面能高,处于热力学不稳定状态,极易团聚;碳酸钙表面亲水疏油,极性很高,在有机介质中难以分散,与基料的结合力差,易形成界面缺陷,导致涂膜性能下降。[

  • 【分享】纳米二氧化钛的光催化特性

    一、 研究意义和目的 人类正面临着环境污染的巨大压力。污水中成分复杂,浓度亦不相同,利用光催化技术可将多种有机污染物完全矿化为二氧化碳、水及其他无机小分子或离子;将高毒性的CN-氧化为CNO-,CrO42-还原为Cr3+,来降低它们的毒性;还能将[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]体系中的氮氧化物分解并将有机污染物氧化。如何提高光催化反应的光量子产率,是光催化大规模应用面临的主要难题之一。晶粒尺寸减小到一定程度后,光能隙蓝移,对应于更高的氧化-还原电位,因而有更强的氧化-还原能力;另外晶粒尺寸减小后光生载流子迁移到晶粒表面的时间大大缩短,有效地减少了光生电子和光生空穴的体相复合。因此,制备高比表面积的超细二氧化钛纳米颗粒有望能显著地提高其光催化活性。 我们课题组的研究目标是利用价廉的含钛无机物为主要原料,制备锐钛矿相、金红石相、两相的混晶等多种结构的二氧化钛纳米晶、高比表面积的无定形二氧化钛和由介孔与二氧化钛纳米晶构筑的团聚体。利用苯酚的光催化氧化反应和铬酸根的光催化还原反应为模型,来考察不同结构的纳米二氧化钛的光催化活性。这些研究成果对光催化的基础研究、金红石相二氧化钛纳米晶的应用和高性能的光催化制备有重要的指导意义和借鉴作用。 1.不同结构纳米二氧化钛的制备与性能 以钛醇盐为前驱体,用沉淀法或溶胶-凝胶法都能制备出无定形或结晶度较差的锐钛矿相(anatase)二氧化钛。要获得金红石相(rutile)需经高温煅烧,大约在500t开始锐钛矿相?金红石相转变(具体温度与制备条件有关),要获得纯金红石相需在8000C左右煅烧2h。实际上,金红石相是常温下的稳定相,但在通常条件下难以合成。国内生产的钛醇盐主要是钛酸丁酯,含钛量不高且价格贵,文献中的数据表明,用钛醇盐为原料难以获得高比表面积(大于200m2/g)和超细尺寸的二氧化钛纳米晶(小于10nm)。而且,这种方法得到的粉体往往含有较多的有机物,这些有机物会降低二氧化钛的催化活性。因此,用醇盐得到的二氧化钛需用煅烧的方法来改善结晶度和除掉有机物。我们课题组找到了用廉价原料制备不同晶相的高性能二氧化钛纳米粉体的方法。高温条件下金红石相二氧化钛纳米晶的生长速度快,高温[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]反应(如氯化法)也难以获得金红石相二氧化钛纳米晶。二氧化钛纳米晶在液相介质中,很难分离和回收。文献曾报道用模板剂来合成介孔二氧化钛,但墙体二氧化钛是无定形的,且3500C煅烧介孔开始坍塌,尚不能完全烧掉模板剂。因此,这种介孔并不适合作光催化剂。 我们用四氯化钛为主要原料,通过控制水解条件可以得到锐钛矿相、金红石相以及混晶等多种结构的二氧化钛纳米晶、高比表面积的无定形二氧化钛和三维无序结构的介孔二氧化钛。图1和图2分别为它们的x射线衍射图(XRD)和透射电镜照片(TEM)。 纳米粉体有着更高的光催化活性,但在应用中面临的主要问题是它们难以分离和回收。为了解决这一难题,可将二氧化钛负载在分子筛或介孔材料上,Ying曾制备了二氧化钛介孔材料,但350℃煅烧后孔开始坍塌。这样低的煅烧温度尚不能烧掉孔内的模板剂剂,作为墙体的二氧化钛是非晶的,并不适合于用作光催化剂。我们通过溶胶-凝胶法制备了含少量二氧化硅的钛硅复合氧化物,利用二氧化硅网络阻止煅烧过程中二氧化钛的传质过程从而抑制品粒长大和相变。钛硅复合粉体中二氧化钛晶化后,用化学法洗去二氧化硅,可以得到高比表面积的介孔二氧化钛。与现有文献相比,这种介孔材料的突出特点是:①墙体为锐钛矿相,适合作光催化剂;留颗粒尺寸为10mm级,是一次粒径为1nm的锐钛矿相和介孔构筑的团聚体,既保留了纳米晶高比表面积的特点又可用过滤的方法来分离和回收;③可用光还原的方法在孔壁沉积出贵金属岛,来实现电子和空穴的分离和氧化过程和还原过程的分隔。我们知道铂的密度是锐钛矿相二氧化钛的5.6倍,使用过程中铂原子簇会从颗粒表面脱落。沉积在孔壁上的铂位于孔构筑的笼中,能延长负载珀的光催化剂的使用寿命。 2.发现了不同结构纳米二氧化钛的光催化活性中的一些新现象 苯酚是常见的有机污染物,汽提法不过是将有机污染物由一种介质转移到另一种介质,没有真正降解;利用光催化技术可将苯酚等污染物降解(为二氧化碳和水,实现完全矿化。铬(VI)有致癌作用,并且不易被吸附剂吸附,因而难以固定。利用光催化技术,可以把铬(VI) 还原为毒性较低的铬(Ⅲ),在中性或弱碱性介质中,铬(Ⅲ)可以转化为Cr(OH)3沉淀,能够从溶液中分离出来。选择这两种最常见的污染物来考察二氧化钛纳米晶的光催化活性,发现了一些新现象并得到了有重要意义的结果。 我们首次在国际上报道了超细锐钛矿相二氧化钛纳米晶在苯酚的光催化降解反应中对其深度矿化有更高的选择性。不往反应体系中通人氧气,利用搅拌时空气中的溶解氧来促进苯酚的光催化氧化,发现粒径为3.8nm的锐钛矿相二氧化钛对苯酚的深度矿化的选择性最高,而混晶和金红石相的超细纳米晶的选择性较低。这一发现表明用超细锐钛矿相二氧化钛纳米晶作为光催化剂时,生成的有机中间产物少,不会造成降解产物对水体的二次污染。图3为不通氧条件下,主要的几种二氧化钛纳米晶使苯酚深度矿化的选择性差异3.8nm(A) 6.8nm(A) 14.1nm(A) mixed-1 rdxexl-2 7.2nm(R)Photo0Zcatalysts不同晶相的纳米二氧化钛对苯酚深度矿化的选择性mixed-l=混晶,4.4nm(R)+5.9nm(A);mixed-2=混晶,14.2nm(R)+10.7mm(A).不论是否往反应体系中通人氧气,合成的混晶均表现出最高的催化活性。总有机碳(TOC)含量的结果表明,不通人氧气,用合成的混晶、6.8nm的锐钛矿和7.2nm的金红石相二氧化钛纳米晶作为光催化剂,反应4h后反应体系中TOC分别下降61.2%、50.5%和47.1%。通入氧气后,反应速率迅速提高,反应1.5h后,使用这三种催化剂后,反应体系中的TOC分别下降97.6%、84.5%、91.5%;作为对比,我们选择商品二氧化钛(锐钛矿相,比表面积等于9m2/g)进行光催化实验,同样条件下其TOC含量仅下降21.2%。由此可见纳米晶的高催化活性。紫外-可见光谱表明混晶的漫反射吸收谱不同于两相的机械混合物:它们在可见光区有一较弱的吸收带,高分辨电镜照片表明混晶中不同形貌的纳米颗粒在晶面尺度上形成毗连结构,这种晶面毗连形成了过渡能态,有利于提高其光催化活性。优化混晶中两相的比例、并设计和制备出更多不同相的毗连晶面的高活性光催化剂的工作正在进行之中。 铬酸根的降解反应中,锐钛矿相超细纳米品表现出很高的光催化活性,催化活性随着粒径的减小而大幅度提高。在酸性条件下,纳米晶显示更高的光催化活性,半小时铬酸根的除去率超过90%。从不同晶粒尺寸的锐钛矿相二氧化钛的UV-vis吸收谱来看,其尺寸效应不如金红石相二氧化钛明显。也就是说,锐钛矿相晶粒细化后,光能隙的蔬移并不明显。二氧化钛纳米晶中光生电子由晶粒内部迁移到晶粒表面所需的时间(t)可由下列公式来估算:t=r2/p2D (1)r为二氧化钛纳米晶的半径,D为载流子的扩散系数。电子的扩散系数(De)为2×10-2cm2/s,由此算得粒径为6.8nm、lOnm和lOOnm的二氧化钛中电子由晶粒内部迁移到晶粒表面所需的时间约为0.58ps(皮秒)、1.25ps和125ps。可见粒径细化后,光生电子迁移到晶粒表面所需的时间大大减少。这样可有效地减少了光生电子和光生空穴在体相内的复合,有更多的光生电子参加氧化-还原反应,因而有更高的光催化活性。因此,在铬酸根的光催化还原反应中,晶粒细化后,光生电子迁移到纳米晶表面的时间大大缩短,减少了光生载流子的体相复合是其光催化活性有显著尺寸效应的主要原因。 需要强调指出的是无论在苯酚的光氧化反应还是铬酸根的光还原反应中,介孔二氧化钛的光催化活性大大高于钛硅复合粉体,负载0.22 wt%的Pt后,光催化活性大幅度提高。

  • 纳米医学畅想

    纳米医学畅想 纳米医学的研究内容十分广泛,最引人注目的是扫描隧道显微镜(STM)。这一非凡的仪器于80年代初研制成功,可以在纳米尺度上获取生命信息,研究者相继得到了左旋DNA、双螺旋DNA的碱基对、平行双螺旋DNA的STM图像。我国科学家利用STM成功的拍摄到表现DNA复制过程中一瞬间的照片。目前,研究已涉及到氨基酸、人工合成多肽、结构蛋白和功能蛋白等领域。 纳米使单位体积物质储存和处理信息的能力提高百万倍以上,人类有可能将存储了全部知识的纳米计算机安放在人脑中,或许有一天,图书馆就在我们的头脑内,每一个人都可能成为爱因斯坦、牛顿,老年性痴呆、记忆丧失等病症将会得到彻底治愈。纳米计算机可能用来读出人脑内的内容及品性,将一个脑内的信息转录到另一个脑内,这个脑可以是人脑,也可以是电脑。纳米医学也有可能改变人类自身,让人类成为能在天上飞、水中游,能进行光合作用或能在恶劣环境下生存的“超人”。将来,掌握纳米医学技术的医生,不仅能够“修理人”——治病,而且能够“改造人”——使其具有特殊功能。虽然这些设想有些离奇,但决非是毫无科学根据的幻想。即将进入临床应用的有:利用纳米传感器获取各种生化信息和电化学信息。已经取得重大成果的还有DNA纳米技术,主要应用于分子的组装。 已经在医药领域得到成功的应用。人们已经能够直接利用原子、分子制备出包含几十个到几百万个原子的单个粒径为1-100纳米的微粒。最引人注目的是作为药物载体,或制作人体生物医学材料,如人工肾脏、人工关节等。在纳米铁微粒表面覆一层聚合物后,可以固定蛋白质或酶,以控制生物反应。由于纳米微粒比血红细胞还小许多,可以在血液中自由运行,因而可以在疾病的诊断和治疗中发挥独特作用。 当把二氧化肽做到粒径为几十纳米时,在它的表面会产生一种叫自由基的离子,能破坏细菌细胞中的蛋白质,从而把细菌杀死。例如用二氧化肽处理过的毛巾,只要有可见光照射,上面的细菌就会被纳米二氧化肽释放出的自由基离子杀死,具有抗菌除臭功能。 将药物粉末或溶液包埋在直径为纳米级的微粒中,将会大大提高疗效、减少副作用。纳米粒可跨越血脑屏障,实现脑位靶向。另外,纳米粒脉管给药,可降低肝内蓄积,从而有利于导向治疗。纳米粒中加入磁性物质,通过外加磁场对其导向定位,对于浅表部位病灶治疗具有一定的可行性。在影像学诊断中,纳米氧化铁在病灶与正常组织的磁共振图像上,会有较大的对比度。 纳米粒用作药物载体具有下述显著优点:(1)可到达网状内皮系统分布集中的肝、脾、肺、骨髓、淋巴等靶部位;(2)具有不同的释药速度。(3)提高口服吸收药物的生物利用度。(4)提高药物在胃肠道中的稳定性。(5)有利于透皮吸收及细胞内药效发挥。如:载有抗肿瘤药物阿霉素的纳米粒,可使药效比阿霉素水针剂增加10倍。目前已在临床应用的有免疫纳米粒、磁性纳米粒、磷脂纳米粒以及光敏纳米粒等。 医用纳米机械或纳米微型机器人可潜入人体的血管和器官,进行检查和治疗,使原来需要进行大型切开的手术成为微型切开或非手术方式,并使手术局部化。纳米医用机器甚至可以进入毛细血管以及器官的细胞内,进行治疗和处理。这类机器可以将对人体的伤害减小到最低程度。含有纳米计算机的、可人机对话的、有自身复杂能力的纳米机器人一旦制成,能在一秒钟内完成数十亿个操作动作。如果数量足够多,就可以在几秒或几分钟内完成现今需几天或几个月甚至几年、几十年才能完成的工作。 和细胞一样,作业中坏了的微型机械可以随时被更换或修理。微型机械发展的顶峰,或许是可以自己增殖繁衍的纳米机器人。别以为以上设想不可思议。纳米科学家们相信这种愿望能够实现。 不难想象,倘若人类能直接利用原子、分子进行生产活动,这将是一个“质”的飞跃,将改变人类的生产方式和空前地提高生产能力,并有可能从根本上解决人类面临的诸多困难和危机,开创医学新纪元。

  • 【求助】求纳米标准的下载链接

    GJB 1713-1993 纳米激光偏振干涉仪规范 JJF 1321-1990 250~2500纳米光谱辐射亮度和照度基准操作技术规范 JJF 1322A-1990 250~2500纳米光谱辐射亮度副基准操作技术规范JJF 1322B-1990 250~2500纳米光谱辐射照度副基准操作技术规范 JJF 1335-1990 800~2000纳米光谱反射比副基准操作技术规范 GB/T 18735-2002 分析电镜(AEM/EDS)纳米薄标样通用规范 GB/T 19345-2003 非晶纳米晶软磁合金带材 GB/T 19346-2003 非晶纳米晶软磁合金交流磁性性能测试方法 HG/T 3791-2005 氯乙烯-纳米碳酸钙原位聚合悬浮法聚氯乙烯树脂 GB/T 19588-2004 纳米镍粉 GB/T 19589-2004 纳米氧化锌 GB/T 19591-2004 纳米二氧化钛 GB/T 19619-2004 纳米材料术语 GB/T 20307-2006 纳米级长度的扫描电镜测量方法通则 HG/T 3819-2006 纳米合成水滑石 HG/T 3820-2006 纳米合成水滑石 分析方法 HG/T 3821-2006 纳米氢氧化镁 SC/T 7205.1-2007 牡蛎包纳米虫病诊断规程第1部分:组织印片的细胞学诊断法 SC/T 7205.3-2007 牡蛎包纳米虫病诊断规程第3部分:透射电镜诊断法

  • 纳米碱式硫酸铜悬浮剂研制及其作用机理研究

    【序号】:1【作者】: 高萌萌【题名】:纳米碱式硫酸铜悬浮剂研制及其作用机理研究【期刊】:沈阳农业大学 硕士论文【全文链接】:[url]https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD202101&filename=1021524996.nh&v=PNVhqqxFxI5VM3trdln8Ny9Eo2KRPr98mjQTq3yx34xeJX4jUELxKNzg3x65CZSs[/url]

  • 浮子流量计与纳米级碳酸钙应用概述

    国内外微细碳酸钙浮子流量计(PCC)与纳米级碳酸钙应用概述     在美国、日本、西欧等发达国家中,造纸消费 PCC 占各行业首位,而中国目前处于第三四位。   在造纸工业中,随着造纸工艺过程中的施胶技术由酸性施胶向中-碱性施胶转变,为碳酸钙的应用提供了一个巨大的潜在市场。碳酸钙用做造纸填料白度高,光散射性好,添加后的纸张有较高的松密度,良好的可塑性和柔软性,纸张表面细腻,可大大改善纸张性能,使纸厂获得明显的经济效益。所以,欧美和日本的造纸厂大多从酸性施胶改为中-碱性施胶工艺。近年来,中国造纸行业在造纸技术上也开始由酸性施胶向中性施胶技术转变,原轻工部已将中-浮子流量计碱性施胶技术列入国家“八五”重点推广项目之一,这就要求我们只有不断开发碳酸钙新产品,才能适应造纸 行业的需求。     轻质碳酸钙在碱性造纸中主要用做填料,也有少部分用做颜料。广泛用于不含磨木浆的纸浆市场,比高岭土、重钙具有极佳物理性能,如高透明、高密度、高膨胀能力、粒度均匀、颜料牢固等。以目前世界最大的造纸生产国和纸品消费国美国为例,2005 年造纸填料选用轻质碳酸钙的 比例达到 65%,增长率为4%。美国超细碳酸钙主要应用于造纸和涂料,其中包括多种晶型的纳 米碳酸钙产品。日本 1952 年研制出了平均粒活为 0.04um的超细碳酸钙,1983 年又研制出了平均 粒活为 0.005um 的超细碳酸钙。     造纸工艺是 PCC 最大用户,占世界 PCC 使用量的 73%, PCC 在造纸上的两个不同工艺用途是纸张填料和纸张涂料。其主要用在填充无磨木浆涂敷纸(WFO),最高填充量可达到 25%, 且用量有望增加。     纳米级碳酸钙作为造纸填料具有高蔽光性、高亮度,提高纸制品的白度和蔽光性;还具有高膨胀性,能使造纸厂使用更多的填料量,而少用纸浆,大幅度降低原料成本;粒度细小、均匀,对纸机的磨损小,并使生产的纸制品更加均匀、平整;吸油值高,能提高彩色纸张的颜料牢固性等优点。玻璃管浮子流量计目前纳米级碳酸钙在造纸工业上的应用主要在高档卫生巾、纸尿布及家庭用护理成人失 禁垫片、卷烟纸及造纸涂料等。

  • 使用马尔文纳米激光粒度仪ZEN3600分析纳米钛白粒径时有误差

    使用马尔文纳米激光粒度仪ZEN3600分析纳米钛白粒径时有误差

    [font=Verdana]我在进行粒径分析时,使用无水乙醇作分散剂,浓度0.025mg/ml,温度25℃,超声震荡20min。测量了几次结果粒径都偏差很大,如100nm的锐钛纳米二氧化钛,虽然PDI为0.289,但平均粒径达到了1285nm,且出现双峰;同样100nm金虹纳米二氧化钛虽然是单峰,但平均粒径高达826nm,PDI:0.146;0.2-0.4微米钛白分析结果平均粒径650nm,PDI[/font][font=Verdana]:0.184[/font][font=Verdana]。这是什么原因导致的外购商品参数与测试结果不符,是不是分散剂不对,或者使用有误?望各位大佬解惑。[img=三种纳米二氧化钛的强度分布,690,573]https://ng1.17img.cn/bbsfiles/images/2022/07/202207111807266875_4002_5322665_3.png!w690x573.jpg[/img][/font]

  • 纳米纤维素做TEM以及制样

    纳米纤维素做TEM以及制样

    第一次做的纳米纤维素的TEM(醋酸双氧铀染色)还能看到纤维丝状的缠绕结构,但是今天做的纳米纤维素TEM的时候,看的很模糊,测试老师说是染色的问题,我这次是重新买的醋酸双氧铀配成跟以前那瓶浓度一样的2%,染色方法没变,可就是很模糊,背景不明显,请问大家做纳米纤维素TEM是怎么做的?这是我没换染色剂之前拍出来的纳米纤维素TEM照片http://ng1.17img.cn/bbsfiles/images/2016/05/201605041552_592247_3049796_3.jpg

  • 【求助】(已应助)拜托各位帮忙找找七项纳米材料标准

    GB/T 19619—2004《纳料材料术语》 GB/T 13321—2004《纳米粉末粒度分布的测定——X射线小角散射法》GB/T 19587—2004《气体吸附BET法测定固态物质比表面积》GB/T 19588—2004《纳米镍粉》GB/T 19589—2004《纳米氧化锌》GB/T 19590—2004《超微细碳酸钙》GB/T 19591—2004《纳米二氧化钛》

  • 对于纳米TiO2你了解多少?

    纳米TiO2(优锆纳米)具有十分宝贵的光学性质,在汽车工业及诸多领域都显示出美好的发展前景。纳米二氧化钛还具有很高的化学稳定性、热稳定性、无毒性、超亲水性、非迁移性,且完全可以与食品接触,所以被广泛应用于抗紫外材料、纺织、光催化触媒、自洁玻璃、防晒霜、涂料、油墨、食品包装材料、造纸工业、航天工业中1.杀菌功能在紫外线作用下,以0.1mg/cm3浓度的超细TiO2可彻底地杀死恶性海拉细胞,而且随着超氧化物歧化酶(SOD)添加量的增多,TiO2光催化杀死癌细胞的效率也提高;用TiO2光催化氧化深度处理自来水,可大大减少水中的细菌数,饮用后无致突变作用,达到安全饮用水的标准。在涂料中添加纳米二氧化钛(TG01)可以制造出杀菌、防污、除臭、自洁的抗菌防污涂料,可应用于医院病房、手术室及家庭卫生间等细菌密集、易繁殖的场所,可有效杀死大肠杆菌、黄色葡萄糖菌等有害细菌,防止感染。因此,纳米纳米二氧化钛(TG01)能净化空气,具有除臭功能。苏州优锆纳米二氧化钛具有很高的表面活性,抗菌能力强,产品易于分散。经试验证明该产品对大肠杆菌、金黄色葡萄球菌、沙门氏菌和曲霉菌等具有很强的杀菌能力,已广泛应用于纺织、陶瓷、橡胶、医药等领域的抗菌产品,深受广大用户的欢迎。2.防紫外线功能纳米氧化钛(同VK-T25)的强抗紫外线能力是由于其具有高折光性和高光活性。其抗紫外线能力及其机理与其粒径有关:当粒径较大时,对紫外线的阻隔是以反射、散射为主,且对中波区和长波区紫外线均有效。防晒机理是简单的遮盖,属一般的物理防晒,防晒能力较弱;随着粒径的减小,光线能透过纳米二氧化钛的粒子面,对长波区紫外线的反射、散射性不明显,而对中波区紫外线的吸收性明显增强。其防晒机理是吸收紫外线,主要吸收中波区紫外线。苏州优锆纳米二氧化钛由于粒径小,活性大,既能反射、散射紫外线,又能吸收紫外线,从而对紫外线有更强的阻隔能力。与同样剂量的一些有机紫外线防护剂相比,万景牌纳米氧化钛在紫外区的吸收峰更高,更可贵的是它还是广谱屏蔽剂,不象有机紫外线防护剂那样只单一对UVA或UVB有吸收。它还能透过可见光,加入到化妆品使用时皮肤白度自然,不象颜料级TiO2,不能透过可见光,造成使用者脸上出现不自然的苍白颜色。3.光催化功能---清洁空气,PM2.5分解环境有害气体可分为室内有害气体和大气污染气体。室内有害气体主要有装饰材料等放出的甲醛及生活环境中产生的甲硫醇、硫化氢及氨气等。纳米二氧化钛通过光催化作用可将吸附于其表面的这些物质分解氧化,从而使空气中这些物质的浓度降低,减轻或消除环境不适感。苏州优锆纳米二氧化钛因粒径非常小,而且不团聚,分散性能好,没有任何沉淀,不含任何添加剂(香精),催化活性高:本款纳米光触媒的催化活性经过测试,比目前市场所有的催化性能最好的纳米二氧化钛的催化活性还高20-50倍。可以迅速的捕捉并分解室内的甲醛,苯,氨等有害气体,除味效果好。对PM2.5的分解清除有良好的效果。

  • 纳米生物技术简介

    纳米生物技术简介 纳米(nanometer,nm)是一种长度单位,一纳米等于10亿分之一米、千分之一微米。从具体的物质说来,人们往往用"细如发丝"来形容纤细的东西,其实人的头发一般直径为20-50微米,并不细。单个细菌用肉眼看不出来,用显微镜测出直径为5微米,也不算细。极而言之,1纳米大体上相当于4个原子的直径。DNA链的直径就是一纳米左右。由于纳米材料表现出许多不同于传统材料的特殊性能,所以纳米科技被视为21世纪关键的高新技术之一。纳米技术包含下列四个主要方面:第一方面是纳米材料,第二方面是纳米动力学,第三方面是纳米电子学,第四方面是纳米生物学和纳米药物学。在纳米生物学和纳米药物学方面,如在云母表面用纳米微粒度的胶体金固定DNA的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,DNA的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。当前纳米生物学和纳米药物学研究领域主要集中在以下几个方向:纳米生物材料、纳米生物器件研究和纳米生物技术在临床诊疗中的应用。

  • 纳米技术及应用

    信息产业科技、生物科技和纳米技术是现在世界上前沿科学领域的三大主要方向。 纳米是一个长度计量单位,它是一米的十亿分之一。纳米材料就是在纳米量级范围内调控物质结构研制而成的新材料。纳米技术就是 指在纳米尺度范围内,通过操纵原子、分子、原子团和分子团,使 其重新排列组合成新物质的技术。其最终目标是直接以原子、分子的变化,使物质在纳米尺度上表现出新颖的物理、化学和生物学特性,制造出具有特定功能的产品。因为纳米材料的粒度非常微小,一般的显微镜是不能观察到的,所以纳米技术是在扫描隧道显微镜发明之后,才出现以0.1至100纳米尺度为研究对象的前沿科学。这可能改变几乎所有产品的设计和制造方式,实现生产方式的飞跃, 是新工业革命的核心。纳米技术也是信息和生命科学技术能够进一步发展的共同基础,将对人类产生深远的影响,甚至改变人们的思维方式和生活方式。有人曾经预言说,七十年代搞微米技术的国 家,现在已成为发达国家;现在从事纳米技术研究的国家,将是二 十一世纪的先进国家。 纳米材料粒度非常微小,具有良好的表面效应,一克纳米材料的表 面积达到几百平方米,因此用纳米材料制成的产品,其强度、柔韧 度、延展性都十分优越,就象一种有成千上万对脚的毛毛虫,当它 吸附在光滑的玻璃面上时,由于接触面积大,12级台风也吹不掉 它。因此,在化纤中加入少量的金属纳米颗粒,就可摆脱磨擦引起的静电现象;在食品中采用纳米技术,可提高肠胃的吸收功能;在 涂料中运用纳米技术,可使外墙涂料的耐洗刷性从一千多次提高到一万多次,老化时间延长两倍多;许多化妆品因为加入纳米微粒, 而具备防紫外线功能;利用纳米技术可生产出色彩鲜艳、抗折性极 高的彩色轮胎;利用纳米粉末,可使废水变清。另外,纳米在医药 保健、计算机、化学和航天等领域都会引起新的、技术性革命。 作为纳米技术重要方面的碳纳米管,是1991年被人类发现的。它是由石墨碳原子层卷曲而成的碳管,管的直径一般为几个纳米到几十纳米,管壁厚度仅几个纳米,象铁丝网卷成的空心圆柱状的“笼形 管”。5万个“笼形管”排列起来,才有人的一根头发丝那么宽,长度和直径比非常高的纤维小。作为石墨、金刚石等碳晶体家族的新成员,碳纳米管的韧性很高,导电性极强,场发射性能优良,兼具 金属性和半导体性。其强度比钢高100倍,比重只有钢的1/6,称之 为未来的超级纤维,成为国际研究的热点。碳纳米管的用途十分诱 人。它可制成极好的微细探针和导线、加强材料及储氢材料。它使壁挂电视成为可能,并在将来可替代硅芯片。纳米芯片体积更小、 容量更大、重量更轻,将在纳米电子学中扮演极重要角色,并引发计算机行业的革命。不久前我国研制出的碳纳米管显示器样本,不但体积小,重量轻,而且显示质量好,从-45℃~80℃皆能正常工 作,而耗电只有现在的显示器的1%。 另外,作为纳米技术的应用之一,在我国西安已研制出的“纳米服 装”,不仅能阻隔95%以上的紫外线,还能阻隔同量的电磁波,且无毒、无刺激,不受洗涤、着色、磨损的影响,能有效地保护人体皮 肤不受辐射的影响。还有小鸭集团研制出的纳米洗衣机,就是利用 纳米抗菌材料研制出的自我清洁的洗衣机。它能够有效地抑制细菌 滋生,无论使用多长时间,都能够保持“净水洗涤”的状态。 目前,纳米技术在电线电缆中的应用已在开始。有人曾设想,能否运用纳米技术来提高绝缘材料的性能,从而提高电缆的绝缘、耐热 和抗老化等性能,减少电缆的外径,减轻电缆的重量。另外能否利 用碳纳米管的韧性高、导电性强的特点,制成超细电磁线,使微型 电机的体积象米粒那样大,甚至更小。 现在“纳米热”已遍及全球,从大西洋到太平洋,从日本到欧洲,各国都把它作为重要的未来发展战略。美国总统克林顿曾经发表过 一篇关于前沿科学技术的前瞻性的讲话,提出了美国今后要大力发 展纳米技术。美国已于2000年10月1日启动“国家纳米计划”,投资1997年的1.16亿美元增加到4.97亿美元。目前全球纳米技术的年 产值已达到500亿美元,预计到2010年,市场容量将达到14400亿美 元。我国已建立了10多条纳米材料和技术的生产线,以此为基础的企业已达100多家。预计在今后二、三十年内,它将远远超过计算机工业,并成为未来信息时代的核心。纳米技术导致的微形化趋势从根本上改变人类的处境,从而引起二十一世纪的又一次产业革命。

  • 求购纳米材料

    请问哪位兄弟知道再南京的什么地方可以买到纳米钛白粉和其他纳米粉体材料?价格如何?

  • 什么是纳米抗体?纳米抗体的特性有哪些?

    [font=宋体][b]什么是纳米抗体?[/b][/font][font=宋体][font=宋体][url=https://cn.sinobiological.com/resource/antibody-technical/nanobody][b]纳米抗体[/b][/url]([/font][font=Calibri]nanobody, Nb[/font][font=宋体])是一种人工设计的抗体分子,又称为单域抗体([/font][font=Calibri]single-domain antibodies, sdAbs[/font][font=宋体])、[/font][font=Calibri]VHH[/font][font=宋体]抗体或[/font][font=Calibri]camelid[/font][font=宋体]抗体,是发现于羊驼、单峰驼等驼科以及鲨鱼、鳐鱼等软骨鱼中的一种天然缺失轻链的重链抗体([/font][font=Calibri]heavy-chain antibodies, HCAbs)[/font][font=宋体]。[/font][font=Calibri]1993[/font][font=宋体]年,比利时的科学家在骆驼的血清中发现了一种天然轻链缺失的重链抗体,分子量约[/font][font=Calibri]95 kDa[/font][font=宋体],其中包括两个恒定区([/font][font=Calibri]CH2[/font][font=宋体]和[/font][font=Calibri]CH3[/font][font=宋体])、一个铰链区和一个重链可变区([/font][font=Calibri]variable heavy chain domain, VHH[/font][font=宋体]),接着克隆得到只包含一个重链可变区的单域抗体,即[/font][font=Calibri]VHH[/font][font=宋体]抗体。[/font][font=Calibri]VHH[/font][font=宋体]抗体的晶体结构为[/font][font=Calibri]4 nm[/font][font=宋体]×[/font][font=Calibri]2.5 nm[/font][font=宋体]×[/font][font=Calibri]3 nm[/font][font=宋体]的椭圆形,分子量大小仅普通抗体的[/font][font=Calibri]1/10[/font][font=宋体],约[/font][font=Calibri]12-14 kDa[/font][font=宋体],是最小的完整抗原结合片段,因此又被称为纳米抗体。纳米抗体可用于肿瘤等疾病的治疗、疾病的检测、疫苗的研发等。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]纳米抗体特性:[/b][/font][font=宋体] [/font][font=宋体][font=Calibri]1.[/font][font=宋体]高耐热性和稳定性[/font][/font][font=宋体] [/font][font=宋体][font=宋体]将不同的纳米抗体在[/font][font=Calibri]37[/font][font=宋体]℃放置[/font][font=Calibri]1[/font][font=宋体]周,结果其抗原结合活性均在[/font][font=Calibri]80%[/font][font=宋体]以上,表明纳米抗体在室温下保存相当稳定,这使其比常规抗体更易于储藏和运输。[/font][/font][font=宋体][font=宋体]比较了鼠单抗和纳米抗体在高达[/font][font=Calibri]90[/font][font=宋体]℃高温长时间处理的抗原结合活性,发现纳米抗体都保持了较高的活性仍能重新获得抗原结合能力,而所有常规抗体在[/font][font=Calibri]90[/font][font=宋体]℃处理后都丧失了活性,发生了不可逆的聚合。[/font][/font][font=宋体][font=宋体]在恶劣条件,如在高热、离液剂、存在蛋白酶和极度[/font][font=Calibri]pH[/font][font=宋体]值变性的条件下(如胃液和内脏中),正常抗体会失效或分解,而纳米抗体仍具有高度的稳定性。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2.[/font][font=宋体]高抗原结合性:[/font][/font][font=宋体] [/font][font=宋体][font=宋体]纳米抗体独特的结构决定了其高抗原结合特性:纳米抗体较长的[/font][font=Calibri]CDR3[/font][font=宋体],可形成一稳定的暴露的凸环结构(凸环中具有稳定结构的二硫键),能够深入抗原内部以更好的结合抗原从而提高了其抗原特异性和亲和力。[/font][/font][font=宋体][font=宋体]而传统抗体[/font][font=Calibri]Fab[/font][font=宋体]片段及单链抗体[/font][font=Calibri]scFv[/font][font=宋体]的抗原结合表面常形成凹形拓扑结构[/font][font=Calibri], [/font][font=宋体]通常只能识别位于抗原表面的位点,因此纳米抗体[/font][font=Calibri]VHH[/font][font=宋体]单域具有更加广泛的抗原结合力,甚至当靶蛋白紧密包裹隐藏了普通抗体识别的位点时[/font][font=Calibri],[/font][font=宋体]纳米抗体也可以对其进行表位识别。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3.[/font][font=宋体]较强的组织穿透力:[/font][/font][font=宋体] [/font][font=宋体]纳米抗体具有强而快的组织穿透能力,可以进入致密的组织如实体瘤发挥作用;并且多余未结合的纳米抗体能够很快的被清除,这相对于单克隆抗体组织穿透力差,不易被清除的不足,更有利于疾病的诊断。另外,纳米抗体能够有效的穿透血脑屏障,这样的特性为脑部给药提供了新方法,有望成为治疗老年痴呆症的新药。[/font][font=宋体] [/font][font=宋体][font=Calibri]4.[/font][font=宋体]高水溶性、高表达性[/font][/font][font=宋体] [/font][font=宋体][font=宋体]正常抗体[/font][font=Calibri]VH[/font][font=宋体]结构域单独表达时通常形成包涵体,或者暴露的疏水域相互黏附;而纳米抗体[/font][font=Calibri]VHH[/font][font=宋体]由于其[/font][font=Calibri]FR2[/font][font=宋体]中的疏水残基被亲水残基所取代,使得纳米抗体的水溶性增加,聚合性减少;而且即使以包涵体形式表达,也很容易复性,这样可以大大提高作为药物的利用率。[/font][/font][font=宋体][font=宋体]因纳米抗体分子量小、结构简单,由单一的基因编码,所以它很容易在微生物中合成,能在噬菌体、酵母等微生物中大量的表达,而且其相对价格低廉、可进行大规模生产,易于普及和应用。有报道,可通过酵母反应器酿造将纳米抗体的产量提高,每公升可达[/font][font=Calibri]1[/font][font=宋体]克的产量。[/font][/font][font=宋体] [/font][font=宋体][b]纳米抗体的应用优势[/b][/font][font=宋体] [/font][font=宋体][font=宋体]①用于生物医药研发(基因工程药物研发、[/font][font=Calibri]ADC[/font][font=宋体]药物研发);[/font][/font][font=宋体]②用于临床体外诊断(胶体金法、酶联免疫吸附法、电化学发光法);[/font][font=宋体]③用于肿瘤研究、免疫学研究等基础研究;申请具有自主知识产权的发明专利及科研奖项;[/font][font=宋体]④拓展研究思路、发表国际知名学术刊物。[/font][font=宋体] [/font][font=宋体][font=宋体]纳米抗体是一种非常有前景的下一代治疗性抗体技术,受到越来越多的研究机构和制药公司的关注。为支持纳米抗体药物的早期发现,义翘神州利用噬菌体抗体库技术自主研发了纳米抗体开发平台,已成功开发了多个纳米抗体候选分子。另外,我们的高通量纳米抗体表达平台,已成功表达和生产了多种纳米抗体形式,包括单价、多价或多特异性[/font][font=Calibri]VHH[/font][font=宋体],满足客户的各种定制需求。[/font][/font][font=宋体][font=宋体]更多详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/antibody-technical/nanobody[/font][/font][font=Calibri] [/font]

  • 纳米纤维素做TEM

    纳米纤维素做TEM

    第一次做的纳米纤维素的TEM(醋酸双氧铀染色)还能看到纤维丝状的缠绕结构,但是今天做的纳米纤维素TEM的时候,看的很模糊,测试老师说是染色的问题,我这次是重新买的醋酸双氧铀配成跟以前那瓶浓度一样的2%,染色方法没变,可就是很模糊,背景不明显,请问大家做纳米纤维素TEM是怎么做的?http://ng1.17img.cn/bbsfiles/images/2016/05/201605041546_592245_3049796_3.jpg

  • 台湾发明可快速筛检细菌的纳米晶片

    据台湾媒体报道,病菌检测是治疗许多疾病的基础,但检测时间往往费时。近日台湾大学今天发表重大突破新技术,以纳米科技研发的新型检验晶片,相较于传统技术,能使细菌筛检增快百倍。 此项研究的名称为"捕捉与侦测细菌双功能快速检验晶片",研究成果于11月15日刊登在知名国际期刊"自然通讯"(NatureCommunications)。该研究的负责人刘定宇说,就像每种乐器都有特定音色一样,每个分子都有特定的"分子拉曼光谱指纹",因此科学家可藉此光谱来区分细菌种类。"捕捉与侦测细菌双功能快速检验晶片"就是利用表面增强拉曼光谱为基础,晶片表层"万古霉素"可从血液中直接捕捉细菌,再由第2层"银纳米粒子阵列",放大细菌表面分子的拉曼光谱讯号。 "捕捉与侦测细菌双功能快速检验晶片"使用纳米科技新技术,具有超高敏感度,几秒钟内就能取得单只细胞光谱,刘定宇指出,过去要筛检败血症病人血液中细菌,需费时2至5天,如今这样的新技术,可在短短30分钟内就能筛检出败血症病人的血液中细菌,速度增快约百倍。 刘定宇还表示,此技术潜在效益可观,不仅能针对血液临床检体使用,也可推广至环境污染(水质检测)、食品药品微生物(大肠杆菌和塑化剂)甚至病毒、癌症筛检等检测。台湾大学医院创伤医学部主治医师韩吟宜认为,这项新技术相较于传统细菌培养方法,能缩短血液检验时间,增加检测准确率,盼能尽快在临床应用,进而提升疾病治愈率,减少抗生素滥用。

  • 【求助】请行家看看我的二氧化钛纳米颗粒照片,我第一次拍。

    【求助】请行家看看我的二氧化钛纳米颗粒照片,我第一次拍。

    这是我用锐钛矿二氧化钛纳米颗粒在水中的悬浊液滴在铜网上拍摄的,没有加分散剂,自然风干,团聚的颗粒周围白色的轮廓是怎么回事?还有,可以放大看到有很多似断非断的类似颗粒的物质在一起,可以判断是单个纳米颗粒吗?给的颗粒物粒径范围是20-80个纳米。我不知道什么样的是单个的?我用的透射电镜是120k伏的,不是很高,所以效果差些。[img]http://ng1.17img.cn/bbsfiles/images/2007/04/200704061913_48168_1767848_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2007/04/200704061914_48169_1767848_3.jpg[/img]

  • 【求助】纳米颗粒洗涤

    本人做出的是纳米银粉,要过滤,然后把杂志离子等洗涤。现在的问题是:我抽滤时,有一些银粉随水一起过滤出去了,损失了一部分产品,而我又要算银粉的产率。我想请教一下各位做纳米颗粒的大虾,你们在做纳米颗粒时,是怎么洗涤纳米颗粒的呢?又是怎么过滤的?

  • 【原创大赛】二氧化钛纳米管

    【原创大赛】二氧化钛纳米管

    使用仪器:S-4800测试条件:加速电压5KV 引出电流5UA 工作距离 8.5MM样品制作:将生长有二氧化钛纳米管的钛片折叠后固定在样品台上。说明:伪彩色相对简单些,弄复杂了反而不好。http://ng1.17img.cn/bbsfiles/images/2011/09/201109200826_317931_1760999_3.jpg

  • 【资料】纳米新技术(共3讲)

    [B][center]什么是纳米技术 [/center][/B] 纳米是长度单位,原称"毫微米",就是10-9(10亿分之一米)。纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。  从具体的物质说来,人们往往用"细如发丝"来形容纤细的东西,其实人的头发一般直径为20-50微米,并不细。单个细菌用肉眼看不出来,用显微镜测出直径为5微米,也不算细。极而言之,1纳米大体上相当于4个原子的直径。  纳米技术包含下列四个主要方面:   第一方面是纳米材料,包括制备和表征。在纳米尺度下,物质中电子的放性(量子力学学性质)和原子的相互作用将受到尺度大小的影响,如能得到纳米尺度的结构,就可能控制材料的基本性质如熔点、磁性、电容甚至颜色。而不改变物质的化学成份。用超微粒子烧成的陶瓷硬度可以更高,但不舱裂:无机的超微粒子灰分在加入橡胶后,将粘在聚合物分子的端点上,所做成的轮胎将大大减小磨损和处长寿命。   第二方面是纳米动力学,主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等。MEMS用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。   第三方面是纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定 DNA的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,DNA的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。   第四方面是纳米电子学,包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷。"更小"是指响应速度要快。"更冷"是指单个器件的功耗要小。但是"更小"并非没有限度。  纳米技术是建设者的最后疆界,它的影响将是巨大的  在1998年的四月,总统科学技术顾问,Neal Lane 博士评论到,如果有人问我哪个科学和工程领域将会对未来产生突破性的影响,我会说该个启动计划建立一个名为纳米科技。"大挑战"机构,资助进行跨学科研究和教育的队伍,包括为长远目标而建立的中心和网络。一些潜在的可能实现的突破包括:   把整个美国国会图书馆的资料压缩到一块像方糖一样大小的设备中,这通过提高单位表面储存能力1000倍使大存储电子设备储存能力扩大到几兆兆字节的水平来实现。  由自小到大的方法制造材料和产品,即从一个原子、一个分子开始制造它们。这种方法将节约原材料和降低污染。  生产出比钢强度大10倍,而重量只有其几分之一的材料来制造各种更轻便,更省燃料的陆上、水上和航空用的交通工具。  通过极小的晶体管和记忆芯片几百万倍的提高电脑速度和效率,使今天的奔腾Ⅲ 处理器已经显得十分慢了。   运用基因和药物传送纳米级的MRI对照剂来发现癌细胞或定位人体组织器官   去除在水和空气中最细微的污染物,得到更清洁的环境和可以饮用的水。  提高太阳能电池能量效率两倍。

  • 【分享】纳米材料的定义

    现在对纳米材料的定义是:粒径为1nm-100nm的纳米粉,直径为1nm-100nm的纳米线,厚度为1nm-100nm的纳米簿膜,并且出现纳米效应的材料。 前些时间听东华大学的报告,将其纤维做细,但没达到100nm以内的范围,却出现一些难于用平常的理论来解释,那这就不能称为纳米材料了吗?能给一个定义吗?做微孔材料,及其在内的填充物的,其直径小于1nm,但有很明显的纳米效应,就不能称为纳米材料了吗?众所周知的纳米碳管,其直径不过大约0.5nm,也不能称为纳米吗?在社会上有人投机倒把,混淆概念,但在科研上,似乎没有必要必须在1nm-100nm之间。

  • 神奇的微生物纳米线

    神奇的微生物纳米线

    http://ng1.17img.cn/bbsfiles/images/2015/01/201501091358_531780_2972800_3.jpg 科学界关于“微生物纳米线”的争论已经存在了十年,近日,美国麻州大学阿默斯特分校的德里克•洛弗利研究小组利用新的成像技术——静电力显微镜(EFM)从物理学上证明了地杆菌微生物体内“微生物纳米线”的存在,这是一项极具环境和现实意义的发现,微生物纳米线是潜在的“绿色”的电子元件,可再生、无毒、可基因操控,未来将广泛用于工程微生物传感器和生物计算设备等领域。 “微生物纳米线”是一种线状纤维蛋白,它们就像安在微生物身体上的微小电线一样,可以传输电荷。“图像显示电流沿着微生物纳米线流动,眼见为实,能在分子水平上将纳米线传输电荷的机制可视化是非常令人振奋的。”洛弗利激动地说。纳米线证明了地杆菌以土壤中的铁和其他金属为生,这将使其在改变土壤化学状况以及环境净化中发挥重要作用。 这一发现不仅在生物学上,也在材料学上提出了一项重要的新原理:当设置正确时,天然氨基酸可像碳纳米管等分子导体一样传输电荷。它为蛋白质纳米电子学开辟了前所未有的前景。目前正在开发应用程序有两个:一是把地杆菌集成到电子传感器中来监测环境污染物,二是基于地杆菌的微生物计算机。“我期望这项技术未来可以应用于更多物理学和生物学交叉的领域。”洛弗利说。

  • 神奇的微生物纳米线

    神奇的微生物纳米线

    http://ng1.17img.cn/bbsfiles/images/2015/01/201501091400_531781_2972800_3.jpg 益择网讯(慕雪/编译)科学界关于“微生物纳米线”的争论已经存在了十年,近日,美国麻州大学阿默斯特分校的德里克•洛弗利研究小组利用新的成像技术——静电力显微镜(EFM)从物理学上证明了地杆菌微生物体内“微生物纳米线”的存在,这是一项极具环境和现实意义的发现,微生物纳米线是潜在的“绿色”的电子元件,可再生、无毒、可基因操控,未来将广泛用于工程微生物传感器和生物计算设备等领域。 “微生物纳米线”是一种线状纤维蛋白,它们就像安在微生物身体上的微小电线一样,可以传输电荷。“图像显示电流沿着微生物纳米线流动,眼见为实,能在分子水平上将纳米线传输电荷的机制可视化是非常令人振奋的。”洛弗利激动地说。纳米线证明了地杆菌以土壤中的铁和其他金属为生,这将使其在改变土壤化学状况以及环境净化中发挥重要作用。 这一发现不仅在生物学上,也在材料学上提出了一项重要的新原理:当设置正确时,天然氨基酸可像碳纳米管等分子导体一样传输电荷。它为蛋白质纳米电子学开辟了前所未有的前景。目前正在开发应用程序有两个:一是把地杆菌集成到电子传感器中来监测环境污染物,二是基于地杆菌的微生物计算机。“我期望这项技术未来可以应用于更多物理学和生物学交叉的领域。”洛弗利说。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制