当前位置: 仪器信息网 > 行业主题 > >

耐火材料隔热材料

仪器信息网耐火材料隔热材料专题为您整合耐火材料隔热材料相关的最新文章,在耐火材料隔热材料专题,您不仅可以免费浏览耐火材料隔热材料的资讯, 同时您还可以浏览耐火材料隔热材料的相关资料、解决方案,参与社区耐火材料隔热材料话题讨论。

耐火材料隔热材料相关的论坛

  • 耐火材料隔热保温材料检测

    点击链接查看更多:[url]https://www.woyaoce.cn/service/info-11795.html[/url]耐火材料与隔热保温材料检测:耐火产品检验认证院的国家建筑材料工业耐火材料产品质量监督检验测试中心是经国家质量技术监督局授权的国内耐火材料与保温材料检测权威机构。中心始终致力于以最权威的检测技术,承担了国内外耐火材料、保温材料的检测、咨询服务及相关标准化工作,服务于水泥、玻璃、钢铁、有色、石化、电力、工业固体废料及生活垃圾处理等多个领域。中心拥有100多台套先进的耐火材料检测设备,如高温蠕变仪、激光导热仪、膨胀仪、金相显微镜、X 荧光分析仪、[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱仪[/color][/url]、微波消解仪、[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]等。全力打造国际一流的耐火材料检测平台,引领行业更好的发展。

  • 耐火隔热材料性能测试:有效导热系数与真导热系数的相互关系研究

    耐火隔热材料性能测试:有效导热系数与真导热系数的相互关系研究

    [table][tr][td][color=#ff0000]摘要:本文针对耐火隔热材料导热系数测试中的大温差和小温差这两类主流测试方法,明确了有效导热系数和真导热系数的定义,首次详细描述了这两个参数之间的关系、区别和详细转换方法,明确了这两类主流测试方法的适应范围,从而便于在耐火隔热材料性能评价中选择合适的测试方法,有利于对耐火隔热材料的隔热性能做出准确测试评价,从而保证对隔热材料及结构的正确选择和设计。[/color][/td][/tr][/table]关键词:耐火材料、隔热材料、有效导热系数、真导热系数、导热系数、大温差、测试方法[align=center][b][color=#3333ff]注:文中有大量公式,但不便在网页中进行完整显示。本文的PDF格式完整版本,已在本文的结尾处附上。[/color][/b][/align][b][color=#ff0000]1. 引言[/color][/b] 导热系数是评价和使用耐火隔热材料的关键参数,但在实际测试和应用中还存在许多困惑和误区。 耐火隔热材料在实际高温条件下使用时多为板材和管材,隔热材料大多处于一个受热面和背热面温度相差巨大的热环境中。而在材料样品导热系数具体测试中,有些是在模拟实际使用热环境的大温差条件下进行测量,而有些则是在很小温差、甚至没有温差的条件下进行测量,不同的测量导致所得到的结果相差很大,这给耐火隔热材料的性能评价和使用带来很大困扰。 由于技术上的局限性和测试及验证手段不足等原因,耐火隔热材料行业多年来一致对耐火隔热材料导热系数测试方法缺乏准确的理解,对哪种测试方法更能准确表征耐火隔热材料性能并不明确,由此造成测试方法混杂和乱用的现象,使得很多隔热结构设计人员在耐火隔热材料的性能评价和选材中不知该用哪种测试方法,经常会出现误导现象,甚至导致工程应用中出现漏热等重大事故。 为了满足耐火隔热材料在实际工程中的应用,加强对耐火隔热材料导热系数测试的准确了解,规范耐热隔热材料导热系数测试方法的选择,本文首次将耐火材料导热系数测试方法,按照测试过程中样品一维热流方向上的大温差和小温差进行分类,由此分别定义出有效导热系数和真导热系数。通过对这两种导热系数分析、计算和验证,展示出这两种导热系数的区别、相互关系以及可转化性,明确如何正确选择耐火隔热材料测试方法,明确如何正确描述和表达耐火隔热材料的隔热性能,由此实现耐火隔热材料测试评价和选材的规范性。[color=#ff0000][b]2. 耐火隔热材料导热系数主要测试方法和设备2.1. 测试方法[/b][/color] 材料导热系数测试方法主要分为稳态法和瞬态法,对于耐火隔热材料的导热系数测试而言也是如此。但由于耐火隔热材料一般都是在高温下使用,所以相应的测试方法也需要满足高温要求。由此,目前国内外也仅有限几种方法可用于耐火隔热材料高温条件下的导热系数测试,如图 2‑ 1所示。[align=center][img=,500,156]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142042533218_8908_3384_3.png!w690x216.jpg[/img][/align][align=center][color=#ff0000]图2‑ 1 耐火隔热材料高温导热系数测试方法分类[/color][/align] 采用以上测试方法进行耐火隔热材料的测试设备如下:[color=#ff0000][b]2.2. 测试设备2.2.1. 稳态热流计法高温导热系数测试仪器[/b][/color] 稳态热流计法高温导热系数测试仪器依据GB/ T 10295、ASTM C201和ASTM C518标准测试方法,是一种标准的稳态法导热系数测试设备。稳态热流计法高温导热系数测量原理如图 2‑ 2所示,当水平放置的被测平板状样品上下热面和冷面处在恒定温度时,在被测样品的中心区域和热流测量装置的中心区域会建立起类似于无限大平板中存在的一维稳态热流。通过测量热流密度、试样的热面和冷面温度以及试样厚度则可获得被测试样的导热系数。稳态热流计法高温导热系数测试仪器图 2‑ 3所示。[align=center][img=,690,389]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142044227159_7689_3384_3.png!w690x389.jpg[/img][/align][align=center][color=#ff0000]图2‑ 2 热流计法高温导热系数测量装置原理图[/color][/align][align=center][color=#ff0000][img=,690,535]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142044416555_2241_3384_3.jpg!w690x535.jpg[/img][/color][/align][align=center][color=#ff0000]图2‑ 3 上海依阳公司热流计法高温导热仪[/color][/align] 与其它测试方法相比,稳态热流计法高温导热系数测试方法及其仪器最显著特点就是测试条件可以模拟耐火隔热材料在各种实际工程中的应用环境,稳态热流计法是目前唯一能模拟出实际工程隔热环境的测试方法,在被测样品上能够建立起工程实际应用中的隔热大温差,即温度样品冷面可以控制在室温~50℃以下,而样品热面温度则可以达到1500℃以上的高温。[b][color=#ff0000]2.2.2. 稳态保护热板法中温导热系数测试仪器[/color][/b] 稳态保护热板法导热系数测试仪器依据GB/T 10294和ASTM C177标准测试方法,是一种标准的稳态法导热系数测试设备。稳态保护热板法导热系数测试原理如图 2‑ 4所示。保护热板法有单样品和双样品之分,样品置于加热板上,样品2/3尺寸大小的热板内布置用于量热的加热丝,其它尺寸外缘部分布置防护加热丝,并有隔离缝,下部是辅助防护加热,这样热板部分的发热量通过样品形成一维稳态热流,均作为热流密度的计算量,因此保护热板法是一种绝对方法。稳态保护热板法高温导热系数测试仪器如图 2‑ 5所示。[align=center][img=,516,301]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142045185716_9092_3384_3.jpg!w516x301.jpg[/img][/align][align=center][color=#ff0000]图2‑ 4 单样品防护热板法测量原理图[/color][/align][align=center][color=#ff0000][img=,441,486]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142045307632_8761_3384_3.jpg!w441x486.jpg[/img][/color][/align][color=#ff0000][/color][align=center]图2‑ 5 德国耐驰公司高温保护热板法分析仪[/align] 稳态保护热板法高温导热系数测试方法及其仪器最显著特点就是其测量精度最好,常用于计量和校准标准材料和其它测试仪器,被测样品冷热面温差小,最大不超过50℃,但保护热板法测试仪器用于耐火保温材料导热系数测试中的最大问题是测试温度不高,样品热面温度最高只能达到600℃。[b][color=#ff0000]2.2.3. 准稳态高温导热系数测试仪器[/color][/b] 准稳态导热系数测试技术是一种新型测试方法,准稳态高温导热系数测试仪器依据ASTM E2584标准测试方法。准稳态法是一种介于稳态法和瞬态法之间的一种测试方法,准稳态导热系数测试原理如图 2‑ 6所示。[align=center][img=,560,370]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142046135293_9233_3384_3.png!w690x457.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 6 准稳态法导热系数测量原理图[/color][/align] 准稳态法采用的是一维热流加热方式,被测平板状样品在被加热或冷却到一定阶段后,通过试样的热流速度将达到一个缓慢变化状态,也就是准稳态状态,由此可以测量样品在加热和冷却过程中热流随时间的变化速度,,通过得到的准稳态条件下的热流和温度变化测试数据,可以准确计算出被测材料的热扩散系数、热容、热焓和导热系数。准稳态法高温导热系数测试仪器如图 2‑ 7所示。[align=center][img=,500,578]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142047447306_5655_3384_3.png!w690x798.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 7 上海依阳公司准稳态法高温导热仪[/color][/align] 从原理上讲准稳态法是一种大温差形式的动态测试方法,在试验过程中的测量参数都是试样表面温度变化,不涉及到材料的内部变化,而是将材料的内部变化都看成为一个等效传热过程,因此这种方法可以用于材料在具有相变和化学反应过程中的有效热扩散系数、热容、热焓和有效导热系数测量。准稳态法的另外一个突出优点在于大大缩短了测试周期,基本可在36小时内测试得到一条有效导热系数随温度的变化曲线。[b][color=#ff0000]2.2.4. 瞬态热线法高温导热系数测试仪器[/color][/b] 瞬态热线法导热系数测试仪器依据GB/T 5990和ASTM C1133标准测试方法,是一种标准的瞬态法导热系数测试设备。瞬态热线法导热系数测试原理如图 2‑ 8所示。[align=center][img=,475,359]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142048251129_5443_3384_3.jpg!w475x359.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 8 热线法导热仪结构原理图[/color][/align] 热线法是在样品(通常为大的块状样品)中插入一根热线。测试时,在热线上施加一个恒定的加热功率,使其温度上升。测量热线本身或与热线相隔一定距离的平板的温度随时间上升的关系。热线法高温导热系数测试仪器如图 2‑ 9所示。[align=center][img=,690,555]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142048505870_3628_3384_3.jpg!w690x555.jpg[/img][/align][align=center][color=#ff0000]图2‑ 9 美国TA公司热线法高温导热仪[/color][/align] 瞬态热线法高温导热系数测试方法及其仪器最显著特点就是仪器结构简单和测试温度高,可以轻松实现1400℃下的高温测试,这也是过去常用的耐火隔热材料导热系数测试方法和仪器。 与上述稳态测试方法相比,瞬态热线法高温导热系数测试方法及其仪器在测试过程中要求被测样品整体温度达到均匀一致后再进行测量,所以瞬态热线法是一种无温差的测试方法。由于热线法中的热线很细,热线通电加热后热量向热线的径向方法传播,所以热线法测量的是样品整体导热系数而没有方向性,所以热线法要求被测样品由各向同性材质制成。[b][color=#ff0000]2.2.5. 瞬态闪光法高温导热系数测试仪器[/color][/b] 需要特别指出的是:传统意义上的瞬态闪光法并不适合对耐火隔热材料材料的导热系数进行测试, 这主要是因为耐火隔热材料的导热系数普遍偏低,脉冲光辐照到样品前表面后,脉冲形式的加热热量无法传递到样品背面,使得样品背面几乎没有任何温度变化,背温探测器基本检测不到任何温升信号。因此,Gembarovic和Taylor在闪光法基础上开发了一种步进加热三点测温的测试方法用于低导热材料的高温热扩散系数测量,测量原理如图 2‑ 10所示,整个测量装置的结构如图 2‑ 11所示。[align=center][img=,600,363]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142049373131_4398_3384_3.png!w690x418.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 10 瞬态步进加热三点测温法高温热扩散系数测量原理图[/color][/align][align=center][b][img=,690,441]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142049522161_6872_3384_3.png!w690x441.jpg[/img][/b][/align][align=center][color=#ff0000]图2‑ 11 瞬态步进加热三点测温法高温热扩散系数测试系统结构示意图[/color][/align] 这种测试方法和设备可以对相对较小的样品()进行温度高达1500℃下的高温热扩散系数测量,测量原理与闪光法近似,只是将闪光加热的脉冲宽度加的很长,对样品表面进行长时间的加热,从而使得热量能传递到样品背面获得有效测量信号。但这种测试方法在取样过程中样品不能太厚,否则热量还是无法传递到样品背面,由此很容易造成取样没有代表性问题。[b][color=#ff0000]2.3. 各种测试方法测试能力比较[/color][/b] 通过上述耐火隔热材料导热系数各种测试方法和相应测试设备的描述,将各种测试方法和测试仪器的主要特点、能力和要求进行汇总比较,如图 2‑ 12所示,由此对各种测试方法有一个直观的了解。[align=center][color=#ff0000][img=,590,160]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142051019290_574_3384_3.png!w690x188.jpg[/img][/color][/align][align=center][color=#ff0000]图2‑ 12 耐火隔热材料导热系数测试方法和测试仪器比较[/color][/align] 从图 2‑ 12中的综合比较可以看出,综合能力排名前两位的是准稳态法和稳态热流计法,这也就是上海依阳实业有限公司选择生产这两种测试仪器的主要原因之一。[b][color=#ff0000]3. 真导热系数和有效导热系数的定义[/color][/b] 根据上述针对耐火隔热材料导热系数测试方法所进行的介绍,可以发现尽管测试方法和测试设备有不同形式,但这些测试方法都离不开温度场这个环境变量和测试条件,即无论测试方法怎么变化,都必须使得被测样品要么是大温差、要么是小温差(将无温差归到小温差范围内)。这样,我们就可以将耐火隔热材料的导热系数按照温差大小分别对应进行定义,即: (1)样品小温差下,或无温差下得到的导热系数定义为真导热系数; (2)样品大温差下测量得到的导热系数定义为有效导热系数。 以往有效导热系数的定义多根据被测样品的均质性和组分结构的多样性来定义,并没有明确的按照测试温差大小(或使用过程中的温差大小)来定义。现在明确采用温差大小来定义和区分有效导热系数和真导热系数的不同,一方面是便于今后对耐火隔热材料测试方法选择和耐火隔热材料热性能的准确描述,另一方面也是依据标准测试方法所做的规定。 在国内外所有稳态法导热系数标准测试方法中,都指出:“通过测量热流、温差及样品厚度尺寸,利用稳态傅立叶导热公式计算得到的材料传热性质(导热系数或有效导热系数),可能并不是材料自身固有特性,因为它很大程度上可能取决于具体测试条件,例如试验过程中样品上的冷热面温差大小”。这句话指出了两个基本事实,可以理解为有两个含义: (1)一个事实就是材料的固有特性,即材料的固有特性是不受测试条件影响而本身存在的。所以在测试过程中要明确了解到底测量的是不受测试条件影响的材料固有特性,还是测量与测试或使用环境有关的特定环境特性。 (2)材料的固有特性,很大程度取决于具体测试条件,即取决于样品上的冷热面温差大小。温差小时测量得到则是固有特性,温差大时测量得到的则不是固有特性。 根据标准测试方法中的这些规定,就可以很容易进一步明确耐火隔热材料导热系数的定义: (1)样品小温差下,或无温差下得到的导热系数定义为真导热系数,即样品材料的固有导热系数; (2)样品大温差下测量得到的导热系数定义为有效导热系数,即样品材料的环境导热系数。 由此可见,一旦材料制成,其真导热系数就会固定不变,真导热系数就是这材料的固有特性。而这种材料在不同使用温度环境下,则会有相应的有效导热系数,这主要是因为在大温差条件下,有效导热系数会包含除真导热系数之外,还包括与辐射和对流传热相对应的辐射导热系数和对流导热系数。 由此可见,在小温差条件下,假设不考虑辐射传热和对流传热形式,同时假设也忽略气体导热传热,那么所谓的真导热系数,基本就代表了材料的固相导热系数。因此,为了对样品材料的真导热系数进行准确测量,很多标准测试方法对导热系数测试中的小温差进行了规定:GJB 329规定测试温差应控制在10~50℃,GB/T 10295建议温差控制在5~10℃,ASTM相关标准规定该温差应不大于25℃。由此可见,在最大温差不超过50℃条件下,就可以忽略稳态法测量中辐射和对流传热的影响,稳态法测量得到的样品导热系数,就是真导热系数。需要注意的是:耐火隔热材料由于低密度和高孔隙率,材料内部有大量孔隙,由此这个真导热系数,包括了材料的固体导热系数和气体导热系数。 根据上述小温差的定义,温差小于50℃的导热系数测试都是真导热系数测试。那么对于样品温度均匀无温差的测试,所得到的导热系数更是真导热系数。完成了两种导热系数定义后,就可以很明确知道不同测试方法测量得到不同类型的导热系数,即: (1)真导热系数测试方法:保护热板法、瞬态热线法、瞬态闪光法。 (2)有效导热系数测试方法:热流计法、准稳态法。[color=#ff0000][b]4. 真导热系数与有效导热系数的关系及其转换4.1. 问题的提出[/b][/color] 对于耐火隔热材料的性能测试,国内外都处于非常混乱的局面,有些测试得到的有效导热系数,有些测试得到的则是真导热系数,这些不同导热系数往往会引起隔热材料选择和隔热结构设计的混乱,特别是在耐火隔热材料高温性能测试中,测试方法的混乱使用很容易造成对隔热性能的高估,从而造成隔热效果不佳,甚至出现漏热事故和爆炸。因此,针对耐火隔热材料,如何才能准确测试和描述导热系数才能准确和实用呢,下面将从理论分析方面来对这个问题进行求解。[b][color=#ff0000]4.2. 真导热系数与有效导热系数的关系[/color][/b] 按照上述小温差和大温差形式分别定义真导热系数和有效导热系数,我们选择小温差的保护热板法法和大温差的热流计法来研究真导热系数与有效导热系数的关系。对于大温差的热流计法导热系数测量,有效导热系数的测量公式为: 式中表示流经样品厚度方向上的热流密度,表示样品厚度,表示样品热面温度,表示样品冷面温度。在热流计法大温差测量过程中,样品冷面温度的变化一般较小,基本都控制在50℃以下,而热面温度则较大(1000℃)。大温差下得到的有效导热系数的描述,都需要明确热面温度和冷面温度,并可用平均温度来表达。对于小温差的保护热板法导热系数测量,真导热系数的测量公式为: 式中同样表示流经样品厚度方向上的热流密度,表示样品厚度,表示被测样品冷热面之间的温度差。在保护热板法小温差测量过程中,冷热面温差很小,基本都控制在50℃以下。小温差下得到的真导热系数的描述,由于温差小,则可以直接用平均温度来描述,而无需标明热面温度和冷面温度。 尽管大温差和小温差所对应的两种测试方法不同,但这两种方法都是基于稳态傅立叶传热定律,公式和中各个参量的物理意义是相同的。因此,大温差的热流计法导热系数测量,可以在测试模型和数学上假设是由多个相同厚度的小温差保护热板法多层叠加而成,即和。这个假设的前题是: (1)样品材料在测试温度范围内没有化学反应或相变。 (2)在小的温度和气压区间内,真导热系数或保持不变、或呈线性关系。 (3)耐火隔热材料中的热传递形式一般由固相介质导热、[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]介质导热及辐射传热三部分构成,如果材料内部不存在通孔形式的孔隙,可忽略辐射传热对整体热传递的贡献。 这样,大温差的热流计法导热系数测试模型数学表达式,就可以用小温差的保护热板法导热系数测试模型数学表达式的积分形式来描述,由此得出有效导热系数与真导热系数关系式为: 式中的和代表温度和气压变量。通过公式所定义的真导热系数与有效导热系数的关系,就可以进行这两种导热系数之间的转换,即通过大温差的有效导热系数测量推导出相应的小温差时的真导热系数,或根据小温差真导热系数测量推导出大温差时的有效导热系数。[b][color=#ff0000]4.3. 由真导热系数推导有效导热系数[/color][/b] 由真导热系数测试结果推导出大温差条件下的有效导热系数,即据根真导热系数测试结果推算出在温度~范围内的大温差有效导热系数,具体实施方法就是在温度~范围内选择一系列温度点进行保护热板法或瞬态热线法导热系数测试,得到一系列不同温度下的真导热系数测试结果。这里的在保护热板法测试中代表样品的平均温度,在瞬态热线法和瞬态闪光法中代表样品温度。然后将测试结果(,)进行最小二乘法拟合得到一个多项式表达式: 式中的、、和是与样品材料自身特性有关的多项式常数。大多数耐火隔热材料的真导热系数与温度的非线性关系一般都可以用一元三次多项式描述。 将得到的真导热系数随温度变化多项式代入公式,然后进行积分求解就可以得到相应的有效导热系数。针对气压变量的真导热系数推导有效导热系数也是如此操作。[b][color=#ff0000]4.4. 由有效导热系数推导真导热系数[/color][/b] 同样,在有效导热系数推导真导热系数过程中,假设真导热系数随温度变化关系是一个三元一次多项式,即: 式中的、、和是与材料自身特性有关的待定常数。将式直接代入与式可得: 在式中只有、、和四个未知数,理论上可以通过4个式的联立方程就可求解出这四个未知数。即在理论上通过4次值调整,即进行4个不同热面温度下的稳态热流计法导热系数测试试验,同时保持样品冷面温度基本不变,由此得出4组相应的、值,就可建立这4个联立方程,从而求出4个待定常数、、和的值,最终得到真导热系数与温度的关系表达式。 从式中可以看出,式对温差大小没有任何限制。因此可以在容易实现的大温差测试条件下进行相应测试和测算。为了提高这种方法的推导计算准确性,在选取值时应尽可能接近所需要的温度值。例如需求1000℃的材料真导热系数,选取的4个值中至少应有一个值为1000℃或大于1000℃。如果需要某一特定温度段的真导热系数,比如需要500~1000℃之间的材料真导热系数,那么4个值建议选取为500℃、l 000℃以及介于500℃与1000℃之间的2个温度点数据。同时,需要说明的是本方法不是利用低温段真导热系数进行高温真导热系数简单外推,而是在掌握大温差测试条件下有效导热系数相关数据的基础上,通过确定所假设的函数待定常数来最终获取耐火隔热材料高温真导热系数,并且假设的函数形式是统计分析得出的结论以及ASTM相关标准认可的。[b][color=#ff0000]5. 结论[/color][/b] 通过以上的理论分析和计算,针对耐火隔热材料导热系数测试中常用的小温差和大温差两类测试方法,明确了有效导热系数和真导热系数的定义,首次详细描述了这两个参数之间的关系、区别和详细转换方法,明确了这两类主流测试方法的适应范围,,从而便于在耐火隔热材料性能评价中选择合适的测试方法,有利于对耐火隔热材料的隔热性能做出准确测试评价,从而保证对隔热材料及结构的正确的选择和设计。 下一部工作将针对各种耐火隔热材料的有效导热系数和真导热系数测试数据,对上述的真导热系数和有效导热系数之间的关系和转换方式进行试验验证,由此来对测试方法、测试设备和两种导热系数相互关系及其转换进行评价。[b][color=#ff0000]6. 参考资料[/color][/b] (1) Gembarovic, J., and Taylor, R. E., “A Method for Thermal DiffusivityDetermination of Thermal Insulators,” International Journal of Thermophysics,Vol. 28, No. 6, 2007, pp. 2164-2175.[align=center][img=上海依阳公司热流计法高温导热系数测试系统,690,499]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142040536176_2249_3384_3.png!w690x499.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 印度航母锅炉爆炸:折射出我国高温隔热材料性能测试中存在的严重问题

    印度航母锅炉爆炸:折射出我国高温隔热材料性能测试中存在的严重问题

    [color=#990000]摘要:本文介绍国内耐火砖及其隔热性能测试技术现状,非常清楚的说明了印度航母锅炉爆炸的主要原因很可能就是我国民用耐火砖及其测试技术不过关。本文的另一个目的是借印度航母锅炉爆炸事故,使大家对高温隔热材料及其性能测试有一个清晰的认识和引以为戒,为今后选择合理的测试方法和手段提供参考。[/color][color=#990000]关键词:印度航母、锅炉爆炸、耐火砖、隔热性能、导热系数[/color][align=center][color=#990000][img=,631,395]https://ng1.17img.cn/bbsfiles/images/2019/05/201905292206432395_9347_3384_3.jpg!w631x395.jpg[/img][/color][/align][color=#990000][/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#990000]1. 引言[/color][/b] 前几年,印度从俄罗斯引进的航母发生了大范围的锅炉爆炸事故,造成人员和设施的重大损失,印度和俄罗斯这两个欢喜冤家由此打起口水仗。印度抱怨俄国航母制造技术不过关,俄国指责印度航母使用技术不到位,挣来吵去相互推卸责任,最终把问题责任归结到用于航母锅炉隔热的“中国耐火砖”上,似乎是先进的俄罗斯制造技术加上印度高超航母使用技术被中国落后的耐火砖脱了后腿。 尽管我们看不到印俄两国针对航母锅炉耐火砖隔热性能上做出的分析报告,但可以从国内耐火砖及其隔热性能测试技术现状进行分析,同样可以得出问题确实出在中国耐火砖上的结论。 本文介绍国内耐火砖及其隔热性能测试技术现状,非常清楚的说明了印度航母锅炉爆炸的主要原因很可能就是我国民用耐火砖及其测试技术不过关。本文的目的是借印度航母锅炉爆炸事故,使大家对高温隔热材料及其性能测试有一个清晰的认识和引以为戒,为今后选择合理的测试方法和手段提供参考。[color=#990000][b]2. 当前国内耐火砖和隔热性能测试水平[/b]2.1. 耐火砖材料水平[/color] 国内耐火砖和相应的高温隔热材料,多年来一直是饱受诟病的一类产品,由于使用温度不高(1200℃以下)和使用环境不是很苛刻,在工业领域的多年来国产耐火砖一直勉强能够使用,而考核一个国家耐火砖的最高水平就是看耐火砖是否能在航母锅炉上得到使用。 舰用锅炉在工作过程中,炉膛内最高温度超过1800℃,起热防护作用的耐火砖要在很小的厚度范围内,使迎火面1800℃的高温传到背火面时低于300℃,并且能抵抗住内部气流、火炮射击、导弹发射和大风浪航行形成的强烈振动和冲击,否则锅炉的钢铁外壳就可能发软变形,因此对耐火材料有很高要求。 在舰用耐火砖使用上,我们军工部门曾对国内外的耐火砖进行过详细的调研和考察,但国产耐火砖无一能达到使用要求。为了,海军工程大学杨自春教授带领的团队开展了多年艰苦研究,确定用新型陶瓷材料取代传统的耐火砖材料,在制造工艺上提出了“梯度密度”的概念,利用新技术、新工艺,做出的新型耐火陶瓷样品,大幅度提高产品的耐火和隔热性能。成品在国产驱逐舰上的实验中不断改进,最后奇迹般的超过进口产品耐火度的2倍,而成本仅有进口产品的1/6。这不能不说是个奇迹,一举解决了国产武器的巨大问题缺陷。2017年1月9日,在北京人民大会堂举行的2016年度国家科学技术奖励大会上,杨自春教授凭借研制的“舰船新一代高温热防护材料和技术”荣膺国家科技进步奖二等奖。[color=#990000]2.2. 高温隔热性能测试水平[/color] 高温热防护材料的另一项核心技术就是隔热性能测试技术。到目前为止国内耐火材料隔热性能测试标准还是冶金行业标准YB/T 4130-2005“耐火材料导热系数试验方法(水流量平板法)”。此标准借鉴了美国ASTM C201“耐火材料导热性的标准测试方法”和英国BS 1902-505“耐火材料导热系数标准测试方法(平板/水量热计法)”,并从技术难度和制造成本考虑,此标准还大幅度简化了上述英美标准测试方法,因此按照YB/T 4130-2005标准执行的相应测试设备在实际测试中存在以下严重问题: (1)英美标准测试方法的导热系数测试范围为0.05~28W/mK,YB/T 4130标准中标称的范围为0.03~2W/mK。尽管YB/T 4130标称可以对隔热材料导热系数低至0.03W/mK进行测试,但大量应用证明YB/T 4130只能勉强测试大于0.5W/mK的导热系数,对小于0.5W/mK的导热系数测试误差极大。 (2)国内很多耐火材料和隔热材料权威检测机构采用执行YB/T 4130标准的高温导热仪进行的大量测试证明,YB/T 4130标准导热仪测试的导热系数值普遍大幅度偏低,也就是会将普通隔热性能的材料测试出优良隔热性能的超低导热系数结果,这往往会误导隔热材料设计和使用单位。 鉴于国内在高温隔热性能测试技术上存在的严重问题,国内军工系统为了满足军工产品的需求,分别开展下以下两方面的研究并获得了满意的结果: (1)为了对舰用高温热防护材料进行隔热性能评价,海军工程大学杨自春教授带领的团队曾采用过YB/T 4130标准和相应设备进行过测试考核,但同样发现测试结果误差大、导热系数大幅度偏低的严重问题。为此,杨自春团队自行开发的高温测试方法和设备,尽管没有任何文献报道,不知具体采用什么方法,但在以往会议交流过程中杨自春教授称已经圆满解决了这个测试难题。 (2)我们航天系统涉及到大量高等级高温隔热材料的使用,需要准确测量不同温度、不同真空度和不同气氛下的隔热材料导热系数,以了解空间环境和星际环境下材料的隔热性能。为此,我国航天系统不惜重金引进过3~4套德国耐驰公司的防护热板法高温导热仪,但由于耐驰公司的防护热板法高温导热仪最高温度只能达到700℃,而且还经常发生高温故障,所以目前常用的最高温度仅为500多度。同样,航天系统也采用过YB/T 4130标准和相应设备,同样出现测试结果太离谱的现象。为真正解决更高温度的导热系数准确测量,中国飞机强度研究所、哈工大和航天材料工艺研究所分别采用热流计法和非稳态阶跃式平面热源法研制了高达1500℃的真空型高温导热仪,上海依阳实业有限公司根据热流计法研制生产了最高温度1000℃的高温导热仪。这些设备的研制和应用,很好的解决了航天系统高温隔热材料的测试评价难题。[color=#990000][b]3. 印度航母锅炉爆炸事故中耐火砖问题分析[/b][/color] 综上所述,我国耐火砖造成了印度航母锅炉爆炸事故,我们分析主要原因如下: (1)海军工程大学杨自春教授带领的团队研制生产的舰用高温热防护材料已经非常成熟,并成功替代进口耐火砖在舰船中得到了应用。我国这些军工系统的高温热防护材料目前根本就没有转为民用和扩散到社会上,因此更不可能还销售给印度军方,因此印度军方得到的中国耐火材料只能是廉价低性能的民用耐火砖产品。 (2)国产民用耐火材料一般都会经过国内耐火材料权威机构进行检测,能进行高温耐火材料检测的国内民用产品权威检测机构无一例外采用的都是YB/T 4130标准和相应导热仪,对国内民用耐火砖的导热系数测试结果一定会远低于实际导热系数,出具的检测报告自然会满足航母锅炉隔热性能的要求。但自从印度航母锅炉爆炸事故后,国内个别权威检测机构已经不再采用YB/T 4130标准和相应导热仪出具导热系数低于0.03W/mK的检测报告,以避免不必要的风险和责任。 (3)一般来说,按照军工配套产品的订购管理规程,所订购材料除了需要生产厂家出具材料性能检测报告之外,还需要订购机构或第三方进行验证检测。也就是说印度军方订购了中国耐火砖后,除了中国耐火砖厂家出具中国权威结构的检测报告外,还需要在印度国内进行第三方验证检测。但从我们查到的相关资料可以看出,印度直到2017年才仿制完成德国耐驰的防护热板法高温导热仪,但测试温度范围仅为50~300℃。由此可见,在印度军方当年进口中国耐火砖时,要么没有进行印度国内的第三方测试,要么印度国内第三方测试与中国国内测试一样存在问题。 (4)印度航母锅炉爆炸后,印度,特别是俄罗斯一定会对锅炉耐火砖进行全面检测,检测结果一定差于设计指标要求,由此印度和俄罗斯会认定中国耐火砖存在问题而造成锅炉爆炸。 总之,如果印度航母锅炉使用了从中国引进的耐火砖,那一定是中国民用级别的耐火砖,而错误的导热系数测试结果一定很低并在纸面上满足航母锅炉的高温隔热要求,这才误导印度军方将这些品质较低的中国耐火砖堂而皇之的使用在航母锅炉上,使得这些“物美价廉”的耐火砖给印度航母带来了灾难。[color=#990000][b]4. 总结[/b][/color] 本文仅从高温隔热材料的隔热性能角度分析印度航母锅炉爆炸的原因,也有可能其他性能对锅炉用高温隔热材料带来严重影响。本文希望通过印度航母锅炉爆炸事故来展现目前国内耐火材料及其隔热性能测试技术方面存在的严重问题,以使印度航母锅炉爆炸事故能为我们提供更好的警示作用。 本文的另一个重点是说明目前国内采用的YB/T 4130标准和相应导热仪,由于YB/T 4130标准在照搬国外标准过程中过于简化,获得的导热系数测试数据基本都是错误的,测试的导热系数严重偏低,因此在使用YB/T 4130标准和相应导热仪时要十分谨慎。有关简化国外标准带来的误差影响将专文进行分析。[color=#990000][b]5. 参考文献[/b][/color](1)YB/T 4130-2005耐火材料导热系数试验方法(水流量平板法)(2)ASTM C201-93(2019)Standard Test Method for Thermal Conductivity of Refractories.(3)BSI - BS 1902-5.5 Methods of testing Refractory materials - Part 5: Refractory and thermal properties - Section 5.5 Determination of thermal conductivity (panel/calorimeter method) (method 1902-505).(4)秦强, 蒋军亮, 王琦, et al. 大温差测试条件下热防护材料高温导热系数试验方法. 科学技术与工程, 2014, 14(35):56-60.(5)解维华, 张博明, 杜善义, et al. 高温绝热毡有效热导率的理论分析与实验研究. 材料研究学报, 2006, 20(6).(6)杨景兴, 何凤梅, 陈聪慧, et al. 高温长时使用隔热材料热导率评价. 复合材料学报, 2013(s1):279-282.(7)高温热流计法导热仪(TC-HFM-1000):上海依阳实业有限公司;http://www.eyoungindustry.com/2011/1122/7.html(8)Reddy K S, Jayachandran S. Investigations on design and construction of a square guarded hot plate (SGHP) apparatus for thermal conductivity measurement of insulation materials. International Journal of Thermal Sciences, 2017, 120: 136-147.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【分享】碳复合耐火材料

    碳复合耐火材料[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=70392]碳复合耐火材料[/url]

  • 【原创】耐火材料常用术语中文-英文对照

    耐火材料常用术语中文-英文对照 [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=36758]耐火材料常用术语中文-英文对照[/url]耐火材料:refractory 刚玉:conrundum 镁砂:magnesia体积密度:bulk density 显气孔率:apparent porosity常温耐压强度:cold crush strength 高温抗折强度:hot modulus of rupture

  • 【求助】求助耐火材料的消解方法

    最近碰到一个棘手得问题想请教各位: 镁铝耐火材料得消解方法,酸式的碱式的都可以啊,具体的样品名称分别为熟料、生料、成品和泥浆。 不知各位有没有这方面的经验可否分享一下

  • 高温耐火材料如何消解完全?

    高温耐火材料按矿物质组成可分为氧化硅质、硅酸铝质、镁质、白云石质、橄榄石质、尖晶石质、含炭质、含锆质耐火材料及特殊耐火材料。似乎比较难消解完全,是否有什么好办法?

  • 【资料】金属材料介绍

    金属材料介绍 金属材料是最重要的工程材料,包括金属和以金属为基的合金。工业上把金属和其合金分为两大部分: ( 1 )黑色金属材料 —— 铁和以铁为基的合金(钢、铸铁和铁合金)。 ( 2 )有色金属材料 —— 黑色金属以外的所有金属及其合金。 有色金属按照性能和特点可分为:轻金属、易熔金属、难熔金属、贵重金属、稀土金属和碱土金属。 (二)非金属材料 非金属材料包括耐火材料、耐火隔热材料、耐蚀(酸)非金属材料和陶瓷材料等。 ( 1 )耐火材料。耐火材料是指能承受高温下作用而不易损坏的材料。常用的耐火材料有耐火砌体材料、耐火水泥及耐火混凝土。 ( 2 )耐火隔热材料。耐火隔热材料又称为耐热保温材料。常用的隔热材料有硅藻土、蛙石、玻璃纤维(又称矿渣棉)、石棉以及它们的制品。 ( 3 )耐蚀(酸)非金属材料。耐蚀(酸)非金属材料的组成主要是金属氧化物、氧化硅和硅酸盐等,在某些情况下它们是不锈钢和耐蚀合金的理想代用品。常用的非金属耐蚀材料有铸石、石墨、耐酸水泥、天然耐酸石材和玻璃等。 ( 4 )陶瓷材料。 (二)非金属材料 非金属材料包括耐火材料、耐火隔热材料、耐蚀(酸)非金属材料和陶瓷材料等。 ( 1 )耐火材料。耐火材料是指能承受高温下作用而不易损坏的材料。常用的耐火材料有耐火砌体材料、耐火水泥及耐火混凝土。 ( 2 )耐火隔热材料。耐火隔热材料又称为耐热保温材料。常用的隔热材料有硅藻土、蛙石、玻璃纤维(又称矿渣棉)、石棉以及它们的制品。 ( 3 )耐蚀(酸)非金属材料。耐蚀(酸)非金属材料的组成主要是金属氧化物、氧化硅和硅酸盐等,在某些情况下它们是不锈钢和耐蚀合金的理想代用品。常用的非金属耐蚀材料有铸石、石墨、耐酸水泥、天然耐酸石材和玻璃等。 ( 4 )陶瓷材料。

  • 【讨论】高硅耐火材料

    高硅耐火材料熔融,用什么熔剂?应注意什么。我用的是混合熔剂,有一个98%的硅石不能完全熔融

  • 【求助】耐火材料的消解?

    [em0713] [em0713] 耐火材料的消解,是陶瓷的,用过HF和HCLO4 1:1电热板消解,一点动静都没有,各位大虾赐教咯^_^感激不尽!

  • 激光粒度仪在耐火材料生产中的应用

    激光粒度仪在耐火材料生产中的应用

    耐火材料是一类耐火度不低于1580℃的无机非金属材料。广泛应用于钢铁、有色金属、玻璃、水泥、陶瓷、石化、机械、锅炉、轻工、电力、军工等国民经济的各个领域,是保证上述产业生产运行和技术发展必不可少的基本材料,在高温工业生产发展中起着不可替代的重要作用。济南微纳颗粒仪器股份有限公司自2001年以来,在钢铁、有色、石化、建材等高温工业高速发展的强力拉动下,我国耐火材料行业保持着良好的增长态势,已成为世界耐火材料的生产和出口大国。2011年中国耐火材料产量约占全球的65%,产销量稳居世界耐火材料第一。据统计,2001-2010年耐火原料及制品产量稳步增长,其中“十五”末约为2001年的2倍;2010年全国耐火制品产量达2808.06万吨,约为“十五”末的3倍。截止2011年,我国耐火材料行业共有规模以上企业1917家,从业人员超过30多万人,实现销售收入3376.79亿元,实现产品销售利润477.37亿元。对耐火材料的性能,粒度的选择极为重要。粒度的正确选择直接影响耐火材料的质量,微粉及超微粉技术的引入,大大提高耐火材料制品的致密度,促进样品的烧成,提高制品强度,改善耐火材料的耐用性和抗冲刷性。对于不定性耐火材料,尤其对于低水泥、超低水泥浇注料和自流浇注料,超微粉起着一定的结合剂作用,并且有减水效果。微粉的粒度及分布对试样的加水量和流动性以及材料的性能影响也很大。所以,如何对粒度进行控制一直是人们所关注的问题。济南微纳公司生产的Winner2000ZD湿法激光粒度仪采用全方位散射光探测系统,配合高灵敏度的环式光电探测器,能够进一步提高测试精度。集机械搅拌、超声分散、内置循环于一体的分散系统,彻底解决了大颗粒在管道中的沉积问题。独创的无约束自由拟合软件技术,保证了测试结果的真实准确。采用自主开发的智能控制技术,能够实现光路的自动对中,进行一键测试。http://ng1.17img.cn/bbsfiles/images/2013/06/201306191049_446365_388_3.jpg图一 Winner2000ZD湿法激光粒度仪原理图Winner2000ZD是将被测微粉置入样品池中,通过液体分散(一般为水)利用He-Ne激光器测定液体中的颗粒的粒度。当颗粒流动通过样品窗时,产生散射光,样品窗后的探测器接受散射光信号,并通过分析确定光的能级。利用MIE理论反演计算出颗粒粒度大小和分布。测试范围能够达到0.1-300μm。使用Winner2000ZD湿法激光粒度仪进行粒度控制较传统的粒度控制方法(如筛分法)有极为明显的优势。1)样品需用量少。2)测试速度快,一般两分钟之内即可完成测试。3)粒度测试范围宽,且分辨能力强。4)能够给出多种信息,如D10、D50、D90等数据。在耐火材料的生产企业中,Winner2000ZD湿法激光粒度仪得到了较为广泛的应用。北京利尔高温材料股份有限公司位于北京市中关村科技园区昌平园,拥有上海利尔耐火材料有限公司、洛阳利尔耐火材料有限公司、辽宁利尔高温材料有限公司、内蒙古包

  • 薄织物和隔热材料的热阻及热导率测试中存在的问题

    薄织物和隔热材料的热阻及热导率测试中存在的问题

    [color=#ff0000]摘要:薄的织物和隔热材料的逐渐广泛应用,使得现有各种测试方法已经无法满足这些材料导热系数和热阻准确测试的要求。本文详细介绍了现阶段对这些低导热薄材料热导率测试中存在的错误现象,从测试方法方面分析造成这些问题的原因,为今后准确测量提供参考和借鉴。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#ff0000][b]一、问题案例[/b][/color][/size]隔热材料作为有效阻断热量散失材料在各个领域发挥着重要重要,特别是在服装行业,薄的隔热织物越来越得到了重视和发展,为人体保温抗寒提供了更轻便和更舒适的面料。随着低导热薄织物的出现和技术发展,对薄织物的隔热性能,如导热系数和热阻,就提出了严峻的挑战,现有的各种测试方法都无法满足准确测量要求。如国内某机构研制开发了一种新型隔热面料,开发目的是设法采用纳米孔技术来大幅度降低面料的导热系数。面料的厚度为0.75±0.1mm,重量为48±2g/㎡,体积密度为65±11kg/m3,孔隙率为96%以上,闭孔率为95%以上,孔径30~190微米,壁厚为20~180纳米,面料如图1所示。此面料经不同检测机构采用多种测试方法进行了测试评价,导热系数测试结果如图2所示。[align=center][color=#ff0000][img=薄织物热阻和热导率测量,550,373]https://ng1.17img.cn/bbsfiles/images/2022/06/202206061135481562_7545_3384_3.jpg!w600x407.jpg[/img][/color][/align][align=center][color=#ff0000]图1 新型隔热面料[/color][/align][align=center][color=#ff0000][img=薄织物热阻和热导率测量,550,221]https://ng1.17img.cn/bbsfiles/images/2022/06/202206061136137426_2566_3384_3.jpg!w600x242.jpg[/img][/color][/align][align=center][color=#ff0000]图2 隔热面料导热系数测试结果汇总[/color][/align]从上述多种测试方法的导热系数测试结果可以看出,结果之间相差巨大,甚至出现了数量级的差别。特别是由纺织行业权威检测机构得到的超低导热系数测试结果(0.00824W/mK),严重误导了织物的提供方,织物提供方对这测试结果也表示怀疑,但检测机构也无法对测试的准确性进行核实。如图2所示,该薄织物还采用其他测试方法进行了导热系数测试,尽管没有出现太离谱的测试结果,但测试结果之间还是相差较大,测试结果显示出的是完全不同的隔热能力。鉴于上述混乱的导热系数测试结果,此织物的研发生产机构只能在官网上声明“导热系数是某某材料的核心数据。现有测试仪器和方法,无法测试出材料导热系数的绝对值。使用不同测试方法,供应用单位参考”。这是一个非常典型的无法得到准确测试结果的案例,此现象在纺织行业普遍存在。为彻底解决此问题,本文将针对薄织物的导热系数测试,从测试方法方面分析造成测量不准确的原因,为今后进一步开展新型测试方法研究提供参考和借鉴。[size=18px][color=#ff0000][b]二、薄织物和隔热材料导热系数测试方法分析[/b][/color][/size]在图2所示的导热系数测试结果中,几乎用到了现有的大多数标准测试方法,下面将对现有的已经和可能用于薄织物和隔热材料导热系数测量的各种测试方法进行分析。导热系数测试方法主要分为稳态法和瞬态法两大类,本文分析的具体路线是从稳态法和瞬态法的源头开始,然后延伸到相应的拓展方法,以期对多个测试方法的整体轮廓有一个清晰的概念。[color=#ff0000][size=16px][b]2.1 导热系数和热阻测试稳态法[/b][/size]2.1.1 稳态护热板法和稳态热流计法[/color]对于隔热材料导热系数测试,普遍采用的测试方法是经典的稳态护热板法(GB/T 10294)。稳态护热板法作为一种绝对法具有最高的测试精度,并同时用来校准相对测试方法稳态热流计法(GB/T 10295),其测量原理如图3所示。[align=center][color=#ff0000][img=薄织物热阻和热导率测量,550,358]https://ng1.17img.cn/bbsfiles/images/2022/06/202206061136309581_831_3384_3.png!w600x391.jpg[/img][/color][/align][align=center][color=#ff0000]图3 稳态护热板法测量原理示意图[/color][/align]为保证测量准确性,GB/T 10294标准文本做出明确规定,规定试件热阻不应小于0.1 m2K/W,规定用此来确定试件最小厚度。如果按照此规定,对于上述薄织物的0.75mm厚度,薄织物相应的导热系数不应大于0.0075W/mK才能符合规定。对于试件最小厚度做出规定,是因为试件太薄后试件内部热流分布不均匀和热场变形,并会造成试件上的温差很小,相应的温度传感器测量精度会在小温差测量上产生很大误差。由此,在标准文本中指出:当试件热阻低于0.1m2K/W时,表面温度的测量需要使用特殊的方法。冷板、中心量热计和护热板的表面应机械加工或切削平整、平行且不能有应力,同时它们的温度均匀性要求很高。这些要求在现实中很难实现或实现造价很高,因此对于厚度小于1mm的薄织物和隔热材料,稳态护热板法并不适合,很难满足导热系数准确测量的要求。对于稳态热流法导热系数测试,相应标准GB/T 10295给出了相同的最小热阻0.1m2K/W规定,同样需要按照此规定来确定试件最小厚度。由此可见,稳态热流计法同样存在温差测量不准确等一系列很难克服的问题,对于厚度小于1mm的薄织物和隔热材料,热流计法同样不适用。当然,在不得已的情况下,可以将多层薄织物叠加成厚试件以增大被测试件热阻来测量薄织物的导热系数。这种多层叠加形式在理论上确实能够测量导热系数,但最大问题是叠加过程中会在被测试件中产生空气隙而引入接触热阻,从而使得被测试件的热阻值变大,导致导热系数测试结果偏小,所以一般情况下不推荐采用多层叠加形式进行稳态法测量,除非被测试件比较柔软。[color=#ff0000]2.1.2 纺织品蒸发热板法[/color]纺织品蒸发热板法是一种上述稳态护热板法的一种变形,其基本原理完全基于稳态护热板法,不同之处是将图3稳态护热板法中的试件用空气层和被测试件来代替,以模拟人体散热和外部空气散热条件。 纺织品蒸发热板法目前执行的标准为GB/T 11048-2018,在具体测试中,通过从测定试件加上空气层的热阻值中减去空气层的热阻值得出所测材料的热阻值。需要特别注意的是,蒸发热板法中的热阻值与稳态护热板法中的热阻值并不能等效,这主要是因为以下不同:(1)蒸发热板法在测试热阻时,试件冷面处于空气对流传热环境;而稳态护热板法测试热阻时,试件冷面处于与冷板的导热传热环境。两种测试方法尽管原理相同,但边界条件和物理意义完全不同,蒸发热板法测试的是模拟环境下的等效热阻,稳态护热板法测试的是纯热传导环境下的导热热阻,在稳态护热板法中,根据此导热热阻和试件厚度,可以准确得到导热系数。(2)蒸发热板法中被测试件是平放在中心量热计上,试件靠自身重量与量热计接触。而稳态护热板法中试件通过上面的冷板加载一定的力与量热计接触,两者所形成的热接触效果完全不同,稳态护热板法中的接触热阻更小,即蒸发热板法中得到的试件热阻含有较大的接触热阻。(3)在蒸发热板法标准GB/T 11048中,只涉及了织物热阻的测量,并未涉及通过厚度和测量得到的热阻来计算获得织物的导热系数。这基本就意味着蒸发热板法不能用来测量导热系数。(4)另外,在蒸发热板法标准GB/T 11048中,规定可测量的最小热阻不能小于2m2K/W,与稳态护热板法和热流计法规定的0.1m2K/W最小热阻相比高了20倍,即蒸发热板法比较适合较大热阻的测量。根据上述分析,我们再来看图2得到的导热系数测试结果,就明显存在以下两大问题:(1)图2中的导热系数测量是依据GB/T 11048-2008,在此版本的蒸发热板法中,规定的热导率为热传导、热辐射和热对流的总和,是存在着三种传热形式的等效热导率,不能用此等效热导率与图2中的其他方法获得的纯导热传热过程的热导率相比较。(2)如果按照图2中的0.00824W/mK导热系数计算结果和0.75mm厚度可以反推出实际测量的热阻值,可得到热阻值为0.09m2K/W。显然此热阻值要远小于GB/T 11048-2008和GB/T 11048-2018中规定的最小可测热阻2m2K/W。从上述分析基本可以得出结论,即蒸发热板法不适合测量薄织物的热阻,更不适合测量纯导热性质的导热系数,这也是GB/T 11048-2018不再提热导率这个参数的主要原因。另外,检测机构出具图2所示的检测结果,也说明相关检测人员对标准方法GB/T 11048的适用范围还缺乏了解。[color=#ff0000]2.1.3 恒定热流法[/color]恒定热流法是上述稳态热流计法的一种变形,其测量原理与稳态热流计法完全相同,同样采用了热流计来测量流经试件厚度方向上的热流密度,不同之处在于采用了独特的技术手段来测量薄试件厚度方向上的小温差,并且可以加载压力以保证较小的接触热阻和准确控制试件厚度。恒定热流计法的相应标准为ASTM D5470,这种方法普遍用于薄型导热胶垫和固态电绝缘板材的导热系数和热阻测量。根据测量原理,恒定热流法应该比较适合薄织物和隔热材料的热导率和热阻的测量,但在具体测试过程中流经薄试件的热流密度很小,这就对热流密度测量精度提出了很高要求,现有执行标准ASTM D5470的测试仪器还无法实现如此小热流的准确测量,需要研发测量精度更高的测试设备以满足低导热薄片样品的测试要求。[color=#ff0000][b]2.2 导热系数测试瞬态法[/b]2.2.1 瞬态平面热源法(HOT DISK法)[/color]在图2所示的薄织物导热系数测试案例中,显示了采用瞬态平面热源法(HOT DISK法)的测试结果。已经有很多研究并报道了这种方法在低导热系数测试中存在测试结果偏高很多的现象,这方面的详细介绍及其解决方案可在网上搜索上海依阳编写的《气凝胶隔热材料超低导热系数测试中存在的问题及解决方案》应用报告。在瞬态平面热源法导热系数测试中,最大的问题是测量准确性无法进行考核。在稳态护热板法和热流计法中可以采用不同厚度标准参考材料来考核热阻的测量精度,而在HOT DISK法中只能测量热导率而无法测量热阻,那么对于导热系数低于标准参考材料数值0.03W/mK的低导热材料,就根本无法考核其测量的准确性。总之,瞬态平面热源法(HOT DISK法)也不适合测试低导热系数的薄织物和隔热材料。[color=#ff0000]2.2.2 闪光法[/color]闪光法作为一种应用最为普遍的绝对法,广泛用于各种固体材料的热扩散系数测量。但闪光法对于薄织物和隔热材料并不适用,主要原因如下:(1)对于低导热的薄织物和隔热材料,隔热性能比较好,热阻比较大,闪光信号很难传输到样品背面,信噪比较差,测量误差较大。(2)薄织物和隔热材料,多为多孔材料且透光,闪光加热很容易穿透被测试件。如果对试件表面进行遮光处理,遮挡涂层很容易进入试件孔隙而改变试件的导热系数。[size=18px][color=#ff0000][b]三、结论和今后工作[/b][/color][/size]通过上述薄织物和隔热材料测试案例和现有各种测试方法的分析,可以得出以下结论:(1)现有的各种导热系数测试方法,不论是稳态法还是瞬态法,都无法满足薄织物和隔热材料导热系数准确测试的需求。各种测试方法都有各自的局限性,没有一种完全适合低导热系数薄试件的测试方法。特别是目前用于纺织品热阻测量的GB/T 11048-2018测试方法,还存在很多问题,其中测量的热阻值应为等效热阻,是多种传热机理的复合作用结果,这很容易误导纺织品的开发人员。有关GB/T 11048-2018测试方法的更详尽研究分析,将在后续专文进行论述。(2)由于缺乏准确的测试方法,给新型织物材料的研究和研制带来的不便和困难,无法通过准确的热导率和热阻测量来调整材料的相应工艺。(3)对于薄织物和隔热材料的热导率测试,需要解决小温差和低热流密度精密测量难题,需要解决材料透光性的影响,这些都是今后工作的主要内容。(4)现有大多数采用稳态法的热阻和热导率测试仪器,所要求的样品尺寸太大,如大多采用面积为300mm×300mm的样品。对于薄织物和隔热材料的热导率测试,如果要实现高精度测量,如此大的样品尺寸势必会增大测试仪器的护热、机加工和热应力变形等方面的技术难度和造价。因此,对于厚度小于1mm的被测样品,完全可以采用小尺寸样品,如50mm×50mm,同样可以保证稳态下的一维热流。(5)对于难度最大的小温差准确测量,可以借鉴闪光法而避开热导率的直接测量,可通过测量热扩散率来间接获得热导率,热扩散率的测量则可以采用频域技术,通过频域技术可以非常准确的将温差信号转换为频域信号。这可能将是今后的一个重要研究方向。(6)另外,表征薄织物的热性能参数中,除了导热系数和热阻之外,还涉及到人体触摸织物的冷感或热感表征参数:吸热系数。最好有新型测试方法能将这些热性能参数进行整体考虑和测试,为织物热性能提供完整的准确测试评价。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 试验验证:纤维类隔热材料有效导热系数与真导热系数相互关系

    试验验证:纤维类隔热材料有效导热系数与真导热系数相互关系

    [quote][color=#ff0000]摘要:本文针对二氧化硅Q纤维、氧化铝Saffil纤维、APA纤维、氧化锆ZYF纤维和OFI纤维五种纤维类隔热材料,分别采用大温差的高温热流计法和小温差的瞬态步进加热法进行高温和不同气压条件下测试,通过试验得到的真导热系数和有效导热系数测试结果数据,验证真导热系数与有效导热系数之间的关系以及相互转换方法,证明了这种相互关系和转换方法的有效性。[/color][/quote]关键词:耐火材料、隔热材料、有效导热系数、真导热系数、导热系数、大温差、测试方法[align=center][b][color=#3333ff]注:文中有大量公式,但不便在网页中进行完整显示。本文的PDF格式完整版本,已在本文的结尾处附上。[/color][/b][/align][b][color=#FF0000]1. 引言[/color][/b] 对于各种耐火隔热材料的高温导热系数测量,目前常用的测试方法如图 1‑ 1所示。这些测试方法一般分为稳态法和瞬态法,但这种分类方法在实际应用中并没有多少实际意义。[align=center][img=,500,156]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181530195080_6467_3384_3.png!w690x216.jpg[/img][/align][align=center][color=#FF0000]图 1‑ 1 耐火隔热材料高温导热系数测试方法分类[/color][/align] 为了便于对耐火隔热材料的导热系数进行正确的描述和理解,便于对上述各种测试方法进行比较,我们对测试方法按照测试过程中样品材料上的温度梯度大小进行分类,大温度梯度归类为大温差测试方法,如热流计法和准稳态法;小温度梯度或无温度梯度归类为小温差测试方法,如保护热板法、热线法和闪光法。由此可以很容易确定出以下导热系数实际物理意义及其定义: (1)小温差或无温差(50℃)测试方法测量得到的是“真导热系数”。 (2)大温差测试方法测量得到是“有效导热系数”。 由于测试中所形成的温差不同,使得热量在样品中的热传递形式也不同,因此在不同温差下进行测量所得到的“真导热系数”与“有效导热系数”并不相同,这在对耐火隔热材料测试方法选择和测量结果数据的应用中要特别注意,否则会出现严重问题。 关于不同温差下测量得到的真导热系数和有效导热系数两者之间的转换关系,本司已发布研究报告进行过专门的理论分析论述。本文将特别针对五种不同的纤维类隔热材料,分别采用大温差的高温热流计法和小温差的瞬态步进加热法进行了高温和不同气压条件下的测试,用试验数据来验证真导热系数与有效导热系数之间的关系以及相互转换方法。[b][color=#FF0000]2. 纤维类隔热材料样品[/color][/b] 针对以下五种纤维隔热材料分别测量了真导热系数和有效导热系数,这五种纤维隔热材料参数和相应的测试结果数据来自文献。 Q纤维:Q纤维是硅基隔热材料,具有很好的隔热性能。纤维平均直径为1.3 um,Q纤维隔热材料一般密度为48.6、68.8和95.6 kg/m3,与之对应材料厚度分别为13.3、19.1和13.3 mm。 Saffil纤维:Saffil纤维是氧化铝基隔热材料,平均纤维直径为4.5 um,一般密度在24.2~96.1 kg/m3范围内,所对应的样品厚度在13.3~39.3 mm之间。 APA纤维:APA纤维也是一种氧化铝基纤维隔热材料,平均纤维直径为4.5 um、密度为107 kg/m3,APA隔热材料为大约1 mm厚的板材,而25.4 mm厚的样品被用于有效导热系数测量。 ZYF氧化锆纤维:还采用了氧化钇稳定氧化锆(ZYF)纤维隔热材料,其纤维平均直径为6 um、密度为 267 kg/m3。ZYF隔热材料为厚度大约为2.5 mm厚的薄板,在工程应用中可多层叠加使用。 OFI纤维:OFI是一类高效乳白色纤维隔热材料,是在各种纤维毡中嵌入陶瓷遮光颗粒而得到,纤维基体和陶瓷遮光剂的比例可以量身定做为特定飞行轨道/空间气动加热载荷提供一个优化的隔热效果。在纤维隔热垫中嵌入高效陶瓷遮光剂颗粒可以显著降低纤维隔热材料热传递中的辐射分量,从而使OFI成为低气压应用中非常好的隔热性能。本研究中所采用的OFI纤维隔热材料是通过在Saffil纤维隔热材料中嵌入遮光剂,总密度为202.4 kg/m3。[b][color=#FF0000]3. 测试方法及其相互关系[/color][color=#FF0000]3.1. 测试方法[/color][/b] 针对上述五种纤维隔热材料,测试方法分别选用了瞬态步进加热法和高温热流计法,这两种方法都是测量片状或板状样品厚度方向上的导热系数。 高温热流计法测试中样品的冷面温度基本保持在50℃以下,而样品热面温度则根据设定不断变化,样品热面与冷面之间的温差可以达到100~1400℃,样品尺寸为300×300×(10~70 mm)左右,测量原理如图 3‑ 1所示,其它详细内容可参考上海依阳实业有限公司官网TC-HFM-1000 型高温热流计法导热仪介绍以及美国NASA Langley研究中心热真空试验装置的相关报道。[align=center][img=,690,195]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181537268969_3588_3384_3.png!w690x195.jpg[/img][/align][align=center][color=#FF0000]图 3‑ 1 稳态热流计法高温导热系数测量原理图[/color][/align] 瞬态步进加热法测试中样品上的温差小于10℃,采用相对较小的样品(φ50mm×3~5mm)进行温度高达1500℃下的高温热扩散系数测量,其基本原理如图 3‑ 2所示,其它详细内容可参考相关文献报道。[align=center][img=,690,418]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181537448898_2666_3384_3.png!w690x418.jpg[/img][/align][align=center][color=#FF0000]图 3‑ 2 瞬态步进加热三点测温法高温热扩散系数测量原理图[/color][/align][b][color=#FF0000]3.2. 真导热系数和有效导热系数相互关系[/color][/b] 根据瞬态步进加热法和稳态热流计法法分别得到的真导热系数和有效导热系数及其相互关系,在上海依阳的研究报告“耐火隔热材料测试中有效导热系数与真导热系数的相互关系研究”中进行了详细论述。这里仅给出相对于温度变量的最终关系式,即有效导热系数λeff与真导热系数λtrue关系式为:[align=center][img=,500,65]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181538415798_7481_3384_3.png!w690x90.jpg[/img][/align] 式中的TH和TC分别代表大温差有效导热系数测量中样品的热面温度和冷面温度,T代表小温差真导热系数测量中的样品平均温度。通过公式(3.2.1)所定义的真导热系数与有效导热系数的关系,就可以进行这两种导热系数之间的转换,即通过大温差的有效导热系数测量推导出相应的小温差时的真导热系数,或根据小温差真导热系数测量推导出大温差时的有效导热系数。[b][color=#FF0000]4. 真导热系数与有效导热系数关系的试验验证[/color][/b] 以上介绍了真导热系数与有效导热系数的关系以及相互推导的具体方法,但这些只是根据一些假设进行的理论计算,关系和推导方法的正确性和准确性还需通过试验进行验证。 为了进行试验验证,选择了相同的耐火隔热材料进行取样。对于大温差的有效导热系数测量选择了高温热流计法导热系数测试方法和测量装置,对于小温差的真导热系数测量选择了步进加热三点测温测试方法和高温热扩散系数测量装置,对于无温差的真导热系数测量选择了热线法和高温导热系数测量装置。由于没有实际进行过对相同耐火隔热材料导热系数大温差和小温差的对比测试,因此选择了目前仅有的公开报道的国外文献报道数据进行计算对比。[b][color=#FF0000]4.1. 二氧化硅(Silica)Q纤维隔热材料[/color][/b] 密度为48.6kg/m^3的Q纤维在0.001 Torr氮气气压环境下进行测试,稳态热流计法有效导热系数测量结果如图 4‑ 1中的红线所示,瞬态步进加热法真导热系数测试结果如图 4‑ 2中的红线所示。[align=center][img=,690,404]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181539095327_6858_3384_3.png!w690x404.jpg[/img][/align][align=center][color=#FF0000]图 4-1 在0.001 Torr氮气气压下48 kg/m3密度Q纤维样品有效导热系数测量结果与真导[/color][/align][align=center][img=,690,415]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181539230128_5966_3384_3.png!w690x415.jpg[/img][/align][align=center][color=#FF0000]图 4-2 在0.001 Torr氮气气压下48 kg/m3密度Q纤维样品真导热系数测量结果与有效导[/color][/align] 有效导热系数λeff随样品热面温度TH变化的拟合公式为:[align=center][img=,600,41]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181539395786_4790_3384_3.png!w690x48.jpg[/img][/align] 真导热系数λtrue随样品平均温度T变化的拟合公式为:[align=center][img=,600,40]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181540044886_2962_3384_3.png!w690x46.jpg[/img][/align][color=#FF0000](1)真导热系数转换为有效导热系数[/color] 将公式(4.1.2)代入公式(3.2.1),然后进行积分求解就可以得到相应的有效导热系数,其中设置样品冷面温度为TC= 20.5℃。得到由有效导热系数拟合公式:[align=center][img=,600,39]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181540571338_7312_3384_3.png!w690x45.jpg[/img][/align] 将真导热系数测量结果转换成有效导热系数的公式以样品热面温度为横坐标绘制有效导热系数曲线,并与有效导热系数大温差测量结果进行比较,如图 4‑ 1所示中的蓝线所示。由图 4‑ 1所示的对比结果可以看出,小温差法测试结果转换为大温差有效导热系数后,与大温差测试结果吻合的很好,只是在热面温度为26℃时两者相差较大为18.6%,这主要是因为在大温差热流计法测量过程中的冷面温度为20.5℃,温差较小使得热流密度较小所带来的误差。而在其它所有热面温度下(100℃以上)有效导热系数相比,偏差百分比都小于2%。由此可见,对于Q纤维这种材料,在高真空条件下,小温差真导热系数测试结果转换为大温差有效导热系数测试结果后,与大温差有效导热系数实际测试结果吻合的很好。[color=#FF0000](2)有效导热系数转换为真导热系数[/color] 假设真导热系数随温度变化关系是一个一元三次多项式,即:[align=center][img=,500,44]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181541199078_3032_3384_3.png!w669x60.jpg[/img][/align] 式中的B0、B1、B2和B3是与材料自身特性有关的待定常数。 将式(4.1.4)直接代入与式(3.2.1)可得:[align=center][img=,600,64]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181541368044_1154_3384_3.png!w690x74.jpg[/img][/align] 将图 4‑ 1中红线所示的一系列热面温度TH和冷面温度TC下测量得到的对应有效导热系数测试数据代入公式(4.1.5)中,得到一系列有关四个未知数B0、B1、B2和B3的关系式。通过多元回归分析,就可以得到这四个未知数,由此得到转换后的真导热系数表达式:[align=center][img=,600,33]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181541566218_1668_3384_3.png!w690x38.jpg[/img][/align] 将有效导热系数测量结果转换成真导热系数的计算公式(4.1.6)以样品平均温度为横坐标绘制真导热系数曲线,并与真导热系数小温差测量结果进行比较,如图4-2中的蓝线所示。由图4-2所示的对比结果可以看出,大温差法测试结果转换为小温差的真效导热系数后,与小温差测试结果吻合的很好,全温度范围内偏差百分比都小于2.6%。由此可见,对于Q纤维这种材料,在高真空条件下,大温差有效导热系数测试结果转换为小温差真导热系数测试结果后,与小温差真导热系数实际测试结果吻合的很好。[b][color=#FF0000]4.2. 氧化铝(Alumina)Saffil纤维隔热材料(高真空下测试)[/color][/b] 密度为48kg/m^3的Saffil纤维在0.001 Torr氮气气压环境下进行测试,稳态热流计法有效导热系数测量结果如图 4‑ 3中的红线所示,瞬态步进加热法真导热系数测试结果如图 4‑ 4中的红线所示。[align=center][img=,690,427]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181542233158_5453_3384_3.png!w690x427.jpg[/img][/align][align=center][color=#FF0000]图 4-3 在0.001 Torr氮气气压下48 kg/m3密度Saffil纤维样品有效导热系数测量[/color][/align][align=center][img=,690,423]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181542412398_5020_3384_3.png!w690x423.jpg[/img][/align][align=center][color=#FF0000]图 4-4 在0.001 Torr氮气气压下48 kg/m3密度Saffil纤维样品真导热系数测量[/color][/align] 在0.001 Torr氮气气压下48 kg/m3密度Saffil纤维在有效导热系数λeff随样品热面温度TH变化测量值的拟合公式为: 在0.001 Torr氮气气压下48 kg/m3密度Saffil纤维真导热系数λtrue随样品平均温度T变化测量值的拟合公式为:[color=#FF0000](1)真导热系数转换为有效导热系数[/color] 将Saffil纤维真导热系数拟合公式代入公式,然后进行积分求解就可以得到相应的有效导热系数,其中设置样品冷面温度为TC=20.8℃。得到由有效导热系数拟合公式: 将真导热系数测量结果转换成有效导热系数的公式以样品热面温度为横坐标绘制有效导热系数曲线,并与有效导热系数大温差测量结果进行比较,如图 4‑ 3中的红线所示。由图 4‑ 3所示的对比结果可以看出,小温差法测试结果转换为大温差有效导热系数后,比大温差测试结果大出很多,最大偏差百分比为74%,并随着热面温度升高,偏差百分比逐渐减小至9%左右。具体原因不详,有可能是两种方法测试结果有问题。[color=#FF0000](2)有效导热系数转换为真导热系数[/color] 假设真导热系数随温度变化关系是一个一元三次多项式,即: 式中的B0、B1、B2和B3是与材料自身特性有关的待定常数。将式直接代入与式可得: 将图 4‑ 3中红线所示的一系列热面温度TH和冷面温度TC下测量得到的对应有效导热系数测试数据代入公式中,得到一系列有关四个未知数B0、B1、B2和B3的关系式。通过多元回归分析,就可以得到这四个未知数,由此得到转换后的真导热系数表达式: 将有效导热系数测量结果转换成真导热系数的计算公式以样品平均温度为横坐标绘制真导热系数曲线,并与真导热系数小温差测量结果进行比较,如图 4‑ 4中的蓝线所示。由图 4‑ 4所示的对比结果可以看出,大温差法有效导热系数测试结果转换为小温差的真效导热系数后,要比小温差测试结果小很多,最大偏差百分比为311%,并随着热面温度升高,偏差百分比逐渐减小至3%左右。这个规律与上述真导热系数转换为有效导热系数的规律基本一致,就是与有效导热系数相关的数据总是比真导热系数相关数据低很多。具体原因不详,有可能是某种方法测试结果有问题。[b][color=#FF0000]4.3. 氧化铝(Alumina)Saffil纤维隔热材料(大气压下测试)[/color][/b] 密度为48kg/m^3的Saffil纤维在760 Torr和100 Torr氮气气压环境下进行测试,稳态热流计法有效导热系数测量结果如图 4‑ 5中的红线所示,瞬态步进加热法真导热系数测试结果如图 4‑ 6中的红线所示。[align=center][img=,690,388]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181542549828_1222_3384_3.png!w690x388.jpg[/img][/align][align=center][color=#FF0000]图 4-5 48 kg/m3密度Saffil纤维样品在100 Torr氮气气压下有效导热系数测量结果[/color][/align][align=center][img=,690,426]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181543092530_4622_3384_3.png!w690x426.jpg[/img][/align][align=center][color=#FF0000]图 4-6 48 kg/m3密度Saffil纤维样品在760 Torr氮气气压下真导热系数测量结果[/color][/align] 在100 Torr氮气气压下48 kg/m3密度Saffil纤维在有效导热系数λeff随样品热面温度TH变化测量值的拟合公式为: 在700 Torr氮气气压下48 kg/m3密度Saffil纤维真导热系数λtrue随样品平均温度T变化测量值的拟合公式为:[color=#FF0000](1)真导热系数转换为有效导热系数[/color] 将Saffil纤维真导热系数拟合公式代入公式,然后进行积分求解就可以得到相应的有效导热系数,其中设置样品冷面温度为TC=20.8℃。得到由有效导热系数拟合公式: 将真导热系数测量结果转换成有效导热系数的公式以样品热面温度为横坐标绘制有效导热系数曲线,并与有效导热系数大温差测量结果进行比较,如图 4‑ 5中的蓝线所示。由图 4‑ 5所示的对比结果可以看出,小温差真导热系数测试结果转换为大温差有效导热系数后,与大温差测试结果吻合的很好,只是在热面温度为23.6℃时两者相差略微偏大为5.2%,这主要是因为在大温差热流计法测量过程中的冷面温度为24.35±10.4℃,温差较小使得热流密度较小所带来的误差。而在其它所有热面温度下(100℃以上)有效导热系数相比,偏差百分比都小于5%。由此可见,对于Saffil纤维这种材料,在低真空条件接近一个大气压环境下,小温差真导热系数测试结果转换为大温差有效导热系数测试结果后,与大温差有效导热系数实际测试结果吻合的很好。[color=#FF0000](2)有效导热系数转换为真导热系数[/color] 假设真导热系数随温度变化关系是一个一元三次多项式,即: 式中的B0、B1、B2和B3是与材料自身特性有关的待定常数。将式直接代入与式可得: 将图 4‑ 5中红线所示的一系列热面温度TH和冷面温度TC下测量得到的对应有效导热系数测试数据代入公式中,得到一系列有关四个未知数B0、B1、B2和B3的关系式。通过多元回归分析,就可以得到这四个未知数,由此得到转换后的真导热系数表达式: 将有效导热系数测量结果转换成真导热系数的计算公式以样品平均温度为横坐标绘制真导热系数曲线,并与真导热系数小温差测量结果进行比较,如图 4‑ 6中的蓝线所示。由图 4‑ 6所示的对比结果可以看出,大温差法测试结果转换为小温差的真效导热系数后,与小温差测试结果吻合的较好,全温度范围内偏差百分比都小于5%,只是在最低温度和最高温度处偏差分别为9%和6.4%。由此可见,对于Saffil纤维这种材料,在低真空条件接近一个大气压环境下,大温差有效导热系数测试结果转换为小温差真导热系数测试结果后,与小温差真导热系数实际测试结果吻合的很好。[color=#FF0000][b]4.4. APA纤维隔热材料[/b][/color] 密度为107kg/m^3的APA纤维隔热材料在0.001 Torr氮气气压环境下进行测试,稳态热流计法有效导热系数测量结果如图 4‑ 7中的红线所示,瞬态步进加热法真导热系数测试结果如图 4‑ 8中的红线所示。[align=center][img=,690,388]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181543266391_5463_3384_3.png!w690x388.jpg[/img][/align][align=center][color=#FF0000]图 4-7 氮气气压0.001 Torr下107 kg/m3密度APA纤维样品在有效导热系数测量结果[/color][/align][align=center][img=,690,425]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181543387494_7814_3384_3.png!w690x425.jpg[/img][/align][align=center][color=#FF0000]图 4-8 氮气气压0.001 Torr下107 kg/m3密度APA纤维样品在真导热系数测量结果[/color][/align] 在0.001 Torr氮气气压下107kg/m^3的APA纤维隔热材料有效导热系数λeff随样品热面温度TH变化测量值的拟合公式为: 在0.001 Torr氮气气压下107kg/m^3的APA纤维隔热材料真导热系数λtrue随样品平均温度T变化测量值的拟合公式为:[color=#FF0000](1)真导热系数转换为有效导热系数[/color] 将APA纤维真导热系数拟合公式代入公式,然后进行积分求解就可以得到相应的有效导热系数,其中设置样品冷面温度为TC=19.05℃。得到由有效导热系数拟合公式: 将真导热系数测量结果转换成有效导热系数的公式以样品热面温度为横坐标绘制有效导热系数曲线,并与有效导热系数大温差测量结果进行比较,如图 4‑ 7中的蓝线所示。由图 4‑ 7所示的对比结果可以看出,小温差真导热系数测试结果转换为大温差有效导热系数后,与大温差测试结果吻合的较好,只是在热面温度为26.8℃时两者相差略微偏大为22.1%,这主要是因为在大温差热流计法测量过程中的冷面温度为19.05±13.6℃,温差较小使得热流密度较小所带来的误差。而在其它所有热面温度下(100℃以上)有效导热系数相比,偏差百分比随着热面温度升高而变大,在最高热面温度1128℃是偏差为14.6%。由此可见,对于APA纤维这种材料,在高真空条件0.001 Torr氮气气氛下,小温差真导热系数测试结果转换为大温差有效导热系数测试结果后,与大温差有效导热系数实际测试结果吻合的较好。[color=#FF0000](2)有效导热系数转换为真导热系数[/color] 假设真导热系数随温度变化关系是一个一元三次多项式,即: 式中的B0、B1、B2和B3是与材料自身特性有关的待定常数。将式直接代入与式可得: 将图 4‑ 7中红线所示的一系列热面温度TH和冷面温度TC下测量得到的对应有效导热系数测试数据代入公式中,得到一系列有关四个未知数B0、B1、B2和B3的关系式。通过多元回归分析,就可以得到这四个未知数,由此得到转换后的真导热系数表达式: 将有效导热系数测量结果转换成真导热系数的计算公式以样品平均温度为横坐标绘制真导热系数曲线,并与真导热系数小温差测量结果进行比较,如图 4‑ 8中的蓝线所示。由图 4‑ 8所示的对比结果可以看出,大温差法测试结果转换为小温差的真效导热系数后,与小温差测试结果吻合的很好,全温度范围内偏差百分比都小于6%,只是在常温23.6℃处偏差最大为8%。由此可见,对于APA纤维这种材料,在高真空条件0.001 Torr氮气环境下,大温差有效导热系数测试结果转换为小温差真导热系数测试结果后,与小温差真导热系数实际测试结果吻合的很好。[b][color=#FF0000]4.5. 氧化锆ZYF纤维隔热材料[/color][/b] 氧化锆ZYF纤维隔热材料在0.001 Torr氮气气压环境下进行测试,稳态热流计法有效导热系数测量结果如图 4‑ 9中的红线所示,瞬态步进加热法真导热系数测试结果如图 4‑ 10中的红线所示。[align=center][img=,690,382]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181543521992_3974_3384_3.png!w690x382.jpg[/img][/align][align=center][color=#FF0000]图 4-9 氮气气压0.001 Torr下ZYF纤维样品在有效导热系数测量结果与真导热系数测量结果转[/color][/align][align=center][img=,690,414]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181544043755_4332_3384_3.png!w690x414.jpg[/img][/align][align=center][color=#FF0000]图 4-10 氮气气压0.001 Torr下ZYF纤维样品在真导热系数测量结果与有效导热系数测量结[/color][/align] 在0.001 Torr氮气气压下ZYF纤维隔热材料有效导热系数λeff随样品热面温度TH变化测量值的拟合公式为: 在0.001 Torr氮气气压下ZYF纤维隔热材料真导热系数λtrue随样品平均温度T变化测量值的拟合公式为:[color=#FF0000](1)真导热系数转换为有效导热系数[/color] 将氧化锆ZYF纤维真导热系数拟合公式代入公式,然后进行积分求解就可以得到相应的有效导热系数,其中设置样品冷面温度为TC=22.05℃。得到由有效导热系数拟合公式: 将真导热系数测量结果转换成有效导热系数的公式以样品热面温度为横坐标绘制有效导热系数曲线,并与有效导热系数大温差测量结果进行比较,如图 4‑ 9中的蓝线所示。由图 4‑ 9所示的对比结果可以看出,小温差真导热系数测试结果转换为大温差有效导热系数后,与大温差测试结果吻合的较好,只是在热面温度为25.9℃时两者相差略微偏大为83.5%,这主要是因为在大温差热流计法测量过程中的冷面温度为22.05±0.5℃,温差较小使得热流密度较小所带来的误差。而在其它所有热面温度下(100℃以上)有效导热系数相比,最大偏差为6%。由此可见,对于ZYF纤维这种材料,在高真空条件0.001 Torr氮气气氛下,小温差真导热系数测试结果转换为大温差有效导热系数测试结果后,与大温差有效导热系数实际测试结果吻合的很好。[color=#FF0000](2)有效导热系数转换为真导热系数[/color] 假设真导热系数随温度变化关系是一个一元三次多项式,即: 式中的B0、B1、B2和B3是与材料自身特性有关的待定常数。将式直接代入与式可得: 将图 4‑ 9中红线所示的一系列热面温度TH和冷面温度TC下测量得到的对应有效导热系数测试数据代入公式中,得到一系列有关四个未知数B0、B1、B2和B3的关系式。通过多元回归分析,就可以得到这四个未知数,由此得到转换后的真导热系数表达式: 将有效导热系数测量结果转换成真导热系数的计算公式以样品平均温度为横坐标绘制真导热系数曲线,并与真导热系数小温差测量结果进行比较,如图 4‑ 10中的蓝线所示。由图 4‑ 10所示的对比结果可以看出,大温差法测试结果转换为小温差的真效导热系数后,与小温差测试结果吻合的很好,全温度范围内偏差百分比都小于7.3%。由此可见,对于ZYF纤维这种材料,在高真空条件0.001 Torr氮气环境下,大温差有效导热系数测试结果转换为小温差真导热系数测试结果后,与小温差真导热系数实际测试结果吻合的很好。[b][color=#FF0000]4.6. OFI纤维隔热材料[/color][/b] 密度为202.4kg/m^3的OFI纤维隔热材料在0.001 Torr氮气气压环境下进行测试,稳态热流计法有效导热系数测量结果如图 4‑ 11中的红线所示,瞬态步进加热法真导热系数测试结果如图 4‑ 12中的红线所示。[align=center][img=,690,380]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181544213688_4307_3384_3.png!w690x380.jpg[/img][/align][align=center][color=#FF0000]图 4-11 氮气气压0.001 Torr下OFI纤维样品在有效导热系数测量结果与真导热系数测量结果[/color][/align][align=center][img=,690,416]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181544329578_5158_3384_3.png!w690x416.jpg[/img][/align][align=center][color=#FF0000]图 4-12 氮气气压0.001 Torr下OFI纤维样品在真导热系数测量结果与有效导热系数测量结[/color][/align] 在0.001 Torr氮气气压下OFI纤维隔热材料有效导热系数λeff随样品热面温度TH变化测量值的拟合公式为: 在0.001 Torr氮气气压下OFI纤维隔热材料真导热系数λtrue随样品平均温度T变化测量值的拟合公式为:[color=#FF0000](1)真导热系数转换为有效导热系数[/color] 将OFI纤维真导热系数拟合公式代入公式,然后进行积分求解就可以得到相应的有效导热系数,其中设置样品冷面温度为TC=22.05℃。得到由有效导热系数拟合公式: 将真导热系数测量结果转换成有效导热系数的公式以样品热面温度为横坐标绘制有效导热系数曲线,并与有效导热系数大温差测量结果进行比较,如图 4‑ 11中的蓝线所示。由图 4‑ 11所示的对比结果可以看出,小温差真导热系数测试结果转换为大温差有效导热系数后,与大温差测试结果吻合的非常好,只是在热面温度为24.1℃时两者相差略微偏大为10.8%,这主要是因为在大温差热流计法测量过程中的冷面温度为22.05±0.5℃,温差较小使得热流密度较小所带来的误差。而在其它所有热面温度下(100℃以上)有效导热系数相比,最大偏差为7%,而且随着热面温度的上升,两者相差百分比越来越小。由此可见,对于OFI纤维这种材料,在高真空条件0.001 Torr氮气气氛下,小温差真导热系数测试结果转换为大温差有效导热系数测试结果后,与大温差有效导热系数实际测试结果吻合的非常好。[color=#FF0000](2)有效导热系数转换为真导热系数[/color] 假设真导热系数随温度变化关系是一个一元三次多项式,即: 式中的B0、B1、B2和B3是与材料自身特性有关的待定常数。将式直接代入与式可得: 将图 4‑ 11中红线所示的一系列热面温度TH和冷面温度TC下测量得到的对应有效导热系数测试数据代入公式中,得到一系列有关四个未知数B0、B1、B2和B3的关系式。通过多元回归分析,就可以得到这四个未知数,即: 将有效导热系数测量结果转换成真导热系数的计算公式以样品平均温度为横坐标绘制真导热系数曲线,并与真导热系数小温差测量结果进行比较,如图 4‑ 12中的蓝线所示。由图 4‑ 12所示的对比结果可以看出,大温差法测试结果转换为小温差的真效导热系数后,与小温差测试结果吻合的非常好,全温度范围内偏差百分比都小于4%,只是在较低热面温度(100℃以下)时偏差最大为8.9%。由此可见,对于这种OFI纤维隔热材料,在高真空条件0.001 Torr氮气环境下,大温差有效导热系数测试结果转换为小温差真导热系数测试结果后,与小温差真导热系数实际测试结果吻合的非常好。[b][color=#FF0000]5. 结论[/color][/b] 通过对五种纤维类隔热材料的六组大温差和小温差测试试验结果可以看出,尽管做了一些假设,并忽略了辐射传热对整体热传递的影响,但所建立的有效导热系数与真导热系数关系式成立,并且对这五种纤维类隔热材料应用这种关系是有效的。[b][color=#FF0000]6. 参考资料[/color][/b](1)Daryabeigi K. Heat transfer modeling and validation for optically thick alumina fibrous insulation//Proceedings of the 30th International Thermal Conductivity Conference and the 18th International Thermal Expansion Symposium. USA: NASA Langley Research Center, 2009: 23681.(2)Daryabeigi K, Cunnington GR, Knutson JR. Combined heat transfer in high-porosity high-temperature fibrous insulation: Theory and experimental validation. Journal of thermophysics and heat transfer. 2011 Oct 25 (4):536-46.(3) Gembarovic, J., and Taylor, R. E., “A Method for Thermal Diffusivity Determination of Thermal Insulators,” International Journal of Thermophysics, Vol. 28, No. 6, 2007, pp. 2164-2175.[hr/]

  • 耐火材料搅拌机品质导向加持下,打造行业搅拌新高地

    青岛迪凯行星式搅拌机凭借其技术创新和强大的搅拌性能,现已成为耐火材料行业生产中重要的耐火材料搅拌机械。面对不断变化的市场需求,行星式搅拌机将继续依托技术进步,不断优化和升级,以满足行业发展的需要,为耐火材料行业市场的发展贡献出自己的力量。行星式搅拌机作为一种高效的耐火材料搅拌机,能够将各种粉状、颗粒状原料进行充分混合,确保被搅物料的均匀性和稳定性,大大满足了耐火材料行业领域对耐火材料搅拌机的高标准混合要求。[img=,600,600]https://ng1.17img.cn/bbsfiles/images/2024/06/202406130920218958_6121_5336215_3.jpg!w600x600.jpg[/img]

  • 行星式搅拌机助力耐火材料“加速跑”成为拉动行业搅拌的新引擎

    行星式搅拌机灵活的对耐火材料进行搅拌,在处理中可以发挥高匀质的搅拌效果,进行高性能自动化的操作,青岛迪凯行星式搅拌机在混料过程中通过变频调速装置,利用不同的转速和结合剂的作用可以生产出均匀一致的颗粒料,不仅仅是耐火材料行业,针对化工、陶瓷和混凝土等行业领域同样也是一款理想的搅拌设备。高品质耐火材料搅拌机——迪凯行星式搅拌机的技术性指标要求高,在耐火材料的处理中,其混炼源于搅拌轴的搅拌以及其他各项装置之间的相互配合,在物料处理中能够保证耐材质量不被破坏。[img=,690,872]https://ng1.17img.cn/bbsfiles/images/2024/03/202403230944250622_6747_5336215_3.jpg!w690x872.jpg[/img]

  • 浅析:耐火材料搅拌机节省设备支出成本的关键是什么

    你可能不知道从运行成本考虑,青岛迪凯耐火材料搅拌机——立轴行星式搅拌机的搅拌叶片采用平行四边形的设计结构,当搅拌磨损到一定程度时,可以旋转180度,继续重复使用,耐火材料搅拌机——立轴行星式搅拌机大大降低了客户的配件成本,搅拌臂采用夹块式结构设计,尽可能提高叶片的使用率。立轴行星式搅拌机流线型设计搅拌臂,降低了物料报臂的几率,并且设计的耐磨护套,更是大大延长了搅拌臂的使用寿命,进而延长了耐火材料搅拌机的使用寿命,正是这些小细节上的改进才是节省耐火材料搅拌机设备支出成本的关键。[img=,600,600]https://ng1.17img.cn/bbsfiles/images/2024/04/202404170955395778_2996_5336215_3.jpg!w600x600.jpg[/img]

  • 行星式搅拌机提高混合搅拌“质量度”,助力耐火材料行业发展

    青岛迪凯行星式搅拌机独特的行星搅拌原理,能够在短时间内将耐火材料各种组分均匀混合。无论是高密度的骨料,还是轻质的添加剂,行星式搅拌机都能确保各组分在混合过程中高匀质搅拌效果,避免因混合不均导致的产品质量问题。行星式搅拌机这种高效的混合能力,显著提高了耐火材料的整体质量度,满足了高温环境下对搅拌物料的严苛要求。耐火材料搅拌机——行星式搅拌机配备了先进的自动化控制系统,操作简单,易于上手。青岛迪凯特殊设计的控制系统不仅可以实现对耐火材料混合过程的精确控制,还能自动调整混合参数,确保每次混合都能达到预期效果,行星式搅拌机混合效率高升,搅拌周期短,经济优势明显。[img=,600,600]https://ng1.17img.cn/bbsfiles/images/2024/06/202406130917449493_1097_5336215_3.jpg!w600x600.jpg[/img]

  • 隔热材料等效导热系数与导热系数的区别以及高温大温差条件下的试验验证

    隔热材料等效导热系数与导热系数的区别以及高温大温差条件下的试验验证

    [color=#ff0000]摘要:针对目前隔热材料导热系数测试中存在的使用条件和测试条件不一致,以及隔热材料导热系数测试方法选择不合理的问题,本文对低密度隔热材料导热系数测试技术进行了分析,介绍了等效导热系数和导热系数基本概念,介绍了如何选择合理的测试方法,并用试验测试数据验证了不同测试方法所得的等效导热系数和导热系数之间的差异。[/color][align=center][color=#ff0000]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/align][size=18px][color=#ff0000]一、问题的提出[/color][/size]在高低温隔热防护领域中,经常会听到防热结构设计人员和隔热材料使用机构提出隔热材料无法满足使用要求的问题,经常会出现隔热性能样品测试结果与实际隔热考核试验效果相差巨大的现象。在隔热材料实际应用中,如果按照隔热材料导热系数测试结果进行设计,经常会出现防隔热系统根本无法达到隔热设计要求的现象。出现这种现象主要是由于以下几方面的原因:(1)隔热材料使用条件和测试条件出现严重偏离。(2)隔热材料导热系数测试方法选择不合理。为解决上述问题,本文将针对当前低密度隔热材料导热系数测试技术进行分析,介绍合理的测试方法选择,并用试验测试演示不同测试方法所得的等效导热系数和导热系数之间的差异。[size=18px][color=#ff0000]二、等效导热系数、导热系数及其测试方法分析[/color][/size]各种隔热材料在实际应用中,一般都会在材料的隔热厚度方向上形成较大温差,即隔热材料的一面面对高温热源或低温冷源,隔热材料另一面经隔热后的温度越接近于环境温度(如室温)越好。在高温防隔热系统中,这种温差往往有几百至上千度;在低温绝热系统中,这种温差也会有200~300℃左右(如液氮和液氦冷源)。另外在隔热过程中,隔热材料内部的传热形式主要有导热、辐射和对流三种传热形式,特别是对于低密度多孔隙的隔热材料,冷热面之间的温差越大,辐射和对流的作用越明显。因此,为了准确测试表征隔热材料的实际隔热性能,需要在隔热材料厚度方向上模拟出与实际应用接近的大温差后再进行测试,这种大温差条件下测试得到的导热系数包含了导热、辐射和对流三种传热形式的综合作用,这种包含了复杂综合传热效果的导热系数称之为等效导热系数(effective thermal conductivity),或表观导热系数(apparent thermal conductivity)。目前大多数隔热材料导热系数测试过程中,并未在隔热材料厚度方向上形成较大温差,一般是将温差控制在10~40℃范围内,此时获得的测试结果为导热系数(thermal conductivity),也称之为真导热系数(ture thermal conductivity),主要包括隔热材料内的固体材质和气体的导热系数之和,这种较小温差使得隔热材料内存在的辐射和对流热传递可以忽略不计。真导热系数的另外一个显著特点是与被测样品的厚度无关,即测试不同厚度的相同隔热材料样品应得到相同的真导热系数,此特点常用于考核导热系数测试仪器的准确性。由此可见,由于小温差测试中不包含辐射和对流传热,这使得测试相同隔热材料测试时,大温差下测试得到的等效导热系数数值往往会普遍大于小温差下测试得到的真导热系数。因此,如果用真导热系数来进行防隔热系统的设计,自然无法得到合理的隔热设计效果。总之,为了得到隔热材料的真实准确数据,隔热材料的导热系数测试条件必须尽可能的与实际隔热温差接近。依上所述,在隔热材料导热系数测试过程中,要根据隔热材料实际应用情况,导热系数测试设备要在被测样品厚度方向上建立相应的大温差或小温差,并在所建立的温差条件下进行测试。因此必须对测试方法和测试设备进行合理的选择,这样才能得到合理的隔热性能测试结果。以下为几种常用于低密度隔热材料导热系数表征的测试方法以及它们的相应温差条件说明。(1)稳态保护热板法:稳态保护热板法是目前导热系数测量精度最高的一种稳态测试方法,也是一种绝对测试方法,其典型标准为GB/T 10294和ASTM C177,测试温度范围可以覆盖-160℃~600℃。由于这种方法在被测样品厚度方向上只能形成20~30℃的小温差,所以测试得到的是真导热系数。保护热板法适合测试导热系数小于1W/mK的各种低导热防隔热材料,但对于超低导热系数(0.01W/mK)测试中,准稳态法的表现显着尤为突出,这主要是因为准稳态法具有从低温至高温的很宽泛测试温度范围,并能测试大温差下的等效导热系数,同时配套的校准技术相对简单,并具备多参数(导热系数、热扩散系数和比热容)测试能力和和更快的测试效率,另外准稳态法测试设备具有相对较低的造价。(2)对于具有超低导热系数(0.01W/mK)的绝热材料,其常温至低温下导热系数测试推荐采用蒸发量热计法,一方面是因为这种方法灵敏度和准确度都非常高,另一方面是可以测试大温差下的等效导热系数。[size=18px][color=#ff0000]三、等效导热系数和导热系数测试对比[/color][/size]为了更直观的说明和了解等效导热系数与导热系数之间的区别,我们分别对石墨毡隔热材料在高温和真空下分别采用不同稳态热流法法和稳态防护热板法进行了测试验证。样品:石墨毡,样品尺寸300mm×300mm×30mm,密度91.7kg/m3。测试环境:真空环境,真空度始终控制在100Pa左右。测试方法和设备:(1)稳态保护热板法(ASTM C177),测试设备为德国耐驰公司的GHP 456,如图1所示。样品热面最高温度为620℃,样品厚度方向上的温差为20℃。(2)稳态热流计法(ASTM C518),测试设备为上海依阳公司的TC-HFM-1000,如图2所示。样品热面最高温度为1000℃,冷面温度控制在50℃以上,最大温差980℃。[align=center][img=大温差下测试等效导热系数,500,333]https://ng1.17img.cn/bbsfiles/images/2022/05/202205171059034061_2954_3384_3.jpg!w690x460.jpg[/img][/align][align=center]图1 德国耐驰公司GHP 456导热测试设备[/align][align=center][/align][align=center][img=大温差下测试等效导热系数,500,388]https://ng1.17img.cn/bbsfiles/images/2022/05/202205171059379893_798_3384_3.jpg!w500x388.jpg[/img][/align][align=center]图2 上海依阳公司TC-HFM-1000导热测试设备[/align]采用热流计法和保护热板法得到的测试结果如表1所示,绘制成拟合曲线如图3所示。[align=center]表1 采用热流计法和保护热板法测试石墨毡导热系数结果[/align][align=center][img=大温差下测试等效导热系数,690,220]https://ng1.17img.cn/bbsfiles/images/2022/05/202205171059504021_3983_3384_3.png!w690x220.jpg[/img][/align][align=center][img=大温差下测试等效导热系数,690,421]https://ng1.17img.cn/bbsfiles/images/2022/05/202205171100113433_2123_3384_3.png!w690x421.jpg[/img]图3 石墨毡等效导热系数和导热系数测试结果对比图[/align]从上述测试结果可以明显看出,保护热板法在20℃小温差下测得的导热系数随温度变化基本呈线性关系。热流计法在大温差下测得的等效导热系数随温度变化呈曲线关系,并随着温差增大,导热系数快速增大,其中的热辐射传热效应非常明显。在500℃平均温度下,等效导热系数要比真导热系数增大了将近60%多。由此可见,如果在防隔热系统中采用的是导热系数而非等效导热系数进行设计,则会出现严重错误。[size=18px][color=#ff0000]四、总结[/color][/size]为了满足实际工程应用中对隔热材料的隔热性能准确测试表征,需特别注意以下内容:(1)根据隔热材料的设计和应用场景,选择合理的测试方法,相应测试方法和测试设备要求具备模拟隔热材料实际应用中高温下的大温差能力。(2)为同时实现大温差和尽可能高的测试温度,推荐的测试方法为热流计法和准稳态法。(3)对于超低导热系数绝热材料(如气凝胶类隔热材料)的测试,要仔细考量和解决热流计的校准问题和准稳态法中量热计的漏热问题。(4)稳态保护热板法是目前热流计校准唯一较准确的方法,为了实现对超低导热系数测试中更小热流的准确测量,势必要大幅度降低保护热板法校准设备的微小漏热问题,但此问题的解决难度大,现有技术基本已经达到了极限,从而造成目前所有超低导热系数测试普遍偏高的现象。因此迫切需要在新技术上有所突破,解决微小漏热难题,特别是在高灵敏度热流计和微小热流精密校准方面取得突破。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 气凝胶隔热材料超低导热系数测试中存在的问题及解决方案

    气凝胶隔热材料超低导热系数测试中存在的问题及解决方案

    [size=14px][color=#ff0000]摘要:针对气凝胶高效隔热材料低导热系数测试中存在的测试方法选择不合理、测试设备精度不高和测试条件偏离使用条件等问题,本文分析了目前气凝胶隔热材料热导率测试的常用方法及其适用范围,列举了各种测试方法的测试极限以及不合理使用的具体案例,重点介绍了实现低热导率准确测量的注意事项和具体措施,最后提出了今后进一步提高测量精度的改进方向。[/color][/size][align=center][size=14px][color=#330033]~~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/size][/align][size=18px][color=#ff0000]一、问题的提出[/color][/size][size=16px]作为一种低密度和低导热系数的高效隔热材料,气凝胶隔热材料越来越得到重视和广泛应用,其导热系数测试的准确性往往决定了隔热系统的隔热效果和造价。从目前的市场反馈来看,气凝胶隔热材料导热系数测试中普遍存在测试不准确问题,这些问题主要归结为以下原因:(1)测试方法选择不合理。(2)测试设备达不到测试低导热系数的精度要求。(3)测试条件与实际使用条件严重偏离,导热系数测试结果无法代表实际隔热性能。针对上述问题,本文将介绍目前气凝胶隔热材料导热系数测试的常用方法,并对这些测试方法进行分析和特点介绍,并列举了各种测试方法的测试极限以及不合理使用的具体案例,最后重点介绍实现低导热系数测试准确性的具体措施和今后的改进方向。[/size][size=18px][color=#ff0000]二、低导热系数测试方法分析[/color][/size][size=16px]所谓低导热系数,一般是指0.001~0.1W/mK的导热系数。在高温下气凝胶隔热材料的导热系数一般不会超过0.1W/mK,在低温(液氮和液氦)和高真空环境下,有些气凝胶及其复合隔热材料会达到0.001W/mK甚至更低的超低导热系数。本文所做的分析主要是针对上述低导热系数范围内的测试方法。对于低导热系数的测试,目前常用的测试方法主要分为稳态法和瞬态法两类,如表1所示。[/size][align=center][size=16px]表1 低导热系数常用测试方法汇总[/size][/align][align=center][size=14px][img=表1 低导热系数常用测试方法汇总,690,288]https://ng1.17img.cn/bbsfiles/images/2022/05/202205201133028253_3023_3384_3.png!w690x288.jpg[/img][/size][/align][size=14px][/size][size=16px]对于隔热材料而言,特别是气凝胶复合材料这类低密度隔热材料,其内部的传热形式主要有导热、辐射和对流三种传热形式。在不同温度、温差、气压和气氛条件下,这三种传热形式所起的作用不同。以温度变量为例并假设在真空环境下不考虑气体对流传热,低密度隔热材料中会存在固体和气体导热以及辐射传热形式,它们各自的导热系数以及多种传热形式复合作用后的总体等效导热系数随温度的变化,如图1所示。由此可见,在不同的实际应用条件下,低密度隔热材料中存在着不同的传热形式以及相应的导热系数,这决定了测试方法的选择。[/size][align=center][size=14px][img=气凝胶绝热材料超低热导率测试,640,395]https://ng1.17img.cn/bbsfiles/images/2022/05/202205201138118496_2516_3384_3.jpg!w640x395.jpg[/img][/size][/align][align=center][size=14px]图1 固体、气体和辐射传热对应的导热系数分量以及复合作用后的等效导热系数随温度的变化[/size][/align][size=14px][/size][size=16px]测试方法和相应测试设备的选择主要依据以下原则:(1)测试方法要满足测量精度要求,导热系数越小所要求的测量精度越高。(2)测试方法具有较大温差的测试能力,大温差往往是隔热材料实际使用中的正常状态。(3)测试方法具有较快的测试速度,以满足工程应用中的高通量测试要求。(4)测试设备要具备实现各种试验条件(如温度、温差、气压和气氛等)的能力,同时具备保障测量精度的能力。按照上述原则,我们对表1中的常用测试方法进行分析,并得出如下结果:(1)气凝胶隔热材料普遍应用于大温差的隔热或隔冷,所选择的测试方法就需要具备大温差的测试能力。从表1中的各种测试方法温差可以看出,瞬态法都无法实现大温差条件,因此在气凝胶隔热材料的大温差导热系数测试中不建议使用瞬态法。(2)尽管无法进行大温差下的等效导热系数测试,但瞬态法在小温差下可以测试隔热材料中不含热辐射传热分量的固相导热系数和[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]导热系数合成后的等效导热系数。瞬态法的另一个特点是还可以测试热扩散系数和比热容。从标准测试方法和相关文献可以看到[1,2],瞬态法对小于0.03W/mK的低导热系数测试存在较大误差,测试结果往往比稳态法测量值偏大约35%~40%,这主要是因为低导热系数测试过程中的探测器引线漏热和探测器热容影响所占比重变的不再可以忽略不计,需要尽可能减小探测器热容并进行复杂的修正计算[2]。(3)在表1所示的稳态法中,只有保护热板法无法进行大温差下的导热系数测量。但由于保护热板法是目前测量精度最高的小温差下导热系数测试方法,也是目前唯一能高精度校准稳态热流计法中热流传感器的方法,因此要真正高精度测量隔热材料的超低导热系数还是离不开保护热板法。为了实现超低导热系数(0.01W/mK)测试中,本文推荐采用准稳态法,这主要是因为准稳态法具有从低温至高温的很宽泛测试温度范围,并能测试大温差下的等效导热系数,同时配套的校准技术相对简单,并具备多参数(导热系数、热扩散系数和比热容)测试能力和更高的测试效率,另外准稳态法测试设备具有相对较低的造价。(5)对于具有超低导热系数(0.01W/mK)的绝热材料,其常温至低温下导热系数测试推荐采用蒸发量热法,一方面是因为这种方法的灵敏度和准确度都非常高,可以准确测量导热系数小于0.001W/mK的绝热材料,另一方面是可以测试大温差下的等效导热系数。但需要注意的是,蒸发量热法作为一种防护热板法的变形,同样需要精密的护热措施最大限度减小侧向漏热,否则测量精度也无法保证。[/size][size=18px][color=#ff0000]五、总结[/color][/size][size=16px]对于气凝胶这类绝热材料,实现超低导热系数的准确测试需采取以下措施和注意事项。(1)根据隔热材料设计和高低温应用场景选择合适的测试方法,测试方法和测试设备要具备模拟实际应用中的高低温温差能力。推荐的测试方法为热流计法、准稳态法和蒸发量热计法。(2)对于超低导热系数绝热材料测试,要确认测试仪器的低导热系数测试能力,要仔细考量和解决稳态测试设备中的漏热问题以保证超低导热系数测量精度。(3)稳态法测试中的漏热问题技术难度大,现有技术基本已经达到了极限,无法很好的解决微小漏热和超低导热系数准确问题,因此迫切需要在新技术上有所突破,解决微小漏热难题,特别是在高灵敏度热流计和微小热流精密校准方面取得突破。[/size][size=18px][color=#ff0000]六、参考文献[/color][/size][size=16px][1] Colinart T, Pajeot M, Vinceslas T, et al. How Reliable is the Thermal Conductivity of Biobased Building Insulating Materials Measured with Hot Disk Device?[C]//Construction Technologies and Architecture. Trans Tech Publications Ltd, 2022, 1: 287-292.[2] Zheng Q, Kaur S, Dames C, et al. Analysis and improvement of the hot disk transient plane source method for low thermal conductivity materials[J]. International Journal of Heat and Mass Transfer, 2020, 151: 119331..[3] Fesmire J E, Ancipink J B, Swanger A M, et al. Thermal conductivity of aerogel blanket insulation under cryogenic-vacuum conditions in different gas environments[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2017, 278(1): 012198.[4] Hoseini A, McCague C, Andisheh-Tadbir M, et al. Aerogel blankets: From mathematical modeling to material characterization and experimental analysis[J]. International Journal of Heat and Mass Transfer, 2016, 93: 1124-1131.[5] Adams J, Gangloff J, Stetson N, et al. Integrated Insulation System for Cryogenic Automotive Tanks (iCAT)[R]. Vencore Services and Solutions, Inc., Reston, VA (United States), 2018.[6] Coffman B E, Fesmire J E, White S, et al. Aerogel blanket insulation materials for cryogenic applications[C]//AIP Conference Proceedings. American Institute of Physics, 2010, 1218(1): 913-920.[7] Ilardi V, Busch L N, Dudarev A, et al. Compression and thermal conductivity tests of Cryogel Z for use in the ultra-transparent cryostats of FCC detector solenoids[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2020, 756(1): 012005.[/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=14px][/size]

  • 采用瞬态平面热源法测量几种典型隔热材料的热导率

    采用瞬态平面热源法测量几种典型隔热材料的热导率

    摘要:采用瞬态平面热源法热导率测试系统对硅酸钙隔热材料、纳米超级隔热材料、低密度刚性隔热瓦和纤维增强碳气凝胶隔热材料四种比较典型隔热材料在常温常压下进行了热导率测试,目的是准确确定几种典型隔热材料在常温常压下的热导率数值,同时便于与其它热导率测试方法和测试设备进行对比,对其它测试方法和测试设备测量隔热材料热导率的测试结果做出基本的评判。1. 测试目的通过采用美国国家标准与技术研究院(NIST)的标准参考材料泡沫聚苯乙烯板SRM 1453对瞬态平面热源法热导率测试设备进行校准后,验证了瞬态平面热源法热导率测试设备对于均质低导热材料(热导率0.03W/mK量级)的热导率测试具有很高的测量精度,由此选取了几种典型隔热材料采用瞬态平面热源法进行测量,主要为了达到以下目的:(1)准确确定几种典型隔热材料在常温常压下的热导率数值;(2)便于与其它热导率测试方法和测试设备进行对比,对其它测试方法和测试设备测量隔热材料热导率的测试结果做出基本的评判。2. 典型隔热材料试样所选择的四种典型隔热材料分别为硅酸钙隔热材料、纳米超级隔热材料、低密度刚性隔热瓦和纤维增强碳气凝胶隔热材料。其中每种材料有两块试样,以下是这四种典型隔热材料每块试样的尺寸和密度资料。2.1. 硅酸钙隔热材料图2-1所示为1号试样,长宽厚分别为298×297×25.30mm,重量1720g,密度0.76g/cm3。图2-2所示为2号试样,长宽厚分别为298×298×25.15mm,重量1669g,密度0.75g/cm3。http://ng1.17img.cn/bbsfiles/images/2016/02/201602141214_584375_3384_3.jpg图2-1 硅酸钙隔热材料1号试样http://ng1.17img.cn/bbsfiles/images/2016/02/201602141214_584376_3384_3.jpg图2-2 硅酸钙隔热材料2号试样2.2. 纳米超级隔热材料图2-3所示为1号试样,长宽厚分别为300×310×19.85mm,重量539g,密度0.29g/cm3。图2-4所示为2号试样,长宽厚分别为300×300×19.70mm,重量538g,密度0.30g/cm3。http://ng1.17img.cn/bbsfiles/images/2016/02/201602141214_584377_3384_3.jpg图2-3 纳米超级隔热材料1号试样http://ng1.17img.cn/bbsfiles/images/2016/02/201602141214_584378_3384_3.jpg图2-4 纳米超级隔热材料2号试样2.3. 低密度刚性隔热瓦图2-5所示为1号试样,长宽厚分别为300×300×19.71mm,重量435g,密度0.25g/cm3。图2-6所示为2号试样,长宽厚分别为300×300×16.82mm,重量445g,密度0.25g/cm3。http://ng1.17img.cn/bbsfiles/images/2016/02/201602141214_584379_3384_3.jpg图2-5 低密度刚性隔热瓦1号试样http://ng1.17img.cn/bbsfiles/images/2016/02/201602141214_584380_3384_3.jpg图2-6 低密度刚性隔热瓦2号试样2.4. 纤维增强碳气凝胶隔热材料图2-7所示为1号试样,长宽厚分别为295×290×18mm,重量405g,密度0.26g/cm3。图2-8所示为2号试样,长宽厚分别为295×290×21mm,重量449g,密度0.25g/cm3。 http://ng1.17img.cn/bbsfiles/images/2016/02/201602141214_584381_3384_3.jpg图2-7 纤维增强碳气凝胶隔热材料1号试样http://ng1.17img.cn/bbsfiles/images/2016/02/201602141214_584382_3384_3.jpg图2-8 纤维增强碳气凝胶隔热材料2号试样3. 测试结果3.1. 硅酸钙隔热材料热导率测试结果将硅酸钙隔热材料的1号和2号试样夹持住瞬态平面热源法探头并采用两个铜块压紧。采用C5501探头进行测量,功率25mW,加热时间40s,室温23℃。探头分别放置在如图3-1所示的八个位置上分别进行测量,每个位置重复测量2次,由此获得试样不同位置处的热导率,取平均后得到这两个试样的热导率平均值,测试结果如图3-1所示。 http://ng1.17img.cn/bbsfiles/images/2016/02/201602141224_584383_3384_3.png图3-1 硅酸钙隔热材料试样不同测试位置示意图和热导率测试结果3.2. 纳米超级隔热材料热导率测试结果及厂家数据对比将纳米超级隔热材料的1号和2号试样夹持住瞬态平面热源法探头并采用两个铜块压紧。采用C5501探头进行测量,功率3mW,加热时间160s,室温22℃。探头分别放置在如图3-2所示的四个位置上分别进行测量,每个位置重复测量2次,由此获得试样不同位置处的热导率,取平均后得到这两个试样的热导率平均值,测试结果如图3-2所示。http://ng1.17img.cn/bbsfiles/images/2016/02/201602141224_584384_3384_3.png图3-2 纳米超级隔热材料试样不同测试位置示意图和热导率测试结果[co

  • 【资料】碳化硼在含碳耐火材料中的作用!

    碳化硼主要用于含碳耐火材料中起抗氧化作用,可以使产品致密化,阻止含碳耐火材料中碳的氧化,同时在1000℃~1250℃的时候,Al2O3与B2O3发生反应,生成9Al2O32B2O3的柱状晶体,分布在耐火材料的基质和间隙里,从而降低气孔率,提高中温强度,且生成的9Al2O32B2O3晶体,体积膨胀,可愈合体积收缩,减少裂纹。  一般应用于烧成大滑板,Al2O3-SiC-C铁沟浇注料,以及一些高档的不烧含碳耐火材料和Al2O3-C耐火材料,MgO-C质的耐火材料一般不用,因为硼元素的介入会影响到耐火材料的使用寿命。  可以用SiC微粉,金属Al粉,金属Si粉,ZrB6等取代起抗氧化作用,铝材料可用少量硼酸替代,但是要特别注意量的控制。

  • 【分享】【申请精华】HLJ-DF 耐火材料实验室仪器配置与建设情况

    【分享】【申请精华】HLJ-DF 耐火材料实验室仪器配置与建设情况

    一.实验室简介实验室平时主要做耐火材料的气孔率、体积密度、常温耐压强度、高温耐压强度、高温抗折强度、高温蠕变率、耐火度、荷重软化温度、抗热震性、重烧线变化率、抗氧化性、树脂粘度、化学成分(三氧化二铝、二氧化硅、氧化铁、氧化镁、氧化钙、碳)含量等。二.仪器配置实验室内都配置1.显气孔体密测定仪(XQK-02),用于测试耐火材料体积密度、显气孔率及真气孔率,采用专用真空容器。2.高温耐压试验机,用于测试各类耐火材料高温耐压强度。3.高温抗折试验机(HMOR-02P),用于测试含碳耐火制品或其它耐火材料的高温抗折强度。常用温度1400℃,最高1450℃,最大负荷10KN;试样尺寸、数量:25×25×130、6个/试验;40×40×160、4个/试验。4.高温荷软蠕变仪(HRY-03P),用于测定各类耐火材料的荷重软化温度及压蠕变。温度测量范围:荷软1700℃ 蠕变1600℃,变形测量精度0.1 %,加 荷 范 围50~1100N,控 温 精 度±1℃,杠杆-直压式加荷。5.耐火度试验炉(NHD-02),检测耐火材料的耐火度性能,常用温度1800℃,最高1900℃,锥台回转速度3r/min,加热炉膛尺寸φ85×80 mm,升温速度 0~25℃/min,额定功率36Kw(380V两相)。6.高温荷软测试仪(HRY-02),用于定型及不定型耐火材料荷重软化温度测定。测量范围:变形≤10mm,温度≤1700℃,升温速度 0~15℃/min,变形测量精度0.1 %,采用直压式加荷,加荷准确。非示差结构,加 荷 范 围 50~1100N;Y为2100智能器测控,一次试验可同时自动测定5个荷软点温度。7.抗热震试验机(KRZ-501),用于测试各类定型耐火制品抗急冷急热性能,测试温度1100 ℃,最高炉温1300℃,升温速度:0~15℃/min;保温控温精度±1℃,炉膛尺寸(mm) 350×200×150,水槽容积350×400×200mm,手动型、一个机械手可同时夹持三块标准砖试验。8.重烧试验炉(CSC-16-18Y),耐火材料线收缩测试专用加热炉,均温性能高于一般普通电炉,双层炉壳设计,炉壁表面温升小于60℃。炉膛尺寸510×240×180mm,使用温度1600℃,升温速度:0~10℃/min;保温控温精度±0.3℃。9.抗氧化试验炉(KYH-16P),用于测试含碳耐火材料的高温抗氧化性能,智能仪表测控,程序升温,保温停炉。炉膛尺寸500×240×180mm配专用鼓风机,炉内氧化气氛可控。10.X-荧光分析仪(S4)。用于耐火材料的化学成分(三氧化二铝、二氧化硅、氧化铁、氧化镁、氧化钙)等含量的检测。三.其它需要检测的指标很多,需要的检测设备较多,占用10个房间(300平方米),仪器工作时需要加热、加压,可能有震动和灰尘,仪器设备安放在了一楼。资料下载:http://www.instrument.com.cn/download/search.asp?keywords=qzcp&sel=admin_name&SN=&Submit=%C1%A2%BC%B4%B2%E9%D1%AF [img]http://ng1.17img.cn/bbsfiles/images/2007/01/200701160650_39045_1627140_3.jpg[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制