当前位置: 仪器信息网 > 行业主题 > >

耐蚀高温镍合金

仪器信息网耐蚀高温镍合金专题为您整合耐蚀高温镍合金相关的最新文章,在耐蚀高温镍合金专题,您不仅可以免费浏览耐蚀高温镍合金的资讯, 同时您还可以浏览耐蚀高温镍合金的相关资料、解决方案,参与社区耐蚀高温镍合金话题讨论。

耐蚀高温镍合金相关的资讯

  • 宁波材料所在高温非晶合金的腐蚀性能方面取得重要进展
    非晶合金具有组织均一、高强度、高硬度、耐磨蚀、热膨胀系数小、纳米级表面结构复写等特性,在其过冷液相区可快速实现从宏观至微米、纳米的多尺度一体化热塑成型,是制备高精密模具的理想材料。然而,传统非晶合金的玻璃转变温度低,高温强度及热稳定性差,使役温度难以超过600K,不能满足目前光学玻璃模压成型温度的要求。研发高温高强高稳定性块体非晶合金(简称“高温非晶合金”)有望将光学玻璃模压模具的磨削加工转变为热塑加工,突破磨削加工无法制备微纳米表面结构的先天限制,孕育变革性的光学玻璃元件“微纳模压成型”技术。基于此,在国家重点研发计划变革性技术关键科学问题专项的支持下,中国科学院宁波材料技术与工程研究所和中国科学院物理研究所、燕山大学、深圳大学、北京航空航天大学联合开展了“高温高强高热稳定性块体非晶合金新材料与应用基础”(项目编号:2018YFA0703600)的研究工作。其中,中科院宁波材料所非晶合金磁电功能特性团队主要负责课题“高温非晶合金的氧化与腐蚀机理研究”。近期,在王军强研究员和霍军涛研究员的指导下,该组课题生杨晓东等人围绕前期项目组开发的Ir-Ni-Ta-(B)高温非晶合金[Nature 569 (2019) 99–103]的腐蚀行为开展了深入系统的研究。研究发现在酸性溶液中Ir-Ni-Ta-(B)高温非晶合金相比于其它合金体系拥有更好的耐蚀性,归因于其可以形成由金属Ir以及Ni和Ta的氧化物组合而成的相对稳定的钝化膜。这种钝化膜具有较好的保护性,从而表现出很强的耐点蚀能力,因而腐蚀多发生于缺陷处。另外,研究发现微量添加类金属B元素可以显著提高Ir-Ni-Ta非晶合金的耐蚀性,Ir-Ni-Ta-B样品钝化电流要比Ir-Ni-Ta样品降低了一个数量级。在Ir-Ni-Ta和Ir-Ni-Ta-B非晶合金表面形成的钝化膜具有几乎相同的成分,但具有不同的厚度和孔密度。这些差异是由添加B引起的,B促进钝化膜的快速形成,同时抑制活性金属的溶解。金属Ir的表面富集和[BO3]3-的吸附进一步提高了Ir-Ni-Ta-B非晶合金的耐蚀性。相关结果表明,可以通过电化学钝化处理优先生成具有保护性的钝化膜以增加Ir基非晶合金作为模具材料的耐蚀性能,为增强高温高强高稳定性块体非晶合金在严苛服役环境中的使用寿命提供了重要实验基础和理论支撑。相关结果发表在Corrosion Science 200 (2022) 110227(https://doi.org/10.1016/j.corsci.2022.110227)。以上工作成果得到国家重点研发计划(2018YFA0703604、2018YFA0703602),国家自然科学基金(52001319、52071327、51922102、52171148),中科院青促会 (2019296), 浙江省自然科学基金 (LR22E010004、LR18E010002), 宁波市2025科技创新项目(2019B10051)和宁波市自然科学基金(202003N4354)等项目的资助。图1 左图为Ir-Ni-Ta-(B)非晶态合金与其他合金体系的晶化活化能对比图;右图为不同材料在硫酸溶液中的点蚀电位和钝化电流对比图图2 各种离子和电子在硫酸溶液中的传输和钝化膜形成示意图
  • 兰州化物所高熵合金基高温太阳能光谱选择性吸收涂层研究获进展
    高熵合金通常被定义为含有5个以上主元素的固溶体,并且每个元素的摩尔比为5~35%,具有优异的力学、耐高温、耐磨、耐蚀、抗辐照等性能,在较多领域展现出发展潜力。中国科学院兰州化学物理研究所环境材料与生态化学研究发展中心副研究员高祥虎、研究员刘刚带领的科研团队,通过组分调控、构型熵优化和结构设计,制备出系列高熵合金基高温太阳能光谱选择性吸收涂层。  前期,研究人员设计出一种由红外反射层铝、高熵合金氮化物、高熵合金氮氧化物和二氧化硅组成的彩色太阳能光谱选择性吸收涂层,其吸收率可达93.5%,发射率低于10%。研究人员发现,单层高熵合金氮化物陶瓷具有良好的本征吸收特性,因此制备出结构简单的涂层。以高熵合金氮化物作为吸收层,SiO2或Si3N4作为减反射层得到的涂层吸收率可达92.8%,发射率低于7%,并可在650°C的真空条件下稳定300小时。  近期,为进一步提升涂层吸收能力,研究人员选用不锈钢作为基底,低氮含量高熵合金薄膜作为主吸收层,高氮含量高熵合金薄膜作为消光干涉层,SiO2、Si3N4、Al2O3作为减反射层,形成了从基底到表面光学常数逐渐递减的结构(图1)。研究通过光学设计软件(CODE)进行优化,利用反应磁控溅射的方法制备,提高了制备效率。涂层吸收率可达96%,热发射率被抑制到低于10%。研究人员通过时域有限差分法(FDTD)研究了涂层光吸收机制。长期热稳定性研究表明,高熵合金氮化物吸收涂层在600°C真空条件下,退火168小时后仍保持良好的光学性能;计算涂层在不同工作温度和聚光比的光热转化效率发现,当工作温度为550°C、聚光比为100时,涂层的光热转化效率可达90.1%。该图层显示出优异的光热转换效率和热稳定性(图2)。  研究人员将吸收涂层沉积在不同基底材料上制备的涂层依然保持优异的光学性能,并在铝箔上实现了涂层的大规模制备。对不同入射角的吸收谱图研究发现,吸收涂层在入射光角度为0-60°的范围内具有良好的吸收率。研究人员模拟太阳光对吸收器表面进行照射,在太阳光照射下,涂层表面的温度超过100℃,表明该材料在界面水蒸发研究领域具有重要应用价值。  相关研究成果发表在Journal of Materials Chemistry A、Solar RRL、Journal of Materiomics上。上述工作开发出兼具优异光学性能和耐高温性能的高温太阳能光谱选择性吸收涂层,拓展了高熵合金在新能源材料领域的功能应用。研究工作得到中科院青年创新促进会、中科院科技服务网络计划区域重点项目和甘肃省重大科技项目的支持。图1.光学模拟结合磁控溅射方法制备太阳能光谱选择性吸收涂层图2.光谱选择性吸收机制和热稳定性研究
  • 科普 || 做不锈钢的,为什么都需要一台手持XRF光谱仪
    现代社会,不锈钢越来越多地应用在我们的生活中,出现在我们生活的方方面面,那么你知道:什么是不锈钢吗?不同的不锈钢有什么用处吗?如何鉴别不锈钢的成分吗?不锈钢指耐空气、蒸汽、水等弱腐蚀介质和酸、碱、盐等化学浸蚀性介质腐蚀的钢。不同的不锈钢,合金成分含量不同,耐蚀性、耐高温氧化性能和机械强度也不同,应用范围也大不相同。过去鉴别不锈钢成分主要在实验室中,采取打磨等方式,费时费力,结果也不准确,随着科技的发展,现在比较快速检测不锈钢成分的方法是采用手持XRF光谱仪。手持XRF光谱仪具有检测速度快,操作简单,携带方便,无损检测等优势,可以随时随地快速分析不锈钢的合金牌号和成分含量!手持XRF光谱仪在不锈钢行业的应用手持XRF光谱仪可以检验不锈钢的组分,通过光谱强度精准地计算出不锈钢中所含各元素成分及含量是否达标,在多种行业中也能起到非常重要的检测作用。材料可靠性鉴别快速地材料可靠性检验,从简单地扣扳机开始。提供了元素成分和材料可靠性检验的快速而准确的分析。保证质量金属合金成分检测的质量保证和控制对产品的可靠性和安全性是十分重要的。从金属制品的生产到服务中心到分销商,从零件加工到成品组装,因为存在潜在的原材料的混料现象,所以会优先考虑快速无损的检测方式。废旧金属回收可提供从鈦合金到镍合金材料的即时无损的化学分析。具备出众的杂质和微量元素的分析性能。赛默飞世尔尼通手持式XRF光谱仪是一种专门用于现场的便携式光谱仪,能够快速、无损、准确地测出不锈钢材料的成分、含量和牌号信息,很适合用于现场大量原材料和产品的筛查和复检。在科技迅猛发展的今天,产品的功能越来越多元化。赛默飞世尔尼通手持式XRF光谱仪是手持金属分析仪市场的真正革新,它带来无与伦比的速度、简便性和耐用性,并能精准分析所有常规合金类型,为企业提供了完善的检测解决方案,助力中国不锈钢业的腾飞。
  • 手持式合金分析仪测定常用不锈钢304和316
    不锈钢指耐空气、蒸汽、水等弱腐蚀介质和酸、碱、盐等化学浸蚀性介质腐蚀的钢,又称不锈耐酸钢。不锈钢中不同的合金成分含量对不锈钢的耐蚀性、耐高温氧化性能和机械强度具有很大的影响。不锈钢基本合金元素有Fe、Cr、Ni、Mn、Mo、Cu、Nb、 Ti、 Si等元素,不同的配比成分用以满足不同用途对不锈钢组织和性能的要求。 以我们生产生活中常用的不锈钢304和316为例,介绍手持式合金分析仪在不锈钢牌号快速检测方面的应用。304不锈钢即18/8不锈钢,GB 牌号为0Cr18Ni9 316 不锈钢也是一-种得到较广泛应用的钢种,GB牌号为0Cr17Ni12Mo2,主要用于食品工业和外科手术器材,添加钼元素使其获得一种抗腐蚀的特殊结构。316中含有更高的镍和钼合金成分,导致316的价格比304高,在实际贸易时,不同种类的钢种难以快速区分,可能对用户带来重大损失,也会给带来一定的产品质量甚至安全隐患。在实际生产生活中由于316与304不锈钢在外观上不容易区分,常规的分析方法又比较繁琐耗时。手持式合金分析仪是一种专门用于现场的便携式光谱仪,能够快速、无损、准确地给出不锈钢材料的成分、含量和牌号信息,很适合用于现场大量原材料和产品的筛查和复检。 仪器简介赛谱司手持式合金分析仪x50是具有很高速元素分析能力的手持式合金分析仪,可满足多种金属基体材料以及土壤,塑胶,矿石等多种复杂材料的光谱化学成分分析需要。以其快速的分析速度,媲美实验室级的分析精度和便于操作的特点为同类型手持式光谱分析仪设立了新的标准。在大多数应用场合,如金属牌号鉴别,x50可以在区区两秒的分析时间内给出金属牌号以及实验室级的材料化学组成分析结果。而对于复杂基体分析如环境监测分析,x50无需复杂的样品前处理,即可取得同类设备无法取得的低的元素检测下限。 制样取样方法 该仪器对样品要求不高,可以直接对准样品表面进行测定。 测试结果 准确度(选取6块不锈钢样品进行准确度测试) 精密度(选取304和316两种牌号的不锈钢标样,进行多次重复测量(n=10),单次测量6s) 结论手持式合金分析仪x50能在2s内对不锈钢材料进行快速无损判别,方便简捷,精密度好,对样品制备要求较低,甚至可以不用样品前处理。本文中对304和316不锈钢的测试也说明了该仪器在实际鉴别中的应用效果是很好的,而且该方法与传统方法相比,省去了复杂的前处理过程,分析速度快,对样品表面无损,检测效率高,成本低,适合大量样品实时快速鉴别,以及原材料快速复检的生产需要。
  • 借助流化沙浴实现镍钛合金热定型
    借助流化沙浴实现镍钛合金热定型个#Cole-Parmer沙浴用于人体心脏支架工艺#镍钛合金是一种形状记忆合金,能将自身的塑性变形在某一特定温度下自动恢复为原始形状的特种合金,具有良好的可塑性,又称热定型能力,被广泛应用于多个领域包括医疗器械、航空航天、电子等领域。在医疗领域中,镍钛诺可以用于制造支架、人体植入设备,导丝、取石篮、过滤器、针头、牙科锉刀和其他手术器械。高纯度原料和熔融方法可以确保取得均匀的最终产品。行业常采用不同的热处理加工方法来实现最终产品成型。Cole-Parmer系列流化沙浴能够覆盖温度范围从-100°C到700°C的应用,因在超高温度下也能保持温度稳定性和均一性,并且保证温度精密,是镍钛诺热处理的理想选择。✦ ++Cole-Parmer流化沙浴床应用✦ +► 镍钛合金热处理热处理常用于设定镍钛合金的最终形状。如果镍钛合金有合理的冷加工量(大约30%或更多),400℃到 500℃的温度和适当的停留时间将产生一个直的、扁平的或成型的零件。术语“形状设置”通常用于此过程,成型零件是使用定制夹具创建的。一些常见的热处理方法是钢绞线退火(用于直线和管材)、箱式炉、熔盐浴和流化沙浴床。热处理的另一个目的是确定镍钛合金的最终机械性能和转变温度。材料经过冷加工后,适当的热处理将在材料中建立可能的最佳形状记忆或超弹性性能,同时保留足够的残余冷加工效果以抵抗循环过程中的永久变形。► 镍钛合金热处理的难点解决面临的难点:高温情况下的温度均一性合金的热处理需要在一个特定的稳定高温环境下进行,若是温度过高会导致产品的弹性功能丧失,而温度过低则会导致产品没有成功的坚硬化,不利于后期的使用处理难点解决:Cole-Parmer流化沙浴床可以在700℃的温度条件下,提供一个最高±0.01℃的高温环境浴,可以帮助客户轻松地完成各种温度条件下的高温热处理。Cole-Parmer流化沙浴床工作中► Cole-Parmer流化沙浴床更多应用推荐基本通用款高温度稳定性高流量清洗款1、温度探头校准—不规则形状传感器2、聚合物清洁快速清洗,限度地减少昂贵的生产设备停机时间,只需要烘箱1/3时间无刀具损伤、钢丝擦刷、刮伤损坏无人值守清洗,降低了劳动成本不会腐蚀磨料模具轻松处理断路板、模具、喷嘴及其他模具材料的小孔沙浴流化床的能源效率无需耗材、溶剂或任何其他有害的化学物质去除几乎所有的塑料,如PVC、PET、Flouropolymers和PEEK聚合物3、恒温加热—替代水浴盐浴等4、材料热处理—镍钛合金等
  • 不锈钢水槽“生锈”是否正常
    顾客:自己在购买的不锈钢水槽在使用不到半年的时间里,竟然就出现一片片的锈一样的东西,使用钢丝球都无法擦掉。当网友向这家不锈钢水槽客服反映此情况时,客服称不锈钢水槽易生浮锈。——读者顾先生 京华日报:根据顾先生反映的情况,记者首先以消费者的身份拨打了普乐美的客服电话,询问304不锈钢“生锈”是否正常,应该如何处理。客服听取了记者的描述,给出以下解释:“不锈钢有浮锈,是不锈钢行业的通病,也并非只有304不锈钢有这种问题,304不锈钢只是不易生锈,并不代表它不会生锈!” 商家:客服表示有可能是装修过程中,使用的一些强酸、强碱等化学物质附着在不锈钢表面,而造成水槽产生浮锈或者污点等情况。这种轻微的浮锈可使用百洁布加牙膏,顺着纹路擦拭即可清除,较重的浮锈则需要专业售后人员用百洁布清除。 京华日报:记者表示,顾先生家的水槽并非装修时安装的。售后人员之后给记者提供了北京地区的售后服务电话,称可预约售后人员进行上门清理。但客服同时表示,售后人员也是使用百洁布加牙膏进行擦拭,这是行业内公认的比较直接有效的方法。 商家:针对顾先生采用钢丝球无法清除“锈迹”的做法,客服人员表示,钢丝球可能会对不锈钢表面形成不可修复的伤害,一些腐蚀性的物质会通过这些划伤的表面对不锈钢造成氧化,形成浮锈,且很有可能无法去除。她提示,消费者在家尽量不要使用钢丝球清洗内壁。材质不达标易生锈 是否真如售后客服所讲不锈钢水槽易生浮锈呢?深圳莱雷科技工程师表示,大家经常听到的“304”、“201”、“203”等是不同钢材的型号。不同的型号代表着不锈钢所含的不同成分,含镍越高抗氧化性越高,越不易生锈。其中304不锈钢也称为食品级不锈钢,具有良好的耐蚀性,理论上来说是不易生锈的。由于没有看到顾先生家的情况,莱雷科技工程师表示无法准确判断是否“真生锈”。 莱雷科技工程师表示,如果称是304不锈钢,结果真生锈,很有可能消费者购买到的是不合格的304不锈钢,甚至是其他型号冒充的304型号的不锈钢。中国特钢企业协会不锈钢分会一位不愿意透露姓名的工作人员向京华时报记者表示,不锈钢生锈是有条件的,与大气介质环境相关。介质环境中氯离子浓度越高越易生锈(通俗地讲就是在高湿、高温、高盐情况下,不锈钢易生锈)。而在北京地区大气介质环境下,304不锈钢在正常使用的情况下应该不会生锈。如果消费者遇到购买304不锈钢生锈的情况,很有可能购买到的是不合格的304型号的不锈钢产品。还有一种可能是购买到的产品中锰含量超标,镍铬含量不达标的不锈钢,这样的不锈钢易造成生锈开裂,而严格意义上这样的产品都不能称之为不锈钢的产品。 业内人士提示: 1、消费者在选购时可使用磁铁吸附表面,若型号低的不锈钢可能会有微弱的磁性,而型号高的不锈钢如304则应该完全没有磁性。在挑选时,尽量选择重量相对较重的产品。莱雷科技工程师强调,材质成本不同,价格差别较大,切勿贪图便宜买到不合格产品。 2、在生产过程中,应当做好不锈钢产品的质量监督工作,控制好各个金属元素的含量。专家们表示,目前业内能够有效快速检测不锈钢产品质量的仪器是美国伊诺斯手持式合金分析仪DE2000.关于手持式合金分析仪DE2000:品 牌:OLYMPUS INNOV-X产 地:美国典型用户:钢厂、铝厂、废金属回收站分析元素:Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、W、Hf、Ta、Re、Pb、Bi、Zr、Nb、Mo、Ag、Sn、Sb、Pd、Cd的元素测量基体:DELTA在数秒钟之内即可生成合金的化学成份信息,这些金属和合金包含但不限于以下所列项目铝合金 镍合金 锻铝合金 异常合金镁合金 钛合金 铜合金 不锈钢工具钢 钴合金 贵金属 锆合金铬钼钢 镍/钴合金 锌合金 混杂合金特点:SmartSort智能筛选1、可为某些牌号使用自动延长检测时间的设置,从而可避免结果出现混乱。2、在快速检测的过程中最大限度地提高检测效率。在绝对必要时,自动对轻元素(镁、铝、硅、磷、硫)进行延时检测,这样就避免了对其它元素进行不必要的长时检测,并防止结果出现混乱。3、使得DELTA成为一款检测速度极快、结果精准的分析工具。 3、使用不当也会造成浮锈 莱雷科技工程师强调,消费者应该判断这到底是生锈还是浮锈、污渍。他表示,消费者在使用过程中的不当行为,也会造成不锈钢浮锈。如新装修房子管道或者装修材料中的强酸、强碱等物质残留在不锈钢水槽表面,日常使用的盐、食醋、茶渍等置于水槽中不及时清理容易在水槽壁附着造成污渍残留,也会让不锈钢看起来像生锈了一样。他表示,即便是304不锈钢,出现这种情况也很正常,可进行常规清洁和正确使用,无需过度担心产品问题。
  • 师昌绪:中国高温合金之父——2010年度获奖人
    人物小传:1920年生于河北省徐水县,1945年毕业于西北工学院矿冶系,1952年获美国欧丹特大学冶金博士学位,1955年回国。他是我国著名的物理冶金学家、材料科学家、战略科学家,中国科学院院士,中国工程院院士,第三世界科学院院士。曾任中科院金属所所长、中国科学院部技术科学部主任、国家自然科学基金委副主任、中国工程院副院长。  这是一位九旬老人的退休生活:每天上午8点钟离开家,9点钟到办公室,来访的客人有时一天好几拨,请他提供咨询意见的、指导科研工作的、题词的、写序的……几乎有求必应。此外,去年一年,北到哈尔滨、南到广州,他出了10次差,还在北京主持、参与了几十个学术会议。  这位乐此不疲、退而不休的老人,就是2010年度荣获国家科技奖最高奖的两位得主之一,我国高温合金材料的奠基人、在材料腐蚀、镁合金、碳纤维等多个领域贡献卓著的战略科学家师昌绪先生。  “我这样的生活很没意思,也不希望别人都像我一样。”师先生自我解嘲说:“但我已经是这么个定型了,在家反而苦恼,所以天天工作,生活很充实,觉得能对得起国家、民族,也就是这个样子。  “美国人做出来了,我们怎么做不出来?”  1月7日上午,在国家自然科学基金委(以下简称基金委)的一间会议室里,记者见到了91岁的师先生。虽然发已掉光、牙已全无,但老先生却背不驼、眼不花,步伐稳健、思维敏捷。听着后辈和老同事讲述他的往事,师先生时而会心一笑,时而神色凝重 他对数十年前的事情记得一清二楚,时不时插话补充两句 说到激动处,忍不住用手指敲得桌子“笃笃“直响。  “北京、上海,这两个地方任你选。”1955年6月,时任中科院技术科学部主任的严济慈,对刚从美国回来的师昌绪说。  结果,这位35岁的洋博士选择了沈阳,因为中科院金属所在沈阳。到金属所后,他被指定为鞍钢工作组的负责人,由物理冶金理论研究,转向炼钢、轧钢工艺开发。两年之后,师昌绪又服从国家需要,转任金属所高温合金研究组的负责人,带领一支小分队常驻抚顺钢厂,研制航空发动机的核心材料——高温合金。师昌绪带领科研人员奋力攻关,很快开发出代替镍基合金GH33的铁基高温合金GH135,用这种新材料制作的航空发动机关键部件——涡轮盘,装备了大量飞机。  更难啃的骨头在后面。1964年,中国的新型战斗机设计出来了,就差发动机用的耐高温高压涡轮叶片。此前,只有美国能研制这种空心叶片,国内的人都没见过。一天晚上八九点钟,航空材料研究所的副总工程师荣科找到师昌绪家里,问他能不能牵头搞空心叶片。“我也没见过空心叶片,也不知道怎么做。”师先生回忆说,“但我当时就想,美国人做出来了,我们怎么做不出来?中国人不比美国人笨,只要肯做,就一定能做出来。”  第二天,他与时任金属所所长的李薰先生研究决定接受这个任务。荣科听到这一消息自然高兴,但同时也“提醒”师昌绪:我可是立了军令状的,做不出来,我把脑袋割下来。师昌绪一笑:咱们就共同承担吧。  为啃下这块硬骨头,由师昌绪挂帅,从金属所的相关研究室挑选了“一百单八将”,成立了专门的项目组。他们采纳了容科“设计——材料——制造一体化”的建议,与发动机设计和制造厂等合力攻关。在当时的条件下,要在100毫米的叶片上均匀做出粗细不等、最小直径只有0.8毫米的9个小孔,谈何容易!他们攻克了型芯定位、造型、浇注、脱芯,以及断芯无损检测等一道道难关,于1965年研制出中国第一代铸造多孔空心叶片,使我国成为世界上第二个能研制这种叶片的国家。  后来,国家决定把空心叶片的生产转移到远在贵州的一个工厂,航空部点名师昌绪带队到生产第一线,帮助解决生产中的技术难题。当时从沈阳到贵阳要坐48个小时的闷罐火车,路上连喝的水都没有。工厂的条件极为艰苦,一日三餐吃的都是发霉的大米和红薯干,以至于厂里的总工程师过意不去,利用星期天到集市上买来白面,给科研人员蒸馍改善生活。师昌绪他们日夜在车间里鏖战。经过几个月的努力,他们终于克服了实际生产中的技术难关,至今所生产的数十万个叶片没出过一起质量问题。  “当时当然有压力了,但关键看你敢不敢往前冲。”忆当年,师先生雄心不改,“只要努力,肯定能做出来,除非你不努力。”  “我自己最大的特点,就是好管闲事”  “师先生,这个事您可别管!”2000年春,年近80的师昌绪找到基金委材料科学部原常务副主任李克健,说想和他一起抓一下碳纤维。李克健听后立马摇头,“这事太复杂!谁抓谁麻烦!”  李克健说的是大实话。质量轻、强度高的碳纤维是航天、航空用基础原材料,我国从1975年就开始攻关,大会战搞了不少,钱花了很多,但就是拿不出合格稳定的产品,以至于许多人避之唯恐不及。  “我们的国防太需要碳纤维了,不能总是靠进口。”师先生说,“如果碳纤维搞上不去,拖了国防的后腿,我死不瞑目。”  李克健听后深受感动,接受了师先生的邀请。这年8月,师先生召集了由原国防科工委、科技部、总装备部、基金委等相关单位58人参加的座谈会,探讨怎样把碳纤维搞上去。大家的一致意见是,碳纤维能搞上去。会议纪要里,专门写了这样一句:请师昌绪院士作为技术顾问和监督。  师先生欣然从命,很快又召集了第二次座谈会,讨论具体方法。座谈会上,有人给师先生泼凉水:上亿的资金哪里去找?就是钱弄来了,谁去协调指挥?过去几个部委联合起来都没弄好,你师老能指挥得动么?  “只要国家需要,困难再大也要干!”不服输的师先生上书中央,陈说利害。很快,这封信批转到科技部,科技部在863计划中专门增设了1亿元的碳纤维专项。在实施过程中,师先生吸取以前的教训,定了一条规矩:统一领导,谁拿专项的钱,谁就归我们管,不管你是哪个单位的。然后,专项领导小组派人到申报单位,现场取样,让第三方单位统一测试。数据出来后,大家一起讨论,优胜劣汰,结果。志在必得的一所知名大学落选,产品过硬的民营企业威海拓展一举中标。师先生一抓到底,不仅多次到威海实地指导,还专门给航空总公司写信化缘3000万元,帮助相关单位开展应用试验。现在,无论是航天还是航空,我国所需的碳纤维已可立足国内,完全依赖进口成为历史。  “我自己最大的特点,就是好管闲事”。师先生笑称。  凡是对国家有益的,对别人有益的,他都不避利害,乐于去管。  “师老很有眼光,他所管的闲事,要么是刚刚起步、困难很多,要么是涉及面广、关系复杂。只要这些闲事关系到国家的重大需求,师先生就抓住不放,该呼吁的呼吁,能扶持的扶持。”李克健说。  这样的例子还有很多。  从上世纪五六十年代开始,多个部委在全国各地陆续建立了26个材料环境腐蚀试验查与监测网站,检测材料在大气、海洋、土壤等环境中的腐蚀数据,为今后的大工程建设提供选材和防腐设计的决策依据。据基金委原秘书长袁海波回忆,80年代中期,我国开始大刀阔斧地推进科技体制和拨款制度改革,期间出现盲区,许多腐蚀监测站成为被遗忘的角落,陷入人走站亡的困境。1986年,基金委会成立,出任副主任的师昌绪力排众议,说服有关部委的领导,把腐蚀监测站的的数据检测分析建设列为基金委的重大项目,常年给予支持。后来等三峡大坝和核电站等工程上马时,大家才发现:腐蚀监测站提供的数据资料太重要了!  上世纪90年代,生物医用材料在国际上方兴未艾。由于我国起步晚,跟国外的差距很大,搞生物医用材料的学者和企业地位不高,这方面的研究没有引起应有的重视。李克健回忆说,当时师先生敏锐地觉察到,生物医用材料将是事关13亿国人健康的大产业,应该加快发展。经过他多方奔走,中国生物材料委员会在1996年宣告成立。由于该委员会的人员涉及十几个学会,关系比较复杂,找不到合适的主席人选,75岁的师先生只好勉为其难,连续干了两届。去年,中国科协批准成立中国生物材料学会 明年,世界生物材料大会明年将在成都举行。  ……  数十年“管闲事”的结果,是“管”出了一位名副其实的战略科学家。“与师先生相处20多年,我感受最深的,就是他的亲和力。不管到哪儿,在哪个地方工作,都有很强的亲和力、吸引力和凝聚力。”说到这里,袁海波很是感慨,“作为一个大科学家,做到这一点是很不容易的。在技术科学和工程科学领域,尤其需要团队精神,需要德高望重的学术牵头人,把方方面面的力量凝聚起来。“这一点,当前在我国科技界特别重要,也特别不容易!”亲和力来自淡泊名利的品格。国际材料联合会是世界材料学界的权威学术机构,加入该组织对促进我国材料科学的发展非常重要。据曾任中国材料研究学会副理事长的袁海波回忆,1986年国际材料联在美国举行会议,师先生与清华大学的李恒德教授应约参加,期间做了大量工作,妥善处理了与台湾相关的议题,终于在1991年底说服国际材联修改章程,接纳中国材料联合会代表中国成为其会员,台湾作为中国的一个地区与中国材料联合会并存。1991年,中国材料研究学会在中国材料联合会的基础上正式成立,许多人认为师先生是该研究会理所当然的理事长。结果,师先生主动让贤,自己只做顾问。“师先生就是这样,以事业为重,以把大家的积极性调动起来为重,从不考虑自己的位子、自己的利益。”袁海波说。亲和力来自尊重他人的作风。“1964年我担任师先生研究室的学术秘书,刚开始挺拘谨的,后来发现他一点架子也没有。”说起40多年前的往事,中科院金属所前所长李依依院士至今仍很动感情,“师先生非常尊重别人,从不把自己摆得很高。他带领我们研究高温合金,不像有的老师,要求你一定要照着他说的去做,而是划一个大的范围,让你放手去干;你有什么不同的想法,他也支持你做,哪怕做错了再重来都可以。跟师先生工作心情是非常愉快的,在他的团结指导下,完全可以指到哪儿就能打到哪儿。”让李依依特别钦佩的,是师先生对每一个人都平等相待,哪怕对方只是普通的工人。“在金属所工作时,从他家到科研大楼只有一两百米的距离,5分钟的路程他要走半个小时,因为一路上老有人找他聊天。前几年,我跟师先生重回贵州叶片生产厂,老工人们都围过来跟他握手:‘师老师,您好久没来了!’。”亲和力来自严谨求实的学风。虽然年事已高,但师先生开会做演讲、报告,不管是学术的还是管理类的,极少让别人“代劳”;凡是让他办的事情,都一丝不苟,绝不马虎。袁海波刚担任基金委秘书长不久,把大家精心编辑的《科技成果汇编》送给师先生过目。“我原以为他大的方面看一看就完了,没想到每一篇他都认真修改,改了一半多,连每一项成果的英文标题都不放过!”1998年,鉴于师先生在高温合金材料领域的卓越贡献,包括GE等大公司在内的11个国际跨国公司联合授予他“突出贡献奖”,并称他为“中国高温合金之父”。“这不对!”师先生听说后立即纠正,“在国内搞高温合金有人比我早,我只是做了较大的贡献。”师先生说:“我这个人没什么本事,就在于能团结大家。”
  • 美国发布首套航天材料增材合金粉末标准
    p style="text-indent: 2em "近日, SAE(国际自动机工程师学会)旗下的AMS-AM(航空航天材料增材制造委员会)发布了行业首套航天材料规范,四项技术标准主要与激光粉末熔合(LPBF)技术及3D打印合金材料相关。/pp style="text-indent: 2em "此次规范的发布源于美国的联邦航空管理局(FAA)在2015年提出的,成立标准委员会并制定相关文件,协助发展增材制造并指导认证用于生产零部件的材料,这也包括了几乎不能有任何质量问题的大型商用飞机。此次发布规范的四项粉末标准具体是,从AMS7000到AMS7003,包括LPBF法生产镍合金部件的耐腐蚀耐热性能,应力消除,热等静压和固溶退火,还有金属粉末的组成和生产工艺要求,激光熔接工艺几项。/pp style="text-indent: 2em "该委员会还将继续制定包括金属和其他聚合物的增材规范,毫无疑问行业门槛已经开始有了,并且将不断提升。/pp style="text-indent: 2em "SAE总部位于美国宾州,由航空航天、汽车和商用车辆行业的工程师和相关技术专家组成的,前身即美国汽车工程师学会。/p
  • 舰船装备材料体系发展与需求分析
    pstrong  1 前言/strongbr//pp  由于关系到舰船服役安全性以及技战术水平,舰船材料的研发考核环节众多,周期较长,一般需要经过实验室研究、工业试制、综合性能评价、应用研究考核、模型结构考核及解剖、上舰考核等极为复杂的研制流程,往往从实验室到型号应用需要10 年以上的时间,甚至超过了很多型号的研制周期。目前全世界只有少数工业化强国具备从材料研发、生产、到应用的整体系列配套能力。因此,“材料先行”、“材料体系构建”是各海洋强国都十分重视的基本理念。/pp  舰船材料按照平台类型分,有舰船结构材料、动力机电系统材料、水中兵器用材料。按照材料类型分为结构材料、结构/功能一体化材料、特种功能材料3 大类。结构材料又分为船体结构钢、轮机及其他结构钢、耐热钢、高温合金、不锈钢、特殊性能钢( 防弹、低磁等)、焊接材料、铝合金、铜合金、钛合金等 结构/功能一体化材料分为树脂复合材料、金属复合材料、阻尼降噪材料等 特种功能材料分为涂料和涂层、阴极保护材料、电解防污材料、有源声学材料、隐身材料( 吸波、吸声等)、密封材料及胶粘剂、装饰材料、橡胶、耐火及绝缘材料等,共有22 个材料类别约1 000 个牌号。/ppstrong  2 国内外舰船材料的发展现状/strong/pp  2.1 国外舰船结构钢发展现状/pp  船体结构钢是现代舰船建造最关键的结构材料,也是用量最大的材料,其性能优劣直接关系舰船技战术性能的提高。船体结构钢作为船体结构材料,必须具有足够的强度和韧性、良好的工艺性及耐海水腐蚀性能。第二次世界大战后,世界各军事强国为了满足舰船装备的发展需求,研究开发了系列高强度舰船用钢。/pp  美国从第二次世界大战开始发展舰船用钢至今,其舰船船体钢的发展经历了多个阶段。先后选用过碳素船体钢、HTS、HY80、HY100、HSLA80、HSLA100 等多个型号的钢种。其研制应用大致可以分为4 个阶段[1 - 3]:/pp  第一阶段 二战期间,美国水面舰船主要选用HTS、A、B、D、E 等高强度及一般强度级别的结构钢作为主船体选材。该阶段钢的主要特点是强度级别不高,合金元素少、碳当量低,故成本低、焊接性好,但其韧性较低、抗弹性差、耐蚀性一般,且钢板厚度较大,但在当时也基本满足了美国水面舰船的使用要求。/pp  第二阶段 20 世纪60 年代以后,为了满足发展大型航母和新一代潜艇的需求,在Ni-Cr 系STS 防弹钢的基础上开发出了强度更高、韧性更好的HY 系列高强度结构钢,包括HY80、HY100 及强度更高的HY130 钢。HY 系列钢种为调质型Hi-Cr-Mo 系钢,其主要特点是:①高强度,HY80、HY100 分别为550 MPa、690 MPa 级别 ②Ni、Cr、Mo 等合金元素含量较多,碳当量高,焊接性差,建造成本高 ③钢板规格齐全,水面、水下舰艇结构通用 ④碳含量及碳当量较高,故焊接性差。/pp  表1 为20 世纪80 年代美国海军HTS /MS 钢和HY 钢在舰船方面的应用情况。可以看到,HTS /MS 钢在水面舰船上依然是主要且大量应用的钢,而潜艇则以HY80、HY100 钢为主。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201804/insimg/0190a421-9cfb-4310-aa7e-5cdc979d57be.jpg" title="111.jpg" width="419" height="168" style="width: 419px height: 168px "//pp style="text-align: center "  表1 美国海军舰船钢用量情况br//pp style="text-align: center "  Table 1 Consumption of ship building steel in U. S. Navy/pp  第三阶段 HY 系列钢虽然强度级别较高,但由于钢中的合金元素如Ni,Cr,Mo 等含量较高,导致该种钢成本高,且对焊接性能要求较高。20 世纪80 年代以后,为了改善海军舰船用钢焊接性能,节约舰船建造成本,又发展了HSLA80、HSLA100 新钢种,以替代对应强度级别的HY80、HY100 钢。图1 显示了690 MPa 级HSLA100 钢近年来在美国海军最新航母建造中的使用情况。可以看出,从CVN74 的少量试用,到CVN75、CVN76、CVN77 扩大采用,经过了10 多年时间。/pp  HSLA80、HSLA100 钢主要采取铜沉淀硬化型的强化机理,其主要特点是: ①碳含量及碳当量低,焊接性能好,建造成本低 ②Ni,Cr,Mo 含量较HY 系钢有了不同程度的减少,降低了材料成本。/pp  这一阶段的航母船体结构用型钢、铸锻钢及焊接材料仍然沿用了HY 系列的配套材料。为了充分发挥HSLA系列钢所具有的良好焊接性能,同时开发了配套材料。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201804/insimg/76c3e07d-6fe5-438a-842f-bf607a415fdd.jpg" title="112.png" width="344" height="176" style="width: 344px height: 176px "//pp style="text-align: center "  图1 HSLA-100 在美国航母上使用情况/t/pp style="text-align: center "Fig. 1 Utilization of HSLA-100 steel ( tons ) on theU. S. Navy aircraft carriers/pp  第四阶段 20 世纪90 年代以后,为了发展未来型航母,美国海军关注的焦点变为航母主船体重量越来越重,以及由此带来的航母机动性和有效载荷降低等突出问题。因此,美国海军又相继开发了HSLA65 和HSLA115及10Ni 钢。目前,美国航母主船体用钢主要是HTS、HY80、HY100、HSLA80、HSLA100 等5 种钢混用,并在非主要结构部位考核HSLA65 和HSLA115。/pp  美国在发展水面舰船用钢方面有以下4 个特点:①446 MPa强度以下的水面舰船用钢主要是Mn 系钢 ②注意改进现役钢种的质量及韧性 ③采用控轧控冷等现代冶金技术,发展新型船体钢,提高钢的强韧性及可焊接性 ④开展新钢种的研究,形成新的系列,旨在降低钢种本身成本及舰船制造成本。/pp  美国海军发展的HSLA65、HSLA80、HSLA100、HSLA115 系列易焊接、高强度舰船用钢, 逐步替代传统的HY 系列高强度舰船用钢,成为最新航母建造的主体材料,代表了航母用钢的发展方向。美军在现役航母上大胆考核下一代先进材料的做法, 使得其航母用钢研发和应用发展迅速,体系十分完备,可随时根据需求对设计做出调整。至此, 美国在舰船用钢方面基本形成了一套完整的体系, 以美国海军航母用钢为例, 其材料的发展替代历程如图2所示。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201804/insimg/2b02deda-1614-4b2d-8850-43f6c02997ab.jpg" title="113.png"//pp style="text-align: center "  图2 美国海军航母用钢的发展替代历程/pp style="text-align: center "  Fig. 2 Substitution progress of the steel for U. S. Navy aircraft carriers/pp  除美国外,俄罗斯、日本、法国、英国等国家也开发了系列高强度舰船用钢,如俄罗斯的AK 系列、АБ系列,日本的NS 系列,法国的HLES 系列等,其舰船材料的发展思路大致与美国相仿。国外舰船用钢的总体发展趋势可以概括为以下几点:/pp  高强度化 对潜艇来说,提高耐压壳体用钢的强度意味着减少艇体自重,增大下潜深度或增加储备浮力,可大大提高潜艇的技战术性能。对大型水面舰艇来说,提高船板强度意味着船体重量的减轻,可以为舰艇武备升级和全寿命维护节省出宝贵的重量,并显着降低造船成本。/pp  易焊接化 为满足航母和大型舰艇的建造需求,改善舰船钢焊接性能是另一个重要方向。如HSLA 系列钢利用微合金化、控轧控冷、时效硬化处理以及超低碳贝氏体组织来满足高强韧性、易焊接性要求,形成了0 ℃、室温焊接不预热等高强度舰船钢系列,显着降低了造船成本、提高了建造效率。/pp  现有钢种的改进与完善配套 为满足舰船用钢不断更新换代的要求,世界各国都对现有成熟钢种不断改进提高,进行深化完善的研究工作。如美国HY80 /100钢,自20 世纪50 年代研制成功以来一直在进行改进提高的研究工作,已修订标准11 次,对技术指标要求、冶金工艺方法、化学成份分档、钢板厚度规格、钢中夹杂元素及冶金质量控制等方面进行了深化完善。/pp  采用冶金新技术提高舰船用钢性能 舰船用钢的研制、开发和生产水平与一个国家的冶金工业基础密切相关。20 世纪80 年代后,随着超低碳、超纯净钢冶炼、连铸技术和控轧控冷等冶金技术的发展,舰船用钢也朝着高纯净化、高性能方向发展[4]。/pp  2.2 国外其他舰船材料发展现状/pp  舰船总体系统对关键材料技术的需求不仅限于高强度、易焊接的高性能结构材料,因此在发展船体结构钢材料的同时,国外也在大力推进其他高性能舰船材料的研发。/pp  钛及钛合金 钛及钛合金具有良好的断裂韧性、耐蚀性,高比强度和低磁性等特点,是优秀的海洋合金。俄罗斯在钛合金研制和应用上独树一帜,其技术水平、建造能力和规模在国际上处于领先地位,已基本形成用于船体、船机和动力装置的钛合金系列材料。美国用于舰艇的钛合金主要为中强可焊钛合金。美国将大量钛材用于通海系统的管、泵、阀换热器上,以解决海水腐蚀,从而提高其使用寿命与可靠性。/pp  铝合金 铝合金由于具有比重小,比强度、比模量高,耐腐蚀性能好,易加工成型,焊接性能好等优点,在舰船领域得到了广泛的应用,主要用于快艇、高速船、军辅船、航空母舰升降装置、大型水面舰船上层建筑、鱼雷壳体等,铝质船舶也从铆接、铆焊结构发展到全焊结构。多年来,世界各国对船用铝合金的研究与发展都非常重视,在美、日、英等发达国家,舰船用铝合金已成系列,品种配套、规格齐全,已成为海军舰船的主要结构材料之一。目前国外在船舶上应用的铝合金主要有以下几个系列: Al-Mg 系、Al-Mg-Si 系和Al-Zn-Mg系,其中以Al-Mg 系合金在舰船上应用最广泛[5]。/pp  铜及铜合金 铜及铜合金具有优异的耐海水腐蚀性、导热性、耐海生物污染性,优异的力学性能、良好的冷热加工性能及铸造性能等,广泛用于舰船螺旋桨,海水管系及其配件、泵、阀、轴套等零部件,潜艇螺旋桨用铜合金还应具备低噪音特性。20 世纪60 ~ 70 年代,英国斯通公司、俄罗斯、美国相继研制出了铸造阻尼Cu-Mn 合金,但使用性能不理想。英国斯通公司提出潜侧式噪音螺旋桨新方案,从精湛的设计技术、新型高阻尼合金和复杂桨叶形状精确制造3 个方面综合控制,共同提高潜艇的隐蔽性能。/pp  复合材料 复合材料包括树脂基与金属基复合材料,具有力学性能优良、耐腐蚀、大幅减重、优良的声、磁、电性能等特点,早期应用在小型巡逻艇和登陆舰上。近年来,随着低成本复合材料技术的提高,开始逐渐应用在大型巡逻艇、气垫船、猎雷艇、护卫舰以及上层建筑中。各国海军应用的复合材料制品还包括烟囱、舱壁、甲板、舵等次承载结构,这些材料可降低舰船的雷达信号特征,同时也降低了红外( 热) 信号特征,在结构减重方面所做的贡献非常显着。/pp  新型功能材料 除以上材料外,国外还大力发展了诸如防腐涂料、舰船隐身、减振降噪、隔热及其他特种功能材料等新型功能材料。其中防腐涂料: 主要用于舰船上层建筑、舰船内舱、舰船海水管路系统、船体及其附体如舵、减摇鳍、螺旋桨等部位。舰船隐身: 水面舰艇隐身技术的重点集中在雷达波隐身、红外隐身及减振降噪技术上 国外采取涂敷型吸波材料或结构型吸波材料解决雷达波隐身 采用特殊涂料解决红外隐身的研究工作正在进行。减振降噪: 减振降噪材料的主要类型包括吸声材料、隔声材料、阻尼材料。隔热材料: 主要用于舱室环境控制,它也是舰船舾装材料的重要组成部分,国外舰船用绝缘隔热材料有无机材料和有机泡沫材料两类。特种功能材料: 包括储氢材料、永磁材料、主动控振智能材料等。/pp  2.3 材料加工与成型新技术/pp  为更好地实现减免维护、降低维护成本这一航母腐蚀预防与控制的核心思想,目前美国海军在航母及其他新的舰艇建造和维护过程中,不断研发运用了一系列新材料、新工艺和新技术。/pp  新型铸造工艺 在HY-80 /100 钢铸造过程中,美国海军采用了新型压铸工艺以降低成本、提高铸件合格率。新工艺的运用每年可节省成本70 万美元,使大型铸件合格率提升至70% 以上,交货时间降至55 天。/pp  新型成型技术 美国海军采用闭塞冷锻技术( CDCF)制造的5 ~ 20 cmCVN-78 航母用Inconel 625 合金管弯头,使管道连接费用节省了约50 万美元。/pp  新型焊接技术 主要有远程焊接预热系统、轻型火焰钎焊技术、大功率电缆接头铝热焊技术、防涂层烧蚀焊接冷却技术。为避免焊接预热不均,提高焊缝质量,美国海军在航母CVN-78 建造过程中运用了新型的远程焊接预热系统 为克服人工钎焊造成的质量难以控制问题,在CVN-78 建造过程中,美军采用了轻型火焰钎焊技术,使每艘航母建造和大修成本节省了700 万美元 美军将新型铝热焊技术用于CVN-78 大口径电磁弹射器大功率电缆接头焊接,大大提高了焊接质量和可靠性,减少了焊接和维护工时 为防止已涂装区域在焊接过程中的烧蚀, CVN-78 建造过程中运用了焊接冷却技术[6 - 8]。/pp  2.4 国内舰船材料发展现状及特点/pp  2.4.1 发展现状/pp  我国舰船结构钢发展可以划分为4 个阶段[9 - 10]: 20世纪50 ~ 60 年代,主要是依赖原苏联进口和仿制 20世纪70 ~ 80 年代开始自行研制,当时受国内资源限制,立足于无镍合金钢,研制了我国第一代舰船用Mn 系无镍铬钢和低镍铬钢,如901、902、903 系列钢种,这些自行研制的舰船用钢在我国海军舰艇建造中得到了成功应用 进入20 世纪80 年代,海军装备有了很大发展,对舰船用钢也提出了更高的要求,第一代舰船用钢已满足不了现代海军的需求,开始研制综合性能更好的第二代舰船用钢及其配套材料,如390 MPa 级的907A 钢、440 MPa 级的945 钢、590 MPa 级的921A 系列钢、785 MPa级的980 钢等,至此,初步形成以4 大主力钢种为支撑的我国舰船结构材料体系 20 世纪90 年代后,改进提高和自主研发并举,特别是2000 年以后,在强度覆盖、品种规格及配套材料等方面有了长足的发展,为海军新型主战装备建设提供了强大的物质基础。/pp  在持续发展船体结构钢及其配套材料的同时,我国也加大了舰船用其他结构/功能一体化材料,以及特种功能材料的研发。/pp  钛及钛合金 我国舰船钛合金的研究始于1962 年,经过探索研究、自主研发、产业化及推广应用3 个发展阶段,研究水平有了很大的提高, 目前拥有包括Ti-B19、Ti91、Ti70、Ti80 等典型舰船钛合金,并形成了我国专用的钛合金系列,能批量生产板、管、锻件、中厚板、各种环材、丝、铸件等多种产品,基本满足国内舰船不同强度级别和不同部位的要求[11 - 12]。/pp  铝合金 我国舰船用铝合金的研究始于20 世纪60年代初。目前研制成功的船用铝合金结构材料主要有变形铝合金和铸造铝合金2 大类。变形铝合金包括铝合金板材、型材、管材、锻件及其配套焊丝,研制成功的船用变形铝合金牌号主要有Al-Mg 系的5A01、5A30、5A70 合金和Al-Zn-Mg 系的7A19 合金,铸造铝合金牌号主要有ZL305 和ZL115 合金等。自1979 年起,5A01、5A30、7A19、ZL305 和ZL115 等合金已广泛用于各种船舶及鱼雷壳体的建造等,5A70 合金已成功用于建造水撬模拟结构件。然而,我国舰船用铝合金的牌号、品种、规格却未能全面发展起来,我国用来制造高速舰船船体(包括军用快艇和高速客船) 的铝合金几乎都依赖国外进口,其中使用最多的是进口5083 铝合金。/pp  铜合金 我国对海水管系及其配件、泵、阀、轴套等零部件,舰船螺旋桨等用的铜合金研究相对薄弱。目前我国舰船海水管路系统主要采用以B10、B30 为主的铜镍合金。新研制了铸造铜镍铝合金ZCu7-7-4-2 及变形铜镍铝合金等,并发展了舰船用铜镍合金的焊接技术。/pp  复合材料 我国复合材料研发相对国外较晚,经历了由纤维增强复合材料、树脂复合材料到结构芯材的发展。其中,纤维增强材料由最初的玻璃纤维,发展为碳纤维、芳纶纤维、超高分子量聚乙烯纤维和连续玄武岩纤维等4 大高科技纤维 树脂复合材料中的树脂也经历了不饱和聚酯树脂、环氧树脂、乙烯基酯树脂、酚醛树脂等几大类别的发展过程 复合材料夹层结构船艇常用的轻质高性能结构芯材包括泡沫塑料、轻木以及各种蜂窝材等。我国复合材料在舰船的应用较少,典型应用是潜艇的艇艏声纳导流罩,部分已经安全应用20 年。在实艇应用方面,除透声复合材料获得了较多的应用外,隔声、吸声和阻尼复合材料还没有在型号中实现应用,工程应用经验不足,与国外差距较大[13]。/pp  新型功能材料 现代舰船是高新技术高度密集的综合系统,所用功能材料的种类很多,但其中大多数并不是舰船专用材料。在舰船上有独特应用的功能材料主要有电磁力推进用超导材料、吸收雷达波材料、舰船隐蔽用消声与减振材料、水声换能材料、燃料电池用贮氢材料、永磁电机用永磁材料等,其中有些还兼作结构材料,属结构/功能一体化材料,这一系列新型功能材料大多尚处于探索研究阶段。/pp  2.4.2 发展特点/pp  我国舰船材料的发展以海军装备发展对关键材料特性要求为依据,经历了从无到有、从仿制到自行研制的过程。已研制和生产的舰船材料基本满足了不同时期海军各型装备发展的需求。近期国内舰船材料的发展主要有以下几个特点: ①正在完善4 大主力钢种的规格系列。近年来,研发了907A 和921A 双球扁钢、921A 超长超宽板、921A 高效不预热焊接材料等结构材料,满足大型船舶主船体结构的建造需求 研发了厚度为80~ 120 mm 的980 厚板,满足潜艇的建造需求。②在低成本和耐蚀钢应用方面进行了探索。研发E36 军民通用船体结构钢,降低了成本,简化了建造工艺,满足护卫舰的建造需求 开展了B 级耐蚀钢的推广,用于大型辅助船舶主船体结构建造。③研发系列复合材料。系列复合材料的开发应用,实现了舰船用结构/功能一体化材料零的突破 复合材料上层建筑、指挥台围壳整体方案的制定,可实现船体结构减重30% ,为护卫舰、潜艇的减重需求提供了技术途径。④新型功能材料不断涌现。研制了航母飞行甲板防滑涂料以及应用于不同基材表面、不同期效的防腐及防污涂层等,使舰船涂料防腐能力从5 a 提高到8 a,防污能力从3 a 提高到5 a 开展了耐压壳体用阻尼隔声去耦材料、耐压阻尼吸声材料等研制工作。⑤在材料新工艺方面进行了大量探索。全面推广舰船结构及配套焊接材料的结构模型建造考核,通过各型舰艇的模型建造考核,进一步深化了应用研究,通过结构模拟、环境模拟和工艺模拟条件,实现舰船结构材料上舰前的考核验证,确保安全可靠应用。/pp  2.5 国内舰船材料发展中存在的问题/pp  随着海军战略转型,海军装备进入高速发展期,对舰船材料的发展提出了更新、更高的要求,同时也暴露出舰船材料发展方面存在的问题[8]。/pp  材料研发体制缺乏顶层沟通机制 舰船材料特别是船体结构钢属于国家重大战略资源,建设投入大、周期长,一般均由国家投资进行立项研制。例如在船体结构钢的研制和应用方面,按照渠道划分为国家立项支持船体结构钢的基础研制和军方立项支持船体结构钢的应用研究。由于缺乏顶层的沟通机制,军方主导作用受到制约,导致基础研究和应用研究结合不紧密,需求和投入结合度不高。一方面,造成对材料的先期投入不足,难以实现“材料先行” 另一方面,易出现材料研制滞后问题,影响型号建造进度。/pp  材料及配套体系构建不完整 舰船关键材料及配套材料的现有体系( 如船体结构钢) 基本能满足现有舰船装备的要求,但距离战略转型后的海军装备发展需求还存在材料种类、规格缺失等问题,影响了现有装备建设进程及发展,急需开展相关研究,补充完善,同时加强舰船材料顶层规划的研究工作。/pp  材料应用工艺技术成熟度不够 船体结构用铝合金材料至今仍依赖进口,就是典型的材料加工技术成熟度不够的问题。船体结构钢也同样存在类似问题。舰船结构建造工艺包括焊接、火工矫正、水火弯板、冷成型等,种类多、工艺复杂。特别是舰船作为一个巨大的焊接结构,焊接工时占全船建造工时的30 ~ 40% ,焊接效率直接影响舰船的建造进度,焊接质量直接影响舰船结构的整体质量,因此舰船的焊接管控至关重要。921A 钢需焊前预热,980 钢需焊前预热、焊后后热,对施工环境条件要求苛刻,如果焊接工艺执行不严、焊接工艺更改的验证试验不充分,易出现如角焊缝裂纹等焊接质量问题,容易影响舰船建造质量。另外,先进高效的焊接工艺应用较少。/pp  关键材料技术性能落后甲板飞行涂料、液舱防腐蚀涂料、船体防污涂料、减振降噪材料、隐身材料等关键材料指标性能落后,不能满足舰船装备发展需求。/pp  舰船材料是海军装备发展的重要物质基础,“一代材料、一代装备”。“材料先行”是国内外武器装备建设的共识,应当结合生成技术的进步,动态地改进、提高舰船材料研制应用技术水平,实现舰船材料持续、协调、体系化发展。/ppstrong  3 舰船装备发展对材料的需求/strong/pp  由于国家发展战略和军队发展重点的要求,与国内其他兵种和国际海军装备发展大势相比,国内海军装备发展速度长期缓慢。随着海军转型要求,赋予了海军新的历史使命,对海军装备提出更高、更快、更强的要求,但材料问题成为制约海军装备快速发展的短板。在未来20 年,海军将会有更多的舰艇型号立项、研制、交付使用,对先进材料的需求将会以几何级数增长,舰船装备材料技术领域将会面临前所未有的压力和机遇。/pp  3.1 海军装备发展对先进材料的需求特征/pp  根据世界各国海军装备的特点,海军舰艇装备的发展趋势可概括为“深、大、远、高、低”,即: 下潜深度更深,大吨位舰船更多,走向更远海域,高航速、高机动性、高负载、高隐身性、高防护能力、高在航率等,低成本。因此对舰船装备材料也提出了更高的要求,可概括为以下几点: ①提高潜艇的潜航深度可以提高潜艇的隐蔽性、机动性和生存能力。未来海军潜艇下潜深度会更深,要求耐压壳体承受压力更大、耐压壳体材料强度更高、规格更厚、更耐腐蚀、焊接性能更好 但耐压壳体增厚会带来重量、重心变化等总体设计问题,因此耐压装备材料需要更新换代,需要发展轻质非耐压壳体材料。②航母、大型驱逐舰、两栖攻击舰等大型舰船以及气垫船、舰载机以及新型特种装备给材料技术提出更多特殊的要求。航母结构庞大、复杂,其艉轴架、动力轴等铸锻件尺寸远远超过一般水面舰船 飞机上舰要求研制弹射起飞、阻拦降落等关键设备,这些装备的关键材料需要强大的技术储备,需要开展相关大尺寸材料的制造工艺技术研究和新材料研制。③海军舰艇在海洋中服役,必然会面临腐蚀与海洋生物污损问题,远海航行对先进材料的耐蚀性、可靠性、安全性的要求更高。海军是材料腐蚀问题最为突出的兵种。海军装备逐步从近海走向远洋,腐蚀环境更为恶劣,对装备的可靠性、长寿命要求越来越高。提高坞修间隔期和在航率,才能充分发挥海军装备的作战能力,这要求舰船材料具有良好的耐蚀性。整体提高舰船结构材料、结构功能一体化材料、电子功能材料的耐蚀性以及重要装备的防腐蚀能力是迫切需要研究的课题。随着舰员在舰上生活、工作时间越来越长,以及国际上对海洋环保要求越来越高,舱室环境居住性和对海洋的友好要求越来越严格,长寿命、绿色环保防腐防污材料需求将更为突出。④隐身性是未来舰艇最突出的技术特征和有效作战最重要的技战术指标。海军装备高隐身性、高防护性能对先进的结构/功能一体化材料特性提出了高要求。主要体现在水面舰艇以雷达隐身、潜艇以声隐身等为重点,应发展并应用新型耐压阻尼材料、主动阻尼材料、水声材料、多频谱隐身涂料等技术,同时探索研究磁、红外、尾迹等其他隐身技术,加强舰船自身防护安全结构和材料研究、研制发展舰艇用轻型防护装甲材料,进一步提高关键结构材料的抗打击防护性能。⑤无论潜艇还是水面舰船,航速越高、机动性越好,越能在海战中赢得主动。另一方面,潜艇与水面舰船配备的武器装备及弹药越多,在海战中战斗力越强。而要实现高航速、高机动性与高负载,则要求舰艇的结构重量小,并尽量降低结构重心,这对先进材料的种类和性能提出了长远要求。钛合金、铝镁合金、复合材料等轻质材料的规模化应用是解决舰艇减重、增加有效载荷和提高航速的关键途径。⑥就单个装备比较,舰船相对其他兵种的装备要大得多、重得多,材料成本占装备经费比例非常高,控制材料成本意义重大。特别是在未来20 年海军装备处于大发展时期,大吨位舰船会越来越多,许多型号要批量建造、长时间保留。急需探索民用船体钢替代技术,发展低成本钛合金技术、低成本复合材料技术、先进高效焊接技术等。/pp  3.2 舰船装备发展对材料的需求分析/pp  材料技术是装备发展的三大支柱之一,先进材料制造技术的发展与核心军事装备的发展密切相关,新材料的探索研究并达到应用水平应早于新装备的探索研究和立项研制。根据海军装备体系建设的需要,并结合目前的舰船材料体系发展现状,舰船装备发展主要需要解决以下几个方面的需求。/pp  3.2.1 现实迫切需求/pp  在较短时间内我国舰船将有大量新型号立项研制,国内设计、研制、生产的材料中尚有大量的关键材料及技术急需突破。①在高性能结构材料技术方面,优先发展潜艇用钢及配套材料系列化研究,包括开展大规格980 厚板研制及相关模型结构考核 开展大规格980 双球扁钢研制 开展980 钢窄间隙焊接工艺研究,以及TIG 焊丝和金属粉芯焊丝的研制 开展40 MPa 高压气瓶用钢研制 开展通海系统、排烟管系以及专用关键设备与结构材料换代研究 开展潜艇阻尼材料/功能/结构的一体化设计及应用技术研究。另外围绕水面舰船优先发展921A、907A 双球扁钢的研制 690 MPa 级易焊接钢板及配套焊接材料的研制 上层建筑用高强抗弹装甲结构的研制 大尺寸铸锻件工艺研究。同时,还应开展对低雷达反射截面、抗腐蚀、具有优异的电磁屏蔽性能的先进材料制备技术的研究。围绕气垫船设计制造,针对耐蚀铝镁合金材料性能不稳定、可靠性差的问题,开展工艺优化研究、微弧氧化等表面处理技术应用优化设计理论及使用评价方法研究 开展空气螺旋桨材料和制造技术、焊接及连接技术、铝合金抗腐蚀技术等各种关键设备的材料和制造技术的研究。②针对隐身材料,包括电磁波隐身材料、阻尼降噪材料、磁隐身材料等结构/功能一体化材料技术方面,重点开展纳米隐身涂层材料研究 宽温宽频高性能阻尼材料的研究 高性能、耐高压(6. 0 MPa)、隔声量大的阻尼隔声材料的研究 主动阻尼控制技术、阻尼材料技术的集成应用及综合评定等。应用于舰船不同部位的复合材料及结构设计技术研究 复合材料上层建筑和潜艇指挥台围壳材料/结构/功能一体化设计和评价技术 舰船桅杆、烟囱用复合材料的应用研究 新型隔热绝缘配套材料研究等。③在特种功能材料应用技术方面,优先研究长效防腐防污涂层材料技术 高性能电极材料技术 舰船非钢质船体长效无毒防污材料 飞行甲板防滑涂料工程应用技术 防腐防污技术的智能化、集成化技术以及寿命快速评估预测技术 高温超导材料应用集成技术等。/pp  3.2.2 共性长期需求/pp  除以上迫切需要解决的现实需求外,舰船装备发展对先进材料提出了更长期的发展需求,主要包括:/pp  舰船材料腐蚀监检测与评估评价技术 腐蚀是影响装备可靠性最主要、最普遍的危害。应重点研究对关键部位、关键设备的在线监检测技术、涂层性能无损快速检测技术及相关的设备研制,并在此基础上形成评估专家系统、远程诊断系统,同时开展舰船装备材料使用评价方法、抗失效技术及评估理论研究。/pp  轻质材料及材料结构/功能一体化技术 对复合材料、钛合金以及高强度铝合金材料与结构( 如波纹夹芯板)均有长期的需求,对作战能力要求高( 搭载武器电子装备多、弹药多)、续航时间长( 自载燃油、淡水量大)、航速高( 重量小) 和抗风浪等级高( 重心低、稳性好)的作战舰艇尤其如此,需要大量采用轻质材料,对降低结构重心、增加有效载荷、提高机动性有重要意义。/pp  隐身材料技术 重点研究宽频、有效、可大面积应用、可操作性强的舰用雷达隐身材料 电磁屏蔽材料与技术 雷达兼容热红外等一体化舰用隐身材料 玻璃钢结构舰用隐身材料 舰用雷达伪装网 舰用多频谱伪装网 超高内耗阻尼材料、宽工作温度区间和宽频带范围高阻尼材料及结构/功能一体化高阻尼材料等。/pp  先进水声换能材料及换能器制造技术 对潜艇来说,需要突破低频大功率水声换能器性能,要研制满足大潜深要求的水声换能器,要重点解决大尺寸新一代磁致伸缩水声换能器制备关键技术。/pp  低成本材料制造及应用技术 舰船的特点是结构庞大、复杂,所需材料品种多、数量多、重量大,材料所占装备经费比例高。低成本钛合金、复合材料制备技术是舰艇装备发展的共性需求。另一个方面是材料的低成本应用技术。突出例子是高强度钢的焊接,要求预热焊接,工艺复杂,造成船体制造成本大幅度增加。如何在材料技术以及应用技术上创新,简化焊接工艺,对于降低成本具有重要意义。/pp  舰船材料性能退化抑制技术 舰船服役寿命要求长,一般在30 a 以上,航母甚至要求达到50 a。舰船服役环境苛刻,金属材料耐腐蚀表面处理技术及复合材料、非金属材料老化抑制技术是必须面对的问题。提高金属材料与复合材料的耐腐蚀性能,提高防腐防污材料的防护期效和服役寿命,是舰船装备长期的共性需求。例如复合材料的老化、阻尼材料阻尼性能下降。/pp  绿色安全材料技术 舰船装备既要执行战斗任务,还要执行和平使命,这就要求舰船防腐防污涂料是环境友好型的,包括舰船上的排放物。同时,海军官兵长期在舰船上居住生活,更要求舰船舱室内所用的材料是绿色环保、阻燃无毒的,保证官兵的健康,并在发生火灾的情况下保证官兵的安全。因此,舰船装备的发展,对绿色安全材料有共性需求。/pp  新型隔热材料技术 目前,各型舰船的隔热材料、绝热材料都相对落后。需要加强新型隔热材料———聚酰亚胺泡沫的应用研究和现用隔热材料升级换代,以及隔热绝缘配套材料研究。/pp  舰船材料全寿命支持数据库及信息系统 目前已经建立有“舰船用钢数据库”,应进一步扩大和加强舰船材料数据库的开发,使之涵盖舰船结构钢、舰船动力系统材料、复合材料、船用功能材料等,逐步建立起“舰船材料全寿命支持数据库及信息系统”,服务于舰船材料决策、研发、采购、建造、维护流程,有效支持舰船装备信息建设化的进程。/ppstrong  4 舰船装备材料未来发展方向/strong/pp  现代高新技术的发展使舰船装备的面貌产生了深刻的变化,成为其战斗力的主要标志,而先进材料又是舰船上高新技术实现的物质基础。先进材料的研发直接关系到舰船整个系统的运行、维护和安全,开发高性能的先进材料能为增强舰艇作战能力和降低服役期的成本提供有力保障。/pp  当前舰船材料研究与应用的总趋势是,由以结构材料为重点转向以结构/功能一体化材料、特种功能材料等高性能材料为重点。就用量而言,传统结构材料在未来的舰船建造中仍占绝对的多数 但就发挥功能而言,高技术新材料则占有更重要的地位。整体来看,舰船装备材料未来的发展方向可以从以下几个方面进行说明[14 - 15]:/pp  4.1 结构材料/pp  传统结构钢材料 鉴于传统舰船用高强度结构钢的不可替代优势,研发高性能的结构钢及相关配套材料仍将是我国舰船装备材料技术的主要发展趋势之一。我国舰船装备用高强度钢未来主要向提高加工制造工艺性、高性能化、低成本、建立材料技术设计基本理论和方法等方面发展。/pp  新型结构材料 对于某些特殊的结构( 如表面效应船、混合式水翼船、深潜器、大深度鱼雷等的壳体结构),要求使用高比强度的材料,以减轻壳体的重量,提供合理的有效载荷,必须发展如钛合金、铝合金、铜合金等新型结构材料,其中钛合金是未来新型结构材料发展的主力材料。我国船用钛合金品种、规格不完善,加工和制造技术也相对落后,目前仅局限应用于声呐导流罩、舷侧阵透声窗、进排气管路、少量阀门及管路附件等专用结构的制造。研究和应用钛合金材料,将进一步提高我国舰船装备的作战性能,提高舰船的生命力和使用寿命,是我国舰船装备的重要发展趋势之一。我国钛合金材料技术未来主要向提高综合性能、低成本、可靠焊接性、复杂制造、推广应用、完善材料体系等方向发展。/pp  4.2 结构/功能一体化材料/pp  鉴于复合材料的巨大优势,国外海洋强国不断加强舰船复合材料研制和应用,且逐渐由非承力结构向主/次承力结构发展,从局部使用向大规模应用扩展。我国舰船装备复合材料研制和应用水平起步较晚,仅在声呐导流罩、雷达天线罩、水雷壳体、桅杆等专用构件有所应用,因此加大复合材料的研发和应用力度,将对我国舰船装备的总体性能提高具有重大意义。我国舰船装备用复合材料未来主要向低成本、高性能化、多功能型、优化连接、长寿期、安全可靠等方面发展。/pp  舰船装备隐蔽性能的提高,离不开隐身材料技术的发展和支撑。舰船装备,尤其是潜艇的隐蔽性能,已日益成为其最突出的性能指标之一,而反潜技术的发展对潜艇的隐蔽性又提出了新的更高要求。我国舰船装备的隐蔽性能与国外存在差距,研发和应用先进的新型隐身材料技术,将是提高我国舰船装备,尤其是提高潜艇隐蔽性能的重要举措之一。未来主要向多功能化、主动减振、智能化、低成本化等方面发展。/pp  此外,探索纳米结构/功能一体化、仿生结构/功能一体化、智能结构/功能一体化材料等新概念材料的新特性、新方法也是结构/功能一体化材料技术发展的重要方向。/pp  4.3 特种功能材料/pp  无论是防护效果,还是防护材料的使用寿命,我国的防护材料技术水平均落后于国外发达国家。因此,开发和应用更先进、综合防护性能更好的防护材料,是提高我国舰船装备防护水平的必然选择。我国舰船装备防护材料(包括防腐、防污、防滑、耐高温密封防漏、舱室装饰等材料)未来主要向高效、低成本、可靠、环保、安全检测及控制等方面发展。在发展特种功能材料技术的同时,还应开展高性能储氢材料、永磁材料、电极材料、水声换能材料、高温超导材料等特种功能材料的探索研究。/pp  在发展以上材料的同时,应加大探索对舰船装备发展有重大影响和有重大军事应用前景的前瞻性材料,如生物材料、纳米材料等 同时,还应加强对先进制造与成型技术的探索。/ppstrong  5 结语/strong/pp  目前我国舰船材料整体技术水平和行业管理能力与船舰装备建设跨越式发展的要求还存在一定差距,针对以上存在问题,在今后工作中,应力争在不同层面和不同方面取得发展和提升。主要研究重点有以下几点: ①加强舰船装备先进材料技术的发展战略研究,制定相应的新材料发展规划 ②加强舰船装备先进材料研发过程中的顶层设计管理,确保研发效率和产品质量 ③尽快完成适应我国舰船装备发展的材料体系建设 ④加大舰船用前瞻性材料研究,建立新材料上舰应用有效模式。/pp  参考文献 References/pp  [1] Cheng Xin' an( 程新安) . 国外舰船用钢的回顾与展望[J]。/pp  Development and Application of Materials( 材料开发与应用) ,1997,12(2) : 46 - 48./pp  [2] Wu Shidong(吴始栋)。 美国舰艇用结构钢的开发与应用研究[J]。 Shanghai Shipbuilding(上海造船),2006,(4): 57 - 59./pp  [3] Yin Shike( 尹士科) ,He Changxian( 何长线) ,Li Yalin( 李亚琳) . 美国和日本的潜艇用钢及其焊接材料[J]。 Developmentand Application of Materials( 材料开发与应用) ,2008,(2) :/pp  61 - 62./pp  [4] Ma Heng( 麻衡) ,Li Zhonghua( 李中华) ,Zhu Xiaobo( 朱小波) ,et al. 航空母舰用厚钢板的发展现状[J]。 ShandongMetallurgy( 山东冶金) ,2010,32(2) : 8 - 11./pp  [5] Wu Shidong( 吴始栋) . 美海军开发舰船用高强度耐腐蚀铝合金[J]。 Torpedo Technology ( 鱼雷技术) ,2005,13 (5 ) :/pp  49 - 52./pp  [6] Wu Shidong( 吴始栋) ,Zhu Bingkun( 朱丙坤) . 国外新型金属材料及焊接技术的开发与应用[J]。 Torpedo Technology( 鱼雷技术) ,2006,14(5) : 6 - 11./pp  [7] Wu Shidong( 吴始栋) . 为美国新型航空母舰CVN 78 建造提供技术支撑的材料制造加工项目[J]。 Shipbuilding Scienceand Technology( 中外船舶科技) ,2011,1: 20 - 22./pp  [8] Pan Jingfu( 潘镜芙) . 国外航空母舰的发展和展望[J]。 ChineseJournal of Nature ( 自然杂志) ,2007, 29 ( 6 ) : 315- 322./pp  [9] Shao Jun( 邵军) . 舰船用钢研究现状与发展[J]。 AngangTechnology( 鞍钢技术) ,2013,(4) : 1 - 4./pp  [10] Wang Qihong( 王其红) ,Liu Jiaju( 刘家驹) . 舰船材料发展研究[J]。 Ship Science and Technology ( 舰船科学技术) ,2001,(2) : 12 - 15./pp  [11] Yang Yingli( 杨英丽) ,Su Hangbiao( 苏航标) ,Guo Dizi( 郭荻子) ,et al. 我国舰船钛合金的研究进展[J]。 The ChineseJournal of Nonferrous Metals( 中国有色金属学报) ,2010,20(1) : 1 002 - 1 006./pp  [12] Zhou Lian ( 周廉) , Zhao Yongqing ( 赵永庆) ,WangXiangdong( 王向东) ,et al. Development Strategy Study forChina Titanium Alloy and Application ( 中国钛合金材料及应用发展战略研究) [M]。 Beijing: Chemical Industry Press,2012: 30 - 32./pp  [13] Li Jiangtao( 李江涛) ,Luo Kai( 罗凯) ,Cao Mingfa( 曹明法) . 复合材料及其在舰船中应用的最新进展[J]。 Ship & Boat( 船舶) ,2013,24(1) : 10 - 16./pp  [14] Sun Jianke( 孙建科) . 建立舰船材料基本体系的顶层研究[J]。 Ship Science and Technology ( 舰船科学技术) ,2001,(2) : 9 - 11./pp  [15] Ma Yunyi( 马运义) ,Feng Yuqi( 冯余其) ,Yang Xionghui( 杨雄辉) ,et al. 我国舰船装备对材料的需求与应用探讨[J]。 Advanced Materials Industry ( 新材料产业) ,2013,(11) :11-16/pp文章作者:方志刚1,刘斌1,李国明2,李健1,3/pp  (1. 海军装备研究院,北京100161)/pp  (2. 海军工程大学,湖北武汉430033)/pp  (3. 中国钢研科技集团有限公司,北京100081)/p
  • 考试重点:国家工程实验室(National Engineering Laboratory)如何做金属材料检测?
    内燃机是机械行业中的一个重要细分领域,其已经成为汽车、农业机械、工程机械、船舶、内燃机车、地质和石油钻机、军用、通用设备、移动和备用电站等装备的主要配套动力,对我国工业、农业、交通运输和国防建设以及人民生活都有十分重大的影响。21世纪是科学技术和生产力高度发展的时代,也是充满挑战和机遇的时代,无论是我国还是世界各国工业也都面临着全球环境污染和石油资源匮乏等问题。这对内燃机的动力性能、经济性能、控制废气排放和噪声污染提出了更高的要求。  材料是内燃机设计、品质、质量及竞争力的基础,内燃机技术的发展在很大程度上取决于材料的发展。内燃机发展趋势为:高效、节能、环保,这就要求内燃机生产企业对其零部件材料进行更为严格的把控,这不仅体现在检测手段具有更高的精确度和稳定性,同时材料发展的多样化和多元化也让检测手段必须具备高效性和全面性的特点。  全球最大的独立柴油发动机生产基地以及中国产品型号最齐全的内燃机制造基地——广西玉柴机器集团有限公司始建于1951年,是中国柴油发动机行业名副其实的龙头企业,玉柴以“绿色发展、和谐共赢”为经营思想,通过不断的自主研发和创新,不断缔造着柴油发动机行业神话,同时也一次次打破欧美在柴油发动机核心领域长期垄断的地位。  卓越的产品来自于不断的自主研发创新,同时也来自于对产品每个细节的严格把控,2011年11月,代表我国内燃机行业最高水平的高效节能环保内燃机国家工程实验室(National Engineering Laboratory)正式落户玉柴集团,在其内燃机技术发展中起到了关键性作用。长期以来,实验室致力于成为国内最高标准、最高水平的研发机构,集中解决行业在节能减排、降噪、轻量化、控制技术等方面的共性关键技术,引领全行业的技术进步,提升中国内燃机整体技术水平。一直以来,实验室通过层层筛选严格把控,选购世界一流的试验及检测设备,使其具备先进智能的全面测试手段,满足我国国内目前各种发动机新产品、新技术开发流程试验要求,已经达到国际级研发中心的标准。  2019年,全球首创CMOS全谱直读光谱仪—英国阿朗科技公司 (ARUN™ )ARTUS 10经过层层测试选拔,入驻玉柴内燃机国家工程实验室。汽缸体、活塞及活塞环、曲轴和连杆等关键部位的材料质量直接影响着内燃机性能,实验室对这些部位的材料质量控制十分重视, ARTUS 10 采用CMOS作为检测器,突破了传统CCD检测器的局限性,检测下限可达1PPM,在这种高端精密的金属材料检测需求上具有显著优势。1、气缸体  气缸体作为柴油机中最重要的部件之一,材料应具有良好的综合性能,即良好的强韧性、导热性、耐磨性、耐蚀性、加工工艺性能和经济性。灰铸铁和球墨铸铁由于具有良好的铸造工艺性能和机械性能,优越的耐磨性、减振性和导热性被广泛应用于柴油机气缸体中。ARTUS 10通过先进的脉冲合成光源和高能预燃技术,让光谱仪对于铸铁材料中C元素检测具有极高的精准度(检出限接近1ppm)和稳定性(相对标准偏差0.02%)。2、活塞及活塞环  活塞及活塞环位于发动机的心脏,其工作质量的优劣直接影响发动机的性能,现代柴油机的活塞多采用铝合金材料,其主要优点是质量轻、导热性能好。在铝合金检测中不仅仅需要关注合金元素Mg,Cu、Si的常规测量,同时也对一些添加元素如Be、B及稀土元素提出了更高的检测需求。ARTUS 10通过大焦距双光室结构设计和高刻线光栅极好地实现了铝合金非金属(近紫外波段)元素的稳定测量,让测试结果更为可靠。3、曲轴和连杆  曲轴和连杆是柴油机的脊梁,其各个组成部件材料具有多样性的特点,从低碳合金钢、碳钢到铜合金、镍合金,这就要求光谱仪能够同时满足不同基体材料的测量,ARTUS 10采用全新多块高分辨率CMOS作为检测器和独创的智能分析软件,能实现Fe、Al、Cu、Mg、Zn、Ni等十余种基体的快速测量。ARTUS 10 –卓越的检测性能源自1. 精准稳定的测试结果数字脉冲合成光源、光室恒温系统设计以及采用先进CMOS检测器让ARTUS 10在合金元素分析、微量元素和痕量元素控制方面具有极佳的分辨率和稳定性。完美的光学设计带来了卓越的紫外波段元素分析性能,ARTUS 10能显著提高C、N、P、S测试结果的可靠性。2. 高效全谱测量动态CMOS检测器的创新使用让ARTUS 10实现130nm至870nm的波长范围内全元素精准分析。在元素选择上具有极大的灵活性,扩展灵活方便,能使操作适合未来需要。3.人性化设计理念一键激发按钮让激发快速准确;独特氩气流气路设计使得氩气快速填充的同时让氩气消耗降至最低;实时监测模块设计让操作者准确方便地监测仪器各个模块的运行状态;丰富异形夹具设计满足线材、棒材、薄膜及各类不规则样品的高效测量;智能分析软件和可视化界面让分析结果快速精确的同时更方便使用者的操作。  除了ARTUS 10 在测试中的优异表现之外,英国阿朗科技公司的技术背景也是玉柴内燃机国家工程实验室做出选择的一个重要因素,英国阿朗科技公司成立于20世纪80年代初,成立之初即研发发布了世界上第一台基于CCD技术的直读光谱仪,开拓了直读光谱仪全谱化、小型化、易用化的先驱。阿朗公司至今已服务于金属元素成分分析行业近40年。40年间ARUN™ 公司共推出10多款产品,覆盖现场及实验室金属材料的检测领域,全球用户总数量近20000家 。2018年10月,英国ARUN™ 全新CMOS 检测器的ARTUS 10 直读光谱仪重磅上市,创造性地采用CMOS作为检测器,检测下限可达1 ppm,突破了传统CCD检测器的局限性,实现科研级直读光谱仪的小型化,智能化,是直读光谱仪行业一个划时代的里程碑。ARUN 产品简史1989年发布全球第一台全谱CCD直读光谱仪(ARUN Analoy1401),推出当年便在全世界热销上千台;1992年发布全球第一台便携式CCD直读光谱仪(ARUN M1650);1995年阿朗品牌进入中国;1999年发布里程碑式全谱CCD直读光谱仪(ARUN M2500);2002年发布全球第一台4光室 CCD 全谱直读光谱仪(ARUN POLY S);2015年发布最新一代高性能双光室CCD全谱直读光谱仪(ARTUS 8);2016年中国最大上市分析仪器企业聚光科技与老牌光谱仪公司英国阿朗强强联合,聚光科技入股英国阿朗科技公司;2018年经过38个月的研发测试,发布全球第一台采用CMOS技术的直读光谱仪(ARTUS 10);
  • 合金真的有那么难消解吗?Multiwave 5000 给你答案“NO”!
    合金真的有那么难消解吗?合金(alloy)是指一种金属与另一种或几种金属或非金属经过混合熔化,冷却凝固后得到的具有金属性质的固体产物。常用的合金有哪些常用的合金包括:耐腐蚀合金、 耐热合金 、高强度不锈钢等。尽管标准不锈钢不易腐蚀,但在条件苛刻的环境中,所造成的腐蚀仍可能会导致材料中出现孔隙。由于镍可有效提高耐高温的强度,而铬,硅和铝可提供抗氧化保护。人们通过添加适当分量的铬,钼,镍和其他合金金属,用以提供全面的腐蚀防护,改进不锈钢的质量,并提高对晶界腐蚀,点蚀,缝隙腐蚀以及应力腐蚀开裂的抵抗能力。高性能的合金材料具有高耐腐蚀性,耐热性,高强度等特征,并可应用于一些条件苛刻的环境,如脱盐,原子能,半导体,太阳能电池和燃料电池等先进技术领域。消解合金样品面临的挑战分析并测试合金中元素的组成和元素的含量成为控制合金材质的关键。合金的主要成分来自矿物冶炼,以镍铁合金为例,它的生产工艺在世界范围内比较成熟的是利用红土镍矿进行火法冶炼。火法冶炼镍铁指:在高温条件下,以C(或Si)用作还原剂,对氧化镍矿中的NiO及其他氧化物(如FeO)进行还原而得。除此以外,合金中还含有碳、硅、硫、磷等其他杂质,这对消解合金样品带来一定的挑战。然而在安东帕Multiwave 5000面前一切将变得非常简单安东帕Multiwave 5000系列微波消解仪试验方案仪器:Multiwave 5000,20SVT50 转子样品样品名称标准型号Hastelloy C22NiCr21Mo14WStainless Steel 1.4404EN: X2CrNiMo17-12-2Stainless Steel 1.4301EN: X5CrNi18-10FeTi 7039EN: X5CrNi18-10Ferrochrome 471EN: X5CrNi18-10Hastelloy C22是一种全能的镍铬钼钨合金,比其他的现有的镍铬钼合金拥有更好的总体抗腐蚀性能;不锈钢1.4404则更耐氯化物侵蚀,因此可在盐水环境中使用。该钢经过改良可加工,具有非常好的耐腐蚀性,通常用于建筑和建筑业,用于关键部件的应用;不锈钢1.4301具有基本的耐腐蚀性,故经常应用于日常产品中,例如橱柜、热水器、锅炉、汽车配件等;FeTi 7039和Ferrochromium 471是来自钢铁厂的工艺样品。FeCr合金作为钢的添加料生产多种高强度、抗腐蚀、耐磨、耐高温、耐氧化的特种钢是航空、宇航、汽车、造船以及国防工业生产枪炮、导弹、火箭、舰艇等不可缺少的材料 消解程序首先称取200mg细粉的样品至消解管中,过程中要避免由于静电吸引而弄脏容器壁。先添加HCl(盐酸),以防止样品钝化,几分钟后加入硝酸、氢氟酸。在加酸过程中,若发现有剧烈反应,应将样品在通风橱中静置待反应缓和,然后再继续添加酸。值得一提的是,并非所有种类的钢和合金样品都必须添加氢氟酸。 如果样品中含有硅,则HF的添加尤为重要。在添加了相应的酸和进行预反应之后,将容器密闭并插入转子中,开始消解程序。温度程序消解效果使用Multiwave 5000 成功地消解了200mg样品,用去离子水稀释至40 mL后,消化的溶液呈绿色(源自高Cr浓度)或呈浅黄色。 不论颜色如何,所有样品均被完全消解。样品消解效果样品消解效果样品消解效果⬅ 向左滑动试验结论配备Rotor 20SVT50的安东帕Multiwave 5000系列微波消解仪是一种功能强大的配置,可用于对苛刻的无机基质进行快速可靠的高端样品消解。本次试验成功地证明了Multiwave 5000可以方便地在常规基础上完全消化各种钢和高性能合金。Multiwave 5000系列配备的SmartVent技术以及SVT50容器可在高温下提供更多的样品量。SmartTemp技术可确保对反应性样品进行快速可靠的温度控制,在强力排气的情况下。SmartVent检测器可通过增加排气量来快速去除蒸汽。
  • 气氛炉管式电炉窑里耐火高温涂料应用介绍
    气氛炉管式电炉窑里耐火高温涂料应用介绍  气氛炉,管式炉炉窑是用耐高温材料铸成的用以煅烧物料或烧成制品的高温设备。气氛炉,管式炉炉窑燃烧加温的物料有煤、木材、油类、煤气、天然气或者是电磁感应方式。气氛炉,管式炉,炉窑工作时的温度可以达到1600℃或更高,环境中有大量的腐蚀介质,气流大,炉窑的材料腐蚀摩擦损耗严重。为了更好的保护炉窑材料,节能环保,使炉窑工作更具有连续性,所以炉窑的高温下防腐就显得课外重要。高温炉窑防腐涂料的具体应用如下:  1、气氛炉,管式炉,炉窑高温材料是保温砖的,保温砖保护也成为保温砖防腐,保温砖有高质的低质之分,保温砖在高温窑炉里工作3-5年后,保温砖会发酥脱落,严重形象炉窑的安全和隔热保温性。保温砖的防护防腐做法是在保温砖的表面先涂刷ZS-1耐高温隔热保温涂料,减少保温砖的受热温度和腐蚀介质的侵蚀,在ZS-1耐高温隔热保温涂料外再涂刷ZS-1061耐高温远红外辐射涂料,增加炉窑的燃烧温度,降低排烟温度,是能源充分延烧,这样节能经济效益尤为突出。  2、炉窑高温材料是金属的,金属在高温下腐蚀十分严重,把金属表面处理后,先涂刷ZS-1耐高温隔热保温涂料,较少金属的受热温度,是金属在高温环境下各项性能不发生变化,极限发挥金属的性能指标。在ZS-1耐高温隔热保温涂料外表面再涂刷ZS-811耐高温防腐涂料,耐高温防腐涂料耐温可以达到1800℃,耐酸耐碱,抗气流冲击,能很好的保护炉窑燃烧时产生的腐蚀气体不和金属接触反应,大大延长炉窑金属的使用寿命。  3、气氛炉,管式炉,炉窑高温材料是保温棉或是保温毡的,在保温棉或是保温毡上先涂刷ZS-1011纤维过渡涂料,在涂刷ZS-1061耐高温远红外辐射涂料,这样就能减少保温棉或是保温毡的腐蚀程度,更好的发挥保温毡或是保温棉的隔热保温性,环节材料的老化性,延长保温棉或是保温毡的使用寿命。  4、炉窑高温材料是石墨、碳化硅的,石墨和碳化硅在高温下氧化的比较烈害,腐蚀严重,这样会影响炉窑的正常工作。在高温石墨和碳化硅先涂刷ZS-1011过渡涂料,再涂刷ZS-1021志盛威华高温封闭涂料,增加石墨和碳化硅抗氧化能力,减少腐蚀,增加炉窑的使用条件和年限。  气氛炉,管式炉窑是工业生产上重要而且极为关键的设备,炉窑的节能也是工业上节能的关键,能节能减排是遵循人类社会发展规律和顺应当今世界发展潮流的战略举措。工业革命以来,世界各国尤其是西方国家经济的飞速发展是以大量消耗能源资源为代价的,并且造成了生态环境的日益恶化。进一步加强炉窑节能减排工作,既是对人类社会发展规律认识的不断深化,也是积极应对全球气候变化的迫切需要,走新型工业化道路的战略必然选择。
  • 物理所获得具有类金刚石耐磨性能的非晶合金
    类金刚石材料因超高的硬度和自润滑能力而展现出极佳的摩擦磨损性能。然而,受湿度、温度、气氛等环境因素和尺寸的限制,类金刚石材料的应用局限于涂层和复合材料的填充剂。相比类金刚材料,金属的应用更加广泛。但金属的硬度往往较低,缺乏自润滑能力,大部分金属材料的摩擦磨损性能远远逊色于类金刚石材料。在金属材料中获得金刚石般的摩擦磨损性能将极大拓宽耐磨材料的选择范围。非晶合金保留了液态熔体的无序原子结构,具有高强度、高硬度的特点。不同于传统金属,非晶合金表面呈现类似液体的性质,从而出现自润滑效应,使得许多非晶合金展现出接近类金刚石材料的摩擦系数(COFs0.2)。非晶合金的高强度也使其具有良好的磨损抗性,磨损率Ws约为10-5-10-6 mm3/Nm。这一磨损率虽然远低于常见金属材料,但和类金刚石材料约为10-6-10-9 mm3/Nm的磨损率相比仍然很高。降低非晶合金磨损率的关键在于提高结构稳定性和断裂韧性。令人遗憾的是,大部分非晶合金因为玻璃转变温度和晶化温度低而在高速往复摩擦过程中容易出现结构弛豫或晶相的析出,导致局部裂纹产生,磨损抗性随之降低。因此,寻找结构稳定、韧性良好的非晶合金是提高摩擦磨损性能的重要途径。 中国科学院物理研究所柳延辉、汪卫华团队前期基于材料基因工程理念,发展了高通量实验方法,开发出高温块体非晶合金,发现了非晶合金形成能力的新判据,为非晶合金新材料高效研发提供了有利工具。近期,该团队研究人员针对非晶合金的力学性能设计了高通量表征方法(图1),结合前期发展的高通量制备和非晶筛选技术,研发出摩擦系数、磨损率均和类金刚石材料相当的超耐磨高温非晶合金。 团队选择Ir-Ni-Ta高温非晶合金体系为突破口。该合金体系具有良好的非晶形成能力和高玻璃转变温度,能够克服非晶合金在摩擦过程中的结构失稳问题。此外,该合金体系展现的高强度、高硬度等特点也有助于提高磨损抗力。但难点在于如何在该合金体系内获得韧性较好的成分,从而降低摩擦过程中裂纹产生的可能性。团队利用前期发展的高通量实验技术制备了同时含有大量合金成分的组合样品,确定了非晶形成成分范围。基于非晶合金剪切变形的特点以及剪切带数量和材料韧性之间的关联,团队提出利用纳米压痕技术施加大变形量诱导剪切带和裂纹形成的高通量表征方法。结合压痕形貌表征,该方法可在大的成分范围内快速获得韧性随合金成分的变化趋势,从而确认具有裂纹抗性和塑性的成分区间。此外,纳米压痕技术本身还可同时获得硬度和模量数据。团队进一步通过对特定成分的微纳力学表征证明了该高通量表征方法的有效性,并在Ir-Ni-Ta组合样品中的富Ta区域发现了具有极低摩擦系数和磨损率的非晶合金。微观力学测试显示,该富Ta非晶合金的压缩强度高达5 GPa,大量剪切带的形成表明该合金具有较好的韧性。此外,热稳定性测试和高温氧化测试证明该富Ta非晶合金还具有极好的结构稳定性(晶化温度Tx1073K,氧化温度920K)。在室温大气环境中,采用金刚石球头进行摩擦测试,该富Ta非晶合金的摩擦系数仅为0.05,采用G-Cr合金球头测试,摩擦系数也只有0.15。最为值得关注的是,该富Ta非晶合金的磨损率只有~10-7 mm3/Nm(图2)。这样的摩擦磨损性能已经接近相似测试条件下类金刚石材料的摩擦磨损性能(图3)。这些结果不仅证明了新发展的高通量力学表征方法对快速筛选强韧化非晶合金成分的有效性,更有助于理解非晶合金耐磨性的起源。 以上研究成果以Achieving diamond-like wear in Ta-rich metallic glasses为题近日在线发表在《先进科学》(Advanced Science)上。上述研究工作得到国家重点研发计划、中国博士后科学基金、国家自然科学基金委员会、中国科学院、广东省基础与应用基础研究重大专项的支持。 中国科学院物理研究所(以下简称“物理所”)前身是成立于1928年的国立中央研究院物理研究所和成立于1929年的北平研究院物理学研究所,1950年在两所合并的基础上成立了中国科学院应用物理研究所,1958年更名为中国科学院物理研究所。 物理所是以物理学基础研究与应用基础研究为主的多学科、综合性研究机构。研究方向以凝聚态物理为主,包括凝聚态物理、光学、原子分子物理、等离子体物理、软物质与生物物理、理论和计算物理、材料科学与工程等。
  • “先进结构与复合材料”重点专项2021申报指南:拟安排6.32亿元启动37个项目
    5月13日,科学技术部发布国家重点研发计划“先进结构与复合材料”重点专项2021年度项目申报指南。指南中明确:2021年度指南部署坚持问题导向、分步实施、重点突出的原则,围绕高性能高分子材料及其复合材料、高温与特种金属结构材料、轻质高强金属及其复合材料、先进结构陶瓷与陶瓷基复合材料、先进工程结构材料、结构材料制备加工与评价新技术、基于材料基因工程的结构与复合材料7个技术方向。按照“基础前沿技术、共性关键技术、示范应用”三个层面,拟启动37个项目,拟安排国拨经费6.32亿元。其中,拟部署9个青年科学家项目,拟安排国拨经费3600万元,每个项目400万元。1. 高性能高分子材料及其复合材料1.1 高性能全芳香族纤维系列化与规模化制备关键技术(共性关键技术)研究内容:针对航空航天、武器装备等亟需的高强高韧结构材料应用需求,开展高性能全芳香族纤维制备关键技术及其应用研究。揭示大分子刚性链结构、纤维纺丝成型、凝聚态及其性能之间的内在规律,攻克全芳香族纤维制备共性科学问题;研究高强/高模芳纶纤维成型和热处理工艺,突破制备关键制备技术及成套装备;研究高伸长耐高温芳纶III纤维、芳纶纸及其蜂窝应用技术;探讨高性能液晶纺丝聚芳酯聚合物结构设计、固态缩聚反应动力学和纤维冷却成型机理,攻克聚芳酯纤维制备关键技术。1.2 面向高端应用的阻燃高分子材料关键技术开发(共性关键技术)研究内容:面向5G通讯和轨道交通等高端制造业的需求,形成一批具有国际领先水平和自主知识产权的合成树脂材料及应用技术。重点开发PCB的无卤高阻燃、高Tg、低介电性能的环氧树脂;高阻燃耐老化热塑性弹性体TPE和聚脲弹性体无卤阻燃技术及应用;研发本征阻燃高温炭化不熔滴聚酯和低热释放本征阻燃聚碳酸酯合成技术;本征阻燃尼龙66工程化制备及其应用,完成万吨级规模化生产与应用示范。1.3 低成本生物基工程塑料的制备与产业化(共性关键技术)研究内容:面向生物基高分子材料成本高和高性能工程塑料牌号少的问题,集中开发低成本生物基呋喃二甲酸(FDCA)、异山梨糖醇的制备技术;开发1,4-环己烷二甲醇(CHDM)和2,2,4,4-四甲基环丁二醇(CBDO)的国产化制备技术,基于生物基单体和新型单体开发PEF、PCF、PIF和PETG等生物基聚酯以及PIC、PCIC等生物基聚碳酸酯,从单体、聚合物到后端应用全链条研究。精细调控产品结构,研究产品的耐温性能、力学性能、阻隔性能等,开发不低于8种高性能聚酯和聚碳酸酯产品,并在包装领域得到应用。2. 高温与特种金属结构材料2.1 高温合金纯净化与难变形薄壁异形锻件制备技术(共性关键技术)研究内容:针对国产高温合金冶金质量差、材料综合利用率低、力学性能波动大等问题,研究镍基高温合金纯净熔炼、返回料处理和再利用技术,返回料与全新料混合重熔工艺;开发难变形高温合金成分优化及纯净熔炼、铸锭均匀化热处理、合金铸锭均质开坯、棒料细晶锻制、大型薄壁异形环形件整体制备等工艺技术,建立合金工艺与成分、组织和性能的影响关系,实现高温合金棒材和锻件组织均匀性和性能一致性的优化控制,完成合金制备工艺、材料与构件质量评估及在先进能源动力装备的考核验证。2.2 高品质TiAl合金粉末制备及3D打印关键技术(共性关键技术)研究内容:针对电子束3D打印所需的低氧含量球形TiAl合金粉末,研究铝元素挥发、粉末球形度差、空心粉高问题,突破工业化生产球形TiAl合金粉末和工业化TiAl构件增材制造关键技术;开展增材制造TiAl合金的材料—工艺—组织—缺陷—性能一体化系统研究及典型服役性能测试,突破构件增材制造工艺及性能控制关键技术,掌握包括材料、工艺、组织调控、性能特征及典型应用,为新一代航空发动机高温关键构件制造及工业化应用提供技术支撑。2.3 光热发电用耐高温熔盐特种合金研制与应用(示范应用)研究内容:针对太阳能光热发电产业低成本高效发电可持续发展需求,以下一代低成本高效超临界二氧化碳光热发电系统中耐高温氯化物混合熔盐特种金属材料及其制造技术为研究对象,研究耐高温不锈钢、高温合金板材及其焊接界面在高温氯化物、硝酸盐中的腐蚀机理和服役寿命预测技术,研究满足氯化物和硝酸盐熔盐发电系统用的耐高温不锈钢、高温合金板材成分和组织设计及其批量制造技术,开发耐高温熔盐不锈钢、高温合金成型和焊接行为及其先进制备技术,发展高温合金长寿命高吸收率吸热涂层,实现高性能不锈钢、高温合金产品开发及应用示范。2.4 海洋工程及船用高端铜合金材料(共性关键技术)研究内容:针对舰船和海洋装备泵体、管路及阀门等耐蚀性差、服役寿命短、高端材料依靠进口的问题,研究海洋工程及船用新型高性能铜合金材料设计、成分—组织—工艺内禀关系、腐蚀行为及耐蚀机理,开发耐高流速海水冲刷型铜合金承压铸件制备、超大口径耐蚀铜合金管材加工及管附件成形、海洋油气开采用高耐磨高耐蚀铜合金管棒材加工及热处理组织性能调控等高质量低成本工业化制造技术,开展产品应用技术研究,实现高端铜合金典型产品示范应用。3. 轻质高强金属及其复合材料3.1 苛刻环境能源井钻采用高性能钛合金管材研究开发及应用(示范应用)研究内容:针对我国油气、可燃冰等能源钻采高耐蚀和轻量化的紧迫需求,研究苛刻环境下高强韧耐蚀钛合金多相组织强韧化、抗疲劳机理,以及高温、高压、腐蚀、疲劳等服役环境下材料损伤及失效机理;建立服役环境适应性材料设计方法及油气井钻采用钛合金钻杆、油套管服役性能适用性评价方法;开发高性能大规格钛合金无缝管材成套工艺技术及关键应用技术;制定专用标准规范,开展苛刻服役条件下应用研究,实现工业化规模稳定生产,在典型应用场景实现示范应用。3.2 先进铝合金高效加工及高综合性能研究(共性关键技术)研究内容:针对汽车、飞行器以及船舶等提速减重、绿色制造的迫切需求,开展以铸代锻、整体成型、短流程、低排放的高效加工技术研究,研发高综合性能的先进铝合金材料;开展先进铝合金材料综合性能评价及加工技术效能评价,形成铸锻一体成型的新型高综合性能铝合金高效加工技术,将铸造、增材制造等铝合金提升到变形铝合金强度水平。3.3 高性能镁合金大型铸/锻件成形与应用(共性关键技术)研究内容:针对商用车、高速列车、航空航天等领域的轻量化紧迫需求,探索热—力耦合条件下大容积镁合金凝固与形变过程中成分—组织—性能演变规律与调控技术,开发适合于大型铸/锻件的高性能镁合金材料;研究大型镁合金铸/锻件组织均匀化与缺陷调控机理,开发高致密度铸造成形技术、大体积熔体清洁传输及半连续铸造技术、挤锻复合一体成形技术;开展大型承载件的结构设计、产品制造、腐蚀防护及使役性能评价等技术研究,并实现示范验证与规模化应用。3.4 新型结构功能一体化镁合金变形加工材制造技术(共性关键技术)研究内容:针对航空航天、轨道交通、能源采掘、电子通信等重大装备升级换代的紧迫需求,研究新型强化相对镁合金力学性能与功能特性的协同调控机理,发展新型结构功能一体化镁合金材料与新型非对称加工技术,开发大规格高强阻尼镁合金环件、宽幅阻燃镁合金型材、高强可溶镁合金管材、高强电磁屏蔽/高导热镁合金板材的工业化制造成套技术及关键应用技术,并实现典型示范应用。3.5 极端环境特种服役构件用构型化金属基复合材料(示范应用)研究内容:针对航空航天特种服役构件用耐疲劳高强韧铝基复合材料、耐热高强韧钛基复合材料以及岛礁建设与隧道掘进等重大工程用高耐磨钢铁基复合材料,开发铝、钛基复合材料用合金粉末的低成本制备技术,解决传统制粉技术细粉出粉率低、氧含量高等技术难题,实现高端铝、钛合金粉末规模化制备。探索复合材料体系—复合构型设计—复合技术—宏微观性能耦合机制与协同精确控制机理,开发跨尺度分级复合构型的定位控制、界面效应与组织精确调控、性能及质量稳定性控制、大型结构件塑性加工与热处理、低成本批量制备等产业化关键技术,开展特种服役性能评价、全寿命预测评估与应用技术研究,建立相关标准规范,实现其稳定化生产与应用示范。3.6 高端装备用高强轻质、高强高导金属层状复合材料研制及应用(示范应用)研究内容:针对高速列车、先进飞机、防护车辆等高端装备轻量化、高性能化的迫切需求,研究高性能多层铝合金板材、铜包铝合金等层状复合材料界面结构与复合机理,探索应用人工智能、大数据等前沿技术优化界面调控的理论与方法,阐明铝合金复合板材的叠层结构、复合界面、陶瓷颗粒第二相等在高应变速率下抵抗冲击的作用机理;开发防护车辆、特种装备等用抗冲击多层高强铝合金复合板材的工业化制造成套技术及复合板材的性能评价等关键应用技术;开发高速列车、航空航天、电力电器等高端装备用铜包铝合金复合材料短流程高效工业化生产成套技术及多场景应用关键技术,实现在高端装备上的示范应用。4. 先进结构陶瓷与陶瓷基复合材料4.1 高端合金制造及钢铁冶金用关键结构陶瓷材料开发及应用(示范应用)研究内容:面向冶金产业提升的发展需求,研究高端合金制造及钢铁新技术领域用关键结构陶瓷材料组分设计与制备技术,开发高品质高温合金制备用结构陶瓷材料、冶金领域用高效节能硼化锆陶瓷电极、薄带连铸用结构功能一体化陶瓷材料的规模化生产工艺,开展应用评价技术研究,建立规模化生产线,研制关键生产设备,制定制备及检测标准。4.2 低面密度空间轻量化碳化硅光学—结构一体化构件制备(基础前沿技术)研究内容:针对空间遥感光学系统的应用需求,研究低面密度空间轻量化碳化硅光学—结构一体化构件的结构拓扑设计,开展复杂形状碳化硅构件的增材制造等新技术、新工艺研究,开发低面密度复杂形状碳化硅构件的近净尺寸成型与致密化烧结技术,开展低面密度空间轻量化碳化硅光学—结构一体化构件的光学加工与环境模拟试验研究,实现满足空间遥感光学成像要求的低面密度碳化硅光学—结构一体化构件材料制备。4.3 高性能硅氧基纤维及制品的结构设计与产业化关键技术(示范应用)研究内容:针对高效隔热防护服、高强芯片、高保真通讯电缆等对高性能硅氧基纤维及制品的应用需求,研究硅氧前驱体化学组成、结构重组、多级微纳结构演变对纤维成型的影响规律,攻克硅氧基无机制品高温均匀化熔制拉丝关键技术,开发高强玻璃纤维;研究前驱体分子缩聚和纳米/微米多级孔组装结构演变对孔结构形成的影响规律,突破多孔玻璃纤维常温挤出成型技术,开发低介电、低热导、轻质柔性玻璃纤维;研究模拟月球和火星环境的微重力、高真空环境下玄武岩材料熔制技术及深空环境对纤维成型的作用机制,开发高性能连续玄武岩纤维;开展高性能玻璃纤维及复合制品产业化示范,形成千吨级生产线;开发极端环境的模块化连续玄武岩纤维成型装置,实现微重力下自主成纤中试。5. 先进工程结构材料5.1 海洋建筑结构用耐蚀钢及防护技术(共性关键技术)研究内容:针对海洋建筑结构对长寿命钢铁材料的需求,研究高盐雾、高湿热、强辐射等严酷海洋环境下,钢铁结构材料的失效机理与材料设计准则;防腐涂层的成分设计、制备技术、涂装工艺及腐蚀评价;耐蚀钢板/钢筋的成分设计、制备技术、焊接技术及腐蚀评价;复合钢板的制备技术、焊接技术及腐蚀评价;海洋建筑结构用钢的服役评价、设计规范及示范应用。开展免维护海洋结构用低合金耐蚀钢板及复合钢板的成分设计及制备技术研究;开展防腐涂层设计与制备技术、钢板与涂层耦合耐蚀机理研究;研究低成本耐蚀钢筋母材与覆层协同耐蚀机制与制备技术;开展耐蚀钢连接技术研究;建立复杂海洋环境钢材及构件的服役评价及全寿命周期预测方法。6. 结构材料制备加工与评价新技术6.1 金刚石超硬复合材料制品增材制造技术(示范应用)研究内容:围绕深海/深井勘探与页岩气开采、高端芯片制造等国家重大工程对长寿命、高速、高精度超硬材料制品的需求,开展高性能金刚石刀具、磨具和钻具等结构设计和增材制造技术研究,结合新型金刚石超硬复合材料工具宏观外形和微观异质结构的理论设计和数值模拟,重点突破增材制造用含金刚石的球形复合粉体关键制备技术和含超硬颗粒的多材料增材制造关键技术,完成典型工况条件下服役性能的评价。6.2 高强轻质金属结构材料精密注射成形技术(共性关键技术)研究内容:针对5G基站、消费电子、无人机或机器人等领域对高强轻质结构零件的迫切需求,研究粉末冶金高强轻质金属结构材料及其注射成形工艺过程精确控制原理与方法、小型复杂构件精密成形、低残留粘结剂设计及杂质元素控制、强化烧结致密化及合金的强韧化。重点突破粉末冶金高强轻质钢设计及其粉末制备、低成本近球形钛合金微细粉末制备、可烧结高强粉末冶金铝合金及近球形微细粉末制备、组织性能精确调控等关键技术,实现高强轻质金属复杂形状制品的稳定化宏量生产。6.3 大型复杂薄壁高端金属铸件智能液态精密成型技术与应用(共性关键技术)研究内容:面向大涵道比涡扇航空发动机、新能源汽车等对超大型复杂薄壁高端金属铸件的需求,打破传统“经验+试错法”研发模式,探索基于集成计算材料工程、大数据与人工智能相结合的金属铸件智能液态精密成型关键技术。研究超大型复杂薄壁金属铸件凝固过程的组织演变与缺陷形成机理,建立多物理场耦合作用下铸件组织与缺陷的预测模型,发展数据驱动的材料综合性能与铸造工艺多因素智能化寻优方法,形成金属铸件智能液态精密成型数字孪生模型及系统。6.4 复杂工况下冶金领域关键部件表面工程技术与应用(示范应用)研究内容:针对冶金领域高温、重载、高磨损等复杂工况对关键部件表面防护技术的迫切需求,开展复合增强表面工程材料及涂镀层结构的理性设计,开发高效率、高性能激光熔覆、堆焊、冷喷涂、复合镀等技术及多技术结合的复合表面工程技术,攻克复杂工况下冶金领域关键部件表面耐高温、耐磨损、抗疲劳涂镀层制备的关键技术,开展其服役性能评价和寿命预测,并应用于挤压芯棒、结晶器、除鳞辊等典型部件,在大型钢铁冶金企业得到示范应用。7. 基于材料基因工程的结构与复合材料7.1 结构材料多时空大尺寸跨尺度高通量表征技术(基础前沿技术)研究内容:针对高温合金、轻合金和高性能复合材料等的工程化需求,基于先进电子、离子、光子和中子光源,集成多场原位实验与多平台关联分析技术,研发晶粒、组成相、相界面、化学元素、晶体缺陷与织构的多时空跨尺度高通量表征、智能分析与快速评价技术,研发大尺寸多尺度组织结构和宏微观力学性能高通量表征技术与试验装备,实现典型工程化结构材料制备、加工和服役过程中内部组织结构的动态演化和交互作用规律的高效研究,建立材料成分—组织—性能的多尺度统计映射关系与定量模型,在典型结构材料的改性、工艺优化和服役评价等方面得到实际应用。7.2 金属结构材料服役行为智能化高效评价技术与应用(共性关键技术)研究内容:针对金属结构材料腐蚀、疲劳、蠕变等服役性能评价耗时长、成本高的问题,通过多物理场耦合、宏微观跨尺度损伤建模,融合智能传感、信号处理、机器学习等现代技术,研发材料服役性能物理实验与模拟仿真实时交互和数字孪生的智能化高效评价技术和装置;研究金属结构材料数据虚实映射与数据交互规则,建立数据关联平台,加速材料服役性能数据的积累,形成关键金属结构材料安全评价数据系统;集成结构模型与损伤模型,发展基于大数据技术的金属结构材料服役安全评价和寿命预测的新技术和新方法,并获得实际应用。7.3 基于材料基因工程的新型高温涂层优化设计研发(共性关键技术)研究内容:针对海上动力装备用热端部件及其海洋腐蚀环境,发展高温涂层的高通量制备技术,开展新型高性能高温涂层成分和组织结构的高通量实验筛选和优化研究;研发涂层—基体界面结构和性能多尺度高效模拟设计和预测技术,研发涂层高温力学性能、界面强度、残余应力和高温腐蚀性能等的高通量实验技术,开展涂层与界面性能和工艺优化研究;综合利用材料基因工程关键技术,研发出具有重要工程应用前景的新型超高温、耐腐蚀涂层。7.4 高强韧金属基复合材料高通量近净形制备与应用(共性关键技术)研究内容:针对航空航天领域高强韧金属基复合材料应用需求,围绕非连续增强金属基复合材料强韧性失配及复杂构件成形加工周期长、成本高、材料利用率低的突出问题,结合利用材料基因工程思想和近净形制备技术原理,研发铝基、钛基复合材料高通量近净形制备技术及其高通量表征技术;测试和采集基体/增强相界面物理化学数据,建立基体/增强相界面热力学和动力学物性数据库;研究铝基、钛基复合材料成分—构型—工艺—界面—性能交互关联集成计算技术,实现材料体系与构型及其近净形制备工艺方案与参数的高效同步优化,并在航空航天等领域得到工程示范应用。7.5 先进制造流程生产汽车用钢集成设计与工程应用(示范应用)研究内容:鉴于钢铁工业绿色制造、生态发展对先进制造流程生产高端钢铁材料的迫切需求,基于材料基因工程的思想,针对近终形流程生产汽车用钢,采用多场耦合和跨尺度计算技术,集成材料开发与产品应用的跨尺度计算模型,构建一体化集成计算平台,建立材料基础数据和工艺、产品数据库,开发基于数据挖掘和强化机制的组织性能定量关系模型,实现产品成分—工艺—组织—性能的精准预报;开展在近终形流程生产汽车用钢的示范应用,研制出代表性产品并实现工程应用。7.6 增材制造用高性能高温合金集成设计与制备(共性关键技术)研究内容:针对航空发动机、高超声速飞行器、重载火箭等国家大型工程所需高温合金精密构件服役特点和增材制造物理冶金特点,应用材料基因工程理念,发展多层次跨尺度计算方法和材料大数据技术,形成增材制造用高性能高温合金的高效计算设计方法、增材制造全流程模拟仿真技术与机器学习技术,结合高通量制备技术和快速表征技术,建立增材制造用高性能高温合金的材料基因工程专用数据库;发展适合高温合金增材制造工艺特性的机器学习、数据挖掘、可视化模拟等技术,开展增材制造用高温合金高效设计与全流程工艺优化的研究工作,实现先进高温合金高端精密构件的组织与尺寸精密化控制,并在航空航天等领域得到工程示范应用。7.7 极端服役条件用轻质耐高温部件高通量评价与优化设计(共性关键技术)研究内容:发展基于大数据分析和数据挖掘的高温钛合金、钛铝金属间化合物等轻质耐高温部件组织结构与疲劳、蠕变等关键性能的定量预测模型;研制实时瞬态衍射、原位成像表征装置,发展三维无损检测高效分析技术;研究高温腐蚀环境下组织结构演化和性能退化机理、高温和循环载荷等多因素耦合作用下的损伤累积及高通量评价与寿命预测技术;基于极端环境服役性能需求,利用机器学习和数据挖掘技术,实现轻质耐高温材料的成分、组织、制备工艺、服役性能的高效优化,并在航空、航天、核能等领域实现在极端服役条件下工程示范应用。8. 青年科学家项目8.1 车载复合材料LNG高压气瓶制造基础及应用技术研究内容:针对车载复合材料液化天然气(liquefiednaturalgas,LNG)高压气瓶的制造与应用,研究LNG介质相容的树脂基复合材料体系设计与制备;耐极端环境复合材料LNG气瓶结构设计技术;复合材料LNG高压气瓶抗渗漏、抗漏热和抗振动技术;复合材料LNG高压气瓶制造技术;复合材料LNG高压气瓶的性能评价技术。8.2 新一代结构功能一体化泡沫的制备和应用研究内容:面向结构功能一体化泡沫技术迭代的迫切需求,开发具备负泊松比和高耐火保温等功能的泡沫,主要针对新型多级结构负泊松比结构泡沫材料、耐高温聚酰亚胺泡沫和高温可发泡防火材料等开展攻关,并开展其复合材料研究,在结构支撑、保温隔热等领域得到应用。8.3 单晶高温合金先进定向凝固技术及其精确模拟研究内容:针对当前航空发动机单晶涡轮叶片生产合格率低、冶金缺陷频发的现状,开展单晶高温合金及叶片高温度梯度液态金属冷却(LMC)定向凝固技术研究,突破LMC技术中动态隔热层配置、晶体取向控制、模壳制备、低熔点金属污染控制等关键技术,实现LMC技术的多场耦合、多尺度精确模拟,研究复杂结构单晶叶片在高梯度定向凝固中的缺陷形成、演化机理,发展缺陷控制技术。8.4 海洋油气钻采关键部件用高强高韧合金研究内容:针对海洋油气随钻测量和定向钻井、海底井口设备关键部件主要依靠进口问题,开展时效硬化型高强韧镍基、铁镍基耐蚀合金设计、高纯净低偏析冶金、强韧化机理、应力腐蚀疲劳失效寿命评估理论与方法等基础共性技术和产业化关键技术研究,实现高强韧、大规格、高均质耐蚀合金和超高强度高耐蚀合金稳定批量生产和工程化应用。8.5 基于增材制造技术的超轻型碳化硅复合材料光学部件制造研究内容:面向空间光学系统轻量化的发展需求,研究新型超轻型碳化硅复合材料光学部件预制体增材制造用粉体原料的设计与高通量制备技术;开发基于增材制造技术的碳化硅复合材料光学部件基体成型与致密化技术;开发基于增材制造技术的碳化硅复合材料光学部件表面致密层制备技术;开展超轻型碳化硅复合材料光学部件的加工验证研究。8.6 基于激光技术的材料服役行为多维度检测技术和装备研究内容:针对核电、海工等领域极端条件下结构材料服役性能远程在线、多维度、智能化检测的发展需求,开展基于激光技术的光谱、表面声波、超声或多种方法融合的材料组分、结构特性、力学性能、缺陷特征检测新原理和新方法研究,发展极端条件下结构材料服役行为的实时、原位、无损监检测技术,研制与材料基因工程大数据、人工智能分析算法和机器人技术深度融合的材料多维、多尺度在线监检测原型装置,实现多场耦合极端环境下材料多层次、多维度服役性能原位无损在线测量及示范应用。8.7 超高刚度镁基复合材料的集成计算设计与制备研究内容:以航空、航天或高铁领域为应用场景,针对超高刚度镁基复合材料特点,发展高刚度镁合金集成材料计算软件和镁基复合材料高通量实验技术,开展基于弹性变形抗力提升的镁合金基体成分设计和增强体种类、尺寸和分布形态对镁合金刚度和强韧性影响规律的研究工作,研发多尺度增强体复合构型强化的镁合金材料高效制备与组织调控技术,建立高刚度镁基复合材料及其典型构件的全流程制备技术,并实现在重大工程中的应用验证。8.8 增材制造先进金属材料的实时表征技术及应用研究内容:研发基于同步辐射光源的原位表征技术与装备,动态捕捉增材制造过程中高温下微秒级时间尺度和微米级局域空间内的相变和开裂;通过高通量的样品设计和多参量综合表征手段,揭示动态非平衡制备过程中材料组织结构的演化和交互作用规律。面向典型高性能结构材料,揭示增材制造快速熔化凝固超常冶金过程对稳定相、材料组织结构和最终性能产生影响的因素,快速建立材料成分—工艺—结构—性能间量化关系数据库;结合材料信息学方法,发展增材制造工艺和材料性能高效优化软件,在典型增材制造材料的设计与优化中得到应用。8.9 新一代抗低温耐腐蚀高强韧贝氏体轨道钢研究内容:针对低温下贝氏体钢中亚稳残余奥氏体易转变为脆性马氏体,增加贝氏体钢轨道安全服役隐患的问题,研究腐蚀、低温环境下贝氏体轨道钢(含钢轨和辙叉)的失效破坏机制,建立贝氏体轨道钢“夹杂物特性—组织结构—常规性能—服役条件—失效方式及寿命评估”数据库,开发适用于腐蚀、低温环境的新一代高强韧性、长寿命贝氏体轨道钢及其冶金全流程制造关键技术。近期会议推荐:【复合材料性能表征与评价网络研讨会】该网络会议对听众免费,会议日程及报名二维码如下:
  • 耐驰仪器应邀参加非晶合金国际研讨会
    非晶合金国际研讨会于2008年11月20日-22日在浙江大学召开,来自世界各地的非晶合金领域的专家、学者齐聚在美丽的西子湖畔共同交流、探讨大块非晶合金研究的最新成果、前沿技术和研究方法。全球领先的热分析仪器及技术提供商&mdash &mdash 耐驰仪器公司应邀参加此次研讨会。 耐驰仪器公司以其严谨的科学态度、始终如一的专注精神、精益求精的技术不断进行产品创新,产品曾多次获得&ldquo R&D大奖&rdquo , 耐驰公司的优质产品和尖端技术一直是促进高新材料研究和发展的助推器。耐驰公司的热分析仪器也因此受到业内专家、不同行业用户和市场的高度认可,耐驰公司研发的高温仪器一直以来更是无人能出其右。 在此次非晶合金研讨会上,耐驰公司的热分析应用技术专家曾智强博士作了题为&ldquo Comprehensive Characterization of Bulk Metallic Glass by Thermal Analysis and Thermo-Physical Testing&rdquo 的报告,引发了各国来宾的广泛兴趣和关注! 详情请登陆www.netzsch.cn
  • “十二五”863新材料“高强耐高温高分子专用料低成本制备技术”项目通过验收 ?
    p  高性能树脂基先进结构材料具有性能可设计、疲劳性能好、耐腐蚀、多功能一体化等优点。随着电子电器、汽车、医疗、化工、航空航天等行业的发展对高性能树脂基先进结构材料提出了新的要求,如高强度、耐高温等。“十二五”期间,863计划重点支持了高强耐高温高分子专用料低成本制备技术开发,通过制备新型单体、优化聚合工艺、选择高性能助剂、合金化/复合化及调整加工工艺,低成本开发高强耐高温高分子专用料,以满足电子电器、汽车、医疗、化工、航空航天等行业对高性能树脂基先进结构材料的需要,提升高分子材料领域的市场竞争力,推动高分子产业的持续发展。今年7月,“高强耐高温高分子专用料低成本制备技术”项目在北京通过验收。/pp  “十三五”期间,为满足经济社会发展和国防建设对材料的重大需求,提升我国材料领域的创新能力,引领和支撑战略性新兴产业发展,科技部制定了《“十三五”材料领域科技创新专项规划》(简称《规划》)。为解决先进结构材料设计、制备与工程应用的重要科学技术问题,研究高性能纤维及复合材料、高温合金、高端装备用特种合金、海洋工程用关键结构材料等关键材料和技术,《规划》将“先进结构与复合材料”列为发展重点之一,并对高性能高分子结构材料进行了布局,重点发展高性能聚醚酮、聚酰亚胺、聚芳硫醚酮(砜)、聚碳酸酯和聚苯硫醚材料,耐高温聚乳酸、全生物基聚酯、氨基酸聚合物等新型生物基材料,高性能合成橡胶等。/ppbr//p
  • 中南大学在开发3D打印高强耐热铝合金方面取得重要进展
    铝合金以其质轻、高比强、抗腐蚀等优异性能,广泛应用于航空航天、武器装备、轨道交通、汽车等领域的轻量化结构。增材制造技术不受工艺条件的约束和限制,为航空航天等领域复杂铝合金构件(如复杂框梁、薄壁、内流道结构等)的定制化生产提供了前所未有的机遇。然而,常见的铝合金通常表现出较差的成形性,增材制造过程中极易出现裂纹等冶金缺陷,导致较差的力学性能。目前,取得广泛商业应用的增材制造铝合金仅限于AlSi12、AlSi10Mg等少数铝硅系合金。而2xxx系和7xxx系等传统高强铝合金因其较宽的凝固区间,在增材制造复杂热应力环境下极易产生严重的热裂纹倾向,导致实际应用于增材制造铝合金种类非常少,难以满足承重、耐热等复杂服役环境对铝合金构件的迫切需求。因此,亟需开发兼具良好成形性与强韧性的增材制造铝合金。良好的高温稳定性近期,中南大学粉末冶金国家重点实验室的陈超和长沙理工大学的刘小春等人在开发增材制造高强耐热铝合金方面取得重要进展。该工作基于Al−Ni共晶合金凝固区间小、流动性好等特点,有效降低了铝合金在增材制造复杂热应力条件下的裂纹敏感性,在非常宽的工艺参数范围内合金内部都没有出现微裂纹。选区激光熔化(SLM)增材制造过程的高冷却速度还极大地细化了共晶组织,获得了纳米级球状Al3Ni粒子均匀分布于铝基体的粒状共晶组织。相比于铝硅系合金,Al−Ni共晶具有更高的共晶温度 (640℃)、在铝基体中更低的固溶度 (0.02wt.%) 以及更低的扩散系数,形成的Al3Ni 粒子具有非常好的高温稳定性,增材制造的Al−Ni合金表现出较好的耐热性能。选区激光熔化成形Al−Ni共晶合金室温抗拉强度超过400 MPa,室温延伸率10%,300℃的抗拉强度超过140 MPa,同时还具有较宽的成形工艺窗口。相关论文以题为“A high-strength heat-resistant Al−5.7Ni eutectic alloy with spherical Al3Ni nano-particles by selective laser melting”发表在期刊Scripta Materialia上。SLM 成形的Al−Ni共晶合金致密度超过99.8%。在极高的冷却速度下,合金晶粒细小,形成了平行于凝固方向的细小柱状晶合金,在垂直于建造方向的横截面和平行于建造方向的纵截面两个截面统计晶粒大小分别为 5.1μm和7.1μm。图1 SLM成形Al-Ni合金的显微组织:(a) SLM 示意图;(b) 横截面和 (c) 纵截面的EBSD图;(d) 合金的晶粒尺寸分布;(e) KAM统计图;(d) XRD。亚晶和晶内亚结构发达,合金较高的平均局部取向差,反映了合金内部较高的位错密度。SLM成形的Al−Ni合金主要由α-Al相和Al3Ni相组成。不同于传统铸造Al−Ni合金中呈棒状或纤维状的Al3Ni相,SLM成形Al−Ni合金中的Al3Ni相为球状,弥散分布于α-Al基体中,平均尺寸约为32nm。同时,α-Al基体中Ni元素的含量仍高达3.5wt.%,表明在SLM过程中极高的冷却速度下,大量Ni原子固溶在α-Al基体中形成超饱和固溶体。部分尺寸较小的Al3Ni颗粒与α-Al基体存在着110Al//113Al3Ni、{111}Al//{211}Al3Ni的位相关系。图2 合金的TEM分析:(a) TEMBF;(b)HAADF;(c)面扫描;(d)线扫描。图3 Al3Ni与α-Al基体的位相关系:(a) HRTEM;(b) IFT,(c,d) FT。SLM成形Al−Ni合金在室温下的抗拉强度、屈服强度及延伸率分别为410 MPa、280 MPa和9.5%,远高于铸造Al−Ni合金的性能。细小弥散分布的球状Al3Ni粒子是高强度的重要来源。合金在250℃时仍保持210MPa的屈服强度,在300℃的屈服强度接近140 MPa,显示出优于Al-Si系合金的高温力学性能。Ni原子在铝基体中更低的扩散系数(300℃下,dNi=2.7×10−17m2/s,dSi=2.6×10−16m2/s)和较低的固溶度保证了Al−Ni合金优异的高温强度和抗蠕变性能。图4 合金的力学性能:(a)应力应变曲线;(b)柱状图。
  • 手持光谱仪在不锈钢行业中的重要作用
    不锈钢是不锈耐酸钢的简称,指耐空气、蒸汽、水等弱腐蚀介质和酸、碱、盐等化学浸蚀性介质腐蚀的钢。不锈钢基本合金元素有Fe、Cr、Ni、Mn、Mo、Cu 、Nb、Ti、Si等元素,不同的配比成分用以满足不同用途对不锈钢组织和性能的要求。不锈钢中不同的合金成分含量对不锈钢的耐蚀性、耐高温氧化性能和机械强度具有很大的影响。以生产中常用的不锈钢304和316为例,赛谱司手持光谱仪在不锈钢牌号快速检测方面有着广泛的应用。304不锈钢牌号为0Cr18Ni9;316不锈钢也是一种得到较广泛应用的钢种,GB牌号为0Cr17Ni12Mo2,主要用于食品工业和外科手术器材,添加钼元素使其获得一种抗腐蚀的特殊结构。316中含有更高的镍和钼合金成分,导致316的价格比304高,在实际贸易时,不同种类的钢种难以快速区分,可能对用户带来重大损失,也会给带来一定的产品质量甚至安全隐患。在实际生产生活中由于316与304不锈钢在外观上不容易区分,常规的分析方法又比较繁琐耗时。赛谱司手持光谱仪是一种专门用于现场的手持式便携光谱仪,轻便,计数率高,能够快速、无损、准确地给出不锈钢材料的成分、含量和牌号信息,被广泛用于现场大量管材、阀门、焊缝、压力容器等金属相关材料的化学成份分析及合金牌号确认,废料分拣等。
  • “毅力”号火星车在火星上自制氧气 创造历史
    据美国《世界日报》21日报道,近日,美国国家航空航天局(NASA)的“毅力”号火星车,将火星大气中的部分二氧化碳成功转化为氧气,创下历史。  据报道,一个被称为“MOXIE”的装置利用电和化学方法,将二氧化碳分子中的1个碳原子和2个氧原子分解。第一次运行时,“MOXIE”产生了5克氧气,相当于一名从事正常活动的宇航员约10分钟所需的氧气量。目前,该装置每小时可产生10克左右的氧气。  “MOXIE”的工程师计划进行更多测试,并尝试提高其氧气输出量。对于这个项目,一名NASA高级官员表示,这是在火星上将二氧化碳转化为氧气技术的“关键第一步”。  据介绍,“MOXIE”由美国麻省理工学院设计,采用如镍合金的耐热材料制成,其设计可承受运行所需的800摄氏度高温。同时,该装置的薄型金属涂层,还可确保热能不会散发,且不会损害设备。  2月18日,“毅力”号火星车成功登陆火星,任务小组人员在对其进行一系列测试后,“毅力”号还将对耶泽罗陨石坑进行长达两年的探测,其任务包括寻找火星远古时期可能存在过的生命迹象,探索火星的地质和气候特征,为未来人类探索和登陆火星探路等。
  • 中国生物材料学会征集《镍钛形状记忆合金骨板形状恢复能力测试方法》等10项团体标准意见
    p style="text-align: justify text-indent: 2em "日前,中国生物材料学会发布关于征集《可降解镁合金半连续铸棒》等10项团体标准意见的通知。strong具体如下:/strong/pp style="text-align: justify text-indent: 2em "各学会会员及有关单位:/pp style="text-align: justify text-indent: 2em "根据2019年中国生物材料学会批准立项的团体标准项目,由中国生物材料学会团体标准化技术委员会归口的《可降解镁合金半连续铸棒》等10项团体标准项目已形成征求意见稿,并完成编制说明的编写。/pp style="text-align: justify text-indent: 2em "现公开征集意见,请各相关单位或个人将意见或建议填写至征求意见稿反馈表(附件21),并于2020年5月20日前以电子邮件的形式发送至各标准工作组联系人邮箱。逾期无回复或反馈按无意见处理,请各位专家和相关单位积极参与。/ptable cellspacing="0" cellpadding="0" class="table table-bordered" style="box-sizing: border-box margin: 0px 0px 20px padding: 0px border: 1px solid rgb(221, 221, 221) font-variant-numeric: inherit font-variant-east-asian: inherit font-stretch: inherit font-size: 15.4px line-height: inherit font-family: SourceHanSansCN-Regular, " noto="" sans="" cjk="" source="" han="" vertical-align:="" border-spacing:="" background-color:="" max-width:="" white-space:="" width:=""tbody style="box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline "tr class="firstRow" style="box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline "td width="25" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "strong序号/strong/p/tdtd width="351" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "strong标准名称/strong/p/tdtd width="5" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "strong制修订/strong/p/tdtd width="43.66666666666667" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "strong工作组联系人/strong/p/tdtd width="134" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "strong电子邮箱/strong/p/td/trtr style="box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline "td width="25" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "1/p/tdtd width="383" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "可降解镁合金半连续铸棒(Biomedical biodegradable magnesium alloys semi-continuous casted bars)/p/tdtd width="5" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "制定/p/tdtd width="43.66666666666667" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "朱世杰/p/tdtd width="134" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "zhusj@zzu.edu.cnbr style="box-sizing: border-box "/ br style="box-sizing: border-box "/ /pp style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " /p/td/trtr style="box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline "td width="25" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "2/p/tdtd width="383" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "可降解医用镁合金毛细管材(Biomedical degradable magnesium alloy microtubes)/p/tdtd width="5" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "制定/p/tdtd width="43.66666666666667" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "朱世杰/p/tdtd width="134" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "zhusj@zzu.edu.cn/p/td/trtr style="box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline "td width="25" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "3/p/tdtd width="383" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "可降解镁合金热挤压棒材(Biomedical biodegradable magnesium alloys extruded bars)/p/tdtd width="5" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "制定/p/tdtd width="43.66666666666667" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "朱世杰/p/tdtd width="134" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "zhusj@zzu.edu.cn/p/td/trtr style="box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline "td width="25" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "4/p/tdtd width="383" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "镍钛形状记忆合金骨板形状恢复能力测试方法(Standard for Evaluating Shape Recoverability of Nickel-Titanium Shape Memory Alloy Bone Plates)/p/tdtd width="5" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "制定/p/tdtd width="43.66666666666667" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "闫鹏伟/p/tdtd width="134" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "supeyan@qq.com/pp style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " /p/td/trtr style="box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline "td width="25" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "5/p/tdtd width="383" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "镍钛形状记忆合金骨植入物体外镍离子释放模型(The model of Nickel ion release in vitro of nickel-titanium shape memory alloy bone implant)/p/tdtd width="5" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "制定/p/tdtd width="43.66666666666667" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "郑亚亚/p/tdtd width="134" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "441845847@qq.com/pp style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " /p/td/trtr style="box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline "td width="25" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "6/p/tdtd width="383" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "镍钛形状记忆合金心脏封堵器形状恢复性能评价方法(Evaluation method for evaluating shape recovery ability of Nickel-Titanium shape memory alloy cardiac occlude)/p/tdtd width="5" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "制定/p/tdtd width="43.66666666666667" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "刘艳文/p/tdtd width="134" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "liuyanwen@lifetechmed.com/p/td/trtr style="box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline "td width="25" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "7/p/tdtd width="383" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "镍钛形状记忆合金自膨式血管支架形状恢复能力测试方法(Test method for evaluating shape recoverability of Nickel-Titanium shape memory alloy self-expanding vascular stent)/p/tdtd width="5" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "制定/p/tdtd width="43.66666666666667" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "李勇/p/tdtd width="134" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "liyong@microport.com/pp style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " /p/td/trtr style="box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline "td width="25" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "8/p/tdtd width="383" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "心脏封堵器体外脉动耐久性测试方法(Standard test methods for in vitro pulsatile durability testing of Cardiac occluder)/p/tdtd width="5" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "制定/p/tdtd width="43.66666666666667" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "姚斌/p/tdtd width="134" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "liuyanwen@lifetechmed.com/p/td/trtr style="box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline "td width="25" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "9/p/tdtd width="383" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "直管型血管支架 磁共振适用性 射频致热试验方法(Standard Test Method for Measurement of Radio Frequency Induced Heating On Straight Tubular Stents During Magnetic Resonance Imaging)/p/tdtd width="5" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "制定/p/tdtd width="43.66666666666667" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "张争辉/p/tdtd width="134" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "zzhyy17@163.com/pp style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " /p/td/trtr style="box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline "td width="25" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "10/p/tdtd width="383" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "外科植入物用Ti-24Nb-4Zr-8Sn合金(Wrought Ti-24Nb-4Zr-8Sn Titanium Alloy for Surgical Applications)/p/tdtd width="5" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "制定/p/tdtd width="43.66666666666667" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "郝玉琳/p/tdtd width="134" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "ylhao@imr.ac.cn/p/td/tr/tbody/tablep style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/a6a1b616-5712-474f-a4c9-9ecc2f1e4aad.doc" title="附件1:《可降解镁合金半连续铸棒》征求意见稿.doc"附件1:《可降解镁合金半连续铸棒》征求意见稿.doc/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/470e3963-e2ae-40b2-8eb1-7365dd9436fb.docx" title="附件2:《可降解镁合金半连续铸棒》编制说明.docx"附件2:《可降解镁合金半连续铸棒》编制说明.docx/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/a5b167c3-73ec-4d31-8349-b1b1a3c027e6.doc" title="附件3:《可降解医用镁合金毛细管材》征求意见稿.doc"附件3:《可降解医用镁合金毛细管材》征求意见稿.doc/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/30dbd099-4028-4ab3-9438-8592251ba06e.docx" title="附件4:《可降解医用镁合金毛细管材》编制说明.docx"附件4:《可降解医用镁合金毛细管材》编制说明.docx/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/5a9e7d8a-8311-48ce-8386-d15c23203dc5.doc" title="附件5:《可降解镁合金热挤压棒材》征求意见稿.doc"附件5:《可降解镁合金热挤压棒材》征求意见稿.doc/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/b7eb32fb-f924-4ee7-a075-4c702e545bec.docx" title="附件6:《可降解镁合金热挤压棒材》编制说明.docx"附件6:《可降解镁合金热挤压棒材》编制说明.docx/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/b78cb9c8-2e1b-4e7e-94f7-27e3842c2d6d.docx" title="附件7:《镍钛形状记忆合金骨板形状恢复能力测试方法》征求意见稿.docx"附件7:《镍钛形状记忆合金骨板形状恢复能力测试方法》征求意见稿.docx/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/80ab6a9c-9b2b-40bf-bfe2-305972209709.doc" title="附件8:《镍钛形状记忆合金骨板形状恢复能力测试方法》编制说明.doc"附件8:《镍钛形状记忆合金骨板形状恢复能力测试方法》编制说明.doc/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/7ecfb1a1-1cc7-49c8-b3c8-290e3aa5e68f.docx" title="附件9:《镍钛形状记忆合金骨植入物体外镍离子释放模型》征求意见稿.docx"附件9:《镍钛形状记忆合金骨植入物体外镍离子释放模型》征求意见稿.docx/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/6d2ac525-ca1f-4015-9934-78347485ed90.doc" title="附件10:《镍钛形状记忆合金骨植入物体外镍离子释放模型》编制说明.doc"附件10:《镍钛形状记忆合金骨植入物体外镍离子释放模型》编制说明.doc/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/6d5bffab-29ec-4a87-992d-67f3f78bef76.doc" title="附件11:《镍钛形状记忆合金心脏封堵器形状恢复性能评价方法》征求意见稿.doc"附件11:《镍钛形状记忆合金心脏封堵器形状恢复性能评价方法》征求意见稿.doc/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/6e0aa921-ba62-40dd-bda2-802615468cba.doc" title="附件12:《镍钛形状记忆合金心脏封堵器形状恢复性能评价方法》编制说明.doc"附件12:《镍钛形状记忆合金心脏封堵器形状恢复性能评价方法》编制说明.doc/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/f9f2366a-a29f-48bc-9174-73a9cf95ab7a.docx" title="附件13:《镍钛形状记忆合金自膨式血管支架形状恢复能力测试方法》征求意见稿.docx"附件13:《镍钛形状记忆合金自膨式血管支架形状恢复能力测试方法》征求意见稿.docx/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/5b6bcc1d-609f-4b94-bf70-e392edf1518a.doc" title="附件14:《镍钛形状记忆合金自膨式血管支架形状恢复能力测试方法》编制说明.doc"附件14:《镍钛形状记忆合金自膨式血管支架形状恢复能力测试方法》编制说明.doc/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/f388dbbe-5877-4eee-92c8-dce16595ea34.docx" title="附件15:《心脏封堵器体外脉动耐久性测试方法》征求意见稿.docx"附件15:《心脏封堵器体外脉动耐久性测试方法》征求意见稿.docx/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/a8e29df8-a908-4ee3-8002-d095a7967d71.doc" title="附件16:《心脏封堵器体外脉动耐久性测试方法》编制说明.doc"附件16:《心脏封堵器体外脉动耐久性测试方法》编制说明.doc/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/1e61a66a-ac3d-4b6f-b8b3-bad5da2ed049.docx" title="附件17:《直管型血管支架 磁共振适用性 射频致热试验方法》征求意见稿.docx"附件17:《直管型血管支架 磁共振适用性 射频致热试验方法》征求意见稿.docx/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/1212d876-cc6c-4910-9fd5-2e3064979be7.doc" title="附件18:《直管型血管支架 磁共振适用性 射频致热试验方法》编制说明.doc"附件18:《直管型血管支架 磁共振适用性 射频致热试验方法》编制说明.doc/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/944e5ed5-8974-4bf4-b611-d1d53185604d.docx" title="附件19:《外科植入物用Ti-24Nb-4Zr-8Sn合金》征求意见稿.docx"附件19:《外科植入物用Ti-24Nb-4Zr-8Sn合金》征求意见稿.docx/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/52cfec65-ff6e-4b3f-9ecb-c9a4db721a68.pdf" title="附件20:《外科植入物用ti-24nb-4zr-8sn合金》编制说明.pdf"附件20:《外科植入物用ti-24nb-4zr-8sn合金》编制说明.pdf/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/47a5488c-c74d-4183-b5d6-725fb8f39d9e.docx" title="附件21: 中国生物材料学会团体标准征求意见稿反馈表.docx"附件21: 中国生物材料学会团体标准征求意见稿反馈表.docx/a/p
  • Advanced Science: 基于高通量方法获取类金刚石耐磨性能的非晶合金
    类金刚石材料因超高的硬度和自润滑能力而展现出极佳的摩擦磨损性能。然而,受湿度、温度、气氛等环境因素和尺寸的限制,类金刚石材料的应用局限于涂层和复合材料的填充剂。相比类金刚材料,金属的应用更加广泛。但金属的硬度往往较低,缺乏自润滑能力,大部分金属材料的摩擦磨损性能远 远逊色于类金刚石材料。在金属材料中获得金刚石般的摩擦磨损行性能将极大地拓宽耐磨材料的选择范围。在工程系统中,摩擦的减少可能来自于使用润滑剂或通过设计减摩表面涂层。 非晶合金保留了液态熔体的无序原子结构,具有高强度、高硬度的特点。不同于传统金属,非晶合金表面呈现类似液体的性质,从而出现自润滑效应,使得许多非晶合金展现出接近类金刚石材料的摩擦系数(COFs0.2)。非晶 合金的高强度也使其具有良好的磨损抗性,磨损率Ws约为10-5-10-6mm3/Nm。这一磨损率虽然远低于常见金属材料,但和类金刚石材料约为10-6-10-9 mm3/Nm的磨损率相比仍然很高。降低非晶合金磨损率的关键在于提高结构稳定性和断裂韧性。令人遗憾的是,大部分非晶合金因为玻璃转变温度和晶化温度低而在高速往复摩擦过程中容易出现结构弛豫或晶相的析出,导致局部裂纹的产生,磨损抗性随之降低。因此,寻找结构稳定、韧性良好的非晶合金是提高摩擦磨损性能的重要途径。中国科学院物理研究所柳延辉、汪卫华团队前期基于材料基因工程理念,发展了高通量实验方法,开发出高温块体非晶合金(Nature , 2019, 569, 99),发现了非晶合金形成能力的新判据(Nature Materials 2022, 21, 165),为非晶合金新材料高效研发提供了有利工具。近期,该团队的李福成博士在柳延辉、汪卫华研究员的指导下,针对非晶合金的力学性能设计了高通量表征方法(图1),结合前期发展的高通量制备和非晶筛选技术,研发出摩擦系数、磨损率均和类金刚石材料相当的超耐磨高温非晶合金。 团队选择Ir-Ni-Ta高温非晶合金体系为突破口。该合金体系具有良好的非晶形成能力和高玻璃转变温度,能够克服非晶合金在摩擦过程中的结构失稳问题。此外,该合金体系展现的高强度、高硬度等特点也有助于提高磨损抗力。但难点在于如何在该合金体系内获得韧性较好的成分,从而降低摩擦过程中裂纹产生的可能性。团队利用前期发展的高通量实验技术制备了同时含有大量合金成分的组合样品,确定了非晶形成成分范围。基于非晶合金剪切变形的特点以及剪切带数量和材料韧性之间的关联,团队提出利用纳米压痕技术施加大变形量诱导剪切带和裂纹形成的高通量表征方法。结合压痕形貌表征,该方法可在大的成分范围内快速获得韧性随合金成分的变化趋势,从而确认具有裂纹抗性和塑性的成分区间(图1a, 1b, 1c)。此外,纳米压痕技术本身还可同时获得硬度和模量数据(图1d, 1e, 1f, 1g)。 团队进一步通过对特定成分的微纳力学表征证明了该高通量表征方法的有效性,并在Ir-Ni-Ta组合样品中的富Ta区域发现了具有极低摩擦系数和磨损率的非晶合金。如图2所示,微观力学测试显示,该富Ta非晶合金的压缩强度高达5 GPa,大量剪切带的形成表明该合金具有较好的韧性。此外,热稳定性测试和高温氧化测试证明该富Ta非晶合金还具有极好的结构稳定性(晶化温度Tx1073K,氧化温度920K)。在室温大气环境中,采用金刚石球头进行原位划痕测试获得摩擦磨损、薄膜结合力等参数。结果如图3所示,该富Ta非晶合金的摩擦系数仅为0.05.除了微观尺度的摩擦磨损测试外,本研究还测试了材料的宏观摩擦磨损特性。如图5所示,采用G-Cr合金球头测试,获得的摩擦系数为0.15。最为值得关注的是,该富Ta非晶合金的磨损率只有~10-7mm3/Nm。这样的摩擦磨损性能已经接近相似测试条件下类金刚石材料的摩擦磨损性能(图6)。这些结果不仅证明了新发展的高通量力学表征方法对快速筛选强韧化非晶合金成分的有效性,更有助于理解非晶合金耐磨性的起源。本文的不少工作都用到了布鲁克纳米表面与计量部的设备,包括纳米压痕仪、摩擦磨损测试仪及白光干涉显微镜等。这些设备能全面表征样品表面及涂层的表面特性。更重要的是,这些设备具有高通量测试功能,在材料基因组研究、大数据分析、和高通量筛选等方面具有良好应用。此外设备具有广泛的定制扩展能力,适合进行各种二次开放工作。这些设备介绍链接如下:本文第一作者李福成博士,毕业于香港城市大学机械与工程系(2016-2020),主要从事纳米结构非晶合金的力学研究,2020年加入中科院物理所柳延辉团队从事博士后研究,研究方向主要涉及高通量力学表征技术及高性能金属材料的开发。在Advanced Science,Journal of the Mechanics and Physics of Solids, International Journal of Plasticity等国际知名期刊发表论文二十余篇。中科院物理所柳延辉团队针对多组元合金材料探索效率低的问题,发展适用于多组元合金材料的高通量制备技术,研究工艺参数对材料合成的影响。针对微观结构、相变温度、抗腐蚀能力、抗氧化能力、力学等性能,发展相应的高通量表征技术,研究材料性能随化学成分和微观结构的变化趋势。本文主要内容来源于中科院物理所,部分内容有增删。原文链接如下:http://www.iop.cas.cn/xwzx/kydt/202305/t20230526_6763721.html 文章信息如下,感兴趣的朋友可以自行下载阅读。标题:Achieving Diamond-Like Wear in Ta-Rich Metallic Glasses作者:Fucheng Li, Mingxing Li, Liwei Hu, Jiashu Cao, Chao Wang, Yitao Sun, Weihua Wang,and Yanhui Liu出处:Adv. Sci. 2023, 2301053链接:https://onlinelibrary.wiley.com/doi/10.1002/advs.202301053相关产品介绍:纳米压痕仪:https://www.bruker.com/zh/products-and-solutions/test-and-measurement/nanomechanical-test-systems.html摩擦磨损测试仪:https://www.bruker.com/zh/products-and-solutions/test-and-measurement/tribometers-and-mechanical-testers.html白光干涉显微镜:https://www.bruker.com/zh/products-and-solutions/test-and-measurement/3d-optical-profilers.html
  • Retsch高能球磨仪Emax机械合金法制备半导体合金
    文章摘要: 机械合金化(Mechanical Alloying,简称MA)是指金属或合金粉末在高能球磨机中通过粉末颗粒与磨球之间长时间激烈地冲击、碰撞,使粉末颗粒反复产生冷焊、断裂,导致粉末颗粒中原子扩散,从而获得合金化粉末的一种粉末制备技术。本文以硅锗合金和碲化铋半导体材料合金化制备实验为例,介绍了高能球磨仪Emax的使用方法和技术优势,对合金样品制备的应用有借鉴作用。 传统方法制备不锈钢类合金要求高温下进行熔融,如果需求量很小抑或无法熔融,机械合金法就是一个很好的替代方法,传统上会用行星式球磨仪来完成。上世纪60年代末,美国国际镍公司用机械合金法第一次制备成功耐高温镍铁合金并以此申请专利。机械合金研磨需要有强劲的动能把固体粉末结合在一起,行星式球磨仪产生的高能撞击可以提供所需能量。在研磨球的撞击和挤压下,细粉颗粒会发生塑性形变并且焊合在一起。所以机械合金法可以弥补传统高温熔融无法制备的样品的不足,并且可以制备更大自由度混合比的样品。热电合金材料硅(Si)和锗(Ge)都是最通用常见半导体材料—是光电电池和晶体管产业的基石。硅锗合金材料性质如带隙可以由改变硅和锗混合比例来调整。热电合金材料用于制造航天热偶发电机,保证了空间探索和试验设备的动力供应。在商用热电材料领域,碲化铋(Bi2Te3)因其热电效能转化率高,是研究最多的材料,被用来做半导体制冷元件。 高能球磨仪EmaxEmax的转速能达到每分钟2000转,特殊设计的跑道型研磨罐可以产出更大的粉碎能。结合了高速撞击力和密集摩擦力,高能球磨仪的强劲能量输入可以做快速纳米研磨实验和机械合金应用。跑道型的研磨罐和偏心轮运动方式,有效保证了样品的混合,样品最后不仅可以磨得很细,粒度分布范围也会变很窄。内置水冷管路可以快速带走样品子啊研磨中产生的热量,保护样品免受过高温度影响,从而可以不像行星式球磨仪一样需要间歇停转,大大提高研磨工作效率。如果有更严格的控温需要,Emax还可以外接冷水机,进一步降低研磨温度(最低工作温度不能低于5摄氏度)。 图1:研磨前样品XRD 分析结果 Si(红)Ge(绿)整个扫描范围从10-60°,可以看出Si和Ge晶面特征峰。图2:研磨5小时后XRD分析结果 可以看出晶面特征峰已经偏移和合并,机械合金化已有效果图3:研磨5,8,9小时后XRD分析结果 晶面特征峰值会有所变窄和迁移,显示5-6小时的反应后机械合金反应已经基本完成原来硅和锗的机械合金化反应用是用行星式球磨仪进行的,但是会有很多问题导致结果不尽如人意。行星式球磨仪需要至少80分钟才能把样品处理到可以进行机械合金化的初始细度,接下来即使用中低转速400转/分也会导致样品在研磨罐中结块,无法使用其全部能量来进行机械合金反应。另一个问题是研磨罐过热需要间歇,在整个13小时的反应时间中需要额外加入至少90分钟停止时间。而高能球磨仪Emax自带水冷功能,高速运行也无需间歇,没有样品结块的现象,同时还大大提高了反应效率。 图4: 图 5:Bi和Te机械合金反应 1小时后XRD分析结果 图4为球料比10:1 (体积比)图5为球料比5:1(体积比) 机械合金法制备硅锗合金硅锗合金比为SI 3.63克 Ge2.36克,用50ml碳化钨研磨罐,10mm碳化钨研磨球8个(球料比10:1)。硅料和锗料的原始尺寸为1-25mm和4mm。2000转/分20分钟后,样品已经微粉化无结块现象。接下来1200转/分 9个小时(每隔1小时中间间歇1分钟后反转样品以避免样品结块)。机械合金反应前20分钟样品做了XRD定性和定量分析,Si和Ge的特征峰值都可以很清晰地辨认出来,说明碳化钨球几乎没有产生摩擦效应。在整个反应过程中合金始终保持微粉化,Emax的温度没有超过30℃。经过9个小时的反应后,整个样品基本消除了不定形态,呈微晶状态。机械合金法制备碲化铋研究不同球料比(10:1或5:1)对反应的影响,50ml 不锈钢研磨罐, 10mm不锈钢研磨球 10个。 球料比10:1的罐子中加入2.09克Bi和1.91克Te。 球料比5:1的罐子中加入4.18克Bi和3.83克Te。800转/分 70分钟(每10分钟间歇1分钟并反转),结果做了XRD分析。在经过近1小时机械合金研磨,Bi和Te的特征峰都有明显可辨的偏移,显示化合物Bi2Te3开始形成。球料比10:1的样品形成速度比5:1的更快,因为5:1样品中Te的特征峰值强度更大,说明10:1样品中的Te反应地更多。合金反应继续1200转/分3小时后,没有样品结块。和原来用混合研磨仪1200转/分 6.5小时制备相比,高能球磨仪Emax只需要2-3个小时候就能轻松完成任务。
  • 勤卓科技发布勤卓高低温试验箱恒温恒湿机QZ-150GX新品
    质保2年 送货上门安装培训!一、高低温交变湿热箱规格尺寸 QZ-80内形尺寸::450×500×400 mm W×H×D外形尺寸: 650×1515×1124 mm W×H×D QZ-150G 内形尺寸:500×600×500 mm W×H×D外形尺寸:750×1615×1224 mm W×H×D QZ-225G 内形尺寸:500×750×600 mm W×H×D外形尺寸:750×1805×1400 mm W×H×D QZ-408G 内形尺寸: 600×850×800 mm W×H×D外形尺寸:850×1905×1600 mm W×H×D QZ-800G内形尺寸:1000×1000×800 mm W×H×D外 形尺寸:1250×1910×1800 mm W×H×D QZ-1000G内形尺寸: 1000×1000×1000 mm W×H×D外形尺寸: 1250×1910×2000 mm W×H×D 湿度范围 标准型 20%~98%RH 温度范围 H: 0℃~+150℃ C: -20℃~+150℃ L: -40℃~+150℃ U: -60℃~+150℃ J: -70℃~+150℃ 二、高低温交变湿热箱技术参数:温度波动度 ±0.5℃温度均匀度 ±2.0℃湿度波动度 ±2%R.H湿度均匀度 ±2.5%R.H电 源 1ф3W 220V±10% 3ф5W380V±10%三、高低温交变湿热箱产品简介本温湿度试验箱采用高稳定度之白金PT-100测温抵抗体LCD中英文触控式/触摸式屏幕附多组PID控制功能配备RS-232C/485C连计算机接口控制温湿度试验箱可模拟高温高湿/高温低湿/低温高湿/高温/低温等不同的环境条件更搭配容易操作及学习的高准确性之编程控制及定点控制系统提供zui佳测试性能温湿度试验箱广泛适应于产业界电子电器、军工、塑料、五金、化工等行业,如:电子零件、汽车零件、笔记本等产品虚拟气候环境测试。四、高低温交变湿热箱常见产品特点圆弧造型及雾面线条处理,高质感外观,并采用平面无反作用把手,操作容易,安全可靠;全封闭结构,采用强力循环马达,低嗓音冷冻装置;附有防震台垫,使得机台在运转过程中能保持安静及稳定;具有被测试件通电测试功能(负载测试);采用飞利浦照明窗口灯、内置耐高温除雾装置,便于观察箱内产品试验情况;具有多种保护装置,性能安全可靠。六、箱体结构1、内胆为进口优质镜面不锈钢板(SUS#304)。2、外壳均采用优质冷轧钢板数控机床加工成型,外壳表面进行喷塑处理,更显光洁美观。3、保温材质选用高密度玻璃纤维棉,保温棉厚度为100mm。4、观察窗采用多层中空钢化玻璃,内设照明灯,内侧胶合片式导电膜加热除霜清楚观察试验过程。5、箱门与箱体之间采用双层耐高温高涨性密封条以确保测试区的密闭。6、机器底部采用高品质可固定式万向活动轮,方便移动。7、箱体左侧配Φ50mm或Φ100mm电缆测试孔一个,可供外接测试电源线或信号线使用。8、采用进口铂金PT100温湿度传感器,精确度高。温湿度控制器:采用全进口彩色智能编程触控式温湿度控制器主要配置均采用韩国、丹麦、日本、台湾、法国等部件 加热、加湿系统:1、高温低温湿热完全独立系统,采用远红外镍合金高速加温电热器。2、外置式锅炉蒸汽式加湿器具有节能降耗功能,具有水位自动补偿。制冷系统:1、压缩机:全封闭原装法国泰康制冷机组。2、制冷方式:单(双)机制冷。3、冷凝方式:强制风冷冷却。4、除湿采用蒸发器盘管露点温度层流接触除湿方式。5、电磁阀、油分离器、干燥过滤器、修理阀、冷媒流量视窗、贮液筒均采用进口原装件 创新点:优质钢板,造型美观,新颖勤卓高低温试验箱恒温恒湿机QZ-150GX
  • 《钢铁及合金 硅含量的测定 重量法》等353项国家标准即将实施!
    关于批准发布《钢铁及合金 硅含量的测定 重量法》等353项国家标准和4项国家标准修改单的公告国家市场监督管理总局(国家标准化管理委员会)批准《钢铁及合金 硅含量的测定 重量法》等353项国家标准和4项国家标准修改单,现予以公告。国家市场监督管理总局 国家标准化管理委员会2024-04-25序列国家标准编号国 家 标 准 名 称代替标准号实施日期1GB/T 223.60—2024钢铁及合金 硅含量的测定 重量法GB/T 223.60—19972024-11-012GB/T 754—2024发电用汽轮机参数系列GB/T 754—20072024-11-013GB/T 1361—2024铁矿石分析方法总则及一般规定GB/T 1361—20082024-11-014GB/T 1503—2024铸钢轧辊GB/T 1503—20082024-11-015GB/T 3428—2024架空导线用镀锌钢线GB/T 3428—20122024-11-016GB/T 3594—2024渔船用电子设备电源技术要求GB/T 3594—20072024-11-017GB/T 3648—2024钨铁GB/T 3648—20132024-11-018GB/T 3880.2—2024一般工业用铝及铝合金板、带材 第2部分:力学性能GB/T 3880.2—20122024-11-019GB/T 3880.3—2024一般工业用铝及铝合金板、带材 第3部分:尺寸偏差GB/T 3880.3—20122024-11-0110GB/T 4074.1—2024绕组线试验方法 第1部分:一般规定GB/T 4074.1—20082024-11-0111GB/T 4074.2—2024绕组线试验方法 第2部分:尺寸测量GB/T 4074.2—20082024-11-0112GB/T 4074.3—2024绕组线试验方法 第3部分:机械性能GB/T 4074.3—20082024-11-0113GB/T 4074.4—2024绕组线试验方法 第4部分:化学性能GB/T 4074.4—20082024-11-0114GB/T 4074.5—2024绕组线试验方法 第5部分:电性能GB/T 4074.5—20082024-11-0115GB/T 4074.6—2024绕组线试验方法 第6部分:热性能GB/T 4074.6—20082024-11-0116GB/T 4103.18—2024铅及铅合金化学分析方法 第18部分:银、铜、铋、砷、锑、锡、锌、铁、镉、镍、镁、铝、钙、硒和碲含量的测定 电感耦合等离子体质谱法2024-11-0117GB/T 4137—2024稀土硅铁合金GB/T 4137—20152024-11-0118GB/T 4138—2024稀土镁硅铁合金GB/T 4138—20152024-11-0119GB/T 4330—2024农用挂车GB/T 4330—20032024-11-0120GB/T 4331—2024农用挂车 试验方法GB/T 4331—20032024-11-0121GB/T 4701.12—2024钛铁 钛含量的测定 二安替吡啉甲烷分光光度法2024-11-0122GB/T 4701.13—2024钛铁 硅、锰、磷、铬、铝、镁、铜、钒、镍含量的测定 电感耦合等离子体原子发射光谱法2024-11-0123GB/T 4797.3—2024环境条件分类 自然环境条件 第3部分:生物GB/T 4797.3—20142024-11-0124GB/T 5121.8—2024铜及铜合金化学分析方法 第8部分:氧、氮、氢含量的测定GB/T 5121.8—20082024-11-0125GB/T 5324—2024棉与涤纶混纺本色纱线GB/T 5324—20092024-11-0126GB/T 5484—2024石膏化学分析方法GB/T 5484—20122024-11-0127GB/T 5683—2024铬铁GB/T 5683—20082024-11-0128GB/T 5762—2024建材用石灰石、生石灰和熟石灰化学分析方法GB/T 5762—20122024-11-0129GB/T 6730.73—2024铁矿石 全铁含量的测定 EDTA光度滴定法GB/T 6730.73—20162024-11-0130GB/T 8122—2024内径指示表GB/T 8122—20042024-11-0131GB/T 8177—2024两点内径千分尺GB/T 8177—20042024-11-0132GB/T 8492—2024一般用途耐热钢及合金铸件GB/T 8492—20142024-04-2533GB/T 9058—2024奇数沟千分尺GB/T 9058—20042024-11-0134GB/T 9442—2024铸造用硅砂GB/T 9442—20102024-04-2535GB/T 10395.28—2024农业机械 安全 第28部分:移动式谷物螺旋输送机2024-11-0136GB/T 10932—2024螺纹千分尺GB/T 10932—20042024-11-0137GB/T 11066.12—2024金化学分析方法 第12 部分: 银、铜、铁、铅、铋、锑、镁、镍、锰、钯、铬、铂、铑、钛、锌、砷、锡、硅、钴、钙、钾、锂、钠、碲、钒、锆、镉、钼、铼、铝含量的测定 电感耦合等离子体原子发射光谱法2024-11-0138GB/T 11091—2024电缆用铜带箔材GB/T 11091—20142024-11-0139GB/T 11420—2024搪瓷制品和瓷釉 光泽度测试方法GB/T 11420—19892024-11-0140GB/T 12690.12—2024稀土金属及其氧化物中非稀土杂质 化学分析方法 第12部分:钍、铀量的测定 电感耦合等离子体质谱法GB/T 12690.12—20032024-11-0141GB/T 12705.2—2024纺织品 防钻绒性试验方法 第2部分:转箱法GB/T 12705.2—20092024-11-0142GB/T 12916—2024船用金属螺旋桨技术条件GB/T 12916—20102024-08-0143GB/T 12959—2024水泥水化热测定方法GB/T 12959—20082024-11-0144GB/T 13077—2024铝合金无缝气瓶定期检验与评定GB/T 13077—20042024-11-0145GB/T 13210—2024柑橘罐头质量通则GB/T 13210—20142024-11-0146GB/T 13539.6—2024低压熔断器 第6部分:太阳能光伏系统保护用熔断体的补充要求GB/T 13539.6—20132024-11-0147GB/T 13539.7—2024低压熔断器 第7部分:电池和电池系统保护用熔断体的补充要求2024-11-0148GB/T 13748.20—2024镁及镁合金化学分析方法 第20部分:元素含量的测定 电感耦合等离子体原子发射光谱法GB/T 13748.20—2009GB/T 13748.5—20052024-11-0149GB/T 13818—2024压铸锌合金GB/T 13818—20092024-04-2550GB/T 13929—2024水环真空泵和水环压缩机 试验方法GB/T 13929—20102024-08-0151GB/T 13930—2024水环真空泵和水环压缩机 气量测定方法GB/T 13930—20102024-08-0152GB/T 14048.11—2024低压开关设备和控制设备 第6-1部分:多功能电器 转换开关电器GB/T 14048.11—20162024-11-0153GB/T 14207—2024夹层结构或芯子吸水性试验方法GB/T 14207—20082024-11-0154GB/T 14264—2024半导体材料术语GB/T 14264—20092024-11-0155GB/T 14408—2024一般工程与结构用低合金钢铸件GB/T 14408—20142024-04-2556GB/T 14949.7—2024锰矿石 钠和钾含量的测定 火焰原子吸收光谱法GB/T 14949.7—19942024-11-0157GB/T 15115—2024压铸铝合金GB/T 15115—20092024-04-2558GB/T 15148—2024电力负荷管理系统技术规范GB/T 15148—20082024-11-0159GB/T 15579.1—2024弧焊设备 第1部分:焊接电源GB/T 15579.1—20132024-11-0160GB/T 16477.1—2024稀土硅铁合金及镁硅铁合金化学分析方法 第1部分:稀土总量、十五个稀土元素含量的测定GB/T 16477.1—20102024-04-2561GB/T 16659—2024煤中汞的测定方法GB/T 16659—20082024-11-0162GB/T 17215.301—2024电测量设备(交流) 特殊要求 第1部分:多功能电能表GB/T 17215.301—20072024-11-0163GB/T 17215.302—2024电测量设备(交流) 特殊要求 第2部分:静止式谐波有功电能表GB/T 17215.302—20132024-11-0164GB/T 17241.1—2024铸铁管法兰 第1部分:PN系列GB/T 17241.1—1998[部]GB/T 17241.2—1998[部]GB/T 17241.3—1998[部]GB/T 17241.4—1998[部]GB/T 17241.5—1998[部]GB/T 17241.6—2008[部]GB/T 17241.7—1998[部]GB/T 17241.1—1998[代完]GB/T 17241.2—1998[代完]GB/T 17241.3—1998[代完]GB/T 17241.4—1998[代完]GB/T 17241.5—1998[代完]GB/T 17241.6—2008[代完]GB/T 17241.7—1998[代完]2024-11-0165GB/T 17241.2—2024铸铁管法兰 第2部分:Class系列GB/T 17241.1—1998[部]GB/T 17241.2—1998[部]GB/T 17241.3—1998[部]GB/T 17241.4—1998[部]GB/T 17241.5—1998[部]GB/T 17241.6—2008[部]GB/T 17241.7—1998[部]GB/T 17241.1—1998[代完]GB/T 17241.2—1998[代完]GB/T 17241.3—1998[代完]GB/T 17241.4—1998[代完]GB/T 17241.5—1998[代完]GB/T 17241.6—2008[代完]GB/T 17241.7—1998[代完]2024-11-0166GB/T 17259—2024机动车用液化石油气钢瓶GB/T 17259—20092024-11-0167GB/T 17737.10—2024同轴通信电缆 第10部分:含氟聚合物绝缘半硬电缆分规范GB/T 17737.2—20002024-11-0168GB/T 17737.11—2024同轴通信电缆 第11部分:聚乙烯绝缘半硬电缆分规范2024-11-0169GB/T 17737.119—2024同轴通信电缆 第1-119部分:电气试验方法 同轴电缆及电缆组件的射频功率2024-11-0170GB/T 17737.9—2024同轴通信电缆 第9部分:柔软射频同轴电缆分规范2024-11-0171GB/T 17937—2024电工用铝包钢线GB/T 17937—20092024-11-0172GB/T 18153—2024机械安全 用于确定可接触热表面温度限值的安全数据GB/T 18153—20002024-04-2573GB/T 18222.2—2024小艇 用操纵速度确定最大推进额定功率 第2部分:艇体长度在8m~24m之间的艇2025-05-0174GB/T 18336.1—2024网络安全技术 信息技术安全评估准则 第1部分:简介和一般模型GB/T 18336.1—20152024-11-0175GB/T 18336.2—2024网络安全技术 信息技术安全评估准则 第2部分:安全功能组件GB/T 18336.2—20152024-11-0176GB/T 18336.3—2024网络安全技术 信息技术安全评估准则 第3部分:安全保障组件GB/T 18336.3—2015[部]2024-11-0177GB/T 18336.4—2024网络安全技术 信息技术安全评估准则 第4部分:评估方法和活动的规范框架GB/T 18336.3—2015[部]2024-11-0178GB/T 18336.5—2024网络安全技术 信息技术安全评估准则 第5部分:预定义的安全要求包GB/T 18336.3—2015[部]GB/T 18336.3—2015[代完]2024-11-0179GB/T 18891—2024三相交流系统相位差的钟时序数标识GB/T 18891—20092024-11-0180GB/T 18910.11—2024液晶显示器件 第1-1部分:总规范GB/T 18910.1—20122024-08-0181GB/T 18910.12—2024液晶显示器件 第1-2部分:术语和符号GB/T 18910.11—20122024-08-0182GB/T 18910.21—2024液晶显示器件 第2-1部分:无源矩阵单色液晶显示模块 空白详细规范GB/T 18910.21—20072024-04-2583GB/T 18910.2—2024液晶显示器件 第2部分:液晶显示模块 分规范GB/T 18910.2—20032024-04-2584GB/T 18910.22—2024液晶显示器件 第2-2部分:彩色矩阵液晶显示模块 空白详细规范GB/T 18910.22—20082024-04-2585GB/T 18910.3—2024液晶显示器件 第3部分:液晶显示屏 分规范GB/T 18910.3—20082024-08-0186GB/T 18910.63—2024液晶显示器件 第6-3部分:液晶显示模块测试方法 有源矩阵液晶显示模块运动伪像2024-08-0187GB/T 19318—2024小艇 远程液压操舵系统GB/T 19318—20032025-05-0188GB/T 19533—2024汽车用压缩天然气钢瓶定期检验与评定GB/T 19533—20042024-11-0189GB/T 19544—2024脊柱矫形器的分类及通用技术条件GB/T 19544—20042024-08-0190GB/T 19960—2024风能发电系统 风力发电机组通用技术条件和试验方法GB/T 19960.1—2005,GB/T 19960.2—20052024-11-0191GB/T 20183.1—2024植物保护机械 喷雾设备 第1部分:喷雾机喷头试验方法GB/T 20183.1—20062024-11-0192GB/T 20183.2—2024植物保护机械 喷雾设备 第2部分:评价液力喷雾机水平横向分布的试验方法GB/T 20183.2—20062024-11-0193GB/T 20183.3—2024植物保护机械 喷雾设备 第3部分:评价单位面积施药液量调节系统性能的试验方法GB/T 20183.3—20062024-11-0194GB/T 20340.1—2024农用挂车和被牵引设备 牵引杆千斤顶 第1部分:设计安全、试验方法和验收条件GB/T 20340—2006[部]2024-11-0195GB/T 20340.2—2024农用挂车和被牵引设备 牵引杆千斤顶 第2部分:应用安全、试验方法和验收条件GB/T 20340—2006[部]GB/T 20340—2006[代完]2024-11-0196GB/T 20790—2024半喂入联合收割机 技术条件GB/T 20790—20062024-11-0197GB/T 20871.12—2024有机发光二极管显示器件 第1-2部分:术语与文字符号GB/T 20871.2—20072024-08-0198GB/T 20871.61—2024有机发光二极管显示器件 第6-1部分:光学和光电参数测试方法GB/T 20871.61—20132024-08-0199GB/T 21832.3—2024奥氏体-铁素体型双相不锈钢焊接钢管 第3部分:油气输送用管2024-11-01100GB/T 21833.3—2024奥氏体-铁素体型双相不锈钢无缝钢管 第3部分:油气输送用管2024-11-01101GB/T 21836—2024四氧化三锰GB/T 21836—20082024-11-01102GB/T 21956.1—2024农林拖拉机 窄轮距轮式拖拉机翻滚防护装置 第1部分:前置式GB/T 21956.1—2015GB/T 21956.2—20152024-11-01103GB/T 21956.2—2024农林拖拉机 窄轮距轮式拖拉机翻滚防护装置 第2部分:后置式GB/T 21956.3—2015,GB/T 21956.4—20092024-11-01104GB/T 23561.11—2024煤和岩石物理力学性质测定方法 第11部分:煤和岩石抗剪强度测定方法GB/T 23561.11—20102024-08-01105GB/T 23561.1—2024煤和岩石物理力学性质测定方法 第1部分:采样一般规定GB/T 23561.1—20092024-08-01106GB/T 24675.1—2024保护性耕作机械 第1部分:浅松机GB/T 24675.1—20092024-11-01107GB/T 24675.2—2024保护性耕作机械 第2部分:深松机GB/T 24675.2—20092024-11-01108GB/T 25049—2024镍铁GB/T 25049—20102024-11-01109GB/T 25390—2024风能发电系统 风力发电机组球墨铸铁件GB/T 25390—20102024-11-01110GB/T 25392—2024农业工程 电气和电子设备 耐环境试验GB/T 25392—20102024-11-01111GB/T 25632—2024增材制造机床软件数据接口格式GB/T 25632—20102024-11-01112GB/T 26027—2024高损伤容限铝合金型材GB/T 26027—20102024-11-01113GB/T 26080—2024塔机用冷弯矩形管GB/T 26080—20102024-11-01114GB/T 26114—2024液体过滤用过滤器 通用技术规范GB/T 26114—20102024-11-01115GB/T 26527—2024有机硅消泡剂GB/T 26527—20112024-11-01116GB/T 26600—2024显微镜 光学显微术用浸液GB/T 26600—20112024-11-01117GB/T 27692—2024高炉用铁球团矿GB/T 27692—20112024-11-01118GB/T 2820.9—2024往复式内燃机驱动的交流发电机组 第9部分:机械振动的测量和评价GB/T 2820.9—20022024-11-01119GB/T 28629—2024水泥熟料中游离二氧化硅化学分析方法GB/T 28629—20122024-11-01120GB/T 28780—2024机械安全 机器用整体照明系统GB/T 28780—20122024-11-01121GB/T 28884—2024大容积气瓶用无缝钢管GB/T 28884—20122024-11-01122GB/T 2900.17—2024电工术语 量度继电器和保护设备GB/T 2900.17—20092024-04-25123GB/T 2910.11—2024纺织品 定量化学分析 第11部分:某些纤维素纤维与某些其他纤维的混合物(硫酸法)GB/T 2910.11—20092026-05-01124GB/T 29284—2024聚乳酸GB/T 29284—20122024-11-01125GB/T 29324—2024架空导线用碳纤维增强复合材料芯GB/T 29324—20122024-11-01126GB/T 29335—2024食品容器用爪式旋开盖质量通则GB/T 29335—20122024-11-01127GB/T 29603—2024食品容器用镀锡或镀铬薄钢板全开式易开盖质量通则GB/T 29603—20132024-11-01128GB/T 30117.1—2024非相干光产品的光生物安全 第1部分:通用要求2024-11-01129GB/T 30177.2—2024过滤机性能测试方法 第2部分:真空过滤机2024-11-01130GB/T 30270—2024网络安全技术 信息技术安全评估方法GB/T 30270—20132024-11-01131GB/T 31211.1—2024无损检测 超声导波检测 第1部分:总则GB/T 31211—20142024-04-25132GB/T 31211.2—2024无损检测 超声导波检测 第2部分:磁致伸缩法GB/T 28704—20122024-04-25133GB/T 31268—2024限制商品过度包装 通则GB/T 31268—20142024-11-01134GB/T 32270—2024压力管道规范 动力管道GB/T 32270—20152024-04-25135GB/T 32285—2024热轧H型钢桩GB/T 32285—20152024-11-01136GB/T 32590.1—2024轨道交通 市域铁路和城轨交通运输管理和指令/控制系统 第1部分:系统原理和基本概念GB/T 32590.1—20162024-11-01137GB/T 32590.2—2024轨道交通 市域铁路和城轨交通运输管理和指令/控制系统 第2部分:功能需求规范2024-11-01138GB/T 32590.3—2024轨道交通 市域铁路和城轨交通运输管理和指令/控制系统 第3部分:系统需求规范2024-11-01139GB/T 33352—2024电子电气产品中限用物质筛选应用通则 X射线荧光光谱法GB/T 33352—20162024-08-01140GB/T 33423—2024沿海及海上风电机组腐蚀控制技术规范GB/T 33423—20162024-11-01141GB/T 33488.5—2024化工用塑料焊接制承压设备检验方法 第5部分:衍射时差法超声检测2024-11-01142GB/T 33563—2024网络安全技术 无线局域网客户端安全技术要求GB/T 33563—20172024-11-01143GB/T 33565—2024网络安全技术 无线局域网接入系统安全技术要求GB/T 33565—20172024-11-01144GB/T 34549—2024卫生洁具 智能坐便器GB/T 34549—20172024-11-01145GB/T 34924—2024低压电气设备安全风险评估和风险降低指南GB/T 34924—20172024-11-01146GB/T 36450.3—2024信息技术 存储管理 第3部分:通用轮廓2024-11-01147GB/T 37820.1—2024船舶与海上技术 船舶安全标志、防火控制图标志、安全提示和安全标记的设计、位置和使用 第1部分:设计原则GB/T 37820.—20192024-08-01148GB/T 38001.51—2024柔性显示器件 第5-1部分:光学性能测试方法2024-08-01149GB/T 38001.52—2024柔性显示器件 第5-2部分:非便携式曲面显示器件光学性能测试方法2024-08-01150GB/T 38001.53—2024柔性显示器件 第5-3部分:目视评价方法2024-08-01151GB/T 38216.5—2024钢渣 氧化锰含量的测定 火焰原子吸收光谱法2024-11-01152GB/T 40096.6—2024就地化继电保护装置技术规范 第6部分:母线保护2024-11-01153GB/T 40096.7—2024就地化继电保护装置技术规范 第7部分:变压器保护2024-11-01154GB/T 40344.3—2024真空技术 真空泵性能测量标准方法 第3部分:机械增压泵的特定参数2024-04-25155GB/T 40565.1—2024液压传动连接 快换接头 第1部分:通用型2024-11-01156GB/T 42126.5—2024基于蜂窝网络的工业无线通信规范 第5部分:应用要求2024-11-01157GB/T 42151.4—2024电力自动化通信网络和系统 第4部分:系统和项目管理2024-11-01158GB/T 42513.6—2024镍合金化学分析方法 第6部分:钼含量的测定 电感耦合等离子体原子发射光谱法2024-11-01159GB/T 42513.7—2024镍合金化学分析方法 第7部分:钴、铬、铜、铁和锰含量的测定 火焰原子吸收光谱法2024-11-01160GB/T 43130.2—2024液化天然气装置和设备 浮式液化天然气装置的设计 第2部分:浮式储存和再气化装置的特殊要求2024-08-01161GB/T 43259.556—2024能量管理系统应用程序接口(EMS-API)第556部分:基于CIM图形交换格式(CIM/G)2024-11-01162GB/T 43590.504—2024激光显示器件 第5-4部分:彩色散斑的光学测试方法2024-08-01163GB/T 43694—2024网络安全技术 证书应用综合服务接口规范2024-11-01164GB/T 43696—2024网络安全技术 零信任参考体系架构2024-11-01165GB/T 43698—2024网络安全技术 软件供应链安全要求2024-11-01166GB/T 43739—2024数据安全技术 应用商店的移动互联网应用程序(App)个人信息处理规范性审核与管理指南2024-11-01167GB/T 43741—2024网络安全技术 网络安全众测服务要求2024-11-01168GB/T 43746.1—2024钻孔和基础施工设备安全要求 第1部分:通用要求2024-11-01169GB/T 43746.2—2024钻孔和基础施工设备安全要求 第2部分:建筑施工用移动式钻机2024-11-01170GB/T 43746.3—2024钻孔和基础施工设备安全要求 第3部分:桩和其他基础施工设备2024-11-01171GB/T 43779—2024网络安全技术 基于密码令牌的主叫用户可信身份鉴别技术规范2024-11-01172GB/T 43843—2024网络协同制造平台数据服务要求2024-11-01173GB/T 43844—2024IPv6地址分配和编码规则 接口标识符2024-11-01174GB/T 43845—2024基于扫描氮-空位探针的微弱静磁场成像测量方法2024-11-01175GB/T 43846.1—2024显微镜 显微镜物镜的命名 第1部分:像场平面度/平场2024-11-01176GB/T 43846.2—2024显微镜 显微镜物镜的命名 第2部分:色差校正2024-11-01177GB/T 43846.3—2024显微镜 显微镜物镜的命名 第3部分:光谱透射率2024-11-01178GB/T 43847—2024光学和光子学 光谱波段2024-11-01179GB/T 43848—2024网络安全技术 软件产品开源代码安全评价方法2024-11-01180GB/T 43849—2024水下机器人整机及零部件基本环境试验方法 水静压力试验方法2024-04-25181GB/T 43850—2024面向装备制造业的研发设计资源分类及编码2024-11-01182GB/T 43851—2024制造物流系统互联互通通用要求2024-11-01183GB/T 43853—2024激光修复层高温摩擦磨损性能试验 球-盘法2024-04-25184GB/T 43855—2024衣物洗涤质量要求2024-04-25185GB/T 43856—2024印刷技术 印刷工作流程的颜色一致性2024-04-25186GB/T 43857—2024教学设施安全和管理要求2024-08-01187GB/T 43858—2024陆地生态系统生物长期监测规范2024-04-25188GB/T 43859—2024水分活度仪性能测定方法2024-04-25189GB/T 43860.1210—2024触摸和交互显示 第12-10部分:触摸显示测试方法 触摸和电性能2024-04-25190GB/T 43860.1220—2024触摸和交互显示 第12-20 部分:触摸显示测试方法 多点触摸性能2024-04-25191GB/T 43860.12—2024触摸和交互显示 第1-2部分:术语和文字符号2024-04-25192GB/T 43861—2024微波等离子体原子发射光谱方法通则2024-04-25193GB/T 43862—2024智能电视交互应用接口技术要求2024-11-01194GB/T 43863—2024大规模集成电路(LSI) 封装 印制电路板共通设计结构2024-08-01195GB/T 43864.12—2024显示光源组件 第1-2部分:术语和文字符号2024-08-01196GB/T 43865—2024直接进样测汞分析方法通则2024-04-25197GB/T 43866—2024企业能源计量器具配备率检查方法2024-11-01198GB/T 43867—2024电气运输设备 术语和分类2024-11-01199GB/T 43868—2024电化学储能电站启动验收规程2024-11-01200GB/T 43869—2024船舶交通管理系统监视雷达通用技术要求2024-11-01201GB/T 43870.1—2024磁性材料居里温度的测量方法 第1部分:永磁材料2024-11-01202GB/T 43870.2—2024磁性材料居里温度的测量方法 第2部分:软磁材料2024-11-01203GB/T 43872—2024水泥氯离子固化率检测方法2024-11-01204GB/T 43873—2024超薄玻璃退火上下限温度试验方法2024-11-01205GB/T 43874—2024玻璃材料及制品压缩性能试验方法2024-11-01206GB/T 43875—2024水泥原材料中总铬的测定方法2024-11-01207GB/T 43876—2024水泥净浆黏度测定方法2024-11-01208GB/T 43877—2024铁矿石 同化性能测定方法2024-11-01209GB/T 43878—2024旋挖钻机截齿2024-11-01210GB/T 43881—2024低膨胀玻璃线热膨胀系数试验方法 激光干涉法2024-11-01211GB/T 43882—2024净味沥青混凝土2024-11-01212GB/T 43883—2024微束分析 分析电子显微术 金属中纳米颗粒数密度的测定方法2024-11-01213GB/T 43884—2024金属覆盖层 钢铁制件的锌扩散层-渗锌 技术要求2024-11-01214GB/T 43885—2024碳化硅外延片2024-11-01215GB/T 43886—2024影像材料 已加工彩色照片 热稳定性测量方法2024-11-01216GB/T 43887—2024核级柔性石墨板材2024-11-01217GB/T 43888—2024钢轨超声检测方法2024-11-01218GB/T 43889—2024微束分析 电子探针显微分析仪(EPMA)质量保证程序实施导则2024-11-01219GB/T 43891—2024非金属化工设备 不透性石墨换热器传热系数和流阻性能测试方法2024-11-01220GB/T 43892—2024石英玻璃光谱透射比试验方法2024-11-01221GB/T 43893—2024装配式钢结构建筑用热轧型钢2024-11-01222GB/T 43894.1—2024半导体晶片近边缘几何形态评价 第1部分:高度径向二阶导数法(ZDD)2024-11-01223GB/T 43895—2024增材制造 材料 模具钢粉2024-11-01224GB/T 43896—2024金属材料 超高周疲劳 超声疲劳试验方法2024-11-01225GB/T 43897—2024铸造高温合金 母合金 单晶2024-11-01226GB/T 43898—2024工程机械液压缸用精密无缝钢管2024-11-01227GB/T 43899—2024生铁 多元素含量的测定 火花放电原子发射光谱法(常规法)2024-11-01228GB/T 43900—2024钢产品无损检测 轴类构件扭转残余应力分布状态超声检测方法2024-11-01229GB/T 43901—2024镍铁 砷、锡、锑、铅和铋含量 电感耦合等离子体质谱法(ICP-MS)2024-11-01230GB/T 43902—2024绿色制造 制造企业绿色供应链管理 实施指南2024-08-01231GB/T 43903—2024绿色制造 制造企业绿色供应链管理 信息追溯及披露要求2024-08-01232GB/T 43904—2024风能发电系统 风力发电机组运行评价指标体系2024-11-01233GB/T 43905.1—2024焊接及相关工艺中烟尘和气体取样的实验室方法 第1部分:电弧焊中烟尘排放速率的测定和分析用烟尘的收集2024-11-01234GB/T 43905.2—2024焊接及相关工艺中烟尘和气体取样的实验室方法 第2部分:电弧焊、切割及气刨中一氧化碳、二氧化碳、一氧化氮、二氧化氮排放速率的测定2024-11-01235GB/T 43905.3—2024焊接及相关工艺中烟尘和气体取样的实验室方法 第3部分:电弧焊中臭氧排放速率的测定2024-11-01236GB/T 43905.4—2024焊接及相关工艺中烟尘和气体取样的实验室方法 第4部分:焊接材料焊接烟尘排放限值2024-11-01237GB/T 43905.5—2024焊接及相关工艺中烟尘和气体取样的实验室方法 第5部分:基于热解-气相色谱-质谱法的焊接或切割中有机材料热降解物的识别2024-11-01238GB/T 43905.6—2024焊接及相关工艺中烟尘和气体取样的实验室方法 第6部分:电阻点焊中烟尘和气体的定量化测定2024-11-01239GB/T 43906—2024金属材料硬钎焊质量要求2024-11-01240GB/T 43907.1—2024农林拖拉机和机械 拖拉机与机具间的摄像头接口 第1部分:模拟摄像头接口2024-11-01241GB/T 43908—2024水肥一体化设备2024-11-01242GB/T 43909—2024叉车属具 安全要求2024-11-01243GB/T 43910—2024物流仓储设备 术语2024-11-01244GB/T 43911—2024锅炉热工性能试验不确定度的评定方法2024-11-01245GB/T 43912—2024铸造机械 再制造 通用技术规范2024-11-01246GB/T 43913—2024钢制异径短节2024-11-01247GB/T 43914—2024绿色制造 评价指标2024-08-01248GB/T 43915—2024纳米几何量标准样板测试方法2024-11-01249GB/T 43916—2024真空技术 真空计 电容薄膜真空计的规范、校准和测量不确定度2024-04-25250GB/T 43917.1—2024焊接烟尘捕集和分离设备 第1部分:一般要求2024-11-01251GB/T 43917.2—2024焊接烟尘捕集和分离设备 第2部分:分离效率的测试和标记要求2024-11-01252GB/T 43917.3—2024焊接烟尘捕集和分离设备 第3部分:焊枪上烟尘吸气装置捕集效率的测定2024-11-01253GB/T 43917.4—2024焊接烟尘捕集和分离设备 第4部分:捕集装置最小风量的测定2024-11-01254GB/T 43918—2024交流标准电能表GB/T 17215.701—20112024-11-01255GB/T 43919—2024民用航空锻件数字化生产车间集成要求2024-11-01256GB/T 43920—2024压铸用铝液集中熔炼配送通用技术规范2024-04-25257GB/T 43921—2024无损检测 超声检测 全矩阵采集/全聚焦技术(FMC/TFM)2024-04-25258GB/T 43922—2024在役聚乙烯燃气管道检验与评价2024-04-25259GB/T 43923—2024工业车辆 操作手册2024-11-01260GB/T 43924.1—2024航空航天 MJ螺纹 第1部分:通用要求2024-08-01261GB/T 43924.2—2024航空航天 MJ螺纹 第2部分:螺栓和螺母螺纹的极限尺寸2024-08-01262GB/T 43924.3—2024航空航天 MJ螺纹 第3部分:流体系统管路件螺纹的极限尺寸2024-08-01263GB/T 43925—2024套管和油管全尺寸拉伸应力腐蚀试验方法2024-08-01264GB/T 43926—2024油气输送管道事故后状态评估技术规范2024-08-01265GB/T 43927—2024航天器用锂离子蓄电池组安全设计与控制要求2024-08-01266GB/T 43928—2024宇航用商业现货(COTS)器件保证指南2024-08-01267GB/T 43929—2024空间用纤维光学器件测试指南2024-08-01268GB/T 43930—2024宇航用电磁继电器通用规范2024-08-01269GB/T 43932—2024岩溶流域碳循环监测及增汇评价指南2024-08-01270GB/T 43933—2024金属矿土地复垦与生态修复技术规范2024-08-01271GB/T 43934—2024煤矿土地复垦与生态修复技术规范2024-08-01272GB/T 43935—2024矿山土地复垦与生态修复监测评价技术规范2024-08-01273GB/T 43936—2024石油天然气项目土地复垦与生态修复技术规范2024-08-01274GB/T 43937—2024岩溶区水土资源开发利用规范2024-08-01275GB/T 43938.1—2024碳纤维增强复合材料薄壁管件力学性能试验方法 第1部分:拉伸试验2024-08-01276GB/T 43938.2—2024碳纤维增强复合材料薄壁管件力学性能试验方法 第2部分:压缩试验2024-08-01277GB/T 43939—2024宇航用石英挠性加速度计伺服电路通用测试方法2024-08-01278GB/T 43940—20244Mb/s数字式时分制指令/响应型多路传输数据总线测试方法2024-08-01279GB/T 43941.1—2024星地数据传输中高速调制解调器技术要求和测试方法 第1部分:调制器2024-08-01280GB/T 43942—2024智能船舶风险评估方法2024-11-01281GB/T 43943—2024船舶环境噪声2024-08-01282GB/T 43944—2024船舶内装材料计权隔声指数测量方法2024-11-01283GB/T 43945—2024基于统计能量分析的船舶舱室噪声预报2024-08-01284GB/T 43947—2024低速线控底盘通用技术要求2024-11-01285GB/T 43948—2024小艇 操舵装置 缆索滑轮传动系统2025-05-01286GB/T 43949—2024海洋移动钻井平台钻井系统 配置和技术要求2024-11-01287GB/T 43950—2024工业浓盐水回用技术导则2024-08-01288GB/T 43951—2024食品容器用覆膜铁、覆膜铝质量通则2024-11-01289GB/T 43953—2024全生物降解聚乙醇酸(PGA)2024-11-01290GB/T 43954—2024重瓣红玫瑰精油2024-11-01291GB/T 43955—2024棉及化纤纯纺、混纺纱线检验、标志与包装2024-11-01292GB/T 43956—2024中尺度全球地表覆盖制图数据产品规范2024-08-01293GB/T 43957—2024林草物联网 面向视频的无线传感器网络媒体访问控制和物理层协议2024-04-25294GB/T 43958—2024林草物联网 面向视频的无线传感器网络技术要求2024-04-25295GB/T 43959—2024锅炉火焰检测系统技术规范2024-11-01296GB/T 43960—2024云制造服务平台开放接口要求2024-11-01297GB/T 43961—2024制造系统诊断维护技术与应用集成通用要求2024-11-01298GB/T 43962.1—2024动力电池数字化车间集成 第1部分:通用要求2024-11-01299GB/T 43964—2024家用和类似用途电自动控制器空中下载(OTA)技术要求2024-11-01300GB/T 43965—2024电子级正硅酸乙酯2024-11-01301GB/T 43966—2024高效液相色谱-四极杆电感耦合等离子体质谱联用法通则2024-04-25302GB/T 43967—2024空间环境 宇航用半导体器件单粒子效应脉冲激光试验方法2024-04-25303GB/T 43968—2024高效液相色谱-原子荧光光谱仪联用分析方法通则2024-11-01304GB/T 43969—2024智能语音控制器通用安全技术要求2024-11-01305GB/T 43970—2024化学蒸气发生-原子荧光光谱分析方法通则2024-11-01306GB/T 43971—2024遥感器定标用积分球光源测试规范2024-11-01307GB/T 43972—2024集成电路封装设备远程运维 状态监测2024-11-01308GB/T 43974—2024载物电气运输设备通用规范2024-11-01309GB/T 43975—2024船舶交通管理系统数据综合处理器技术规范2024-11-01310GB/T 43976—2024电子气体 四氟甲烷2024-11-01311GB/T 43977—2024电子气体 八氟环丁烷2024-11-01312GB/T 43978—2024室内LED显示屏光舒适度评价要求2024-04-25313GB/T 43979—2024室内LED显示屏光舒适度评价方法2024-04-25314GB/T 43980—2024口译服务 医疗口译要求2024-11-01315GB/T 43981—2024基层减灾能力评估技术规范2024-11-01316GB/T 43991—2024城市隧道运维服务规范2024-11-01317GB/T 43992—2024城市光环境建设服务质量评价规范2024-11-01318GB/T 43993—2024城市公共设施 电子围网系统 运行规范2024-11-01319GB/T 43994—2024粮食安全储存水分2024-11-01320GB/T 43997.1—2024地表温度热红外遥感反演 第1部分:单通道法2024-11-01321GB/T 43997.2—2024地表温度热红外遥感反演 第2部分:分裂窗法2024-11-01322GB/T 43999—2024应急呼吸道传染病患者转运设备技术要求2024-11-01323GB/T 44000—2024空间环境 材料空间环境效应地面模拟试验装置通用要求2024-04-25324GB/T 44001—2024空间环境 地磁场参考模型2024-04-25325GB/T 44003—2024力学性能测量 REBCO涂层导体(镀铜)脱层强度测试方法2024-11-01326GB/T 44004—2024纳米技术 有机晶体管和材料表征试验方法2024-11-01327GB/T 44006—2024红外图像温度表示规则 RGB法2024-11-01328GB/T 44007—2024纳米技术 纳米多孔材料储氢量测定 气体吸附法2024-08-01329GB/T 44008—2024应急医用模块化集成系统通用技术要求2024-08-01330GB/T 44009—2024绿色产品评价 染料2024-11-01331GB/T 44010—2024救灾帐篷 通用技术要求2024-11-01332GB/T 44011.1—2024自然灾害综合风险评估技术规范 第1部分:房屋建筑2024-11-01333GB/T 44012—2024应急避难场所 术语2024-04-25334GB/T 44013—2024应急避难场所 分级及分类2024-04-25335GB/T 44014—2024应急避难场所 标志2024-04-25336GB/T 44020—2024信息技术 计算机图形图像处理和环境数据表示 混合与增强现实中实时人物肖像和实体的表示2024-11-01337GB/T 44021.1—2024音视频及相关设备 功耗测量 第1部分:总则2024-11-01338GB/T 44021.2—2024音视频及相关设备 功耗测量 第2部分:测试信号和媒介2024-11-01339GB/T 44021.3—2024音视频及相关设备 功耗测量 第3部分:电视机2024-11-01340GB/T 44021.4—2024音视频及相关设备 功耗测量 第4部分:录像设备2024-11-01341GB/T 44021.5—2024音视频及相关设备 功耗测量 第5部分:机顶盒(STB)2024-11-01342GB/T 44021.6—2024音视频及相关设备 功耗测量 第6部分:音频设备2024-11-01343GB/Z 3480.4—2024直齿轮和斜齿轮承载能力计算 第4部分:齿面断裂承载能力计算2024-11-01344GB/Z 3480.22—2024直齿轮和斜齿轮承载能力计算 第22部分:微点蚀承载能力计算2024-11-01345GB/Z 14048.24—2024低压开关设备和控制设备 第7-5部分:辅助器件 铝导体的接线端子排2024-11-01346GB/Z 29014.3—2024切削刀具数据表达与交换 第3部分:刀具项目参考字典2024-11-01347GB/Z 42151.77—2024电力自动化通信网络和系统 第7-7部分:用于工具的IEC 61850相关数据模型机器可处理格式2024-04-25348GB/Z 43963—2024确定额定电压在交流1000V以上至2000V,直流1500V以上至3000V间设备的电气间隙、爬电距离的数值以及对固体绝缘要求的指南2024-11-01349GB/Z 43973—2024非介入式负荷监测(NILM)系统用感知装置2024-11-01350GB/Z 43996.2—2024微细气泡技术 农业应用 第2部分:评价大麦种子发芽促进作用的测试方法2024-11-01351GB/Z 43998—2024纳米技术 混合粉尘制造环境空气中纳米级炭黑和无定形二氧化硅浓度的测量方法2024-11-01352GB/Z 44002—2024空间环境 太阳能量质子注量和峰值通量的确定方法2024-04-25353GB/Z 44005.1—2024纳米技术 黏土纳米材料 第1部分:层状黏土的特性及测量方法2024-11-01二、国家标准修改单序列国家标准编号国 家 标 准 名 称代替标准号实施日期1GB/T 609—2018化学试剂 总氮量测定通用方法 《第1号修改单》GB/T 609—20062024-04-253GB/T 18369—2022玻璃纤维无捻粗纱 《第1号修改单》GB/T 18369—20082024-08-014GB/T 19624—2019在用含缺陷压力容器安全评定 《第1号修改单》GB/T 19624—20042024-04-25
  • 安徽省首批次新材料研制需求清单公布
    近日,安徽省经济和信息化厅公布《安徽省首批次新材料研制需求清单(2022年版)》。该清单是导向性的,相关企业应根据市场需求、先进性等确定研制材料性能具体目标。各地在新材料“双招双引”、研发、推广应用等方面,要统筹有关政策和资金,综合、精准施策,进一步促进安徽省新材料产业创新发展。安徽省首批次新材料研制需求清单(2022年版)(执行期2022年-2024年)一、先进钢铁材料高性能船舶用钢、海洋工程用钢、新型热成形钢板、高性能轴承钢、弹簧用钢、高温渗碳齿轮钢、超强合金钢丝、耐热钢、取向硅钢超/极薄带、高强抗疲劳05Cr17Ni4Cu4Nb沉淀硬化钢、高性能钼镍钢金属粉末材料、航空航天用铸造镍基高温合金、超纯净气门用渗氮弹簧线材、超强淬回火合金丝材、建筑结构用高强抗震耐蚀耐火钢。二、先进有色金属材料航空用高性能型材、高性能车用铝合金薄板、动力电池集流体用铝箔、软包电池用铝塑膜、新型镁合金挤压板(棒、型)材、高频微波覆铜板、高密度覆铜板、高频高速基板用压延铜箔、引线框架铜合金带材、高性能高精度铜合金丝线材、高性能铜镍锡合金帶箔材、电子、汽车等行业用高性能铜镍硅合金,高因瓦合金箔、铜铝复合材料、高纯铜和铜合金靶、铝合金焊丝、高强高导铬锆铜、超细晶强化铜镁合金、超细晶硬质合金棒材、医疗CT机X射线管(球管)阳极靶盘材料、稀有金属涂层材料、新型硬质合金材料。三、先进化工材料聚芳醚砜、聚苯硫醚、光学级聚甲级丙烯酸甲酯、生物基呋喃聚酯、生物基聚酰胺树脂、生物基聚氨酯、TDE85特种环氧树脂、高端基聚异丁烯、聚双环戊二烯、聚己二酸/对苯二甲酸乙二醇酯、高频高速通讯高端覆铜板用碳氢树脂、覆铜板用功能化低分子聚苯醚、光学薄膜用丙烯酸涂层树脂、光刻胶用树脂、非隔热型阻燃有机玻璃、医疗输液管用热塑性弹性体TPE材料、三醋酸纤维素及膜、液晶聚合物材料及薄膜、光谱纯/纤维级/拉膜级聚乳酸树脂、聚乳酸双向拉伸薄膜、高灼热丝无卤阻燃PC材料、膨化聚四氟乙烯密封材料、热转印碳带用聚酯薄膜、纳米级高分散性炭黑、VOCs回收膜、高性能水汽阻隔膜、双极膜电渗析膜、水性防火阻燃(保温)涂料、水性超支化环氧导静电涂料、环保型荧光颜料、耐蒸煮酞菁蓝、高效复合铜基催化剂、高性能自动变速箱油、高性能油膜轴承油、风电机组专用润滑油、生物基润滑油、镁合金切削液。四、先进无机非金属材料生物医药用中性硼硅玻璃包装材料、高强透明微晶玻璃、石英玻璃、高档电熔β-Al2O3耐火材料、高性能陶瓷基板、高频高速通信用高性能硅基玻璃粉、高纯氧化铝、电子级绢云母、新型耐候性矿物质阻燃材料、功能土壤处理材料。五、高性能纤维及复合材料高回弹耐磨包覆型TPE复合材料、特种树脂基吸波蜂窝材料、氮化物基陶瓷复合材料、无粘结相碳化钨金属陶瓷材料、辊压机辊套用铁基合金复合耐磨材料、铜钢、铜铝复合材料,特种树脂预浸料、反应型聚烯烃纤维复合增强材料、风电叶片用碳纤维复合材料、电子级低介电玻璃纤维及制品、超净排放高性能覆膜滤料、聚四氟乙烯纤维及滤料、超薄电子基布、高强度连续玄武岩纤维。六、稀土功能材料AB型稀土储氢合金、高性能钕铁硼磁体、钕铁硼热压磁体、高性能各向异性粘结磁体(粉)、汽车尾气催化剂及相关材料、MnZn宽频电磁吸收体材料、高性能金刚石工具稀土合金粉末材料、铈锆稀土基复合氧化物、稀土抛光材料。七、先进半导体材料和新型显示材料碳化硅单晶衬底、碲锌镉晶体衬底、锑化镓晶体、锑化铟晶体、超高纯锗单晶、光刻胶及其关键原材料和配套试剂、宽幅TFT偏光片用PVA光学基膜、超薄柔性玻璃、柔性显示盖板用透明聚酰亚胺薄膜、特种气体、光掩膜板、化学机械抛光液、高纯化学试剂、低温无铅玻璃封装浆料、电子封装用钨铜、钼铜热沉复合材料,高性能半导体封装用键合丝、微球材料、OCA光学胶、透明电致发光膜、透明柔性导电膜材料、半导体量子点材料、先进半导体材料前驱体、增亮膜,扩散膜、高激光损伤阈值减反膜、高强度、高导电、高速固化新型电子胶,低相位差保护膜、高性能有机发光显示材料及中间体、单体,量子点材料、靶材。八、新型能源材料新能源复合金属材料、燃料电池全氟质子膜、反光釉料、透明耐紫外聚乙烯醋酸乙烯树脂及封装胶膜、大颗粒四氧化三钴、高纯四氧化三锰、三元材料(镍钴铝酸锂、镍钴锰酸锂)及前驱体、氧化亚硅负极材料、高性能硅炭负极材料、碲化镉发电玻璃。九、前沿材料超材料、石墨烯导电浆料、石墨烯-纳米银线复合柔性透明导电膜、3D打印聚乳酸树脂、3D打印用合金粉末、球形非晶粉末、铁基宽幅超薄纳米晶带材、铪钨纳米热喷涂材料、超细碳化钨粉末、铜基微纳米粉体材料、电触头材料用纯铜粉。
  • 研磨应用的珠穆朗玛峰——SPEX机械合金化
    机械合金化(MA) 最早是由美国国际镍公司的本杰明(Benjamin)等人,于1969年前后研制成功的一种新的制粉技术,并被成功应用到弥散强化高温合金的制备中。从其严格定义上讲是指,金属或合金粉末在高能球磨仪中通过粉末颗粒与磨球之间长时间激烈地冲击、碰撞,使粉末颗粒反复产生冷焊、断裂,导致粉末颗粒中原子扩散,从而获得合金化粉末的一种粉末制备技术。时至今日,人们对机械合金化理论理解进一步加深,机械合金化所需的高能球磨机性能也进一步提升,其应用已扩展至非晶态合金、准晶、纳米晶以及非平衡态材料的研究。(图片来源于网络)机械合金化过程 机械合金化是一个复杂的过程,要获得理想的相和微观结构,对实施机械合金化的高能球磨机提出了极高的要求,因此机械合金化也被称之为研磨应用的“珠穆朗玛峰”。在大多数情况下,在有限的球磨时间内仅仅使各组元在那些相接触的点、线和面上达到或趋近原子级距离,并且最终得到的只是各组元分布十分均匀的混合物或复合物。当球磨时间非常长时,在某些体系中也可通过固态扩散,使各组元达到原子间结合而形成合金或化合物。(图片来源于网络)机械合金化利器——SPEX三维∞高能球磨仪 目前在全世界范围内,已有数千篇使用SPEX高能球磨仪做机械合金化和纳米材料研究的高端文献,甚至可以说,每个做机械合金化研磨的实验室里,都至少有一台SPEX三维∞式高能球磨仪。SPEX发明了三维∞式研磨方式,高能效,可连续工作10000分钟以上,完美契合机械合金化需求,在研磨界没有其他厂家的性能与之匹敌,成就SPEX在研磨界的领导地位。首先,机械合金化需要极高的动能,球磨设备需要具备极高的研磨能力。为了增加研磨介质,研磨罐和物料粉末撞击力和摩擦力,为物料粉末达到原子间结合提供提供极高的动力源泉,SPEX高能球磨仪采用更有效的∞式三维运动方式,其碾磨能量密度达到传统行星式二维运动的6-8倍。其次,研磨时间也是影响机械合金化效果的重要因素。随着研磨的进程,合金化程度会越来越高,因此需要球磨设备提供足够长时间的稳定研磨能力;SPEX高能球磨仪机械工作耐久性极限达10000分钟以上,充分保证了机械合金化进程的有效性。最后,研磨温度也是机械合金化进程中必须考量的重要因素。因为无论机械合金化的最终产物是固溶体、金属间化合物、纳米晶、还是非晶相都涉及到高温扩散降解问题,研磨温度越高,合金化产物高温扩散降解越快,合金化效率越低下;SPEX独特专利设计的∞式三维运动方式,更高比例输出正面撞击力,而非摩擦力,因此热生成更低,合金化效率更高。
  • Advanced Science | 借助高通量方法获取具有类金刚石耐磨性能的非晶合金
    类金刚石材料因超高的硬度和自润滑能力而展现出极佳的摩擦磨损性能。然而,受湿度、温度、气氛等环境因素和尺寸的限制,类金刚石材料的应用局限于涂层和复合材料的填充剂。相比类金刚材料,金属的应用更加广泛。但金属的硬度往往较低,缺乏自润滑能力,大部分金属材料的摩擦磨损性能远远逊色于类金刚石材料。在金属材料中获得金刚石般的摩擦磨损行性能将极大地拓宽耐磨材料的选择范围。非晶合金保留了液态熔体的无序原子结构,具有高强度、高硬度的特点。不同于传统金属,非晶合金表面呈现类似液体的性质,从而出现自润滑效应,使得许多非晶合金展现出接近类金刚石材料的摩擦系数(COFs0.2)。非晶合金的高强度也使其具有良好的磨损抗性,磨损率Ws约为10-5-10-6 mm3/Nm。这一磨损率虽然远低于常见金属材料,但和类金刚石材料约为10-6-10-9 mm3/Nm的磨损率相比仍然很高。降低非晶合金磨损率的关键在于提高结构稳定性和断裂韧性。令人遗憾的是,大部分非晶合金因为玻璃转变温度和晶化温度低而在高速往复摩擦过程中容易出现结构弛豫或晶相的析出,导致局部裂纹的产生,磨损抗性随之降低。因此,寻找结构稳定、韧性良好的非晶合金是提高摩擦磨损性能的重要途径。中国科学院物理研究所/北京凝聚态物理国家研究中心柳延辉、汪卫华团队前期基于材料基因工程理念,发展了高通量实验方法,开发出高温块体非晶合金(Nature , 2019, 569, 99),发现了非晶合金形成能力的新判据Nature Materials 2022, 21, 165),为非晶合金新材料高效研发提供了有利工具。近期,该团队的李福成博士在柳延辉、汪卫华研究员的指导下,针对非晶合金的力学性能设计了高通量表征方法(图1),结合前期发展的高通量制备和非晶筛选技术,研发出摩擦系数、磨损率均和类金刚石材料相当的超耐磨高温非晶合金。团队选择Ir-Ni-Ta高温非晶合金体系为突破口。该合金体系具有良好的非晶形成能力和高玻璃转变温度,能够克服非晶合金在摩擦过程中的结构失稳问题。此外,该合金体系展现的高强度、高硬度等特点也有助于提高磨损抗力。但难点在于如何在该合金体系内获得韧性较好的成分,从而降低摩擦过程中裂纹产生的可能性。团队利用前期发展的高通量实验技术制备了同时含有大量合金成分的组合样品,确定了非晶形成成分范围。基于非晶合金剪切变形的特点以及剪切带数量和材料韧性之间的关联,团队提出利用纳米压痕技术施加大变形量诱导剪切带和裂纹形成的高通量表征方法。结合压痕形貌表征,该方法可在大的成分范围内快速获得韧性随合金成分的变化趋势,从而确认具有裂纹抗性和塑性的成分区间。此外,纳米压痕技术本身还可同时获得硬度和模量数据。团队进一步通过对特定成分的微纳力学表征证明了该高通量表征方法的有效性,并在Ir-Ni-Ta组合样品中的富Ta区域发现了具有极低摩擦系数和磨损率的非晶合金。微观力学测试显示,该富Ta非晶合金的压缩强度高达5 GPa,大量剪切带的形成表明该合金具有较好的韧性。此外,热稳定性测试和高温氧化测试证明该富Ta非晶合金还具有极好的结构稳定性(晶化温度Tx1073K,氧化温度920K)。在室温大气环境中,采用金刚石球头进行摩擦测试,该富Ta非晶合金的摩擦系数仅为0.05,采用G-Cr合金球头测试,摩擦系数也只有0.15。最为值得关注的是,该富Ta非晶合金的磨损率只有~10-7 mm3/Nm(图2)。这样的摩擦磨损性能已经接近相似测试条件下类金刚石材料的摩擦磨损性能(图3)。这些结果不仅证明了新发展的高通量力学表征方法对快速筛选强韧化非晶合金成分的有效性,更有助于理解非晶合金耐磨性的起源。以上研究成果以“Achieving diamond-like wear in Ta-rich metallic glasses”为题,于5月21日在线发表在《Advanced Science》上【Advanced Science 2023, 2301053】。李福成博士为论文第一作者,柳延辉研究员为通讯作者。上述研究得到了国家重点研发计划、中国博士后科学基金、国家自然科学基金委员会、中科院、广东省基础与应用基础研究重大专项的支持。图1 高通量力学表征辅助高强度、高裂纹抗性非晶合金的快速搜寻图2 利用纳米压痕在不同成分区间内的摩擦磨损实验图3 富Ta高温非晶合金的摩擦磨损性能与类金刚石材料及传统金属材料的对比
  • 中关村材料试验技术联盟立项《镍基合金中厚板超声检测方法》等13项团体标准
    经中国材料与试验标准化委员会(以下简称:CSTM标准化委员会)标准化领域委员会审查,CSTM标准化委员会批准(具体标准如下,详细公告内容请至CSTM官网查看),特此公告。序号标准名称标准立项号所属委员会1镍基合金中厚板超声检测方法CSTM LX 0100 01438—2024FC012复合材料挖补修复打磨工艺通用要求CSTM LX 0311 01439—2024FC03/TC113功能复合材料夹层结构修复技术通用要求CSTM LX 0311 01440—2024FC03/TC114生物基聚氨酯地坪材料CSTM LX 0327 01441—2024FC03/TC275地坪工程现场验收检测方法 第9部分 防静电性的测定CSTM LX 0327 00556.9—2024FC03/TC276地坪工程现场验收检测方法 第10部分 防滑性的测定CSTM LX 0327 00556.10—2024FC03/TC277渗透型液体硬化剂化学成分分析方法CSTM LX 0327 01442—2024FC03/TC278低释放树脂地坪材料CSTM LX 0327 01443—2024FC03/TC279铺装型环氧卷材地坪CSTM LX 0327 01444—2024FC03/TC2710石膏基自流平砂浆集中采购通用要求CSTM LX 0327 01445—2024FC03/TC2711火花放电原子发射光谱仪使役性能评价方法CSTM LX 9804 01446—2024FC98/TC0412中阶梯光栅电感耦合等离子体发射光谱仪使役性能测试及评价方法 第1部分:金属及合金成分分析CSTM LX 9804 01447.1—2024FC98/TC0413仪器使役性能评价机构通用要求CSTM LX 9804 01448—2024FC98/TC04联系方式如有单位或个人愿意参与该标准项目的工作,请与项目牵头单位联系。CSTM标准化委员会秘书处联系方式联系人:陈鸣,范小芬办公电话:010-62187521手机:13011072266,13426028810邮箱:chenming@ncschina.com,fanxiaofen@ncschina.com通讯地址:北京市海淀区高梁桥斜街13号钢研集团新材料大楼1020邮编:100081
  • 高温高压光学浮区法单晶炉助力镍酸盐Pr4Ni3O8材料取得新进展
    超导材料和性质的研究一直是当前凝聚态物理领域的热点之一,自从上个世纪在铜氧化物或酮酸盐中发现高温超导以来,关于其他类铜氧化物材料及其高温超导电性的研究也从未停止过。由于镍在元素周期表中处于铜的邻近位置,二者在性质上有些共同之处,因此镍氧化物或镍酸盐也常被认为是一种极具潜力的高温超导备选材料。 2019年平面镍酸盐中超导性的发现再次向人们提出了Ni1+化合物和Cu2+铜酸盐两种超导体的电子结构和相关性对比研究问题。近期,Haoxiang Li等人[1]对三层镍酸盐Pr4Ni3O8做了角分辨光电子能谱(ARPES)研究,研究表明Pr4Ni3O8具有类似于空穴掺杂铜酸盐的费米面,二者类似但却又非常不同。具体来说,Pr4Ni3O8费米面的主要部分与双层铜酸盐的主要部分非常相似,但Pr4Ni3O8的费米面还有一个额外的部分可以容纳额外的空穴掺杂。Haoxiang Li等人发现镍酸盐中的电子相关性大约是铜酸盐的两倍,并且几乎与k无关,这表明其起源于局域效应,可能是莫特相互作用;而铜酸盐中的相互作用则不那么局域化。尽管如此,镍酸盐仍然表现出电子散射率中的奇异金属行为。了解这两个强相关超导体家族之间的异同极具挑战性。关于该项工作的更多研究内容可参考文献[1]。Crystal structure and Fermi surface of Pr4Ni3O8 图片引自[1]Comparing electronic correlation effects of Pr4Ni3O8 and cuprates 图片引自[1] Haoxiang Li等人在该项研究中所用的Pr4Ni3O8单晶样品是在德国ScIDre公司的HKZ系列高温高压光学浮区法单晶生长设备中制备获得(O2气氛,140 bar压力)。德国ScIDre公司推出的HKZ系列高温高压光学浮区法单晶炉可实现高达3000℃及以上的生长温度,晶体生长腔压力可达300 bar,可实现10-5 mbar的高真空环境,适用于生长各种超导材料、介电材料、磁性材料、电池材料等各种氧化物及金属间化合物单晶生长。德国ScIDre公司推出的HKZ系列高温高压光学浮区法单晶炉外观图(点击查看设备详情) [1] Electronic structure and correlations in planar trilayer nickelate Pr4Ni3O8 Li H, Hao P, Zhang J, Gordon K, Linn AG, Chen X, Zheng H, Zhou X, Mitchell JF, Dessau DS. Sci. Adv. 9, eade4418 (2023) 13 January 2023 Doi: 10.1126/sciadv.ade4418
  • 高性能金属基润滑耐磨损材料制备有了新思路
    7月30日,科技日报记者从中国科学院兰州化学物理研究所了解到,该所固体润滑国家重点实验室高温摩擦学课题组在新型润滑耐磨损高熵/中熵合金设计制备和性能调控等方面进行了系统研究,取得了系列进展。给出一种构筑多级纳米异质结构和成分波动特征来实现合金低磨损的新方法,相关研究成果近日发表于综合性学术期刊《研究》。新型高熵/中熵合金具有诸多新奇特性,为设计制备高性能金属基润滑耐磨损材料提供了新启发,是目前材料学和摩擦学研究的热点和前沿。在解决高温润滑与磨损方面具有重要应用价值传统合金往往是由一种或两种主要金属元素构成,其他合金化元素的比例相对很低。高熵/中熵合金是近年来发展起来的有别于传统合金的新型合金。高熵合金和中熵合金是由多种主要金属元素构成的合金,二者只是在主要金属元素的种类和数量上有差异。一般而言,高熵合金包含5个或5个以上等原子比的金属元素,而中熵合金则包含3个金属元素。高熵/中熵合金展现出许多优异的力学和物理性能。“高熵/中熵合金有几个明显的特点,主要包括组织结构表现出复杂异质性、成分表现出多组元特征,具有‘质剂不分’的浓缩固溶体结构、晶体结构表现出连续畸变性。”中国科学院兰州化学物理研究所研究员程军介绍,基于其独特的异质结构、成分波动、多级纳米析出相等微观组织结构和多组元特征,高熵/中熵合金展现出卓越的强度—塑性组合、高温结构稳定性、摩擦界面自保护、高温抗氧化等新奇特性。与传统合金相比,高熵/中熵合金具有非常广阔的成分调控空间,通过对高熵/中熵合金中的元素进行替换或增减,能获得一些具有特殊性能的微观组织结构和异质相,为设计制备高性能金属基润滑耐磨损材料提供了新思路。程军告诉记者,针对高熵/中熵合金体系开展润滑耐磨损成分设计,采用熔炼、粉末冶金或喷涂等工艺即可制备出具有润滑与耐磨损性能的高熵/中熵合金材料。“这类新型材料在解决航空航天、轨道交通、核能等领域高端装备运动与传动部件的高温润滑与磨损难题方面具有重要的应用价值和应用前景。”程军介绍。强度、塑性、热稳定性和耐磨性优于传统合金中低温下,金属材料摩擦表界面会发生严重的弹塑性变形、局部断裂和磨粒磨损,而高温下则会发生材料黏着、软化变形和氧化磨损,这些因素导致金属材料在宽温度范围内表现出严重的摩擦磨损。针对上述问题,晶粒细化和复合润滑相/抗磨相是目前提高金属材料耐磨损性能的主要手段。“但是,这两类方法通常会引发新的问题,如当晶粒细化至纳米尺度时,可能会在摩擦过程中引发严重的纳米晶不均匀塑性变形,增加磨损;复合润滑相/抗磨相和基体相之间的错配界面可能会使摩擦界面在磨损过程中发生脆性断裂。”程军说。研究表明,如果在摩擦副界面之间引入一个能够逐级释放摩擦应力的界面层,可极大减小摩擦过程中不均匀塑性变形和界面错配导致的磨损问题。然而,这种特殊的界面层难以通过常规的制备或加工手段获得。基于这个问题,研究人员考虑是否可通过调控合金的成分和结构设计制备一种新型金属材料,使其能在中低温摩擦过程中原位形成逐级释放应力的梯度界面耐磨层,高温摩擦过程中形成耐磨损釉质层,从而在宽温度范围内保持稳定的低磨损性能。高熵/中熵合金独特的浓缩固溶体结构使其表现出优于传统合金的强度、塑性、热稳定性和耐磨性等性能。因此,研究人员以镍元素为溶剂,引入等摩尔比的铝、铌、钛和钒4种元素作为合金化元素,通过将合金化浓度从25 at.%(原子百分数)提高至50 at.%,制备了一种具有纳米分级结构和成分波动特征的新型镍铝铌钛钒中熵合金。为了使溶质元素之间形成高混合熵的过饱和固溶体结构,元素粉末需经历32小时的机械合金化过程,形成面心立方结构和体心立方结构的混合固溶体粉末。研究人员通过放电等离子烧结使粉末在1050℃发生异质相分离,并在冷却后固结成型,最终形成高体积分数的纳米耦合晶粒相和分级纳米沉淀相,其呈现纳米分级结构和成分波动特征。纳米分级结构异质相的形成将使合金可在磨损诱导的变形过程中沿深度方向原位形成梯度界面层,选用高浓度的易氧化的铝和铌会促进合金在高温摩擦过程中快速形成保护性氧化釉质层。此外,高浓度的钛可显著提升合金体系的晶格畸变效应,从而提高摩擦界面层的屈服强度。“与传统合金相比,该合金的结构由分级纳米耦合晶粒组成,表现出纳米尺度的成分波动特征,这种独特的异质性结构使合金在室温至800℃宽温度范围内的磨损过程中自发激活自适应摩擦界面保护行为,形成耐磨损纳米梯度摩擦层或釉质层。该材料作为高温抗磨材料具有重要的应用价值。”程军说。他认为该合金成分可调、可采用热压、喷涂等多种工艺固化成型,有望实现产业化应用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制