当前位置: 仪器信息网 > 行业主题 > >

脑动脉瘤模型

仪器信息网脑动脉瘤模型专题为您整合脑动脉瘤模型相关的最新文章,在脑动脉瘤模型专题,您不仅可以免费浏览脑动脉瘤模型的资讯, 同时您还可以浏览脑动脉瘤模型的相关资料、解决方案,参与社区脑动脉瘤模型话题讨论。

脑动脉瘤模型相关的资讯

  • 我国科学家发现新型主动脉瘤和夹层生物标志物及治疗靶点
    主动脉夹层是一种高致死率的心血管疾病,其发病率为1.3-8%,目前尚无能够有效预防其发生发展的药物。因此,研究人员一直在努力探索相关标志物和潜在治疗靶点。  近日,北京大学和武汉同济医院的研究团队在《European Heart Journal》杂志发表了题为“Untargeted metabolomics identifies succinate as a biomarker and therapeutic target in aortic aneurysm and dissection”的文章,通过代谢组学分析发现主动脉瘤和夹层(Aortic aneurysm and dissection,AAD)患者血浆中琥珀酸水平明显升高,大规模人群验证结合临床资料分析,证明琥珀酸可以作为诊断AAD的新型生物标志物。细胞层面研究、动物模型试验以及基因敲除试验进一步证实血浆中高浓度琥珀酸加重小鼠AAD的进展,抑制巨噬细胞内琥珀酸生成通路,降低琥珀酸水平,可以降低ADD发病率、减轻AAD进展、缓解血管扩张、降低血管炎症等。  该研究首次揭示了琥珀酸可以作为AAD诊断的新型生物标志物及治疗靶点。  论文链接:  https://academic.oup.com/eurheartj/advance-article/doi/10.1093/eurheartj/ehab605/6371855#  注:此研究成果摘自《European Heart Journal》杂志,文章内容不代表本网站观点和立场,仅供参考。
  • 胸主动脉支架系统获批上市,共160款国产创新医疗器械获批
    近日,国家药品监督管理局经审查,批准了杭州唯强医疗科技有限公司生产的创新产品“胸主动脉支架系统”注册。该产品由近端胸主动脉覆膜支架系统和远端胸主动脉裸支架系统组成。近端胸主动脉覆膜支架系统封堵B型夹层近端破口,促使假腔内血栓化;远端胸主动脉裸支架系统扩张降主动脉远端真腔,促进主动脉真腔重塑。其中支架的结构设计使其具有良好的柔顺性及一定的径向和轴向支撑力。胸主动脉覆膜支架和胸主动脉裸支架分别预装在对应的输送器中,输送器的设计可保证释放过程的稳定性及支架精准定位。主动脉夹层起病急,进展快,病死率高,支架类产品已成为腔内介入治疗该类疾病的主要手段。该产品适用于治疗Stanford B型夹层,支架近端锚定区长度≥15mm,且病变符合以下条件之一:1.存在远端破口,有处理远端病变的必要性;2.夹层累及范围较广,且存在远端真腔塌陷;3.夹层伴远端灌注不良。该产品的上市将为患者带来新的治疗选择。药品监督管理部门将加强该产品上市后监管,保护患者用械安全。国家药监局已批准的创新医疗器械全名单:国家药监局已批准的创新医疗器械序号产品名称生产企业注册证号1基因测序仪深圳华因康基因科技有限公司国械注准201434021712恒温扩增微流控芯片核酸分析仪博奥生物集团有限公司国械注准201534005803双通道植入式脑深部电刺激脉冲发生器套件苏州景昱医疗器械有限公司国械注准201532109704植入式脑深部电刺激电极导线套件苏州景昱医疗器械有限公司国械注准201532109715植入式脑深部电刺激延伸导线套件苏州景昱医疗器械有限公司国械注准201532109726MTHFR C677T 基因检测试剂盒(PCR-金磁微粒层析法)西安金磁纳米生物技术有限公司国械注准201534011487脱细胞角膜基质深圳艾尼尔角膜工程有限公司国械注准201534605818Septin9基因甲基化检测试剂盒(PCR荧光探针法)博尔诚(北京)科技有限公司国械注准201534014819乳腺X射线数字化体层摄影设备科宁(天津)医疗设备有限公司国械注准2015330205210运动神经元存活基因1(SMN1)外显子缺失检测试剂盒(荧光定量PCR法)上海五色石医学研究有限公司国械注准2015340229311三维心脏电生理标测系统上海微创电生理医疗科技有限公司国械注准2016377038712呼吸道病原菌核酸检测试剂盒(恒温扩增芯片法)博奥生物集团有限公司国械注准2016340032713脱细胞角膜植片广州优得清生物科技有限公司国械注准2016346057314植入式迷走神经刺激脉冲发生器套件北京品驰医疗设备有限公司国械注准2016321098915植入式迷走神经刺激电极导线套件北京品驰医疗设备有限公司国械注准2016321099016药物洗脱外周球囊扩张导管北京先瑞达医疗科技有限公司国械注准2016377102017冷盐水灌注射频消融导管上海微创电生理医疗科技有限公司国械注准2016377104018胸骨板常州华森医疗器械有限公司国械注准2016346158219正电子发射及X射线计算机断层成像装置明峰医疗系统股份有限公司国械注准2016333215620人工晶状体爱博诺德(北京)医疗科技有限公司国械注准2016322174721骨科手术导航定位系统北京天智航医疗科技股份有限公司国械注准2016354228022低温冷冻消融手术系统海杰亚(北京)医疗器械有限公司国械注准2017358308823一次性使用无菌冷冻消融针海杰亚(北京)医疗器械有限公司国械注准2017358308924可变角双探头单光子发射计算机断层成像设备北京永新医疗设备有限公司国械注准2017333068125全降解鼻窦药物支架系统浦易(上海)生物科技有限公司国械注准2017346067926经皮介入人工心脏瓣膜系统杭州启明医疗器械有限公司国械注准2017346068027介入人工生物心脏瓣膜苏州杰成医疗科技有限公司国械注准2017346069828一次性可吸收钉皮内吻合器北京颐合恒瑞医疗科技有限公司国械注准2017365087429左心耳封堵器系统先健科技(深圳)有限公司国械注准2017377088130分支型主动脉覆膜支架及输送系统上海微创医疗器械(集团)有限公司国械注准2017346324131折叠式人工玻璃体球囊广州卫视博生物科技有限公司国械注准2017322329632腹主动脉覆膜支架系统北京华脉泰科医疗器械有限公司国械注准2017346143433植入式心脏起搏器先健科技(深圳)有限公司国械注准2017321157034人类EGFR基因突变检测试剂盒(多重荧光PCR法)厦门艾德生物医药科技股份有限公司国械注准2018340001435可吸收硬脑膜封合医用胶 山东赛克赛斯药业科技有限公司国械注准2018365003136血管重建装置微创神通医疗科技(上海)有限公司国械注准2018377010237miR-92a检测试剂盒(荧光RT-PCR法)深圳市晋百慧生物有限公司国械注准2018340010838丙型肝炎病毒核酸测定试剂盒(PCR-荧光探针法)北京纳捷诊断试剂有限公司国械注准2018340015739脑血栓取出装置江苏尼科医疗器械有限公司国械注准2018377018640定量血流分数测量系统博动医学影像科技(上海)有限公司国械注准2018321028241人EGFR/ALK/BRAF/KRAS基因突变联合检测试剂盒(可逆末端终止测序法)广州燃石医学检验所有限公司国械注准2018340028642全自动化学发光免疫分析仪北京联众泰克科技有限公司国械注准2018322029343人EGFR、KRAS、BRAF、PIK3CA、ALK、ROS1基因突变检测试剂盒(半导体测序法)天津诺禾致源生物信息科技有限公司国械注准2018340029444复合疝修补补片上海松力生物技术有限公司国械注准2018313029245正电子发射断层扫描及磁共振成像系统上海联影医疗科技有限公司国械注准2018306033746EGFR/ALK/ROS1/BRAF/KRAS/HER2基因突变检测试剂盒(可逆末端终止测序法)南京世和医疗器械有限公司国械注准2018340040847植入式骶神经刺激电极导线套件北京品驰医疗设备有限公司国械注准2018312040948植入式骶神经刺激器套件北京品驰医疗设备有限公司国械注准2018312041049人类SDC2基因甲基化检测试剂盒(荧光PCR法)广州市康立明生物科技有限责任公司国械注准2018340050650人类10基因突变联合检测试剂盒(可逆末端终止测序法)厦门艾德生物医药科技股份有限公司国械注准2018340050751医用电子直线加速器广东中能加速器科技有限公司国械注准2018305052052瓣膜成形环金仕生物科技(常熟)有限公司国械注准2018313053453神经外科手术导航定位系统华科精准(北京)医疗科技有限公司国械注准2018301059854医用直线加速器系统上海联影医疗科技有限公司国械注准2018305059955多孔钽骨填充材料重庆润泽医药有限公司国械注准2019313000156生物可吸收冠状动脉雷帕霉素洗脱支架系统乐普(北京)医疗器械股份有限公司国械注准2019313009357病人监护仪深圳迈瑞生物医疗电子股份有限公司国械注准2019307015458腹主动脉覆膜支架及输送系统微创心脉医疗科技(上海)有限公司国械注准2019313018259左心耳闭合系统北京迈迪顶峰医疗科技有限公司国械注准2019313027860左心耳封堵器系统上海普实医疗器械科技有限公司国械注准2019313027961调强放射治疗计划系统软件中科超精(安徽)科技有限公司国械注准2019321028162数字乳腺X射线摄影系统上海联影医疗科技有限公司国械注准2019306028063正电子发射及X射线计算机断层成像扫描系统湖北锐世数字医学影像科技有限公司国械注准2019306036464经导管植入式无导线起搏系统Micra Transcatheter Leadless Pacemakersystem美敦力公司Medtronic Inc.国械注进2019312029765经导管主动脉瓣膜系统上海微创心通医疗科技有限公司国械注准2019313049466一次性使用血管内成像导管南京沃福曼医疗科技有限公司国械注准2019306060167无创血糖仪博邦芳舟医疗科技(北京)有限公司国械注准2019307060268植入式左心室辅助系统重庆永仁心医疗器械有限公司国械注准2019312060369脱细胞角膜植片青岛中皓生物工程有限公司国械注准2019316067970冠状动脉造影血流储备分数测量系统苏州润迈德医疗科技有限公司国械注准2019307096971一次性使用有创压力传感器苏州润迈德医疗科技有限公司国械注准20193070970
  • 仪器表征,科学家开发新型纳米药物,用于治疗动脉粥样硬化!
    【科学背景】动脉粥样硬化是一种以动脉斑块逐渐沉积为特征的疾病,最终可能导致严重的动脉血栓事件。因此,抗炎策略在临床治疗中显现出巨大的潜力。近来,Canakinumab抗炎血栓结果研究(CANTOS)临床试验对约10,000名心肌梗死后患者进行了研究,结果显示,使用Canakinumab(一种中和促炎性IL-1β细胞因子的单克隆抗体)的治疗显著减少了心血管事件的发生。然而,这一疗法也增加了致命感染的风险,主要是因为中性粒细胞减少,宿主防御能力受到削弱。另一个临床试验,心血管炎症减少试验(CIRT),则表明低剂量甲氨蝶呤的系统治疗未能有效减少促炎细胞因子的表达或心血管事件。这些结果提示,若能将治疗药物有效地递送至动脉壁病变区域,将可能显著提高疗效并减少副作用。此外,病灶巨噬细胞中过量的活性氧(ROS)是促进动脉粥样硬化进展的另一个关键因素。ROS过量产生会增加氧化应激,导致细胞凋亡并激活炎症反应。由于炎症在动脉粥样硬化过程中引起ROS的过量生成,因此尽管具有挑战性,但同时解决炎症和抑制病灶ROS生成的治疗策略对于动脉粥样硬化的管理具有重要意义。虽然一些纳米治疗剂在临床前研究中显示出双重治疗功能,但其在疾病部位的低积累、复杂的合成路线和潜在的毒性问题仍然是临床转化的障碍。因此,迫切需要合成具有抗氧化和抗炎功能并且能在疾病部位高效积累的生物相容性纳米材料。为此,科学家们将研究目光投向了二维(2D)黑磷纳米片(BPNSs)。由于其独特的物理化学特性和优异的生物相容性,BPNSs在纳米医学领域得到了广泛研究。最近的一项临床前研究表明,BPNSs可以有效清除过量的ROS,改善急性肾损伤。基于这一发现,四川大学华西医院宋相容课题组和哈佛大学医学院的陶伟、Wei Chen合作开发了具有良好生物相容性和高病灶巨噬细胞积累能力的靶向BPNS纳米治疗剂。与传统的纳米载体递送药物策略不同,作者采用了一种创新的“纳米药物递送药物”方法,用于治疗动脉粥样硬化。具体而言,作者利用BPNSs的药物携带能力,将解决炎症的脂质介质Resolvin D1(RvD1)加载其中。RvD1负载的BPNSs不仅能够清除周围的ROS,且在病灶巨噬细胞中选择性地释放RvD1,从而在载脂蛋白E缺乏(Apoe&minus /&minus )小鼠的动脉粥样硬化模型中增强抗动脉粥样硬化效果。【科学亮点】(1)实验首次开发了靶向肽修饰的黑磷纳米治疗剂(BPNSs@PEG-S2P/R),旨在解决动脉粥样硬化治疗中的挑战。(2)实验通过将2D PEGylated BPNSs结合S2P靶向肽和抗炎药物RvD1,成功实现了以下几点结果:&bull BPNSs@PEG-S2P/R能有效积聚于动脉粥样硬化斑块的病灶巨噬细胞,并在S2P肽的协助下渗透斑块。&bull 药物RvD1在ROS响应性释放的方式下,被有效递送至病灶巨噬细胞,展现出显著的抗炎效果。&bull BPNSs@PEG-S2P/R不仅能同时清除ROS,还能抑制病灶巨噬细胞中ROS诱导的炎症反应。&bull 在Apoe&minus /&minus 小鼠模型中,BPNSs@PEG-S2P/R显著减少了斑块面积,并提高了斑块的稳定性。&bull 在动脉粥样硬化斑块中,BPNSs@PEG-S2P/R能有效抑制巨噬细胞负担、炎症反应和氧化应激。&bull 长期治疗后,BPNSs@PEG-S2P/R未引起小鼠免疫或毒性不良反应。【科学图文】图1:BPNSs@PEG-S2P/R的合成策略和抗动脉粥样硬化机制示意图。图2:BPNSs@PEG-S2P/R的表征及RvD1负载和释放研究。图3:BPNSs@PEG-S2P/R处理后细胞摄取、ROS清除能力、抗炎效果、氧化低密度脂蛋白摄取和泡沫细胞形成的体外分析。图4:BPNSs@PEG-S2P/R的药代动力学和生物分布。图5:通过量化病变面积和评估斑块稳定性特征,评估BPNSs@PEG-S2P/R在Apoe&minus /&minus 小鼠中的抗动脉粥样硬化效果。图6:单细胞转录组学揭示了BPNSs@PEG-S2P/R治疗调控主动脉病灶巨噬细胞的基因和关键分子通路。【科学结论】本研究深入探索了动脉粥样硬化的复杂病理机制,突出了慢性炎症和ROS过量生成在疾病发展中的关键作用。通过利用二维黑磷纳米片(BPNSs)的独特特性,如优异的生物相容性和强大的ROS清除能力,本文创新性地设计了靶向肽修饰的纳米治疗剂,实现了双重治疗功能:有效清除ROS并解决斑块中的炎症。这一“纳米药物递送药物”的策略不仅有效提高了治疗效果,还显著减少了对机体的不良影响。研究结果不仅在动物模型中验证了其显著的疗效和安全性,而且通过单细胞水平的分析揭示了治疗机制的深层次调控,为未来开发治疗动脉粥样硬化及其他炎症性疾病的新型纳米药物提供了重要的价值。这些成果不仅有望促进相关领域的进一步研究和临床应用,还为纳米技术在个体化医疗和精准治疗中的广泛应用提供了有力支持,为解决复杂疾病治疗中的关键挑战开辟了新的道路。原文详情:He, Z., Chen, W., Hu, K. et al. Resolvin D1 delivery to lesional macrophages using antioxidative black phosphorus nanosheets for atherosclerosis treatment. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01687-1
  • 新型微创无缝主动脉瓣膜获美国FDA批准上市
    近日,全球领先的心血管系统医疗器材公司edwards lifesciences宣布,其产品edwards intuity elite瓣膜系统获得了美国fda的批准。该产品是一种可用于外科主动脉瓣膜快速置换的医疗设备。 ▲edwards intuity elite瓣膜系统示意图(图片来源:edwards lifesciences官网)人工主动脉瓣膜主要用在治疗心血系统的瓣膜狭窄疾病领域。目前使用药物治疗这类疾病的效果不明显,而开胸型大手术则面临极大的细菌感染和手术事故风险,特别不适用于老年患者和已有其他病患的人群。临床数据表明,与传统开胸主动脉瓣置换相比,微创主动脉瓣手术具有出血少、住院时间短、手术伤口美观、心肌缺血时间缩短等众多优点。创建于1958年的edwards lifesciences是心瓣膜学科和血液动力学监测的全球领先企业之一。该公司与临床医生合作开发结构性心脏病和重症监护领域的创新性技术,从而帮助他们挽救生命并提高患者生活质量。其最近获fda批准的intuity elite无缝线瓣膜系统旨在进一步优化微创手术,简化复杂的主动脉瓣置换过程,从而为主动脉瓣疾病患者提供前沿的治疗方案。 ▲edwards intuity elite瓣膜系统操作示意图(图片来源:edwards lifesciences官网)fda对该主动脉瓣膜的批准是基于transform临床试验的良好结果。这项研究在美国29个医疗中心治疗了839例患者。数据表明,在一年时间里, intuity瓣膜系统是安全有效的,并且可以减少手术交叉钳时间和体外血液循环时间。这一产品总体上降低了病人的死亡率和发病率,减短了重症监护病房(icu)及住院停留时间。 ▲bernard zovighian先生(图片来源:linkedin)edwards lifesciences公司负责外科心脏瓣膜疗法的副总裁bernard zovighian先生说道:“intuity elite 瓣膜系统在美国获得批准是一重要里程碑,该技术为主动脉瓣疾病患者提供了先进的手术治疗选择。与医生们紧密合作,edwards正致力于开发更多创新的医疗手术技术来满足病人的需要。” 参考资料:[1] edwards intuity elite rapid deployment valve receives fda approval[2] fda approves edwards' minimally invasive aortic valve system[3] edwards lifesciences 官方网站
  • 塞塔拉姆——流动脉冲吸附微量热系统用于材料原位表征
    p    strong 仪器信息网讯 /strong 量热法是一种直接测量吸附热的方法,该方法不依赖于物理模型的建立。然而,想要获取精确的吸附热数据,量热测量要求有足够高的灵敏度。塞塔拉姆建立的流动脉冲吸附微量热系统不仅测量的灵敏度高,而且能够与比表面积分析仪(BET)联用,实现物质吸附热的原位测量。 /p p   目前,塞塔拉姆已经与合肥微尺度物质科学国家实验室合作,并将流动脉冲吸附微量热系统应用于粉末催化剂吸附过程的研究,并发表题为《A flow-pulse adsorption-microcalorimetry system for studies of adsorption processes on powder catalysts》的文章。 /p p   在视频中,塞塔拉姆曾洪宇对塞塔拉姆的Sensys Evo DSC和独有的卡尔文3D量热技术进行了介绍,并阐述了Sensys Evo原位联用流动脉冲吸附微量热系统在实验分析、质量控制等方面的应用。 /p p   具体视频如下: /p p script src=" https://p.bokecc.com/player?vid=D3422C9E99F8CFE89C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script br/ /p
  • 健康中国行赛默飞高分辨质谱助力基础&转化医学研究
    11月16日,由赛默飞世尔科技和杭州凯莱谱精Zhun医疗检测技术有限公司联合举办的“健康中国行动-基础&转化医学”圆桌会议圆满结束。赛默飞高分辨质谱技术在基础&转化医学各方面研究中均发挥重要作用,并为本次会议带来了基础医学与转化医学Orbitrap高分辨质谱解决方案。 圆桌论坛共话基础&转化医学重要观点 本次会议特邀Thomas Caskey院士、国家蛋白质科学中心(北京)秦钧研究员、首都医科大学附属北京安贞医院杜杰研究员、中国疾病预防控制中心环境所唐宋副研究员,凯莱谱精zhun医疗检测技术有限公司刘华芬教授在圆桌论坛环节共同探讨基础&转化医学重要议题,观点如下:1.高分辨质谱技术是蛋白质定量极为精zhun的手段;2.分子标志物是经济有效的临床辅助诊断手段;3.医学转化研究需适应临床医生的思维,解决临床问题;4.重大疾病的风险防控,对于疾病的预防和干预意义重大;5.高通量组学技术是环境与健康交互研究的有力手段和极jia平台; 精zhun医学大队列研究,蛋白组学成为核心驱动力 作为本次会议重磅开场报告,国家蛋白质科学中心(北京)主任秦钧研究员的报告题为《Proteomics Driven Precision Medicine》,介绍了世界上第1个以蛋白质组学驱动的胃癌精zhun医疗体系,该体系以赛默飞Orbitrap高分辨质谱平台为依托,只用蛋白组就可以将胃癌进行精zhun分型,为病人的治疗方案和预后情况提供临床指导。秦钧研究员还指出目前蛋白质组学研究的现状和存在的问题,并指出下一代蛋白质组学应努力的方向:Throughput、Fast MS、Robust、Multiplex、Real Big data。同时,秦钧老师还提出将来用于精zhun医疗的蛋白质检测IVD的发展方向“一定是独立的、中心化第三方临检机构专业化地做IVD”。 今年3月CCTV报道中,赛默飞Orbitrap高分辨质谱仪助力国家蛋白质科学研究中心国际顶jian科研成果转化。 质谱技术切入临床问题,推动基础科研向临床转化 首都医科大学附属北京安贞医院杜杰研究员带来题为《基于生物标记物的心血管疾病分子分型》,介绍了主动脉瘤/夹层分子分型和诊治的精zhun医学研究相关内容。主动脉瘤临床异质性高、致残致死率高,需要面对很多复杂临床问题。大队列患者临床信息结合多组学数据进行生物标志物筛选,是对疾病进行分型和建立预测模型的有效方法。杜杰教授建立了疾病大队列样本资源库,并进行了miRNA、蛋白组、代谢组等多维度的分子影像分析,在疾病的快速鉴别、预后判断中发挥重要的辅助诊断作用。目前部分科研成果已经通过室间质评,应用于临床检测。 早在2017年,赛默飞就与北京安贞医院精zhun医学中心共建了联合实验室,开启战略合作,着力提升质谱技术在医疗产业的研究和转化水平,造福中国民众。 环境污染影响健康结局,代谢组学切入内源标志物筛选 中国疾病预防控制中心环境所唐宋副研究员的报告主题为“中国老年人空气污染暴露的生物标志物研究”。PM?.? 空气污染影响人群健康,尤其是易感人群,如孕妇、儿童、老年人。唐宋老师的研究项目以60-69岁老年人为监测对象,采用可穿戴设备和代谢组学、脂质组学的方法,筛选PM?.?暴露下人体的生物标志物,并建立两者之间的内在联系。结果显示PM?.?暴露可能增加心脏病、糖尿病等多种疾病的患病风险。Orbitrap高分辨质谱平台为项目中代谢组学、脂质组学相关检测内容提供稳定、精zhun的技术保障,同时,赛默飞环境与健康解决方案还涉及更广泛的领域。 赛默飞&凯莱谱并肩合作,共同助力精zhun医学代谢检测 凯莱谱精zhun医学代谢组高级科学家孔子青博士带来题为《基于高分辨质谱的代谢组学技术在肠道微菌群中的应用研究》的报告。肠道微生物对于生物体健康稳态有着极其重要的作用,孔博士在报告中分享了几项关于肠道微生物的有趣研究,并详细介绍了其中的关键技术应用和数据结果。代谢组学是解析肠道微生物功能及其与宿主信息交换机制的重要手段之一,高分辨质谱结合高质量标准品数据库为肠道微生物代谢组学的研究提供绝jia的解决方案。今后,赛默飞将继续携手凯莱谱精zhun医疗代谢组学平台,共同应对代谢组学在健康与疾病等多方面的挑战。 凯莱谱Metabolon Discovery HD4非靶向全面代谢组学平台 赛默飞“健康中国行动”基础&临床医学解决方案 最hou,赛默飞中国区色谱质谱业务组学市场拓展经理宁婵娟博士的《In China,For China-赛默飞“健康中国行动”基础&临床医学解决方案》受到在场专家老师热烈关注。赛默飞深耕中国市场已经近40年,质谱方案频频助力中国科学家登顶顶ji学术期刊。在针对极低上样量建立的蛋白质组学工作流中,全新一代Orbitrap Exploris 480搭载FAIMS Pro系统,在1ng Hela样本中鉴定1945个蛋白,展示出了u秀的深度鉴定覆盖能力。在代谢组学方面,超高分辨的Obitrap平台结合全球知名的在线标准品数据库MZcloud,为代谢物精zhun定性提供有力保障。同时,在多中心实验室进行的蛋白质组学、代谢组学的长时间连续测试中,赛默飞质谱平台都展示出卓越的稳定性。这无疑是解决精zhun医学研究中样本珍贵、人群队列多中心分析、时间跨度大等瓶颈问题的利器。 扎根中国 服务中国精zhun医疗前景可期,虽道阻且长,但行则将至。赛默飞始终以全球领xian的科技创新,践行“扎根中国、服务中国”的郑重承诺,为健康中国行动科技基础设施建设提供极具价值的整体解决方案。 扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众hao,了解更多资讯+色谱质谱明星产品前处理气相色谱离子色谱液相色谱气质联用液质联用AA/ICP/ICPMS软件 更多仪器配置和方案推荐色谱质谱全流程食品安全固废专项临床检测RoHS检测中药分析化药分析代谢组学
  • 【知识科普】心血管生物力学与力学生物学2022年研究进展
    心血管系统是脊椎动物胚胎发育的第一个功能器官系统,其主要功能是运输、控制和维持全身的血流。由于不断暴露在来源于血流量和压力的多种机械力下,心血管系统是最容易受到机械力学刺激的系统之一。在这种情况下,心血管系统中的细胞由于心脏跳动产生的脉动变化以及血流产生的剪切应力等永久地受到力学刺激。一方面,流体剪切应力、血管壁机械牵张力、细胞与细胞之间的胞间力等外力组成了心血管系统的力学刺激。另一方面,心血管细胞力学描述了心血管的细胞或组织弹性的动力学。 心肌组织是由心肌细胞、心脏成纤维细胞、细胞外基质、血管等组成的复杂和高度层次化的组织,其组织结构与心脏的宏观力学和形态特性密切相关。随着心脏从单腔结构演变为多室结构,心脏瓣膜开始控制心脏周期中的单向血流。在此期间,心室肌细胞以纤维的形式排列,在心脏壁内形成复杂的层流模式,赋予了心脏包括各向异性、黏弹性在内的多种力学性能。此外,细胞外基质维持了心脏完整性并支持其功能。心脏间质外基质主要由成纤维细胞样细胞产生和维持,为心肌提供了必要的结构支持,保留了心室的力学特性。血流和基质成分的改变都将在一定程度上影响整个心脏的结构和功能。血管在组织结构较高,特别是大组织和器官结构的产生中发挥着重要作用。所有组织生长需要建立足够的血管结构。血管主要由血管内皮细胞(endothelial cells,ECs)和周围的平滑肌细胞(smooth muscle cells,SMCs)或周细胞组成。这些特殊组分维持了血管的黏弹性、各向异性等力学特性。EC排列在血管的内表面,其在循环和周围组织之间提供选择性结构屏障,调节血管通透性和血流。血管内皮功能可以通过血流速率、血管直径或动脉力学特性变化来评估,这些特性与血管收缩和舒张活动有关。此外,SMCs是构成血管壁组织和维持血管张力的主要细胞成分。血管SMCs在组织发育过程中,不断暴露于脉动牵张力等力学刺激中,这种力学作用至少在一定程度上促进了血管组织成分的发育。心血管结构或可替代性的改变可以对心脏功能、血管收缩和扩张能力产生重要影响。特别是在病理情况下,了解心血管结构和力学特性的变化是阐明心血管疾病发生的必要条件,因为这些特性是正常心血管功能的关键决定因素。2022年,关于心血管的生物力学与力学生物学研究主要集中在心血管组分、结构和功能方面。在生理或病理条件下,对心脏和血管壁的生物力学特性、血管内的血流动力学参数、以及响应力学刺激后的生物学改变进行了广泛研究。此外,在微流体技术、纳米技术和生物成像技术等新技术的应用以及心血管生物力学建模领域也取得了进步。然而,机体自身存在的复杂力学环境导致体内心血管力学生物学相关的研究较少。因此,体内环境中不同力学条件下心血管损伤修复的力学生物学研究是未来重要的研究方向。1 心血管生物力学研究1.1 心脏结构和功能的生物力学特征心脏具有复杂的三维结构,在整体器官水平上的功能来自于细胞亚结构到整个器官的内在结构-功能的协调作用。然而,对人体心脏结构中细胞生物力学特征的研究还处于早期阶段。在最近的报道中,Chen等[1]通过空间维度剖析了心肌细胞的异质性,并明确了心肌细胞和血管细胞的空间和功能分区。该项研究表明心房或心室内存在明显的空间异质性,为心脏不同分区的功能异质性提供了理论基础。心脏的基本功能是收缩功能,由此产生的收缩力是心脏独特的力学特性。心脏收缩是一种复杂的生物力学过程,需要心肌细胞的收缩和松弛协同作用,产生足够的收缩力,将血液推向体循环和肺循环。以往研究更多的关注心脏的形态结构、心室大小和室壁厚度等因素对心脏收缩功能的影响,而缺乏对心脏收缩功能的直接表征。Salgado-Almario等[2]构建了一种新的斑马鱼品系,可用于斑马鱼心脏收缩期和舒张期钙水平的成像。该研究通过将Ca2+水平和心脏收缩功能关联起来,可实现对收缩功能的表征,有利于心力衰竭和心律失常等疾病病理生理学机制的阐明。此外,在心脏周期中,心脏收缩或舒张引起的血液流动与发育中的心脏壁不断地相互作用,从而调节心脏发育的生物力学环境。因此,确定整个心脏壁的力学特性是十分重要的。Liu等[3]在健康的成年绵羊模型中研究了左心室和右心室的生物力学差异,观察到右心室在纵向上比左心室顺应性强,在周向上比左心室硬,这表明不同心室的力学特性对舒张期血液充盈的影响不同。未来的研究应该根据不同室壁的生物力学原理开发对应的特异性治疗方法。值得注意的是,心脏瓣膜是控制心脏血流的重要组成部分,其力学特征对心脏功能和心脏瓣膜疾病的发展都有重要影响。瓣膜的生物力学特征包括瓣膜的弹性和变形能力等。这些特征可以影响瓣膜的开合和阻力,进而影响心脏血液流动和血液循环。因此,揭示心脏瓣膜的生物力学特性具有重要意义。软组织的力学性能是由其复杂、不均匀的组成和结构所驱动的。在一项二尖瓣小叶组织研究中,Lin等[4]开发了一种具有高空间分辨率的无损测量技术,证明了厚度变化可引起二尖瓣异质性的存在。此外,Klyshnikov等[5]利用数值模拟方法分析了主动脉瓣瓣膜移动性对瓣膜瓣叶装置的应力-应变状态和几何形状的影响,从应力-应变状态分布的角度出发,该研究的仿真方法可以优化心脏瓣膜假体的小叶装置几何形状。由此可见,心脏结构和功能的生物力学特征是多方面因素的综合反映,评估和解析心脏的结构和形状有利于对心脏功能作用的阐明。1.2 血管结构和功能的生物力学特征血管包括心脏的血管和周围的血管系统,这些血管的生物力学特征对心脏功能有重要影响。血管结构取决于血管的类型,其功能可分为血流动力学功能和血管功能两部分。血管的弹性和柔韧性可以影响血管的阻力和血液流动速度,从而影响心脏负荷和排血量。此外,血管的厚度和硬度也会影响血压和血液流动的速度。从生物力学和力学生物学角度去解析血管的结构和功能是目前研究的重要方向。在心血管疾病相关药物的开发中,需要精确定位和分离冠状动脉以测量其动态血管张力变化。然而,如何记录离体血管的动态生物力学特性一直困扰着人们。Guo等[6]建立了一种冠状动脉环张力测量的标准化和程序化方案,通过多重肌电图系统监测冠状动脉环沿血管直径的收缩和扩张功能,确保了生理、病理和药物干预后血管张力记录的真实性。ECs和SMCs是血管结构和功能完整性所必需的主要细胞类型。ECs可调节血管张力和血管通透性,而SMCs负责维持正常的血管张力和结构的完整性。ECs可以分泌多种生物活性物质,如一氧化氮、血管紧张素等,对血管张力和血流动力学产生调节作用。ECs还能响应外部力学刺激,如流体剪切应力和压力变化等,从而改变ECs的形态和功能,影响血管壁的生物力学特征。SMCs可以收缩和松弛,调节血管的管径和血管阻力。除细胞因素外,血管的力学性质还受到血管壁中胶原和弹性蛋白的性质、空间排列等因素的影响。这是因为SMCs是高度可塑性的,它能响应细胞外基质(extracellular matrix,ECM)固有的力学信号。最近的一项研究显示,现有的微血管网络在力学刺激的加入或退出时表现出明显的重塑,并且排列程度出现相应的增加或减少。在这个过程中,纵向张力可导致纤维蛋白原纤维的纵向排列[7]。正是这些细胞和细胞外组分赋予了血管的黏弹性、各向异性等力学特性。总体而言,血管的结构和功能是复杂而多样的,涉及到多种生物力学特性的相互作用。研究血管的生物力学特征可以帮助人们更好地理解血管疾病的发生和发展,为疾病的治疗和预防提供科学依据。1.3 心血管疾病与生物力学关系的研究进展心血管疾病是一类常见的疾病,包括动脉粥样硬化、动脉瘤、心肌梗死等。这些疾病的发生和发展与心血管系统的生物力学特性密切相关。在心血管生物力学与力学生物学领域,近年来对心血管疾病与生物力学关系的研究取得了许多进展。1.3.1动脉粥样硬化的生物力学特征研究动脉粥样硬化是一种常见的动脉疾病,其特征为动脉壁上的脂质沉积和炎症反应,导致血管壁逐渐增厚和失去弹性。动脉粥样硬化的发生和发展是一个复杂的过程,涉及多个生物力学因素的相互作用。在动脉粥样硬化中,SMCs从收缩表型转变为合成表型,而影响SMCs表型变化的因素尚未完全阐明。Swiatlowska等[8]发现基质硬度(stiffness)和血流动力学压力(pressure)变化对SMCs表型具有重要影响。在动脉粥样硬化发展过程中,在高血压压力与基质顺应性(matrix compliance)共同的作用下,才会导致SMCs完整的表型转换[8]。提高对冠状动脉微结构力学的认识是开发动脉粥样硬化治疗工具和外科手术的基础。虽然对冠状动脉的被动双轴特性已有广泛的研究,但其区域差异以及组织微观结构与力学之间的关系尚未得到充分的表征。Pineda-Castillo等[9]利用双轴测试、偏振光成像和前室间动脉共聚焦显微镜来描述了猪前室间动脉近端、内侧和远端区域的被动双轴力学特性和微结构特性,为冠状动脉旁路移植术中吻合部位的选择和组织工程化血管移植物的设计提供指导。动脉粥样硬化斑块的破裂是引起患者死亡的主要原因;但目前尚不清楚这种异质的、高度胶原化的斑块组织的破裂机制,以及破裂发生与组织的纤维结构之间的关系。为了研究斑块的非均质结构和力学性质,Crielaard等[10]研制了力学成像管道(见图1)。通过多光子显微镜和数字图像相关分析,这条实验管道能够关联局部主要角度和胶原纤维取向的分散度、断裂行为和纤维斑块组织的应变情况。这为研究人员更好地了解、预测和预防动脉粥样硬化斑块破裂提供了帮助。图1 在拉伸测试过程中斑块组织样本中的破裂起始和扩展[10]除SMCs以外,最近的一项研究揭示了动脉粥样硬化中ECs表面力学性质的变化。Achner等通过基于原子力显微镜的纳米压痕技术发现内皮/皮层僵硬度的增加[11]。事实上,内皮功能障碍在血管硬化中的作用一直是一个重要的研究方向。ECs的可塑性在动脉粥样硬化的进展中起关键作用,暴露于扰动、振荡剪切应力区域的内皮细胞功能障碍是动脉粥样硬化的重要驱动因素[12]。由此可见,未来的研究如能进一步明确ECs和SMCs对血管硬化相关心血管疾病的贡献,则可能为恢复动脉粥样硬化中的血管内皮和平滑肌功能提供重要的靶点。1.3.2动脉瘤的生物力学特征研究主动脉SMCs在维持主动脉机械动态平衡方面起着至关重要的作用。动脉瘤主动脉的SMCs表型受到力学因素的影响,但是主动脉瘤中SMCs的骨架硬度的改变情况缺乏相关的数据。Petit等[13]以附着在不同基质硬度上的动脉瘤或健康SMCs为对象,通过原子力显微镜纳米压痕技术研究了细胞骨架硬度的区域差异性。该研究结果表明,动脉瘤SMCs和正常SMCs的平均硬度分布分别为16、12 kPa;然而,由于原子力显微镜纳米压痕硬度检测值的大量分散,两者之间的差异没有统计学意义。在腹主动脉瘤中,Qian等[14]采用基于超声波镊(ultrasonic tweezer)的微力学系统探究了SMCs的力学特性(见图2)。结果发现,动脉瘤病理发展中细胞骨架的变化改变了SMCs的细胞膜张力,从而调节了它们的力学特性。图2 基于超声波镊的微力学系统检测腹主动脉瘤中SMC的力学特性[14]a使用超声波激发微泡通过整合素结合到PDMS微柱阵列上的SMCs膜上的微力学系统示意图;b基于微柱的力学感受器和单细胞的超声波镊系统示意图二尖瓣主动脉瓣经常与升胸主动脉瘤相关,但目前尚不清楚瓣尖融合模式对生物力学和升胸主动脉瘤微观结构的影响。Xu等[15]通过双向拉伸试验对具有左右瓣尖融合以及右冠窦和无冠窦瓣尖融合的升胸主动脉瘤的力学行为进行了表征。此外,将材料模型与双轴实验数据进行拟合,得到模型参数,并使用组织学和质量分数分析来研究升胸主动脉瘤组织中弹性蛋白和胶原的基本微观结构和干重百分比。其结果发现,两种瓣尖融合模式对双轴加载表现出非线性和各向异性的力学响应;在弹性性能方面,左右瓣尖融合的弹性性能劣化得更严重。由此可见,心血管结构自身生物力学特性的改变可能对动脉瘤的进展有很大影响。然而,主动脉血流动力学对升主动脉瘤动脉壁特性的影响尚不清楚。在最近的一项研究中,McClarty等[16]探究了升主动脉瘤血流动力学与主动脉壁生物力学特性的关系。其结果发现,血管壁的剪切应力与动脉壁黏弹性滞后和分层强度的局部退化有关,血流动力学指标可以提供对主动脉壁完整性的深入了解。因此,从血管自身结构特性以及血流动力学两方面探究动脉瘤的形成机制具有重要意义。1.3.3 心肌梗死的生物力学特性研究心肌梗死是心肌细胞死亡的结果,通常是由于冠状动脉阻塞引起的。心肌梗死可导致心力衰竭并降低射血分数。生物力学研究发现,冠状动脉阻塞会导致心肌的缺血和再灌注损伤,这些过程涉及血流动力学和细胞力学等因素。在体循环过程中,心肌梗死后的血流动力学改变如何参与并诱导心力衰竭的病理进展尚未完全阐明。Wang等[17]采用冠状动脉结扎术建立了Wistar雄性大鼠心肌梗死模型。术后3、6周分别对左心室和外周动脉进行生理和血流动力学检测,计算左心室肌纤维应力,并进行外周血流动力学分析。结果表明,心肌梗死明显损害心功能和外周血流动力学,并改变相应的心壁和外周动脉壁的组织学特性,且随时间延长而恶化。综上所述,心功能障碍和血流动力学损害的相互作用加速了心梗引起的心衰的进展。急性心肌梗死后,左室游离壁发生重塑,包括细胞和细胞外成分的结构和性质的变化,使整个左室游离壁具有不同的模式。心脏的正常功能受到左心室的被动和主动生物力学行为的影响,进行性的心肌结构重构会对左心室的舒缩功能产生不利影响。在这个过程中,左心室游离壁形成纤维性瘢痕。尽管在心肌梗死背景下对左室游离壁被动重构的认识取得了重要进展,但左室游离壁主动属性的异质性重构及其与器官水平左心功能的关系仍未得到充分研究。Mendiola等[18]开发了心肌梗死的高保真有限元啮齿动物计算心脏模型,并通过仿真实验预测梗死区的胶原纤维跨膜方向对心脏功能的影响(见图3)。结果发现,收缩末期梗死区减少的及潜在的周向应变可用于推断梗死区的时变特性信息。这表明对局部被动和主动重构模式的详细描述可以补充和加强传统的左室解剖和功能测量。图3 代表性的啮齿动物心脏计算模型在心肌梗死后不同时间点的短轴和长轴截面显示收缩末期的周向、纵向和径向应变[18]上述研究表明,心脏疾病的发生和发展与心脏结构和功能的生物力学特征密切相关。任何影响心脏收缩和舒张过程的因素,都可能调控心脏的泵血功能和心脏负荷。这些因素可以影响心脏收缩的能力、心肌细胞的代谢和血流动力学参数,从而影响心脏的整体功能和疾病的进展。总之,通过深入研究这些生物力学特征,可以为心血管疾病的诊断和治疗提供重要的理论和实践基础。2 力学生物学在心血管细胞水平上的研究进展2.1 ECs水平上的研究进展细胞的凋亡、通讯和增殖异常等表型变化是心血管疾病的一个重要机制。通过力学生物学的方法,研究人员可以模拟不同的细胞应力环境,探索细胞生长和凋亡的调控机制,并研究细胞在受外界力学刺激作用下的反应。由于ECs直接暴露于血流中,因此ECs表型变化的力学生物学机制一直是心血管领域的研究热点之一。紊乱扰动的血流改变了ECs的形态和细胞骨架,调节了它们的细胞内生化信号和基因表达,从而导致血管ECs表型和功能的改变。在颈动脉结扎产生的动脉粥样硬化模型中,Quan等[24]研究发现,在人和小鼠动脉和ECs的振荡剪切应力暴露区,内皮MST1的磷酸化被明显抑制。该研究揭示,抑制MST1-Cx43轴是振荡剪切应力诱导的内皮功能障碍和动脉粥样硬化的一个基本驱动因素,为治疗动脉粥样硬化提供了一个新的治疗目标。另外一项研究从表观修饰角度探究了剪切应力对ECs功能的影响[20]。Qu等[20]研究显示,层流切应力通过增加内皮细胞CX40的表达而诱导TET1s的表达,从而保护血管内皮屏障,而TET1s过表达则可能是治疗振荡剪切应力诱导的动脉粥样硬化的关键步骤。另一方面,病理性基质硬度可使ECs 获得间充质特征[21]。动脉生成(arteriogenesis)在维持足够的组织血供方面起着关键作用,并且与动脉闭塞性疾病的良好预后相关,但涉及动脉生成的因素尚不完全清楚。Zhang等[22]研究发现,在动脉阻塞性疾病中,KANK4将 VEGFR2偶联到 TALIN-1,从而导致VEGFR2活化和EC增殖的增加。
  • 两部门关于公布人工智能医疗器械创新任务揭榜入围单位的通知 联影、迈瑞等上榜
    10月26日,工信部官方网站发布通知,公布人工智能医疗器械创新任务揭榜入围单位,包括智能辅助诊断产品、智能辅助治疗产品、智能监护与生命支持产品、智能康复理疗产品、智能中医诊疗产品、医学人工智能数据库、人工智能医疗器械临床试验平台、人工智能医疗器械真实世界数据应用平台八大类。工业和信息化部办公厅 国家药品监督管理局综合和规划财务司关于公布人工智能医疗器械创新任务揭榜入围单位的通知工信厅联科函〔2022〕265号各省、自治区、直辖市及计划单列市、新疆生产建设兵团工业和信息化主管部门、药品监督管理部门:根据《工业和信息化部办公厅 国家药品监督管理局综合和规划财务司关于组织开展人工智能医疗器械创新任务揭榜工作的通知》(工信厅联科函〔2021〕247号),经各地各单位推荐、综合评审和网上公示,确定了人工智能医疗器械创新任务揭榜入围单位名单,现予以公布。有关事项通知如下:一、入围单位分为“揭榜单位”和“潜力单位”两类,原则上,“揭榜单位”为创新任务攻关主体,鼓励“潜力单位”实施揭榜任务。工业和信息化部、国家药品监督管理局将开展不定期抽查和中期测试评价,根据实际攻关进展和测评排名情况,对“揭榜单位”和“潜力单位”动态调整。二、请各地工业和信息化主管部门、药品监督管理部门加强对入围单位和项目的跟踪管理,针对揭榜任务攻关过程中涉及的创新研发、测试验证、示范推广等关键环节,加大政策和资金支持力度,对符合注册条件的产品加强指导。三、工业和信息化部将委托相关机构于2023年底前对揭榜任务完成情况进行测评考核,遴选揭榜优胜单位和项目。请入围单位瞄准揭榜任务指标抓紧开展攻关,确保揭榜任务按期保质完成。附件:人工智能医疗器械创新任务揭榜入围单位.pdf工业和信息化部办公厅国家药品监督管理局综合和规划财务司2022年10月14日附:人工智能医疗器械创新任务揭榜入围单位序 号类别项目名称牵头单位方向一:智能辅助诊断产品1揭榜单位宫颈细胞学数字病理影像计算机辅助诊断软件玖壹叁陆零医学科技南京有限公司2揭榜单位基于人工智能的宫颈液基细胞学图像计算机 辅助诊断软件杭州迪英加科技有限公司3揭榜单位染色体核型辅助诊断软件杭州德适生物科技有限公司4揭榜单位眼底照片眼部疾病辅助诊断软件北京百度网讯科技有限公司5揭榜单位浅表器官超声扫描与影像分析系统浙江德尚韵兴医疗科技有限公司6揭榜单位肝脏超声辅助诊断软件飞依诺科技 (苏州) 有限公司7揭榜单位动脉瘤 CT造影影像辅助检测软件杭州深睿博联科技有限公司8揭榜单位消化道内窥镜影像辅助诊断软件武汉楚精灵医疗科技有限公司9揭榜单位头颈血管 CT造影影像辅助诊断软件上海联影智能医疗科技有限公司10揭榜单位冠脉 CT 血管造影辅助诊断软件语坤 (北京) 网络科技有限公司11潜力单位结直肠癌筛查内镜和组织病理辅助诊断 一体化系统成都微识医疗设备有限公司12潜力单位结直肠癌血清肽谱人工智能辅助诊断系统杭州汇健科技有限公司13潜力单位血流感染病原微生物及其耐药表型辅助分析软件予果生物科技 (北京) 有限公司14潜力单位流水线式全自动宫颈癌人工智能诊断工作站深圳市瑞图生物技术有限公司15潜力单位宫颈细胞智能辅助诊断系统武汉兰丁智能医学股份有限公司16潜力单位骨髓及外周血细胞形态学人工智能辅助 分析诊断系统杭州智微信息科技有限公司17潜力单位子宫内膜癌细胞学筛查人工智能辅助诊断系统西安美佳家医疗科技有限责任公司18潜力单位智能化多癌种下一代病理辅助诊断系统汉姆德 (宁波) 智能医疗科技 有限公司19潜力单位新生儿遗传代谢病人工智能辅助诊断平台杭州贝安云科技有限公司20潜力单位人工智能外周血图像分析系统重庆德方信息技术有限公司21潜力单位宫颈细胞学数字显微图像辅助诊断软件上海杏脉信息科技有限公司22潜力单位肠癌 cfDNA 液体活检早筛试剂盒南京世和医疗器械有限公司23潜力单位基于骨髓染色体影像的血液肿瘤智能 辅助诊断系统湖南自兴智慧医疗科技有限公司24潜力单位全自动粪便分析仪爱威科技股份有限公司25潜力单位基于人工智能的宫颈细胞辅助诊断系统宁波江丰生物信息技术有限公司26潜力单位TBS+DNA 双智能肿瘤早期筛查辅助诊断系统湖南品信生物工程有限公司27潜力单位免疫功能流式细胞数据分析软件天津见康华美医学诊断技术 有限公司28潜力单位胃腺癌病理质控与辅助诊断系统山东省计算中心( 国家超级计算济南中 心)29潜力单位乳腺癌超声智能辅助诊断系统成都爱迦飞诗特科技有限公司30潜力单位浅表脏器智能超声诊断系统软件脉得智能科技 (无锡) 有限公司31潜力单位眼科 OCT 影像辅助诊断软件 ( MIAS-3000)苏州比格威医疗科技有限公司32潜力单位皮肤病智能辅助诊断软件湖南省雅肤健康管理有限公司33潜力单位超声产前筛查人工智能辅助诊断系统深圳开立生物医疗科技股份 有限公司34潜力单位肝脏局灶性病变辅助诊断软件语坤 (北京) 网络科技有限公司35潜力单位色素性皮肤病( 白癜风、黄褐斑)分期分级分区辅 助诊断系统皑高森德医疗器械 (北京) 有限责任公司36潜力单位肺癌多模态数据融合辅助诊断软件成都华西精准医学产业创新中心 有限公司37潜力单位智能肝脏脂肪变、炎症和纤维化诊断系统无锡海斯凯尔医学技术有限公司38潜力单位胆道闭锁整合辅助诊断系统上海药明奥测医疗科技有限公司39潜力单位基于人工智能的肿瘤术中分子边界诊断系统南京诺源医疗器械有限公司40潜力单位多模态肝脏人工智能辅助诊断软件(即人工智能肝 脏多模态影像复合辅助诊断系统)上海商汤智能科技有限公司41潜力单位心脑血管疾病眼底图像辅助诊断软件依未科技 (北京) 有限公司42潜力单位眼底图像缺血性心血管事件风险辅助诊断软件北京鹰瞳科技发展股份有限公司43潜力单位肺栓塞 CT影像辅助分诊与评估软件推想医疗科技股份有限公司44潜力单位口腔错颌畸形计算机辅助诊断软件北京朗视仪器股份有限公司45潜力单位亚实性肺结节 CT影像辅助诊断软件点内 (上海) 生物科技有限公司46潜力单位早产儿视网膜病变眼底图像辅助诊断软件合肥奥比斯科技有限公司47潜力单位运动障碍特征影像辅助决策软件凝动万生医疗科技 (武汉) 有限公司48潜力单位多部位肿瘤超声辅助诊断系统什维新智医疗科技 (上海) 有限公司49潜力单位致盲性眼病辅助诊断软件深圳硅基智能科技有限公司50潜力单位皮肤人工智能辅助诊断系统上海体素信息科技有限公司51潜力单位颅内动脉瘤临床辅助决策软件强联智创 (北京) 科技有限公司52潜力单位胶囊内窥镜肠道影像辅助检测软件安翰科技 (武汉) 股份有限公司53潜力单位核医学心脏专用高清成像及全自动分析系统之江实验室科技控股有限公司54潜力单位机器人辅助颈动脉超声诊断系统武汉库柏特科技有限公司55潜力单位肠息肉消化内镜辅助诊断软件长沙慧维智能医疗科技有限公司56潜力单位智能消化内镜食管疾病辅助诊断系统四川大学华西医院57潜力单位主动脉综合征智能辅助诊断系统东软医疗系统股份有限公司58潜力单位多模态多任务心电智能辅助诊断软件杭州质子科技有限公司59潜力单位AI 全景诊断与定位胶囊式小肠内窥镜系统江苏势通生物科技有限公司60潜力单位心电自动分析软件厦门纳龙健康科技股份有限公司61潜力单位房颤风险提示软件华为终端有限公司62潜力单位智能胃部胶囊影像自检系统广州思德医疗科技有限公司63潜力单位肠息肉消化内镜图像辅助诊断软件天津御锦人工智能医疗科技 有限公司64潜力单位面向心血管疾病及慢病管理的人工智能心电 辅助诊断系统深圳市科瑞康实业有限公司65潜力单位结直肠息肉内窥镜影像辅助检测软件兰州大学第一医院66潜力单位消化内镜辅助诊断系统重庆金山科技 (集团) 有限公司67潜力单位动态血压人工智能诊断系统北京康康盛世信息技术有限公司68潜力单位心电人工智能辅助诊断系统武汉中旗生物医疗电子有限公司69潜力单位结直肠 CT辅助检测系统北京智拓视界科技有限责任公司70潜力单位主动脉图像处理及数字血流辅助分诊软件先健科技 (深圳) 有限公司方向二:智能辅助治疗产品1揭榜单位宽光谱超分辨智能内窥镜分子成像系统珠海市迪谱医疗科技有限公司2揭榜单位骨科手术智能规划与操作系统北京天智航医疗科技股份有限公司3揭榜单位肺部手术导航系统苏州朗开医疗技术有限公司4揭榜单位智能全骨科手术辅助机器人系统的研发与应用骨圣元化机器人 (深圳) 有限公司5揭榜单位智慧化放射治疗计划系统软件中科超精 (南京) 科技有限公司6揭榜单位高频陡脉冲脑胶质瘤治疗系统苏州博思得电气有限公司7揭榜单位介入穿刺消融治疗肿瘤的智能机器人研发华中科技大学同济医学院 附属协和医院8揭榜单位人工智能微创血管介入手术机器人系统易度河北机器人科技有限公司9揭榜单位口腔颌面部手术主动导航定位系统成都世联康健生物科技有限公司10揭榜单位脊柱超声手术器械导航控制系统北京铸正机器人有限公司11潜力单位重大脑疾病消融治疗手术机器人华科精准 (北京) 医疗科技有限公司12潜力单位神经外科磁定位超声手术导航系统飞依诺科技 (苏州) 有限公司13潜力单位肺部/肝脏 CT影像肿瘤介入消融手术规划 辅助决策软件海杰亚 (北京) 医疗器械有限公司14潜力单位智能穿刺引导系统成都真实维度科技有限公司15潜力单位胸部 CT影像全自动手术计划软件推想医疗科技股份有限公司16潜力单位口腔颌面手术规划系统北京百特康科技有限公司17潜力单位飞秒激光自动化口腔种植手术设备北京安泰生物医用材料有限公司18潜力单位智能化胆胰内镜介入混合现实引导系统沈阳术驰医疗科技有限公司19潜力单位腹腔内窥镜手术系统成都博恩思医学机器人有限公司20潜力单位智能骨科全流程可视化手术系统研发与应用重庆博仕康科技有限公司21潜力单位TRex-RS 骨科关节手术导航系统上海龙慧医疗科技有限公司22潜力单位基于微米级眼球三维 OCT数据的人工智能辅助周 边离焦近视治疗方案视微影像 (河南) 科技有限公司23潜力单位新一代人工智能微创手术机器人超融合平台深圳市精锋医疗科技股份有限公司24潜力单位腹部穿刺手术导航系统杭州三坛医疗科技有限公司25潜力单位穿刺导航定位软件上海复拓知达医疗科技有限公司26潜力单位智能多模态肿瘤电场治疗装备及系统河北普尼医疗科技有限公司27潜力单位骨科手术导航系统长江 INS- 1北京市春立正达医疗器械股份 有限公司28潜力单位颅内动脉瘤智能辅助治疗系统研发昆明同心医联科技有限公司29潜力单位骨科手术计划软件北京长木谷医疗科技有限公司30潜力单位智能关节镜下膝关节韧带重建系统上海卓梦医疗科技有限公司31潜力单位眼科全固态激光光凝仪南京博视医疗科技有限公司方向三:智能监护与生命支持产品1揭榜单位非接触智能生命体征监护仪南方科技大学2揭榜单位智能重症呼吸机及其辅助决策系统深圳迈瑞生物医疗电子股份 有限公司3揭榜单位病人状态智能监护系统深圳迈瑞生物医疗电子股份 有限公司4揭榜单位穿戴式自动体外除颤器 ( WCD ) 及猝死风险 人工智能评估系统苏州维伟思医疗科技有限公司5
  • 活动 | 天山之荐 — 天坛 • 华山神经外科巅峰讲坛
    借2016天坛华山脑(脊髓)血管性疾病外科论坛之机,leica力邀天坛华山众多知名专家,由天坛医院赵元立团队、杨新健团队,华山医院周良辅、毛颖、朱巍团队为大家演绎精彩内容,邀您共享丰盛视觉盛宴,与我们一起聆听学术强音,与大咖面对面!天山之荐-天坛.华山神经外科巅峰讲坛,2016年12月4日09:20-10:20 北京嘉里大酒店华山之荐周良辅 院士复旦大学附属上海华山医院 神经外科主任、博士生导师中国工程院院士、上海市神经外科临床医学中心主任、上海市神经外科急救中心主任、上海市华山神经外科(集团)研究所所长、who 神经研究和培训中心副主任、上海中华神经外科学会荣誉主任委员、复旦大学上海医学院和上海市卫生局专家学术委员会委员、中央保健局专家组成员、国际神经外科联合会委员、亚太神经外科协会执行委员、亚太颅底外科协会执行委员和理事。毛 颖 教授复旦大学附属上海华山医院 神经外科常务副主任、博士生导师教育部长江特聘教授、国家杰出青年基金获得者、复旦大学附属华山医院副院长、中华医学会神经外科分会副主任委员,中国医师协会神经外科分会副会长, 中华医学会神经外科学分会脑血管外科学组名誉组长、中国脑血管病外科专家委员会主任委员、获得“上海市青年科技杰出贡献奖”、获得“百千万人才工程”国家级人选、“卫生部有突出贡献中青年专家”、“上海市十大科技精英”、上海市“十佳医生”、“上海市领军人才”等称号。朱 巍 教授复旦大学附属上海华山医院 神经外科主任医师、博士生导师上海医学会神经外科分会常务委员,上海市卫生系统银蛇奖一等奖。每年独立完成各类神经外科手术500例,主要是复杂动脉瘤、脑血管 畸形、颅底肿瘤等大型高风险手术。在学术研究方面,主要从事“脑血管病发生发展机制”、“脑血管病细胞治疗新进展”和“新型脑血管病治疗材料”领域。先后承担了国家自然科学基金面上项目3项、上海市级科研项目5项以及国际合作科研项目1项。已经培养出硕士、博士生多名。天坛之荐杨新健 教授首都医科大学附属北京天坛医院 神经介入科副主任,医学博士,主任医师,博士生导师一直从事神经系统血管疾病的介入临床治疗和相关基础研究,擅长治疗颅内动脉瘤、脑和脊髓血管畸形、颈动脉海绵窦瘘、硬脑膜动静脉瘘和缺血性脑血管病有丰富经验。研究动脉瘤的生长破裂风险和转归机理,及治疗后的复发风险和机理。在国内核心期刊发表论文30余篇。在sci收录的国际期刊发表论文7篇。赵元立 教授首都医科大学附属北京天坛医院 神经外科中心脑血管外科主任作为骨干成员参加了多项脑血管病课题组工作,包括国家九五、十五攻关计划和十一五科技支撑计划。累计发表文章40余篇,参与编写王忠诚神经外科学等专著。兼任中华医学会神经外科学分会工作秘书、青年委员会副主任委员,《中国卒中杂志》编委,九三学社崇文区工委副主任委员,崇文区政协委员。
  • 资助1044个项目!深圳市2022年度基础研究专项(深圳市自然科学基金)面上项目拟资助项目公示
    近日,深圳市圳市科技创新委员会公示了深圳市科技创新委员会关于2022年度基础研究专项(深圳市自然科学基金)面上项目拟资助项目,共计1044个项目。以下为公示信息全文:深圳市科技创新委员会关于2022年度基础研究专项(深圳市自然科学基金)面上项目拟资助项目的公示根据《深圳市科技研发资金管理办法》《深圳市科技计划项目管理办法》《深圳市基础研究项目管理办法》等有关规定,深圳市科技创新委员会拟对2022年度基础研究专项(深圳市自然科学基金)面上项目1044个项目进行资助,现予公示,向社会征求意见。任何单位和个人对公示项目持有异议的,请在公示之日起10天内以书面形式(注明通讯地址和联系方式)向我委反映。单位提出异议的,应当在异议材料上加盖本单位公章;个人提出异议的,应当在异议材料上签署本人真实姓名(姓名不能打印),我委对异议人身份和反映情况予以保密。其他行政主管部门提出异议的,按照有关规定办理。为保证异议处理客观、公正、公平,保护拟资助项目依托单位的合法权益,凡匿名提出异议的,我委将不予受理。异议受理处室:科技监督和诚信建设处异议受理邮箱:complain@sticmail.sz.gov.cn传 真:88101180地 址:深圳市福田区福中三路市民中心C区5045室邮 编:518035业务咨询电话:基础研究处:88127371、88103567附件:附件:2022年度基础研究专项(深圳市自然科学基金)面上项目拟资助项目清单 .xlsx 深圳市科技创新委员会2022年10月13日2022年度基础研究专项(深圳市自然科学基金)面上项目拟资助项目清单序号项目名称1体外反搏干预PCI术后支架内生物力学环境的几何多尺度数值仿真研究2质子和重离子辐照致DNA损伤的蒙特卡罗模拟和验证3基于近红外荧光增强效应的高通量检测芯片用于血液中多种痕量阿尔茨海默症标志物的同时检测4线粒体靶向的光活化铱配合物前药用于乳腺癌治疗研究5针对β受体激动剂类药物分子血液浓度实时监测用于心脏保护的荧光探针的研究与应用6丝状噬菌体切离酶XisF4对铜绿假单胞菌PAO1毒力的影响及分子机制7芽殖酵母lncRNA-DRC通过参与翻译调控维持基因组稳定性的分子机制8双组分系统BfmSR在鲍曼不动杆菌缺壁持留菌形成中的作用机制研究9STEAP3参与心力衰竭的作用机制研究10罕见病中KRAS突变引发MAPK信号通路失调的结构机制研究11食管癌亚型特异性低甲基化区域鉴定及其功能研究12心肌肥厚中组蛋白甲基化与乙酰化修饰协同调控机制的研究13基于深度迁移学习和多源数据融合的脓毒症精准检验模型研究14天然产物厚朴酚联用新型自噬与内体运输抑制剂靶向调控肿瘤细胞溶酶体功能及其抗肿瘤的分子机制研究15METTL7B通过调控TOM20甲基化维持线粒体稳态在AMD发展中的作用及机制研究16应用小分子诱导建立胸腺类器官及其促进器官移植免疫耐受的研究17CD4+T细胞线粒体能量代谢失调触发焦亡程序及其与艾滋免疫重建不全的机制研究18TRIM59通过调控巨噬细胞缓解急性呼吸窘迫综合征的机制研究19靶向新冠病毒NTD的特异性抗体筛选及其作用机制研究20NMDA型谷氨酸受体在慢性应激诱导阿尔茨海默病相关tau蛋白磷酸化中的作用及机制研究21意识下眼跳过程中空间坐标位置转换的神经机制22精神分裂症模型小鼠的神经生物学机制研究23基于白蛋白的共负载声敏剂和STING激动剂的微针递送系统用于增强的声动力-免疫抗肿瘤治疗24二维纳米片负载聚集诱导发光光敏剂构建新型肺靶向多模态诊疗一体化平台25基于间充质干细胞膜的靶向RNA纳米微球载体用于原位骨缺损的修复及骨质疏松症的治疗26有氧运动诱导骨骼肌释放外泌体miR-486改善肝脏胰岛素抵抗及其机制27线粒体E3泛素连接酶MARCH5在卵母细胞染色体分离中的功能研究28猪δ冠状病毒利用新鉴定的关键受体GRP78蛋白实现跨物种传播感染人的分子机制29携带不同基因元件的染色体外环状DNA的合成及其功能研究30TCL方法用于高通量筛选精准CBE碱基编辑工具31基于框架核酸纳米技术介导中和适配体抑制新冠病毒感染的机制研究32聚合物纳米自噬抑制剂的研发及其增强前列腺癌免疫治疗的研究33自愈合生物活性医用弹性纤维的研制34双重靶向外泌体协同I型光动力-化学动力学-药物治疗脑胶质瘤的研究350.5um悬浮粒子计数动态变化对于一级洁净手术间SSI管控影响的研究36基于载小檗碱含氧微泡介导的光-声动力治疗乏氧肿瘤的研究37基于深度学习的儿童中枢神经系统感染性疾病多模态智能诊断模型研究38基于Vision Transformer和多模态图像的DBT肿块检测方法研究39人工智能门诊就医新模式体系的建立和测试研究40基于同行评议及真实世界数据的儿童抗菌药物处方决策模型、精准管理指标构建及实证研究41IL6反式信号调控GLI1阳性间充质干细胞肌样分化在哮喘气道重塑中的作用和机制研究42肺结节患者循环异常细胞非整倍体检测对诊断早期肺癌的价值研究43TMEM176B对肺腺癌转移与血管新生机制之研究44基于SCGB3A2抑制NF-κB通路调控气道上皮细胞自噬探讨姜黄素治疗哮喘的作用机制研究45LC3通过调控线粒体自噬参与非小细胞肺癌EGFR-TKI耐药的机制研究46外源性孕激素增加宿主结核分枝杆菌易感性的机制及干预策略47结核分枝杆菌通过BTLA/SHP1/2/HLA-DR途径调控DC抗原提呈能力实现免疫逃逸的分子机制研究48低氧条件下m6A识别蛋白YTHDF1表观调控OGT表达促进肺癌的分子机制研究49感觉神经TRPA1-SP信号通路在过敏性鼻炎继发咳嗽高敏感中的作用及机制研究50结核分枝杆菌下调巨噬细胞H3K4me3逃逸宿主免疫的作用和机制研究51肺结核结构性肺病流行病学分析及早期肺康复方案构建与临床应用研究52PEDF通过抑制内皮间质转化减轻血管重构从而改善肺动脉高压的作用与分子机制研究53用于气道粘膜免疫耐受功能重建的靶向性纳米疫苗的构建与机理研究54基于Nanopore适应性采样测序技术在疑似结核病患者病原体诊断中的应用55阻塞性睡眠呼吸暂停低通气综合征育龄男性患者的生育能力研究56靶向铁调素-铁代谢通路对COVID-19的肺保护作用及机制57基于CRISPR基因编辑的结核分枝杆菌耐药基因突变检测及应用58失功能HDL通过调控microRNA-181a-5p靶向ATG5表达损伤血管新生59BMP信号通路介导的成纤维细胞与平滑肌细胞间相互作用在主动脉夹层发展过程中的作用及机制研究60基于巨噬细胞chemerin/CMKLR1信号调控铁死亡促进动脉粥样硬化的作用机制研究61TTN基因突变在早发型和迟发型扩张型心肌病中的功能差异及分子机制研究62血浆外泌体非编码RNA的动态变化对社区高血压患者缺血性脑卒中发生风险的预测研究63Mas受体通过调节巨噬细胞亚型功能降低老年腹主动脉瘤形成的作用和机制64PD-L1介导DNA损伤化疗药物诱发血管钙化的作用与机制研究65PLLA ASD封堵器植入后局部内皮化关键基因DDIT4-p53分子机制研究66circRNA SIPA1L1 的m6A 甲基化修饰在远隔缺血后处理心肌保护中的作用研究67儿童肥厚梗阻性心肌病的基因—临床—病理分型及其分子特征研究68琥珀酸脱氢酶活性受损诱发巴氏综合征患者心律失常的机制研究69IPC注射用温敏复合水凝胶缓释EPC外泌体修复心梗后心肌纤维化的机制及应用研究70CCR7调控VSMCs表型转化促进腹主动脉瘤形成与进展的机制研究71基于多因素数据的心房颤动预后脑卒中智能风险评估方法研究72PCSK9调控Smac在线粒体-细胞浆转位对缺氧诱导的内皮细胞焦亡的机制研究73组蛋白甲基化酶SETD2调节淋巴内皮细胞功能与淋巴管发育的机制研究74肠道NE通过NETosis/ZO-1信号通路调控肠上皮通透性-动脉粥样硬化的研究75线粒体分子伴侣调控小鼠胚胎心脏发育及其分子机制研究76腹主动脉瘤生长生物力学机理研究与虚拟介入治疗仿真评估77环状RNA作为急性非ST段抬高型心肌梗死预警标记物的筛选和功能研究78内脏脂肪源性Thbs1通过激活serpina3n促进心肌纤维化机制研究79基于scRNA-seq研究巨噬细胞与平滑肌细胞的相互作用调控急性主动脉夹层发生的分子机制80血浆外泌体源性circFSTL1:治疗M1型巨噬细胞相关心肌炎症浸润损伤的新靶点81钙通道蛋白Orai1调控整联蛋白αvβ6活性来影响结肠上皮屏障功能的实验研究82基于数字病理的胃癌淋巴转移人工智能辅助诊断临床研究83巨噬细胞糖代谢重编程介导肠道共生菌Blautia促进溃疡性结肠炎黏膜稳态重建的作用及机制研究84circ_0003265结合miR-579-3p靶向KLF5调控肝母细胞瘤恶性进展的研究85纳米药物工程化Treg细胞治疗肝移植急慢性排斥及其机制研究86NLRP3炎症小体参与调控NAFLD相关肝癌发生发展的机制研究87“cGAS-STING-自噬”轴感应及调控幽门螺杆菌感染的机制研究88HBV-ACLF患者肝脏细胞图谱绘制和免疫-代谢机制研究89TGF-β1激活JAK/STAT3信号通路诱导树突状细胞免疫耐受促进结直肠癌肝转移的分子机制研究90环状RNA circSETD3在肝细胞癌中的临床意义及功能机制的研究91双歧杆菌携带氨基修饰介孔硅荷载的二氧化铈纳米酶治疗小鼠结肠炎的机制研究92基于 CT-3D 模型-US 的混合现实技术(Mixed Reality, MR)经皮 肝穿刺胆道引流手术导航系统研究93MiR-328-5p/Saa3/TGF-β/Smad3轴调控胰腺星状细胞活化参与胰腺纤维化进展的机制94肠道菌群及其代谢产物对厌食儿童营养状况的影响95溃疡性结肠炎肠黏膜屏障修复药物靶标-LPCAT1的发现与验证96胞外囊泡MicroRNA-21靶向肝细胞端粒酶Teb1调控NASH病理进程的研究97色氨酸代谢物通过GPR35维持肠道屏障调节结肠炎症的作用及机制98产群体感应淬灭酶的基因工程噬菌体对新生儿呼吸机相关性肺炎致病的铜绿假单胞菌生物膜的作用99母乳EVs运载circ_0003221对BPD的防治作用研究100胆汁酸代谢菌介导的Treg/Th17稳态失衡参与孕期免疫激活子鼠自闭症样行为发生的作用和机制研究101拟脂联素多肽对未成熟脑白质损伤的保护机制研究102γδ T细胞TCR基因在早产儿先天性巨细胞病毒感染中的表达特征103PirB介导信号通路在孕中期脂多糖暴露仔鼠导致神经细胞损伤的机制研究104基于早产儿CD146+Nestin+人脐带华尔通氏胶来源间充质干细胞治疗早产儿支气管肺发育不良的作用机制研究105EIF2AK1通过m1A表观修饰调控滋养细胞抗病毒免疫应答致胚胎丢失的机制研究106Notch信号调控RUNX1-PAD4激活NETs形成在阴道光滑念珠菌感染中的机制研究107远程胎监对围产儿结局影响的队列研究108聚焦超声介导的隐生型锰基金属有机框架纳米平台用于子宫内膜癌的诊疗及机制研究109α7nAChR通过TLR4 / NF-κB / HIF-1α调控蜕膜巨噬细胞极化在子痫前期发病中的作用和机制研究1104D打印类卵巢支架及其血管化对卵巢组织移植效果评价111m6A甲基化修饰在早期自然流产中的调控机制研究112慢性子宫内膜炎抑制SPHK1/S1P介导的信号通路引起内膜蜕膜化障碍的机制研究113常见子宫内膜病变发病风险及生育力评估的多组学研究114基于激酶组学研究蛋白激酶调控血管内皮功能异常在新生儿脓毒症中的作用机制115乳杆菌通过组蛋白乳酸化诱导蜕膜巨噬细胞极化改善反复种植失败患者蜕膜化不足的作用机制研究116Pink1-Parkin介导小胶质细胞线粒体自噬在母代肥胖诱发下丘脑神经干细胞发育编程紊乱中的作用和机制117基于结构方程的围产期创伤后应激障碍预测模型构建与早期预警识别模式研究118CD71+红系细胞和髓外红系造血在母胎免疫耐受中的作用119METTL7B通过RNA甲基化激活滋养层细胞PI3K/Akt/mTOR信号通路在子痫前期中的作用及机制研究120铁超载诱导OIR视网膜新生血管增殖的作用和机制研究121调节卵巢巨噬细胞极化在激活生殖干细胞中的作用:探究电针重塑卵巢功能的新机制122PDGFB通过Raf/MEK/ERK信号途径促进中胚层细胞系分化发育研究123SIRT1缓解高雄激素诱导的PCOS子宫内膜基质细胞氧化应激的机制研究124二甲双胍通过SRC-1/MIG6信号通路调控子宫内膜异位症孕激素敏感性的机制研究125Keap/Nrf2信号调控NLRP3小体-细胞焦亡通路抑制早产鼠支气管肺发育不良发病 机制研究126胎儿外侧裂发育成熟度简化分级法筛查脑发育异常产前多维诊断研究127中孕期胎儿唇腭部正常与异常产前超声智能自动诊断研究128家庭整合式(FICare)的疼痛干预对新生儿眼底筛查中疼痛影响的研究129维生素D调控miR-155/SOCS1对子痫前期的保护作用及机制研究130布洛芬通过调控血小板生成及功能参与早产儿动脉导管关闭的机制研究131冻融胚胎移植周期激素替代方案对子宫内膜功能影响的分子机制132低剂量射线增敏纳米疫苗用于宫颈癌精准免疫-放化疗133胎儿生长异常风险预测工具及人工智能辅助评估模型研究134深圳地区超早/极早产儿整群队列研究135miR-18a-5p靶向IGF-1调控颗粒细胞雄激素受体信号通路在多囊卵巢综合征卵泡发育障碍中的相关机制研究136基于单细胞测序的妊娠期糖尿病遗传易感性与遗传免疫调节的研究分析137基于多组学技术单绒毛膜双胎选择性生长受限的发病机制、预后评估及产前产后一体化诊疗体系的构建138LncRNA-MEG3/miRNA-214/Caspase-1轴介导小胶质细胞焦亡在早产儿脑白质损伤的机制研究139基于类器官模型探究ARID1A失活突变在调节膀胱癌EMT中的分子机制及在抗肿瘤药物初筛的应用140靶向KPNA2的miRNAs系统性筛选、鉴定及其对膀胱癌细胞生物学行为影响的研究141YAP通过细胞周期蛋白影响前列腺上皮细胞增殖/凋亡平衡的机制研究142TBX6通过上调细胞维甲酸结合蛋白(CRABP2/CRABP1)调控肾发育的机制及其对先天性肾畸形的影响143EIF4A3介导的hsa_circ_0001162加剧糖尿病肾损伤的机制研究144BMSCs源外泌体在顺铂诱导AKI中的作用及机制研究145LYZ基因新突变致淀粉样变表型的分子机制及二甲双胍干预的疗效研究146基于外泌体介导LincRNA/miRNA/mRNA网络化调控作用研究慢性肾脏病相关血管钙化的发病机制147MiR-19b-3p在Ang-II/IL6介导炎症反应的桥接作用在肝移植术后急性肾损伤的机制研究148UC-MSCs在单侧输尿管梗阻模型(UUO)中通过逆EMT过程缓解肾间质纤维化(RIF)和修复肾小管上皮作用机制研究149环状RNA circFUT8介导母基因pre-mRNA可变剪接参与膀胱癌进展的分子机制研究150α2AR激活Nrf2/HO-1通路在抗双重打击致急性肾损伤中的作用及机制研究151外泌体miR-182调控c-kit影响ARPKD肾间质纤维化进展的机制研究152穿透肽在肾缺血再灌注损伤细胞铁死亡中的作用及机制研究153METTL3调控破骨细胞lncRNA1527的m6A修饰在强直性脊柱炎病理性成骨中的作用及机制研究154Rab7蛋白调控干细胞线粒体转移治疗骨关节炎的机制研究155纳米磷酸钙掺杂的抗肿瘤骨水泥开发及其在治疗骨肉瘤中的应用研究156前列腺癌发生脊柱转移的分子机制研究157基于新型仿生功能化镁合金复合支架调控成骨分化及促进骨缺损修复的作用机制研究158CD34+细胞在关节软骨发育与再生修复中的作用及机制研究159基于MICA技术的足拇外翻矫形3D打印导板研制及其临床应用研究160基于数字化骨科技术的韧带精准重建治疗膝关节韧带损伤的操作流程创建与临床应用研究161软骨ECM结合多肽修饰关节液MSCs源性外泌体治疗OA关节软骨损伤的分子机制及应用研究162骨端空间姿态数字孪生构建高智能化骨折复位机器人视觉系统163基于多组学联合临床特征的多模态女性骨质疏松预测模型的建立及效果验证164加速康复外科围手术期管理联合同质化护理在机器人辅助老年髋部骨折患者围手术期康复中的应用165皮质骨横向搬移促进糖尿病创面修复的免疫调节机制研究166TEN髓内固定治疗骨盆前环骨折的分子机制及生物力学研究167装载内源性 TGF-β3因子的3D打印仿生软骨支架诱导自体干细胞分化修 复关节软骨缺损的疗效及机制研究168m6A甲基转移酶METTL3介导炎症条件下强直性脊柱炎MSC成骨增强的机制研究169circ-SHPRH调控激素性股骨头坏死骨修复的分子机制170Tregs细胞经胞外囊泡途径调控免疫微环境和血管再生促进糖尿病创面愈合的机制研究171镁植入物表面功能化梯度层通过TRPM7通道诱导巨噬细胞极化的抗菌作用机制172淋巴引流综合疗法预防前交叉韧带重建术后深静脉血栓的效果研究173基于低温沉积成型3D打印纳米纤维素半月板支架的制备及实验研究1744D磷酸化蛋白组学解析LSD1调控MAPK/ERK信号通路促进胰岛beta细胞分化与成熟的分子机制175CAV1-ATG12-ATG5调节自噬在高糖促进LDL穿胞加速AS形成中的作用及分子干预176STING介导E3泛素连接酶TRIM32调节2型糖尿病胰岛β细胞功能的作用及机制研究177胎盘壁蜕膜间充质干细胞外泌体通过P62/Keap1/Nrf2通路调控自噬减轻糖尿病肾病血管损伤的机制研究178BBR通过KLF16/PPARα信号通路逆转糖尿病动脉粥样硬化内皮损伤的机制研究179O-GlcNAc修饰致TXNIP线粒体易位在高脂诱导糖尿病前期周围神经病变中的作用机制180CDR1as作为miR-7海绵参与干细胞治疗糖尿病的机制研究181c-Abl-YAP信号通路和相分离在高糖引发的动脉粥样硬化形成中的作用和机制研究182骨质疏松症中间充质干细胞线粒体的作用及机制研究183IL-1β通过PPARγ下调β-Klotho促进白色脂肪FGF21抵抗在妊娠糖尿病中的作用和机制研究184糖尿病外泌体非编码RNA特征图谱建立及其作用机制研究185Sigmar1对非酒精性脂肪肝的调控作用及其分子机制研究186强迫游泳应激通过PI3K/Akt通路促进2型糖尿病大鼠内皮祖细胞血管修复和生成功能的机制研究187基于靶向CXCR4的Mcl-1/Bcl-xL双特异性拟肽抑制剂的设计及协同治疗的研究188CAR-NK细胞清除血友病A患者抑制物的研究189Aurora激酶B抑制剂在靶向治疗幼年型粒单核细胞白血病中的机制研究190儿童急性B淋巴细胞白血病细胞高频DSB通过改变表观遗传学诱发B细胞谱系转变在疾病复发的作用机制研究191CRM1调控低氧下溶酶体扣押诱导急性髓系白血病耐药的机制研究192四甲基吡嗪通过mTORC1信号调控间充质干细胞外泌体分泌对再生障碍性贫血的免疫调节作用的研究193FTO/m6A-YTHDF2信号轴通过介导CDK11B 的mRNA降解促进儿童Ph阳性急性淋巴细胞白血病的发生发展
  • 石墨烯和脑模型项目获欧盟20亿欧元巨额资助
    人类脑计划联合负责人Henry Markram,该项目脱颖而出获得欧盟巨额的经费支持。图片来源:Denis Balibouse   石墨烯研究和人类脑计划项目分别从欧盟主持的迄今为止最大经费规模的竞赛中脱颖而出,赢得10亿欧元“巨奖”。欧盟委员会将召开新闻发布会,正式宣布获胜者名单,每个获胜项目将获得高达10亿欧元的资金支持。   “这是欧洲有史以来最难的一场科学竞赛,让我们为获胜者干杯!”FuturICT项目协调人Dirk Helbing说,虽然FuturICT最终在角逐中失败。   日前,欧盟启动“未来新兴技术旗舰项目”,有6个项目进入最后一轮角逐,不过,欧盟委员会日前证实只有4个项目仍然坚持比赛。1月24日,其中两个项目——“智慧生活守护天使”和FuturICT——相关参与者对《科学》杂志透露,他们并不在获胜名单中。这样一来,只剩下石墨烯项目和人类脑计划成为冠军得主。   根据旗舰项目相关计划,在开始的两年半里,两支获胜队伍将一共获得1.08亿欧元的经费。但由于大学和产业伙伴也会赞助部分资金,这样折合算来,每个项目在启动阶段将获得超过7000万欧元。   “一般而言,在欧洲,一个研究员的成本大约是每年10万欧元,这些钱相当于700人年的花费。”石墨烯项目协调人、瑞典查尔姆斯理工大学的Jari Kinaret提到,“这是一笔相当大的经费。”启动阶段过后,这两个项目每年有望获得1亿欧元的资金。   石墨烯是一种新材料,引起了许多科学家的兴趣,因为它能够传导光和电。该石墨烯项目旨在开发这种材料在能源和数字技术等领域的应用。尽管拒绝在结果发布会前承认其项目获胜,但是Kinaret假设了一旦获奖意味着什么:“我们将启动在通讯技术方面的应用研究,例如幻想收音机,它能够在今天无法应用的频率下运行。”稍后,他们还将从事诸如人造视网膜和其他“生物植入物”等方面的应用研究。   人类脑计划则试图使用超级计算机模拟科学家掌握的有关人类大脑的所有事情,包括脑细胞、化学特性和连接性等。该计划由瑞士洛桑联邦理工学院神经系统学家Henry Markram负责整合协调工作。有科学家指责Markram的构想不切实际,例如借以洞悉神经退行性疾病如何能被更好地治疗等。   “实际上,这些项目并不是因为其创新性而赢得巨额资金支持的。”瑞士苏黎世联邦理工学院物理学和社会学家Helbing表示。他提出的项目FuturICT预想建立一个“行星式神经系统”来收集和分析大规模数据,从而模拟现代社会以及预测流行病蔓延和下一场金融危机等。   Helbing指出,FuturICT能够促使社会学家、工程师和其他科学家以一种史无前例的方式联合起来,但最重要的是欧盟能否敢于做这件事。
  • “重大慢性非传染性疾病防控研究”重点专项2016年度项目安排
    关于对国家重点研发计划“重大慢性非传染性疾病防控研究”重点专项2016年度项目安排进行公示的通知  根据《国务院关于改进加强中央财政科研项目和资金管理的若干意见》(国发[2014]11号)、《国务院关于深化中央财政科技计划(专项、基金等)管理改革方案的通知》(国发[2014]64号)、《科技部、财政部关于改革过渡期国家重点研发计划组织管理有关事项的通知》(国科发资[2015]423号)等文件要求,现将“重大慢性非传染性疾病防控研究”重点专项拟进入审核环节的2016年度项目信息进行公示(详见附件)。  公示时间为2016年9月6日至2016年9月10日。对于公示内容有异议者,请于公示期内以传真、电子邮件等方式提交书面材料,个人提交的材料请署明真实姓名和联系方式,单位提交的材料请加盖所在单位公章。  联系人:耿红冉  联系电话:010-88225064  传真:010-88225200  电子邮件:genghr@cncbd.org.cn  中国生物技术发展中心  2016年9月5日  附件:国家重点研发计划“重大慢性非传染性疾病防控研究”重点专项拟进入审核环节的2016年度项目公示清单序号 项目编号 项目名称 项目牵头承担单位 项目负责人 中央财政经费 (万元) 项目实施周期(年) 12016YFC1300100肥胖和高血压的生活方式和营养干预技术及策略应用研究北京市石景山区高血压联盟研究所周宪梁11474.522016YFC1300200心脑血管疾病营养及行为干预关键技术及应用策略研究北京大学武阳丰10324.532016YFC1300300冠状动脉粥样硬化病变早期识别和风险预警的影像学评价体系研究中国人民解放军总医院陈韵岱10384.542016YFC1300400冠状动脉粥样硬化病变早期识别和风险预警的影像学评价体系研究中国医学科学院阜外医院吕滨8304.552016YFC1300500脑小血管病发病机制及临床评估关键技术研究中国科学技术大学申勇11074.562016YFC1300600慢性脑小血管病发病机制及临床诊治新策略研究中山大学王敏11074.572016YFC1300700颅内动脉瘤破裂出血早期规范治疗和未破裂动脉瘤出血风险的研究中国人民解放军第二军医大学黄清海8824.582016YFC1300800颅内动脉瘤破裂出血早期规范治疗和未破裂动脉瘤出血风险的研究首都医科大学宣武医院张鸿祺8824.592016YFC1300900急慢性心力衰竭生命支持技术应用评价研究中国医学科学院阜外医院胡盛寿11014.5102016YFC1301000急慢性心力衰竭生命支持技术应用评价研究首都医科大学附属北京安贞医院董建增8814.5112016YFC1301100急性心肌梗死全程心肌保护体系构建及关键技术研究哈尔滨医科大学于波10514.5122016YFC1301200急性心肌梗死全程心肌保护体系研究复旦大学葛均波10514.5132016YFC1301300冠心病血栓事件预测及优化干预技术研究中国人民解放军沈阳军区总医院王效增10034.5142016YFC1301400基于大数据的人体健康管理系统在冠心病抗栓治疗中的应用中国人民解放军总医院高长青9024.5152016YFC1301500急性缺血性卒中再灌注治疗关键技术与流程改进研究首都医科大学附属北京天坛医院缪中荣9404.5162016YFC1301600数字化脑血流储备功能诊断评估技术及其应用研究吉林大学杨弋8754.5172016YFC1301700数字化脑血流储备功能诊断评估技术及其应用研究首都医科大学宣武医院焦力群8754.5182016YFC1301800复杂性脑血管疾病复合手术新模式治疗技术研究首都医科大学附属北京天坛医院王硕8634.5192016YFC1301900先天性心脏病微创治疗临床路径优化研究中国人民解放军第四军医大学俞世强8664.5202016YFC1302000心血管外科临床路径优化研究中国医学科学院阜外医院郑哲8664.5212016YFC1302100细胞稳态破坏导致肿瘤发生的分子机制中国医学科学院肿瘤医院刘芝华10654.5222016YFC1302200胃癌发生的分子基础研究中国人民解放军第三军医大学董辉9584.5232016YFC1302300长非编码RNA在微环境调控肿瘤发生发展中的作用和机制研究中山大学宋尔卫9864.5242016YFC1302400肿瘤微环境-内在驱动分子互动机制与干预途径中国医科大学曹流9364.5252016YFC1302500中国主要恶性肿瘤的危险因素监测及控制关键技术研究中国医学科学院肿瘤医院张亚玮9304.5262016YFC1302600以精准防控为导向基于大数据的主要恶性肿瘤危险因素监测及控制关键技术研究中国疾病预防控制中心吴静8374.5272016YFC1302700恶性肿瘤高危人群识别及预防策略的研究中山大学贾卫华9854.5282016YFC1302800消化道恶性肿瘤(食管癌、胃癌、大肠癌)高危人群识别及高危人群预防研究中国医学科学院肿瘤医院王贵齐9854.5292016YFC1302900宫颈癌筛查与干预新技术及方案的研究浙江大学吕卫国9034.5302016YFC1303000乳腺癌、宫颈癌筛查及干预技术研究辽宁省肿瘤医院朴浩哲8574.5312016YFC1303100卵巢癌临床关键问题导向的诊疗标志物验证及应用研究复旦大学徐丛剑9514.5322016YFC1303200消化道肿瘤诊疗生物标志物验证及应用研究中国人民解放军第四军医大学聂勇战9514.5332016YFC1303300基于组学特征的肺癌免疫治疗疗效预测指标的构建和验证上海交通大学陆舜9514.5342016YFC1303400恶性肿瘤免疫治疗关键技术研究中国人民解放军第三军医大学钱程10904.5352016YFC1303500恶性肿瘤免疫治疗关键技术研究中国人民解放军第二军医大学万涛9814.5362016YFC1303600消化道癌的立体多层次临床路径优化研究中国人民解放军总医院令狐恩强8914.5372016YFC1303700卵巢癌治疗方案及临床路径优化研究中国医学科学院肿瘤医院吴令英8914.5382016YFC1303800肺癌诊疗方案及临床路径优化研究广东省人民医院周清8914.5392016YFC1303900慢阻肺危险因素、病因与发病机制研究中日友好医院王辰7254.5402016YFC1304000基于临床生物信息学技术的慢阻肺危险因素、病因与发病机制研究温州医科大学附属第一医院陈成水6534.5412016YFC1304100慢阻肺早期药物干预效果评价及有效药物筛选广州医科大学附属第一医院冉丕鑫5914.5422016YFC1304200慢阻肺急性加重救治体系和支持技术应用效果评价及优化研究广州医科大学附属第一医院罗远明5674.5432016YFC1304300慢阻肺急性加重预警与救治体系构建研究中日友好医院詹庆元5674.5442016YFC1304400慢阻肺并发症和合并疾病的诊治技术研究中国医学科学院阜外医院何建国5464.5452016YFC1304500慢阻肺并发症和合并疾病的诊治技术研究中国医科大学附属第一医院康健5184.5462016YFC1304600慢阻肺预防、诊断和治疗分级质控体系建设及效果评价研究北京医院孙铁英6934.5472016YFC1304700慢阻肺规范管理的质量控制及评价研究华中科技大学徐永健6234.5482016YFC1304800表观遗传在2型糖尿病发生发展中的作用研究复旦大学李小英6484.5492016YFC1304900成人2型糖尿病发生发展的危险因素及机制研究北京大学人民医院纪立农5844.5502016YFC13050001型糖尿病的遗传与免疫学发病机制研究中南大学湘雅二医院周智广7084.5512016YFC13051001型糖尿病的遗传与免疫发病机制和相关防控技术研究复旦大学陈思锋5674.5522016YFC1305200儿童青少年糖尿病患病与营养及影响因素研究中国人民解放军总医院母义明6404.5532016YFC1305300儿童青少年糖尿病患病与营养及影响因素研究浙江大学傅君芬5764.5542016YFC1305400糖尿病肾病发生发展的危险因素及机制研究北京大学第一医院赵明辉6434.5552016YFC13055002型糖尿病肾病发生发展危险因素及机制与防治研究复旦大学附属中山医院丁小强5784.5562016YFC13056002型糖尿病高风险的早期识别与适宜切点研究上海交通大学医学院附属瑞金医院毕宇芳6354.5572016YFC1305700糖尿病的危险因素早期识别、早期诊断技术与切点研究东南大学孙子林5714.5582016YFC1305800阿尔茨海默病神经慢性退变机制及危险因素研究华中科技大学王建枝6934.5592016YFC1305900遗传和环境因素交互作用下神经环路的沉默与早期AD发病中国科学技术大学周江宁6594.5602016YFC1306000帕金森病的发病机制与危险因素研究中南大学唐北沙6854.5612016YFC1306100注意缺陷多动障碍的综合干预策略研究首都医科大学附属北京安定医院郑毅6434.5622016YFC1306200儿童脑发育障碍的早期识别和综合干预北京大学第一医院姜玉武5794.5632016YFC1306300阿尔茨海默病的早期诊断新技术研发首都医科大学王晓民6284.5642016YFC1306400基于创新学说的阿尔茨海默病诊断新靶标研究及应用复旦大学钟春玖5674.5652016YFC1306500帕金森病(PD)的早期诊断新技术研发北京大学章京6704.5662016YFC1306600帕金森病早期诊断生物标记及综合诊断指标体系研发浙江大学张敏鸣6034.5672016YFC1306700抑郁障碍临床诊断、干预与转归的客观标记物研究东南大学张志珺7874.5682016YFC1306800精神分裂症分期识别生物学标记与多级风险布控体系建构上海交通大学王继军7094.5692016YFC1306900抗精神病药物个体化优选治疗方案的研究中南大学湘雅二医院赵靖平6464.5702016YFC1307000抗精神病药物个体化优选治疗方案的研究北京大学第六医院岳伟华5814.5712016YFC1307100基于抑郁障碍临床病理特征的多维度诊断、个体化治疗及管理技术上海交通大学方贻儒5664.5722016YFC1307200基于客观指标和量化评价的抑郁障碍诊疗适宜技术研究首都医科大学附属北京安定医院王刚5664.5732016YFC1307300中美卒中临床研究协同网络建设与血压管理策略研究首都医科大学附属北京天坛医院刘丽萍7474.5
  • 非球面衍射型多焦人工晶状体获批上市
    近日,国家药品监督管理局经审查,批准了爱博诺德(北京)医疗科技股份有限公司生产的创新产品“非球面衍射型多焦人工晶状体”注册。非球面衍射型多焦人工晶状体为一件式/后房人工晶状体,可折叠,襻形为改良L型。该产品主体及支撑部分均由丙烯酸乙酯、甲基丙烯酸乙酯共聚物材料制成,添加了紫外线吸收剂,表面经肝素改性。该产品的创新点在于其光学部采用衍射分光和非球面相结合的设计,衍射技术是实现多焦点的核心,在国内属于首创。该产品用于成年白内障患者的视力矫正,预期可提供远、近两个焦点,一定程度上弥补了单焦点人工晶状体视力不佳的不足。产品的上市将为患者带来新的治疗选择。药品监督管理部门将加强该产品上市后监管,保护患者用械安全。国家药监局已批准的创新医疗器械序号产品名称生产企业注册证号1基因测序仪深圳华因康基因科技有限公司国械注准201434021712恒温扩增微流控芯片核酸分析仪博奥生物集团有限公司国械注准201534005803双通道植入式脑深部电刺激脉冲发生器套件苏州景昱医疗器械有限公司国械注准201532109704植入式脑深部电刺激电极导线套件苏州景昱医疗器械有限公司国械注准201532109715植入式脑深部电刺激延伸导线套件苏州景昱医疗器械有限公司国械注准201532109726MTHFR C677T 基因检测试剂盒(PCR-金磁微粒层析法)西安金磁纳米生物技术有限公司国械注准201534011487脱细胞角膜基质深圳艾尼尔角膜工程有限公司国械注准201534605818Septin9基因甲基化检测试剂盒(PCR荧光探针法)博尔诚(北京)科技有限公司国械注准201534014819乳腺X射线数字化体层摄影设备科宁(天津)医疗设备有限公司国械注准2015330205210运动神经元存活基因1(SMN1)外显子缺失检测试剂盒(荧光定量PCR法)上海五色石医学研究有限公司国械注准2015340229311三维心脏电生理标测系统上海微创电生理医疗科技有限公司国械注准2016377038712呼吸道病原菌核酸检测试剂盒(恒温扩增芯片法)博奥生物集团有限公司国械注准2016340032713脱细胞角膜植片广州优得清生物科技有限公司国械注准2016346057314植入式迷走神经刺激脉冲发生器套件北京品驰医疗设备有限公司国械注准2016321098915植入式迷走神经刺激电极导线套件北京品驰医疗设备有限公司国械注准2016321099016药物洗脱外周球囊扩张导管北京先瑞达医疗科技有限公司国械注准2016377102017冷盐水灌注射频消融导管上海微创电生理医疗科技有限公司国械注准2016377104018胸骨板常州华森医疗器械有限公司国械注准2016346158219正电子发射及X射线计算机断层成像装置明峰医疗系统股份有限公司国械注准2016333215620人工晶状体爱博诺德(北京)医疗科技有限公司国械注准2016322174721骨科手术导航定位系统北京天智航医疗科技股份有限公司国械注准2016354228022低温冷冻消融手术系统海杰亚(北京)医疗器械有限公司国械注准2017358308823一次性使用无菌冷冻消融针海杰亚(北京)医疗器械有限公司国械注准2017358308924可变角双探头单光子发射计算机断层成像设备北京永新医疗设备有限公司国械注准2017333068125全降解鼻窦药物支架系统浦易(上海)生物科技有限公司国械注准2017346067926经皮介入人工心脏瓣膜系统杭州启明医疗器械有限公司国械注准2017346068027介入人工生物心脏瓣膜苏州杰成医疗科技有限公司国械注准2017346069828一次性可吸收钉皮内吻合器北京颐合恒瑞医疗科技有限公司国械注准2017365087429左心耳封堵器系统先健科技(深圳)有限公司国械注准2017377088130分支型主动脉覆膜支架及输送系统上海微创医疗器械(集团)有限公司国械注准2017346324131折叠式人工玻璃体球囊广州卫视博生物科技有限公司国械注准2017322329632腹主动脉覆膜支架系统北京华脉泰科医疗器械有限公司国械注准2017346143433植入式心脏起搏器先健科技(深圳)有限公司国械注准2017321157034人类EGFR基因突变检测试剂盒(多重荧光PCR法)厦门艾德生物医药科技股份有限公司国械注准2018340001435可吸收硬脑膜封合医用胶 山东赛克赛斯药业科技有限公司国械注准2018365003136血管重建装置微创神通医疗科技(上海)有限公司国械注准2018377010237miR-92a检测试剂盒(荧光RT-PCR法)深圳市晋百慧生物有限公司国械注准2018340010838丙型肝炎病毒核酸测定试剂盒(PCR-荧光探针法)北京纳捷诊断试剂有限公司国械注准2018340015739脑血栓取出装置江苏尼科医疗器械有限公司国械注准2018377018640定量血流分数测量系统博动医学影像科技(上海)有限公司国械注准2018321028241人EGFR/ALK/BRAF/KRAS基因突变联合检测试剂盒(可逆末端终止测序法)广州燃石医学检验所有限公司国械注准2018340028642全自动化学发光免疫分析仪北京联众泰克科技有限公司国械注准2018322029343人EGFR、KRAS、BRAF、PIK3CA、ALK、ROS1基因突变检测试剂盒(半导体测序法)天津诺禾致源生物信息科技有限公司国械注准2018340029444复合疝修补补片上海松力生物技术有限公司国械注准2018313029245正电子发射断层扫描及磁共振成像系统上海联影医疗科技有限公司国械注准2018306033746EGFR/ALK/ROS1/BRAF/KRAS/HER2基因突变检测试剂盒(可逆末端终止测序法)南京世和医疗器械有限公司国械注准2018340040847植入式骶神经刺激电极导线套件北京品驰医疗设备有限公司国械注准2018312040948植入式骶神经刺激器套件北京品驰医疗设备有限公司国械注准2018312041049人类SDC2基因甲基化检测试剂盒(荧光PCR法)广州市康立明生物科技有限责任公司国械注准2018340050650人类10基因突变联合检测试剂盒(可逆末端终止测序法)厦门艾德生物医药科技股份有限公司国械注准2018340050751医用电子直线加速器广东中能加速器科技有限公司国械注准2018305052052瓣膜成形环金仕生物科技(常熟)有限公司国械注准2018313053453神经外科手术导航定位系统华科精准(北京)医疗科技有限公司国械注准2018301059854医用直线加速器系统上海联影医疗科技有限公司国械注准2018305059955多孔钽骨填充材料重庆润泽医药有限公司国械注准2019313000156生物可吸收冠状动脉雷帕霉素洗脱支架系统乐普(北京)医疗器械股份有限公司国械注准2019313009357病人监护仪深圳迈瑞生物医疗电子股份有限公司国械注准2019307015458腹主动脉覆膜支架及输送系统微创心脉医疗科技(上海)有限公司国械注准2019313018259左心耳闭合系统北京迈迪顶峰医疗科技有限公司国械注准2019313027860左心耳封堵器系统上海普实医疗器械科技有限公司国械注准2019313027961调强放射治疗计划系统软件中科超精(安徽)科技有限公司国械注准2019321028162数字乳腺X射线摄影系统上海联影医疗科技有限公司国械注准2019306028063正电子发射及X射线计算机断层成像扫描系统湖北锐世数字医学影像科技有限公司国械注准2019306036464经导管植入式无导线起搏系统Micra Transcatheter Leadless Pacemaker system美敦力公司Medtronic Inc.国械注进2019312029765经导管主动脉瓣膜系统上海微创心通医疗科技有限公司国械注准2019313049466一次性使用血管内成像导管南京沃福曼医疗科技有限公司国械注准2019306060167无创血糖仪博邦芳舟医疗科技(北京)有限公司国械注准2019307060268植入式左心室辅助系统重庆永仁心医疗器械有限公司国械注准2019312060369脱细胞角膜植片青岛中皓生物工程有限公司国械注准2019316067970冠状动脉造影血流储备分数测量系统苏州润迈德医疗科技有限公司国械注准2019307096971一次性使用有创压力传感器苏州润迈德医疗科技有限公司国械注准2019307097072正电子发射及X射线计算机断层成像扫描系统上海联影医疗科技有限公司国械注准2019306099873核酸扩增检测分析仪杭州优思达生物技术有限公司国械注准2019306102674穿刺手术导航设备医达极星医疗科技(苏州)有限公司国械注准2020301003475冠脉血流储备分数计算软件北京昆仑医云科技有限公司国械注准2020321003576人EGFR/KRAS/BRAF/HER2/ALK/ROS1基因突变检测试剂盒(半导体测序法)厦门飞朔生物技术有限公司国械注准2020340009477胚胎植入前染色体非整倍体检测试剂盒(半导体测序法)苏州贝康医疗器械有限公司国械注准2020340018178生物可吸收冠脉雷帕霉素洗脱支架系统山东华安生物科技有限公司国械注准2020313019779药物球囊扩张导管上海微创心脉医疗科技股份有限公司国械注准2020313044580心血管光学相干断层成像设备及附件深圳市中科微光医疗器械技术有限公司国械注准2020306044681RNF180/Septin9基因甲基化检测试剂盒(PCR荧光探针法)博尔诚(北京)科技有限公司国械注准2020340044782等离子手术设备湖南菁益医疗科技有限公司国械注准2020301047483肿瘤电场治疗仪NovoCure Ltd.国械注进2020309026984经导管主动脉瓣膜系统Edwards Lifesciences LLC国械注进2020313029185经导管二尖瓣夹及可操控导引导管Abbott Vascular国械注进2020313032586糖尿病视网膜病变分析软件上海鹰瞳医疗科技有限公司国械注准2020321068687糖尿病视网膜病变眼底图像辅助诊断软件深圳硅基智能科技有限公司国械注准2020321068788髋关节镀膜球头中奥汇成科技股份有限公司国械注准2020313070789取栓支架珠海通桥医疗科技有限公司国械注准2020303072890血流储备分数测量设备深圳北芯生命科技有限公司国械注准2020307077491压力微导管深圳北芯生命科技有限公司国械注准2020307077592氢氧气雾化机上海潓美医疗科技有限公司国械注准2020308006693记忆合金钉脚固定器兰州西脉记忆合金股份有限公司国械注准2020313082394冠脉CT造影图像血管狭窄辅助分诊软件语坤(北京)网络科技有限公司国械注准2020321084495KRAS基因突变及BMP3/NDRG4基因甲基化和便隐血联合检测试剂盒(PCR荧光探针法-胶体金法)杭州诺辉健康科技有限公司国械注准2020340084596药物洗脱PTA球囊扩张导管浙江归创医疗器械有限公司国械注准2020303085797周围神经修复移植物江苏益通生物科技有限公司国械注准2020313089898肺结节CT影像辅助检测软件杭州深睿博联科技有限公司国械注准2020321092099椎动脉雷帕霉素靶向洗脱支架系统微创神通医疗科技(上海)有限公司国械注准20203130971100髂动脉分叉支架系统先健科技(深圳)有限公司国械注准20213130022101锚定球囊扩张导管湖南埃普特医疗器械有限公司国械注准20213030023102一次性使用血管内成像导管苏州阿格斯医疗技术有限公司国械注准20213060169103 一次性使用电子输尿管肾盂内窥镜北京北方腾达科技发展有限公司国械注准20213060175104幽门螺杆菌23S rRNA基因突变检测试剂盒(PCR-荧光探针法)上海芯超生物科技有限公司国械注准20213400227105冠状动脉CT血流储备分数计算软件深圳睿心智能医疗科技有限公司国械注准20213210270106经导管主动脉瓣系统沛嘉医疗科技(苏州)有限公司国械注准20213130275107临时起搏器深圳市先健心康医疗电子有限公司国械注准20213120299108紫杉醇洗脱PTCA球囊扩张导管浙江巴泰医疗科技有限公司国械注准20213030297109周围神经套接管北京汇福康医疗技术股份有限公司国械注准20213130298110三维电子腹腔内窥镜微创(上海)医疗机器人有限公司国械注准20213060384111经导管主动脉瓣系统沛嘉医疗科技(苏州)有限公司国械注准20213130464112自膨式动脉瘤瘤内栓塞系统Sequent Medical Inc.国械注进20213130233113陡脉冲治疗仪天津市鹰泰利安康医疗科技有限责任公司国械注准20213090497114冠状动脉CT血流储备分数计算软件北京心世纪医疗科技有限公司国械注准20213210574115颅内药物洗脱支架系统赛诺医疗科学技术股份有限公司国械注准20213130575116腔静脉滤器科塞尔医疗科技(苏州)有限公司国械注准20213130594117单髁膝关节假体北京市春立正达医疗器械股份有限公司国械注准20213130600118内窥镜用超声诊断设备深圳英美达医疗技术有限公司国械注准20213060608119机械解脱弹簧圈上海沃比医疗科技有限公司国械注准20213130649120经导管主动脉瓣膜及可回收输送系统上海微创心通医疗科技有限公司国械注准20213130655121口腔种植手术导航定位设备雅客智慧(北京)科技有限公司国械注准20213010713122一次性使用清创水动力刀头惠州海卓科赛医疗有限公司国械注准20213010779123水动力治疗设备惠州海卓科赛医疗有限公司国械注准20213010780124医用电子直线加速器苏州雷泰医疗科技有限公司国械注准20213050789125球囊扩张血管内覆膜支架系统W.L. Gore & Associates, Inc.国械注进20213130411126腹腔内窥镜手术设备山东威高手术机器人有限公司国械注准20213010848127胚胎植入前染色体非整倍体检测试剂盒(可逆末端终止测序法)北京中仪康卫医疗器械有限公司国械注准20213400868128持续葡萄糖监测系统深圳硅基传感科技有限公司国械注准20213070871129持续葡萄糖监测系统微泰医疗器械(杭州)股份有限公司国械注准20213070872130生物疝修补补片卓阮医疗科技(苏州)有限公司国械注准20213130873131植入式左心室辅助系统苏州同心医疗器械有限公司国械注准20213120987132人工角膜北京米赫医疗器械有限责任公司国械注准20213161017133分支型术中支架系统上海微创心脉医疗科技(集团)股份有限公司国械注准20213131059134经导管主动脉瓣膜系统MEDTRONIC INC.国械注进20213130538135植入式可充电脊髓神经刺激器北京品驰医疗设备有限公司国械注准20223120019136植入式脊髓神经刺激器北京品驰医疗设备有限公司国械注准20223120020137植入式脊髓神经刺激电极北京品驰医疗设备有限公司国械注准20223120021138植入式脊髓神经刺激延伸导线北京品驰医疗设备有限公司国械注准20223120022139植入式脊髓神经刺激电极北京品驰医疗设备有限公司国械注准20223120023140神经外科手术导航定位系统华科精准(北京)医疗科技有限公司国械注准20223010024141直管型胸主动脉覆膜支架系统上海微创心脉医疗科技(集团)股份有限公司国械注准20223130009142植入式脑深部电刺激延伸导线套件北京品驰医疗设备有限公司国械注准20223120084143双通道可充电植入式脑深部电刺激脉冲发生器套件北京品驰医疗设备有限公司国械注准20223120085144植入式脑深部电刺激电极导线套件北京品驰医疗设备有限公司国械注准20223120086145双通道植入式脑深部电刺激脉冲发生器套件北京品驰医疗设备有限公司国械注准20223120087146腹腔内窥镜手术系统上海微创医疗机器人(集团)股份有限公司国械注准20223010108147消化道振动胶囊系统上海安翰医疗技术有限公司国械注准20223090282148移动式头颈磁共振成像系统佛山瑞加图医疗科技有限公司国械注准20223060289149颅内出血CT影像辅助分诊软件上海联影智能医疗科技有限公司国械注准20223210309150磁共振成像系统国械注准20223161440
  • 清洗冠状动脉支架——BUCHI 全频固液萃取仪
    ‍‍‍‍‍‍清洗冠状动脉支架随着人们生活起居习惯和饮食结构的变化,以及人口的老龄化,目前心血管疾病的发病率和死亡率稳居各种疾病的首位,而其中,冠心病又占到了绝大部分。冠心病怎么治疗?除了改变生活习惯、药物治疗之外,心脏支架手术是一项 20 年来普遍被采用的治疗技术。冠状动脉支架是一种由生物医用材料制成的网状支撑装置,在闭合状态下经导管送至冠状动脉病变部位,利用气囊扩张或自膨胀等方法展开,达到撑开狭窄的血管,恢复病变部位血流的目的。支架制造是一门艺术,涉及许多领域的专业知识。为保证表面质量,支架还需要进行精细的表面处理,包括珩磨、微喷、酸洗、电解抛光、钝化和超声波清洗。经过了这些步骤后,支架便具备了光亮且有光泽的表面,并且具有耐腐蚀性,生物相容性大大提高。根据要求血管支架的表面处理方法,所用的溶剂一般为水、无水乙醇、异丙醇、正丁醇其中的一种或几种任意组合而成的混合液。位于瑞士的 Med-Tech Industry 生产扩大冠状动脉血管支架,在支架生产后的清洗步骤,需要用到有机溶剂在低温下进行清洗,温度最高 36℃(适应人体温度),清洗时间超过 72 h。BUCHI 为该公司提供了定制性的冷却萃取清洗方案,通过定制化冷却萃取腔的方式进行支架样品的清洗,保证了每次清洗使用干净的溶剂,能够有效脱脂。同时完美解决了清洗过程中溶剂的挥发,支持LSV(large solvent vessels)萃取腔,每个萃取腔最大能支持 315 mL 的溶剂清洗,6 个位置可同时进行。方法设置热萃取(萃取腔加热 Level=0) 1在提取腔内用溶剂做样品的提取2光学传感器检测溶剂液位3阀定期打开很短的时间,少量的提取完的溶液流回BUCHI 的全频固液萃取仪 E-800 功能强大,适合各种高要求的萃取任务,提供 6 个独立的萃取位置,可以实现单独过程控制。E-800 在所有流程步骤中防止热敏分析物的变质和降解,确保萃取物的安全性和可复现性,所有接触样品和溶剂的组件均完全由惰性材料制成,可消除浸出材料造成的样品污染和任何溶剂效应的影响。 ‍‍‍‍‍‍
  • 王忠诚徐光宪获2008年国家最高科技奖
    王忠诚、徐光宪获得2008年国家最高科学技术奖 徐光宪:化学大家的幸福哲学    中国神经外科专家王忠诚   快讯:王忠诚、徐光宪获得2008年国家最高科学技术奖   新华网快讯:中国工程院院士王忠诚、中国科学院院士徐光宪获得2008年度国家最高科学技术奖。   胡锦涛等党和国家领导人向获得国家科学技术进步奖特等奖、国家自然科学奖、国家技术发明奖以及其他国家科学技术进步奖的代表颁奖。   人物解读:   “万颅之魂”王忠诚:中国神经外科开创者之一   徐光宪:化学大家的幸福哲学(组图)   解读国家最高科技奖:   获奖者的奖金额为500万元人民币   国家最高科技奖每年授予人数不超过2名,获奖者必须在当代科学技术前沿取得重大突破或者在科学技术发展中有卓越建树 在科学技术创新、科学技术成果转化和高技术产业化中,创造巨大经济效益或者社会效益。   获奖者的奖金额为500万元人民币。   据悉,目前中国设立了国家最高科学技术奖、国家自然科学奖、国家技术发明奖、国家科学技术进步奖、中华人民共和国国际科学技术合作奖等5项国家科学技术奖。   其中,国家最高科技奖报请国家主席签署并颁发证书和奖金 中华人民共和国国际科学技术合作奖由国务院颁发证书 这两个奖项不分等级。其他三个奖项由国务院颁发证书和奖金,分为一、二等奖两个等级 对做出特别重大科学发现或者技术发明的公民,对完成具有特别重大意义的科学技术工程、计划、项目等作出突出贡献的公民、组织,可以授予特等奖。   王忠诚院士简介:   王忠诚 (1925.12.20- )神经外科专家。中国工程院院士。山东省烟台人。先后在北京汇文中学,北京大学医学院就读。北京市神经外科研究所所长、教授。50年代,在我国开展脑血管造影新技术,提高了颅内病变的确诊率,1965年出版了我国第一部神经外科专著《脑血管造影术》,推动了我国神经外科的发展。70年代,在国内开展了脑血管病的外科治疗,脑血管吻合术治疗缺血性脑血管病、巨大动脉瘤及多发动脉瘤的手术切除、脑血管畸形的综合治疗等方面,都有新建树。80年代以来,潜心研究脑干肿瘤这个手术禁区的治疗方法,继而对脊髓内肿瘤进行了研究,成功地施行了手术治疗。这两项治疗从病例数量,手术方法及所得结果诸方面,均达到国际先进水平。获国家科技进步二等奖四项。2008年度国家最高科学技术奖得主。   “做脑神经外科手术,双手不能有一点颤动,所以手术时要在椅子上坐稳。”他叮嘱着学生们。一位患有帕金森氏综合症的大妈,左手颤得非常厉害,连衣服扣子自己都扣不上。记者看到她把一杯水倒到另一个杯子里时,一大半的水都洒在了地上。博士生张建国在王教授的指导下,采用埋藏电极的方法给这位大妈成功地实施了手术。这种手术治疗的最大优点是不会破坏患者的正常脑组织。张建国对记者说:“王教授值得我们学习的东西太多了,不仅是技术方面的,还有医德方面的,尤其是做人的道理。”现任天坛医院神经外科研究所副所长吴中学博士也是王教授的学生,王教授经常对他说:“拿起手术刀,不停地去掉病人身上的痛苦。千万不要去割断与人民的感情。”这句话始终鞭策着吴中学不懈地研究医术,在治疗脑动脉瘤方面他已经达到了世界先进水平。王忠诚面对学生骄人的成绩,他说:“我可以放心地走下手术台了。”   王教授今年已74岁高龄,虽不再亲自做手术,但科研工作却从来没有停过,并且把主要精力投入到著书和育人上。从1998年至今已出版4部著作,发表17篇论文,在全世界医疗界都产生了很大影响。   王教授已是桃李满天下,在全国近1万名神经外科医生中,有近1/3是王教授指导出来的。近年来,他还组织讲学团到新疆、内蒙古、广州、泉州等地办讲座,诊治疑难病症,为当地培养研究生。最近,王教授又在积极地筹备全世界华人神经外科联合会,预计6月份在京成立。   1994年当选为中国工程院院士。   徐光宪院士简介:   徐光宪(1920— )著名物理化学家,无机化学家,教育家,中国科学院院士,中国共产党党员,汉族。1920年11月7日出生于浙江省绍兴上虞市,1944年毕业于交通大学化学系。1946年任交通大学化学系助教。1947年赴美留学,1951年获美国哥伦比亚大学物理化学博士学位,不久回国,到北京大学任教至今。1980年当选为中国科学院学部委员(院士)。1991年被选为亚洲化学联合会主席。现任北京大学化学系教授、博士生导师。历任北京大学原子能系(后改为技术物理系)副主任、稀土化学研究中心主任,国家自然科学基金委员会化学科学部主任,中国化学学会理事长,中国稀土学会副理事长,全国人大代表,全国政协委员等职。徐光宪夫人高小霞,亦是化学家。   20世纪50年代,徐光宪发表论文《旋光理论中的邻近作用》,揭示了化学键四极矩对分子旋光性的主导作用 50年代,他改进仪器设备,把极谱法的测量精度提高了两个数量级,在国际上较早测定了碱金属和碱土金属与一些阴离子的配位平衡常数。根据弱配位平衡与吸附平衡的相似性,提出配合物平衡的吸附理论,可以简便地描述溶液中弱配位平衡过程。1957年,徐光宪被调往技术物理系工作,开展核燃料萃取化学的研究,1962年提出了被国内普遍采纳的萃取体系分类法   从70年代末开始,徐光宪主持开展了对稀土量子化学和稀土化合物结构规律性的研究。1982年,徐光宪通过总结实验资料和分析量子化学计算的结果,提出原子价的新定义及其量子化学定义,圆满解决了Pauling、Mayer等人定义中存在的问题。徐光宪非常重视科研基地的建设,1986年在他的主持下成立了北京大学稀土化学研究中心,1991年,在他的努力下,利用世界银行贷款在北京大学建立了稀土材料化学及应用国家重点实验室。   徐光宪热心教育事业,积极组织学术活动和学术交流,兼任多项学术职务,为培养科技人才倾注了心血。至今已发表论文400余篇和10本教科书及专著,由于在科学研究方面的突出贡献,徐光宪1994年获得首届何梁何利基金科学与技术进步奖,北京大学首届自然科学研究突出贡献奖,2008年度国家最高科学技术奖。   附:历届国家最高科学技术奖获得者   ■2007年 闵恩泽、吴征镒   ■2006年 李振声   ■2005年 叶笃正 吴孟超   ■2003年 王永志 刘东生   ■2002年 金怡濂   ■2001年 黄 昆 王 选   ■2000年 袁隆平 吴文俊   相关新闻:闵恩泽、吴征镒获2007年国家最高科学技术奖(附简介)
  • 速来!活体成像小动物模型开发+数据分析干货分享,锁定iSAI2024
    动物模型在临床前抗肿瘤药物评价体系中发挥着重要的作用。肿瘤动物模型的建立为研究肿瘤发生与转移的机制、筛选和评价抗肿瘤药物的药效提供了有力的工具。一般啮齿类动物小鼠,因为其具有繁育速度快,成本低,可进行基因修饰等诸多优点,基于其构建的各类肿瘤模型构成了临床前治疗性药物筛选的主要工具,而小动物活体成像数据分析被称为连接医学影像与生物医学的重要桥梁。仪器信息网将于2024年6月6日举办“第一届小动物活体成像技术与前沿应用”主题网络研讨会(iSAI2024),全日程现已公布(点击查看)。精彩报告提前知晓!本文为【动物模型开发/数据分析篇】,大会当天将由上海南方模式生物科技股份有限公司经理/副研究员慈磊博士与中国科学院高能物理研究所高级工程师聂彬彬博士两位嘉宾分别就活体成像小动物模型的开发、动物脑成像数据分析及应用展开报告,欢迎踊跃报名参加在线直播!参会报名链接二维码:https://www.instrument.com.cn/webinar/meetings/sai240606.html ——03 动物模型开发/数据分析篇——关键词:基因工程小鼠、脑影像数据分析慈磊 经理/副研究员上海南方模式生物科技股份有限公司个人简介:南模生物工业客户部经理,副研究员,同济大学生物学博士,已授权发明专利5项,发表SCI论文10余篇。主要从事小鼠疾病模型构建以及药效评价研究,具有多年肿瘤以及自免类药效模型构建及CRO服务经验,目前负责主持南模生物各类抗肿瘤以及炎症类药物临床前研究项目。大会报告:活体成像小动物模型的开发与应用通过构建报告基因小鼠模型,利用小鼠特异性启动子调控荧光素酶报告基因的表达,结合光学成像系统实时采集小鼠发出的荧光信号,进而追踪活体小鼠中该内源基因的表达。该基因工程小鼠不仅有助于建立针对治疗药物的临床前筛选平台,还可以明确这些基因表达的细胞类型,具有基础科研和临床应用的双重价值。聂彬彬 高级工程师中国科学院高能物理研究所个人简介:中国科学院高能物理研究所,高级工程师,课题组长。中国图学会医学图像与设备专业委员会秘书长;中华医学会核医学分会神经学组委员;中国生物医学工程学会放射学会青年委员会委员。多年来主要从事医学影像数据分析方法的研究及应用工作,作为课题负责人承担了国家自然科学基金四项,中国科学院青年项目一项;作为主要参与人参与了中国科学院先导专项一项,973课题两项,发表SCI论文百余篇。其建立的动物脑成像数据分析平台能够对多种成像模态的猕猴,树鼩,大鼠,小鼠的脑成像数据进行不同的数据处理,该软件平台于2014年起通过邮件注册的方式对外发布,截至目前,已经有150余家国内外单位注册使用。大会报告:动物脑成像数据分析及应用磁共振成像技术和正电子发射断层成像技术能够对动物进行在体成像,能够在正常的生理状态下观察动物的脑结构形态、脑功能活动、脑白质纤维束形态及走向等等,在重大脑疾病的发病机理、药物评估中具有不可替代的作用。脑影像的数据分析是连接医学影像与生物医学的重要桥梁,该报告主要介绍了动物脑成像研究中常用的数据分析方法及应用示例。点击获取稿件提纲为帮助广大实验室用户及时了解小动物活体成像前沿技术、创新产品与解决方案,增强业内专家与仪器企业之间的交流学习,仪器信息网特别组织策划“小动物活体成像技术” 主题约稿活动。欢迎投稿,投稿文章一经采纳,将收录至【小动物成像技术】专题并在仪器信息网相关渠道推广。投稿邮箱:刘编辑liuld@instrument.com.cn电话联系:13683372576(同微信)。
  • 器官芯片模型在神经免疫系统研究中的新进展
    帕金森病(PD)和阿尔茨海默病(AD)是由基因、环境和家族因素相互作用引起的神经退行性疾病。值得注意的是免疫系统对疾病发展的影响,脑部驻留的小胶质细胞的功能障碍,会导致神经元的丧失和症状加剧。研究人员通过神经免疫系统模型来更深入地了解这些神经退行性疾病的生理和生物学方面以及它们的发展过程。不列颠哥伦比亚大学的Stephanie M. Willerth教授团队和英国诺丁汉特伦特大学的Yvonne Reinwald教授团队于2024 年 1 月 23 日在《Journal of Neuroinflammation》(影响因子:9.3)杂志上发表了题为“Modeling the neuroimmune system in Alzheimer’s and Parkinson’s diseases”的综述,介绍了神经免疫系统在三维模型和器官芯片系统方面取得的进展,以及模型在准确模拟复杂的体内环境方面的巨大潜力。 研究背景阿尔茨海默病(AD)是老年人中最常见的痴呆类型,与淀粉样斑块和磷酸化Tau蛋白的异常积累有关,虽具体原因尚不完全清楚,但与遗传和环境因素相关,诊断及早干预至关重要。帕金森病(PD)是一种神经系统疾病,主要表现为运动障碍,与聚集的α-突触核蛋白(α-syn)沉积物Lewy小体有关,相关基因变体也与其发病风险增加有关。尽管PD的确切原因尚不清楚,但其发病机制可能涉及多巴胺能神经元功能障碍以及氧化应激、线粒体功能受损、蛋白质代谢异常和神经炎症等多种因素。图1:阿尔茨海默病和帕金森病的病理生理学。 中枢神经系统(CNS)过度炎症的特征包括多种因素共同促进疾病进展,其中包括各种抗炎与促炎细胞因子的失调、CNS内小胶质细胞等免疫细胞的表型转化,以及外周细胞的巨噬细胞和淋巴细胞的招募,这些因素均导致突触丧失,成为随后认知功能障碍的最常见病理相关因素。图2:健康与病理神经免疫系统的比较:在健康的神经免疫系统中(1)小胶质细胞处于稳态和监视状态,(2)外周免疫细胞向中枢神经系统的浸润有限。在病理性神经免疫系统中:(3)小胶质细胞反应性增强,形态改变,(4)吞噬作用增加,(5)炎症标志物增加,(6)外周免疫细胞浸润增加。 研究进展1、目前阿尔茨海默病和帕金森病的治疗和临床试验针对AD,乙酰胆碱酯酶是一个常见的药物靶点,近期研究专注于开发单克隆抗体等药物以减少Aβ负荷,如lecanemab和aducanumab。此外,针对AD的临床试验正在进行中,旨在测试药物、设备和行为以改善患者认知和减缓疾病进展,而对于PD,则主要以药物和深部脑刺激为主要治疗手段,同时也在研究新的免疫调节治疗方法。 2、阿尔茨海默病、帕金森病和免疫系统的体外免疫系统模型癌症免疫系统的研究已经取得了许多成果,其中包括对3D模型的发展,这对于疾病建模和药物筛选至关重要,尤其是针对新的化疗药物和人工组织的开发。一种体外建模方案是使用细胞系,最常用的是SH-SY5Y人类神经母细胞瘤细胞系,模拟未成熟的儿茶酚胺能神经元,并可通过暴露于神经毒素或基因修饰来模拟AD或PD。然而,SH-SY5Y存在缺乏确立的培养维持程序、实验结果不一致和细胞生长的可变性等缺点,且不表现出成熟神经元的电生理和电化学特征。利用诱导多能干细胞(iPSC)创建基因准确的AD和PD模型,成为一个快速发展的研究领域,这些模型可以通过体细胞来源的iPSC诱导后,生成神经元与免疫细胞,用来构建AD和PD模型。图3:神经免疫系统的体内和体外模型的优缺点。 3、器官芯片模型在神经免疫系统研究中的新进展器官芯片平台的出现为建立体外模型提供了增强的设计和控制能力,能够模拟生物、生化、生理和机械现象,在活体器官系统中的发生。从血液-脑脊液屏障微流控模型到脑芯片模型,研究者们不断探索着复杂的生理学建模,为深入分析神经免疫相互作用提供了新的可能。这些模型不仅揭示了神经炎症在神经退行性疾病中的重要性,还为治疗干预提供了潜在途径,为了解AD和PD的潜在机制提供了宝贵的见解。同时,脑芯片模型被广泛应用于研究神经血管相互作用和神经退行性的不同方面。通过模拟神经-胶质-血管相互作用,研究人员发现了柴油排放颗粒等外源因素对AD类疾病病理特征的影响。这些研究不仅强调了神经免疫特异性行为的重要性,还突显了人类细胞模型在理解神经退行性疾病方面的关键作用。然而,尽管研究对细胞间相互作用和人类细胞模型的依赖日益增加,但对于AD和PD潜在机制的理解仍然相对有限。图4:芯片上器官的发展:示意图显示了开发和制造微流控芯片所需的步骤 先进的免疫细胞相互作用在AD和PD病理中至关重要,调节其功能可能为更有效的治疗提供希望;器官芯片模型具有模拟复杂细胞相互作用的优势,有助于深入了解AD和PD疾病机制并发现新的治疗策略。 文献索引:Balestri W, Sharma R, da Silva VA, Bobotis BC, Curle AJ, Kothakota V, Kalantarnia F, Hangad MV, Hoorfar M, Jones JL, Tremblay MÈ , El-Jawhari JJ, Willerth SM, Reinwald Y. Modeling the neuroimmune system in Alzheimer's and Parkinson's diseases. J Neuroinflammation. 2024 Jan 23 21(1):32. doi: 10.1186/s12974-024-03024-8. PMID: 38263227 PMCID: PMC10807115. 关于艾玮得生物作为一家专注于人体器官芯片及生命科学设备研发与生产的创新科技公司,艾玮得器官芯片应用全场景解决方案已能够全面覆盖新药研发评价、临床药敏检测、基础科学研究等应用领域,为科研、临床、药企等客户提供一站式解决方案。
  • GE医疗亮相2020世界人工智能大会—— AI全路径融合,GE医疗Edison平台助力打造中国“智慧医院”
    p style=" text-align: justify text-indent: 2em " 2020年7月10日,上海——作为2020世界人工智能大会健康云峰会的战略合作伙伴,GE医疗首次 span style=" color: rgb(0, 112, 192) " strong 从智能设备、智能运营和智能临床 /strong /span 三方面展示了基于Edison数字医疗智能平台的数字化创新成果,助力打造更高效率的“智慧医院”,并将更精准的医疗效果与更便捷的就医体验带给广大患者。同时,GE医疗携手合作伙伴发布了针对新冠肺炎、肺结节、动脉瘤等重大疾病的“AI+医疗”临床应用场景,赋能扫描、诊断、治疗、预后等全路径诊疗流程。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong GE医疗中国总裁兼首席执行官张轶昊 /strong /span 表示:“中国医疗行业的根本挑战,可以归结为医疗资源短缺、分配不均衡和利用效率不高三大核心问题。GE医疗希望从需求出发,推动AI在设备端、运营端和临床端的全面融合,以此促进实现精准医疗、高效管理和医疗资源下沉,进而惠及更多中国患者,关爱每个中国人的重要时刻。” /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/2f3c652d-b595-4198-af7b-ea05844caa44.jpg" title=" GE医疗中国总裁兼首席执行官张轶昊.jpg" alt=" GE医疗中国总裁兼首席执行官张轶昊.jpg" / span style=" text-align: justify text-indent: 2em " & nbsp & nbsp & nbsp & nbsp /span /p p style=" text-align: center text-indent: 0em " GE医疗中国总裁兼首席执行官张轶昊 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong GE医疗中国副总裁、首席创新官戴鹰 /strong /span 表示:“建立数字医疗生态,打造真正的‘智慧医院’,仅靠GE一家企业是不够的。我们欢迎更多专注于数字化基础设施、大数据平台和疾病应用的伙伴加入我们,一起利用好GE医疗积累的百万级高质量数据,在Edison平台上集成、开发、加速应用落地,将数据从各个设备和软件的孤岛上集中并创造有价值的洞见,以应对当下医疗挑战。” /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/be3f0abc-ab0d-4610-b710-12a202f63cfc.jpg" title=" (由左至右):上海申康医院发展中心副主任、上海市公共卫生临床中心院长朱同玉、中华医学会放射分会候任主任委员、长征医院影像医学与核医学科主任刘士远、GE医疗中国副总裁、首席创新官戴鹰.jpg" alt=" (由左至右):上海申康医院发展中心副主任、上海市公共卫生临床中心院长朱同玉、中华医学会放射分会候任主任委员、长征医院影像医学与核医学科主任刘士远、GE医疗中国副总裁、首席创新官戴鹰.jpg" / /p p style=" text-align: center " span style=" text-align: justify text-indent: 2em font-size: 14px " 由左至右:上海申康医院发展中心副主任、上海市公共卫生临床中心院长朱同玉、中华医学会放射分会候任主任委员、长征医院影像医学与核医学科主任刘士远、GE医疗中国副总裁、首席创新官戴鹰 /span /p p style=" text-align: justify text-indent: 2em " 自从去年Edison平台落地中国,GE医疗不仅加速了自身设备与技术的AI创新,也在Edison边缘服务器与云端集成了更多合作伙伴的临床应用,并开放平台功能模块与系统服务以加速应用的迭代。此次大会,GE医疗带来了基于Edison平台的智能设备、智能运营、智能临床上的最新成果,着重于应用AI技术实现低剂量下的高清影像画质,提高设备效能,降低放射科病患的排队等待时间,并实现针对新冠肺炎、脑卒中等“杀手级”疾病的精准诊疗。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " 智能设备——兼顾低剂量与高画质的人工智能CT图像处理技术TrueFidelity& #8482 /span /strong :在Edison平台上通过深度神经网络训练开发出TrueFidelityTM,是业界首个还原原始图像的深度学习CT影像重建算法。通过持续学习超过一百万高射线剂量条件下的高清真实影像,TrueFidelityTM在更低射线剂量下,重建扫描影像,去除伪影与噪声,还原图像的真实纹理,为医生提供更有利于精准诊断的信息,减少漏诊的可能性。应用在武汉雷神山医院 “深度天眼”CT便搭载了这一技术。TrueFidelityTM技术配合AI自动患者摆位,“深度天眼” 仅需三步即可完成整个CT扫描前的操作。临床对比结果显示,可单个患者可节省30%的扫描时间,提升50%的病灶检出率。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/538d4787-acb6-485b-895f-efe1715f7155.jpg" title=" 20200710-1.JPG" alt=" 20200710-1.JPG" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 智能运营——为医院提速的影像扫描序列管理平台IPM /strong /span :在Edison平台上,各个设备和软件端的数据可在云端集成、优化,并将“加工”后的数据和序列进行跨院区共享。GE医疗即将上市的影像扫描序列管理平台IPM,可集成跨院大数据,实现对扫描序列的标准化管理——根据不同病患的扫描部位、性别、年龄、病史等参数定,IPM将自动定制扫描标准,减小不同技师设定扫描序列带来的图像质量差异,降低拍片时扫描序列参数调整时间,提高图像扫描质量。 /p p style=" text-align: justify text-indent: 2em " 此外,GE医疗放射科指挥中心也于去年11月落户上海瑞金医院,院内大型影像设备与GE Radiology Insight软件平台直连,整合预约、检查排队、扫描部位、急诊检查插入等几十项数据,以优化设备的使用安排和医护人员管理,并进行患者流量预判。现在瑞金医院同期扫描量提升15%,患者等待时间减少25%,设备使用率提升了18%。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 智能临床——聚焦重大疾病的GE医疗精准医学院 /strong /span :GE精准医学院成立于2018年,3年来自主研发出了多款辅助新冠肺炎、乳腺疾病、实体瘤等重大疾病诊疗的AI科研分析软件。在新冠疫情之中,GE医疗 span style=" color: rgb(0, 112, 192) " CT影像智能分析平台Lung Intelligence Kit(LK) /span 通过AI分析对无症状病患和不易发现的新冠病灶进行智能识别并预测中后期复杂病变,同时打破设备限制,对不同型号的CT数据进行规范化处理。经过了近3个月的深度学习,LK已升级至2.2版本,拓展了新冠类别区分、肺部动静脉区分、提取智能分析影像学特征等功能更便于预后预测,整体深度学习数据量近5,000例,精准度 (AUC)达到95%,目前已在50家医院辅助科研。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 540px height: 333px " src=" https://img1.17img.cn/17img/images/202012/uepic/8a60fbe7-596d-45e0-9499-c9e7639012bb.jpg" title=" 20200710-2.JPG" alt=" 20200710-2.JPG" width=" 540" height=" 333" / /p p style=" text-align: justify text-indent: 2em " 此外, span style=" color: rgb(0, 112, 192) " strong GE医疗精准医学院 /strong /span 推出的AI统计学习智能平台(IPM Statistics, IPMs),整合了市场现有各大统计平台的优势,抛除代码编译的繁琐与集成的限制,将先进、复杂的统计学习算法简化成一套更适用于现代医学统计分析的工具,提供覆盖“科研准备、数据处理、论文写作、项目申报”全栈式的科研项目管理平台,让医院客户享受“一触即达”的交互体验。 /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align: justify text-indent: 2em " 本届大会上,GE医疗还邀请到了基于Edison平台的合作伙伴医准智能、强联智创 sup & reg /sup ,展示了在新冠肺炎、肺结节、动脉瘤、脑卒中等领域,设备与应用互通互联为临床带来的增效。今年以来,GE医疗联合医准智能基于64排及以下CT设备,定制化研发肺部影像AI辅诊工具和算法模型,实现8秒之内完成对300-500张片子的智能检测,2分钟内生成报告,缓解一线医师的大流量病患压力,助力高效新冠肺炎检测。近期,GE医疗强联智创 sup & reg /sup 从神经血管领域的动脉瘤精准诊疗和脑梗的急救取栓方面启动合作。强联智创 sup & reg /sup AI软件接驳Edison平台,并在边缘服务器上直连GE最新的IGS血管造影系统。设备源头产生的标准化数据将直接传达至强联智创的AI软件,再由AI将分析结果传回给设备,直接指导手术介入路径。平台、软件与设备的无缝对接,摆脱了向云端传输数据造成的延时,在赢得脑血管救治“黄金时间”方面发挥了重要作用。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong span style=" text-indent: 2em " 关于GE医疗 /span /strong /span /p p style=" text-align: justify text-indent: 2em " GE医疗集团是GE公司(NYSE: GE)旗下的医疗健康业务部门,年营收超170亿美元。作为领先的医学成像、监护、数字医疗技术提供商,GE医疗通过提供智能设备、数据分析、软件应用和服务,实现从疾病诊断、治疗到监护全方位的精准医疗。GE医疗拥有100多年的悠久历史,在全球拥有5万多名员工。公司致力于帮助全球各地的患者、医疗服务提供商和科研人员更为有效地改善医疗服务成果。如需了解GE医疗集团的最新信息,请关注GE医疗中国微信、微博,或登录官网查询。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 关于Edison数字医疗智能平台 /strong /span /p p style=" text-align: justify text-indent: 2em " Edison是GE医疗打造的数字医疗智能平台,帮助提升效率、增加患者产出、改善医疗可及性。Edison平台采用了一个覆盖广泛的专业医疗开发功能模块组件,使GE开发人员和其战略合作伙伴能够快速设计、开发、管理、保护和分发高级应用程序、服务和AI算法。不仅如此,它还整合并吸收了多个来源的数据,应用分析和人工智能技术,不仅可以转换数据,还可通过云端或设备边缘服务,提供可部署在医疗设备上的操作指引。 /p p br/ /p
  • 比较 2D 培养和 3D 生物打印肿瘤模型中的药物反应
    导读在癌症生物学中,肿瘤微环境(TME)是肿瘤细胞和免疫系统之间的一个关键。TME是细胞外基质(ECM)、免疫细胞、信号分子、血管和成纤维细胞,它们包裹肿瘤并影响癌症进展。TME的成分通过分泌小信号分子相互作用,影响肿瘤行为的各个方面,包括细胞增殖、侵袭、转移和抗肿瘤治疗的耐药性(Bremnes,2011)。因此,重建TME对抗癌研究至关重要,但一个主要的痛点是无法开发出可预测的3D肿瘤模型用于高通量药物评估。3D肿瘤模型应再现肿瘤间质内细胞间的相互作用,并克服2D细胞培养系统的局限性。在这里,3D生物打印为预测体内结果、建模TME和评估药物反应提供了一个有前景的解决方案。肿瘤转移和化疗耐药性威胁着肿瘤患者的生存。在癌症治疗领域,化疗是一种很有效的治疗方式,它利用小的抗癌分子攻击特定的生长途径并杀死癌细胞。在这些分子中,顺铂(CIS)和吉非替尼(GEF)是FDA批准的靶向DNA和EGFR通路的抗癌药物。简而言之,CIS通过抑制细胞分裂和 mRNA的产生导致细胞凋亡,而GEF干扰癌细胞中EGFR信号的上调。有趣的是,虽然CIS和GEF都被用于治疗致命的胰腺癌和乳腺癌,但它们也与体外假阴性或假阳性预测有关,这表明它们在2D和3D中对细胞的影响不同(Reynolds, 2017)。为了进一步解决这一差异,我们使用两种乳腺癌(MCF7, MDA MB 231)和两种胰腺癌(BxPC3, Panc-1)细胞系,比较了CIS和GEF对2D单层细胞和3D生物打印类肿瘤模型的作用。材料和方法生物墨水制备和生物打印根据CELLINK方案制备3 mg/mL Coll 1 (CELLINK, Ref #IK4000002001)和5% GelMA (CELLINK, Ref #IK3051020303)用于生物打印。共3ml Coll 1或GelMA与5 x 106 cells/100µL培养基(10:1)混合,分别装入透明和琥珀色墨盒(CELLINK, Ref #CSO010311502),以~ 3kpa进行液滴打印。使用温度控制的打印头(TCPH, SKU #000000020346)设置为8℃,气动打印头分别在8℃的打印床上对Coll 1和GelMA液滴进行生物打印。使用BIO X (CELLINK, SKU #000000022222)上的液滴打印功能,将每种生物墨水打印在未经处理的96孔板(Thermo Fisher Scientific, Cat #267427)上。打印完成后,Coll 1液滴在37℃下热交联20分钟,GelMA液滴在365 nm下紫外交联6秒。每孔加100µL培养基,每2 ~ 3天更换一次。2D单层培养为了进行2D比较,将每个细胞株接种在处理过的96孔板上(Thermo Fisher Scientific, Cat #167425)。优化各细胞培养48小时后的细胞密度,达到90%的一致性。Panc-1细胞接种1.2 × 104个细胞/孔,BxPC3细胞接种1.7 × 104个细胞/孔,MCF7细胞接种2.0 × 104个细胞/孔,MDA MB 231细胞接种2.0 × 104个细胞/孔。药物治疗与分析生物打印类肿瘤细胞和2D细胞分别用不同浓度的吉非替尼(LC Laboratories,#G-4408)或顺铂(Cayman Chemical Company)处理96小时和48小时。MTS Assay(Sigma-Aldrich)和LIVE/DEAD染色试剂盒(Invitrogen)用于评估2D和3D条件下的细胞活力。所有的检测都是按照制造商的说明进行的。图1:该测定的优点显示了抗肿瘤药物对所有4种细胞系的强大作用,并描述了每种细胞类型和ECM的细胞形态变化。比例尺:1000m或650m。绿色:LIVE,红色:DEAD肿瘤根据细胞类型和培养条件适应不同的形态(Nath, 2016)。在GelMA和Coll 1中培养7天后,癌细胞聚集形成各种形态的球体。如图1所示,MDA MB 231细胞形成同心星形网络,MCF7细胞形成圆形椭球,BxPC3细胞形成葡萄状椭球,Panc-1细胞形成团块状椭球。使用GelMA和Coll 1作为肿瘤支架,由于孔隙度、刚度和成分的不同,也影响了球状体的形成。有趣的是,2D培养的癌细胞缺乏所描述的形态,可能是因为它们缺乏支持细胞间相互作用、紧密连接、营养和氧梯度的ECM(数据未显示)。3D模型的缺氧效应缺氧是药物反应的另一个变量,这是3D模型和体内组织所特有的。Warburg效应将缺氧描述为癌细胞的一种生存模式,它们从生产氧气和ATP转换为上调EGFR和AKT信号以促进增殖。这种转换增加了毒性、酸度和3D模型中的废物堆积,从而产生了一个三环低氧梯度。图1显示了低氧梯度,其中靠近球体中心的细胞呈死亡状态(红色),边缘的细胞呈存活状态(绿色)。最外面的环是一层增殖细胞,中间的环是一层活细胞,最里面的环是坏死细胞的核心,这是由于废物堆积和缺氧造成的(Nath, 2016)。顺铂在2D和3D模型的疗效分别在第2天和第7天,将低到高剂量的CIS添加到2D单层细胞和3D生物打印类肿瘤细胞中。2D细胞处理治疗48小时,3D生物打印类肿瘤治疗96小时。MTS试验显示,2D单层对所有细胞株的细胞毒性均呈剂量依赖性,3D乳腺癌类肿瘤细胞也是如此(图2A)。有趣的是,BxPC3和Panc-1细胞株在3D中比在2D中显示更高的IC50。换句话说,这两种胰腺癌细胞株在3D生物打印类肿瘤中基本上不受CIS的影响。这里,一种解释是胰腺癌细胞对CIS浓度的增加表现出了耐药性(Wang, 2016 凯兰,2007 Sangster-Guity, 2011)。针对药物治疗,胰腺癌细胞可能已经诱导了他们的生存途径,上调衰老、DNA损伤反应信号转导和跨损伤DNA合成(Gomes, 2019年)。吉非替尼在2D和3D模型的疗效EGFR癌蛋白常在乳腺癌和胰腺癌细胞系中表达。因此,药物抑制EGFR通路可导致细胞周期阻滞、衰老或凋亡(Jacobi, 2017)。如图2B所示,在3D和2D中,吉非替尼显著降低了细胞活力。对于所有细胞类型,3D Coll 1和GelMA的IC50均低于2D培养的IC50,这表明GEF在3D生物打印类肿瘤细胞中比在2D培养中造成更多的死亡。2D细胞培养的局限性2D细胞培养系统不能模拟体内肿瘤的内在特性,包括自然屏障、低氧梯度和紧密的细胞-细胞连接,这些都减缓了药物扩散。此外,它们缺乏支持3D生长和癌蛋白上调的组织特异性环境和ECM (Reynolds, 2017)。图2A的另一项研究显示,3D胰腺癌细胞比2D单层细胞对CIS的抗性更强。很明显,2D研究对于胰腺癌的体内治疗是一种误导和不准确的预测。结论使用CELLINK GelMA和Coll 1作为类肿瘤支架,为球状形成和药物扩散提供了稳定的肿瘤微环境(TME)。用GelMA和Coll 1构建的不同杀伤曲线模型表明,细胞外基质(ECM)在药物反应中起关键作用。未来的研究需要确定哪种支架适合特定的肿瘤模型。我们的研究结果显示,在2D和3D肿瘤模型中,顺铂(CIS)和吉非替尼(GEF)治疗具有剂量依赖性和细胞特异性反应。乳腺癌和胰腺癌细胞株在3D条件下比2D条件下对GEF更敏感。同样,乳腺癌细胞株3D对CIS治疗的敏感性高于2D,而胰腺细胞株对CIS治疗的敏感性则相反,提示3D模型的耐药水平升高。3D生物打印类肿瘤模型用于药物筛选,可用于减少假阴性和假阳性预测。未来的研究可以使用BIO X来扩大类肿瘤的生产,用于高通量药物测试。
  • “人类运动功能障碍在动物模型中的步态分析 ”学术交流会圆满结束
    由瑞沃德公司主办的“人类运动功能障碍在动物模型中的步态分析——动物吸入式麻醉完整解决方案在动物手术中的应用”学术交流会于2014年4月24日在广州中山大学成功举办。会议邀请了来自美国Mouse Specifics公司的医学研究领域知名专家Tom Hampton 教授做了专题报告,探讨了人类在疾病影响下的步行姿态的相关指标如何通过动物模型来进行分析。同时瑞沃德公司产品技术部经理也在会议中分享了动物吸入式麻醉(异氟烷)完整解决方案在动物手术中的应用。来自各所院校的多名专家学者参加了此次交流会,会议气氛热烈,交流广泛。此次交流会中瑞沃德公司还展出自主研发生产的仪器设备:小动物麻醉机、麻醉气体回收装置、小动物呼吸机、脑立体定位仪及配套产品、微量给药系统,以及RWD手术器械等产品,受到与会专家学者的一致好评。大家就我公司的产品进行了充分沟通,各位老师对我公司的产品给予了充分的肯定同时也给我们提出了许多建议和期望。在此我们衷心的感谢多年来一直支持我们的新老客户,我们一定会尽我们最大的努力,研发生产出更多世界一流的实验仪器设备回报新老客户的支持与厚爱。
  • 1899项!2023年度河南省自然科学基金项目受理情况公示
    2022年10月19日,河南省科技厅公示了2023年度省自然科学基金项目受理情况,其中交叉学科创新群体项目27项,杰青项目69项,优青项目228项,重点项目122项,面上项目575项,青年项目878项,共计1899项。公示信息如下:关于2023年度省自然科学基金项目受理情况的公示各有关单位:根据《河南省科技计划项目信息公开管理办法》《河南省科技厅 河南省财政厅关于组织申报2023年度河南省自然科学基金项目的通知》要求,现对2023年度省自然科学基金项目受理情况予以公示(详见附件),公示期为5个工作日,自2022年10月19日至10月25日。根据对申报项目的形式审查结果,因不符合申报条件而不予受理项目的相关说明已反馈至各依托单位。公示期间,如有异议请实名向省科技厅提供书面材料。省科技厅基础研究处 0371-86550957 13383863579省科技厅机关纪委 0371-86561631 15890175881附件:附件:2023年度省自然科学基金项目受理清单.xls2022年10月19日杰青项目序号项目名称申请人依托单位1反常扩散模型非均匀网格技术的误差估计及数值模拟研究任金城河南财经政法大学2力电耦合构筑锂离子电池功能化界面白莹河南大学3融合时空语义的地理视频高效检索与智能感知研究韩志刚河南大学4黄河下游平原冬小麦/夏玉米轮作系统水热运移与能量平衡李国栋河南大学5蚯蚓对农田“减肥减药”的促进机制邵元虎河南大学6气候变暖下入侵和本土植物根际效应演变差异与生态安全田宝良河南大学7高维统计回归模型的统计性质与算法实现肖运海河南大学8花生响应与适应干旱的微生物学机理研究杨中领河南大学9棉花色素腺体发育调控的分子机制研究邹长松河南大学10磁电耦合自旋电子学器件设计及性能研究丁俊河南工程学院11天然抗氧化剂的定向修饰及对食用油脂回色的调控孙尚德河南工业大学12阴离子型多孔骨架材料多维度识别食品热加工伴生杂环胺和检测技术研究赵文杰河南工业大学13基于时空集成聚类的动态不平衡纹理表示和识别研究董永生河南科技大学14新型光学涡旋晶格光场的构建、调控及其应用李新忠河南科技大学15构型化高强高导铜合金的设计和制备研究张毅河南科技大学16基于线粒体全基因组数据的大虫责总科昆虫系统发育研究李卫海河南科技学院17高效发光金属团簇超分子组装体系研究董喜燕河南理工大学18深埋隧道突水机制与灾害状态辨识郭佳奇河南理工大学19煤层气定量储层地质学理论与方法金毅河南理工大学20煤自燃热力化互馈特性及致灾机制潘荣锟河南理工大学21长链非编码 RNA 调控玉米穗长杂种优势的遗传机理研究丁冬河南农业大学22树木根系结构与功能孔德良河南农业大学23植物源聚乙炔类脂导向的作物茎基腐病新杀菌剂靶标和先导化合物发现那日松河南农业大学24玉米C型胞质育性恢复的分子机制及调控通路研究薛亚东河南农业大学25基于能量代谢的荧光照射延缓绿叶蔬菜采后衰老机制研究詹丽娟河南农业大学26腙类咪唑盐聚集诱导发光分子开关的设计合成及智能应用郑昕河南农业大学27污泥生物炭活性位点调控与同步回收水中磷和去除共存抗生素机理研究王静河南省科学院28家禽重要免疫抑制病与肿瘤病的流行病学研究罗俊河南省农业科学院动物免疫学重点实验室29GmABCB48/52和GmABCI5/13调控大豆抗铝毒的作用机制王华华河南师范大学30铁系过渡金属-氮-碳材料的激光法精准制备及其催化机制研究武大鹏河南师范大学31基于多样性的功能化离子液体反应体系构建朱安莲河南师范大学32梓醇介导miR-182靶向Deptor调控自噬改善突触损伤防治抑郁症的分子机理研究王君明河南中医药大学33超高性能混凝土断裂的尺寸与边界效应理论及应用研究管俊峰华北水利水电大学34病损混凝土坝服役行为多尺度解译与协同诊评张建伟华北水利水电大学35河南黄河流域典型生态系统碳汇功能演变机制田世民黄河实验室36黄河下游与河口水沙协同机制及模拟调控窦身堂黄河水利委员会黄河水利科学研究院37动物健康养殖信息智能化感知技术研究与应用马彦博龙门实验室38化学预压缩环境中氢的结构演化及物性研究彭枫洛阳师范学院39基于限域的电活性金属纳米簇为探针的超灵敏细胞因子传感研究周艳丽商丘师范学院40肠道上皮STAT6抑制高脂饮食诱导的肥胖发生及机制研究熊熙文新乡医学院41石墨烯导向镧基钙钛矿氧化物的构筑及宽温机理研究孙海斌信阳师范学院42复杂系统非局部数学模型及其高效数值算法研究赵艳敏许昌学院43Piezo1通过ESYT1/DAG激活integrinα5β1调控巨噬细胞M1极化促进假性动脉瘤形成和进展的机制研究白华龙郑州大学44乙型与丙型肝炎孕妇的诊疗及母婴传播的阻断研究曾庆磊郑州大学45水溶手性金属有机超分子笼的构筑及其催化应用研究郝新奇郑州大学46锆硅基高熵涂层氧化结构的可控演化与性能研究胡俊华郑州大学47北京谱仪III上粲介子衰变的精确测量柯百谦郑州大学48红光碳点精准合成及其溶酶体靶向传感研究李朝辉郑州大学49桥梁缆索裂纹扩展的声发射精准监测风振噪音分离及断丝预警方法李胜利郑州大学50肠道微生态在NK/T细胞淋巴瘤发病中的作用机制李兆明郑州大学51非结构环境下人-机器人安全协作运动规划与控制研究彭金柱郑州大学52长非编码嵌合RNA D2HGDH-GAL3ST2调控前列腺癌发生发展的功能及机制研究秦付军郑州大学53基于线粒体铁代谢调控Breg预防肾移植术后抗体介导的排斥反应尚文俊郑州大学54超对称大统一理论相关的对称性及破缺机制研究王飞郑州大学55关键细胞和分子调控肿瘤免疫耐受新功能并肿瘤免疫治疗新方案设计王子兵郑州大学56免疫微环境调控异常影响疾病进展的机制研究杨黎郑州大学57精原干细胞衰老机制研究杨庆岭郑州大学58智能纳米药物靶向活化的T细胞阻断免疫检查点级联肿瘤铁死亡研究杨炜静郑州大学59亚十纳米二维全围栅极晶体管器件姚志强郑州大学60基于微观—细观—宏观多尺度的全再生混凝土性能提升机理郑元勋郑州大学61靶向抗铜绿假单胞菌感染促愈合铁氧体纳米酶的构筑及应用研究陈凤华郑州轻工业大学62多变量异质分数阶神经动力系统的同步控制及应用研究刘鹏郑州轻工业大学63钻探装备表面防护康嘉杰中国地质大学(北京)郑州研究院64高速飞行器复杂电磁环境感知与自适应信息传输研究赵海生中国电子科技集团公司第二十二研究所65主效QTL qFS-25-4改良棉花纤维强度的分子机制研究商海红中国农业科学院棉花研究所66棉花种质资源优异基因挖掘杨召恩中国农业科学院棉花研究所67桃果实涩味物质含量的优异基因发掘及育种应用曹珂中国农业科学院郑州果树研究所68中等规模含噪量子计算实现与应用研究黄合良中国人民解放军战略支援部队信息工程大学69异构体制多源卫星遥感数据跨模态融合研究邢帅中国人民解放军战略支援部队信息工程大学优青项目序号项目名称申请人依托单位1基于单细胞核RNA-seq和ATAC-seq及时空组学解析棉花响应黄萎病胁迫的转录调控机制研究李鹏涛安阳工学院2硅基双吸收层光阳极的构建及光生载流子输运研究周忠源安阳工学院3融合图像与卜辞信息的甲骨碎片拼接方法研究张展安阳师范学院4基于协议特性网络协议模糊测试研究李超电子信息系统复杂电磁环境效应国家重点实验室5宽带成像雷达抗间歇采样转发干扰多域波形设计方法研究周凯电子信息系统复杂电磁环境效应国家重点实验室6微波辅助TBM高效破岩前沿技术研究卢高明盾构及掘进技术国家重点实验室7基于机器学习和自然语言处理的财务智能审核系统丁海涛河南财经政法大学8群落生态学视角下聚落体系演化、机理及优化路径史焱文河南财经政法大学9杂多酸/CeO2在脱硝反应中同步净化含氯挥发性有机物研究宋忠贤河南城建学院10线粒体DAMPs促进TAMs M2型极化在肝癌索拉非尼耐药中的作用研究鲍登克河南大学11乡村小型农田水利供给的微观机制与优化路径研究翟石艳河南大学12棉籽次生代谢物积累的调控机制及无酚棉种质资源创新高巍河南大学13锌黄锡矿太阳能电池前接触界面结构模拟和界面态消除研究刘成延河南大学14量子力学/分子力学(QM/MM)镶嵌团簇方法研究半导体光催化剂中小极化子的形成与传输刘太丰河南大学15碳糖苷小分子库的构建及抗AD活性研究刘许歌河南大学16光驱动氢键催化的可控自由基立体选择性偶联乔保坤河南大学17光催化水分解制氢时新建河南大学18植物挥发物介导的入侵植物与土著昆虫的互作网络孙晓河南大学19根系导水率与植物抗旱调控机制唐宁河南大学20POMOFs/半导体纳米晶复合材料的合成及其荧光性质研究王冠河南大学21近红外纳米粒子工程化增强血脑屏障渗透介导脑胶质瘤诊疗研究王杰菲河南大学22新型氮杂芳烃盐的不对称去芳构化串联反应研究王琪琳河南大学23miR-150靶向CBS/H2S调控口腔鳞癌生长的作用及机制研究吴东栋河南大学24量子点上转换红外探测器损失机制与改善方法的研究吴政辉河南大学25农作物害虫大量繁殖的内分泌调控机制吴忠霞河南大学26植物G-四链体DNA解旋酶的鉴定与分子机制研究武文强河南大学27基于MXene异质结构高比能柔性锂硫电池的构筑及其机理研究肖助兵河南大学28铁负载共价有机框架光催化剂的构筑及其在乌尔曼偶联中的应用研究徐浩河南大学29DLIC1在视网膜色素变性(RP)发病中的作用和机制研究张静河南大学30功能化电极的设计及其双极电化学研究张琳河南大学31基于等离激元纳腔增强碳点发射的不可克隆加密研究张文凯河南大学32暴雨灾害冲击下大城市社会脆弱性机理与韧性提升研究赵宏波河南大学33深度随机场模型下数据与知识双重驱动的遥感影像智能解译郑晨河南大学34siRNA纳米药物协同治疗脑胶质瘤郑蒙河南大学35rGO诱导/氟化共驱动低维助催化剂结构重建实现高效光电分解水制氢种瑞峰河南大学36高能新物理朱经亚河南大学37新一代智慧城市大规模智能物联通信关键技术研究余忠洋河南工程学院38水合物法分离烟气中二氧化碳和氮气混合气体机理研究刘杨河南工业大学39空域太赫兹快速成像模型与处理方法研究任笑真河南工业大学40预制果蔬制品内源PME响应型Pickering乳液的动态涂膜保鲜机理研究辛颖河南工业大学
  • 2024年度湖北省自然科学基金拟立项项目清单公示
    根据中共中央办公厅、国务院办公厅印发了《关于深化项目评审、人才评价、机构评估改革的意见》《基础处2024年度省级科技计划项目组织工作方案》《湖北省自然科学基金管理办法》的要求,湖北省科学技术厅将2024年度湖北省自然科学基金拟立项项目予以公示(详见附件)。拟立项的重点项目共计101项,其中杰青项目62项,群众项目39项。公示期为2024年3月18日至2024年3月22日。2024年度湖北省自然科学基金重点类项目拟立项项目清单序号项目名称项目类型申报单位1针对女性恶性肿瘤的多通道超高灵敏度传感器件群体中国地质大学(武汉)2生物制造启示的材料合成与性能调控群体武汉理工大学3北斗近地空间环境智能监测与防灾应用研究群体武汉大学4压缩空气地下储库刚-柔复合密封层的构建方法与气闭性能群体三峡大学5膜融合相关蛋白质的弱相互作用检测方法与应用群体华中科技大学6城市轨道交通地下结构全覆盖健康监测方法研究群体华中科技大学7区域生态系统碳源汇过程与调控群体中国地质大学(武汉)8大型复杂构件机器人化集群制造群体华中科技大学9加筋结构减缓极端洪水暴雨灾害工作机制群体湖北工业大学10植物配子体发育机制与杂种优势固定群体武汉大学11变化环境下长江流域水资源格局演变与适应性调控群体水利部长江水利委员会12高导电有机高分子材料及储能器件群体华中科技大学13宫颈癌HPV整合精准防治技术的创新和应用群体华中科技大学14肿瘤细胞多胺代谢调控网络中关键蛋白的调控机理与干预研究群体湖北工业大学15复合链生灾害致灾机制与综合风险防控体系研究群体中国地质大学(武汉)16高速硅光芯片的光源异质集成技术群体湖北光谷实验室17多模态人机交互大模型智能计算及应用群体武汉大学18影响多代生育力和健康的环境因素、发生机制及防治技术群体武汉大学19脂肪酸代谢调控肾结石进展和肾小管损伤的机制研究群体武汉大学20稻田面源污染机理与防控群体中国科学院精密测量科学与技术创新研究院21分子聚集态调控的有机余辉成像与诊疗研究及其产业化瓶颈突破群体武汉大学22工业窑炉辐射节能关键材料制备及其服役性能调控群体武汉科技大学23北斗协同精密定位关键技术及应用群体湖北珞珈实验室24野生动物源病毒跨种感染机制和传播规律 研究创新群体群体中国科学院武汉病毒研究所25高效率跨尺度飞秒激光微纳增材制造群体湖北光谷实验室26面向复杂砌筑任务的建造机器人智能感知理论与运动规划方法群体武汉科技大学27猪高效安全基因编辑育种新技术群体湖北省农业科学院28鄂产金丝桃属民族药治疗自身免疫性疾病物质基础的研究群体湖北时珍实验室29超快光谱及其应用研究群体中国科学院精密测量科学与技术创新研究院30跨空海介质光声通信关键技术研究群体中南民族大学31高活性有机聚合物光催化材料重大基础研究群体江汉大学32数据-知识-模型协同驱动的高标准农田基础设施遥感监测方法研究群体华中师范大学33建筑固废碳化资源利用关键技术研究及应用群体武汉工程大学34猴痘病毒疫苗设计及新型药物开发群体湖北工业大学35猕猴桃泛基因组构建及高产优质性状基因挖掘群体中国科学院武汉植物园36中华鲟自然产卵集群效应及繁殖互作机制研究群体中国长江三峡集团有限公司中华鲟研究所37基于PIN三层薄膜电解质构筑低温固体氧化物电池及其工作机理的研究群体湖北江城实验室38利用飞秒多脉冲光谱研究物理化学反应中间态群体湖北大学39高性能多结钙钛矿太阳能电池研究群体华中科技大学40结核分枝杆菌与宿主互作机制研究杰青武汉大学41深部赋水围岩动力灾变机理与稳定性评价方法杰青武汉理工大学42内河智能船舶航行环境感知增强技术研究杰青武汉理工大学43跨精度高能效忆阻存算一体架构研究杰青华中科技大学44病原性真菌葡聚糖合成相关药物靶点的机制研究杰青华中科技大学45量子电路设计与优化的数学理论研究杰青武汉大学46强脉冲电源状态评估与健康管理杰青华中科技大学47靶向脂肪酸代谢治疗心脏移植物血管病变杰青华中科技大学48多模态情感识别与意图理解及其应用研究杰青中国地质大学(武汉)49双功能异相体系中生物质热解成炭机制及功能化调控杰青华中科技大学50脑白质损伤后小胶质细胞免疫代谢的调控机制杰青华中科技大学51多源大宗工业固废基水泥固化淤泥力学性能与增效机制研究杰青武汉大学52四英寸双层MoS2单晶的可控制备和高迁移率电子器件研究杰青武汉大学53肿瘤精准治疗与运输一体化纳米系统的构建及应用研究杰青华中科技大学54分子筛扩散机制研究杰青武汉科技大学55湖北省热浪-干旱复合灾害的形成机理及其碳汇效应杰青武汉大学56基于脂质过氧化的PEDV感染关键基因鉴定及其在猪抗病育种中的应用研究杰青华中农业大学57褐飞虱效应子协同调控水稻抗褐飞虱基因Bph6抗虫性机理与种质创新杰青湖北洪山实验室58长江流域水风光储多能互补系统智能调控研究杰青武汉大学59棉花响应高温胁迫遗传机制解析及育种应用杰青华中农业大学60大型风电场雷击灾害监测与关键防护技术研究杰青武汉大学611/2-调和映照奇点集分层理论杰青三峡大学62水稻耐高温的机制研究杰青武汉大学63原位原子尺度透射电子显微学杰青武汉大学64基于飞秒激光的典型MEMS器件热弹性阻尼效应原位监测及机理研究杰青武汉大学65基于活性油泡界面调控的高独居石混合稀土矿浮选过程强化杰青湖北三峡实验室66基于冠状病毒转录复制机制的抗病毒药物创新研究杰青中国科学院武汉病毒研究所67荧光分子开关光信息存储材料杰青华中科技大学68深地工程链式岩爆灾变机理与智能预警研究杰青中国科学院武汉岩土力学研究所69新体制激光雷达多维光谱成像技术杰青武汉大学70脑转移瘤耐药机制与精准治疗研究杰青武汉大学71基于片上器件的相干布居囚禁冷原子钟关键技术研究杰青中国科学院精密测量科学与技术创新研究院72穿活断层隧道变形破坏机理与灾变防控技术杰青中国科学院武汉岩土力学研究所73靶向脂毒性的脂肪肝炎机制研究与药物开发杰青武汉大学74学习-知识融合的移动边缘网络多维资源安全协同优化研究杰青湖北工业大学75基于界面应变协同效应的覆塑微丝钢纤维提升海工混凝土性能的机理研究杰青武汉纺织大学76肝癌免疫治疗的协同增效策略杰青华中科技大学77基于人工智能大模型的RNA复合物结构与靶向药物预测杰青华中师范大学78复杂稻作系统非CO2温室气体排放调控机制及减排潜力评价杰青长江大学79道路交通基础设施数字化关键技术研究杰青湖北文理学院80低密度钢中非金属夹杂物形成机理及无害化控制杰青武汉科技大学81上转换发光全息光镊成像辅助构建的CRISPR/Cas12a荧光生物传感器及肿瘤标志物高效检测杰青武汉科技大学82核幔边界层异常结构及其动力学效应研究杰青中国科学院精密测量科学与技术创新研究院83非化学计量比镁铝尖晶石轻量材料组成-结构调控及高温服役行为研究杰青武汉科技大学84近红外二区磷光成像探针的设计与肿瘤诊疗应用验证杰青武汉理工大学85W/O/W乳液介导微胶囊“多腔体”结构演变与共装载“异极性”物质协同抗肠道炎症的构效关系杰青武汉轻工大学86突破锌离子电池铁基硒化物正极材料关键性能瓶颈的基础理论研究杰青黄冈师范学院87禁渔湖泊鱼类群落恢复演替机制及生态效应杰青中国科学院水生生物研究所88利用基因编辑技术创制抽穗期广适性的水稻新种质杰青湖北省农业科学院89含卤精细化工场地新污染物多介质跨界面迁移转化与机理杰青江汉大学90莲子主要食用品质形成机理解析及新品种创制杰青中国科学院武汉植物园91基于容性PUF的安全芯片防物理攻击研究杰青湖北大学92爆破振动作用下城区埋地燃气管道结构体系失效机制杰青江汉大学93基于噬菌体载体的通用疫苗平台杰青中国科学院武汉病毒研究所94高稳定柔性锂金属负极结构设计与性能调控杰青江汉大学95m6A修饰调控胆碱代谢在腹主动脉瘤进展中的作用及其机制研究杰青武汉市中心医院(武汉市第二医院)96新型高甜度及强热稳定性甜蛋白Brazzein突变体的分子构建和生物合成研究杰青华中农业大学97缺氧微环境下生物钟基因Bmal1通过HIF-1α/NF-κB信号轴调控牙周炎进展的机制研究杰青华中科技大学98花生持久抗青枯病位点qXKQ候选基因的功能解析杰青中国农业科学院油料作物研究所99传统中药心血管活性肽的发掘与合成杰青中国科学院武汉植物园100水稻纤维素纳米结构形成及诱导产酶机制研究杰青湖北工业大学101基于Argonaute可编程核酸酶的高灵敏动物疫病检测技术研究杰青湖北大学附件:P020240318685679637302.xls
  • Nature:形状变形的纳米磁性编码微型机器人
    磁性软体机器人已有多种应用,特别是在与人体密切相关的生物医学领域。如自折叠式“折纸”机器人可以在肠道中爬行、修补伤口、将吞下的物体取出来;胶囊状的机器人可以沿着胃的内表面滚动,进行活组织检查并运送药物。此外,科学家们还研制出了尺寸从几百微米到几厘米不等的更薄的线型机器人,它们有可能在大脑血管中穿行,以治疗中风或动脉瘤。磁性软体机器人的进一步小型化可能带来新的应用,如在小的血管中进行操作甚至操纵单个细胞,但制备这样的微型机器人并非易事[1]。 2019年11月,瑞士联邦理工学院的Cui Jizhai(现任职复旦大学) 、Huang Tian-Yun 及其同事在Nature发表了名为“Nanomagnetic encoding of shape-morphing micromachines”的文章[2],该工作使用电子束光刻技术,制造出了只有几微米大小的可磁重组机器人,通过对单个区域的纳米磁体进行设计,将形状变化指令通过编程的方式输入微型机器人,对纳米磁体施加特殊的磁场序列后,实现微型机器人的形状变化,如图一所示。图一 四片式变形微机械的设计 a.磁体磁态随尺寸增大的示意图:i.超顺磁性;ii.室温下稳定的单畴;iii.多畴态。b. 部,四个面板微机械,面板I上有520 nm×60 nm(I型)纳米磁体阵列,面板II上有398 nm×80 nm(II型)纳米磁体阵列;底部,纳米磁体阵列的相应SEM图像。c. 体积相同但长宽比不同的单畴纳米磁体的磁光克尔效应磁滞回线。d.根据矫顽力的不同选择两个磁场对微机械进行编码的示意图。e. 应用控制磁场B=15 mT时的磁性结构(I型和II型纳米磁体)和微机械折叠行为示意图,光学显微镜图像显示了所制造器件的四种不同结构。从左到右,上/下折叠的面板数为4/0、3/1、2/2(折叠方向不同的对面面板)和2/2(折叠方向相同的对面面板)。 这项工作构建了一个模块化单元的集合,这些模块化单元可以编程为字母表中的字母,此外还构建了一个微型的“鸟”,能够进行复杂的行为,包括“拍打”、“悬停”、“转弯”和“侧滑”,如图二所示。这为创造未来的智能微系统建立了一条路线,这些智能微系统可以重新配置和原位重新编程,可以适应复杂的情况。图二 折纸式的微型“鸟”与多种形状变形模式 文章中,作者使用了英国Durham Magneto Optics Ltd.公司的磁光克尔效应系统-NanoMOKE3对不同型的纳米磁体进行了磁滞回线测试,同时使用该设备的电磁铁产生的磁场对纳米磁体阵列进行了编程。NanoMOKE3可以进行微区的超高灵敏度测试,在本工作中,作者通过激光聚焦在不同的纳米磁体上获得对应的磁滞回线,如图一c所示,为微型机器人的磁学编码工作提供了帮助。图三 磁光克尔效应系统-NanoMOKE3 NanoMOKE3主要技术特点:超高灵敏度~10-12emu微区磁滞回线,激光光斑~2μm超快测试速度,1秒内可获得磁滞回线克尔角检测<0.5 mdeg纵向/横向/向克尔磁畴成像扩展无液氦低温MOKE图四 与Montana S50超精细多功能无液氦低温光学恒温器联用的低温MOKE 温度范围4.2K~350K磁场纵向>0.4T,向>0.3T 参考文献:[1] X H,zhao. et al. Nature 575, 58-59 (2019)[2] Cui, J. et al. Nature 575, 164–168 (2019).
  • 我国首个渔业大模型“范蠡大模型1.0”发布
    6月15日,我国首个渔业大模型“范蠡大模型1.0”在中国农业大学发布,据悉,该模型可以实现渔业多模态数据采集、清洗、萃取和整合等,将为渔业养殖工人、管理经营者和政府决策部门提供全面、精准的智能化支持。“范蠡大模型1.0”发布现场(中国农业大学供图)渔业大国,面临转型的需求我国是水产养殖大国,数据显示,2023年,我国水产养殖产量达5812万吨,约占世界水产养殖总产量的60%以上,为城乡居民提供了1/3优质动物蛋白。但同时,我国不是养殖强国,水产养殖资源利用率、劳动生产率低,水产养殖产业发展面临多种转型需求。范蠡大模型设计者、发起者、国家数字渔业创新中心主任、中国农业大学信息与电气工程学院教授李道亮介绍,“我国水产养殖品种繁多,包括鱼、虾、蟹、贝、参、藻等,养殖模式多样,建立完整养殖品种的生产模型是极其困难的;同时,劳动力出现了普遍老龄化现象,有调查数据显示,我国水产养殖中,劳动力成本占70%左右,劳动者平均年龄达到55岁。新一代缺乏养殖经验,也不愿意从事传统的养殖生产,需要人工智能技术的支持。”范蠡大模型设计者、发起者、国家数字渔业创新中心主任、中国农业大学信息与电气工程学院教授李道亮(中国农业大学供图)随着现代技术的发展,水产养殖已经从1.0时代发展到4.0时代。李道亮介绍,“渔业1.0时代主要以小农生产为主,特征是依靠人力、手工工具、经验等养殖。2.0时代,水产养殖逐渐实现机械化、装备化,主要依靠机械动力和电力进行生产。3.0时代,自动化和计算机技术成为核心,生产装备出现数字化、网络化、自动化特征。到4.0时代,物联网、大数据、人工智能、机器人等技术普遍应用在生产中,无人化生产逐渐实现。”随着人工智能、机器人学习等技术的逐渐出现和成熟,越来越多的农业场景开始应用这些技术,但作为水产养殖大国,我国当前的水产养殖中,相关技术的应用还较为缺乏。渔业模型,从小到大的升级如何在水产养殖中应用现代技术,甚至打造未来的无人渔场?李道亮介绍,我国水产养殖品种繁多,养殖环境差异较大,而机理模型的构建,需考虑鱼类品种、饵料、病害、环境变化等一系列因素,面对众多的品种和养殖模式以及地区气候差异,逐个养殖品种建立像发达国家的养殖机理模型是不现实的。所谓大模型,是指具有大规模参数和复杂计算结构的机器学习模型,参数数量动辄数十亿甚至数千亿。在渔业中,大模型可以利用深度学习和数据驱动的方法,能够分析海量的养殖数据,揭示其中的规律和关联性。“它们不仅能够模拟和预测水质、饵料、疾病等因素对养殖效果的影响,还能够优化养殖方案,提高生产效率和经济效益。”李道亮说。智能池塘养鱼场景(中国农业大学供图)随着社会发展和水产养殖业转型,渔业大模型越来越成为产业发展的重要助力,为此,李道亮带领团队联合中国联通、中国电信、中国移动三家运营商、全国主要水产院校和科研机构,以鱼、虾、蟹、贝等27种我国主养品种水产文本语料为主,辅以文本、图像、视频、音频等多模态数据,形成大规模渔业专业知识语料库,通过深度学习架构,通过预训练和微调、参数共享与注意力机制、提示工程等技术,实现渔业多模态数据采集、清洗、萃取和整合等。“这一模型,不仅实现了丰富的渔业养殖知识生成,还包括水、饵、病、管等多方面多元化的预测、分析和决策。”李道亮说。范蠡为名,改变未来的渔业大模型构建成功后,命名为“范蠡大模型1.0”。李道亮介绍,范蠡是春秋末期越国大夫,众所周知的是,他是著名的政治家、军事家,也是商家鼻祖,但他同时也是我国最早的水产养殖专家,早在2500年前的春秋时期,他就写了一部《养鱼经》,并流传至今,“所以我们以范蠡为名,希望它能够在新时代中,为我国水产养殖带来的新的气象。”据介绍,范蠡大模型1.0分为请问我、请听我、请看我、请决策四个模块,分别代表文本、语音、视频、物联网决策四大场景,用户可以查询渔业的不同应用。而针对准确监测和评估鱼类的健康状况和体重异常耗时费力,且可能对鱼类造成伤害的问题,国家数字渔业创新中心开发了基于计算机视觉技术的鱼类体重估计模型,基于机器视觉实时捕捉水下鱼类图像和优化构建的深度神经网络算法,自动完成图像中鱼类目标的检测和定位,通过提取形状、颜色、纹理等多维度特征,以非接触方式实现对鱼类体重的实时、准确估算,同步完成生长及健康状态监测和计算,为投饵决策、水环境、能耗优化控制提供数据支撑。范蠡大模型利用了多种现代技术,以此实现水产养殖的数字化、无人化。图为鱼的种类识别模型(中国农业大学供图)“当前,范蠡大模型还是1.0,未来还会不断进化,人工智能在智慧渔业中的应用,是多元化且深远的、长期的,不可能一蹴而就。未来,范蠡大模型还有很长的路要走,必须充分发挥通信、科研、水产养殖企业、养殖户等各种不同领域的优势力量,以产学研用协同推进大模型的开发与应用,人工智能才能真正落地。”李道亮说。
  • 提神醒脑——来看近红外如何帮您品鉴茶叶
    提神醒脑——来看近红外如何帮您品鉴茶叶茶叶源于中国,早期是祭祀用品,随后用于烹饪和入药,最后才发展成为一种饮料。区别于风味多样的加工茶,传统的原叶茶主要可以分为绿茶、黄茶、乌龙茶、红茶、黑茶和白茶,而绿茶又是我国产量最多的一类茶,接近九成的产茶省区都生产绿茶,每年绿茶的产量占茶叶总产量的一半以上。绿茶不仅在国内深受欢迎,在全世界也是一种被广泛喜爱的无酒精饮品,出口茶叶中 80% 以上都是绿茶,由此可见一斑。特级绿茶属于绿茶中评价最高的一类,其不仅外形美观,而且所泡之茶茶汤清亮,香气浓郁,口感宜人。特级茶有着非常严格的采摘标准和明确的加工要求,通常只在春季由人工按照一芽一叶的标准进行采茶。尽管特级绿茶具有非常高的价值,但其与普通绿茶的区别,很难仅仅通过外观来判断。目前为止,若需要明确地鉴定出特级绿茶,最为权威的方法是由一组专业人士对标准品和样品进行感官评定,从而判断样品的优劣。这种鉴定方法条件相对苛刻,且费时费力,对于有大批量检测需求的情况就非常不友好且不现实。近红外光谱分析作为一种快速无损的分析技术,其在食品的质量控制中已被广泛应用。浙江大学范方媛课题组使用近红外分析建立了无损区分特级绿茶与其它等级绿茶的模型。 1样品准备从市场中购买 279 个绿茶样品,其中 127 个为特级, 152 个为其它等级,测量前用塑料袋密封并在 -20 ℃ 环境下储存。 2测量参数光谱范围:10000 cm-1-4000 cm-1,分辨率2 cm-1,使用漫反射测量方式,每次称重 10g 茶叶,每个样品测量三次取平均光谱。▲ 茶叶样品的原始近红外光谱 3光谱预处理光谱多元信号校正、中心化处理和 Savitzky-Golay 求导(一阶导和二阶导)。▲ 茶叶样品经预处理后的近红外光谱 4感官评价根据国标(GB/T23776)要求,一共六位评审专家对样品的外形、汤色、香气、滋味、叶底进行打分,然后根据每个维度不同权重综合计算最终得分,满分为 100。 5模型校正不同等级的样品分别分成两个数据集,其中 185 个样品用于交互检验校正,94 个样品用于验证模型效果。建模方法分别采用了经典偏最小二乘(PLS)以及优化的区间偏最小二次(siPLS)算法。使用均方根误差(RMSE)和预测偏差比(RPD)来评价模型的预测的准确性。▲ 最终优化模型对外部验证样品预测结果经过优化后的模型对 185 个建模样品和 94 个外部验证样品的预测准确度分别达到了 97% 和 93%,证明模型够较为精准地区分特级绿茶与其它等级绿茶,相比于传统的感官鉴定,近红外能够做到快速无损分析,对大批量的检测鉴定具备独特的优势。应用中采用的是步琦 NIRFlex 系列近红外光谱仪,多种配置和稳定性能助力科学研究。6参考文献Chunlin Li. Rapid and non-destructive discrimination of special-grade flat green tea usingNear-infrared spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 206(5): 254-262.步琦傅里叶变换光谱仪 NIRFlex N-500 NIRFlex N-500 独特的偏振干涉仪设计,相比经典傅里叶近红外光谱仪,在简化光路空间的同时,极大地提升了设备的抗震能力,更能通过实验室、生产车间、仓库等多种复杂测量环境的考验。NIRFlex N-500 模块化的设计,4 种测量池以及多达近 20 种的测量附件,能够满足几乎所有的测量场景。更换快捷方便,一台机器就能完成多样品形态的测量分析工作。NIRFlex N-500 贴心的双灯源设计,一旦主灯能量降低到阈值之下,就自动切换至副灯,不会造成分析间断而影响生产效率。NIRFlex N-500 内置校准标准物,搭配功能全面且强大的软件套件,保证数据安全,满足 GMP 及 21 CFR Part 11 的要求,为制药行业提供安全稳定的分析手段。
  • 新型 3D 模型助力科学家揭开癌细胞真面目
    p style=" text-indent: 2em " 科学家开发了一个面向患者的模型,使用这个模型可以更好地理解并最终终止癌细胞的迁移。 /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201802/insimg/10c81cf2-c4cb-4530-b9f8-6feaeccd63bf.jpg" / /p p style=" text-indent: 2em " 以前,传统的癌细胞研究只能在皮氏培养皿和显微镜载玻片中进行。而现在,研究人员开发了一个新的三维模型,这个模型可模拟更为接近于人体的环境,从而分析癌细胞的复杂性。每天,人体内会产生约1000亿个新细胞。这些新细胞与数以万亿计之前产生的细胞一起形成了我们赖以生存的组织和器官。有时,在细胞产生的过程中,其DNA发生突变,使得细胞存在缺陷并可能会对人体内部环境产生潜在危险。通常情况下,细胞会识别自身的缺陷并很快自行终止。 /p p   但有时候,突变的细胞非但没有自行消除,反而不断复制,从而形成可以分裂、转移(即迁移)并侵入身体其他部分的肿瘤,这种侵入通常是通过血流完成。幸运的是,卡内基梅隆大学机械工程菲利普· 勒迪克(Philip LeDuc)教授和博士生詹姆斯· 李· 万(James Li Wan)及匹兹堡大学乳腺癌研究员卡罗拉· 诺伊曼博士(Dr. Carola Neumann)合作,开发了一个面向患者的模型。科学家可以使用这个模型更好地理解并最终终止癌细胞的迁移。该研究组的研究论文发表在《Scientific Reports》,题为“通过微铣技术在芯片方法中模拟三维癌症的嵌入式脉管系统结构(Mimicking Embedded Vasculature Structure for 3-D Cancer on a Chip Approaches through Micromilling)”。据勒迪克介绍,这个项目的起因是研究人员对物理科学与癌症之间的关系越来越感兴趣。肿瘤实际上就是体内肿块,生化和物理手段都可以对其和癌细胞产生影响。而考虑到这两种手段之间的关系,勒迪克、诺伊曼和万开始关注癌细胞的转移和分析。通过合作,他们能够开发出一种更精确、更相关的研究癌细胞的方法。 /p p   不同于传统上在塑料培养皿中进行的癌细胞分析,研究小组建立了一个能更精确地反映生物体生理条件的三维模型。借助这个模型,科学家们可以在与人体更加相似的环境中发现并分析癌细胞的复杂性。“几十年来,生物学研究都在皮氏培养皿中进行,”勒迪克说,“但问题是,能制造出更有生理学意义的系统吗?我们使用微流体和微制造方法来创建三维系统,这是因为细胞存在于三维组织中,在自然条件下,它们是不会驻留在二维培养皿中的。” /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201802/insimg/06269c72-ca19-4797-bad9-ea2bc94888c7.jpg" /    /p p   一般来说,所谓微流体系统就是在微观水平上传输液体的系统,通常由塑料制成。但是勒迪克、诺伊曼和万想要建立一个更具生理学意义的系统,他们使用了人体内最主要的蛋白质——胶原蛋白来构建他们的微流体系统。“正如菲利普所说,过去我们用塑料培养细胞,用皮氏培养皿研究。”匹兹堡大学药理学和化学生物学副教授诺伊曼说。“但是,人体内是没有任何塑料的。拥有一个模仿生理条件的三维系统更好,能获得更快、更相关的结果。”每个该团队构建的微流体装置包含两个关键组件:模拟传统血管的平行通道和嵌入胶原中的癌细胞浓度集合。 /p p   一旦装置设立成功,通道就会被注入能扩散到周围胶原蛋白的化学刺激剂。随着兴奋剂分子远离通道,产生生物分子梯度。这种梯度能促使嵌入的癌细胞移动,而这种移动往往是向着模拟血管通道的。就病人来说,如果癌细胞进入血液,它们就会转移,并可能形成继发性癌肿瘤。据勒迪克和诺伊曼称,大多数实体瘤患者通常死于肿瘤转移,而非原发性肿瘤本身。这就是为什么科学家首先要弄清楚如何阻止癌细胞发生转移。癌细胞的转移具有从原发肿瘤转移到血液或淋巴系统的能力—— 这一过程需要癌细胞迁移并重塑肿瘤组织以侵入身体的其他部位。所以,为了阻止其转移,科学家需要了解哪些因素能够支持癌细胞的移动和组织重塑。这也就解释了为何勒迪克、诺伊曼和万开发的这个三维系统如此重要。 /p p   “癌症是一种极其异质性的疾病。这就意味着不仅每个患者的癌细胞各不相同,甚至在一个肿瘤内,癌细胞也有所不同。”诺伊曼说。“转移也是如此。根据它们在身体中的位置,每个继发性肿瘤也不相同。”勒迪克、诺伊曼和万相信,研究人员最终会使用他们的系统来检查每个患者的肿瘤以确定每位患者的最佳治疗方法。这个过程最终将有助于使癌症治疗更加个性化和有效。“我们的模型可以作为某个特定患者的模型,”万说。他组织完成了实验室实验并分析了研究结果。“这非常重要,正是由于每个病人的癌症各不相同,才使得它很难治愈。”理想的话,这个由勒迪克,诺伊曼和万开发的三维系统将为研究人员和科学家提供所需工具,以阻止患者癌细胞的转移。 /p p   “如果至始至终,肿瘤只能呆在原位,什么都不能做。这样对病人来说还好。”勒迪克说,“但是一旦它发生转移,一切失控了。我们希望我们的系统能对终止癌细胞转移有所帮助,并且从长远来看,希望它能改善病人的治疗效果。 /p
  • 【会议预告】临床新药模型之类器官多维场景应用论坛
    2013年,类器官技术被Science誉为十大科技进展,2017年,又被Nature Methods评为生命科学领域的年度技术。类器官在各大研究领域都显示出强大的潜力,包括基因编辑、细胞疗法、器官移植等方面。国内外类器官已经形成一定的研究热潮,并在近期迎来多项重磅研究结果。目前控制干细胞对刺激改变的反应和细胞来源及类器官在人体中的潜在用途方面目前仍然是影响类器官临床研究的主要障碍,这也是其未来基础与临床研究的焦点。为加速类器官行业发展,使更多患者获益,医麦客人携手Molecular Devices以“临床新药模型之类器官多维场景应用论坛”为题展开热烈讨论。活动时间:6月23日 19:00-21:00活动形式:线上研讨会活动报名:二维码活动日程:时间议题嘉宾19:00-19:30类器官在细胞与基因治疗产品临床前及临床研究中的应用陈泽新博士,研发总监,创芯国际生物科技(广州)有限公司19:30-20:00类器官等3D培养样品的高内涵成像及定量分析宁航,高内涵成像技术应用科学家, Molecular Device20:00-20:30OrganoGel基质胶在类器官培养方面的应用岳海兵博士,研发科学家,镁伽鲲鹏实验室演讲嘉宾陈泽新 博士创芯国际生物科技(广州)有限公司 研发总监英国巴斯大学分子生物学专业博士毕业,广东省精准医学会精准胃肠分会常委,在类器官行业有着多年从业经历,在类器官应用于抗肿瘤药物敏感性筛查领域有着丰富的工作经验。主持及参与国家、省市级科研项目6项,发表类器官相关论文5篇目前主要负责多项类器官临床研究工作,主持多癌种类器官试剂盒生产研发工作,主持人源肝脏类器官药物毒理评价试剂盒研发工作等。宁航Molecular Device高内涵成像技术应用科学家现任Molecular Device(美谷分子仪器)公司高内涵成像技术应用科学家,药学教育背景药物筛选方向。在Molecular Device公司从事高内涵筛选技术和细胞成像技术支持工作7年以上,有10年以上的高内涵筛选系统使用经验,在加入Molecular Device之前曾就职于康龙化成等CRO公司,从事分子,酶,细胞水平的小分子药物筛选工作5年多,担任组长带领团队参与过多个国际药企的药物筛选课题。熟悉激酶活性,G蛋白偶联受体受体,多种肿瘤相关细胞实验,分子克隆与细胞株构建, PDX细胞分离培养等方向实验,熟练掌握多种图像分析软件,擅长借助图像研究组织,细胞,小动物模型等样品的细胞,亚细胞水平的多种变化,专注于结合传统图像分析技术,3D分析技术并借助AI图像分析软件分析类器官,细胞球,组织芯片等3D样本。岳海兵 博士镁伽鲲鹏实验室 研发科学家2011年-2014年就读于中国科学院生物物理研究所,获得硕士学位。2015年-2019年就读于香港城市大学生物医学工程系,获得博士学位,研究方向为三维聚合物组装材料在神经工程方面的应用,师从史鹏教授。2019年-2021年于香港大学李嘉诚医学院进行博士后研究工作,研究方向为基于类器官技术平台探究小儿胆道闭锁病因,师从小儿外科专家Paul Tam Kwong Hang教授和Vincent Chi-Hang Lui 教授。2021年至今就职于镁伽机器人生命科学事业部,任研发科学家。主要从事生物工程材料的开发研究,及其在药物筛选或疾病病因方面的研究。相关工作以第一作者或者共同一作发表在《Biomaterials》、《Biofabrication》、《ACS applied materials & interfaces》等国际著名学术期刊上。
  • Nature :Stewart获得PDX模型
    p   Stewart等人报道了许多类型的儿科癌症的小鼠模型的建立方法和分析结果。研究者们将患者肿瘤活检得到的细胞移植到免疫缺陷小鼠中,从而获得PDX模型。他们使用几种技术来表征这些模型,这些技术包括显微镜和DNA序列分析,同时他们还在一些PDX模型小鼠上进行药物测试。研究人员将PDX肿瘤细胞冻存起来,之后将这些细胞解冻,并移植到其它小鼠中,以用于将来的分析。其他团队还创建了不同类型人类肿瘤的PDX模型。该领域关键的下一步是建立集中的开放存取库,以管理和共享来自不同团队的PDX研究数据。通过这种方法,我们可以促进识别临床试验中可测试的治疗方法的进展。 /p p style=" text-align: center " span style=" color: rgb(153, 153, 153) " img width=" 600" height=" 178" title=" " style=" width: 600px height: 178px " alt=" " src=" http://img1.17img.cn/17img/images/201709/uepic/071cf1e3-494a-444b-b094-4dbd24d0c9ed.jpg" border=" 0" vspace=" 0" hspace=" 0" / /span /p p   现在科学家们将患者的肿瘤细胞接种到小鼠体内,进而建立肿瘤模型,以用于分析和开展药物测试。目前研究人员已鉴定了一系列小儿实体肿瘤模型,同时相关数据的允许免费获取。 /p p   罕见癌症的研究面临着两方面的挑战:可用的肿瘤样本少 缺乏相应的小鼠模型。最近科学家们非常成功地开发了将人类肿瘤细胞高效移植到免疫缺陷小鼠中的癌症建模技术。在《自然》(Nature)杂志上,Stewart等人对成功接种和生长的小鼠实体瘤进行了全面的分析,并展示了这些模型如何用于筛选罕见癌症患者的潜在靶向治疗。 /p p   得益于高效的化疗药物组合,美国仅有不到20%的癌症儿童死于癌症。这些组合方案是通过高度实证和渐进的临床试验而建立起来的。然而,我们和其他癌症生物学家坚信,只有基本的科学发现才能产生变革性的进步。我们承认,儿童癌症的治疗比成年人的要有效得多,但仍然需要更好的治疗来减轻化疗药物造成的长期副作用。据美国国家癌症研究所(US National Cancer Institute)统计,每年年龄在20岁以下的癌症患者的死亡率比65岁以上癌症患者的死亡率低300-500倍。 /p p   另一个被广泛接受的信念是癌症研究需要更多的模型系统,这些模型要便宜、易于操作,并且真实反映人类肿瘤的特征,以改善癌症靶向。在这方面,缺乏T、B和自然杀伤细胞,因而对人类肿瘤细胞排斥能力较弱的免疫缺陷小鼠(裸鼠)成为了接受患者来源肿瘤异种移植物(patient-derived tumour xenograft, PDX)的理想动物模型。利用裸鼠制造PDX模型非常简便,并且可以将裸鼠的肿瘤细胞冻存,解冻后还可以移植到其它小鼠身上。肿瘤细胞也可以用于原位生长,这意味着细胞生长在与人类肿瘤来源的器官对应的小鼠组织中(即肺癌细胞接种到裸鼠肺里)。这些肿瘤细胞可以进行遗传工程,携带便于体内追踪的标记分子(如GFP),并且可以模拟人类肿瘤微环境的特征。 /p p   大多数原始PDX都会死亡。随着时间的推移,科学家们逐渐了解到,虽然PDX比体外生长的细胞系和常规小鼠肿瘤模型更贴近人类肿瘤特征,但它们也具有一些实质性限制。例如,当不同的小鼠被注射同一肿瘤标本的等分试样时,得到的PDX可以具有非常不同的突变、细胞表面标记和转录谱。用于异种移植的小鼠品系也对PDX生物学有很大的影响。因此,不同试验条件下得到的PDX小鼠模型都是不一样的。PDX专家们经常被问到这个问题:“这些模型是否与原始肿瘤相同?”其实两者之间差异很大。 /p p   至少到目前为止,PDX的最大优点是其造模非常简单。我们现在可以使用PDX研究几种没有对应的转基因小鼠或细胞株的罕见癌症模型。由于PDX源于人类肿瘤,因而对特定药物存在抵抗。这可能有助于模拟早期临床试验中难治性癌症的药物筛选。现已有20多种PDX被用于2期临床试验。这些研究可以表征多个模型的药物响应的异质性、用于开发预测药物响应的检测方法,或可用于筛选肿瘤中存在的少数耐药细胞。 /p p   现在有几个PDX存储库,含有数百个甚至数千个来源于接受过化疗或靶向治疗患者的肿瘤。这些库中的一些是开源的(可免费提供模型),包含400多个成人实质肿瘤PDX和300个儿科和成人血液肿瘤PDX,以及其他研究团队创造的大量数据。在儿童实质瘤网络计划(Childhood Solid Tumour Network)中,Stewart等人建立了60多种儿科实质肿瘤的PDX模型。 /p p   Stewart等人贡献了非常多的数据。他们通过原位生长获得了15种肿瘤的148个标本,并报告了1173个细胞涂片的免疫组织化学分析结果,102个PDX的全基因组序列结果和转录谱。他们还报告了目标基因组区域的广泛靶向DNA测序 分析了结合DNA的组蛋白的9种不同的修饰情况 对PDX进行了电子显微镜扫描 并生成了5种PDX的肿瘤细胞系。他们的药物筛选测试产生了50万个以上的数据点。他们进行的体内研究包括:多个PDX细胞系的基因工程标记细胞,进行成像 一项小鼠研究药物治疗剂量 以及两个小鼠研究调查多个药物联用的剂量及疗效。这样一个内容丰富的数据集为该领域的研究人员进一步调查Stewar等人发现的突变、转录特征和药物敏感性奠立了基础。 /p p   最大程度地发挥PDX在科学发现上的潜力需要非凡的透明度、标准化和开放获取模式。作为研究经费的使用者、癌症患者的保护者,我们责无旁贷。儿童实质瘤网络已经对多种儿童实质肿瘤建模,其中包括Stewart等人建立的模型,并免费提供,并已经将它们分发给了11个国家的120多名研究者。其他研究中心也可以学习Stewart等人的研究方法。儿童实质瘤领域的下一步将是建立一个更大的PDX库联盟、统一战线、合作表征PDX模型,建立数据库基础设施(图1)。 /p p   Stewart等人对一般肿瘤,特别是儿童实质瘤模型的建立做出了突出贡献。迄今为止,他们提供了最全面的PDX存储库之一。 他们贡献的大量数据集将为世界各地的调查人员提供参考,并推动学界的分享文化,使所有人受益。 /p
  • 生物打印肝脏模型评价药物的肝脏毒性研究
    背景介绍 药物性肝损伤(DILI)会影响肝脏代谢和解毒能力,但其根本机制仍有很多未知。为了准确和可再现地预测人的DILI,非常需要体外肝脏模型来替代昂贵和低通量的2D细胞培养系统、动物研究和芯片实验室模型。我们提出了一种新的“droplet in droplet”(DID)生物打印方法,该方法可以产生用于肝毒性研究的生理相关肝脏模型。这些模型,或称微型肝脏,是用BIO X微滴打印包裹在ⅰ型胶原中的肝(HepG2和LX2 肝星状细胞)和非肝(HUVEC 人脐静脉血管内皮细胞)细胞制成的。培养7天后,将微型肝脏暴露于急性和高剂量的对乙酰氨基酚或氟他胺,然后评估细胞活力、白蛋白分泌、丙氨酸氨基转移酶(ALT)活性和脂质积累的变化。微型肝脏ALT活性增加,白蛋白和脂质生成减少,表面这两种药物均有细胞毒性反应。这项研究的结果进一步验证了3D生物打印是一种可行的、可用于模拟肝组织和筛选特异性药物反应的中到高通量的解决方案。 材料和方法 细胞准备根据建议的方案培养两种肝细胞(HepG2和LX2)和一种非肝细胞(HUVEC)细胞系,并每3-4天传代一次。HepG2在含有谷氨酰胺的MEMα中生长,并补充1%丙酮酸钠(Gibco,Cat#11360070)和1%MEM非必需氨基酸溶液(Gibco,Cat-#11140050)。LX2细胞在IMDM(Gibco,Cat#12440053)中生长,HUVEC在EGM-2生长培养基(Lonza,Cat#CC-3156)中培养,并添加单体补充剂(Lonza,Cat#CC-4176)。所有培养基均添加10%的FBS(Gibco,16000044类)和1%的青霉素链霉素(Gibco,参考文献1509-70-063)。.生物墨水的制备和DID生物打印中和并制备3mg/mL浓度的Coll I bioink(CELLINK,SKU#IK4000002001)用于生物打印。以1:1:2(LX2:HUVEC:HepG2)的比例将5x106个细胞/毫升装入冷冻墨盒。在未经处理的96孔板(Thermo Fisher Scientific)中,使用BIO X(CELLINK,SKU#0000000 2222)上的液滴打印功能对微型肝脏进行生物打印。使用设置为8°C的温控打印头(TCPH,SKU#0000000 20346)将胶原液滴分配到设置为8°C–10°C的冷却打印床上。在第一轮液滴打印后,样品在37°C下培养3分钟,然后返回BIO X,使用相同参数进行第二轮液滴打印。在37°C条件下,将得到的封装液滴热交联20分钟,并为每个孔提供200微升混合培养基(25%IMDM+25%DMEM+50%MEM)。培养液每2-3天更新一次。药物处理和分析培养7天后,用不同浓度的APAP[0.1,0.5,1,5,10,25,50 mM](Abcam)或FLU[10,25,50,75,100,150,200µM](Selleckchem)处理微型肝脏72小时。采用比色溴甲酚绿(BCG)测定法(Sigma-Aldrich)、ALT活性测定法(BioVision)和活/死染色试剂盒(Invitrogen)分别检测白蛋白产生、肝损伤和细胞活力。所有分析均按照制造商的说明进行。 结论 胶原I中的细胞生长和球体形成胶原I中的细胞生长和球体形成在这项研究中,我们评估了Coll I bioink中的细胞生长、球体形成和迁移模式。到第2天,HepG2和LX2已紧密组装成小簇,HUVEC已拉长,形成同心网络(图1)。使用胶原蛋白作为支架可以在整个培养过程中进行细胞重组、球体极化和细胞增殖(数据未显示)。此外,根据图1,很明显,细胞在整个培养过程中渗透DILI模型,并可能在内部和外部液滴层之间迁移。生物打印微型肝脏的药物治疗和细胞毒性第10天的毒性评估结果表明,生物打印微型肝脏对APAP(图2A)和FLU(图2B)具有细胞毒性和剂量依赖性反应。这种肝功能下降表现为白蛋白分泌和脂质生成减少,ALT活性上调。同样明显的是,基于ALT活性的增加,两种药物的毒性剂量都会对细胞活力产生破坏性影响。后者在图3中尤为明显,其中活/死图像表明,在较高浓度的APAP或流感病毒下,细胞活力显著降低。药物治疗的动态细胞内反应研究了APAP和FLU如何调节细胞内脂肪含量。肝组织的ORO染色通常用于识别脂肪酸或药物引起的不同阶段纤维化或脂肪变性(Pingitore,2019)。在我们的研究中,经处理的微型肝脏的ORO染色显示,在高剂量药物处理的样本中,脂肪积累最小,而在未经处理或低剂量药物治疗的样本中,脂肪积累显著(图4A)。一种解释是APAP和FLU与脂质过氧化有关,其中毒性药物水平引起的氧化应激可能引发脂质降解和膜损伤(Behrends,2019)。图4B中未处理样品的详细观察提供了液滴模型中液滴的横截面图。这张图片显示了大量细胞向液滴外壳迁移并产生脂肪,可能表明存在营养和氧气梯度,并验证了细胞重组模式和胶原内的球体极化。▶ 作为2D细胞培养系统、动物研究和芯片实验室原型的可靠替代品,BIO X可作为中高通量工具,用于制作功能性3D生物打印肝脏模型,实现药物筛选和分析,并减轻药物消耗的成本。▶ CELLINK Coll I作为DID模型的支架,为模型提供了一个稳定、可调和高度相容的环境,且具有丰富的肝细胞重排和球体形成的结合位点。▶ 基于脂质过氧化、白蛋白分泌减少和ALT活性上调的证据,我们的研究结果表明,DID微型肝脏具有功能性,并且对APAP和FLU具有剂量依赖性和细胞毒性反应。▶ DID模型允许组织层之间的细胞间相互作用,并为研究不同硬度层之间的迁移模式提供了独特的机会。未来的毒性研究可以采用该模型复制纤维化的各个阶段,或研究药物治疗后肝脏组织的再生能力。参考文献:1.Behrends, V., Giskeødegård, G. F., Bravo-Santano, N., Letek, M., & Keun, H. C. Acetaminophen cytotoxicity in HepG2 cells isassociated with a decoupling of glycolysis from the TCA cycle, loss of NADPH production, and suppression of anabolism. Archivesof Toxicology. 2019 93(2): 341–353. DOI: 10.1007/s00204-018-2371-0.2.Chen, M., Suzuki, A., Borlak, J., Andrade, R. J., & Lucena, M. I. Drug-induced liver injury: Interactions between drug properties andhost factors. Journal of Hepatology. 2015 63: 503–514. DOI: 10.1016/j.jhep.2015.04.016.3.Pingitore, P., Sasidharan, K., Ekstrand, M., Prill, S., Lindén, D., & Romeo, S. Human multilineage 3D spheroids as a model of liversteatosis and fibrosis. International Journal of Molecular Sciences. 2019 20(7): 1629.
  • 生物3D打印应用 | 构建体外肝毒性模型
    受伦理和费用影响,使用动物来进行毒理实验变得越来越困难。同时,动物所得到的结果很有可能与实际临床试验有差别,因而给临床试验带来了潜在的风险。于是,科研工作者开始尝试在体外构建三维细胞培养物——类器官。类器官通常具有相应器官的关键特征,以此科研工作者就可以使用它们来进行相应器官的药物毒理学试验,常见的如使用肝脏类器官检测药源性肝损伤(Drug Induced Liver Injury,DILI)。一些较为简单的模型构建事实上已经使用了较长时间,但这些模型缺乏长效性(Longevity)和组织复杂度(Tissue-level Complexity),得出的结论往往不具有充分的可靠性。 在此背景下,Deborah G. Nguyen等人使用病人来源的肝脏细胞和非薄壁细胞以3D打印的形式构建了无支架类器官。相较于传统的偏二维模型或简单三维模型,该类器官在4周后仍然能够维持一定程度的ATP、白蛋白甚至是药物介导的活性细胞色素P450s酶。为评估该类器官的功能性,作者选用曲伐沙星——一种因肝毒性较强而无法用标准临床前模型评估肝毒性的药物——与无明显肝毒性药物左氧氟沙星进行对比。发现曲伐沙星在临床浓度下(≤4 μM)的肝脏毒性与浓度呈显著性正比关系。图1 置于24孔板中的肝脏类器官此外,尽管有很多相关的文献,但对于准备进入这一领域的科学工作者而言,面对各种各样的细胞模型、种类繁多的模型构建方法,可能会耗费许多时间理清头绪。面对这种情况,Xihui等人在综述Three-dimensional liver models: state of the art and their application for hepatotoxicity evaluation一文中,详细阐述了构建体外三维肝脏模型的相关内容。分为模型建立方法、细胞种类、在药源性肝损伤(DILI)中的重要性及相关商业化情况,主要内容如下: l 模型构建:根据辅助材料的使用与否分为有支架(主要为水凝胶、琼脂糖等遇水形成一定支撑力的材料,其中便提到在regenHU技术和产品的推动下,利用细胞外基质(extracellular matrix,ECM)作为支架材料进行肝脏3D打印成为了非常重要的模型构建方法)和无支架模型两种,分别介绍了建立方法和优缺点。 l 细胞种类:原代人类肝脏细胞(Primary Human hepatocytes)、干细胞分化的类肝脏细胞(stem cell derived hepatocyte like cells)、永生化肝细胞系(immortalized hepatic cell lines)等三种不同类型的肝脏细胞。 l 肝毒性研究应用:肝毒性主要有两个来源——药物本身或经由药物代谢产生的产物。因而在本章节对直接毒性和慢性毒性均进行了介绍。同时,作者也总结了纳米药物的肝脏毒性。 l 商业化情况:因生物3D打印的速率尚不足以满足批量生产,因而作者认为该项应用仍以定制为主。通过使用病人来源的细胞,科研工作者可构建类器官进行个性化药物筛选和个体化药效评价,随着商业医疗的逐步完善,这一市场将极具发展前景。 该综述全面的内容为正要和即将进行类似实验的科研工作者提供了便利。但正如作者所言,类器官仍在多个国家遭受不同程度的文化、法规障碍,在努力争取科研许可的同时,也应牢记科学底线,为社会带来正能量。 参考文献:[1] Zhang X, Jiang T, Chen D, et al. Three-dimensional liver models: state of the art and their application for hepatotoxicity evaluation[J]. Critical Reviews in Toxicology, 2020(11):1-31.[2] Nguyen D G, Funk J, Robbins J B, et al. Bioprinted 3D Primary Liver Tissues Allow Assessment of Organ-Level Response to Clinical Drug Induced Toxicity In Vitro[J]. Plos One, 2016, 11(7):e0158674.目前,regenHU产品可经由我司购买。regenHU生物3D打印机具有高精度、高稳定性、打印方式广泛、应用面广等特点,欢迎大家咨询!联系电话021-37827858 或 13818273779(微信同号)。点击以下链接,查看往期回顾生物3D器官打印——人工角膜生物3D器官打印——肠道体外模型生物3D器官打印——喉部软骨
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制