当前位置: 仪器信息网 > 行业主题 > >

内部量子产率

仪器信息网内部量子产率专题为您整合内部量子产率相关的最新文章,在内部量子产率专题,您不仅可以免费浏览内部量子产率的资讯, 同时您还可以浏览内部量子产率的相关资料、解决方案,参与社区内部量子产率话题讨论。

内部量子产率相关的资讯

  • 备受青睐的白光LED—内部量子产率的测定
    白光LED因其良好的节能效果,以及不含有害物质汞的特点而受到广泛关注。但随着其输出功率的增加,使得传统的封装材料环氧树脂老化泛黄,导致光效损失,寿命减少。7月份举行的2019成都材料大会来自东华大学的课题组做了有关荧光玻璃制备与表征的报告,表明了荧光玻璃取代环氧树脂的巨大优势,可见,未来大功率LED的光效将具有很大的提升空间。日立荧光分光光度计F-7100,拥有超高的灵敏度,其先进的氙灯光源,多样的附件,能够方便快速的进行LED器件和封装材料的表征,促进白光LED的迅猛发展。测量附件图1 量子产率测定单元图2 光电倍增管和副标准光源测定实例由日本国立材料研究所(NIMS)对市售的标准荧光体进行了测定,实验样品分别为塞隆(Sialon)标准绿色荧光粉和塞隆 (Sialon) 标准红色荧光粉。其化学稳定性和温度特性良好,荧光性随时间变化小,发光稳定。详细数据请参考:https://www.instrument.com.cn/netshow/sh102446/s912050.htm总结白光LED凭借其绿色环保,寿命长的特点,已经成为各国追捧的新宠,其争相研究LED照明技术,确保占据技术高点。日立集团以“高科技解决方案创造价值”这一基本理念,使用自主研发技术,促进科学研究的进步。
  • 量子产率测量技巧
    1. 什么是量子产率? 荧光量子产率是发射的光子数与吸收光子数之比,如下图所示。 图1 量子产率示意图 量子产率的大小可以表示物质的发光能力,量子产率越大,说明荧光材料的质量越好。依据量子产率可以对生物领域中的荧光探针进行开发和评估,同时助力于照明领域中有机EL材料和荧光物质的开发。量子产率的类型,按照测定的样品来分,有两种,固体量子产率和液体量子产率。按照量子产率测定方式,可以分为绝 对量子产率和相对量子产率。2. 固体量子产率测定2.1 测定装置固体量子产率的测定需要使用积分球附件,通过积分球的光收集效应,样品向各个方向发射的荧光都可以被检测到,保证荧光的准确测量。图2 量子产率附件日立荧光量子产率附件具有以下特点: i. 6阶动态范围的高精确度、高灵敏度测量,即使是量子产率较低的样品,也可以得到高精度测量。 ii. 有效的光谱校正功能,由于样品需要放置在积分球上进行测量,因此需要对积分球的波长特性进行校正才可以测定到准确的荧光量。积分球的校正比较困难,日立开发了一种简易有效的方法,利用扩散子和积分球的比例,进行校正。从而可以在200~800nm的宽波长范围内测定校正光谱。 iii. 高速扫描,对于有光敏性的物质,超高的扫描速度提高通量,有效测量其量子产率。 iv. 专用量子产率计算软件,易于选择计算范围,操作更便利。2.2 测定技巧对于量子产率较大的样品,一般指量子产率大于0.5的样品,需要考虑间接激发产生的量子产率。间接激发指的是没有被样品吸收的激发光反射到积分球内壁上,被积分球内壁反射再次激发样品产生荧光。图3 直接激发示意图通过将样品放置在积分球不同位置,以校正间接激发产生的量子产率,如图4所示。 通过对样品进行不同放置,获得直接激发的量子产率Φd和间接激发的量子产率Φi,利用公式(1)得到校正之后的样品实际量子产率Φ。图4直接激发样品位置(左)和间接激发样品位置(右)更多技巧点击:量子产率测量技巧检测仪器_检测方案_日立高新技术公司 (instrument.com.cn)总结:日立荧光量子产率测量附件具有高灵敏度和六位数的动态范围,即使样品量子产率比较低,也可以准确测定;高扫描速度,减少激发光对避免光敏性物质的影响;校正积分球的波长特性,确保结果准确;吸收池支架,实现液体量子产率的测定。
  • 复合荧光材料的量子产率分布测量
    1. 引言量子产率是评价荧光材料发光效率的重要参数,复合荧光材料通常由两种或两种以上的材料组成,依据样品的量子产率分布可以确认每种成分的发光效率,助力于样品的精细化分析。 日立荧光分布成像系统能够同时获取样品图像和光谱信息,从而实现精细化测量,此次实验测定了复合荧光材料的量子产率分布。 2. 应用数据 2.1 附件介绍荧光分布成像系统是荧光分光光度计的新附件,包含软件和硬件两部分。入射光通过附件中的积分球均匀照射到样品,通过荧光分光光度计的检测器获取荧光光谱,利用积分球下方的CMOS相机同时获取样品荧光和反射图像。图1 荧光分布成像系统安装示例利用样品的反射图像计算出吸收量,利用荧光图像计算出荧光量,从而计算得到量子产率分布图像。 图2 量子产率分布图像计算过程 2.2 实验部分 实验材料 样品:复合荧光材料 测量设备:日立F-7100,荧光分布成像系统 结果与分析使用日立F-7100测定样品的三维荧光光谱,通过荧光分布成像系统的分析软件对样品三维荧光光谱进行平行因子分析(PARAFAC),得到如图两种成分。图3 样品的三维荧光光谱 通过荧光分布成像系统中的智能光谱算法,将拍摄的样品图像分离为反射成分图像和荧光成分图像,如图所示。图4 样品的拍摄图像和反射、荧光图像在荧光分布成像系统软件中,可以将不同激发波长下样品的图像信息保存为如下缩略图,直接用于文档中。图5 不同激发波长下的样品图像(缩略图)对获得的样品荧光图像和反射图像进行分区,如下图将样品测量区域分成5x5的格子,选取不同的格子,坐标系中便显示对应的光谱。图中选取的两个位置分别对应平行因子分离出的成分1和成分2。图6 样品的荧光图像和荧光光谱图7 样品的反射图像和反射光谱基于以上样品的荧光图像和反射图像,软件自动计算出对应的量子产率分布图像,如下图,通过点击图像中不同的区域,可以获得对应的量子产率曲线。图8 量子产率分布和不同激发波长的量子产率因此使用荧光分布成像系统将样品在不同激发波长下的拍摄图像分离为反射图像和荧光图像,可以计算出影响荧光材料发光效率的量子产率分布图,样品中黄色区域的量子产率约60%,红色区域的量子产率约35%。 3. 总结 荧光分布成像系统是日立首创的全新技术,与日立超高扫描速度的荧光分光光度计联用,助力客户实现更精细化的荧光分析。拨打电话400 630 5821,获取更多信息!
  • 量子点问鼎诺奖 | 滨松量子产率测量仪助力量子点测量研究
    图1 来源:诺贝尔奖委员会官网。北京时间10月4日17时45分,有着“理科综合奖”之称的诺贝尔化学奖揭晓。瑞典皇家科学院决定将2023年诺贝尔化学奖授予美国科学家Moungi G.Bawendi、Louis E Brus,俄罗斯科学家Alexei l.Ekimov ,以表彰他们对量子点的发现和研究。该奖项的授予充分表明了量子点技术在科学领域中的又一重要突破。 01量子点是一种纳米级半导体发光材料,通过施加一定的电场或光压,这些纳米半导体就会发出特定频率的光,而发出光的频率会随着半导体的尺寸的改变而变化。因此,我们通过控制它们的尺寸和形状,就可以控制其发出的光的颜色(如图2),从而获得独特的光学和电子特性(如图2)。 图2 量子点荧光随尺寸的变化示例。 由于量子点丰富的物理化学性质,吸引了很多学者投身其中,目前已经形成了很多重要的前沿技术。除了我们熟知的已经商业化的量子点液晶显示以外,量子点还可以用于未来显示、光伏发电、高性能激光光源应用、单光子光源应用以及作为荧光探针用于生物成像等。 02 作为一种独特的纳米材料,在量子点的研究中,首先会关注其光谱特征和量子产率;在一些情况下,电致发光效率和荧光寿命也是需要被测量的参数。 #宽广的光谱测量 在生物荧光探针等应用的量子点研究中,不仅需要测量可见光区的光谱,还可能需要测量近红外红外光的光谱。 图3 从可见到近红外连续光谱测量的双探测器方案。为了契合这样的需要,滨松Quantaurus-QY plus中不仅配备了高灵敏度高信噪比背照式CCD探测器(探测范围从紫外至约1100nm的近红外,如图3上左),而且配备了专门用于近红外波段的InGaAs探测器(从850nm至1650nm,如图3上右)。作为在光电行业深耕细作几十年,光探测器产品线非常宽广的技术型公司,滨松在Quantaurus系列产品中均选用了自产的探测器。并基于对探测器的深刻理解与定制,开发出了特有的“光谱无缝缝合”技术,使得通过可见光探测器和近红外探测器所得到的光谱能够衔接在一起(如图3),从而使用户可以在350-1650nm的范围内,横跨可见及近红外区域得到完整且精准的光谱和真实的量子产率数值。(如图4) 图4 文献案例:横跨可见到红外的光谱测量。500nm左右的峰为吸收光谱,1300nm左右的峰为发射光谱。(N. Hasebe, et al. Anal. Chem.&ensp 87&ensp (2015), 2360)。 #精准的量子产率测量滨松量子产率测试仪对上至100%,下至1%以下的量子产率都具有非常准确的测量能力(如图5)。 图5 滨松量子效率分析仪对一些标准样品的测试值与文献值的对比(K. Suzuki, et al. Phys. Chem. Chem. Phys. 11 (2009), 9850)。 为了得到精确的结果,除了在硬件方面精益求精,滨松也一直在研究量子产率测量中的各种误差来源。比如对于许多量子点,激发光谱和发射光谱会有所重叠(如图6);这意味着量子点发出的荧光有可能被自身再次吸收——这种自吸收(reabsorption)现象会导致量子产率的测量值低于真实值,而且越浓的溶液低估得越厉害(如图7)。图6 几种量子点的吸收及发射光谱。实线为吸收光谱,多点连线为发射光谱;蓝绿黑红对应着量子点尺寸从小到大。(U. Resch-Genger, et al. Nat. Methods 5 (2008), 763)。 针对这种低估量子产率的可能,滨松运用了对应的自动测量流程及算法(K. Suzuki, et al. Phys. Chem. Chem. Phys.&ensp 11&ensp (2009), 9850)保证得到最为准确的量子产率读数(如图7)。 图7 自吸收(Reabsorption)校正结果示例(K. Suzuki, et al. Phys. Chem. Chem. Phys. 11 (2009), 9850)。#滨松量子产率测量仪Quantaurus-QY plus
  • 滨松近红外绝对量子产率测量仪亮相2018先进材料研究国际研讨会
    2018先进材料研究国际研讨会于2018年8月2日至8月5日在中国上海市举行,此次会议由中国材料研究学会、北京理工大学、东华大学和应用物理化学国家重点实验室(陕西应用物理化学研究所)联合主办。研讨会旨在推动中外材料科学与技术科学的发展,扩大中外学者在科学研究层面的合作水平,同时为国内材料研究工作者和博士生提供有关综述和展望近年来新材料最新进展和科研成果的平台。会议现场滨松中国展台滨松近红外绝对量子产率测量仪Quantaurus-QY PLUS C13534亮相了本次会议。绝对法是一种快速而准确测定量子效率的方法,该方法具有低能源消费与高环境保护的特点,所以被广泛应用于先进材料研究。滨松近红外绝对量子产率测量仪Quantaurus-QY PLUS是采用绝对法测量光致发光材料量子产率(PLQY)的集成化全新产品,通过集成光源、分光系统、积分球以及探测器于一体,大大提高了空间利用率,产品的软件操作自动化,让用户可以简单、便捷地使用产品。其可以测量薄膜、粉末以及液体样品,包含样品的激发光谱、发射光谱、量子产率、色度参数、EEM谱。在前代产品的基础上,Quantaurus-QY PLUS C13534增加了可扩展近红外探测器通道以及可扩展外接光源的接口。可扩展的近红外通道可以将量子产率的测量范围扩展至300-1650nm,覆盖市面上发光材料量子效率测量需求波段。与普通双通道探测器不同,滨松的双通道探测器测量结果通过算法拟合,结合JCSS级别的校准技术,可以让双通道结果无缝接合,得到稳定结果。产品的外接光源扩展接口可外接激光器以及高能氙灯等光源,可以轻松测量低量子产率以及上转换发光的材料,满足客户对于低发光效率以及上转换材料的测量需求。滨松近红外绝对量子产率测量仪 Quantaurus-QY PLUS C13534产品涉及领域广泛,包括荧光粉、量子点、有机电致发光材料、金属有机框架材料、PV敏化染料电池片、荧光探针、钙钛矿材料、上转换材料、AIE材料等。凭借优秀的性能以及滨松高效优质的技术支持和产品服务,近红外绝对量子产率测量仪Quantaurus-QY PLUS在研讨会期间受到了与会专家学者的高度关注。
  • 滨松UV-NIR绝对量子产率测试仪Quantaurus-QY Plus面世
    滨松近期推出了新一代UV-NIR绝对量子产率测试仪Quantaurus-QY Plus。新产品突破了传统技术无法测试300nm-1650nm大范围量子产率的瓶颈,实现了紫外-近红外(300nm-1700nm)发射光探测范围的覆盖。同时配备了高能氙灯、980nm固体激光器(可根据客户需求,配置其它波长激光器)及多通道背照式CCD探测器。以此,有效解决了上转换荧光量子产率难以测试的问题。Quantaurus-QY Plus具有极高的灵敏度,低至1%以下的量子产率也轻松测得,并精确至0.01%。可广泛用于固体、液体材料的上转换发光,单线态氧测试及光化学机理研究等。紫外-近红外绝对量子产率测量仪Quantaurus-QY Plus
  • 上海微系统所丁古巧团队在石墨烯量子点荧光发光机制研究获进展
    近日,中国科学院上海微系统与信息技术研究所纳米材料与器件实验室丁古巧团队在石墨烯量子点制备及荧光机制研究方面取得进展。该工作深化了关于石墨烯量子点发光机理的认知,阐释了多变量体系下机器学习辅助材料制备成果所包含物理内涵。相关研究成果以Precursor Symmetry Triggered Modulation of Fluorescence Quantum Yield in Graphene Quantum Dots为题,发表在《先进功能材料》(Advanced Functional Materials)上。近年来,以石墨烯量子点为代表的碳基量子点材料因独特的sp2–sp3杂化碳纳米结构,表现出优异的光学、电学、磁学的性质。在石墨烯量子点“自下而上”法制备中,多变量反应体系使其在合成与机制领域面临挑战。此外,机器学习以高效的分析算法和模型在复杂体系分析、新型材料设计等领域展现出优势。然而,由于缺失具备实际物理内涵的结构特征描述符,机器学习仅能得到难以阐释物理内涵的数学模型。这限制了机器学习在相关研究中的可迁移性和实用性。石墨烯粉体课题组博士研究生陈良锋、副研究员杨思维结合群论在分子结构描述上的优势,通过控制变量实验与结构化学理论的结合,将具有实际物理含义的描述符应用于机器学习,揭示了石墨烯量子点的前驱体结构与荧光量子产率间关联的物理内涵。该研究利用高结构刚性sp3前驱体与柔性sp2结构前驱体之间的“自下而上”反应,实现了石墨烯量子点中sp2-sp3杂化碳纳米结构的调制。研究结合热动力学理论,阐明了sp3刚性结构能够通过抑制非辐射跃迁过程提高石墨烯量子点量子产率。进一步,研究借助群论在描述分子结构方面的优势,结合主成份分析,明确了石墨烯量子点制备过程中影响石墨烯量子点荧光量子产率的三个决定性因素——结构因子、温度因子和浓度因子。与以往基于机器学习的研究工作相比,该团队基于群论的进一步研究,揭示了机器学习结果中分子的简正振动是前驱体对称性作用于石墨烯量子点量子产率增量的核心物理机制。基于上述原理的指导,该研究首次证明了分子振动的正常模式是前驱体的结构特性作用于 GQDs 荧光量子产率的核心机制。这一石墨烯量子点的光致发光性能在荧光信息防伪加密中具有应用前景。研究工作得到中国科学院青年创新促进会、上海市科学技术委员会以及集成电路材料全国重点实验室开放课题等的支持。
  • 2023量子产业大会在安徽合肥举办
    9月24日,以“协同创新 量点未来”为主题的2023量子产业大会开幕式及主论坛在安徽省合肥市举行。来自全国各地相关行业组织、重点企业、科研机构代表齐聚一堂,共同探讨量子产业协同创新与合作共赢,进一步推进量子科技产业生态建设。 2023量子产业大会开幕式及主论坛现场图 廖宇翔 摄开幕式上,中国电信牵手多家企业共同启动“量子信息产业未来启航行动”,将在量子通信技术研发、场景应用和工程建设等方面进行深度合作。合肥高新技术产业开发区管理委员会与中电信量子集团正式签署《中国电信量子科技产业化项目投资合作协议书》。据悉,未来,中电信量子集团将投资建设中国电信量子科技产业化项目,总投资超百亿元,在各类政策支持下,更好地推动量子科技从“落地生根”到“开花结果”。大会主论坛特邀中国科学院院士俞大鹏、百度量子计算研究所所长段润尧分别发表题为《高质量发展量子计算赋能第四次工业革命》、《量子计算的产业化之路》的主题演讲。此外,大会主论坛上,首届“量子信息与量子科技科普作品评优活动”颁奖仪式、量子科技上下游企业合作签约仪式、量子信息未来产业科技园发展报告发布等活动举行。在创新成果发布环节,中电信量子集团联合司法部生命科学和信息技术重点实验室(筹)共同发布“智慧法务量子视讯平台”。据悉,该平台是基于5G和量子加密通信技术的点对点视讯产品,可创新检察院远程提讯、公安远程询问取证、律师会见犯罪嫌疑人等应用场景,为构建更加公正、高效、安全的司法体系提供强有力的科技支持。值得一提的是,为让观众切实了解到量子信息技术实用化和产业发展的情况,近距离接触“量子黑科技”,大会在安徽创新馆会场区域内设立超30个展位,通过实物、模型、视频等多种形式,展示百余项先进科技成果及案例。今年是量子产业大会举办的第三年,2021年、2022年曾连续在合肥召开两届大会,以推进量子科技产业生态建设,有效促进量子信息创新链、产业链与应用需求的深度融合,加快推动量子产业链上下游企业的协同发展,引导和拓展量子科技的应用场景。据悉,9月23日,大会已开展量子科技发展战略论坛、量子安全密码技术发展论坛、量子计算论坛等分论坛活动。24日下午,大会举办量子通信与安全论坛、量子探测论坛、量子科普教育高峰论坛等产业生态论坛,围绕量子科技国家战略布局,聚焦量子信息技术上下游产业,搭建“政、产、学、研、用、金”产业合作交流平台。此次大会由合肥市人民政府、安徽省科学技术厅、量子科技产学研创新联盟、中电信量子集团主办,合肥滨湖科学城管委会、合肥市科学技术局、合肥高新技术产业开发区管委会承办。
  • 钽酸铋量子点修饰洋葱圈结构的石墨相氮化碳的S型异质结构的光催化析氢性能
    1. 文章信息标题:Onion-ring-like g-C3N4 modified with Bi3TaO7 quantum dots: A novel 0D/3D S-scheme heterojunction for enhanced photocatalytic hydrogen production under visible light irradiation中文标题: 钽酸铋量子点修饰洋葱圈结构的石墨相氮化碳的S型异质结构的光催化析氢性能 页码:958-968 DOI: 10.1016/j.renene.2021.11.030 2. 期刊信息期刊名:Renewable EnergyISSN: 0960-1481 2022年影响因子: 8.634 分区信息: 中科院一区;JCR分区(Q1) 涉及研究方向: 工程技术,能源与燃料,绿色可持续发展技术 3. 作者信息:第一作者是 施伟龙(江苏科技大学)、孙苇(北华大学)(共同一作)。通讯作者为 林雪(北华大学),郭峰(江苏科技大学),洪远志(北华大学)。4. 光催化活性评价系统型号:北京中教金源(CEL-PAEM-D8,Beijing China Education Au-Light Co., Ltd.);气相色谱型号:北京中教金源(GC7920,Beijing China Education Au-Light Co., Ltd.)。本工作利用SiO2微米球为硬模板和三聚氰胺为前驱体,通过空气化学气相沉积 (CVD)方法合成洋葱圈状结构的g-C3N4(OR-CN),且基于溶剂热法与0D Bi3TaO7量子点(BTO QDs)复合,形成0D BTO QDs/3D OR-CN S型异质结复合物光催化剂,在λ 420 nm的可见光驱动下,讨论了不同质量比的BTO/OR-CN化合物催化剂在2小时内的析氢性能。其中,0.3wt% BTO/OR-CN样品赋予了最佳的光催化析氢速率为4891 μmol g-1,且在420 nm处的表观量子产率(AQY)为4.1%,约是相同条件下的OR-CN的3倍。其增强的光催化活性归因于0D BTO量子点与OR-CN之间形成了S型异质结,有助于促进光生电荷载流子的分散,且增强了可见光吸收强度,此外,通过4次循环实验,发现0D BTO QDs/3D OR-CN S型异质结复合物光催化剂具有优异的稳定性,有应用前景。图1. 制备BTO/OR-CN化合物的实验过程如图1所示,BTO/OR-CN的制备是通过加入0.2 g的OR-CN在BTO的合成过程中,合成的样品命名为xBTO/OR-CN,其中x代表BTO在化合物中的质量比,分别为0.1%,0.3%,0.5%,1.0%。此外,为了比较,合成了块体g-C3N4(B-CN)和0.3%BTO/B-CN复合物,B-CN的合成是通过一步煅烧3 g三聚氰胺,550 °C加热4小时,升温速率为2.3 °C/min,从而得到黄色的产物。0.3% BTO/B-CN复合物的合成类似于0.3% BTO/OR-CN复合物的合成过程,仅仅用B-CN代替OR-CN。图2. BTO、OR-CN和不同复合物的XRD图如图2示,OR-CN、BTO以及不同质量比的BTO/OR-CN化合物(0.1%、0.3%、0.5%和1.0%)的XRD图表征晶体结构和结晶度。对于BTO样品,2θ在28.2°、32.7°、46.9°和58.4°属于Bi3TaO7的(111)、(200)、(220)和(222)面(JCPDS:44-0202)。OR-CN拥有两个衍射峰在13.1°(100)和27.4°(002),分别归因于芳香单元的层内结构堆积基序和层间堆积基序。至于BTO/OR-CN化合物,引入BTO没有影响OR-CN的相结构,当负载0.1%、0.3%、0.5%和1.0%的BTO在OR-CN上,很难发现额外的BTO特征峰,这很可能是因为少量的BTO QDs。图3. OR-CN的SEM图(a)0.3% BTO/OR-CN复合材料的SEM图(b)TEM图(c)HRTEM图(d)和EDX图(e)如图3所示,通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析制备的样品的结构和形貌。OR-CN样品呈现了洋葱圈形状,尺寸大约在150-200 nm。负载BTO QDs在OR-CN的表面上形成BTO/OR-CN复合物之后,OR-CN的洋葱圈结构没有改变,但表面变得更粗糙。为了进一步清晰地观察BTO/OR-CN化合物,0.3%BTO/OR-CN的TEM图展现了BTO QDs均匀地分布在OR-CN表面上且与OR-CN底物亲密的接触,这有助于电荷的分散和转移。同时,化合物的高分辨透射图(HRTEM)反映了BTO和OR-CN之间有好的界面接触,其中,晶格间距为0.27 nm与Bi3TaO7晶格面(200)相匹配。展现了成功地构造了0D/3D BTO/OR-CN异质结催化剂。0.3%BTO/OR-CN的EDX图揭示了C,N,Bi,Ta,O元素的存在,进一步证实BTO QDs锚定在OR-CN的表面上。图4. 光催化产氢(a)析氢速率(b)B-CN、OR-CN、及其0.3%化合物光催化产氢(c)析氢速率(d)循环实验(e)循环实验前后的XRD图(f)如图4所示,以300 W的氙灯作为光源(λ 420 nm),研究了制备的样品的光催化析氢活性。结果表明制备的BTO样品几乎不产氢,而OR-CN在2小时辐照过程中产生了相对较低的氢气,约为1736 μmol g-1,这是由于BTO对可见光的吸收较低和电子-空穴的快速重组所致。当耦合OR-CN和BTO之后,光催化析氢活性显著的增强,其中,最佳的0.3% BTO/OR-CN复合材料展现了析氢量大约是4891 μmol g-1,是单组分OR-CN样品的3倍左右。同时,0.3% BTO/OR-CN异质结光催化剂在420 nm波长表现出较高的表观量子产率(AQY)为4.11%。当BTO QDs的加入量从0.1%增加到1.0%时,光催化析氢性能呈现出先增后减的趋势,其中,最优的0.3% BTO/OR-CN样品的光催化性能优于其他复合样品,这是因为构建了S型异质结,加速了光生电荷的传输和分布。此外,在OR-CN上引入BTO QDs可以增加比表面积、提供更多的活性位点、增强光响应强度和延长光诱导电荷寿命。随着进一步增加BTO QDs的量,光催化产氢速率减小,这是因为过量的BTO QDs负载在OR-CN表面可能会影响BTO QDs的分散,且由于屏蔽效应阻碍OR-CN的光吸收效率。因此,负载合适量的BTO QDs有利于光催化产氢。此外,最优样0.3% BTO/OR-CN的产氢速率为2445.5 μmol g-1。为了比较,还合成了0.3%BTO/OR-CN复合物,制备的样品的析氢量和析氢速率的排序:0.3%BTO/OR-CNOR-CN0.3%BTO/B-CNB-CN,这表明CN的洋葱圈结构和化合物的异质结界面有利于提高光催化活性。经过四次循环实验,可以清晰地发现光催化析氢有轻微的降低。同时,XRD图也用于评价样品的稳定性,循环前后的XRD图没有发生改变。这些结果展现了制备的 BTO/OR-CN样品拥有优异的稳定性和光催化析氢活性。图5. MS图(a和b)S型异质结机理(c)BTO/OR-CN复合物光催化析氢中光生电荷分离转移机理(d)利用Mott-Schottky(MS)图确定OR-CN和BTO的能带结构。OR-CN和BTO样品的质谱图在1000、2000和3000 Hz处呈现正斜率,说明OR-CN和BTO具有典型的n型半导体特征。OR-CN和BTO在接触前的带位置存在偏差,OR-CN是一种费米能级较高的还原型光催化剂,而BTO是一种费米能级较低的氧化型光催化剂。此外,通过紫外光电子能谱(UPS)计算了OR-CN 和BTO的功函数,分析了界面电荷转移过程。确定OR-CN和BTO样品的二次电子截止边的结合能(Ecut-off)分别为16.921 eV和16.054 eV。然后,BTO和OR-CN在黑暗中密切接触后,OR-CN的CB上的电子自发地流向BTO,直到二者的费米能级达到相同水平。因此,OR-CN组分失去电子并携带正电荷,导致OR-CN的CB边缘向上弯曲,同时,BTO组分得到电子,电子在其CB上积聚,BTO带负电荷,导致CB边缘向下弯曲,从而,OR-CN和BTO界面形成内部电场。在可见光的照射下,电子在内部电场和库伦相互作用的驱动下由BTO的CB转移到OR-CN的VB上与空穴复合,此外,保留在OR-CN的CB上的电子和BTO的VB上的空穴将分别参与光催化氧化还原反应。基于以上的分析,提出了BTO/OR-CN光催化反应的可能的S型机理,在可见光的照射下,BTO和OR-CN中价带(VB)上的电子跃迁到导带(CB)上,价带上形成空穴,BTO导带上的电子可以转移到OR-CN的价带上并与空穴结合。由于OR-CN导带的电势比H+/H2(0 eV vs. NHE)更负,所以,H2O分子可以与电子反应生成H2。用三乙醇胺(TEOA)猝灭BTO价带上积累的空穴。
  • 新型低毒的近红外Ag2S量子点制备成功
    试想一下在医院进行常规查体时的情景:首先,喝下一种含有被称为“量子点”的纳米颗粒液体,接着医生会让你慢慢走过一个通道,这时激光束对全身进行扫描。在通道的另一端,计算机自动生成三维图像。根据这些图像,医生会告诉你在你的体内有无肿瘤细胞以及肿瘤细胞的精确定位。这些好像是只有在《特种部队》或《阿凡达》这样的科幻电影中才能见到,但是请不要吃惊,这或许就是你在不久的将来可以享受的“量子点”荧光成像检测技术。  到目前为止,活体荧光成像技术主要有三种标记方法:荧光蛋白标记、荧光染料标记和量子点标记。相比较而言,量子点作为一种新型的纳米荧光探针,具有激发光谱宽、荧光发射光谱窄、荧光光谱可调、量子产率高、光化学稳定性高和不易分解等诸多优点。  由于不同波长的组织穿透力不同,血红蛋白、脂肪和水对近红外波长的吸收保持在一个比较低的水平。因此,对活体成像而言,选择激发和发射光谱位于近红外光区的荧光标记方法,将有利于活体的光学成像,特别是深层组织的荧光成像(Nature Method, 2005, 2: 12 Science, 2009, 324: 804)。因此,低生物毒性的近红外量子点对于活体荧光成像具有非常重要的意义。  最近,中科院苏州纳米技术与纳米仿生研究所王强斌课题组在国际上首次通过以二乙基二硫代氨基甲酸银(Ag(DDTC))为原料制备出了尺寸均匀的、大小为10 nm左右的单分散性Ag2S近红外量子点。相比较目前的含有铅、镉或汞等元素的近红外量子点,Ag2S量子点具有毒性较低的优点。光谱研究结果表明该Ag2S量子点在785 nm的激发条件下,在1058 nm附近出现一个半峰宽仅为21 nm左右的荧光光谱。鉴于该Ag2S量子点的发现对于活体深层组织荧光成像技术具有重要的意义,本研究成果近日发表在著名杂志Journal of the American Chemical Society。  该项研究工作得到了国家自然基金, 中国科学院-国家外国专家局创新团队国际合作伙伴计划以及苏州科技局的支持。
  • 滨松中国荧光寿命和量子效率技术交流会
    邀 请 函尊敬的 女士/先生: 滨松中国诚邀您参加滨松第二届Quantaurus产品技术交流会。会上,我们将邀请日本Quantaurus产品应用专家铃木建吾先生对滨松荧光量子效率及寿命产品的特点及应用做详细介绍,并对相关问题做进一步的技术交流。本次交流会分为上海专场和南京专场,供您自由选择。上海专场时间:2013年5月13日 下午13:20地点:上海市华东师范大学中山北路校区理科大楼A510号会议室南京专场时间:2013年5月15日 下午13:20地点:南京大学鼓楼校区科技馆2楼报告厅会议内容Quantaurus产品技术及应用介绍技术问题现场交流Quantaurus产品现场演示样品测试报告人: 铃木建吾 博士 ( 群马大学 光化学博士/Quantaurus产品应用专家) Dr.Kengo Suzuki会议联系人:产品经理 王宁波 联系电话:15127654376会务专员 王婷 联系电话:13511028882技术工程师 张纪泽 联系电话:18810048882温馨提示1 现场可为您免费测试样品(每位不超过1个)2 会后我们会有精美礼品放送。 滨松中国期待您的光临! 滨松光子学商贸(中国)有限公司 2013年4月 Quantaurus产品简介: 滨松公司新开发的测量荧光寿命的Quantaurus-Tau和测量绝对量子产率的Quantaurus-QY,具有友好的软件操作界面和精确稳定的特性!Quantaurus-Tau 和 Quantaurus-QY配合使用可以帮助用户实现全方位的分析结果!
  • Nature Nanotechnology:量子调控在芯片平台上实现基于二维材料的有序高效量子光源
    2015年中国科学技术大学潘建伟、陆朝阳教授等人在WSe2二维单原子层半导体材料中发现非经典单光子发射,连接了量子光学和二维材料这两个重要领域,打开了一条通往新型光量子器件的道路。由于基于单原子层的量子调控的潜在前景和新颖物理意义,该领域很快成为国际激烈竞争的焦点。国内外的科学家们一直在进一步探索量子发射器、量子计算机等相关领域的新技术与新应用。现在,来自史蒂文斯理工学院Stefan Strauf教授组报道了一种新的制备高效率量子发射器的方法,用于在芯片平台上创建大量的量子光源。该方法具有有序可控以及量子产率高的特点,不仅为不可破解的加密系统开发铺平道路,而且还为量子计算机的研发提供了可能的技术方案。该项工作成果发表在Nature Nanotechnology 单层WSe2中位点控制的量子发射体与等离子体纳米腔的确定性耦合一文中,文中描述了一种在芯片任意位置按需创建量子光源的新方法(如图1a所示)。 图1:在芯片上任意位置按需创建量子光源的示意图(图片来源:Nature Nanotechnology 13,1137–1142 (2018))蓝宝石衬底上分布了有序分布的金颗粒(立方体)阵列,单层WSe2被转移到衬底上,三氧化二铝分隔层与金镜子也被加入实验的设计。理论与实验证明了单光子发射器存在于每个金颗粒的四角处。实验发现单光子发射器实现了每秒发射4200万个光子,创历史新高。值得指出的是,在量子发射器光致发光谱的测量过程中(如图2所示),使用了德国attocube systems AG公司的低温强磁场共聚焦显微镜attoDRY1100+attoCFM(如图3所示),它简单易用,模块化的设计满足了光学实验开放性与灵活性的要求。低温与强磁场下的光致发光、荧光光谱、拉曼光谱、光电流、电致发光、电学测量等材料性质测量都可以由此实验平台实现。 图2:低温磁场中单层WSe2与金纳米立方体耦合的光致发光测量结果(图片来源:Nature Nanotechnology 13,1137–1142 (2018))图3:低振动无液氦磁体与恒温器—attoDRY系列超低振动是提供高分辨率与长时间稳定光谱的关键因素 无液氦低温强磁场显微镜attoCFM使用低温与强磁场适用的位移器使样品在三个不同线性轴方向上进行几个毫米范围的精细移动。配合特殊设计的适用于高NA值的低温物镜,系统可准确定位与发现微米尺度的样品。外置的光学头可自由更换光学部件,可立调节激发和接受端口。该系统因而可以实现微纳米尺度下样品定量表面性质表征。图4:无液氦低温强磁场显微镜attoCFM系统具有超高稳定性与大灵活性,简单易用,是研究具有挑战性的量子光学实验的不二之选
  • 合肥量子产业“多点开花”,量子技术将推动我国高端科学仪器行业“弯道超车”
    围绕创新链部署产业链,基于在量子技术上的资源与技术优势,合肥量子产业布局“多点开花”,国内首家将量子计算正式推向商用领域的量子计算企业,和国内第一家以量子精密测量为核心技术的企业皆诞生于合肥。在即将举行的2021量子产业大会上,这些企业将通过先进产品展出、新平台发布、前沿应用解决方案分享等方式,与更多生态链伙伴一同探索量子技术与应用的发展。将发布国际版量子计算云平台相对传统计算机,量子计算机理论上运算能力将有指数级增长,在密码分析、气象预报、石油勘探、药物设计等领域很有前景,被认为将是下一代信息革命的关键动力。2017年在合肥成立的本源量子,是国内首家将量子计算正式推向商用领域的量子计算企业。本着让量子计算机走出实验室,真正为人类社会服务的初衷,四年来,基于中国科大中科院量子信息重点实验室量子计算研究团队持续的技术突破,本源量子披荆斩棘,取得了一系列的成就。2018年,本源量子发布了自主研发的国内第一台量子计算测控一体机;2020年,本源量子上线了基于自主研发的超导量子计算机本源悟源的量子计算云平台;2021年2月,本源量子发布了国内首款量子计算机操作系统——本源司南… … 目前,本源已在量子芯片、量子测控、量子软件、量子计算机和量子云平台等多个领域实现突破,同时,为了进一步探索量子计算应用落地,培养量子计算生态圈,该公司还建立了本源量子计算产业联盟,同中科类脑、哈工大机器人集团等十余家联盟伙伴共同致力量子计算在各类场景的应用开发,加速研制实用性量子计算机,推动量子计算产业化发展。本源量子副总裁赵勇杰告诉记者,在将于9月18日举行的2021量子产业大会上,本源量子将发布一项重磅产品——本源量子云平台国际版。“这个平台主要在去年9月我们发布的量子计算云平台的基础上,进行了国际化的优化和设计。”量子计算云平台实际上相当于一个“线上量子计算机”,因为量子计算机需要严苛的运行环境与复杂的辅助设备和昂贵的造价,普通用户很难接触,为让更多的人体验、学习、探索量子计算,国际主要的量子计算公司都开发了各自的量子云平台,使用云技术连接用户与真实的量子计算设备。去年9月,本源量子自主研发的超导量子计算云平台正式上线,向用户提供真实的量子计算云服务。“我们的平台内除了有真实的量子计算机系统供大家使用,还有教育培训、研发模拟等科普性的内容。”赵勇杰说,即将发布的国际版,是本源量子走向国际的关键一步。“未来,世界各地的用户,都可以连接到我们的云平台上,使用、学习、了解量子计算机。”合肥量子测量产品已在多国实现应用量子测量也是量子技术的一项关键应用,它可作用于石油勘探、生命科学、先进材料、电力电网等众多领域。而国内第一家以量子精密测量为核心技术的企业——国仪量子,就诞生于合肥。该公司源自中国科大中国科学院微观磁共振重点实验室,自成立伊始,即承接了中国科大原始创新成果的产业化。“高精尖设备离不开高精度测量,目前,我国的量子信息技术研究处在世界前列,用先进的量子精密测量技术做科学仪器,将能为我国高端科学仪器行业提供一个‘弯道超车’的变革式机遇。”国仪量子传感项目技术负责人许克标表示。相对于传统测量技术,运用量子技术测量的精度可以精细千倍、万倍到纳米、亚纳米量级,带来革命性的技术进步。比如将量子测量用于电网,可以精确监测电流、电压;用于探矿,可以边钻井边测量周边地质成分;用于医疗,可以精确分析血液微量物质含量。在科技部重点研发计划等国家、省、市项目的支持下,近年来,国仪量子不断进行原始创新,陆续发布了首台“量子钻石原子力显微镜”“金刚石量子计算装置”,国内首台商用“脉冲式电子顺磁共振波谱仪”“W波段电子顺磁共振波谱仪”“量子测控系列产品”等多款产品。目前,相关产品已交付近百家客户,并且在欧美等国完成海外交付,在多个场景下实现了示范应用。“本次量子产业大会,我们将展出量子钻石原子力显微镜、量子互感器、电子顺磁共振波谱仪、金刚石量子计算装置以及一系列量子计算与测控产品。”许克标说,大会上,国仪量子还将分享许多前沿的量子精密测量应用解决方案,期待与更多合作伙伴一同更高效地推动量子测量技术的发展。
  • 【好品质,看得见】睿光科技携手滨松光子,再续“3.15质检月”活动!
    又是一年3.15,睿光与滨松又双叒叕联手,再度打造一场3.15“质检”活动!本次“质检”活动全面升级,不仅有Quantaurus-QY PLUS UV-NIR 量子产率光谱仪:C13534-12,还有滨松新品ODPL测量系统:C15993-01、高动态范围光谱仪:OPAL-Luxe C16736-01,更有睿光科技的NirVivo-Pro近红外二区小动物活体成像系统,随时为您待命!预约测试通道BOOKING CHANNEL活动时间2024年3月15日-4月15日活动方式您可以通过扫描下方二维码、拨打电话、发送邮件等形式提交测试申请,之后等待工程师联系,寄送样品即可。测试样机简介PRODUCT DESCRIPYION近红外二区小动物活体成像系统1、产品简介NirVivo-Pro近红外二区小动物活体成像系统由北京睿光科技自主研发。该系统可实现高质量显微荧光图像的采集及图像处理,实时地观察基因在活体动物体内的表达、肿瘤的发生、生长、转移及药物的治疗等一系列显微成像效果,对同一个动物进行时间、环境、发展和治疗影响跟踪,可用于生命科学、医学研究及药物开发等应用领域。2、相关介绍(点击查看)Nature子刊 | 福建物构所洪茂椿院士团队,首次实验观测晶体场微扰诱导镧系纳米晶荧光增强应用分享|近红外二区发射Au纳米团簇的磷酸化用于靶向骨成像和改进类风湿关节炎治疗应用分享 | 近红外二区荧光成像技术用于血管靶向光动力治疗的深层组织成像和动态监测NirVivo系统应用分享|Au44团簇配体功能化用于NIR-II荧光成像引导的光激活肿瘤免疫治疗Quantaurus-QY PLUS1、产品简介本次活动中我们使用的是Quantaurus-QY PLUS UV-NIR量子产率光谱仪,波长范围覆盖300 nm 至 1650 nm,并支持基于808nm,980nm激光器作为激发的NIR II区荧光PLQY及上转换材料测量。2、相关介绍(点击查看)量子点问鼎诺奖 | 滨松量子产率测量仪助力量子点测量研究量子点研究之滨松解决方案ODPL测量系统1、产品简介本次活动中我们使用的是ODPL 测量系统,该系统使用积分球来测量全向光致发光光谱并确定样品的发射效率,即时计算 IQE(内部量子效率),用于非破坏性、非接触 GaN 单晶和钙钛矿晶体的质量评估。2、相关介绍(点击查看)【新方法】基于ODPL的化合物半导体材料GaN晶体质量评价滨松新品,诚邀测试| 聚焦第三代半导体材料质量检测新方法OPAL-Luxe光谱仪1、产品简介本次活动中我们使用的是滨松新开发的滨松OPAL-Luxe 光谱仪。在 200 nm 至 900 nm 的光谱范围内达到2,500,000:1 的极高动态范围,比常规科研级光谱仪高2~3个数量级,满足强弱光谱信号同时测试的需求。高动态范围光谱仪:OPAL-Luxe C16736-012、相关介绍(点击查看)新品推荐|动态范围2500000:1!滨松OPAL光谱仪问世,超越常规!
  • 中科院理化所量子点荧光检测病变研究获新进展
    生物传感器在医学领域也发挥着越来越大的作用。临床上用免疫传感器等生物传感器来检测体液中的各种化学成分,为医生的诊断提供依据。  在国家自然科学基金和中科院理化所青年基金项目的支持下,中科院理化所研究员唐芳琼领导的研究团队采用超声雾化法制备的水溶性碲化镉量子点,实现对乳酸脱氢酶(LDH)活性的定性定量分析。  日前,该研究成果在国际电化学与传感器领域影响因子排名第一的杂志《生物传感器与生物电子学》(Biosensors and Bioelectronics)上相继发表两篇论文。相关工作已申请两项中国发明专利。  拓展纳米材料的应用  生物传感器已应用于监测多种细菌、病毒及其毒素。生物传感器还可以用来测量乙酸、乳酸、乳糖、尿酸、尿素、抗生素、谷氨酸等各种氨基酸,以及各种致癌和致变物质。  乳酸脱氢酶存在于机体所有组织细胞的胞质内,并有着一定的正常范围。机体代谢异常,出现病变会引起乳酸脱氢酶含量的变化。因此,开发新型、快速、高效检测乳酸脱氢酶活性水平的方法可实现对常见的心肌炎、心肌梗塞、肾病、肝癌等疾病的早期诊断和实时调控。  “而将具有激发范围宽,发射光谱窄,荧光量子产率高,可通过调节尺寸、组成或结构来调节发射峰位,实现多色发光等优异光学特性的量子点用于开发信息容量大、响应速度快、灵敏度高、操作简便、成本低廉、便于携带的生物传感器,成为光学生物传感器研究的新热点。” 该团队成员之一、中科院理化所研究员任湘菱说。  唐芳琼领导的纳米材料可控制备与应用研究室一直致力于用价廉、可工程化的方法制备量子点并应用于生化检测,采用超声雾化法制备的水溶性碲化镉(CdTe)量子点实现对乳酸脱氢酶活性的定性定量分析。她们制备的新型生物传感器的检测范围为150~1500U/L,最低检测限达75U/L。  研究人员进而把这种方法拓展到血清中葡萄糖浓度的测定,并初步实现了对这两种物质的同时检测。她们构建的新型光学生物传感器与其他的量子点光学生物传感器(例如基于荧光能量共振转移的光学生物传感器)相比,不需要昂贵而复杂的生化分子修饰,方法简单快捷,操作易于掌握。此方法拓展了纳米材料的应用领域,为开拓生化检测分析的新途径提供了可供参考的实验和理论基础,促进了酶生物传感器的实用化发展。  “我们的目标是家庭化”  “通常用于检测乳酸脱氢酶的传感器制备过程复杂,需要一些复杂的分子,或者酶自身需要修饰,这样就需要一两天甚至更长的时间。而且需要经过专门培训的人来操作。我们这个检测体系可以用一些商品化的酶,医疗或生物制品市场可以买到的酶直接进行配制,配制过程一般只需要半个小时。”任湘菱说。  大多数人会每年进行一次体检,医生们却认为这个时间过长。不过,去医院体检是件很麻烦的事。通常要排队、挂号、检查要花上大半天时间,过几天还要再去取结果。很多人嫌麻烦,就不去体检了。  “如果我们能做到检测设备微型化,检测方法很容易掌握,而且能快速检测。自己在家隔几个月检查一下,既能发现疾病隐患,又方便了居民。” 任湘菱说,“现在家庭自己检查血压、血糖的多些,检测其他指标的比较少,主要是因为检测设备技术复杂,我们的目标就是实现体检家庭化。”  该团队用这一新技术作了血清检测,其结果和医院常用的设备对比十分吻合。  “要实现体检家庭化,还有大量的工作要做。未来我们会考虑做成试剂盒或试纸,和现在的血糖仪一样是用试纸插进去读数。”任湘菱说,“这属于光学传感器,我们主要的研究领域是生物试剂和纳米材料,因此也希望能和进行光传感、光器件研究的人合作,将比色转化成读数。”
  • MC镁瑞臣发布MC镁瑞臣 多通道光化学反应仪 MC-PHCAIO新品
    产品介绍: MC-PHCAIO(photochemical catalysis all in one)型多通道光化学反应仪主要用于研究气相或液相介质、固定或流动体系、紫外光或模拟可见光照、以及反应容器是否负载TiO2光催化剂等条件下的光化学反应。具有提供分析反应产物和自由基的样品,测定反应动力学常数,测定量子产率等功能,广泛应用化学合成、环境保护以及生命科学等研究领域。7英寸数字显示触摸屏控制光源、磁力搅拌、内部控温、冷却水循环温度及流速等,是国内首款全数字控制內照式自控温多位光化学反应仪,实现光化学仪器的一体化和数字化。功能指标:(1)MC-PHCAIO采用高集成一体化设计,控制电源、触发装置和光源部分集成在系统中,避免分体电缆连接式光源,触发困难和触发时产生电磁干扰等问题;多通道光化学反应仪采用7寸液晶触摸屏控制系统。实时显示工作数据,方便观察(2)程序控制光源的点亮、闭合;并支持灯源参数设置等。(3)MC-PHCAIO多通道光化学反应仪具有定时功能,操作简便,人机交互更快捷且方便观察。(4)温度实时监控系统,可观察箱体温度的变化情况。(5)具有超高温报警和冷水断流自动检测关闭光源,保证实验环境的安全。(6)反应暗箱内壁使用防辐射材料,全自动通风散热装置。(7)采用内照式光源,受光充分,灯源采用耐高压防震材质,持久耐用。(8)配有大功率磁力多位旋转搅拌装置,可设置公转和自转模式及转速,使样品充分混匀受光,可以更好在光环境下催化反应。(9) 双层耐高低温石英冷阱,可通入冷却水循环平衡反应温度。(10)整套为合成一体,箱体并入采用7寸液晶触目屏控制系统。实时显示工作数据,方便观察。内置1000W压缩机可给光源冷却和系统恒温,具有温度保护系统,超温自动关闭光源的功能。(11)机箱内部设有2个专用插座,其他外接用电器使用。(12)通过石英镀膜滤光片精确控制波长范围(紫外区、可见区)。创新点:MC-PHCAIO(photochemical catalysis all in one)型多通道光化学反应仪主要用于研究气相或液相介质、固定或流动体系、紫外光或模拟可见光照、以及反应容器是否负载TiO2光催化剂等条件下的光化学反应。具有提供分析反应产物和自由基的样品,测定反应动力学常数,测定量子产率等功能,广泛应用化学合成、环境保护以及生命科学等研究领域。7英寸数字显示触摸屏控制光源、磁力搅拌、内部控温、冷却水循环温度及流速等,是国内首款全数字控制內照式自控温多位光化学反应仪,实现光化学仪器的一体化和数字化。MC镁瑞臣 多通道光化学反应仪 MC-PHCAIO
  • 量子计量创未来!中国计量院深圳创新院与HORIBA共筑计量新时代
    为应对量子时代的发展需求,国家颁布了《计量发展规划(2021─2035年)》,规划明确了全新的宏伟目标:构建以量子计量为核心的先进测量体系,推动国家计量事业创新发展。深圳中国计量科学研究院技术创新研究院(以下简称“中国计量院深圳创新院”)响应国家号召,与HORIBA前沿应用开发中心共同建立“产学研协同创新中心”(以下简称“创新中心”),旨在利用领先的光学光谱及计量技术,共同制定国家标准、研制标准物质,为市场监管、产业发展和社会进步提供有力支持。2023年4月,双方在前沿应用开发中心开幕典礼期间为“创新中心”举行了揭牌仪式。△ 揭牌仪式上,中国计量科学研究院任玲玲研究员(右)与HORIBA 中国区总负责人 Yuko KIMURA女士(左)共同为“创新中心”揭幕其实,早在十余年前,HORIBA就与中国计量院共同起草了《激光共聚焦显微拉曼光谱仪性能测试方法》的相关国家标准。HORIBA能够参与其中,一方面得益于其卓越的拉曼光谱技术,为标准的专业性提供了有力保障;另一方面,HORIBA长期与各大高校与企业建立沟通合作机制,确保了标准在起草阶段便具备高度的市场契合度。同时,在标准起草过程中,HORIBA的专业、严谨及协作精神给中国计量院留下了深刻印象,双方合作愉快且高效,为后续中国计量院深圳创新院*与前沿应用开发中心合作建立 “创新中心”奠定了坚实的基础。创新中心成立后,双方面临的首个挑战便是粒度分析技术相关的国家标准制定工作。在该项工作中,HORIBA利用粒径分析技术,发挥HORIBA SZ-100V2纳米粒度及 Zeta 点位分析仪电位样品池电渗效应小、灵敏度高的优势,为材料研究的比对、检定、校准、测试等标准贡献光学之力。△ 在前沿应用开发中心陈列的HORIBA SZ-100V2纳米粒度及Zeta点位分析仪除了参与国家标准制定,创新中心也在“标准物质研制”方面积极发力。目前,中国计量院深圳创新院、华东理工大学药学院杨有军教授以及HORIBA三方携手,为近红外探针标样研制开展紧锣密鼓的筹备工作。在这一合作中,HORIBA Fluorolog-QMTM科研级荧光光谱仪将肩负重任,为样品检测分析提供激发光谱、发射光谱、量子产率等关键参数的测试。同时 HORIBA NanoLog® 近红外荧光光谱仪也会用于标准物质的各项参数验证。整个研制工作将推动医疗诊断和生物标记领域的发展。而且一旦成功,它也将成为中国计量院深圳创新院与 HORIBA 合作后,在该领域出具的首个标物认证,具有重要的里程碑意义。△ 华东理工大学药学院的杨有军教授实验室的Fluorolog-QMTM科研级荧光光谱仪及中国计量院深圳创新院实验室中的NanoLog® 近红外荧光光谱仪协同起草国家标准与联合研制标准物质的工作正如火如荼地推进,但“创新中心”的蓝图远不止于此。展望未来,中国计量院深圳创新院与HORIBA前沿应用开发中心将继续秉承“资源共享、优势互补”的合作理念,深化在标物应用推广、学术交流研讨等领域的合作,同时积极探索更多元化的合作机制,共同推动光学光谱及计量技术的持续创新与发展。我们坚信,“创新中心”将站在行业前沿,以更高的测量分析精度和更强的技术能力,为全面实现量子计量的新时代贡献科技力量!——————————————————————————————————————————————————关于前沿应用开发中心前沿应用开发中心位于HORIBA全新投资的厚立方大楼2楼,占地面积约 800 平方米,汇集了HORIBA的先进仪器与设备。依托资深的专业技术团队,前沿应用开发中心致力于与中国用户深化合作、协同创新,包括研究方法与解决方案,从而帮助各领域研究人员突破技术壁垒,解决科研难题。同时,前沿应用开发中心还将积极搭建产学研合作桥梁,与各大高校及科研单位达成战略合作,共建实验室,共创知识产权,共同制定行业标准,并利用现有设备及人员优势,全力培养下一代科研人才。目前,HORIBA 在全球18个地区设有前沿应用开发中心,至今已有30多年经验,凝结全球先进技术与应用经验,前沿应用开发中心将与中国用户携手合作,共同发展,为中国的科技发展贡献更多力量。
  • 刘舜维、汪根欉、胡斌:延伸发光偶极各向异性动力学实现34.01%外量子效率
    本文重点:1. 平面定向的发光偶极必须在时域和能量域上都展现延伸的各向异性动力学,这是研发高效OLEDs的必要条件。2. 通过在平面定向的Exitplex杂合体中引入Ir(ppy)2(acac),可以抑制主宾体散射,使发光偶极的各向异性动力学延伸 至微秒量级。3. 采用延伸各向异性动力学的Ir(ppy)2(acac):杂合体系统成功实现了高达34.01%的外量子效率。明志科技大学有机电子研究中心主任兼工程学院副院长刘舜维教授、中国台湾大学化学系汪根欉教授以及美国田纳西大学先进材料与制造工程研究所材料科学系胡斌教授三方研究团队,近日共同在《先进光学材料》(Advanced Optical Materials)期刊发表研究报告。该研究基于平面定向的Exitplex杂合体[BCzPh:CN-T2T]主体,使用包括时间解析和稳态两种光聚合物各向异性度量方法,全面研究了发光偶极在时间和能量两个维度的各向异性动力学特征。研究结果发现,相较于随机定向的发光偶极,设计能够形成平面定向的发光偶极是研发高效OLEDs的关键方法之一,这可以显著提高光的提取效率。但是,平面定向的发光偶极必须同时在时域和能量域都展现足够的偏振记忆效应,使各向异性动力学延伸至整个发光寿命时间范围,这才能大程度地增强OLED的光提取率。该研究充分证明,这种延伸的各向异性动力学是研发高效OLEDs的必要条件。研究团队将平面配置的红色磷光体Ir(ppy)2(acac)以很低的摩尔浓度分散于平面定向的Exitplex杂合体[BCzPh:CN-T2T]主体之中,构建了发光层。结果发现,平面定向的杂合体主体可以通过抑制主宾体之间的库仑散射,显著延长磷光体发光偶极的各向异性动力学,使其从纳秒量级延伸到微秒量级,与磷光寿命时间范围相当。这满足了采用Ir(ppy)2(acac):杂合体系统来提高OLED光提取效率的必要时域条件。更重要的是,研究还发现,在抑制主宾体库仑散射的情况下,高能态的发光偶极也可在杂合体主体的作用下维持延伸的各向异性动力学,而不会随着热电子从高能态松弛至LUMO而随机化。这是由于杂合体主体的偏振记忆效应不仅影响低能态,也可维持高能态发光偶极的平面定向分布。综合时域和能量域两个维度的研究结果可以看出,发光偶极延伸的各向异性动力学是研发高效OLEDs的必要条件。最终,采用延伸各向异性动力学的Ir(ppy)2(acac):杂合体系统成功实现了高达34.01%的外量子效率。该成果为进一步提升OLED性能提供了有力指导,将促进高效OLED显示技术的进一步研发。本次研究,团队采用了光焱科技Enlitech所设计生产的超低光源光致发光量子产率高校量测设备LQ-100X-PL,Enlitech所设计的LQ-100X-PL采整合型设计,精心严选高档用料材质,设备寿命长,且拥有软、硬件整合与调校,凭借光焱科技多年量测PLQY经验,出场即校正完成,即装即用,可大幅免除自行搭建设备的难度与光强不足等扰人问题。LQ-100X-PL采用LED光源设计,整体结构紧凑,尺寸仅502.4mm(L) x 322.5mm(W) x 352mm(H),可整合手套箱,并在搭配定制样品盒下,不论研究产品是薄膜、粉末、液体型态,让研究人员十秒内完成待测物量测装载,超快速精准且方便进行PLQY量测,无须烦恼样品尺寸与积分球开口尺寸两难问题,整体量测结果精准、重复性高,更可以进行原位时间光谱解析,量测数据经得起投稿审查时高品质要求,且加上光焱科技Enlitech专业服务与销售团队服务,更能为PLQY量测进行把脉,让客户将心力专注于研究。
  • 中美科学家实现“可定制化裁剪”单壁碳纳米管,或催生室温下的超导体,为量子计算机和量子通信带来广阔前景
    在北京化工大学、和美国阿克伦大学读完本硕博之后,林志伟历经三站博士后研究。除第一站过渡性博士后仍在阿克伦大学,其余两站分别在美国哥伦比亚大学、美国国家标准与技术研究院(NIST,National Institute of Standards and Technology)完成。2022 年 1 月,林志伟回国加入华南理工大学前沿软物质学院担任教授。▲图 | 林志伟(来源:林志伟)时隔数月,其担任第一兼通讯作者的论文,发表在 Science 上。研究中,他利用 DNA 首次实现了单壁碳纳米管的可控有序修饰。对于发展超导材料和量子材料,将起到重要的推进作用。据介绍,超导材料、量子材料等性能独特的变革性材料,被认为具备解决人类当前面临的信息、能源、量子计算等重大问题的可能,甚至有望推动下一次产业革命。正如美国马里兰大学化学与生物化学系教授 YuHuang Wang教授在同期 Science 评论文章所指出的:美国物理学家威廉雷透(William A. Little)在 50 年前提出了经典的室温超导材料的分子模型(即 Little 模型)。然而,经过几十年的努力,人们一直无法在实验上设计出符合 Little 模型的超导分子。而该成果为实现 Little 模型迈出了重要一步,是里程碑式的发现。量子材料,是指由于其自身电子的量子力学特征,而产生奇异物理特性的材料。在发展变革性的数据存储、数据处理、通讯、以及计算机相关技术上具备巨大潜力,并可能产生惊人的经济效益。2016 年,美国能源部确立以量子材料为优先发展方向的变革性能源相关技术。由于具有独特性能,单壁碳纳米管可用于构建一维量子材料,但其缺点是量子产率较低。通过化学修饰,在sp2结构的单壁碳纳米管中引入缺陷构筑量子缺陷,可大大提高量子产率,这让单壁碳纳米管成为很好量子发光材料。可以预见,其将在量子计算机、量子通信等领域拥有广阔的应用前景。像服装设计师一样,"裁剪"单壁碳纳米管的化学结构超导材料,是指电阻为零的材料。在传输电流的时候,既不损失能量也不会产生热量。目前的超导材料都需要在很低的温度下(-100℃ 以下)才能产生超导性能。若发展出室温的超导材料,则有望用于制备超快计算机、超小的电子设备、高速磁悬浮列车等。如前所述,威廉雷透(William A. Little)曾首次提出室温超导体的分子模型——Little 模型。过去 50 年,学界已开展大量实验,但一直未能设计出其设想的超导分子。直到 2016 年,科学家提出碳纳米管或有望实现 Little 室温超导材料,但是得对碳纳米管的结构进行精确可控的化学修饰。可以说,这又是一项难于逾越的重大难题。碳纳米管(Carbon Nanotubes,CNTs),于 1991 年由日本物理学家饭岛澄男(Sumio Iijima)发现。据维基百科介绍,"碳纳米管是一种管状的碳分子,管上每个碳原子采取 sp2杂化,相互之间以碳-碳 σ 键结合起来,形成由六边形组成的蜂窝状结构,以作为纳米碳管的骨架。"按照管子的层数不同,碳纳米管可分为单壁碳纳米管(SWCNT,Single-walled carbon nanotubes)和多壁碳纳米管(MWCNTs,Multi-walled carbon nanotubes)。单壁碳纳米管的结构简单,均匀一致性好,而且缺陷少、 性质稳定,受到的关注更多。鉴于此,自碳纳米管被发现以来,一直是热点研究材料。▲图 1 | 单壁碳纳米管(来源林志伟)凭借优异的光学、电学、力学、热学等性能,单壁碳纳米管已被广泛用于电子器件、光学仪器、锂离子电池、航空航天材料、疾病检测等领域。对单壁碳纳米管进行化学修饰,可以改变它的晶格结构电学性能和光学性能也会随之改变。这一手段对于发展有机超导材料、量子材料等新型材料具有重大意义。然而,在单壁碳纳米管中,所有碳原子的化学环境均为一致,存在着 sp2 杂化(sp2hybridization),即"一个原子同一电子层内由一个 n s 轨道和两个 n p 轨道发生杂化的过程"。因此,对单壁碳纳米管实现可控化学修饰,是领域内长期存在的一项重大挑战。针对此,林志伟与 NIST 的 Ming Zheng研究员,借助 DNA 让单壁碳纳米管,得以实现可控的有序修饰(图 2)。林志伟指出:"精确可控的修饰方法,让科学家有望像服装设计师一样,按自己的想法 ‘可定制化’地设计单壁碳纳米管化学结构,以实现特殊的性能(例如超导性能和量子性能等),进而实现在航空航天、量子计算机、量子通信、新一代生物医疗等领域的前沿应用。"▲图 2 | 有序可控修饰的单壁碳纳米管(来源:林志伟)近日,相关论文以《DNA 指导的碳纳米管晶格重构》(DNA-guided lattice remodeling of carbon nanotubes)为题,发表在 Science 上。林志伟兼任第一和通讯作者,Ming Zheng 研究员为共同通讯作者。(来源:Science)其中一位审稿人认为,该工作实现了一个宏大目标。此前,很多学者反复尝试却无功而返。因此,此次成果是领域内的重大进展。另一位审稿人指出,常温超导材料是无数科学家长期追寻的远大目标。该论文提出了有序可控地修饰单壁碳纳米管的方法,为制备常温超导材料提供了一种潜在解决方案。心情"忐忑"地给美国科学院院士发邮件据介绍,参与此次合作的 Ming Zheng 团队,长期致力于 DNA-碳纳米管复合材料方面的研究,尤其在 DNA 分离高纯度碳纳米管方面有着深厚积累。但是对于碳纳米管的化学修饰,团队的经验稍有不足。在加入 NIST 之前,林志伟本人并没有碳纳米管领域的工作经验,但在大分子精确合成、特别是在富勒烯(英文名为 Fullerene,又名C60)的精确修饰上,已经积累多年经验。C60是一种由 60 个碳原子组成的球型分子,它和碳纳米管同属于碳纳米材料的同素异形体。两者在结构和性能上,有一定的相似性。当有学科背景互补的人在一起讨论,很容易碰出"火花"。结合 NIST 团队在 DNA-碳纳米管复合材料、以及林志伟 C60 精确合成方面的背景,他们很快在科研想法上达成共识,提出了利用 DNA 来调控碳纳米管化学修饰的思路,并借此解决碳纳米管有序可控修饰的艰巨任务。接下来便是正式立项和开展实验。确定研究思路之后,如何选择 DNA 的序列、碳纳米管的种类,以及如何发展高效的化学修饰方法,成为新的工作重点。基于前期积累,该团队选取含有鸟嘌呤碱基(Guanine,G)的 DNA 序列,将其缠绕到多种单手性单壁碳纳米管的表面,通过调控单壁碳纳米管种类、DNA 序列和构象,实现了预先定制的反应位点。在 525nm 光照下,名为玫瑰红(Rose Bengal)的光敏剂得以激发,借此产生了单线态氧,进而引发鸟嘌呤碱基与单壁碳纳米管发生反应。之后,课题组利用吸收光谱、光致发光光谱、拉曼光谱,对产物结构进行表征(图 3)。▲图 3 | 单壁碳纳米管与 DNA 的反应示意图和光谱表征(来源:Science)为了研究反应机理,以及反应之后单壁碳纳米管晶格中的反应位点的空间分布,该团队设计出一系列鸟嘌呤碱基含量相同、鸟嘌呤碱基相对位置不同的 DNA(2G-n)。结果发现,在拉曼、荧光光谱中与单壁碳纳米管晶格缺陷相关的峰强里,C3GC7GC3(2G-7)和(8,3)单壁碳纳米管的反应产物出现了极小值。这表明,单壁碳纳米管中形成了有序排列的晶格缺陷,即有序排列的反应位点(图 4)。▲图 4 | 筛选 DNA 序列并在单壁碳纳米管中构筑有序的反应位点(来源:Science)紧接着便是寻求合作和交叉验证。虽然通过上述光谱分析,该团队首次证实了有序可控修饰的单壁碳纳米管结构。但是这一结论太过重要,他们反复告诫自己必须非常谨慎对待,在论文发表前务必借助多渠道,对结论进行交叉验证。因此,课题组怀着"忐忑"的心情给美国科学院院士、弗吉尼亚大学哈里森生物化学和分子遗传学系的爱德华H埃格尔曼(Edward H. Egelman)教授写信,以寻求合作。埃格尔曼教授是冷冻电镜方面(cryo-EM,Cryogenic electron microscopy)的顶尖学者,在利用冷冻电镜解析 DNA-蛋白质等复杂生物分子结构方面有着深入研究。之所以怀着"忐忑"心情,是因为该团队之前和埃格尔曼教授并未有交集,而且后者的主要研究兴趣在生物学,很少涉及材料科学。那么,对方是否愿意合作?课题组表示比较担心。不过,令人激动的是埃格尔曼教授表现出极大的兴趣。双方很快就定下合作方式和目标,即利用冷冻电镜进一步验证有序可控的碳纳米管的结构。有了冷冻电镜的结果之后(图 5),课题组满怀信心地把论文投到 Science,并获得期刊主编和审稿人的高度赞赏。论文接收后,埃格尔曼教授接受 Science Daily 的采访时表示:"虽然我们经常使用物理学中的工具和技术来研究生物学,但是我们这次的工作表明,生物学中开发的方法实际上也可以用于解决物理学和工程学中的问题。科学研究常常会产生预料之外的结果,这正是科学令人着迷的原因所在。"▲图 5 | 冷冻电镜重构有序修饰的单壁碳纳米管结构及反应机理示意图(来源:Science)力争在有机超导和新型量子材料上,实现相关应用和很多在新冠大流行中完成的科研成果一样,如果没有疫情,论文或将更早面世。2019 年 9 月,研究正式启动。2020 年 1 月的一天,林志伟正在做实验,被临时要求必须马上离开实验室,整个马里兰州(NIST 所在的州)进入紧急隔离状态。临走时他和同事聊天,以为最多两个星期。两周很快过去,实验室并未解除隔离。之后进入漫长的等待。1 个月、2 个月、6 个月...... 幸运的是,实验室重新开放后,课题进展得很快。尽管此次研究诞生了符合 Little 模型的超导分子。但是,其超导方面的性能尚未得到真正的验证。针对这些新型单壁碳纳米管材料的性能表征,并揭示材料结构与性能关系,是该团队的后续重点。另一方面,他们还计划将含有不同结构和功能的化学官能团,通过有序可有的修饰方法,引入到单壁碳纳米管中,从而设计出结构更精确、性能更多样的单壁碳纳米管,力争在有机超导和新型量子材料上实现相关应用。目前,林志伟课题组主要围绕高分子、DNA、碳纳米管,致力于新型复合与杂化功能材料的精确设计、精准组装和先进应用等方面的研究。课题组常年招募博士后、博士和硕士研究生。
  • 在聊iPhone X“AMOLED全面屏”前,你需要知道这些...
    相信昨天许多小伙伴们的朋友圈“起床刷”妥妥地被“iPhone X”占据了。这让小编不经感叹:果太美,尽管再昂贵,总有人黑着眼眶熬着夜̷̷看着发布会。图源: cnseoer.net虽然收到“一款有刘海的手机”、“刘海逼死强迫症”等这样那样的吐槽。但认真讲,这款此次苹果发布会中最耀眼的星——iPhone X还是给了我们“满屏”的惊喜。图源: cnseoer.net & weibo.com 速画本 iPhone X图源:mobile.zol.com.cn“屏”,可以说是目前各手机商家的兵家必争之地了。在手机屏幕的进化中,液晶屏、双曲屏、柔性屏、全面屏,不断刷新手机“颜值”。而“满屏”,也就是全面屏无疑是当前最火的话题。2016小米发布MIX概念机,其全面屏一时间震惊业界;三星S8带着“突破所限,大有可能”的响亮口号,携自家AMOLED全面屏登上了行业的年度舞台;当然,iPhone新机X也不出意外的采用了AMOLED全面屏。三星AMOLED全屏手机S8图源:news.smzdm.com据Digitimes公司公布的一份报告显示,2017年出货的智能手机中大约27.6%将采用AMOLED显示屏。在未来三年中,AMOLED屏幕的比例还可能会增加至50%。而这热到烫手、红到发紫的AMOLED到底是个什么样的小妖精,竟如此让各大手机厂商竞相追随?!小编觉得,想要开聊AMOLED,下面这些内容,小伙伴们还是有必要来看一看的! 原来这就是AMOLED! AMOLED 是英文Active-matrix organic light emitting diode的简写,中文全称为“源矩阵有机发光二极体”或“主动矩阵有机发光二极体”。其主要构造有三层:AMOLED屏幕、Touch Screen Panel(触控屏面板)和外保护玻璃。而作为一种新技术,AMOLED当然具备诸多优势。图源:ofweek.com 广色域简单来说,就是屏幕能够显示的色彩更多了。而具有更多意义,则是其对比度的有效提升(是LCD的几百倍),无论是更接近于黑夜的阴影,还是介于蓝绿之间的青色,都可以完美呈现。来源:amoledworld.com超薄AMOLED是自发光屏幕,由于发光体原理不同,不需要如LCD一般“背负”太多部件。集成触摸技术也让AMOLED显示屏可以做到更轻薄。 来源:amoledworld.com户外可读性强户外的强光下很难看清手机图像,这便是户外可读性差。户外可读性与“彩度X亮度”成正比,OLED的彩度远高于LCD,即使在明亮阳光下颜色也可清楚呈现。同时,蓝光的减少以及响应速度的增加,也进一步提高了阅读体验。 能耗低通过前文的构成图也看到,LCD有一个背光模组,它发射的亮度是100%,局部亮度控制是通过液晶分子的转动方向来实现的。而AMOLED屏则是“哪里需要亮哪里”,每个像素都可以被独立控制,无需恒定背光。可想而知,能耗将被大幅度降低。来源:amoledworld.com 高柔韧度“曲屏”、“全面屏”(full screen display)概念想必小伙伴们已不陌生。比起玻璃基板,AMOLED有更强的柔韧性。这样说起来,以后将手机卷起来揣在包包里,可能就不会只是脑洞里才会出现的场景了吧!图源:ofweek.com那都是OLED在带节奏! 说了这么多关于AMOLED的优点,归根结底,成就它的,就是基础的OLED。OLED即有机发光二极管(Organic Light-Emitting Diode)又称为有机电激光显示、有机发光半导体(Organic Electroluminescence Display, OLED)。与液晶显示(Liquid Crystal Display, LCD)是不同类型的发光原理。 其是香港美籍华裔教授邓青云(Ching W. Tang)于1983年在实验室中发现的,由此展开了对OLED的研究。OLED显示技术具有自发光、广视角、响应快、高对比度、低能耗、高柔韧性等优点。被誉为代替液晶技术理想的下一代显示技术。 如图所示,OLED多层结构包括玻璃基板(TFT)、阳极(Anode)、空穴注入层(HIL)、空穴传输层(HTL)、有机发光层(EL)、电子传输层(ETL)、电子注入层(EIL)、及金属阴极(Cathode)。 来源:百度百科 “OLED发光原理不同”,是我们说得最多的。那它到底是如何发光的呢? 套用《科普:OLED材料的发光原理》一文中非常形象的说明(部分改): 空穴和电子在发光层中相遇,然后复合,就像久未相见的恋人,一见面便紧紧抱在一起。电子空穴复合时会产生能量,释放出光子,就像情侣头上冒出的心一样。 光的颜色由光子的能量决定,如果能量的高低用情侣的亲密程度比喻的话(材料为取决于亲密程度的感情基础):特别亲密的发出蓝色(能量高发出蓝光),比较亲密的发出绿色(能量适中的发出绿光),一般亲密的发出红色(能量低的发出红光)。 图源:OLED新技术公众号 OLED能发出怎样的光,关键取决于材料。 按发明的时间来排列,目前一共有三代材料: 第一代:荧光材料利用单重态激子发光,具有寿命长、性能稳定等优势。但其只利用了25%,单重态激子使得荧光材料的量子产率较低,因此其诱发的蓝光效率也很低,无法达到深蓝; 第二代:磷光材料利用Ir和Pt等贵金属的重原子效应,能同时利用单重态和三重态激子发光,内部量子产率可以达到100%,效率远远优于荧光材料,但寿命及稳定性不如荧光材料,且因含贵金属而十分昂贵。目前红光和绿光磷光材料已经商业化。 第三代:热激活延迟材料(TADF)热活化延迟荧光材料从分子设计角度入手,不依靠贵重金属元素,同时兼具热活化延迟荧光特性(TADF)的纯有机化合物发光材料,实现低成本、环境友好、高效率、以及化学结构稳定性的潜能。 图源:yesky.com TADF材料的研发是当前OLED领域的热点,也成为实现全有机高效率功能发光层最有潜力的研究方向之一。 该类材料诞生于有机电子领域的先驱研究者之一——九州大学安达千波矢教授所领导的课题组。研发过程中,有两个评价其发光性能的重要指标,是课题组至始至终都要牢牢把握的:量子产率和荧光寿命。(无论哪一代OLED材料研究,这两个参数都是十分必要的) 安达千波矢教授课题组TADF材料研究 而辅助其完成测量任务的,就是滨松绝对量子产率测量系统Quantaurus-QY,外量子效率测量系统c9920-12/-11和荧光寿命测量系统Quantaurus-Tau。正是通过分别对光致发光和电致发光参数进行测试并得到了准确的结果,凭借这些指标,课题组才对有机分子设计做到了精准把握,推进了TADF材料的发展。滨松荧光寿命测量系统Quantaurus-Tau、绝对量子产率测量系统Quantaurus-QY滨松外量子效率测量系统C9920-12/-11 在发布会中呈现出的科技进步,也许大多只是成为人们谈资和新闻热点。但在其身后,却凝聚了无数科研、科技工作者们的汗水。不知多少实验的成败往复才会换来屏幕一寸的延展,也不知多少数据的积累分析才成就最后机身一毫米的变薄。在这一场时代性的OLED浪潮中,滨松也将继续坚守其中,推动并见证这每一次的改变。
  • 发射波长950-2100 nm!南开大学庞代文教授团队近红外量子点新突破 | 前沿用户报道
    成果简介2021年8月,南开大学庞代文教授课题组在国际期刊J. Am. Chem. Soc上发表论文:Breaking through the Size Control Dilemma of Silver Chalcogenide Quantum Dots via Trialkylphosphine-Induced Ripening: Leading to Ag₂Te Emitting from 950 to 2100 nm,提出配体诱导量子点熟化生长策略,实现银硫族(Ag₂Te)量子点发射波长从950nm到2100nm连续可调。背景介绍银硫族量子点(Ag₂X X=S, Se, Te)是一类窄带隙半导体纳米晶体,由于其具有近红外荧光发射、高稳定性以及低生物毒性等优异性质,作为近红外二区荧光活体成像的荧光材料,在生物医学研究中有着良好应用。理论上,银硫族量子点中的Ag2Se以及Ag2Te量子点的荧光发射波长能够覆盖整个近红外波段。然而,目前其发射波长可调窗口很窄,无法在宽范围内连续调节。量子点的发射波长(带隙)可通过控制量子点的尺寸来调节,但对于银硫族量子点,其难点在于:1)带隙太窄,发射波长对尺寸变化特别敏感;2)对其成核与生长机理认识不足。量子点尺寸控制的关键在于控制成核与生长阶段单体的供给。小尺寸量子点合成时,需要控制单体用于成核,且抑制纳米晶的进一步生长。反之亦反。庞代文教授团队发现,三烷基膦能够诱导小尺寸银硫族量子点溶解。基于此发现,可通过改变三烷基膦用量、种类、合成温度等精确调控银硫族量子点的溶解行为,进而调控单体为成核或生长所用,精准实现不同尺寸(发光波长)银硫族量子点合成。图文导读本实验以Ag₂Te为样品,通过在1.6–5.9nm间(幅度(Δr)仅4.3nm)精确调节Ag₂Te量子点的粒径,实现了其发射波长从950nm至2100nm的连续可调(跨度(Δλ)为1150nm)。图1 三烷基膦诱导量子点熟化实现Ag₂Te发射波长从950nm到2100nm连续可调。 图2 量子点表面致密的配体层有效地钝化了表面原子,非辐射跃迁减少,发光效率得到了提升。本工作中,Ag₂Te量子点的荧光发射峰可调范围宽(950-2100 nm),为获得真实、完整的稳态荧光光谱需要使用不同的近红外检测器,以在检测器的最佳响应区间进行测试。对于瞬态荧光光谱,由于近红外样品的量子产率相对可见光样品较低,想要在短时间内完成测试,对激光器的功率有较高的要求。本工作中使用980 nm的脉冲光源(DD-980L, HORIBA)激发样品,荧光寿命曲线用软件(DAS6, HORIBA)拟合,可以快速实现近红外量子点瞬态荧光的测试。仪器推荐Fluorolog-QM,采用模块化设计,针对如AIE、钙钛矿、近红外一区二区荧光探针、稀土纳米发光材料、量子点、光功能材料等热点应用实现个性化配置。激发波长低至180nm起,发射波长可覆盖185~5500nm。全波长范围准确聚焦,无色差,高灵敏度35000:1,高分辨率0.1nm。全套的寿命测试技术(TCSPC、MCS、SSTD和延迟技术),保证了全光谱稳瞬态、延迟光谱测试功能。Fluorolog-QM 模块化稳瞬态荧光光谱仪扫码咨询产品总结展望尽管有着十余年的发展历史,银硫族量子点一直面临着发射波长难以在宽范围内调控的难题。相比于原有的工作,这个工作在合成方法以及涉及的化学试剂上并没有太多的变化,而是从细节出发,发现了之前一直被忽略的现象,并基于这一发现突破了存在多年的调控难题。庞代文教授简介:博士、南开大学化学学院杰出教授、博士生导师、美国医学与生物工程院(AIMBE)Fellow、英国皇家化学会Fellow (FRSC)、南开大学分析科学研究中心主任、全国纳标委纳米光电显示技术标准化工作组组长等。主要从事生物医学量子点研究。联系作者:335388123@qq.com文献信息英文原文标题Breaking through the Size Control Dilemma of Silver Chalcogenide Quantum Dots via Trialkylphosphine-Induced Ripening: Leading to Ag2Te Emitting from 950 to 2100nm发表期刊J.Am. Chem. Soc文章署名作者:Zhen-Ya Liu, An-An Liu, Haohao Fu, Qing-Yuan Cheng, Ming-Yu Zhang, Man-Man Pan, Li-Ping Liu, Meng-Yao Luo, Bo Tang, Wei Zhao, Juan Kong, Xueguang Shao, and Dai-Wen Pang扫码查看文献
  • 滨松中国将参展2016中国国际功能材料大会(CIFM2016)
    由国家仪表功能材料工程技术研究中心、新材料全球交易网、重庆功能材料期刊社、中国仪表功能材料学会、重庆市功能材料学会联合主办的2016中国国际功能材料大会(CIFM2016)暨第九届中国功能材料及其应用学术会议(9th NCFMA)将于2016年7月25-28日在中国重庆悦来国际会议中心举行。滨松中国将携带新一代紫外-近红外绝对量子产率测量仪Quantaurus-QY Plus参展。 滨松紫外-近红外绝对量子产率测量仪突破了传统技术无法测试的300nm~1650nm大范围量子产率的瓶颈,可测近红外波长范围至1650nm,可以进行1%或者更低的量子产率测量,展示了近红外以及微弱光环境下精确的测量能力,亦可对上转换发光的量子产率进行测量。更多内容、更多惊喜,请莅临CIFM2016滨松中国展台。紫外-近红外绝对量子产率测量仪Quantaurus-QY Plus
  • 滨松中国与深圳大学擦出科研火花 Quantaurus-QY Plus成功落户材料学院
    2019年12月12日,滨松中国产品售后服务技术工程师来到深圳大学,与材料学院的老师和同学们一起完成了Quantaurus-QY Plus C13534-11紫外近红外绝对量子产率测量仪的安装与调试。在安装与调试的过程中,材料学院的老师和同学们表示,滨松中国的产品具有很优异的技术参数,而且在运行的过程中具有很高的稳定性,使用起来高效又省力。 滨松中国的Quantaurus-QY Plus C13534-11相比较于传统的荧光量子效率的测量仪,有了三点新突破: 1、可以在近红外区域到1650nm波长范围内进行测量。滨松在Quantaurus系列产品中选用了自产的探测器,并基于对探测器的深刻理解与定制,开发出了特有的“光谱无缝缝合”技术,使得通过可见光探测器和近红外探测器所得到的光谱能够完美地衔接在一起,从而使用户可以在300-1650nm的范围内,横跨可见及近红外区域并得到完整且精准的光谱和真实的量子产率数值; 2、能准确测量1%甚至更低的量子产率。目前常见的上转换量子产率多为0.01%~5%,比常见的荧光(或下转换发光)材料的绝对量子产率要低了一个数量级。 针对上转换材料普遍较低的量子产率,滨松在内置光源之外,还提供选配的高功率氙灯光源以及激光器。如图所示的文献中,作者就采用了980nm的近红外激光器作为光源,利用滨松Quantaurus-QY plus测得了低至0.22%的量子产率。 3、可以进行上转换发射材料的测量,由于常见的上转换材料都是将近红外光转换成可见光,所以横跨可见光到近红外波段的吸收光谱/发射光谱也是上转换材料的研究和研发中所关注的重要参数。为了契合这样的需要,滨松Quantaurus-QY plus中不仅配备了高灵敏度高信噪比背照式CCD探测器(探测范围从紫外至约1100nm的近红外),而且配备了专门用于近红外波段的InGaAs探测器(从850nm至1650nm)。 无论是宽广光谱的探测,极低量子产率的测量,还是需要采用多种不同波长的激光器作为激发光源,上转换材料的研究给仪器不断提出新的要求,不同研究者对仪器的预期也不尽相同。这使得仪器的配置灵活性和可扩展性变得越来越重要。 在探测器方面,滨松可以根据实际需求配置单探测器(350-1100nm),而后可以再升级成双探测器配置(350-1650nm)。 而在光源方面,滨松不仅提供内置光源以及选配的高功率氙灯光源和激光器,仪器上的FC和SMA外置接口更是允许用户接入已有激光光源,以节省成本。 滨松中国作为光电行业的核心器件供应商,多年来一直十分重视客户在产品售后服务方面的体验,为此滨松中国专门成立了一支技术水平高超的售后服务团队。来自五湖四海的售后服务工程师,凭借着精湛的技术,一次又一次赢得了客户的赞同,慎终如始,滨松中国会永保初心,砥砺前行。
  • 滨松中国参展华人聚集诱导发光(AIE)学术研讨会
    2018年9月26日,为期四天的第一届华人聚集诱导发光学术研讨会在西安市曲江国际饭店成功举办。本次会议旨在为华人学者搭建一个AIE研究和学术交流的平台,是聚集诱导发光领域的一次盛会。滨松中国携两款绝对量子产率测试仪——Quantaurus-QY和Quantaurus-QY Plus亮相本次会议。 Quantaurus-QY是一款紧凑而易用的仪器,它将氙灯型激发光源、单色仪、一个氮气流可选的积分球和一个能同步测量多个波长的多通道探测器等元件集成到一个封装里,探测器采用制冷型背照式CCD传感器,能进行高灵敏度的瞬时测量,用于测量光致发光材料的量子效率,而且无需传统相关方法所必需的已知参考标准。不同形式的样品,包括薄膜、固体、粉末和溶液等均能被分析,并能将溶液样品冷却到液氮温度。滨松绝对量子产率测量仪Quantaurus-QYQuantaurus-QY Plus在Quantaurus-QY的基础上增加了可扩展近红外探测器通道以及可扩展外接光源的接口。可扩展的近红外通道可以将量子产率的测量范围扩展至300-1650nm,覆盖市面上发光材料量子效率测量需求波段。与普通双通道探测器不同,滨松的双通道探测器测量结果通过算法拟合,结合JCSS级别的校准技术,可以让双通道结果无缝接合,得到稳定结果。产品的外接光源扩展接口可外接激光器以及高能氙灯等光源,可以轻松测量低量子产率以及上转换发光的材料,满足客户对于低发光效率以及上转换材料的测量需求。滨松近红外绝对量子产率测量仪 Quantaurus-QY PLUS本次会议深入探讨了AIE所面临的机遇、挑战及未来的发展方向。滨松的两款量子产率测量仪凭借其优异的性能受到了众多与会人员的高度关注。
  • 遇见“Prima”——德国PicoQuant全新推出多色激光器
    近日,在德国柏林最近的一次网络研讨会上,PicoQuant向大家展示了其最新的激光创新良心之作:独立的、全电脑控制的激光模块Prima。PicoQuant公司的产品经理Guillaume Delpont阐述了这款激光器的设计初衷:“许多科研人员在工作中都面临着同样的困难,那就是他们需要多个激发波长来研究他们的待测样品,而购买多个激光器又会变得非常昂贵。PicoQuant公司为了给科研人员面临的共同挑战提供解决方案,最终依托自身在激光开发方面长达25年的专业背景和研发实力,创造了Prima—— 一种经济实惠、紧凑的激光模块,可以发出红色、绿色和蓝色的脉冲激光。”Prima——三色皮秒脉冲激光器Prima是一款独立、紧凑、价格合理的激光模块,提供3个独立的发射波长,可以在皮秒脉冲和连续波(CW)模式下工作。皮秒脉冲可以由Prima模块的内部时钟触发,也支持高达200MHz的外部触发。该模块采用全电脑控制,操作非常简单:通过USB端口将Prima连接到PC端,所有操作参数的更改都可以通过一个方便的软件接口完成。 红、绿、蓝:三种最有用的波长Prima可以提供三种波长的激光:640nm、515nm和450 nm。每种颜色都可以单独输出,每次输出一个波长。 这三种颜色是材料科学、化学和生命科学中最常用的3种波长,广泛应用于光谱学或显微镜应用的常规激发,进行种类多样待测样品的研究,其中包括新型纳米材料、量子点、分子和荧光团。 Prima是一款几近完美的工具:当涉及到日常实验室任务时,能够满足您的大多数需求,如寿命或量子产率测量,光致发光和荧光测量等。 灵活多样的工作模式:脉冲、连续和快速开关模式在进行时间分辨或稳态测量的时候,无论您需要哪种类型的操作模式,Prima的灵活性都可以轻松实现。Prima同时也支持快速连续开关功能。脉冲模式支持内触发和外触发,内触发的重频率范围从100 Hz至200 MHz可调,外触发支持的重复频率范围从单次脉冲至200 MHz。 每个波长的平均输出功率高达5mW。在CW工作模式下,每个波长可以达到更高的平均输出功率(高达50 mW)。在CW工作模式下,进行ON和OFF状态切换的上升/下降时间小于3 ns。 恒定的重复频率可以通过内部触发来进行设置,Burst工作模式也可以由合适的外部触发源实现触发(例如,PicoQuant的Sepia PDL 828的振荡器模块)。您甚至可以将Prima与其他激光模块组合使用,从而实现更为复杂的激发模式,不仅包括Burst模式,还包括脉冲交替激发(PIE)或交替激光激发(ALEX)。 这使得Prima成为一个通用的工具,可以在许多环境中使用。 易于使用作为一个独立的激光模块,Prima不需要任何其他外部激光驱动对齐进行控制。其参数设置和操作通过一个基于成熟的Sepia的图形用户界面软件进行全电脑控制。
  • 厉害了,康宁在光反应动力学的又一大突破!!!
    摘要近日康宁AFR欧洲技术团队,基于紫外-可见光下(E)-偶氮苯的光异构化,开发了一种高效、低成本的多波长化学光量测量方法。由量子产率估算和1H NMR核磁共振分析表明,对于从紫外光到可见光范围的各种波长,结果都非常准确。研究者还通过对光化学反应器中光子通量密度的测定,核算N2-苯腙在405nm波长下的量子产率,对该方法进行了验证。小贴士量子产率:每吸收一个量子所产生的反应物的分子数,通常是对于特定的波长而言,即量子产率=(生成产物的分子数)/(吸收的量子数)。量子产率是进行光化学学动力学研究的重要参数。光子通量密度:表示单位时间单位面积上在特定波长范围内入射的光量子数。背景相对于批次间歇反应釜,连续流光化学反应器具有持液体积小、透光均匀、反应安全且重现性好等优点。随着单色度高、寿命长且能耗低的LED光源的发展,市场上涌现出了新一代高效的连续流光化学反应器,产能通量包括从实验室级(克/小时)到工业生产级(吨/天)。在上述背景下,为了量化通过光反应器的光子通量密度,帮助理解光化学反应机理,并能精确地描述光反应器在生产率变化时如何随时间变化和操作,迫切需要开发低成本和多功能的光量测量方法。然而,现有方法大多数都是基于昂贵的光量光度计和繁琐的程序,且极少有测定连续流微通道光化学反应器中接收光子通量密度的光量测量方法被报道。研究过程:一、理论模型与结果化学家们曾研究了大量一级光化学反应物质,这些物质在光的诱导下转化为另一种物质的速率可以被精确测量,并与入射的绝对光子通量密度相关联。在这类光化学反应体系中,光子被反应物R和产物P以不同的摩尔消光系数吸收,吸光度随时间而变化。作者在前人的研究基础上,建立了理论模型。并考虑到康宁Lab光化学反应微通道的几何形状,呈现了两个垂直于光源的平行壁,由于光路在通道的每个点上都是恒定的,到光源的距离也是固定的和恒定的。利用康宁连续流光学反应器来研究化学光量测量方法所面对的主要问题,是要对康宁微通道反应器的玻璃模块的玻璃层和换热层的光透射进行修正。图1.康宁LAB光化学反应器剖面图2017年,作者的团队报道了一种简单的方法,在溶剂中使用偶氮苯作为一种方便的光度计。该方法的主要优点在于偶氮苯的成本低和使用核磁共振作为一种定量光谱技术来简化动力学测量。图2. 偶氮苯的光异构化研究者展示了应用此方法在具有四个不同波长(365、385、405和475nm)的康宁Lab光化学反应器进行光量测量,并给出了数据和拟合结果(以405 nm为例):图3.康宁Lab光化学反应器中405 nm下的化学光量测量结果特定波长下(405nm),反应路径内的光子通量密度与光强之间的拟合公式如下:【编者语】康宁反应器不只是应用于工艺开发或者工业化生产,也适用于化学研究领域。不管是动力学理论研究,新的测量方法研究,还是新化合物的发明与发现,康宁反应器都有可能是您的得力助手。二、方法应用与验证:为了证明这种方法在连续流光化学反应动力学研究中的适用性,作者按照本文方法重新计算了isatin N2-phenylhydrazone的光量子产率(已知最近的文献中其光化学量子产率(ΦZ ≈ 1 × 10–3))。图3. 康宁实验室光化学反应器。前面铝箔覆盖包裹避免自然光照图4. isatin N2-phenylhydrazone 405nm异构化的光动力学研究 考虑到康宁Lab光化学反应器的通道极细(0.4mm),为了保证足够的量进行1H NMR分析,浓度增加到2×10−3mol.L−1。在上述浓度条件下,吸收约为99% (ε z=12270L.mol−1.cm−1),光子几乎全部吸收,可以通过核磁共振波谱进行非常精确的测量。由于康宁Lab光化学反应器中良好的传热性能,温度可以保持在20°C,因此可以忽略热异构化的影响。由于Z-构型的氢键,E和Z异构体的浓度可以轻易的通过1H NMR进行定量。利用长停留时间确定了光静止状态。(Z)-异构体的甲醇溶液在405nm的不同停留时间照射,光功率为100%。 图5.isatin N2-phenylhydrazone的光异构化反应EPSS(0.20)被用作一个参数来绘制图ln (EPSS−E) 与时间的关系,它与相关系数表现出线性关系并具有良好的平方相关系数(R2=1.00) 。该图的斜率(0.070s−1)对应于公式:通过公式换算可以很容易的计算出量子产率ΦZ(1.1 × 10–3),这一数据与文献数值非常接近。结果与讨论康宁欧洲技术团队开发的此光量测量方法为应用连续流光化学反应器进行光反应动力学研究提供了参考。鉴于此方法安全、简单易操作,它的应用可以扩展到更大规模的连续流光反应器(如康宁G1和G3光化学反应器)中作为例行分析测试手段。参考文献:Photochemical & Photobiological Sciences. 8 January 2022康宁光化学反应器宁高通量微通道光化学反应器(Advanced-Flow Photo Reactor),拥有透光率高、耐高温、耐高压、光强度大、光源纯净,控温精准、无放大效应等特点,在光化学反应中有独特的技术优势和广泛的应用前景。此外,康宁光化学反应器可以与在线NMR结合,对反应工艺参数进行快速筛选,有效地提升新分子的探索和工艺优化的过程。
  • 参展ACCC5,滨松获院士点赞
    7月12日至16日,第五届亚洲配位化学会议(ACCC5)在香港大学举办。ACCC是亚洲最大,也是最权威的配位化学会议,会议内容涵盖金属有机化学、生物无机化学、超分子化学等多方面配位化学相关的新兴研究领域。最前端的配位化学学术研发动向和成果,都会在本会议中呈现。ACCC5会议现场本次会议中,滨松中国展示的新型测试上转换荧光量子产率测试系统备受关注,此产品可以实现对掺杂稀土配合物的上转换量子产率的测试(即长波长激发,短波长发射)。并具有测试准确,得出结果速度较快的特点。此外,专家们对另一款电致发光测试系统也表现出了浓厚的兴趣,该产品是一款可以测试荧光、磷光及TADF(延迟荧光)成分的OLED器件的产品,可测得发光器件实际的朗博体分布曲线、IVL参数及外量子效率是其具备的显著特点。滨松中国展台“新产品的预览”是本次滨松中国参会的一大亮点,新产品在原有绝对量子产率系统的基础上增加了近红外波段绝对量子产率的测试。探测范围可从350nm至1650nm,帮助研究者解决了长期以来上转换测试、近红外荧光探针等研究的不便。另外,由于此系统采用了滨松高灵敏度CCD探测器,相比于传统的PMT在测试速度上大幅度提高。不论是是品质优秀的经典产品,还是引领技术的新产品都为展台吸引了不少人气。此会议的主办人任咏华院士对滨松产品的准确性和操作方便亦表示了认可,并莅临展位和滨松工程师进行了交流。中国科学院院士任咏华女士莅临滨松展位 除了产品展示,滨松中国还邀请了日本总部工程师Kengo Suzuki先生发表了“Determination of absolute PL quantum yield in VIS and NIR spectral range”为题的报告,主要以上转换荧光材料及重金属掺杂OLED材料为例进行了应用介绍。Kengo Suzuki先生正在发表
  • 低碳行动,拯救北极熊于一声“碳”息
    Lightway- 点亮未来 - 2020年7月20日,国际权威杂志《Nature Climate Change》上发表了一篇关于北极熊的研究报告《Fasting season length sets temporal limits for global polar bear persistence》,并迅速登上各大热搜头条。报告指出,全球气候变暖导致北极海冰消融,使得北极熊的生存环境遭到极大破坏,北极熊被迫前往海岸地区。而在那里,北极熊很难找到食物和哺育幼崽,这将使北极熊的数量大幅下降。在部分地区,北极熊已经陷入数量螺旋式下降的恶性循环。 全球气候变暖最主要的原因是温室效应的不断累积,大气中的二氧化碳等温室气体就像一层厚厚的玻璃,把地球变成了一个大暖房。除非人类采取更多措施应对气候变化,否则这一物种或将在2100年左右几乎消失。 光催化CO2还原 如何实现CO2的捕捉、储存和利用,以及如何降低地球大气中的碳含量,成为了全球科学家研究的焦点。光催化方法还原CO2,可以在比较温和的光照反应条件一步直接获得一氧化碳/碳氢化合物等化学品及燃料,具有极大的应用前景。 光反应量子产率(PQY)为光催化过程的评价及催化剂的研究提供了重要的参考指标,PQY越高,说明光反应对光子的利用率越高,催化剂的性能也越好。 Ru-Re超分子复合物光催化剂体系CO2还原反应 钌-铼(Ru-Re)超分子复合物是近年来研究比较热门的光催化剂,可催化太阳光照下CO2还原为CO的光化学反应。 图1. Ru-Re超分子复合物催化下光反应示意图 光反应量子产率测试 CO2还原过程的光反应量子产率使用岛津公司最新发布的Lightway PQY-01光反应评价系统进行测试。实验中照射光波长为470nm,强度为17 × 10-9爱因斯坦/秒。PQY-01测试得到吸收光谱及吸收的光子数。CO2还原反应生成的CO使用气相色谱仪进行定量。图2显示了CO生成量和吸收光子数相关的直线。直线的斜率即为反应的量子产率,计算得到CO生成的量子产率为40%。 图2. 一氧化碳生成量 vs 吸收光子数 中间体追踪 光反应中间体的追踪对于研究反应机理,开发高效的催化剂体系十分有用。PQY-01可以直接检测到在Ru-Re超分子复合物催化下二氧化碳还原反应的中间产物(图1)。从图3和图4可见,随着反应的进行,在550nm附近出现了一个新的吸收峰,此峰为光反应中间产物的吸收光谱。经过与文献报道的数据进行对比,确认中间产物为单电子还原产物,为Ru-Re超分子复合物的光电子转移反应所生成。 图3. Ru-Re超分子复合物光催化反应的光谱测量结果 图4 Ru-Re超分子复合物光催化剂反应的微分光谱结果 如果这类Ru-Re催化剂能够投入实际应用,那么就如同植物能通过光合作用把二氧化碳合成为淀粉和蔗糖等碳水化合物一样,人类就可以通过效法自然的人工光合成,缓解温室效应,应对未来能源危机。
  • 诚邀您参加光化学测试产品技术研讨会
    诚邀您参加光化学测试产品技术研讨会 滨松中国与北京赛泰克将于5月11日在北京翠宫饭店携手举办&ldquo 光化学测试产品技术研讨会&rdquo 。本次会议特别邀请中科院化学研究所杨国强教授、中国人民大学张建平教授及中科院长春应用化学研究所林君教授一起探讨光化学测试领域的前沿技术及应用。届时,日本滨松的产品经理铃木建吾将向大家详细介绍滨松公司的绝对量子产率测试、荧光寿命及外量子效率测试系统并分享该类技术在光致发光及OLED测试领域的应用案例。 现场还安排样机演示及样品测试环节,与会者可以自带样品并现场测试材料的寿命及量子产率等参数。其中绝对量子产率测试设备内置积分球,可以对固体、粉末、薄膜及液体进行测试,操作简单,2分钟即可得到包含量子产率、激发谱、发射谱和波长依赖性等数据,重复精度可达到1,且不需要标准品进行比对。近红外型绝对量子产率测试设备的探测波长达到1100nm,很好的解决了以往近红外波段没有标准品进行比对的问题。 会议地点:北京翠宫饭店二层多功能厅(Jade Palace Hotel)地址:北京市海淀区知春路76号会议时间:2012年5月11日报告人:杨国强中国科学院化学研究所,研究员,博士生导师,科学院&ldquo 百人计划&rdquo 入选者,化学所所长助理,中国科学院光化学重点实验室主任,化学所和分子科学中心学委会委员;中国化学会理事,化学会光化学专业委员会常务副主任;中国感光学会理事。亚洲大洋州光化学理事会理事,J. Photochem.Photobiol. A:Chem.编委。 林君中科院长春应化所稀土化学与物理重点实验室副主任,研究员,中科院百人计划入选者,获国家杰出青年科学基金;中国稀土学会理事,中国稀土学会发光专业委员会秘书,中国物理学会发光分科委员会委员,美国材料研究学会会员。 张建平中国人民大学理学院化学系,责任教授,博士生导师。中科院百人计划入选者。分子动态与稳态结构国家重点实验室副主任、学术委员会委员,中国科学院物质科学基地分子科学中心第二届学术委员会委员,中国科学院化学研究所第十届学术委员会委员,《物理化学学报》第二届编辑委员会委员,中国生物物理学会光生物专业委员会委员,中国人民大学化学系学术委员会主任,中国人民大学第七届学位评定委员会理工分会副主席。报名方式:电话:010-82858336-19,13426082940传真:010-82859156联系人:范女士如您对本次研讨会感兴趣,可将您的姓名、单位及联系方式发邮件至selina@cy-tech.com.cn研讨会日程9:00 &ndash 9:15北京赛泰克公司总经理张冬梅致辞9:15 &ndash 9:30滨松公司简介9:30 &ndash 10:00基于分子内电荷转移化合物和质子转移化合物的强荧光材料&mdash &mdash 中科院化学研究所光化学重点实验室杨国强教授10:00 &ndash 10:30软化学方法制备多种形态结构发光与多功能纳米复合材料及其应用探索&mdash &mdash 中科院长春应用化学研究所稀土资源利用国家重点实验室林君教授10:30 &ndash 10:45茶歇10:45 &ndash 11:45条纹相机原理及应用&mdash &mdash 中国人民大学化学系张建平教授11:45 &ndash 1:00中西自助餐1:00 &ndash 2:30光致发光绝对量子产率、荧光寿命及外量子效率测试技术&mdash &mdash 日本滨松Quantaurus产品经理铃木建吾博士2:30 &ndash 3:30样品现场测试13:30 &ndash 3:45茶歇3:45 &ndash 4:45样品现场测试14:45 &ndash 5:00提问交流 因名额有限,我们将以书面或电邮方式与您确认报名。研讨会当天敬请携带我们发给您的确认书前来报到。如有相关问题,欢迎随时来电咨询! 成立于1953年的日本滨松光子学株式会社(以下简称滨松集团),是世界上科技水平最高、市场占有率最大的光科学、光产业公司。使用滨松集团11200支20英寸光电倍增管的东京大学小柴昌俊教授的中微子实验获得2002年的诺贝尔物理学奖。滨松集团的产品被广泛的应用在医疗生物、高能物理、宇宙探测、精密分析等产 业领域,是光产业界的领军企业。目前,公司下辖四个部门,即电子管事业部、固体事业部、系统事业部和激光部,产品群逐渐向光电倍增管、光学器件、光源、光半导体光子元件、光子计测仪器等多方面开展。在海外销售营业网点方面,我们已在全世界范围内15个国家设立了公司法人或办事处。 公司致力于光学基础研究和应用领域探索,以光子技术创立新的产业为目标。&ldquo 光子是我们的事业&rdquo (Photon is our business),从高柳先生继承的技术以及向未知未涉领域探索的精神,无论在研究开发领域,还是生产制造环节仍然一脉相承。 赛泰克生物科技有限公司是一家活跃于化学及生命科学领域的高科技公司,自2001年成立以来,经过近十年的努力和发展,成为代理销售仪器、生化试剂及耗材的业内知名企业。目前已分别在上海、广州成立分公司,在重庆、西安、南京和天津设立办事处。专业的销售队伍以及客户至上的售后服务理念,是赛泰克发展壮大的不可或缺的因素。做为国内化学及生命科学产品最好的供应商之一,赛泰克会一如既往地坚持以客户为本的原则,为中国的生命科学事业尽一份绵薄之力。
  • 中国科大制备出高效稳定的钙钛矿单晶LED
    近日,中国科学技术大学物理学院、中科院强耦合量子材料物理重点实验室及合肥微尺度物质科学国家研究中心教授肖正国研究组,在制备高效稳定的钙钛矿单晶LED领域取得重要进展。该研究利用空间限制法生长出高质量、大面积、超薄的钙钛矿单晶,并首次制备出亮度超过86,000 cd/m2、寿命达12500 h的钙钛矿单晶LED,向钙钛矿LED应用于人类照明迈出了重要一步。2月27日,相关研究成果以Highly bright and stable single-crystal perovskite light-emitting diodes为题,发表在Nature Photonics上。金属卤化物钙钛矿因发光波长可调、发光半峰宽窄、可低温制备等特性成为新一代LED显示与照明材料。目前,基于多晶薄膜的钙钛矿LED(PeLED)的外量子效率(EQE)已超过20%,可媲美商用有机LED(OLED)。近年来,多数报道的高效率钙钛矿LED器件的寿命在数百到数千小时不等,落后于OLED。离子移动、载流子注入不平衡、运行过程产生的焦耳热等因素均影响器件稳定性。此外,多晶钙钛矿器件中严重的俄歇复合也限制器件亮度。针对上述问题,肖正国课题组利用空间限制法在衬底上原位生长钙钛矿单晶,通过调控生长条件,引入有机胺和聚合物,有效提升了晶体质量,进而制备出高质量的MA0.8FA0.2PbBr3薄单晶【最小厚度仅为1.5 μm、表面粗糙程度小于0.6 nm、内部荧光量子产率(PLQYint)达到90%】。以薄单晶作为发光层制备的钙钛矿单晶LED器件的EQE达到11.2%、亮度超过86,000 cd/m2、寿命达12500 h,初步达到商业化门槛,成为目前稳定性最好的钙钛矿LED器件之一。该工作展示了使用钙钛矿薄单晶作为发光层是解决稳定性问题的可行方案,以及钙钛矿单晶LED在人类照明和显示领域的广阔前景。研究工作得到国家自然科学基金和中国科大的支持。空间限制法生长单晶示意图(a)、单晶的显微镜图(b)、钙钛矿单晶LED的器件结构(c)、钙钛矿单晶LED性能表征(d-f)。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制