当前位置: 仪器信息网 > 行业主题 > >

内部气体成分

仪器信息网内部气体成分专题为您整合内部气体成分相关的最新文章,在内部气体成分专题,您不仅可以免费浏览内部气体成分的资讯, 同时您还可以浏览内部气体成分的相关资料、解决方案,参与社区内部气体成分话题讨论。

内部气体成分相关的资讯

  • 药物片剂中成分的分布和内部空隙对其溶解的速度影响分析
    导 读药物片剂中成分的分布和内部空隙的状态会影响其溶解的速度,并导致其疗效的差异。在含有不同成分的多层药物的片剂中,药物层厚度的不均匀性可阻止各层获得足够的疗效。因此,片层厚度和压片角度是重要的质量控制标准。 实验方法使用XRAY透视和CT 扫描,对其内部进行扫描和分析。除了不需要任何特殊的预处理,X射线CT检查系统允许在不损坏样品的情况下获得内部信息。因此,它们可用于三维观察和分析药物层的分布状态或厚度。 实验方法使用XRAY透视和CT 扫描,对其内部进行扫描和分析。除了不需要任何特殊的预处理,X射线CT检查系统允许在不损坏样品的情况下获得内部信息。因此,它们可用于三维观察和分析药物层的分布状态或厚度。 具体案例数据本例描述了使用inspeXio SMX-90CT Plus台式微焦点X射线CT系统(图1)分析两种药片。图1 inspeXioSMX-90CT Plus台式微焦点X射线CT图2 样品照片:左边片剂A,右边片剂B 在本例中,观察到两种具有不同结构的片剂(片剂A和B)(图2)。片剂的透视图像如图3所示。片剂A (左) 片剂B(右)图3 片剂透视图图4片剂A的CT效果图(左)图5片剂B的CT效果图(右)图6高密度药物分离的片剂A 分析片剂图像的一个例子除了观察片剂内部外,CT X射线图像还可用于执行各种图像分析。在本例中,利用CT数据结合三维图像处理软件,分析药物的分布状态,分析药物的层厚。 图6所示为片剂A与高密度药物分离的区域。这些区域使用VGStudio MAX 3D图像处理软件(来自Volume Graphics GmbH)以及缺陷和夹杂物分析模块隔离。这种图像处理软件可以对分离的体积进行颜色编码,从而可以确定药物在三维空间的分布和每个体积的大小。 图7测量B片包衣厚度示例 图7示出了分析片剂B中的层厚度的示例。该分析是使用VGStudio MAX 3D图像处理软件与厚度分析模块一起执行的。厚度用从红色到蓝色的颜色进行颜色编码,其中最薄的区域用红色表示,最厚的位置用蓝色表示。这样可以直观地理解厚度变化的分布。 结论应用inspeXio公司的SMX-90CT-Plus结合三维图像处理软件,可以对片剂内部进行观察和特征分析。利用该系统对药物的分布和厚度进行定量和非破坏性分析,并对其他性质进行评价,对药物的开发尤其有用。inspeXio SMX-90CT Plus由于其紧凑的工作台设计和简单的操作,是一个非常有用的工具,可以快速、方便地获得关于药片内部的信息。 撰稿人:宁棉波
  • 高精度温室气体综合探测卫星紫外高光谱大气成分探测仪正样交付
    紫外高光谱大气成分探测仪11月4日,高精度温室气体综合探测卫星(DQ-2)紫外高光谱大气成分探测仪(EMI-NL)通过了航天八院环境卫星项目办组织的正样交付验收评审。紫外高光谱大气成分探测仪(EMI-NL)是国产第三代超光谱大气痕量气体监测载荷,拥有独立的天底与临边观测模块,能获取大气痕量气体高空间分辨率水平分布与垂直廓线,主要用于定量监测全球和区域二氧化氮(NO2)、二氧化硫(SO2)、臭氧(O3)和甲醛(HCHO)等痕量污染气体成分的分布和变化,用以分析人类活动排放和自然排放过程对大气组成成分和全球气候变化的影响。EMI-NL载荷性能指标大幅提升,天底对地空间分辨率达到7*7平方公里,达到国际先进水平;并增加了临边同步观测模式,临边切高分辨率为2公里。该载荷具备公里级别的空间分辨率、天底临边同步双模式同步观测,对辨识污染源位置、量化点/面源排放通量、研判区域间相互影响等具有重要作用。经讨论,评审专家组认为紫外高光谱大气成分探测仪(EMI-NL)正样产品按照正样研制技术流程完成了所有研制工作,经测试、试验,功能、性能满足任务书要求;研制过程质量受控,未发生质量问题;文档资料齐全,符合《八院卫星型号产品交付验收实施要求》,同意通过评审。DQ-2卫星是《国家民用空间基础设施中长期发展规划(2015-2025)》中规划的业务星,具有主被动方式结合获取高光谱分辨率、高时间分辨率温室气体、污染气体及气溶胶等大气环境要素的遥感检测能力。DQ-2卫星共配置五台有效载荷,其中紫外高光谱大气成分探测仪(EMI-NL)、云和气溶胶成像仪(CAPC)分别由安光所环境光学中心和光学遥感中心承担研制任务。正样验收评审会
  • 前沿科技 | 全新亚微米红外&拉曼同步测量关键技术助力多层薄膜内部组成分析
    包装薄膜材料常使用传统红外光谱进行表征,但传统FTIR通常只能测单一红外光谱,不具备样品红外光谱成像功能或成像空间分辨率受红外波长限制,高也仅为5-10 μm。在实际应用中,层状材料越来越薄,这对常规FTIR技术的空间分辨率提出了大的挑战。 全新光学光热红外光谱技术光学光热红外光谱技术(O-PTIR)可在非接触反射模式下对多层薄膜进行亚微米的红外表征,同时探针激光器会产生拉曼散射,从而以相同的亚微米分辨率在样品的同一点同时捕获红外和拉曼图像。基于光学光热红外光谱技术的非接触亚微米分辨红外拉曼同步测量系统的工作原理是:光学光热红外光谱技术通过将中红外脉冲可调激光器与可见探测光束结合在一起,克服了红外衍射限。将红外激光调谐到激发样品中分子振动的波长时,就会发生吸收并产生光热效应。如图1所示,可见光探针激光聚焦到0.5 μm的光斑尺寸,通过散射光测量光热响应。红外激光可以在一秒钟或更短的时间内扫过整个指纹区域,以获得红外光谱。图 1. 非接触亚微米分辨红外拉曼同步测量系统 红外和拉曼光谱的光束路径示意图。 红外&拉曼同步测量传统的透射红外光谱通常不能用于测量厚样品,因为光在完成透射样品之前会被完全吸收或散射,导致几乎没有光子能量到达检测器。由于光学光热红外光谱技术是一种非接触式技术,因此非接触亚微米分辨红外拉曼同步测量系统可以对较厚的样品进行红外测量,大地简化了样品制备过程,提升了易用性。在图2中,作者使用非接触亚微米分辨红外拉曼同步测量系统针对嵌入环氧树脂中的薄膜样品横截面进行了分析。图2线阵列中各点之间的数据间隔为500 nm。 由于非接触亚微米分辨红外拉曼同步测量系统与传统FTIR光谱具有好的相关性,因此可以使用现有的光谱数据库搜索每个光谱。对红外光谱的分析对照可以清楚地识别出不同的聚合物层,聚乙烯和聚丙烯,以及嵌入的环氧树脂。图 2.上:薄膜横截面的40倍光学照片;中:红外光谱从标记区域收集;下:同时从标记区域收集拉曼光谱。 化学组分分布的可视化成像当生产层状薄膜时,产品内部的化学分布是产品完整性的重要组成部分。非接触亚微米分辨红外拉曼同步测量系统特地实现了高分辨率单波长成像,以突出显示样品中特定成分的化学分布。非接触亚微米分辨红外拉曼同步测量系统可以在每层的特吸收带处采集图像,以此实现显示层的边界和界面的观察。图3展示了多层膜截面的光学图像。从线阵列数据可以看出,中间位置存在一个宽度大约为2 μm的区域,该区域与周围区域的光谱差异很大。红色光谱显示1462 cm?1处C-H伸缩振动显著增加。图3. 上:薄膜截面的40倍光学照片;下:标记表示间距为250 nm的11 μm线阵列。红外单波长成像使我们能够清晰地可视化层状材料的厚度和材质分布,如图4所示。从图像中可以看出,非接触亚微米分辨红外拉曼同步测量系统红外显微镜可以在非接触状态下进行反射模式运行,以佳的空间分辨率提供单波长图像。图4. 红外单波长成像层状材料的成分分布。 总结通过同时收集红外和拉曼光谱,科学家发现非接触亚微米分辨红外拉曼同步测量系统可被广泛用于分析各种多层膜。收集的光谱与传统的FTIR光谱显示出 99%相关性,并且可以在现有数据库中进行搜索。此外,使用非接触亚微米分辨红外拉曼同步测量系统进行单波长成像可实现亚微米分辨率样品中组分的可视化。通过该技术,我们可以更好地了解薄膜材料的整体构成。总体而言,非接触亚微米分辨红外拉曼同步测量系统次提供了可靠且可视化的亚微米红外光谱,目前它已在高分子、生命科学、临床医学、化工药品、微电子器件、农业与食品、环境、物证分析等领域得到广泛应用并取得了良好的效果,显示出了广阔的应用前景。
  • UoW FTIR 多要素温室气体分析仪引导温室气体在线测量技术最前沿
    温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是后者采用的较强激光光源,对测量精度有一定程度的弥补。 UoW FTIR 多要素温室气体气体分析仪由澳大利亚Wollongong 大学研发,由ECOTECH 合作生产,并提供全球范围内的分销及符合ISO9001 标准的售后服务。UoW FTIR 多要素温室气体气体分析仪应用多光程&mdash &mdash 傅里叶红外变换(FTIR)光谱测量解析技术和高性能红外检测元器件,结合了完善的控制软件系统,能够全自动地运行,在线精确连续测量环境大气(或其他种类的混合气体)中多种温室气体成分的浓度及其同位素丰度,运行成本低,适于长期连续观测。也可以根据用户需求,改变地相应的配置,测量其他种类的痕量气体。 自第一台Uow FTIR 多要素温室气体气体分析仪投入现场观测应用以来,10 余年间,在全球已有多个用户将本仪器用于环境大气和本底地区大气的温室气体观测,并开发了温室气体以外的测量功能。这些用户包括:澳大利亚的Wollongong 大学、Melbourne 大学、公共财富科学与工业研究组织(CSIRO)、科学与技术组织(ANSTO),新西兰的国家水和大气研究所(NIWA),德国的Heidelberg大学、Bremen 大学、Max Planck 研究所,韩国的国家标准研究所、中国气象局(CMA)等。 下图为UoW FTIR 温室气体在线分析仪内部的红外光源和测量腔。 仪器特点@ 同时在线测量多种温室气体的浓度和同位素丰度,应用方式广泛、多样 1 同时测定CO2、CO、CH4、N2O 的大气浓度,以及CO2 中&delta 13C、水汽中&delta D 和&delta 18O 的丰度。2 可以一路或多路连续进样,测量多种温室气体浓度及同位素丰度;3 可在测量塔不同高度采集样品,进行温室气体(包括水汽和CO2 的同位素)的垂直廓线测量;4 可车载连续监测;5􀁺 连接静态箱进行土壤中温室气体的通量测量;6􀁺 在实验室中批量测量采样瓶或采样袋中的空气样品;7􀁺 标准传递测量:在实验室中,通过测量将高等级标准气的量值关系传递给较低等级的标准气体。8 其他气体成分的测量9􀁺 在中红外谱段有已知吸收光谱的任何气体都可以用本仪器定量测量,如:NH3、碳氟化合物、HF 和SiF4 等。10 根据气体物种不同,最低检测限为1-20ppbv。@ 全自动运行,可遥控,维护成本低、消耗量少1 五合一测量(一台仪器同时测量5 个物种/要素),综合运行成本低2􀁺 日常观测只需要参照气(洁净空气)每天一次检测,无需高等级标准气;3􀁺 无需液氮或深冷除湿;4􀁺 随机携带采样气体干燥器和多进样口5􀁺 全自动运行,并可通过网络遥控运行UoW FTIR 多要素温室气体气体分析仪 中文样本下载链接:http://www.instrument.com.cn/netshow/SH101597/C131047.htm http://www.instrument.com.cn/netshow/SH101597/C131047.htm UoW FTIR 多要素温室气体气体分析仪 UoW FTIR 多要素温室气体气体分析仪 UoW FTIR 多要素温室气体气体分析仪 UoW FTIR 多要素温室气体气体分析仪 UoW FTIR 多要素温室气体气体分析仪温室气体观测技术温室气体是大气中一些具有红外辐射活性的微量气体,包括二氧化碳、甲烷、氧化亚氮、氟利昂、水汽等30 余种(类)。温室气体对太阳短波辐射透明,却对太阳和地球表面的长波(红外)辐射有明显的吸收作用,因而,温室气体对地球大气的增温作用十分明显。如果没有温室气体,全球大气平均温度会从目前的15℃降至零下19℃。由于人类活动向大气排放了大量温室气体,到2005年,全球大气中二氧化碳、甲烷、氧化亚氮浓度已经分别由工业革命初期的280 ppm、715 ppb、270ppb 上升到379 ppm、1774 ppb 和319 ppb,其后果是全球平均气温上升了0.74℃。如果温室气体保持目前的增长速度,本世纪末全球平均气温将升高1.1-6.4℃。全球气候变化将给人类的生存环境带来严重影响:气候异常、海平面升高、冰川退缩、冻土融化、生物多样性及分布发生巨变,等等。为了人类免受气候变暖的威胁,防止人类生存环境进一步恶化,需要对大气中主要温室气体的浓度及其变化进行系统的长期监测、研究,以利于全人类采取共同行动减少温室气体的排放。温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是后者采用的较强激光光源,对测量精度有一定程度的弥补。下图为UoW FTIR 温室气体在线分析仪内部的红外光源和测量腔。 温室气体观测技术温室气体是大气中一些具有红外辐射活性的微量气体,包括二氧化碳、甲烷、氧化亚氮、氟利昂、水汽等30 余种(类)。温室气体对太阳短波辐射透明,却对太阳和地球表面的长波(红外)辐射有明显的吸收作用,因而,温室气体对地球大气的增温作用十分明显。如果没有温室气体,全球大气平均温度会从目前的15℃降至零下19℃。由于人类活动向大气排放了大量温室气体,到2005年,全球大气中二氧化碳、甲烷、氧化亚氮浓度已经分别由工业革命初期的280 ppm、715 ppb、270ppb 上升到379 ppm、1774 ppb 和319 ppb,其后果是全球平均气温上升了0.74℃。如果温室气体保持目前的增长速度,本世纪末全球平均气温将升高1.1-6.4℃。全球气候变化将给人类的生存环境带来严重影响:气候异常、海平面升高、冰川退缩、冻土融化、生物多样性及分布发生巨变,等等。为了人类免受气候变暖的威胁,防止人类生存环境进一步恶化,需要对大气中主要温室气体的浓度及其变化进行系统的长期监测、研究,以利于全人类采取共同行动减少温室气体的排放。温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是后者采用的较强激光光源,对测量精度有一定程度的弥补。下图为UoW FTIR 温室气体在线分析仪内部的红外光源和测量腔。 温室气体观测技术温室气体是大气中一些具有红外辐射活性的微量气体,包括二氧化碳、甲烷、氧化亚氮、氟利昂、水汽等30 余种(类)。温室气体对太阳短波辐射透明,却对太阳和地球表面的长波(红外)辐射有明显的吸收作用,因而,温室气体对地球大气的增温作用十分明显。如果没有温室气体,全球大气平均温度会从目前的15℃降至零下19℃。由于人类活动向大气排放了大量温室气体,到2005年,全球大气中二氧化碳、甲烷、氧化亚氮浓度已经分别由工业革命初期的280 ppm、715 ppb、270ppb 上升到379 ppm、1774 ppb 和319 ppb,其后果是全球平均气温上升了0.74℃。如果温室气体保持目前的增长速度,本世纪末全球平均气温将升高1.1-6.4℃。全球气候变化将给人类的生存环境带来严重影响:气候异常、海平面升高、冰川退缩、冻土融化、生物多样性及分布发生巨变,等等。为了人类免受气候变暖的威胁,防止人类生存环境进一步恶化,需要对大气中主要温室气体的浓度及其变化进行系统的长期监测、研究,以利于全人类采取共同行动减少温室气体的排放。温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是后者采用的较强激光光源,对测量精度有一定程度的弥补。下图为UoW FTIR 温室气体在线分析仪内部的红外光源和测量腔。 温室气体观测技术温室气体是大气中一些具有红外辐射活性的微量气体,包括二氧化碳、甲烷、氧化亚氮、氟利昂、水汽等30 余种(类)。温室气体对太阳短波辐射透明,却对太阳和地球表面的长波(红外)辐射有明显的吸收作用,因而,温室气体对地球大气的增温作用十分明显。如果没有温室气体,全球大气平均温度会从目前的15℃降至零下19℃。由于人类活动向大气排放了大量温室气体,到2005年,全球大气中二氧化碳、甲烷、氧化亚氮浓度已经分别由工业革命初期的280 ppm、715 ppb、270ppb 上升到379 ppm、1774 ppb 和319 ppb,其后果是全球平均气温上升了0.74℃。如果温室气体保持目前的增长速度,本世纪末全球平均气温将升高1.1-6.4℃。全球气候变化将给人类的生存环境带来严重影响:气候异常、海平面升高、冰川退缩、冻土融化、生物多样性及分布发生巨变,等等。为了人类免受气候变暖的威胁,防止人类生存环境进一步恶化,需要对大气中主要温室气体的浓度及其变化进行系统的长期监测、研究,以利于全人类采取共同行动减少温室气体的排放。温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是后者采用的较强激光光源,对测量精度有一定程度的弥补。下图为UoW FTIR 温室气体在线分析仪内部的红外光源和测量腔。温室气体观测技术温室气体是大气中一些具有红外辐射活性的微量气体,包括二氧化碳、甲烷、氧化亚氮、氟利昂、水汽等30 余种(类)。温室气体对太阳短波辐射透明,却对太阳和地球表面的长波(红外)辐射有明显的吸收作用,因而,温室气体对地球大气的增温作用十分明显。如果没有温室气体,全球大气平均温度会从目前的15℃降至零下19℃。由于人类活动向大气排放了大量温室气体,到2005年,全球大气中二氧化碳、甲烷、氧化亚氮浓度已经分别由工业革命初期的280 ppm、715 ppb、270ppb 上升到379 ppm、1774 ppb 和319 ppb,其后果是全球平均气温上升了0.74℃。如果温室气体保持目前的增长速度,本世纪末全球平均气温将升高1.1-6.4℃。全球气候变化将给人类的生存环境带来严重影响:气候异常、海平面升高、冰川退缩、冻土融化、生物多样性及分布发生巨变,等等。为了人类免受气候变暖的威胁,防止人类生存环境进一步恶化,需要对大气中主要温室气体的浓度及其变化进行系统的长期监测、研究,以利于全人类采取共同行动减少温室气体的排放。温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是后者采用的较强激光光源,对测量精度有一定程度的弥补。下图为UoW FTIR 温室气体在线分析仪内部的红外光源和测量腔。 温室气体观测技术温室气体是大气中一些具有红外辐射活性的微量气体,包括二氧化碳、甲烷、氧化亚氮、氟利昂、水汽等30 余种(类)。温室气体对太阳短波辐射透明,却对太阳和地球表面的长波(红外)辐射有明显的吸收作用,因而,温室气体对地球大气的增温作用十分明显。如果没有温室气体,全球大气平均温度会从目前的15℃降至零下19℃。由于人类活动向大气排放了大量温室气体,到2005年,全球大气中二氧化碳、甲烷、氧化亚氮浓度已经分别由工业革命初期的280 ppm、715 ppb、270ppb 上升到379 ppm、1774 ppb 和319 ppb,其后果是全球平均气温上升了0.74℃。如果温室气体保持目前的增长速度,本世纪末全球平均气温将升高1.1-6.4℃。全球气候变化将给人类的生存环境带来严重影响:气候异常、海平面升高、冰川退缩、冻土融化、生物多样性及分布发生巨变,等等。为了人类免受气候变暖的威胁,防止人类生存环境进一步恶化,需要对大气中主要温室气体的浓度及其变化进行系统的长期监测、研究,以利于全人类采取共同行动减少温室气体的排放。温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是后者采用的较强激光光源,对测量精度有一定程度的弥补。下图为UoW FTIR 温室气体在线分析仪内部的红外光源和测量腔。
  • 关注“新能源”锂电安全 | 深度分析锂电池鼓胀气体
    关注“新能源”锂电安全|深度分析锂电池鼓胀气体高丽LIBs锂离子电池(LIBs)因其重量轻、能量密度高以及比其他类型电池的使用寿命长等特性,被广泛应用于动力、储能以及3C等产业。锂离子电池在循环使用或储存中,可能因为电解液组分发生成膜及氧化反应、电池过充过放、内部微短路等原因导致SEI膜分解破坏从而产生气体,也可能因电解液中的高含量水分发生电解反应等原因导致电池产气鼓胀,出现具有一定安全风险的失效,主要有热失控、胀气、膨胀形变等。因此,了解电池鼓胀气体的组成对于优化电解液的组成是至关重要的。三类成分电池在老化、放电等过程中会产生各种气体成分非常复杂。其中主要有三类成分:1)永久气体如氢气、甲烷、一氧化碳、二氧化碳等;2)短链碳氢化合物(C2-C5);3)其他可挥发性化合物。赛默飞气相色谱锂电池鼓胀气体分析方案锂离子电池鼓胀气体的常见产气成分有H2,CO,CO2等永久性气体以及CH4,C2H4,C2H6等烷烃类气体。表1.校正气体组成方案一:气密针进样某些小型LIBs在使用过程中只会产生几毫升的膨胀气体。针对气体量极少的这一类样品,赛默飞推出气密针进样,配置一个TCD和一个FID检测器,一根分析柱和一根预柱,一次进样实现对电池鼓胀气体成分H2,O2,N2,CO,CO2,CH4,C2H4,C2H6,C3H6,C3H8的分析。图1.FID通道校正标样色谱图(方案一)(点击查看大图)图2.TCD通道校正标样色谱图(方案一)(点击查看大图)方案二:气密针/阀进样赛默飞推出气密针/阀进样,配置一个TCD和一个FID检测器。一根分析柱和一根预柱,一根毛细管分析柱,一次进样实现对电池鼓胀气体成分H2,O2,N2,CO,CO2,CH4,C2H4,C2H6,C3H6,C3H8,i-C4H10,n-C4H10,i-C5H12,n-C5H12的分析。图3.TCD通道校正标样色谱图(方案二)(点击查看大图)图4.FID通道校正标样色谱图(方案二)(点击查看大图)完善的解决方案在锂电池产业链中,除了电池鼓胀气体成分分析,还需要围绕产品质量、原材料质控、或锂电池各种性能指标的研发工作进行一系列的理化测试,包括:元素分析、电解液、添加剂成分分析、石墨类负极材料有机物含量测试、电解液未知成分分析、SO42-、Cl-等阴离子及Si等非金属元素分析、电解液等原材料鉴别等。赛默飞在锂电子电池材料检测领域积累了丰富的经验,为广大用户提供完善的解决方案。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+
  • 远距遥测污染源,多组份气体监测还可这样做!
    在许多工业生产中,废气的产生是必然的。它们往往成分复杂,既可能成为生产的安全隐患,又是大气环保的大敌之一。无论是想污染溯源,还是期望最后的针对性治理,监测都是第一环。在线气体监测系统,就是让污染环境的“小恶魔”无处遁形的利器,是否能拿下治理废气的“Frist Blood”,就看它的本事了。对于成分复杂的气体,光学的FT-IR法在在线监测中是比较常见的。其具备极高的精度,且可以保证监测气体种类的广泛性。同样是光学法,使用量子级联激光器(QCL)的红外气体分析法(QCLAS),也活跃在污染气体监测的前线。因为基于的是激光技术,因此相对FT-IR,在距离和定向性方面有更好的表现,可进行在更远距离下更精准范围的测量。 可惜的是受工艺限制,一直以来,每款QCL都有其特定的波长范围且较为狭窄,各自只能针对某几类气体。如果成分复杂且广泛,比如像VOC一类的气体,这种方法是不能实现同时的在线检测的。不同分子的气体都有其固定的、独有的特征吸收峰,我们根据这些吸收峰的位置进行识别,从而分辨出是哪种气体以及浓度大小,这些吸收峰我们也称之为“分子的指纹峰”,利用中红外光指纹峰来判断气体的种类和浓度,已经广泛地应用于气体测定中。 然而,下面这一个的巴掌大的“小小盒子”——波长外腔调谐量子级联激光器(QCL)模块,将改变这一现状。 滨松波长外腔调谐量子级联激光器(QCL)模块 L14890-09 波长调谐范围:7.84um~11.14umQCLAS能实现多种气体的同时监测了! 波长外腔调谐量子级联激光器(QCL)模块L14890-09是滨松刚推出不久的一款新QCL产品。波长调谐范围在7.84um~11.14um,峰值功率为600mW(typ.),往返频扫(全范围调谐)频率达1.8KHz。 在中红外光谱应用上,相比较于传统的FT-IR方法,这个新型的QCL模块充分利用激光的定向能和宽频扫特性,可实现中红外光谱的远程、非接触式、高通量、高精度测量。在污染气体监测中,也就可以实现我们上面提到的,同时满足在更远距离下的测量,以及多种气体的同时高精度在线监测。 QCL模块L14890-09的甲烷气体吸收的测定此外,在其他中红外应用中,这个QCL小盒子也被给予了期望。例如应用在无创小型血糖仪中。日本东北大学松浦祐司教授进行的一项研究中发现,使用QCL模块 L14890-09 测定和通过血液采样测量的血糖值结果接近。而在其他的塑料检测实验中,也得到了可观的数据结果(见下图):Polystyrene film Measurement resultData provided by Mr.Hiromitsu Furukawa, Electronics and Photonics Research Institute, NationalInstitute of Advanced Industrial Science and Technology打开这个QCL模块,看看它的小秘密这些神仙性能是怎么炼成的?要实现QCL这样的性能,并不是一件简单的事情,主要通过内部器件独特的优化,以及结构精密设计的加持。正因如此,QCL模块L14890-09也获得了2018日本文部科学省纳米技术平台事业部授予的“最佳成果奖”。那我们就来看看,在它的内部都有什么神仙操作。把这个QCL模块打开,里面装着自主研发的三项实现外腔调谐的核心技术: 新开发的宽谱增益的QCL芯片 MEMS衍射光栅 高效率的增透膜 简要图示如下:利用了滨松独特的量子结构设计技术,这个QCL小模块内的QCL芯片采用了一种反交叉双重高能态结构(AnticrossDAUTM)。而在QCL芯片的发射截面上,则制成了多层增透膜,它可以保证从截面发出的激光,在到达光栅前零损耗。芯片产生的宽带光再通过MEMS衍射光栅的倾斜来选频,实现了特定波长的完全反射和谐振。 模块在工作的时候,电控MEMS衍射光栅可高速摆动以改变其倾角,进而周期性地改变衍射角度、即改变谐振光的波长,最终使模块实现中红外激光的波长扫描。相对于已有的利用电机使镜面机械式运动来改变波长的QCL模块,电控MEMS衍射光栅可以达到更快的波长调谐,且衍射器件的微型化也使得模块更加的紧凑(8.2×8.8×11.2 cm),易于装配。说到这里,还有一款新的低功耗QCL也来了解下吧! 滨松在QCL的开发上一直都朝前推进着。继波长外腔调谐QCL模块后,一款新的低功耗QCL也踏着小碎步紧接着在今年初面世啦!和以前的QCL不一样的是,这个新成员采用的是蝶形(Tall-Butterfly)封装。继承了原来HHL封装QCL的优点,CW功率保证不低于15mW的情况下,在阈值电流、最大电流、芯片功耗及总功耗方面均有大幅度优化。芯片工作温度在10~65℃,甚至某些高温芯片无需外部风冷,完全可以满足日常环境下的使用要求。且紧凑小巧,重量仅16g,适合于集成到气体分析设备之内。针对于红外气体分析的应用,滨松可提供包括QCL以及红外探测器在内的全套解决方案。在空气污染问题日益严峻的现在,我们也希望通过推进基础核心技术的发展,为环境监测应用带来更多的支持和可能。滨松用于气体检测的产品一览
  • 化学实验室惰性气体保护解决方案 -- 手套箱及可选功能
    实验室化学是现代科学研究和工业生产中至关重要的一环。在许多化学实验中,特别是处理对人体有害或容易受到外部污染的材料时,采取必要的安全措施至关重要。手套箱是一种重要的装置,它提供了一个无水无氧的惰性气体保护环境,既保护了对空气中反应成分高度敏感的材料,又允许研究人员在不接触有害物质的情况下进行实验操作。自从1976年布劳恩研发出世界上第一台手套箱,就定义了行业标准——水、氧含量小于1ppm,为对空气中反应成分高度敏感的材料和工艺研究奠定了基础。对于对环境要求苛刻的应用,氮气也需要被去除,布劳恩是目前市场上唯一一家能够提供主动脱氮平台的手套箱制造商。自公司成立以来,高校、研究所一直是我们成功的基石,凭借过去几十年在实验室化学等各种应用领域中获得的丰富经验,布劳恩不断创新,开发出一整套模块化产品,这些产品可以与标准手套箱灵活组合升级,并根据客户的需求和应用精确定制,量身打造出最适合客户的手套箱系统。体视显微镜01如图为集成在布劳恩手套箱/前窗中的体视显微镜,具有以下特点:&bull 目镜10x/23&bull 9:1 变倍比,6.1x-55x 放大倍率&bull 视场直径 37.7 mm&bull 照明:LED,80流明,色温5.600K&bull 工作距离122 mm&bull 瞳距可调范围 50-76 mm快开前窗02快开前窗,顾名思义就是可以快速拆除前窗,方便维护内部设备或者清理手套箱。试剂瓶存储仓03试剂瓶存储仓内安装有旋转存储架,最多可容纳7个试剂瓶,试剂瓶开口位于手套箱底部,并配有盖子。并且试剂瓶存储仓内安装有溶剂蒸汽排除管路,以避免交叉污染。冰箱04布劳恩低温冰箱可分别安装于手套箱侧板或背部。温度控制集成于手套箱,可在手套箱触摸屏上进行温度设定。有两种型号可选:容量分别为18L和27L,温度范围分别为: +10°C ... -35°C和+10°C ... -40°C。减震台05布劳恩可提供的三种形式的减震台:分别为大理石减震台、集成于手套箱底板的大理石减震台以及气浮减震台 。冷阱06&bull 冷井内部直径: 150 mm&bull 冷井内部高度:180 mm&bull 包含杜瓦瓶及其升降台&bull 包含盖子热板07布劳恩热板用于加热固化沉积在刚性基片上的有机薄膜,或用于在特定温度环境下对特殊敏感材料进行干燥处理。其紧凑的设计便于操作且节约手套箱内空间。适用于固化温度在25°C到300°C的薄膜材料。真空烘箱08一些对空气敏感、热稳定性较差的材料需要在真空、纯净的箱体环境中进行干燥处理,布劳恩真空烘箱是最为经济有效的一款产品,最高温度可实现 200°C过渡舱烘箱09布劳恩所有的烘箱都是经过特殊设计的,可在惰性气体环境中使用或者单独使用,用于去除基板表面的水或溶剂,或在特定温度条件下对敏感材料进行干燥/固化。加热温度从150°C到600°C可选。溶剂净化系统10布劳恩的溶剂净化系统可以直接独立使用,也可以与布劳恩手套箱集成使用。&bull 最多可净化7种不同溶剂&bull CE认证的安全防火柜用于存储易燃溶剂&bull 每路净化柱最多可净化800L溶剂在线清洗(WIP)11当手套箱内有危险化学品泄漏时,该选项可用于安全清洗手套箱内部,同时防止操作人员接触危险化学品。可选配适用于液体或气体的管路和喷枪。搁物架和储物柜12在手套箱内配置合适的搁物架和储物柜,可保证安全的存储环境,有助于优化工作空间,保护敏感材料和设备不受污染,并通过降低泄漏和交叉污染的可能性以提高安全性。布劳恩的存储方案可在保证轻松取放的同时确保工作空间安全、有序、可控。如果您想了解更多产品详情,欢迎致电我们!
  • 电弛观察:电池气体内压测试与固态电池安全技术
    传统锂电池内的气体释放通常是由高度电解的阴极分解和SEI的形成和分解引起,对电池安全构成极大威胁,会导致电池膨胀、变形、热失控等安全危害。由于固态电池采用固态电解质取代了传统的液态电解质,在消除传统锂电池的安全焦虑方面,人们对固体电池有很高的期望。 那么是不是固态锂电池就不会有内部产气和压力升高的顾虑了呢? 德国卡尔斯鲁厄理工学院的Timo Bartsch等人研究了一种基于β-Li3PS4固体电解质和富镍层状氧化物阴极的典型全固态电池的产气行为。研究显示,在45°C时,Li/Li+在4.5 V以上电位时检测到明显的氧气和二氧化碳产气。 中科院物理所聂凯会等人对PEO基固态电池体系,结合实验和计算系统地研究了其在高电压状态下的产气行为,发现了尽管PEO基聚合物电解质的电化学窗口只有3.8V,但是单纯PEO电解质直到负载电压达到4.5V时才开始出现明显的产气分解的行为。 以上研究说明固态电池同样存在电池内部产气并产生内部压力的问题, 因此对固态电池的产气行为和内压研究同样重要。 电弛的解决方案2023年,武汉电弛新能源有限公司研发团队经过技术攻关,成功推出了DC IPT原位气体内压测定仪,为锂电池测试提供了全新的解决方案。该产品方案得到了行业内先进企业的认可,其具有以下优点: (1)直接穿刺,精准测量大道至简,摒弃“间接法”测量方式,采用类似于外科穿刺方式,直接对锂电池内部气体及压力进行取样和测量。通过锂电池穿刺取样这种直接测量方法,可以快速获取真实、准确的数据,从而极大地提升检测质量效率。这种直接测量方法的实现原理是,利用专门设计的密封穿刺装置在电池表面制造一个局部密封的小孔,然后将电池内部气体导出到测量探头,直接测量电池内部的压力或进行进一步的气体成分分析。这种测量方式不仅可以避免系统漏气而产生的误差,还可以实现对不同类型锂电池(如软包电池、方形电池、圆柱电池等)的快速取样。 (2)气体采样,兼容并包“间接法”测量的另一大弊端在于其兼容性。由于这种方法只能针对特定类型的锂电池进行测量,这无疑增加了测试成本和时间。为了解决这一问题,我们开发了一种全新的锂电池气体采样接口,该接口具有广泛的兼容性,可以同时测量不同类型的锂电池,包括软包电池、方形电池和圆柱电池等。这一创新性接口的设计与开发基于我们对电池内部气压监测的深入理解和多年的专业经验。通过这种新型气体采样接口,我们可以快速、准确地获取各种类型锂电池的气体内压数据,从而更好地评估其安全性能。这种兼容并包的测量方式不仅提高了测试效率,也降低了测试成本和风险。① 兼容性强:DC IPT创新性地引入了“锂电池气体采样接口(GSP)”这一技术,类似于广泛使用的Type-C接口,实现了不同品牌和类型电池测试的兼容性和互换性。DC IPT锂电池气体采样接口(GSP)打破了传统测量方法的局限性和弊端,可同时进行软包电池、方形电池、圆柱电池的测试,无需因不同类型的电池更换不同的测量设备或方法。② 高效便捷:用户无需在不同的测量设备之间切换或等待适配,提高了测试效率,降低了时间和人力成本。③ 数据准确:采用先进的测量技术和算法分析,确保数据的准确性和可靠性。④ 高重复性:由于采用了标准化的接口设计和测量流程,保证了测量结果的可重复性和一致性,有利于结果的比较和分析。 (3)网络接口,云端数据数据也是生产力,高效率的信息传递可以提升企业测试效率,对每块电池的质量状态做出快速预判。为了满足这一需求,DC IPT预设网络接口,实现了数据联云上网,以及与其他测试设备或系统进行数据交互和共享。这使得企业可以构建一个完整的电池测试和管理系统,实现对电池测试数据的全面管理和分析。用户可以跨平台(PC 、手机、Pad等)访问每块电池的气体内压测试数据,掌握质量情况。 (4)多通道定制,高通量测试在电池测试中,通道数量是衡量设备测试能力的重要指标之一。单台设备的通道数量越高,可承载的测试容量就越大,高通道带来的经济优势,不言而喻。DC IPT标准款为8通道设计,可以大大提高测试效率,降低测试时间和成本。也可以根据客户需求,定制设计更多通道提高测试通量,使得设备可以适应多种测试场景和需求,具有更强的灵活性和可扩展性。无论是大型企业还是研究机构,都可以根据自身的测试需求和规模,选择适合的通道数量和配置。此外,DC IPT的多通道设计还具有优秀的稳定性和可靠性。每个通道都采用了独立的测量电路,确保了测试的准确性和一致性。 参考文献Increasing Poly(ethylene oxide) Stability to 4.5V by Surface Coating of the Cathode. DOI: 10.1021/acsenergylett.9b02739Gas Evolution in All-Solid-State Battery Cells. DOI: 10.1021/acsenergylett.8b01457
  • OPTON微观世界 | 连铸坯典型内部缺陷断口形貌特征简介
    1连铸坯质量及内部典型缺陷类型 连铸坯质量决定着最终钢铁产品的质量。从广义来说所谓连铸坯质量是得到合格产品所允许的连铸坯缺陷的严重程度,连铸坯存在的缺陷在允许范围以内,叫合格产品。 连铸坯的质量缺陷主要为内部质量缺陷和表面质量缺陷,因其成因不同,控制,抑制缺陷的产生及提高质量的措施和方法也不尽相同。 连铸坯内部缺陷主要有中心疏松、中心缩孔、夹杂物、气孔、裂纹、氢脆等,连铸坯质量是从以下几个方面进行评价的:(1)连铸坯的纯净度:指钢中夹杂物的含量,形态和分布。 (2)连铸坯的表面质量:主要是指连铸坯表面是否存在裂纹、夹渣及皮下气泡等缺陷。连铸坯这些表面缺陷主要是钢液在结晶器内坯壳形成生长过程中产生的,与浇注温度、拉坯速度、保护渣性能、浸入式水口的设计,结晶式的内腔形状、水缝均匀情况,结晶器振动以及结晶器液面的稳定因素有关。(3)连铸坯的内部质量:是指连铸坯是否具有正确的凝固结构,以及裂纹、偏析、疏松、夹杂、气孔等缺陷程度。二冷区冷却水的合理分配、支撑系统的严格对中是保证铸坯质量的关键。 只有提供高质量的连铸坯,才能轧制高品质的产品。因此在钢生产流程中,生产无缺陷或不影响终端产品性能的可容忍缺陷铸坯,生产无缺陷或不影响结构件安全可靠性能的可容忍缺陷的钢材是冶金工作者的重要任务。随着科学技术的不断发展以及传统物理学、材料学的不断完善,连铸钢缺陷检测已经进入了纳米检测时代。扫描电镜以其高分辨率、高放大倍数及大景深的特点为连铸钢缺陷分析与对策研究提供了无限可能,使得材料分析变得更加具有科学性和实用性。扫描电镜广泛用于材料的形貌组织观察、材料断口分析和失效分析、材料实时微区成分分析、元素定量、定性成分分析、快速的多元素面扫描和线扫描分布测量、晶体/晶粒的相鉴定、晶粒与夹杂物尺寸和形状分析、晶体、晶粒取向测量等领域。电子显微镜已经成为钢铁行业在产品研发、质量检验、缺陷分析、产品失效分析等方面强有力的工具和检测手段。2连铸坯典型内部缺陷宏观和微观特征及形成机理简介2.1 缩孔缺陷特征 在横向酸浸低倍试片上存在于铸坯中心区域、形状不规则、孔壁粗糙并带有枝晶状的孔洞,孔洞暗黑。一般出现于铸坯最后凝固部位,在铸坯纵向轴线方向呈现的是间断分布的孔洞。形成机理 连铸圆坯在凝固冷却过程中由于温度梯度大、冷却速度快和结晶生长的不规则性,局部优先生长的树枝晶产生“搭桥”现象,把正在凝固中的铸坯分隔成若干个小区域,造成钢水补充不足,钢液完全凝固时引起体积收缩,在铸坯最后凝固的中心区域形成缩孔。另外,拉坯速度过快,浇注温度高,钢水过热度大等都将影响铸坯中心缩孔的大小。因连铸时钢水不断补充到液相,故连铸圆坯中纵向无连续的集中缩孔,只是间断出现缩孔。微观特征 缩孔内壁呈现自由凝固光滑枝晶特征,见图1。图1 连铸坯心部断口中不致密的疏松和缩孔2.2 疏松缺陷特征 在横向酸浸低倍试片的中心区域呈现出的分散小黑点、不规则多边形或圆形小孔隙组成的不致密组织。较严重时,有连接成海绵状的趋势。形成机理 连铸过程中浇注温度过高,中包钢水过热度较大,铸坯在二冷区冷却凝固过程中由于温度梯度作用,柱状晶强烈向中心方向生长。中心疏松的产生可看成是铸坯中心的柱状晶向中心生长,碰到一起造成了“搭桥”阻止了桥上面的钢液向桥下面钢液凝固收缩的补充,当桥下面钢液全部凝固后就留下了许多小孔隙;或钢液以枝状晶凝固时,枝晶间富集杂质的低熔点钢液在最后凝固过程中产生收缩,与此同时,脱溶气体逸出而产生孔隙;或是钢中的非金属夹杂物在热酸浸时被腐蚀掉而留下孔隙。钢中含有较多的气体和夹杂时,会加重疏松程度。疏松对钢材性质的影响程度取决于疏松点的大小、数量和密集程度。微观特征 不致密的自由凝固枝晶特征,常有夹杂物伴生,见图2、图3。图2 连铸坯心部断口中疏松与枝晶状硫化物图3 连铸坯心部断口中不致密的疏松缺陷图4 连铸坯中部断口中柱状晶及小气孔缺陷2.3柱状晶发达缺陷特征 在横向酸浸低倍试片上,铸坯的上半弧枝晶发达至中心,下半弧枝晶相对细小。形成原因 连铸结晶器内钢液的凝固热传导对铸坯表面质量有非常大的影响。研究发现随着结晶器冷却强度(热流)的增加,坯壳的不均匀程度提高。如果冷却水冷却不均匀,上弧冷却强,就可能造成上弧柱状晶发达穿透至中心;下弧冷却弱,柱状晶就相对比较细小。微观特征 发达的枝晶状柱状晶其上常有小气孔或夹杂物存在,见图4。2.4 非金属夹杂物缺陷特征 在横向酸浸低倍试片上的连铸坯内弧侧、皮下1/4—1/5半径部位分布有不同形状的孔隙或空洞(夹杂被酸浸掉)。在硫印图片上能观察到随机分布的黑点。形成机理 按夹杂物来源,非金属夹杂物分为内生夹杂和外来夹杂。内生夹杂是指冶炼时脱氧产物和浇注过程中钢水的二次氧化所生成的产物未能排出而残留在钢中的夹杂物。外来夹杂是指冶炼和浇注过程中由外部混入钢中的耐火材料、保护渣、未融化的合金料等外来产物。这些内生或外来夹杂在连铸上浮过程中被内弧侧捕捉而不能上浮到结晶器液面是造成内弧夹杂物聚集的原因。微观特征 连铸坯中夹杂物多呈球状、块状、颗粒状,分布在疏松、气孔、晶界等部位,见图5、图6 图5 连铸坯心部断口晶界上的颗粒状碳氮化物图6 连铸坯心部断口中光滑气孔及枝晶状硫化物2.5 氢致裂纹缺陷特征 在横向酸浸低倍试片上氢致裂纹的分布形态是距铸坯周边一定距离的细短裂纹,有的裂纹呈锯齿状。在纵向试样上,氢致裂纹与纤维方向大致平行或成一定角度,裂缝的锯齿状特征更明显。在纵向断口上呈现的是椭圆形的银灰色斑点,一般称之为铸态白点。形成机理 氢致裂纹是由于熔于钢液中的氢原子在连铸坯凝固冷却过程中脱熔并析集到夹杂、疏松等空隙中化合成分子氢产生巨大的压力并与钢相变时产生的热应力、组织应力叠加,在局部缺陷区域产生巨大的气体压力,当超过钢的强度极限时,导致钢坯内部产生裂纹。微观特征 断口呈氢脆解理或准解理特征,见图7、图8。图7 连铸坯断口上的氢脆解理特征(H 5.4PPm)图8 连铸坯断口上的氢脆解理及颗粒状氧化物2.6连铸坯正常特征宏观特征 在横向酸浸低倍试片上无粗大的柱状晶、无裂纹、无气泡、无中心缩孔、无夹杂物聚集、无明显的成分偏析,质量良好。微观特征 连铸坯正常断口形貌为粗大的解理扇或解理河流形貌特征,见图9。图9 连铸坯断口中正常解理形貌特征
  • 五个工程师与一个气质独特的中红外气体分析解决方案
    烟气、尾气等污染气体中所含有的氮氧化物、硫氧化物等成分,对我们的健康有着很大的威胁。需要分辨出它们,监测排放,中红外波段光这时就大有用处了。对3μ m~10μ m波段的中红外光有吸收特性的污染物们,通过光学的方法就能被迅雷不及掩耳盗铃之势地监测到,可谓是中红外光一出手,就知污染有没有。但是,重点来了!完成一套探测系统,光源和探测器都是必要的。在这个如此微妙的波段,要想有一个“两全”的整体配套解决方案,可不是那么容易的事情。虽然不容易,但总还是有的!量子计级联(QCL)× InAsSb光伏探测器这两位就是挑起气体监测大梁的干将了。而关于这个气质独特的中红外气体分析解决方案,有5位滨松工程师表示有话要说一说̷̷Topic 1 “两全”的中红外气体分析解决方案Q:中红外的光学法分析具有什么特征?大石:气体分析包括气体色谱分析、质量分析,而这些都需要采集样本后带到实验室进行分析。如果通过使用激光的中红外光学法,则实现在线监测。更加实时和便捷,应用范围也更广泛。杉山:我们多致力于中红外波段气体的分析,并为这样的应用提供了相应的激光器。在波段3μ m~10μ m间,包括甲烷、二氧化碳、一氧化碳、硫氧化物、氮氧化物等许多有害气体都能够通过这种方法被测得。 Q:中红外波段的探测器和光源器件开发是否有难以攻破的课题?杉山:之所以特意选择中红外波段的气体分子为对象,是因为气体分子的吸收具有明显性的优势。从光发射角度来看,对计测也是非常有利的。饭田:一方面,对于探测器来讲,在中红外波段背景光的增强,也就意味着干扰的出现,对探测有着不良的影响。此外,在该波段想要制作理想的探测器非常困难,并且也很难实现高灵敏度的性能。正因如此,同时提高探测器在中红外波长的灵敏度,以及激光光源的性能非常重要。而能就这两方面进行同步开发,也体现了滨松的技术实力吧。(笑)大石:尤其是仪器制造客户开发新产品时,若在开发初期不提高精度,那么开发也毫无意义。为此,核心的探测器和激光器必须保持最好的状态。因为对这一点有深刻的认识,目前我们开发的产品才能够在客户那里稳定地、持续地发挥出良好的作用。 Q:完成探测器和激光光源配套的方案有什么困难?方案对于客户有什么价值?杉山:无论是探测器还是激光光源,都存在很多开发难题,同时挑战两种器件的厂家也鲜有出现。就激光光源来说,因为“1成分=1波长”,故而需要开发与被测对象气体相同数量的激光光源。开发成本大,产品化后的商务风险也很高。大石 :从客户角度,探测器和光源都来自同一个厂家是具有很大优势的。比如,目前多数的仪器制造商都是从不同厂家分别购买的探测器件和光源。但若开发出来的设备没有达到预期的性能时,由于器件来自不同的地方,就很难知道配合使用过程中的问题所在。落合:若探测器和光源都是由同一厂家生产的,就可以进行相互评估,找出问题所在,从而提高测量设备的性能,缩短开发设备的时间。利用中红外波段QCL(量子级联激光器)的激光吸收分光是非常新的分析计测技术,今后也将以高灵敏度、高分辨率的优势,成为气体分析的选择并得到普及。采用QCL(量子级联激光器)和InAsSb光伏测器的极微量气体分析示意图 Topic 2:单一波长振动量子级联激光器(QCL)和性能稳定的InAsSb光伏光伏探测器Q:滨松分别为光源和探测器部分提供怎么样的产品?杉山:光源器件的代表是量子级联激光器(QCL)。它的开发初衷其实是想用于通过呼吸分析来进行“癌症筛查”的应用,这是有我们前任社长昼马辉夫先生提出的。虽然遗憾的是目前仍没有确立这种技术,但QCL在气体分析领域仍然发挥了独特的作用。饭田 :光探测部分则是InAsSb(铟砷锑)光伏探测器。目前我们提供2种类型的产品,覆盖2.5μ m~8μ m的波长区域。 量子级联激光器(QCL)InAsSb光伏探测器Q:QCL和InAsSb光伏探测器各自有什么特别的性能吗?杉山:首先说一下QCL。一般的半导体激光器,如果在数百nm中有多个波长发生震动时,光谱带宽变宽,受到多种气体的干扰,测量精度下降。而QCL采用的是DFB(分布式反馈激光器)结构,在内部设置了衍射光栅,可使光谱带宽非常狭小的单一波长振动。但是DFB很难实现产量,在产品化之初,我们为提高产品的合格率投入了非常多的精力。落合 :在不断提高DFB结构的制造技术同时,我们也推进了内置准直透镜的新产品的开发。新产品从激光芯片射出的光的范围变得更宽,因此与之前的产品相比,客户在设计光学系统时,无需再为激光通过对象物而改变光的形状。 Q:在内部置入准直透镜时,是否也付出了相当的精力?落合:以往没有准直镜的QCL产品需要客户自己调整光轴。中红外光是不可见光,无论是在光学材料还是特殊的光学系统设计上都是相当花时间的。在QCL封装外部设置透镜的话,因为没有大小的要求,所以是比较容易对准的。但是,若是内置透镜,就需要在狭小的封装空间内,与光轴完成高精度的对准以及固定。同时还必须考虑因光学材料的反射产生的噪音的影响。杉山:发射光斑大小只在10μ m*10μ m左右,要将这大约只有头发直径十分之一的光斑与光轴对准,可不是简单的事。而在出货检验时,安装了准直仪的透镜轴如果稍有偏差,都会成为不合格品。内置准直透镜的新型QCL滨松QCL获2016年日本激光学会产业“优秀奖”Q:QCL有什么典型应用?落合:比如说同位素检测。CO2虽是唯一的物质,但它也存在拥有不同质量数的C和O的“兄弟”同位素,其光吸收波长都各不相同。CO 2和13CO 2的吸收波长同是4.329μ m,而12CO 2 的吸收波长是4.328μ m。求出同位素之比,就可以知道排出源(植物、土壤、燃烧等)和形成原因,同位素检测可以说是激光QCL的真正的应用价值所在。Q:探测部分的InAsSb光电探测器又有着什么特点呢?朝仓:InAsSb光电探测器是含有In(铟)、As(砷)、Sb(锑)的化合物半导体。以前,作为3μ m~10μ m的红外探测器而得到广泛使用的是MCT光伏探测器、MCT光导探测器。但MCT中使用了RoHS指令中所禁止的汞、镉,所以我们重新开发了不含这些禁令污染物的器件。饭田:InAsSb光伏探测器的研制,需要同时在晶体生长和制程两个方面进行新的推进。话虽简单,但一方面现有的技术并不适用于新产品,而且还要开发出半导体材料的最佳生长方法和制程。晶体是在作为基板的硅晶片上形成薄膜层来进行生长的,它的品质与器件的特性息息相关,以此,为了得到高品质的晶体必须要不断改良其生长技术。制程则要通过改良设备的结构,来实现产品高灵敏度的性能。不过,最终我们都掌握了两方面的新技术。朝仓:MCT的个体差异性非常明显,而InAsSb光伏探测器不含汞、镉,且具有稳定性高、偏差小的优点,具有更大的优势。若固定产品规格,则会是非常好的量产化产品。 Topic 3 使用分子吸收的计测的应用范围广Q:客户对产品有什么样的反应?大石:有客户对QCL和InAsSb光伏探测器的配套组件进行了评估,显示出的性能渐渐地得到了客户的认可。因为覆盖了气体所含成分所吸收的狭小的波段,恰好显示出了QCL发光波长范围小的优势。我们也可以满足想要生产此类设备的厂家的需求。杉山:采用分子吸收计测是光学法的关键。不仅是气体,液体和固体也可以利用这样的方法进行分析,比如水分和胆固醇。Q:今后有怎样的推进计划?落合:目前的QCL产品覆盖了4μ m~10μ m波段,我们也在扩充能够覆盖更长波长范围的产品。当然,与之对应的是,我们接下来也将涉及10μ m附近的探测器的开发。朝仓:是的,光探测部分的InAsSb光伏探测器目前涵盖了2.5μ m~8μ m。我们打算将其延伸到11μ m、12μ m。大石:今后,无论是光探测器还是激光光源,都将同时覆盖10μ m左右的长波长领域。另外,我们构想着将这两个器件组成一个模块,更加高效地为客户实现气体探测的应用。
  • 被污染气体监测仪器的行业人士围观的,居然是!
    被围观的就是滨松的【量子级联激光器(QCL)】↓↓↓↓↓↓↓↓和滨松新型【InAsSb探测器】↓↓↓↓↓↓↓↓你看,小编是不是敲耿(tao)直(lu)!一丢丢都没有卖关子~(可爱.jpg) 图片来源:xz7.com这两个小玩意,其实是上周闪耀在第十五届中国国际环保展滨松展台的小明星,作为核心光源和探测器,从头到尾,重新诠释了更好的红外气体分析。红外气体分析在污染气体监控中的重要性就不多说了,随着国内“大气十条”的推进,对监测仪器性能要求变得更高、更严,这便直接转化成了对核心器件的要求,也变成了一个个新的难题。光源:监测精度要求更高,但一般的半导体激光器,如果在数百nm中有多个波长发生震动时,光谱带宽变宽,受到多种气体的干扰,测量精度易下降。中红外光源的激光器要达到“1成分=1波长”,需开发与被测对象气体相同数量的光源。开发成本大,商务风险高。探测器:常见污染气体主要集中在4μm~10μm,探测器波长范围需尽可能覆盖。反之,则会增加成本,光路设计变复杂,进而仪器体积增大,功耗上升;探测器须完全符合RoHS标准,传统高污染的碲镉汞(MCT)探测器彻底面临“下岗”;实时监测要求探测器具有更快上升时间,确保在更短时间内获得信号;小型化趋势要求探测器结构改善,避免制冷带来的高功耗、制冷系统体积大的问题。而本次在环保展中登台的量子级联激光器(QCL)和InAsSb探测器,就是目前我们解决问题的答案。滨松QCL采用的是DFB(分布式反馈激光器)结构,在内部设置了衍射光栅,可使光谱带宽处于非常窄的单一波长。虽然DFB-QCL很难实现量产,但滨松目前已拥有了充实的可定制化产品线。滨松QCL曾获得2016年日本激光学会产业“优秀奖”InAsSb探测器的新品——P13894系列在本次展会中再次与专业观众们见面。因相较市面同类产品,前所未有地将探测范围延至了11μm,实现了单个探测器对多种成分的分析能力,所以自诞生以来就光环加身;另外一个重要的point就是它持有“完全符合RoHS标准”这一门槛级的“上岗证”,成为新红外气体分析探测器的理想接班人;同时具有的非制冷、高灵敏度、更快上升时间等特性,也使它对于污染气体在线监测更具意义,并为仪器的小型化提供了可能。无论是探测器还是激光光源,都存在很多开发难题,而整体方案的提供对于仪器的开发者来讲,可以更有利于器件的相互评价,规避许多开发中由于器件出处不一而产生的技术磨合问题,缩短设备研发时间。当然,除了这两位突出的小明星外,我们在环保展中还呈现出了红外气体分析应用的探测方案“全景图”,针对不同的污染气体监测需求、成本考虑,从光源和探测器方面都呈现出了相应的技术支持能力。当然,除了红外气体分析的应用外,滨松在展会中还呈现了热门的大气(臭氧、二氧化硫等)、水质以及VOCs检测的相关产品。为水和空气治理的第一步——监测,提供核心的光电探测技术支持。水、空气、土壤都是生命源,滨松的技术可以为我们监测污染、促进治理,但想真正实现祖国环境保护愿景,还需要更多相关企业的社会责任意识觉醒,和我们每个人的努力。 滨松中国自身而言,目前所有展台均使用环保材质,减少涂料带来的空气污染和建材浪费。这也许是一个小的举动,但群体中每个个体的点滴善举终有一天可能成就环境问题的改善。“勿以善小而不为”,环境的守护不光靠我们的技术,更靠你的行动。
  • GPT-Li在锂电池原位产气量和气体组分分析中的应用
    锂离子电池在首次充电过程中,电解液与负极材料发生反应在表面形成固体电解质界面膜(SEI,Solid Electrolyte Interface),并伴随产气,如氢气、二氧化碳、甲烷等。该过程属于正常产气,被称为化成阶段。当锂电池在过充放电过程时,也会异常产气,导致电池形变、封装破损、内部接触不良,从而引起安全事故。因此,准确掌握电池的产气量大小、深入了解产气规律,有助于优化电池材料体系和电解液,对电池制作工艺优化至关重要。以往,对于从软包锂电池中提取气体样本一直是一项具有挑战性的工作。传统的方法是用一根锋利的针穿透软包电池,这样可以一次性测量气体,但在此过程中会破坏软包电池。而且,这种方法不适合与多种时间、不同电压或充电状态(SoC)相关的测量,也不允许连续监测电池内部的产气过程。因此,该传统方法存在的问题是测试具有破坏性,不能用于非侵入和重复气体取样。它也没有提供一种从软包电池中提取永久性气体而不损坏它的方法。为了克服这些限制,德国明斯特大学(University of Münster)的Jan-Patrick组于2020年引入了一种气体采样端口(GSP,Gas Sampling Port)用于从锂离子软包电池中原位采集产气(DOI 10.1149/1945-7111/ab8409)。GSP是一种基于聚丙烯(PP)的套管系统,它被热封到袋箔的内层。它允许非破坏性和重复气体采样,而不会显着影响袋状电池的电化学性能。通过引入GSP,研究人员能够对软包电池内形成的气体进行原位分析。这使他们能够在不损害电池完整性的情况下研究气体的产量和组成。关于产气量的测定,作者仍然采用的是传统的“阿基米德法”。这种方法的基本原理是将软包电池悬挂于流体中,如MilliQ水中。由于软包电池受到的液体浮力会对小型薄膜测压传感器施加一个力,则传感器中应变片的变形会导致电阻变化形成电信号,然后再转化为力数据。通过阿基米德浮力公式,其产生的浮力与同体积排开的液体的重量相等,即可换算出软包电池的产气量。但此方法为间接计算产气量,操作装置较为复杂、误差较大、精度不足、重复性不足。且此方法仅能用于软包电池的产气量测量,不具有兼容方形电池、圆柱电池的广泛性。GPT-Li原位锂电池产气量测定仪采用GMC(Gas Metering Cell)超微量气体流量测量专利技术,其原理为直接将锂电池产气引入GMC测量模块,当气体流过特殊设计的流道中的惰性液体时,会产生均匀的气泡并计数累计产气量。该技术的直接测量精度可达约30 μL,且支持连续或非连续气流的测量。将该技术结合不同的接口,可实时在线连续原位监测软包、方形、圆柱等各种类型电池的产气行为,并得到如产气量、产气速率等数据。同时,GMC测量模块可直接与GC、DEMS等气体组分分析设备串联,用于进一步的气体组分分析。相较于传统的排水法(基于阿基米德浮力定律)、集气法(基于理想气体状态方程),GPT-Li可实现直接动态监测气体的微量体积变化并与气体成分分析设备进行联动分析,有助于锂电池材料研发和电芯产气机理的分析研究。
  • 不要骗我,这小不点真可以“看到”辣么多污染气体?
    一月初的北京,又又又又又一次霾上了。 1月4日某天气APP发出的数据,都各界群众心情如右图 几个清晨拉开窗帘的时候,应该都感觉进入了《迷雾》呀、《寂静岭》呀之类的电影场景中,需要担心分分钟是不是有外星生物或者异世界怪物从浓浓大霾里蹦出来。《迷雾》剧照来源:douban.com《寂静岭》剧照来源:funshion.com 雾霾的影响和危害,想必就算是吃瓜群众也都已非常了解了。想要逃脱这场“醇厚”的霾,戴口罩、开净化器都只是一时的权宜之计,关键还是要从根本上彻底治理。都说擒贼先擒王,那么治霾就得先控源,有效及时的污染源监测是治理需要踏出的第一步。二氧化硫、氮氧化物以及可吸入颗粒物这三项是雾霾主要组成,前两者是气体,而后者是雾霾的最大“元凶”。最有代表性的就是大家熟悉的PM2.5了,这种物质本身既是污染物,又是多种毒物的载体,比如重金属、多环芳烃。对于普通的防护来,浓度信息基本能满足预警参考,但对于监管和治理来讲,还需要更细致的了解到污染物中的成分等多种信息,才能作为“对症下药”的科学参考依据。 中红外气体探测法:呔!有害气体哪里跑! 不同分子的气体都有其固定的、独有的特征吸收峰,我们根据这些吸收峰的位置进行识别,从而分辨出是哪种气体以及浓度大小,这些吸收峰我们也称之为“分子的指纹峰”,利用中红外光指纹峰来判断气体的种类和浓度,已经广泛地应用于气体中氮氧化物和硫氧化物的测定。目前常见的污染气体主要集中在4μm~10μm内,因此我们有必要将探测器的波长范围扩展到11μm附近(来来来,请各位同学划重点),从而完成对绝大多数常见污染气体的高灵敏度、高精度的探测。此前,在中红外气体探测中主要采用的是碲镉汞(MCT)红外探测器。但因为该探测器中含有RoHS指令所限制的水银和镉,所以基本已被市场拒之门外。不过,后浪拍前浪,一种基于环保材料的新型探测器则踩着七彩祥云横空而降了! InAsSb光探测器来也! 响应波长延至11μm?那都不是事儿!对于中红外波段的探测而言,铟砷锑(InAsSb)材料的探测器在室温下也具有很高的探测效率,且响应快速。与碲镉汞(MCT)不同,其材料完全符合RoHS标准。这些优势让它逐渐成为高品质红外探测的新宠。采用InAsSb材料的红外探测器,因为改变了光吸收层的薄膜结晶As和Sb组合比例,使其在12μm处也可具有光谱响应。而InAsSb的薄膜结晶是在作为衬底的结晶基板上生长的,改变元素的组合比例后,可以响应不同范围的波长,由于在薄膜结晶和结晶基板上生长出的材料原子排列间隔不同,在薄膜结晶生长时存在半导体材料缺陷的问题,从而影响探测器实际的波长响应范围。注意!这里要说“然而”了!然而!近期,滨松公司通过自有的薄膜结晶成长技术,生长出了几乎无缺陷的薄膜,将光谱响应范围从8μm稳定延伸至11μm。结合我们在上文中划的重点(敲黑板:忘记的同学赶快往上翻看),可以了解,几个微米级的变化则会带来可测定分子范围的扩大,10μm波长附近的氨气(NH3)、臭氧(O3)等分子如今也只能乖乖缴械现形。实现了单个探测器对多种成分的分析,对污染气体在线监测而言更具意义。滨松新型InAsSb光探测器P13894系列光谱响应范围覆盖3~11μm谁说非制冷就不能有高灵敏度?!我们知道,波长越长光能量越低,对探测器灵敏度要求就越高。虽然通过冷却可提高探测器灵敏度,但采用液态氮的方法会导致设备大型化,采用电子冷却又存在功率变大的问题。滨松在新系列InAsSb探测器的结构设计上进行了反复专研,实现了非制冷、高灵敏度特性的并存,以此进一步推进分析设备的小型化、低功率,也是大有希望。InAsSb光探测器P13894系列中制冷型和非制冷型单品对比 除此之外,该InAsSb探测器上升时间很快,可用更高的调制频率进行光源调制,在更短时间内获得气体吸收信号,从而达到“实时监测”的效果。在空气污染源监测,特别是工厂烟气监测中作用突出。工厂烟气监测示意 不过,完整的监测系统,单靠InAsSb探测器这个小不点也是完成不了的,还需要相应的光源担任助攻才行。波段4μm~10μm的中红外光源——量子级联激光器(QCL)是理想的选择。QCL采用的是DFB(分布式反馈激光器)结构,在内部设置了衍射光栅,可使光谱带宽处于非常窄的单一波长。2016年滨松公司也推出了内置准直透镜的QCL新品,增加了仪器开发的便利性。 从烟囱中排出的污染虽然可以通过小小探测器监测,但是真的做到减少污染的排放还需要更多社会和科技力量的合力。但愿通过点滴努力的汇聚,很快我们能够再次迎来蓝天常伴的日子。美好的心愿:天天看蓝天看到腻~~ :D图片来源:bbs.fengniao.com 参考资料:[1] 百度百科,”雾霾”词条.[2] 胡淑红,王奇伟,吴杰,何家玉,戴宁.非致冷InAsSb中长波红外探测器研究评述孙常鸿.中国电子科学研究院学报.2010.01
  • 拉曼积分球光谱仪在气体检测中的应用
    拉曼光谱技术被称为分子指纹谱,可以对目标分子进行准确的定性分析,因而用途广泛。但是其固有的特点,例如拉曼散射信号弱等,限制了其应用范围,尤其是在气体检测领域的应用。气体分子密度低,透光度高,作为激发光源的激光在气体中可以传输较长距离,而拉曼信号作为散射信号散射向四周立体空间,因此不能通过像吸收光谱那样简单的通过增加光程来实现信号的增强。拉曼光谱应用于气体检测具有以下优点:1、准确定性:可以根据特征光谱对除惰性气体外的所有气体进行准确的定性分析;并且气体分子受周围环境影响小,其分子结构均一性较高,因此其特征光谱单色性好;气体分子结构简单,其特征光谱峰较少,不同分子间特征峰重合较少,有利于混合气体的分析。2、准确定量:气体的透明度具有的优点之一是,气体检测过程中不会受到荧光干扰,优点之二即气体分子被激发出的拉曼信号在被收集过程中与其他气体分子发生相互作用的概率极低,所以拉曼光谱强度与分子数量及拉曼散射截面成正比。而拉曼散射截面是固定量,因此拉曼光谱强度的变化量正比于分子数量的变化量,可以用来准确的计算分子数的相对变化。3、无损测量:拉曼散射过程是分子振动-转动能级的跃迁过程,不会破坏分子结构。4、无接触检测:拉曼散射采用光作为信号载体,可以通过透光窗口等对特殊环境例如高压、高温、剧毒等样品进行测试。在气体检测领域,由于气体的流动性,更需要对特殊气体进行密闭处理来保证气体的稳定性,适合对有毒、腐蚀性等的气体进行检测。5、同位素分子的分析:同位素作为标记物而应用广泛,而对同位素分子进行区分往往需要气相色谱和高分辨质谱联用这种昂贵的技术来实现,而作为分子振动-转动谱的拉曼光谱,其同位素的不同质量在其特征峰的频移上表现明显,可以轻松的区分同位素的种类和相对含量。正因为以上原因,在二十世纪六十年代激光出现并且作为拉曼光谱的光源而广泛应用的时候,科学家尝试将拉曼光谱技术应用于气体检测领域。近共焦腔、逆向多重反射池、能量聚集腔、多通道拉曼增益池、改进型多通道拉曼光谱仪、空心光子晶体光纤等多种提高激光功率使用效率或拉曼散射收集效率的极具光学技巧的设计应运而生,提高了拉曼光谱技术对于气体分子的检测限并且取得了显著的效果。拉曼散射的特点,及用于拉曼光谱分析的光谱仪的特点决定了共焦型拉曼光谱仪的高效率、高空间分辨率和高光谱分辨率。光谱仪需要将入光狭缝开到50微米甚至更小来保证光谱分辨率,设计一套光学系统将较大空间的散射信号收集聚焦到狭缝这样的狭窄空间并不现实,因此将激光聚焦到一个微小空间并且将这一微小空间的散射信号收集后聚集到狭缝,成为一种可行性选择,这样既充分利用了激光的激发功率,又实现了散射信号的高效收集。因此共焦型拉曼光谱仪提高了拉曼信号的强度,扩大了拉曼光谱技术的应用范围。同样的设计也可以应用于气体检测当中,不同于固体的拉曼信号散射向空气中的部分会被收集,散射向固体内部的部分会被固体吸收或者漫反射,因此很难充分收集;气体的均一性及其透光性决定了其散射向四周的信号均不会受到较大干扰,因此使信号的更高效的收集成为可能。共焦激发收集系统正是为了解决气体的拉曼散射信号的高效收集而设计,散射向上下、左右、前后的信号被聚焦镜准直后传输向反射镜,最终传输向左方的光谱分析系统。根据光的可逆性原理,进入系统的激光也会被上下、左右、前后的聚焦镜聚焦到焦点,从而同时提高激发光功率的使用效率。此设计的优点是可以增加更多的聚焦镜和反射镜,最终实现焦点散射向四周立体空间的所有信号传输向同一个方向,从而实现球状散射信号的充分收集。激光在气体中的传输距离可以达到几十千米,因此共焦激发收集系统中的数次反射的光程远小于这个距离,很难实现激发光功率的充分利用。互相平行的光可以被聚焦到一个点,而激光光斑毫米级别的直径远小于聚焦镜的直径,因此如果能实现光的多次来回反射并且互相平行,其效果将等同于多台激光器并排放置。直角反射镜可以将光的前进方向偏转180度并且与原方向互相平行,传输方向相反,两个直角反射镜配合使用可以使激光多次来回反射形成一个平面,在外面再放置两个直角反射镜可以实现激光平面的纵向扩展,最终互相平行,方向相反的激光布满立体空间。因此,四个直角反射镜配合使用可以使1毫米直径的激光在1英寸的光学元件间来回反射百次以上,而这些光因为互相平行,因此都会被聚焦镜聚焦到焦点。将四直角反射镜增光程系统与共焦激发收集系统结合,形成的系统既能充分利用激发光的功率,又能充分收集散射信号,其结构类似一个球体,因此被称为“拉曼积分球”。目前该技术已经能实现常压下ppm量级的气体检测,还可以通过增加激光功率、对气体加压以提高气体密度,增加曝光时间等来进一步提高检测限。拉曼积分球适用于透明度高的样品,例如气体,上图为典型的空气的拉曼光谱图,包括氮气,氧气的振动峰、转动峰和振动峰耦合的转动峰,水分子的振动峰等,对其进行局部放大,能看到氧气同位素拉曼峰,氮气同位素拉曼峰,二氧化碳拉曼峰等。目前气体检测应用广泛,例如与碳循环相关的各种气体,在催化剂作用下,碳会转换成各种有机分子,拉曼积分球可以实现对反应物和产物的1秒钟内万分之一的浓度检测,而最小样品量只需要2毫升,完全实现原位监控的作用。即使碳循环成各种液体,根据液体的挥发性,即使不需要加热升华,类似甘油等难以挥发的液体的挥发物依然可以被检测到。而对于一些固体的碳化合物,例如塑胶跑道,其挥发气体的成分和浓度的检测方法正在进一步研究当中。土壤的有机污染检测是拉曼积分球的另一个重要应用方向,将被污染的土壤放到密闭加热腔中,使其中的有机污染物升华成气体,即可实现对有机污染物的定性、定量分析。汽车发动机的状态会通过其尾气的成分反映出来,燃料挥发物和一氧化碳含量高说明进气不畅通,氧气剩余多则说明燃料喷嘴的效率不够;氮氧化物的含量高说明排烟脱氮不彻底。其他方面的应用包括环境气体检测,化工厂废气排放监控等等,作为一种自主研制、具有自主知识产权的气体检测技术,相比于传统气体检测技术具有实时快速、无损、检测限好、能区分同分异构体和同位素取代分子等优点,实现了我国气体检测技术的弯道超车,而其应用场景正进一步拓展。三年来,该技术正从发明一步步走向完善,虽然没能争取到纵向项目的支撑,但是相关的科学家的持续投入和支持保证了拉曼积分球技术研发的顺利进行,检测限已经从最初的勉强万分之一到达目前百万分之一,并且还有进一步提高的空间。随着我国对技术研究的重视和大力支持,该技术将会在我国气体检测领域占有一席之地并将推向国际市场。后记我国的分析仪器,尤其是高端分析仪器主要依赖进口,随着我国科研水平的快速提升,仪器自主研发能力也得到了很大的提高。特别是,实验室具有丰富仪器使用经验,在外企中从事技术服务的科学家和工程师也越来越多,他们对高端分析仪器有自己的认识和见解。而且,部分科学家和工程师已经开始了自主仪器研制并取得了很好的成果。相信随着国家在仪器研制方面的大力支持,成果评价体制的进一步均衡,国产化仪器的提倡作用和科学家、工程师的共同努力下,不久的将来,我国会产生一大批自主设计,具有自主知识产权,具有明确应用领域的先进的分析仪器。作者简介黄保坤:博士,高级工程师,江苏海洋大学教师,huang_baokun@163.com。曾就职于中科院大连化学物理研究所催化基础国家重点实验室和英国雷尼绍公司,作为技术负责人研制的深海紫外拉曼光谱仪实现下潜作业深度7749米,是目前世界上工作深度最深的拉曼光谱仪。为中科院、中石化、中核、上海市公安局、各大高校研制了拉曼积分球、显微拉曼、台式拉曼、便携式拉曼等多种类型的拉曼光谱仪。
  • 双碳战略下,智易时代温室气体在线监测系统已准备就位
    双碳战略下,智易时代温室气体在线监测系统已准备就位背景现状:随着全球气候变化问题日益严重,减少温室气体排放、实现“碳达峰、碳中和”已经成为世界各国共同关注的重要议题。温室气体是指在大气中捕获热量的气体,目前环境空气中主要管控的温室气体成分有:二氧化碳(CO2)、甲烷(CH4)、N2O、氢氯氟烃(HCFCs)、三氟化氮(NF3)、六氟化硫(SF6)等,其中CO2、CH4、N2O三种合计占比达到98%,环境空气温室气体监测系统主要以这三种气体为主要监测内容。而大气中的CO2是三大主要温室气体中浓度最高的一种,也是对温室效应贡献最大的气体,尤其随着国家“碳达峰”和“碳中和”战略的实施,温室气体的准确监测与评估将成为降碳目标的根本前提,在双碳战略下,温室气体监测也成为环境监测的重点。因此,为进一步做好碳达峰、碳中和工作,积极开展碳排放核算方法研究,逐步提升碳排放核算的准确性、实时性,开展温室气体在线监测是极为必要的。产品介绍:针对双碳战略,智易时代研发的温室气体在线监测系统可以实时、准确地监测大气中的温室气体浓度,主要针对温室气体在线监测系统设计,内部集成盘装式可调谐可调谐激光气体分析仪、搭配温压流一体机和湿度仪,可在线监测污染源排口的CO2、CH4、N2O等温室气体。系统具有结构简单,维护、安装方便,可靠性高、适应强等特点。核心部件:作为温室气体在线监测系统的重要组成部分,HGA-1008型CO2气体分析仪是一款适用于国内环保、温室气体监测、碳排放管控等在线气体的分析仪表,主要由红外传感器(光源、气体吸收池、探测器)、数据采集单元、信号接口板及控制电路、电源等部分组成。本产品主要基于红外相关滤波技术(GFC)和非分散性红外技术(NDIR)实现二氧化碳(CO2)浓度的测量,具有精度高,稳定性好,响应时间快等特点,可广泛应用于电力、化工、水泥、钢铁、冶炼等场景。优势特点:&bull 看得见——让模糊的碳核算数据变得清晰化、可视化借助监测仪器实时监测的感知手段,基于大数据、物联网和云计算技术打造智能化监测平台,实现城市区域级别的碳达峰、碳中和路径动态规划管理,解决重点控排企业碳资产管理难题。借助多元立体的数据感知网络做到双碳路径实时动态分析调整,使能源结构调整效果预评估、碳汇能力监测分析评价、达峰峰值与达峰时间对碳中和的影响反演分析预测等等这些常规城市双碳路径规划中的“盲区”变得清晰可见。&bull 看得清——碳达峰碳中和痛难点分析辨别,路径动态管控根据城市的发展定位,通过对历史数据的收集和分析,结合立体的温室气体监测网络是实时动态感知数据,寻找和锁定双碳行动中的重点源头并分析与区域经济社会发展目标的平衡关系,在实施“降碳增汇”的措施过程中,以模拟出的达峰和中和目标为导向,解决识别什么措施可选,什么行业该“一刀切”,什么难点是实现双碳的瓶颈的问题。&bull 看得住——以碳中和为导向,聚焦达峰时间目标,落地降碳措施通过设备数据实时上传,帮管理者解决双碳目标实现过程中的数字化动态管理问题,让管理者对双碳目标的认识从朦胧变得透彻,并进一步协助将通过数据分析出的难点锁定落地,实现从源头治理。结语:在我国,温室气体在线监测系统已经广泛应用于钢铁、化工、电力、能源、煤炭等行业。这些行业是温室气体排放的主要来源,通过使用温室气体在线监测系统,可以有效地控制温室气体排放,为实现碳达峰、碳中和目标做出贡献。通过对温室气体排放的实时监测,我们可以及时了解排放情况,对排放量进行控制,从而实现双碳战略目标。
  • OGT-01顶空气体分析仪检测乳粉包装残氧量中密封垫贴的重要性
    引言乳粉作为一种常见的婴幼儿食品,其包装的密封性和残氧量的控制对于保持产品质量和延长保质期极为关键。OGT-01顶空气体分析仪是一种专门用于检测包装内部气体成分的设备,而密封垫贴在这一检测过程中扮演着重要角色。密封垫贴的作用确保密封性:密封垫贴可以确保乳粉包装与检测仪器之间的密封,防止外部空气进入,从而保证测试结果的准确性。防止样品污染:使用密封垫贴可以避免检测过程中乳粉样品与外界环境的直接接触,减少污染风险。操作简便性:密封垫贴的使用简化了检测操作,使得整个检测过程更加方便快捷。操作细节样品准备:选取代表性的乳粉包装样品,并确保包装完好无损。仪器准备:将OGT-01顶空气体分析仪预热并校准至待测状态。密封垫贴的使用:清洁乳粉包装的检测区域,确保无油污或其他污染物。将密封垫贴紧密贴合在乳粉包装的检测区域,确保无气泡和缝隙。将OGT-01的探头放置在密封垫贴上,进行气体抽取和分析。数据记录:记录检测到的残氧量数据,并与标准或规定值进行比较。注意事项密封垫贴的质量:选择适合乳粉包装材质的密封垫贴,确保其密封性能。操作规范:遵循操作规程,避免因操作不当导致检测结果的偏差。环境控制:检测应在稳定的环境中进行,避免温度和湿度的波动影响检测结果。结论密封垫贴在OGT-01顶空气体分析仪检测乳粉包装残氧量的过程中发挥着至关重要的作用。它不仅确保了检测的准确性,还提高了操作的便利性和安全性。通过严格遵守操作规程和注意事项,可以有效地提高检测结果的可靠性,为乳粉产品的质量控制提供有力支持。
  • 美国麦克公司仪器在CO2温室气体贮存中的应用
    能源的需求导致矿物燃料的消耗大大增加了大气中的温室气体浓度。排放气体的主要成分是二氧化碳。二氧化碳收集不仅仅对大气中存在二氧化碳的采集和安全存储,也包括排放的二氧化碳。自从京都议定书签署以来,对燃烧气体排放问题已经得到了极大关注. 许多与能源相关的二氧化碳管理办法,包括低碳能源(例如核能,太阳能,风能,地热能,和生物质能)。科学家们也开始寻求提高能源转换效率的方法,这样使用较少的矿物燃料就可满足相同能量输出需要。然而,尽管有希望,目前这些选择对矿物燃料的需求和使用影响相对较小。矿物燃料继续提供世界大部分能源消耗。日益增长的能源需求,选择替代能源的落后,全球经济仍然依赖矿物燃料且其相对较低的成本和高获得性,意味着矿物燃料的使用将可能持续数十年。因此,目前有很多科研力量致力于寻找有效的方法,降低大气中和工业排放的二氧化碳量。 一些研究人员认为,将二氧化碳收集在地表深处,可成为安全存储二氧化碳的长期解决方案。该方法基本思路为将捕获的二氧化碳压缩成液态灌注到多孔的深地质层,将二氧化碳液体密封在非渗透性的封盖层下。美国天然气多年存储经验,通过灌注二氧化碳,原油采收率的提高 (EOR),煤层气回收率的提高(ECBM),和向盐水地质构造层注入酸性气体为支持了这种想法。 尽管在理论上这些地层在存储人类产生的二氧化碳有潜应用,但据估计,若要有显著减少,每年必须收集超过1亿公吨二氧化碳。很多影响因素,在决定和全面实施合适存储位置之前,必须仔细研究。例如适当的工程设计和监测,地质力学过程需要仔细考虑。科学家们需要合适的研究表征方法,以帮助确定作为贮存地点的地质资料 自从1962年以来,美国麦克仪器公司的表面积和孔隙度分析仪,成为潜在的二氧化碳封存地点研究所需要的关键测量分析工具。表面积分析仪和压汞仪被用来作为必要的工具,来表征地质二氧化碳的压力和温度条件下的细粒度沉积岩的密封和流体传输性质空体积测量有助于预测地层的容量。美国麦克仪器公司的 AutoPore 压汞仪可用来测量储层岩内部样品的密封能力和孔吼比。 美国麦克仪器公司的ASAP2020比表面和孔隙度分析仪以及压汞仪的数据结合,可以完善流体传输实验。这些实验有助于揭示样品传输性质和密封效率中的显著变化同样也是测量煤的微孔和介孔分布的理想工具,因此也为ECBM研究的提供有效信息。 美国麦克仪器公司的ASAP 2050 扩展压力吸附仪 和Particulate Systems旗下HPVA-100 高压容量法物理吸附仪是研究高压下二氧化碳存储能力的理想工具。 ASAP 2050可测量从真空至10 bar的吸附量。HPVA 可达到100 or 200 bar。 ASAP 2050 和 HPVA 可在真实条件下评价材料。 国际政府在科学界的帮助下,必须找到一个方法来消除大气层中由于矿物燃料炭烧产生的过多的二氧化碳。初步数据表明,在地质结构封存二氧化碳是一种有前途的解决办法。存储大量的二氧化碳目标部分依赖于每个地层的物理特性的研究数据。美国麦克仪器公司的创新的技术和材料的表征仪器已经成为二氧化碳存储研究重要测量工具。如需了解更多信息,请登录www.micromeritics.com.cn或者拨打咨询电话400-630-2202.
  • 超声波气体流量传感器国产化助力燃气计量行业转型升级
    一、燃气表行业背景分析近年来,我国加快推进“煤改气”工程建设,天然气已经成为我国现代清洁能源体系的主体能源之一。到2020年,天然气在一次能源消费结构中的占比力争达到10%左右,到 2030 年,占比提高到15%左右。在这些燃气迅速发展的利好消息促进下,燃气计量行业将迎来巨大的发展契机。膜式燃气表因其技术成熟、质量稳定和价格低廉等优点,在我国城市燃气发展中得到广泛应用,随着计算机和微电子技术的发展,膜式表也逐步实现了智能化,目前在燃气计量行业仍然占据着主导地位。但膜式燃气表结构复杂、易磨损、易受管道介质温度压力等客观因素的影响,导致测量精度降低。热式(MEMS)燃气表是利用热传递原理测量燃气标准状况下流量的一种新型燃气计量器具,采用全电子结构,无机械运转部件,体积小、精度高。虽然可以针对特定天然气组分进行修正,但是从原理上还是易受多种不同气体组分影响,温度的影响修正也相对复杂,同时长期的污染物沉积使得MEMS芯片响应变慢影响精度,使得其应用受到限制。超声波燃气表以其非接触测量、无可动部件、无压力损失、极高的计量精度和可结合更多的智能化应用等优势,引起国内外的高度重视,是近年来燃气计量领域的开发热点。 二、超声波燃气表的研究与应用现状其实早在上世纪九十年代,英国、德国等国的多家燃气公司已陆续开发了超声波燃气表。受当时超声波探头、计时芯片、电子技术等的因素限制,价格还是非常高昂,无法与传统膜式燃气表竞争。进入二十世纪后,超声波燃气表的关键部件价格大大降低,迎来了超声波燃气表的快速发展。日本东京燃气公司于2003年7月开展了超声波燃气表的各种现场测试,于2005年率先安装了5000台超声波燃气表至用户家中,在2008年全面使用超声波燃气表。目前国际上的超声波燃气表技术主要来源于松下、西门子等公司,他们在超声波领域深耕多年,从流道结构、软件算法、超声波换能器及模块到整机,都有着诸多专利。虽然国内现有多家燃气表公司已开始研发超声波燃气表,但是大多数厂家还是使用松下的超声波燃气表传感器方案,也就是购买松下的电路板和超声波探测器,自己配套外壳组装成超声波燃气表。这样的模式使得国内厂家生产的超声波燃气表价格偏高,市场推广受到限制。我国燃气表产业生态已经基本建立,因此积极开展自主知识产权、可以满足燃气表规范要求的超声波气体流量传感器的技术研究,对于打破国外技术垄断、促进我国燃气表转型升级发展具有重要意义。 三、超声波燃气表用气体流量传感器核心关键(1)超声波换能器的自主研制。目前满足超声波燃气表计量要求的核心部件的超声波换能器基本都是进口,价格占总成本的40%。国产化的难点是其带宽以及高低温特性,既要保证较长的测试距离提高测试分辨率、较高灵敏度提高信噪比,还需要考虑不同温度下的测试漂移。 (2)燃气表的性能和稳定性问题。超声波燃气表由于无机械部件,理论上稳定性较传统膜式表要高很多,但膜式表在国内多年的使用中,已广泛被燃气表公司和客户接受。超声波燃气表如何在稳定性上达到燃气表公司的需求,打消燃气表公司的顾虑,是超声波燃气表迈向市场化的非常重要的一关。(3)气体污染问题。与膜式燃气表一样,由于超声波燃气表的常年运行,燃气中的粉尘或杂质会附着在超声波换能器上,影响换能器对信号的接收敏感度,从而影响燃气表测量准确度。(4)气源适应性问题。天然气密度比空气小,信号也较空气小;不同密度的气体通过超声波换能器后,其信号的波形会很不稳定。超声波信号传输会受传播介质、环境(温度、湿度、压力)以及管道内反射等各种因素影响,接收到的超声波信号通常存在着波形变化、幅值变化。因此,家用波燃气表要想进入家庭,并广泛使用,对气源的适应性是需要克服的最重要一关。 四、超声波燃气表用气体流量传感器技术特点四方光电公司自2008年开展对超声波气体传感器的研究以来,通过在超声波换能器、时间计量芯片以及时差自动计算方法、流程成分同时感知等领域取得突破,特别是在超声波氧气流量传感器、超声波沼气流量计等领域实现了规模化生产应用,具有较好的技术和产业基础。针对家用燃气表需要的超宽量程比、宽温度范围、抗污能力、脉动气流测量等特殊要求,开发成功满足超声波燃气表用的超声波气体流量传感器。(1)“L”型流道结构设计。超声波燃气表用超声波气体流量传感器采用“L”型流道设计,包括腔体、进气口、出气口及两个超声波换能器,通过将气室腔体的横截面设置为圆形,将超声波信号在第一个换能器安装孔和第二换能器安装孔之间的传播路径设置为“L”型流道,如图1所示。 图1. 燃气表用超声波气体流量传感器结构原理图传统超声波燃气表气体流量计量气室的“W”型发射流道,“V”型对射单通单流道以及“N”型对射单通单流道,都是通过超声波在流道内产生一次或多次反射而形成的路径以增加超声波声程,间接增大了换能器的有效距离,从而获得更高测量精度。但其缺点是通过反射后探测器信号较弱,信噪比降低,对换能器的要求很高。因此造成成本也较高。采用“L”型流道、圆形横截面的超声波燃气模块,克服了现有超声波燃气表气体流量计量气室管道的横截面积较大,气室体积较大,成本较高的问题,以及两个超声波换能器之间传播距离较短,降低测量结果准确性的问题。同时,还避免了被测气体中的污染物污染超声波换能器,从而影响检测结果准确性的问题。(2)用双阈值过零检测与数据选择技术。以时差法超声波气体流量计为基础,采用双阈值过零检测与数据选择算法技术,区别于超声波自动增益控制法,不对信号进行处理,通过关联幅值与飞行时间周期变化的关系,根据幅值判断飞行时间是否发生周期性变化,从实际测量得到多个结束方波脉冲对应的时间值中选择合适的结果,作为最终的飞行时间,从而精确计算气体流量。(3)自动调零算法。燃气表在温度、压力等外部因素变化条件下,对超声信号产生一定的影响,从而影响计量的时间差;此产生的时间差变化,可能只有ns级别,对高端流量几乎没影响;但对于低端流量,特别是Qmin,影响非常大,造成测量精度超过标准要求。另外,燃气表在无流量情况下的零点,可能受到超声波换能器零点的漂移影响,产生整体计量的漂移,对低端流量造成较大的影响,这是低端流量精度和稳定性超标最重要的原因。针对超声波换能器的零点漂移问题,在软件算法上,采用自动调零的处理算法,超声波燃气表采用可调整的零点,并根据超声波换能器的信号波动特点,软件上自动调整超声波燃气表的零点,保证在外部因素或内部因素作用下,超声波燃气表的零点随环境变化而适当做出调整,抵消由于零点漂移对低端流量产生的影响;同时,考虑电路整体对时间差值的影响,在软件算法上,补偿此部分对测量的影响。 五、超声波燃气表用气体流量传感器的应用基于专利的气体流量传感器硬件和软件核心技术,四方光电公司针对我国家用表以及五小工商户客户的需求,成功开发出超声波家用和商用燃气表。其核心传感器部件见图2:图2. 家用和商用超声波燃气表核心传感器部件解决核心燃气表气体流量传感器后,就可以利用以往具有的外壳、皮膜阀、电源管理等组装燃气表。图3是采用超声波核心流量传感器的G4燃气表。 图3. G4超声波燃气表(内置国产化核心流量传感器)根据燃气表的计量要求,进行了宽量程的燃气表误差特性以及耐久性实验。 图4. G4超声波燃气表典型误差曲线 图5. G4超声波燃气表耐久性误差曲线由于我国超声波燃气表的国家标准还处于征求意见稿阶段,因此借鉴了EN-14236欧洲有关“ultrasonic-domestic-gas-meters”标准进行完整的测试。除以上图示的基本试验,还进行了线性度、压损、高低温、交变湿热、耐粉尘、脉动流量等试验。试验表明基于超声波气体流量传感器核心模块的燃气表均满足燃气表的各项指标要求。作者简介熊友辉博士,教授级高工。中国科协九大代表、中国仪器仪表学会理事、分析仪器分会副理事长。主持过科技部重大科学仪器设备开发专项、工信部物联网专项、湖北省重大科技专项等多项国家和省市科技项目。现任武汉四方光电科技有限公司总经理。 公司简介武汉四方光电科技有限公司是一家专业从事气体传感器、气体分析仪器及物联网解决方案的国家高新技术企业,其全资子公司——四方仪器自控系统有限公司,以自主知识产权的核心传感器技术为依托,陆续推出了红外/紫外烟气分析仪、红外煤气分析仪、红外天然气热值仪、激光拉曼气体分析仪等气体成分分析仪器,并先后研制了超声波气体流量计、超声波燃气表核心传感器部件、智能超声波燃气表等燃气流量测量产品。四方光电通过了ISO9001、ISO14000、ISO18000、IATF16949等有关质量、环境、健康安全、汽车电子等体系认证,目前已与多家世界五百强企业建立长期配套合作关系。
  • 环保部门首次发放气体收集罐 让居民自己收集异味气体
    板桥金地自在城小区的居民,经常在夜间闻到像煤气又像臭鸡蛋一样的臭味,环保部门到现场调查多次都没有结果。近日,居民再次向12345和环保部门12369投诉,这次市环保局选择了4户居民发放环保监测中的专业仪器&mdash 气体收集罐,让居民闻到气味马上自己收集,环保部门负责检测收集来的气体污染源到底是什么。这是南京环保部门第一次依靠居民自测寻找污染源。昨天,记者对此事进行了采访。  神秘异味困扰金地自在城居民  市民邵先生去年购买了金地自在城六期的高层住宅。可是,从拿房开始装修起,时不时闻到的臭味让他心里很不是滋味。这种臭味会不会影响家人健康?在社区论坛里,异味污染是大家议论最多的话题。由于该小区靠近梅山钢铁和梅山小化工集中区,也和江宁区接壤,居民们怀疑是化工异味,或是江宁水阁垃圾场异味扩散。  记者昨天在该小区采访时,并没有闻到居民们所说的异味。在莲花湖附近,几位散步的居民说,这几天刮北风就闻不到臭味了。只要有冷空气,就没有臭味,但夏天和雾霾天会有,夜间比白天明显。&ldquo 这种臭味有时持续十几分钟,有时能持续一夜,严重时,我们根本不敢开窗。&rdquo   市环保局环境监察总队介绍,金地自在城小区异味投诉多集中在二、四、六期居民,今年以来各种平台的投诉已经有60多起。  居民开启阀门,气体收集罐就自动采样  11月5日晚,环境监察总队执法人员和市环境监测中心站的专家在金地自在城小区召开现场会。会议讨论的结果是,向居民发放4个气体收集罐,由专业监测人员教会居民如何使用,居民闻到异味就可以立即收集,收集完成后交给环保部门。  &ldquo 这么一个小收集罐成本就要8000元。&rdquo 雨花台区环境监察大队工作人员说,在开启阀门之前,罐体内已经完全真空,处于负压状态,只要开启阀门,在压力的作用下,外部的空气就会通过阀门迅速钻进罐子里,只要一两分钟,压力表指针归零,说明罐内空气已经收集满了,这时就可以关闭阀门。  在二期居民陈先生家,记者见到了气体收集罐。这个罐子是银色的金属外壳,大约40厘米高,顶部有压力表和阀门,看起来像个缩小版的煤气罐,现在这个收集罐已经充满。陈先生住27楼,在收集罐的备注上,他详细地记录了收集气体时的信息:11月9日晚10点,地点南阳台,气温15℃,天气多云,东南风4&mdash 5级。  陈先生说,从5日晚拿到气体收集罐,他就根据环保监测专家的传授,每天记录天气情况、风向和风力,并每天打开阳台。9日晚,那种臭味又出现了,他在妻子的协助下,在南阳台完成了气体收集。  和环保部门收集的样本气体进行比对,最终确定污染源  目前4只气体收集罐,已经有1只完成了收集,接下来,这种气体收集罐将被送到市环境监测中心站实验室进行数据分析。  &ldquo 根据我们现场查看的情况和居民的反映,异味来源主要是江宁区水阁垃圾场和梅山化工区,我们已经在这两处用同样的气体收集罐收集了样本气体。&rdquo 中心站专家说,垃圾填埋场和化工污染产生的异味,成分区别很大。前者主要是硫化氢、甲烷等,后者是二氧化硫、氮氧化物、苯、芳香烃等。在实验室,监测人员会用居民收集的异味和样本气体比对,和哪个吻合就说明是哪种污染。  据介绍,这项实验将在本周完成,实验结果出来后,环保部门会根据结果对异味污染源进行处理。本报将继续关注此事进展情况。
  • 带你解读EPA标准下的VOC标准气体
    讲到VOC标准气体,首先让我们一起来看看VOC这个概念从何而来?VOC是挥发性有机物质(Volatile Organic Compounds)的英文缩写,即在常压下,沸点在50~260℃之间的有机物。最早由美国环保署(EPA)提出,为了通过研究环境空气中的挥发性有机物来监测空气污染。液空与Airgas///美国Airgas工厂是EPA指定的长期合作厂家,与EPA合作开创了许多环保气,以生产环保气闻名。那么,液化空气与Airgas又有何联系呢?中国环监政策///早期,中国的环监标准大部分参考学习了美国EPA的经验,如TO14和TO15。随后,在2015年,我国环境部发布施行了HJ759《环境空气挥发性有机物罐采样/气相色谱-质谱法》,在2018年又发布了《2018年重点地区环境空气挥发性有机物监测方案》。这两个标准都详细指出了环境空气中需要重点监控的目标物。HJ759《环境空气挥发性有机物罐采样/气相色谱-质谱法》HJ759规定了测定环境空气中挥发性有机物的罐采样/气相色谱-质谱的方法,其方法原理是:用内壁惰性化处理的不锈钢罐采集环境空气样品,经冷阱浓缩,热解析后,进入气相色谱分离,用质谱检测器进行检测,通过与标准物质质谱图和保留时间比较定性,内标法定量。目的是将环境空气中的目标监测物控制在ppb甚至ppt级别。此标准中规定使用的检测67种目标物的标准气体,其中的64种组分就是Airgas提供的EPA标准下TO15-65组分标准气体。不含在内的3种组分:二甲二硫醚,甲硫醚,甲硫醇需要单独分开配置,因为二甲二硫醚会和醇类起反应,造成标气不稳定。此外,此标准中规定的内标标准气体也属于Airgas提供范围。(注:TO15-65组分标准气体中含有乙醇,HJ759规定的67种目标物未包含该物质。)2018年重点地区环境空气挥发性有机物监测方案《2018年重点地区环境空气挥发性有机物监测方案》中包含了4个直辖市,15个省会城市及计划单列市,以及59个地级城市,监测项目包括光化学反应活性较强或可能影响人类健康的VOCs,包括烷烃、烯烃、芳香烃、含氧挥发性有机物(OVOCS)、卤代烃等。直辖市、省会城市及计划单列市需要监测117种物质,地级城市需要监测70种物质。针对117种目标物,目前Airgas提供的便是以下三种产品的组合套餐:PAMS+TO15+13醛酮;针对70种目标物,可选择PAMS+13醛酮。VOC标准气体///除了组合套餐,Airgas工厂凭借高超的技术水平,还对监测117种目标物的标准气体进行了三合一升级。VOC标准气体应用于大气监测领域的纯气和混合气产品是液空集团的专业产品方案特点PAMS+TO15+13醛酮在价格接近的情况下,与方案二相比,该方案气量更多(3瓶 VS 1瓶),性价比更高。适合注重成本的客户。117种组分标准气体(三合一)三瓶气体整合为一瓶,可一次性进样,使用更方便。产品规格为了满足客户多样化的需求,Airgas设置了多种VOC标准气体的规格。产品规格浓度溯源1/6/30 L1ppm/100ppb溯源NIST配套减压阀Airgas的VOC标准气体的气瓶接口为美国CGA180,液空可提供配套减压阀。不锈钢单极减压阀,内部容积为3.03毫升。减压阀内部容积小,可减少因对减压阀内部管道进行吹扫而产生的气体浪费,节约成本。重量为0.6公斤,即使是女生也能轻松使用。出口压力:2 – 75 PSIG或1 – 30 PSIG常见问题///Airgas的VOC标准气体都有库存吗?按照国内需求备库存。目前备有PAMS+65+13醛酮组合套餐的1L规格,其他产品需要定制,时间为2-3个月。Airgas的VOC标准气体的质保期有多久?2018年,Airgas将标准气体的质保期从12个月提升至24个月。众所周知,对标气的稳定性和质保期来说,最重要的就是气瓶。Airgas对气瓶进行了专利技术的处理,并对活性组分进行了稳定性测试,取得了令人满意的测试结果。(如需要该测试报告,请联系400-052-9166)
  • 湖北锐意推出碳通量气体检测、发动机排放检测及燃气热值分析等高端气体分析仪器
    9月28日,中国人民银行宣布为贯彻落实国务院常务会议关于支持经济社会发展薄弱领域设备更新改造的决策部署,设立了2000亿元以上设备更新改造专项再贷款,政策面向教育、实训基地、节能降碳改造升级、新型基础设施等十大领域。四方光电股份有限公司(688665.SH)旗下全资子公司湖北锐意自控系统有限公司(以下简称“湖北锐意”)是一家专业提供气体成分及流量测量方案的高新技术企业,基于四方光电核心气体传感技术平台的优势,开发了系列非分光红外(NDIR)、非分光紫外(NDUV)、紫外差分吸收光谱(UV-DOAS)、激光拉曼(LRD)、超声波(Ultrasonic)、热导(TCD)、光散射探测(LSD)等技术原理的气体成分流量仪器仪表,产品广泛应用于环境监测、冶金、煤化工、生物质能源等各个行业。湖北锐意针对国家政策以及当前研究热点问题,选择碳通量气体检测、发动机排放检测及燃气热值分析三个重点方向,推荐以下行业解决方案。一、碳通量气体检测解决方案实现“碳达峰”“碳中和”是国家做出的重大战略决策。通过监测数据可以预测未来的气候变化趋势和评价生态系统碳循环对全球变化的响应与适应特征,为“双碳”目标的达成提供参考数据,为现代地球系统科学、生态与环境科学关注的重大科学问题提供研究依据。碳通量在线监测网络主要包含土壤温室气体通量测量和大气环境涡度协方差测量系统两种方法。湖北锐意依托气体分析传感器平台优势,分别开发了土壤碳通量分析仪与大气环境涡度协方差测量系统。(一)土壤碳通量分析仪土壤生态系统中的碳元素主要是通过土壤呼吸来实现碳循环,对土壤呼吸过程中CO2释放量的准确监测是评价生态系统中碳汇过程的关键。通量测定法是最为常用的测定方法,即直接测定土壤和大气间的CO2交换量,也是评价土壤生态系统碳循环过程的关键。国家正在积极推动“双碳”政策,碳监测为碳计量提供准确的基础数据。垃圾填埋场、污水处理厂和煤矿等区域的无组织碳排放是碳监测的难点之一。土壤碳通量分析仪利用非分光红外气体分析技术(NDIR)测量CO2浓度、可调谐半导体激光吸收光谱技术(TDLAS)测量CH4、N2O浓度。仪器外形小巧便携,方便获取多个不同点位的数据,完成不同空间与高度限值的测量要求,支持长期、连续、准确的测量。主要应用于土壤碳通量监测、森林碳通量监测、温室气体排放监测、空气质量监测、城市污染气体排放监测、固定污染源排放监测;高校关于环境科学、农业学与林业学相关研究等。(据测量场景不同可选配多款型号气体测量室)土壤碳通量分析仪技术参数(二)大气环境涡度协方差测量系统涡度协方差(又称涡动相关法)技术是测量和计算大气边界层内垂直湍流通量的重要大气测量技术。大气环境涡度协方差测量系统结合多款气体分析仪与超声风速仪,模块化设计,外形小巧,安装灵活。相互无干扰,专为高空监测而设计。通过对微气象中的三维风速与气体浓度进行精确测量,完成对生态系统与大气之前湍流交换的监测,即时收集流动畸变数据。适用于边界层气象研究、生态系统温室气体含量监测、野外大气监测、碳水循环研究、空气通量研究、遥感数据验证等。图左:开路式(CO2/H2O)气体分析仪图中:开路式(CH4)气体分析仪图右:三维超声风速仪大气环境涡度协方差测量系统技术参数二、发动机排放检测解决方案内燃机工业是我国重要基础产业,也是节能减排的重点领域。近年来,我国已经颁布和实施了GB 18352.6-2016(轻型车国六)、GB 17691-2018(重型车国六)和GB 20891-2014的2020年修改单(非道路移动机械国四)等移动源新生产车排放法规以及GB 18285-2018(汽油车)、GB 3847-2018(柴油车)和GB 36886-2018(非道路移动机械)等在用车排放法规。其中引领内燃机行业技术发展的是新生产车排放法规,该法规体系中要求的高精度发动机排放检测设备,主要包括全流稀释排放测试系统和便携式排放测试系统,目前都是主要依赖国外进口产品。由于设备构成十分复杂且涉及多项高精度测量技术,进口设备往往十分昂贵,全流稀释排放测试系统单套价格通常会达到数百万元甚至是千万元以上,便携式排放测试系统单套价格也通常会达到百万元以上。进口设备不仅价格贵,还存在供货周期长、使用成本高等问题,显然不能完全满足我国作为内燃机产销第一大国的实际需求。湖北锐意依托气体成分流量仪器仪表研发平台基础优势,结合近20年发动机排放分析仪研发经验,吸收国际先进应用经验,对关键技术进行攻关突破,战略性加大投入,成功研发了全流稀释排放测试系统、便携式排放测试系统以及非常规气体分析仪等全系列产品,具有技术先进、功能齐全、测量准确、性能稳定、兼容性强和高效服务等特点,可满足科研机构、制造企业和检测机构等国内外用户的各种应用需求。(一)全流稀释排放测试系统基于全流稀释排放测试系统的实验室标准工况排放测试是我国移动源排放法规体系中被广泛采用的标准方法,湖北锐意针对性开发了Gasboard-9802发动机排放全流稀释定容采样系统(CVS)及其配套的Gasboard-9801发动机排放测试系统。Gasboard-9801发动机排放测试系统结合高精度氢火焰离子化检测技术(HFID)、紫外差分吸收光谱技术(UV-DOAS)、非分光红外技术(NDIR)、长寿命电化学传感器技术(ECD)与凝结核粒子计数技术(CPC),同时测量发动机排气中THC、NOx、CO、CO2、O2等气体体积浓度及颗粒物数量浓度,其超低量程同时具备准确性高和响应速度快的特点,完全满足排放法规技术要求以及实际应用需求。Gasboard-9802发动机排放全流稀释定容采样系统(CVS)具有功能齐全、准确性高和自动化程度高等特点,适用于轻型车、重型车和非道路移动机械等各种移动源国家排放法规,可满足各种工况下不同排量和不同燃料类型内燃机的法规排放测试试验需求。目前,湖北锐意的全流稀释排放测试系统设备已经逐步成功应用于科研机构、发动机制造企业、轻型汽车制造企业、摩托车制造企业及相关检测机构等。Gasboard-9801发动机排放测试系统技术参数应用案例1、 武汉某知名高校醇氢发动机排放测试研究项目2、 常州某大型发动机制造企业实验室排放气体检测项目(二)便携式排放测试系统基于便携式排放测试系统的实际工况车载排放测试是一种更能反映移动源真实排放水平的排放测试方法,已经被我国轻型车、重型车和非道路移动机械排放法规引入作为标准方法的重要补充,正在法规检测和市场监督抽查等应用场景中发挥越来越重要的作用。湖北锐意针对性开发了符合法规要求的Gasboard-9805便携式排放测试系统(PEMS)。该系统采用全自主的核心传感器分析技术,可实现排放物CO、CO2、NO、NO2、THC和PN浓度测量,以及排气流量、GPS数据、环境温湿度、大气压力的测量,并具备测试过程引导、自动计算排放总量、导出测试报告等功能。依托自主搭建的排气质量流量标定系统和颗粒物PN分析仪标定系统等关键标定平台,为便携式排放测试系统的溯源标定和质量检验提供了保障。目前,湖北锐意便携式排放测试系统已经成功应用于科研机构、机动车和非道路移动机械制造企业及相关检测机构等。Gasboard-9805便携式排放测试系统技术参数应用案例1、浙江某大型农用机械制造企业车载排放测试项目(三)非常规气体分析仪发动机尾气中NH3和N2O等非常规气体污染物排放已经成为当前国际研究热点和排放法规检测项目。湖北锐意分别采用高温紫外差分吸收光谱技术(UV-DOAS)和可调谐半导体激光吸收光谱技术(TDLAS)成功开发了发动机原排直采NH3分析仪和N2O分析仪,已应用于新能源发动机研发工作。NH3和N2O分析仪技术参数(四)在用车排放检测系统湖北锐意基于双光束红外(NDIR)、微流红外(NDIR)、非分光紫外(UV-DOAS)等核心气体传感技术,自主研发了包括气体传感器平台、尾气分析仪、透射式烟度计、振动式发动机转速表的在用车排放检测整体解决方案。产品具有高精度、稳定性好,抗干扰能力强等特点,满足: GB 18285-2018,GB 3847-2018,GB 7258-2017,GB 7258-2017,GB 20891-2014等国标以及JJF 1375,JJG 688-2017,HJ 1014-2020等技术要求。产品广泛应用于机动车检测机构、汽车制造厂、汽车修理厂、科研机构、环保执法部门等。三、燃气热值分析解决方案天然气、沼气以及工业生产中可燃气体的高效利用对节能减排具有十分重要的意义。准确测量可燃气体成分及热值并自动优化控制燃烧过程是提高燃烧效率和控制排放污染的重要途经。天然气等碳氢燃料的气体成分分析主要依赖气相色谱法,但该方法的响应时间达90s以上,往往不能满足大多数场合的实时控制应用需求。湖北锐意在气体分析传感器平台优势基础上吸收国际先进的产品设计理念和应用经验,并结合国内应用需求,自主研发了以光谱吸收技术原理为主的一系列气体成分及热值在线测量设备,具有精度高、响应快、功能齐全等特点,可满足石油天然气、沼气、污水气体系统、垃圾填埋、玻璃陶瓷、化工、电厂和内燃机等领域应用。(一)激光拉曼光谱气体分析仪激光拉曼光谱法可以使用一个激光光源同时探测除惰性气体之外的所有气体分子,是一种非常有潜力的过程气体成分在线监测技术。但激光拉曼光谱法的特征信号较弱,一定程度上限制了该技术在气体检测领域的广泛应用。2012年四方光电牵头承担 “激光拉曼光谱气体分析仪的研发与应用”国家重大科学仪器设备开发专项,解决了检测信号弱等诸多难题,成功开发了LRGA-6000激光拉曼光谱气体分析仪。设备融合10项授权发明专利,通过对仪器的发生装置、收集装置、探测装置等核心硬件进行激光功率增加、气体压力提高、作用光程增长、散射光大范围收集等技术创新,以及采用基于Ar基底自动扣除、基于标定气体干扰自动修正等激光拉曼特有的软件算法,消除环境温度、压力、干扰气体等对被测气体的影响,实现了对低密度过程气体的高精度监测,已广泛应用于天然气、乙烯裂解气、生物质燃气、变压器油溶解气、煤化工等各大领域。在热值监测领域,激光拉曼光谱技术具有突出优势。以往旧式热值仪往往只能监测总碳氢化合物的热值总量且易受水分影响,而湖北锐意激光拉曼光谱气体分析仪可以分别监测显示各组分热值,采用的特征指纹谱技术具有极强的抗干扰能力。在气体监测领域可取代气相色谱(GC)与质谱(MS):LRGA-6000激光拉曼光谱气体分析仪技术参数LRGA-3100激光拉曼光谱气体分析仪技术参数应用案例1、武汉某大型轧钢厂加热炉热值监测项目2、 非洲某大型天然气开采监测项目(二)煤气分析仪(便携型)湖北锐意煤气分析仪可同时监测8种气体浓度并自动计算显示煤气/天然气热值,且多组分同时测量无交叉干扰。据以往用户使用案例的监测结果统计来看,湖北锐意煤气分析仪在热值监测方面平均为用户节省约10%的燃烧热能,此数据反应到庞大的工业产量基数上,为用户企业节省了十分可观的燃料成本。湖北锐意红外气体分析技术包含公司授权专利12项。其中消除交叉气体干扰技术集成非分光红外气体传感器(针对CO、CO2、CH4和CnHm检测)、热导H2传感器以及电化学O2传感器,并通过软件进行修正得到准确的八组分浓度数据并计算热值。基于该技术开发的煤气分析仪能够与昂贵的在线气相色谱仪作用相当,省却了载气等长期耗材,并具备热值分析功能。主要应用于煤化工、钢铁冶金等领域的煤气成分及热值测量、高校科研院所的气体取样分析以及新能源行业的气体成分测量等。Gasboard-3100P煤气分析仪技术参数应用案例1、抚顺某石油化工研究院生物质原料热解实验室检测项目(三)便携红外天然气热值分析仪天然气作为一种新型清洁燃料也是一种混合气体,不同气源生产的天然气组分会有所不同,在天然气用作燃料时,因组分不同导致其热值出现差异。目前无论是工业还是民用,都对天然气具有依赖性。对燃烧过程中气体浓度及热值的连续监测,可精确了解天然气的燃烧效率,对于降低企业生产成本、改善大气环境、实现可持续经济发展等具有积极作用。湖北锐意便携式红外天然气热值分析仪可同时测量多种气体浓度,并自动计算天然气热值,可取代燃烧法热值仪。相较于适用于高校与职业院校教学科研/实验实训、燃气具生产企业、燃气计量检测部门、节能监测部门、环保和配气等行业、天然气公司、液化气厂、液化气站等。Gasboard-3110P便携式红外天然气热值分析仪技术参数
  • 湖北锐意推出碳通量气体检测、发动机排放检测及燃气热值分析等高端气体分析仪器
    9月28日,中国人民银行宣布为贯彻落实国务院常务会议关于支持经济社会发展薄弱领域设备更新改造的决策部署,设立了2000亿元以上设备更新改造专项再贷款,政策面向教育、实训基地、节能降碳改造升级、新型基础设施等十大领域。四方光电股份有限公司(688665.SH)旗下全资子公司湖北锐意自控系统有限公司(以下简称“湖北锐意”)是一家专业提供气体成分及流量测量方案的高新技术企业,基于四方光电核心气体传感技术平台的优势,开发了系列非分光红外(NDIR)、非分光紫外(NDUV)、紫外差分吸收光谱(UV-DOAS)、激光拉曼(LRD)、超声波(Ultrasonic)、热导(TCD)、光散射探测(LSD)等技术原理的气体成分流量仪器仪表,产品广泛应用于环境监测、冶金、煤化工、生物质能源等各个行业。湖北锐意针对国家政策以及当前研究热点问题,选择碳通量气体检测、发动机排放检测及燃气热值分析三个重点方向,推荐以下行业解决方案。一、碳通量气体检测解决方案实现“碳达峰”“碳中和”是国家做出的重大战略决策。通过监测数据可以预测未来的气候变化趋势和评价生态系统碳循环对全球变化的响应与适应特征,为“双碳”目标的达成提供参考数据,为现代地球系统科学、生态与环境科学关注的重大科学问题提供研究依据。碳通量在线监测网络主要包含土壤温室气体通量测量和大气环境涡度协方差测量系统两种方法。湖北锐意依托气体分析传感器平台优势,分别开发了土壤碳通量分析仪与大气环境涡度协方差测量系统。(一)土壤碳通量分析仪土壤生态系统中的碳元素主要是通过土壤呼吸来实现碳循环,对土壤呼吸过程中CO2释放量的准确监测是评价生态系统中碳汇过程的关键。通量测定法是最为常用的测定方法,即直接测定土壤和大气间的CO2交换量,也是评价土壤生态系统碳循环过程的关键。国家正在积极推动“双碳”政策,碳监测为碳计量提供准确的基础数据。垃圾填埋场、污水处理厂和煤矿等区域的无组织碳排放是碳监测的难点之一。土壤碳通量分析仪利用非分光红外气体分析技术(NDIR)测量CO2浓度、可调谐半导体激光吸收光谱技术(TDLAS)测量CH4、N2O浓度。仪器外形小巧便携,方便获取多个不同点位的数据,完成不同空间与高度限值的测量要求,支持长期、连续、准确的测量。主要应用于土壤碳通量监测、森林碳通量监测、温室气体排放监测、空气质量监测、城市污染气体排放监测、固定污染源排放监测;高校关于环境科学、农业学与林业学相关研究等。(据测量场景不同可选配多款型号气体测量室)土壤碳通量分析仪技术参数(二)大气环境涡度协方差测量系统涡度协方差(又称涡动相关法)技术是测量和计算大气边界层内垂直湍流通量的重要大气测量技术。大气环境涡度协方差测量系统结合多款气体分析仪与超声风速仪,模块化设计,外形小巧,安装灵活。相互无干扰,专为高空监测而设计。通过对微气象中的三维风速与气体浓度进行精确测量,完成对生态系统与大气之前湍流交换的监测,即时收集流动畸变数据。适用于边界层气象研究、生态系统温室气体含量监测、野外大气监测、碳水循环研究、空气通量研究、遥感数据验证等。图左:开路式(CO2/H2O)气体分析仪图中:开路式(CH4)气体分析仪图右:三维超声风速仪大气环境涡度协方差测量系统技术参数二、发动机排放检测解决方案内燃机工业是我国重要基础产业,也是节能减排的重点领域。近年来,我国已经颁布和实施了GB 18352.6-2016(轻型车国六)、GB 17691-2018(重型车国六)和GB 20891-2014的2020年修改单(非道路移动机械国四)等移动源新生产车排放法规以及GB 18285-2018(汽油车)、GB 3847-2018(柴油车)和GB 36886-2018(非道路移动机械)等在用车排放法规。其中引领内燃机行业技术发展的是新生产车排放法规,该法规体系中要求的高精度发动机排放检测设备,主要包括全流稀释排放测试系统和便携式排放测试系统,目前都是主要依赖国外进口产品。由于设备构成十分复杂且涉及多项高精度测量技术,进口设备往往十分昂贵,全流稀释排放测试系统单套价格通常会达到数百万元甚至是千万元以上,便携式排放测试系统单套价格也通常会达到百万元以上。进口设备不仅价格贵,还存在供货周期长、使用成本高等问题,显然不能完全满足我国作为内燃机产销第一大国的实际需求。湖北锐意依托气体成分流量仪器仪表研发平台基础优势,结合近20年发动机排放分析仪研发经验,吸收国际先进应用经验,对关键技术进行攻关突破,战略性加大投入,成功研发了全流稀释排放测试系统、便携式排放测试系统以及非常规气体分析仪等全系列产品,具有技术先进、功能齐全、测量准确、性能稳定、兼容性强和高效服务等特点,可满足科研机构、制造企业和检测机构等国内外用户的各种应用需求。(一)全流稀释排放测试系统基于全流稀释排放测试系统的实验室标准工况排放测试是我国移动源排放法规体系中被广泛采用的标准方法,湖北锐意针对性开发了Gasboard-9802发动机排放全流稀释定容采样系统(CVS)及其配套的Gasboard-9801发动机排放测试系统。Gasboard-9801发动机排放测试系统结合高精度氢火焰离子化检测技术(HFID)、紫外差分吸收光谱技术(UV-DOAS)、非分光红外技术(NDIR)、长寿命电化学传感器技术(ECD)与凝结核粒子计数技术(CPC),同时测量发动机排气中THC、NOx、CO、CO2、O2等气体体积浓度及颗粒物数量浓度,其超低量程同时具备准确性高和响应速度快的特点,完全满足排放法规技术要求以及实际应用需求。Gasboard-9802发动机排放全流稀释定容采样系统(CVS)具有功能齐全、准确性高和自动化程度高等特点,适用于轻型车、重型车和非道路移动机械等各种移动源国家排放法规,可满足各种工况下不同排量和不同燃料类型内燃机的法规排放测试试验需求。目前,湖北锐意的全流稀释排放测试系统设备已经逐步成功应用于科研机构、发动机制造企业、轻型汽车制造企业、摩托车制造企业及相关检测机构等。Gasboard-9801发动机排放测试系统技术参数应用案例1、 武汉某知名高校醇氢发动机排放测试研究项目2、 常州某大型发动机制造企业实验室排放气体检测项目(二)便携式排放测试系统基于便携式排放测试系统的实际工况车载排放测试是一种更能反映移动源真实排放水平的排放测试方法,已经被我国轻型车、重型车和非道路移动机械排放法规引入作为标准方法的重要补充,正在法规检测和市场监督抽查等应用场景中发挥越来越重要的作用。湖北锐意针对性开发了符合法规要求的Gasboard-9805便携式排放测试系统(PEMS)。该系统采用全自主的核心传感器分析技术,可实现排放物CO、CO2、NO、NO2、THC和PN浓度测量,以及排气流量、GPS数据、环境温湿度、大气压力的测量,并具备测试过程引导、自动计算排放总量、导出测试报告等功能。依托自主搭建的排气质量流量标定系统和颗粒物PN分析仪标定系统等关键标定平台,为便携式排放测试系统的溯源标定和质量检验提供了保障。目前,湖北锐意便携式排放测试系统已经成功应用于科研机构、机动车和非道路移动机械制造企业及相关检测机构等。Gasboard-9805便携式排放测试系统技术参数应用案例1、浙江某大型农用机械制造企业车载排放测试项目(三)非常规气体分析仪发动机尾气中NH3和N2O等非常规气体污染物排放已经成为当前国际研究热点和排放法规检测项目。湖北锐意分别采用高温紫外差分吸收光谱技术(UV-DOAS)和可调谐半导体激光吸收光谱技术(TDLAS)成功开发了发动机原排直采NH3分析仪和N2O分析仪,已应用于新能源发动机研发工作。NH3和N2O分析仪技术参数(四)在用车排放检测系统湖北锐意基于双光束红外(NDIR)、微流红外(NDIR)、非分光紫外(UV-DOAS)等核心气体传感技术,自主研发了包括气体传感器平台、尾气分析仪、透射式烟度计、振动式发动机转速表的在用车排放检测整体解决方案。产品具有高精度、稳定性好,抗干扰能力强等特点,满足: GB 18285-2018,GB 3847-2018,GB 7258-2017,GB 7258-2017,GB 20891-2014等国标以及JJF 1375,JJG 688-2017,HJ 1014-2020等技术要求。产品广泛应用于机动车检测机构、汽车制造厂、汽车修理厂、科研机构、环保执法部门等。三、燃气热值分析解决方案天然气、沼气以及工业生产中可燃气体的高效利用对节能减排具有十分重要的意义。准确测量可燃气体成分及热值并自动优化控制燃烧过程是提高燃烧效率和控制排放污染的重要途经。天然气等碳氢燃料的气体成分分析主要依赖气相色谱法,但该方法的响应时间达90s以上,往往不能满足大多数场合的实时控制应用需求。湖北锐意在气体分析传感器平台优势基础上吸收国际先进的产品设计理念和应用经验,并结合国内应用需求,自主研发了以光谱吸收技术原理为主的一系列气体成分及热值在线测量设备,具有精度高、响应快、功能齐全等特点,可满足石油天然气、沼气、污水气体系统、垃圾填埋、玻璃陶瓷、化工、电厂和内燃机等领域应用。(一)激光拉曼光谱气体分析仪激光拉曼光谱法可以使用一个激光光源同时探测除惰性气体之外的所有气体分子,是一种非常有潜力的过程气体成分在线监测技术。但激光拉曼光谱法的特征信号较弱,一定程度上限制了该技术在气体检测领域的广泛应用。2012年四方光电牵头承担 “激光拉曼光谱气体分析仪的研发与应用”国家重大科学仪器设备开发专项,解决了检测信号弱等诸多难题,成功开发了LRGA-6000激光拉曼光谱气体分析仪。设备融合10项授权发明专利,通过对仪器的发生装置、收集装置、探测装置等核心硬件进行激光功率增加、气体压力提高、作用光程增长、散射光大范围收集等技术创新,以及采用基于Ar基底自动扣除、基于标定气体干扰自动修正等激光拉曼特有的软件算法,消除环境温度、压力、干扰气体等对被测气体的影响,实现了对低密度过程气体的高精度监测,已广泛应用于天然气、乙烯裂解气、生物质燃气、变压器油溶解气、煤化工等各大领域。在热值监测领域,激光拉曼光谱技术具有突出优势。以往旧式热值仪往往只能监测总碳氢化合物的热值总量且易受水分影响,而湖北锐意激光拉曼光谱气体分析仪可以分别监测显示各组分热值,采用的特征指纹谱技术具有极强的抗干扰能力。在气体监测领域可取代气相色谱(GC)与质谱(MS):LRGA-6000激光拉曼光谱气体分析仪技术参数LRGA-3100激光拉曼光谱气体分析仪技术参数应用案例1、武汉某大型轧钢厂加热炉热值监测项目2、 非洲某大型天然气开采监测项目(二)煤气分析仪(便携型)湖北锐意煤气分析仪可同时监测8种气体浓度并自动计算显示煤气/天然气热值,且多组分同时测量无交叉干扰。据以往用户使用案例的监测结果统计来看,湖北锐意煤气分析仪在热值监测方面平均为用户节省约10%的燃烧热能,此数据反应到庞大的工业产量基数上,为用户企业节省了十分可观的燃料成本。湖北锐意红外气体分析技术包含公司授权专利12项。其中消除交叉气体干扰技术集成非分光红外气体传感器(针对CO、CO2、CH4和CnHm检测)、热导H2传感器以及电化学O2传感器,并通过软件进行修正得到准确的八组分浓度数据并计算热值。基于该技术开发的煤气分析仪能够与昂贵的在线气相色谱仪作用相当,省却了载气等长期耗材,并具备热值分析功能。主要应用于煤化工、钢铁冶金等领域的煤气成分及热值测量、高校科研院所的气体取样分析以及新能源行业的气体成分测量等。Gasboard-3100P煤气分析仪技术参数应用案例1、抚顺某石油化工研究院生物质原料热解实验室检测项目(三)便携红外天然气热值分析仪天然气作为一种新型清洁燃料也是一种混合气体,不同气源生产的天然气组分会有所不同,在天然气用作燃料时,因组分不同导致其热值出现差异。目前无论是工业还是民用,都对天然气具有依赖性。对燃烧过程中气体浓度及热值的连续监测,可精确了解天然气的燃烧效率,对于降低企业生产成本、改善大气环境、实现可持续经济发展等具有积极作用。湖北锐意便携式红外天然气热值分析仪可同时测量多种气体浓度,并自动计算天然气热值,可取代燃烧法热值仪。相较于适用于高校与职业院校教学科研/实验实训、燃气具生产企业、燃气计量检测部门、节能监测部门、环保和配气等行业、天然气公司、液化气厂、液化气站等。Gasboard-3110P便携式红外天然气热值分析仪技术参数
  • 从小米14 Ultra看XRD如何鉴别材料成分
    日前,有热门博主“胜利文绉绉”发布视频,声称其采用 XRD 测试仪测试了小米 14 Ultra 手机龙晶蓝 " 陶瓷版本 " 的后盖。据了解,XRD 即X-ray diffraction 的缩写,X射线衍射,通过对材料进行X射线衍射,分析其衍射图谱,获得材料的成分、材料内部原子或分子的结构或形态等信息的研究手段。X射线的波长和晶体内部原子面之间的间距相近,晶体可以作为X射线的空间衍射光栅,即一束X射线照射到物体上时,受到物体中原子的散射,每个原子都产生散射波,这些波互相干涉,结果就产生衍射。衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析衍射结果,便可获得晶体结构。以上是1912年德国物理学家劳厄(M.von Laue)提出的一个重要科学预见,随即被实验所证实。1913年,英国物理学家布拉格父子(W.H.Bragg,W.L.Bragg)在劳厄发现的基础上,不仅成功的测定了NaCl,KCl等晶体结构,还提出了作为晶体衍射基础的著名公式——布拉格方程:2dsinθ=nλ。对于晶体材料,当待测晶体与入射束呈不同角度时,那些满足布拉格衍射的晶面就会被检测出来,体现在XRD图谱上就是具有不同的衍射强度的衍射峰。对于非晶体材料,由于其结构不存在晶体结构中原子排列的长程有序,只是在几个原子范围内存在着短程有序,故非晶体材料的XRD图谱为一些漫散射馒头峰。X射线衍射仪是利用衍射原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析。广泛应用于冶金,石油,化工,科研,航空航天,教学,材料生产等领域。该博主根据仪器显示的波向,认为小米龙晶陶瓷就是透锂长石,也就是跟 iPhone 的超瓷晶玻璃的晶体是一样的。同时该博主还测量了小米 14 Ultra ‘龙晶陶瓷版’前面‘龙晶玻璃’的结果,波形几乎完全一致,并表示大概率手机前面‘龙晶玻璃’也是一块有透锂长石晶体的微晶玻璃。不过具体情况还需要等待最终的测试报告,目前暂时第一批测试结果证明小米 14 Ultra 手机后盖大概率是一种有透锂长石析晶的微晶玻璃。XRD的应用XRD被广泛的应用在材料分析领域中。作为结构研究的一种重要方法,那么XRD到底可以做什么?物相分析:每一种晶体都有它自己的晶面间距d,而且其中原子按照一定的方式排布着,这反映到衍射图上各种晶体的谱线有它自己特定的位置。数目和强度I。因此,只需将未知物中的衍射图中各谱线测定的角度和强度和已知样品的谱线进行比较就可以达到分析目的。通过对材料进行X射线衍射,分析其衍射图谱,获得获得材料的成分、材料内部原子或分子的结构或形态等信息。测定晶粒度:XRD测定晶粒度是基于衍射线的宽度与材料晶粒大小有关这一现象。对于TiO2纳米粉体,其主要衍射峰2θ为21.5°。 当采用铜靶作为衍射源,波长为0.154nm,衍射角2θ为25.30°,测量获得的半高宽为0.375°,一般Scherrer常数取0.89.根据Scherrer公式,可以计算获得晶粒的尺寸。此外,根据晶粒大小,还可以计算纳米粉体的比表面积。小角X射线衍射:在纳米多层膜料中,两薄膜层材料反复重叠,形成调制界面。当X射线入射时,周期良好的调制界面会与平行薄膜表面的晶面一样,在满足Bragg条件时,产生相干衔射,形成明锐的衍射峰。由于多层膜的调制周期比金属和化合物的最大晶面间距大得多,所以只有小周期多层膜调制界面产生的XRD衍射峰可以再小角度衍射时观察到,而大周期多层膜调制界面XRD衍射峰则因其衍射角度更小而无法进行观测。因此,对制备良好的小周期纳米多层膜可以用小角度XRD方法测定其调幅周期。薄膜厚度和界面结构的测定:随着纳米材料的高速发展,纳米薄膜研究也变得越来越重要。利用XRD研究薄膜的厚度以及界面结构也是XRD发展的一个重要方向。通过二维XRD衍射还可以获得物相的纵向深度剖析结果,也可以获得界面物相分布结果。物质状态的鉴别:不同的物质状态对X射线的衍射作用是不同的,因此可以利用X射线谱来区别晶态和非晶态。一般非晶态物质的XRD谱为一条直线,平时所遇到的在低2θ角出现的漫散型峰的XRD一般是由液体型固体和气体型固体所构成。晶体物质又可以分为微晶和晶态,微晶具有晶体的特征,但由于晶粒小会产生衍射峰的宽化弥散,而结晶好的晶态物质会产生尖锐的衍射峰。
  • “5星荟萃” 国内部分区域粉体周报价公布
    国庆后,秋意浓,落花到地一无声,粉体周周有新价。仪器信息网特为各位看官奉上本周(10月8日-10月12日)国内部分地区几种重要粉体的报价汇总,让本文带来的粉体检测上游资讯,为在第四季度快马加鞭冲刺的各用户、厂商加油助力吧!本文信息汇总于网络,共涉及碳酸钙、膨润土、锡粉、重晶石、钛白粉五类粉体,提供报价的国内部分区域有湖北、广西、安徽、天津、河北、北京、辽宁、浙江、湖南、山东、江苏、江西等12大地区,其中安徽、天津、河北、浙江四地区都涉及了两种粉体的报价。值得一提的是,在国庆前安徽和天津两地也分别涉及到两种粉体的报价,更是都延续了对碳酸钙粉体的报价,详情汇总见下表。碳酸钙地区公司起批量参考价¥湖北武汉荆隆化工有限公司≥32吨220.00重要信息:产地:湖北武汉  是否进口:否  规格及用途:重质碳酸钙  货号:NO.01重钙  粒度/目数:325目(目)  品牌:武汉荆隆  型号:325目82白度  执行标准:HGT3249-2001  CAS:471-34-1  特色服务:质量浪波玩  用途范围:填充剂  是否危险化学品:否  碳酸钙含量:≥90%  白度:≥82%  氧化镁含量:≤0.2%武汉朗尚嘉生物科技有限公司1-24千克15.00重要信息:是否进口:否  型号:食品级  主要营养成分:碳酸钙  品牌:国产  外观:白色粉末  含量:99(%)  有效物质含量:99(%)  产品规格:25KG*1  保质期:2年  主要用途:营养强化剂  食品添加剂生产许可证号:SC20136118100041广西平桂区黄田恒信粉体厂≥1吨380.00重要信息:是否进口:否规格及用途:重质碳酸钙  粒度/目数:1250目(目)  品牌:恒信型号:HX-8863用途:橡胶、塑料、造纸、涂料、油漆、电线、电缆、密封胶、硅胶等广西浙创化工有限公司1-4吨680.00重要信息:碳酸钙起批量1-4吨价格¥680.00产地:广西浙创  是否进口:否  规格及用途:轻质碳酸钙  粒度/目数:1250目(目)  品牌:浙创  型号:轻质碳酸钙  执行标准:国标  CAS:471-34  特色服务:厂家定制  用途范围:轻质碳酸钙管型材填充  规格:25KG  是否危险化学品:否  厂家(产地):广西  含量≥:99安徽泾县泾安矿粉有限公司≥1吨170.00重要信息:产地:泾县  是否进口:否  规格及用途:重质碳酸钙  货号:325  粒度/目数:325目(目)  品牌:泾安  型号:0025  执行标准:国际  CAS:碳酸钙  特色服务:包邮  用途范围:乳胶漆管道塑料填充料母粒  是否危险化学品:否泾县金鑫粉业有限公司1-9吨350.00重要信息:产地:安徽泾县  是否进口:否  规格及用途:重质碳酸钙  粒度/目数:800目(目)  品牌:金鑫  型号:TSG  执行标准:国标  CAS:9100  特色服务:质量保证  用途范围:造纸行业,医药,食品,饲料,化肥,塑料等行业  是否危险化学品:否天津天津食源生物科技有限公司1-24千克5.00重要信息:是否进口:否  规格及用途:食品级碳酸钙  粒度/目数:1250目(目)  品牌:食源  型号:食品级  执行标准:国标  CAS:471-34-1  用途范围:食品  规格:25公斤/袋  是否危险化学品:否天津市滨海新区大港太行非金属矿产品销售处1-9吨750.00重要信息:产地:天津  是否进口:否  规格及用途:轻质碳酸钙  货号:th-007  粒度/目数:600目(目)  品牌:太行  型号:600  执行标准:行业标准  CAS:认证  特色服务:超白超细  用途范围:工业  是否危险化学品:否  钙含量:98%膨润土地区公司起批量参考价¥河北灵寿县金源矿业加工厂≥1吨1000.00重要信息:产地:河北  是否进口:否  类别:有机膨润土用  货号:412  粒度/目数:325(目)  原产地:河北  颜色:白色  蒙脱石≥:80(%)  PH值:9  白度:90  密度:3.5(g/cm3)  表观粘度:20000(mPa.s)  硬度:4.0  品牌:金源  用途范围:涂料  特色服务:免费拿样  规格:25灵寿县嘉硕建材加工有限公司≥1吨750.00重要信息:原产地:河北灵寿  货号:003  品级:一级  品牌:嘉硕  粒度/目数:400  特色服务:包装  PH值:7安徽合肥聚亚久贸易有限公司≥40千克2.00重要信息:产地:四川  是否进口:否  类别:活性白土用  粒度/目数:300(目)  原产地:四川  颜色:白色、黄色、棕色  蒙脱石≥:40-90(%)  PH值:优  白度:优  硬度:优  膨胀倍数:优  品牌:其他  用途范围:化脱色剂、粘结剂、触变剂、悬浮剂、稳定剂、充填料、饲料、催化剂等,广泛用于农业、轻工业及化妆品、药品  特色服务:优  是否危险化学品:否安徽博硕科技有限公司≥1吨5000.00产地:安徽明光  是否进口:否  类别:非金属矿产  粒度/目数:600(目)  原产地:安徽明光  颜色:灰白  PH值:7-8  白度:70  密度:0.45(g/cm3)  表观粘度:2500(mPa.s)  品牌:博硕  用途范围:涂料增稠悬浮剂  是否危险化学品:否  品级:一级北京北京开碧源贸易有限责任公司1-4吨1600.00重要信息:是否进口:否  类别:有机膨润土用  粒度/目数:200(目)  原产地:河北  颜色:白色或黄色  蒙脱石≥:85(%)  PH值:6-8  白度:83  密度:3(g/cm3)  表观粘度:120(mPa.s)  硬度:2-3  膨胀倍数:5-20  品牌:开碧源  用途范围:粘结剂、悬浮剂、触变剂、稳定剂、净化脱色剂、充填料、饲料、催化剂  规格:200目北京市津同乐泰化工产品有限公司1-24千克25.00重要信息:产地:国产  是否进口:否  类别:有机膨润土用  粒度/目数:325(目)  品牌:天津  用途范围:实验  是否危险化学品:否辽宁北票宝通膨润土有限公司20-99吨750.00重要信息:产地:内蒙赤峰  是否进口:否  类别:钙基膨润土  粒度/目数:0.2-2MM(目)  原产地:北票市长皋乡长皋村  颜色:黄白  蒙脱石≥:67.87(%)  PH值:8-9.5  白度:60  密度:2(g/cm3)  表观粘度:10(mPa.s)  硬度:1  膨胀倍数:24  品牌:宝通  用途范围:使用于垃圾填埋、场馆、地铁、隧道、水库坝基等环境工程,是非常理想的防水材料。  CAS:25081000  是否危险化学品:否  包装规格:25kg/bag建平县富山石粉厂≥1000千克850.00重要信息:类别:饲料,其他  粒度/目数:325(目)  原产地:辽宁建平  蒙脱石≥:95(%)  品牌:红山,其他  用途范围:饲料,医药  品级:一级锡粉地区公司起批量参考价¥河北南宫市京锐合金制品有限公司≥1袋199.98重要信息:是否进口:否  货号:000012  产地:河北  含量≥:99.9(%)  粒度:200-500(目)  牌号:京锐  包装规格:桶  形状:颗粒状  制作方法:雾化法  CAS:7440-31-5  是否危险化学品:否南宫市锐腾合金材料有限公司≥1包265.00重要信息:是否进口:否  锡含量≥:99.9(%)  粒度:500目800目5微米3微米(目)  牌号:锐腾  包装规格:桶装真空铝箔袋装  形状:颗粒状  制作方法:雾化法  是否危险化学品:否浙江宁波金雷纳米材料科技有限公司≥1袋400.00重要信息:是否进口:否  货号:JL-Sn  锡含量≥:99.9(%)  粒度:50nm、80nm、100nm(目)  牌号:金雷纳米  包装规格:真空包装、惰气瓶  形状:fen' mo  制作方法:ji' guang' fa  是否危险化学品:否湖州荣元金属粉末有限公司≥2千克156.00重要信息:是否进口:否  锡含量≥:99.9(%)  粒度:100目--400目(目)  牌号:0#、1#等  包装规格:30KG/桶  形状:颗粒状  制作方法:雾化法  是否危险化学品:否  属性:有色金属天津天津市华盛天和化工商贸有限公司≥20瓶150.00重要信息:是否进口:否  锡含量≥:99.9(%)  粒度:325(目)  包装规格:500g/瓶  形状:粉状  CAS:7440-31-5  是否危险化学品:否天津赫克纳斯合金焊材有限公司≥1千克190.00重要信息:是否进口:否  锡含量≥:99.9(%)  粒度:-300(目)  牌号:赫克纳斯  包装规格:桶  形状:颗粒状  制作方法:雾化法  CAS:天津科技  是否危险化学品:否湖南长沙市裕丰化玻器械有限公司≥1瓶435.00重要信息:产地:上海  是否进口:否  级别:超纯、高纯  含量:99.5%(%)  产品规格:500g  CAS:7440-31-5  品牌:国药  用途范围:还原剂。测定锅炉用水的磷酸盐。测定砷。从不溶性的硫化物中分离硫。制备易熔合金。制造锡盐。  特色服务:国药  是否危险化学品:否  规格:99.5%500g  CAS编号:7440-31-5湖南瑞华新材料有限公司≥1千克175.00重要信息:产地:湖南  锡含量≥:99.9(%)  粒度:-200(目)  牌号:气雾化球形锡粉  包装规格:真空包装  形状:颗粒状  制作方法:雾化法  是否危险化学品:否重晶石地区公司起批量参考价¥山东山东鑫泽源射线防护工程有限公司≥5袋30.00重要信息:产地:山东  是否进口:否  型号/规格:医用硫酸钡  货号:035  粒度:325(目)  品牌:鑫泽源  执行标准:国家标准  CAS:03235  用途范围:医用射线防护  特色服务:厂家直销量大优惠  规格:50KG  是否危险化学品:否山东鑫辰辐射防护材料有限公司≥1袋20.00重要信息:产地:山东  是否进口:否  型号/规格:医用硫酸钡  货号:xc-001  粒度:325(目)  品牌:鑫辰  执行标准:国标  CAS:7727-43-7  用途范围:射线防护  特色服务:量大专车发货  是否危险化学品:否浙江余姚市九峰塑化商行≥100吨700.00重要信息:原产地:广西  矿床类型:沉积型  密度:4.0-4.3(g/cm3)  硫酸钡含量:85-95(%)  SiO2含量<:3(%)  Fe2O3含量<:0.5(%)  Al2O3含量<:0.5(%)  莫氏硬度:3.8  颜色:白色  水溶盐含量<:0.01(%)  属性:中性杭州查克环保科技有限公司≥1吨800.00重要信息:原产地:浙江江苏常州丰硕化工有限公司≥1吨1499.02重要信息:产地:中国  是否进口:否  型号/规格:天然硫酸钡  粒度:1250(目)  品牌:彩辉  执行标准:GB  CAS:gdfgdf  用途范围:涂料,油漆,塑料  是否危险化学品:否常州市乐环商贸有限公司≥25千克1.80重要信息:产地:常州  是否进口:否  型号/规格:特制硫酸钡  货号:1  粒度:400(目)  品牌:乐环  执行标准:企标  CAS:1  用途范围:涂料,油漆,橡胶等  特色服务:1  是否危险化学品:否江西永丰县天地化工厂≥1吨800.00重要信息:原产地:广西  矿床类型:沉积型  密度:4.3(g/cm3)  硫酸钡含量:93(%)  SiO2含量<:2(%)  Fe2O3含量<:1(%)  Al2O3含量<:0.3(%)  莫氏硬度:3.5  颜色:灰白  水溶盐含量<:2(%)江西广源化工有限责任公司≥1吨1900.00重要信息:是否进口:否  型号/规格:超细硫酸钡  粒度:5000(目)  品牌:广源化工  执行标准:ISO14001:2004  CAS:BaSO4  用途范围:涂料、油漆、橡胶、塑料、造纸  是否危险化学品:否  非金属粉体:一等品钛白粉地区公司起批量参考价¥广东广州宏亿精细化工有限公司1-49千克170.00重要信息:产地:上海  是否进口:否  晶型:金红石型  货号:0053  级别:通用级,化妆品用,纳米级  规格及用途:10KG/桶  色光:白色带蓝光  CAS:20060708  加工工艺:精研法  品牌:宏亿  型号:HW001  是否危险化学品:否  主要用途:防晒  产品规格:10KG/纸桶东莞市粤钛化工进出口有限公司25-999千克24.50重要信息:产地:澳洲  是否进口:否  晶型:金红石型  货号:01:级别:颜料级,涂料用,塑料用,化妆品用,油墨用,医药级,橡胶用,造纸用,食品用  规格及用途:25KG/包  色光:蓝相  CAS:90-288-101  加工工艺:氯化法  品牌:科美基  特色服务:支持货到付款  型号:CR-828  是否危险化学品:否辽宁沈阳鑫久旺商贸有限公司≥1吨10000.00重要信息:晶型:锐钛型  级别:涂料用,颜料级,橡胶用,化纤用,造纸用,塑料用  规格及用途:涂料橡胶塑料  色光:白  CAS:wu  加工工艺:氯化法  品牌:玉兔  特色服务:批发  型号:R930沈阳赛尼欧化工有限公司≥1吨18000.00重要信息:产地:山东  是否进口:否  晶型:金红石型  级别:涂料用  规格及用途:涂料用  色光:白  加工工艺:硫酸法  品牌:赛尼欧  特色服务:精细包装  型号:R-818  规格:工业  是否危险化学品:否上海上海井宏化工科技有限公司25-999千克21.50重要信息:是否进口:否  晶型:金红石型  级别:通用级,颜料级,塑料用,油墨用,橡胶用,化纤用  规格及用途:25公斤包装白色颜料  色光:白色白度99.6  CAS:13463-67-7  加工工艺:氯化法  品牌:JINHON  特色服务:当天发货  型号:其他  规格:25公斤/袋  是否危险化学品:否上海欢钛化工有限公司≥1千克21.00重要信息:产地:美国  是否进口:否  晶型:金红石型  级别:化妆品用,涂料用,颜料级,造纸用,油墨用,塑料用,通用级  规格及用途:广泛应用于油漆,乳胶漆,涂料,橡胶,塑胶,造纸,PVC型材调色  色光:白光  CAS:8952-63-1  加工工艺:氯化法  品牌:杜邦  特色服务:送货上门  型号:R-902  规格:25kg/袋江苏常州丰硕化工有限公司≥1千克15.00重要信息:产地:中国  是否进口:否  晶型:金红石型  级别:通用级  规格及用途:催化  色光:红光  CAS:13463-67-7  加工工艺:硫酸法  品牌:彩辉  特色服务:免费拿样,免费送货  型号:纳米级常州市乐环商贸有限公司≥1千克26.50重要信息:产地:江苏  是否进口:否  晶型:金红石型  货号:25  级别:颜料级,涂料用,油墨用  规格及用途:25KG  色光:白色  CAS:钛白粉  加工工艺:氯化法  品牌:DUPONT  特色服务:送货上门  型号:R-706
  • Picarro | 揭秘中国长江流域溶解温室气体(CO2、CH4和N2O)的空间分布和调控因素
    长江,全长6300余千米,中国第一大河,干流自西而东横贯中国中部,数百条支流辐辏南北,于崇明岛以东注入东海,流域面积180万平方千米,约占全国总面积的1/5,年入海水量9513亿立方米,占全国河流总入海水量的1/3以上。长江承载着丰富的生态系统和人类活动,对于全球气候变化的干预具有重要意义。在全球温室气体变化成为全球关注焦点的当下,长江作为世界上最大的亚热带河流,碳氮存储量备受科研研究所关注。今天的推荐的文章将带大家揭秘中国长江流域溶解温室气体(CO2、CH4和N2O)的空间分布和调控因素。河流,尤其是(亚)热带地区的大型河流,在全球温室气体预算中起着重要作用。在大尺度温室气体预算中忽略水生成分可能会高估陆地生态系统中碳和氮的储存量,但由于河流数据集的空间分布偏差,对潜在生态过程的理解不足,河流温室气体排放的估计存在很大的不确定性。长江是世界上最大的亚热带河流,近几十年来面临着密集的人类活动。三峡大坝(TGD)不同时空尺度的温室气体排放和河口河流碳输出受到广泛关注。然而,目前还缺乏关于长江流域温室气体浓度大尺度纵向模式和驱动因素的研究。长江从青藏高原流入大海,其水文形态和生物地球化学配置梯度较大,为理清大尺度格局的调控机制提供了理想系统。为生成溶解温室气体浓度的空间数据集,了解和预测温室气体的空间趋势,以及深入了解不同温室气体来源在大型河流尺度上的作用。研究人员于2020年10月17日至11月4日期间在长江干流和支流进行了采样活动,收集了温室气体浓度(CO2、CH4和N2O,Picarro G2508气体浓度分析仪)和水化学参数(原位水温、电导率、pH值、溶解氧、NO3–、NH4+、溶解总磷 (DTP) 浓度)的测量结果,并将结果与上、中、下游的水文形态特征相结合。【结果】(a-c)长江干流和支流中CO2、CH4和N2O摩尔浓度箱线图,分别按上、中和下游分类。(d-f)分别为长江干流中观测到的CO2、CH4和N2O浓度图。采样点组显示了预测长江干流温室气体浓度的参数之间的关系。(I)影响温室气体浓度的预测因子的回归树。(Ⅱ)各终端节点内采样点的空间表征,表明长江沿岸温室气体浓度相似的采样点具有相同的预测因子。CO2、CH4和N2O的交叉验证均方根误差分别为13.5、0.13、0.20,R2分别为0.49、0.31和0.68。【结论】研究首次系统地估计了长江沿岸温室气体(GHG)的纵向变化以及土地覆盖和水生物地球化学对三种温室气体的影响。结果发现长江中游地区CO2和N2O浓度较高,存在显著的空间集聚现象。非线性回归结果表明,湿地覆盖度高、溶解氧低时,河流温室气体排放量高。湿地和氧气,而不是三峡大坝和支流,分别是CO2和CH4浓度空间变化的主要相关因素。令人惊讶的是,CO2可以很好地预测N2O,这意味着它们有共同的驱动因素或来源。作者建议在估算长江流域温室气体排放时考虑湿地对温室气体预算的贡献及其对环境变化的敏感性。根据研究,未来对大型河流温室气体排放的控制可能很大程度上取决于如何通过减少养分负荷来调节外部输入和内部代谢。
  • 大连大特气体顺利通过职业健康安全管理体系
    大连大特气体有限公司成立于1992年,致力于高纯气体、标准气体和工业混合气体的研究开发,是国内标准气市场的主要供应商,公司在经营过程中不断完善管理体系,服务水平不断提高。   大特气体于2012年顺利通过安全生产标准化三级达标验收;于2015年6月5日开始贯彻实施管理体系,管理手册/DT-HSSC-2015(执行A版)。   公司OHMS运行以来,企业进行了内审、管理评审,且内审、管理评审中提出的问题及时整改、落实,保持了有问题自我发现、自我纠正、自我监督的能力。全体员工安全意识有了较大提高,管理制度更加规范、更加严密,一线员工能够自觉执行安全操作规程。   公司今后将继续推进质量管理体系和职业健康安全管理体系的有效运行,通过积极宣贯和定期内部审核,不断提高全体员工的管理意识、质量意识和健康安全意识,规范各项管理行为,有效控制各类风险;同时,该管理体系的通过也体现了我公司以人为本、安全至上的管理理念。
  • 气体检测仪行业的研发方向
    一、技术升级气体检测仪的技术升级是其研发的重要方向之一。随着科技的不断发展,气体检测仪的精度、灵敏度和稳定性等方面也需要不断升级。一些新型的气体检测仪采用了先进的传感器技术、光谱技术和色谱技术等,能够更加准确地检测气体的成分和浓度。同时,气体检测仪的技术升级还包括智能化、自动化和便携化等方面,以便更好地满足用户的需求。二、应用领域拓展气体检测仪的应用领域也在不断拓展。除了在环保、化工、煤矿、卫生、安全等领域的应用外,气体检测仪还可以应用于农业、食品、医药、能源等领域。例如,在农业领域,气体检测仪可以用于检测土壤中的气体成分,以便更好地了解土壤的状况和植物的生长情况。在食品和医药领域,气体检测仪可以用于检测食品和药品中的气体成分,以便更好地保证食品和药品的质量和安全。三、智能化发展气体检测仪的智能化发展也是其研发的重要方向之一。智能化的发展可以让气体检测仪更加方便、快捷、准确地进行检测,同时也能够更好地满足用户的需求。一些新型的气体检测仪采用了人工智能技术,能够自动识别和判断气体的成分和浓度,同时还能够根据用户的需求进行自动调整和优化。四、个性化定制气体检测仪的个性化定制也是其研发的重要方向之一。由于不同的用户对气体检测仪的需求不同,因此气体检测仪也需要根据不同的用户需求进行个性化定制。一些新型的气体检测仪可以根据用户的需求进行定制,包括检测气体的种类、精度、尺寸、重量等方面,以满足用户的个性化需求。五、环保和安全性能提升气体检测仪的环保和安全性能提升也是其研发的重要方向之一。随着环保和安全意识的不断提高,气体检测仪也需要更加注重环保和安全性能的提升。一些新型的气体检测仪采用了环保材料和安全技术,能够更好地保证使用的安全性和环保性。综上所述,气体检测仪行业的研发方向包括技术升级、应用领域拓展、智能化发展、个性化定制和环保和安全性能提升等方面。这些方向的研发将不断推动气体检测仪行业的发展,为人类的生产和生活带来更多的便利和效益。
  • 昕甬智测HT8800系列多组分温室气体分析仪:量子级联激光光谱技术在气体检测领域的应用优势
    在当前时代,环境问题、气候变化以及可持续发展已经成为全球关注的焦点。在这一背景下,气体检测技术变得尤为重要,以便实时监测和控制大气中的有害气体排放,保护人类健康和生态平衡。量子级联激光光谱技术作为一种先进的光谱分析技术,在气体检测领域具有显著的应用优势,以下是一些关键的优势:1. 高精度和高灵敏度: 量子级联激光光谱技术具有极高的分辨率和灵敏度。这使得它能够探测非常低浓度的气体,甚至在远距离下也能实现精确的检测。这对于监测罕见但有害的气体排放至关重要,例如甲烷等温室气体。2. 多种气体同时监测: 量子级联激光光谱技术可以针对多种不同的气体进行监测,而无需更换设备。这种多功能性使得它适用于不同场景下的气体监测需求,从工业污染到大气组成分析。3. 非侵入性: 与传统的气体采样方法相比,量子级联激光光谱技术是一种非侵入性的技术。它不需要直接接触气体样本,避免了可能引起污染或影响结果准确性的问题。4. 实时性: 量子级联激光光谱技术具有快速的数据采集和处理能力,使其能够实时监测气体浓度变化。这对于迅速响应气体泄漏事件或污染源的变化非常重要。5. 长距离探测: 量子级联激光光谱技术能够实现长距离的气体检测,这在一些需要遥感监测的场景下特别有用,如工业区域的气体排放监测。6. 节能环保: 由于量子级联激光光谱技术能够快速、精确地完成气体检测,它可以在很大程度上减少能源和资源的浪费,从而降低环境影响。总之,量子级联激光光谱技术在气体检测领域的应用优势主要体现在高精度、高灵敏度、多功能性、实时性、长距离探测以及节能环保等方面。随着技术的不断发展,它有望在环境监测、工业安全、气候研究等领域发挥越来越重要的作用。宁波海尔欣光电科技有限公司所应用的量子级联激光光谱技术,在气体检测领域的应用优势主要体现在高精度、高灵敏度、多功能性、实时性、长距离探测以及节能环保等方面。随着技术的不断发展,它将在环境监测、工业安全、气候研究等领域发挥越来越重要的作用。9月,海尔欣光电科技有限公司旗下品牌“昕甬智测”产品HT8800系列便携式高精度温室气体分析仪于中国甘肃省兰州市顺利进行现场安装、调试。HT8800系列便携式高精度温室气体(二氧化碳、甲烷、氧化亚氮、水)分析仪由宁波海尔欣光电科技有限公司自主研发、生产和销售,为“昕甬智测”品牌国产创新产品。该系列仪器基于量子级联激光技术设计,利用气体分子在中远红外的“指纹”吸收谱,使用半导体量子级联激光器(QCL)作为光源,使激光通过独创的中红外增强型光腔,被中红外光电探测器接收透射光并提取和分析透射光谱,准确反演获得目标温室气体成分的浓度,实现对目标温室气体分子的更精确、更及时、更科学的测量。更多详情请联系我们。
  • 黄石公园蒸汽船间歇泉喷发前、中、后期CH4和CO2扩散气体排放
    黄石公园蒸汽船间歇泉喷发前、中、后期CH4和CO2扩散气体排放背景图片背景介绍:几十年来,像黄石国家公园这样的热液环境中气体的释放一直是热门研究方向。先前在黄石公园进行的研究量化了火山口和大气之间交换的二氧化碳量,强调了黄石公园如何通过火山口每年排放约4.4×107公斤的二氧化碳。诺里斯间歇泉盆地(Norris Geyser Basin, NGB)位于黄石公园的西北部,是蒸汽船间歇泉的所在地。蒸汽船间歇泉在公园的数百个间歇泉中脱颖而出,是因为它向空气中喷射的流体-气体混合物可以超过115米的高度,使其成为世界上最高的喷发活跃间歇泉。气体主要由可冷凝蒸汽和不可冷凝CO2组成,还有少量其它不可冷凝气体,如CH4。虽然蒸汽船并不定期喷发,但间歇泉最近变得非常活跃。2000年至2017年期间,发生了11次火山喷发;然而,在2018年3月至2021年2月24日期间,蒸汽船喷发了129次。为了研究气体排放的变化是否可以作为间歇泉喷发的前兆,2019年6月12日,我们连续测量了间歇泉在一次喷发事件前后30米处甲烷和二氧化碳的扩散排放。实验方法:本研究使用了两台仪器来测量地表通量。Eosense自动呼吸室(AC)被安装在距离间歇泉约30米的地面上,在间歇泉和蓄水池泉之间。AC被编程为关闭15分钟,允许气体从地下逸出积聚,打开5分钟冲洗一次,完成一个周期,期间共进行17次测试,其中喷发前完成了7次测量(包括前兆测量),喷发后进行了10次测量。自动呼吸室(AC)通过管路连接到Picarro G2201-i CO2、CH4浓度及同位素分析仪,组成CRDS-AC通量及同位素观测系统,该系统可以测量CH4和CO2的浓度及其碳同位素组成,δ13C-CH4和δ13C-CO2大约每4s测量一次。在浓度-时间曲线稳定1 - 2分钟后的前3 - 4分钟,用斜率乘以自动呼吸室(AC)内部体积和底座横截面积的商来估算通量。CRDS仪器放置在多功能车(GorrillaCartsGORMP-12)上。在车上,由两节12V直流深循环船用电池并联连接,通过直流-交流电源逆变器为分析仪供电。期间还使用了仅测量CO2通量的单个便携式呼吸室(PAC)。该PAC是一个闭路EGM-5便携式CO2气体分析仪(PP Systems, Amesbury, MA),腔室直接连接到分析仪,提供二氧化碳浓度的高频繁测量(10赫兹)。使用线性模型计算CO2通量。PAC系统在另外三个标有标记的位置进行移动测量,这增加了本研究期间测量的空间足迹。图1所示:诺里斯间歇泉盆地东南部的地图。蒸汽船间歇泉(六边形)位于酸性到中性的地热区域。地图上还标注了20世纪初钻探的三口井。气体通量测量结果:在单次蒸汽船间歇泉喷发前~3 h、喷发中和喷发后~ 2 h测量了地表CO2和CH4通量以及其碳同位素组成。以观察扩散排放活动的变化是否与喷发的特定阶段有关,从而揭示诺里斯间歇泉盆地中地下气体的运移机制。在喷发之前和整个喷发过程中,我们使用Picarro CRDS分析仪测量弥漫性气体排放,我们将其报告为地表通量。对于CH4,喷发前后的通量在误差范围内相同,平均值分别为42.3±1.3和42.3±1.6 mg m&minus 2 day&minus 1。同样,CO2在喷发前(50.3±1.8 g m&minus 2 day&minus 1)和喷发后(52.3±2.2 g m&minus 2 day&minus 1)表现出相似的通量。然而,在喷发之前(不到25分钟),与之前6次Picarro CRDS分析仪测量的平均值有偏差。这第七组测量发生在从静息期阶段到预演期阶段的过渡期间,显示CH4和CO2的通量分别下降了58%和50%。这种偏离发生在静息期(a)的结束和预演期(b)的开始,在绘制的时间序列中清晰地说明了这一点,该阶段称为前体测量(图2)。图2所示:测量期间CH4和CO2通量的时间序列(左y轴)和平滑的1分钟平均连续浓度测量值(右y轴)。当气体室关闭时,气体浓度开始增加,然后在通量测量结束时打开,气体浓度恢复到环境浓度,形成锯齿状图案。浅阴影区域表示喷发前(b)和小喷发(c)阶段。较暗的阴影区域描绘了主要的喷发,倒数第二个区域突出了液体主导阶段(d),最暗的阴影区域显示了主要喷发的蒸汽主导阶段(e)。稳定碳同位素测量结果连续的CRDS-AC δ13C测量表明,重同位素在每个腔体中都有富集。在每个气室围封期间最后10次δ13C测量值的平均值作为δ13C源值。结果得出δ13C-CH4 = - 27.5±0.3‰,δ13C-CO2 = - 3.9±0.1‰(图4a)。这些源组成比各自的大气端元(CH4≈&minus 47‰和CO2≈&minus 8‰)的同位素重。唯一的例外是一组前体测量,其中δ13C-CH4为&minus 35.7±2.1‰,δ13C-CO2为&minus 6.2±0.4‰(图4b)。前驱体测量值明显比非前驱体测量值轻,并且更接近大气成分。将测量到的通量和气源同位素组成结合在一个图中(图3b),突出了前驱体测量的异常性质。图左下角的基准面表示在图2所示的时间序列中也可以观察到的前兆信号。图3所示:(a)测量期间的碳同位素值。阴影区域表示喷发开始后的时期。两幅图中黑色的水平虚线表示大气的碳同位素组成,而浅灰色的虚线表示地幔源。(b)配对δ13C和通量测量。δ13C数据(左图为δ13C- CH4,右图为δ13C- CO2)利用近10次测量的平均值估算了气源气体的稳定碳同位素组成。图4所示:二氧化碳(δ13C-CO2)和甲烷(δ13C-CH4)的碳同位素比较。每个圈地都用观测到的喷发时间序列的阶段(a-e)来标记,在同一阶段出现的测量顺序是连续的数字(参见图2,以获得阶段名称的完整解释)。“前兆”测量被清楚地指出。颜色方案表示在15分钟的腔室封闭期间记录基准的相对时间,其中深色出现在开始,浅色出现在结束。每个图中的黑色菱形代表大气同位素组成的近似端元。气体扩散途径模型:虽然蒸汽船喷发的具体机制不能仅由气体测量来支持,但通过整合收集的数据和先前发布的信息,这里共享了该系统的概念模型(图5)。大量证据表明,温泉水起源于渗入并流经流纹岩的大气水,以补给NGB和公园其他地方的间歇泉。从热成因δ13C-CH4特征和地幔样δ13C-CO2组成来看,系统中大部分气体来源于深部。在两次喷发之间,我们认为存在地幔气体从深层源向上的稳态输送(图5a)。这些气体溶解在水中,在含水层顶部溶解,向地表迁移,与浅层气体混合,然后以恒定的速率从地表排出。图5所示:说明地下管道和扩散气体到地面的途径的概念模型。注意深层烃源岩和补给储层之间的区别。(A)突出显示间歇泉在喷发之间的状态,(B)展示了前兆窗口(喷发的~ 10-25分钟)。结论:在距离蒸汽船间歇泉开口30 m处进行的光腔摔荡光谱测量显示,在2020年6月12日观测到的一次喷发开始前约10-25分钟,CH4和CO2的通量分别急剧下降58%和50%。这一证据表明,就在这次喷发之前,充满气体的水向间歇泉管道流动。同样,CH4 (δ13C-CH4)和CO2 (δ13C-CO2)的前体碳同位素测量值(分别为- 35.7±2.1‰和- 6.2±0.4‰)明显轻于非前体碳同位素测量值(- 27.5±0.3‰ &minus 3.9±0.1‰),δ13C在喷发开始后立即恢复到稳态值。热水和天然气的高估计平衡温度表明,至少在470米深处有一个深源。之前的研究呼吁监测黄石间歇泉的气体排放率,而这项研究为如何有效地进行弥漫气体测量和研究提供了一个模型。原文链接:https://doi.org/10.1016/j.jvolgeores.2021.107233研究应用相关仪器:
  • 武钢氧气公司气体分析实验室通过评审
    12月17日,中国合格评定国家认可委员会通过了对武钢氧气公司质检中心气体分析实验室的现场评审,标志着该公司气体检测和管理达国家实验室标准水平。  为满足认可准则和客户需求,去年9月,该公司相继编写相关《质量手册》和《程序文件》,并于今年4月通过管理体系内部审核及管理评审。随后,该公司持续改进管理体系,编制并完善了相应的操作规程、作业指导书,保持气体分析实验室检测能力的有效性,使相关分析人员、仪器设备、环境条件及管理程序符合认可准则和规范要求。  国家认可委评审组对该公司31个程序文件、8种气体产品检测能力等要素进行评审,认为该公司管理体系运行具有较好的符合性和有效性,实验室各项条件符合CNAS-CL01:2006《检测和校准实验室能力认可准则》、CNAS-CL10:2006《检测和校准实验室能力认可准则在化学检测领域的应用说明》的认可要求。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制