当前位置: 仪器信息网 > 行业主题 > >

拟交感神经药物

仪器信息网拟交感神经药物专题为您整合拟交感神经药物相关的最新文章,在拟交感神经药物专题,您不仅可以免费浏览拟交感神经药物的资讯, 同时您还可以浏览拟交感神经药物的相关资料、解决方案,参与社区拟交感神经药物话题讨论。

拟交感神经药物相关的资讯

  • 科学家揭示神经损伤后的自发性疼痛产生的新机制
    自发性疼痛是指在没有外界刺激的情况下发生的疼痛。它是慢性疼痛的主要症状。发生机制仍不清楚,仍然难以治疗。近期,来自约翰霍普金斯大学和辛辛那提大学的研究团队利用在体成像技术研究了同步聚集放电引起神经损伤后的自发性疼痛发生机制,证实交感神经-肾上腺素受体通路介导了同步聚集放电和自发性疼痛的产生。该研究成果发表在《Neuron》上,题为:Synchronized cluster firing, a distinct form of sensory neuron activation, drives spontaneous pain。  研究人员对背根神经节(DRG)神经元进行了在体成像,发现周围神经损伤后异常自发活动的一种独特形式:相邻的DRG神经元聚集同步、偶尔性放电。聚集放电水平与神经损伤诱发的自发性疼痛行为直接相关。研究人员进一步证明了聚集放电由交感神经的活动触发。交感神经在损伤后会传导到DRG,去甲肾上腺素是介导这种独特放电的关键神经递质。交感神经活性和去甲肾上腺素受体对于DRG神经元同步聚集放电和自发疼痛行为至关重要。  这项研究提出了阻断交感神经介导的同步聚集放电可能是治疗自发性疼痛的新手段,为在临床上靶向该通路治疗神经损伤引起的自发性疼痛提供了理论支持和研发方向。   论文链接:  https://www.sciencedirect.com/science/article/abs/pii/S0896627321008345?via%3Dihub
  • 中国科大揭示光感知调控血糖代谢的神经机制
    对栖息于这颗蓝色星球上的生命而言,光是一切生命产生的源动力,也是生命体最重要的感知觉输入之一。同时生命体根据外界环境条件控制体内营养物质的代谢平衡是生存的必须,而代谢紊乱会产生严重疾病,哺乳动物已经进化出了精确和复杂的调控网络用于持续动态调控血糖代谢。大量公共卫生调查显示夜间过多光源暴露显著增加肥胖和糖尿病等代谢疾病风险,那么光作为最重要的外部环境因素,其是否直接调控血糖代谢?其中涉及哪类感光的细胞、何种神经环路以及外周靶器官,这些方面的问题一直没有得到解答。   1月20日,中国科学技术大学生命科学与医学部教授薛天研究团队在《细胞》(Cell)上,在线发表了题为Light modulates glucose metabolism by a retina-hypothalamus-brown adipose tissue axis的研究成果。该工作发现了光直接通过激活视网膜上特殊的感光细胞,经视神经至下丘脑和延髓的系列神经核团传递信号,最终通过交感神经作用于外周的棕色脂肪组织,直接压抑了机体的血糖代谢能力。值得指出的是,这项工作不但在小鼠动物模型上系统回答了光调节血糖代谢的生物学机理,在人体试验上也发现了同样的现象,显示光调节血糖代谢可能广泛存在于哺乳动物界。   研究人员首先对小鼠和人执行葡萄糖耐受性检测(GTT),发现数个小时的光暴露显著降低了人和鼠的血糖耐受性。哺乳动物光感受主要依赖于视网膜上的各类感光细胞。除了经典的视锥(Cones)视杆(Rods)细胞介导图像视觉感知之外,光也能直接激活视网膜上的第三类感光细胞视网膜自感光神经节细胞(ipRGC),它依靠自身表达的视黑素(Melanopsin)对波长靠近480nm的短波长蓝光敏感。ipRGC支配诸多下游脑区进而调控如瞳孔对光反射、昼夜节律、睡眠和情绪认知功能。光降低血糖耐受性通过何种感光细胞介导?通过基因工程手段,研究人员逐一使视网膜各类感光细胞丧失感光能力,发现光诱发血糖不耐受由ipRGC感光独立介导(图1)。   接着研究人员进一步探究视网膜至脑内的哪些核团参与光调节糖代谢。下丘脑是调控机体代谢的重要区域,其中与ipRGC有较密集连接的是下丘脑视交叉上核SCN和视上核SON核团。已知数周异常光照模式能够通过影响节律中枢SCN,造成生物钟节律失调,进而间接影响到血糖代谢功能。研究人员分别损毁或利用化学遗传手段操控ipRGC投射的SCN和SON核团,发现了光急性降低血糖耐受性这一过程独立于生物钟节律系统,而由ipRGC-SON的神经环路直接介导(图1)。   结合大量神经环路示踪和操控手段,研究人员进一步发现ipRGC→SONOXT(视上核内催产素(Oxytocin)能神经元)→SONAVP(SON内抗利尿激素(Vasopressin)能神经元)→PVN(下丘脑室旁核)→NTSVgat(孤束核的GABA能抑制性神经元)→RPa(中缝苍白核)这样一条脑内六级长程神经环路介导光降低血糖耐受性(图1)。   光影响血糖代谢必然通过外周血糖代谢的器官来执行,考虑到在环路水平上光降低血糖耐受通过中缝苍白核RPa,该核团是调节棕色脂肪组织(BAT)活性的交感前运动神经的主要部位。因此研究人员将研究锁定在棕色脂肪组织,而棕色脂肪组织的重要作用之一是代谢葡萄糖或脂肪,直接产热以维持体温稳态。研究人员发现光能显著压抑棕色脂肪组织的温度,进一步通过阻断交感神经对棕色脂肪组织的投射、以及利用热中性环境温度压抑棕色脂肪组织活性的手段,确定了光降低血糖耐受性是通过压抑脂肪组织消耗血糖的产热所导致(图1)。   夜行性的小鼠和昼行性的人类在诸多光调控的生理过程中表现既有相反也有相同的效应。光是否同样降低人的血糖耐受?研究人员分别使用ipRGC敏感的蓝光与ipRGC不敏感的红光,测试人在不同波长光线照射下的血糖耐受性。结果显示在蓝光照射下人的血糖耐受性显著下降。进一步研究人员将被试者处于热中性温度环境中(热中性温度下棕色脂肪组织活性被压抑)进行了血糖耐受性测试,结果显示光不再压抑血糖耐受。上述实验提示光降低人的血糖耐受性可能也是由ipRGC感知光线且通过影响棕色脂肪组织的活性所介导(图2)。   对这项工作的几点启示:   Nothing in biology makes sense except in the light of evolution,光压抑血糖代谢这一神经生理功能可能用于动物快速响应不同太阳辐照条件,以维持体温稳态。在户外环境中太阳光可以为动物提供大量的热辐射,这可以满足部分的体温维持需求,而在动物进入洞穴或树荫等诸多太阳光辐照显著降低的环境中时,机体就需要迅速响应这种辐照减少带来的热量输入损失。光通过这条“眼-脑-棕色脂肪”通路快速减低脂肪对葡萄糖的利用以降低产热,在光辐照减少的时候,棕色脂肪不再被光压抑,快速代谢血糖来维持体温稳态。   冷暖光也许并非单纯心理作用,可能存在生理基础。日常生活中短波光环境(蓝)让人感觉到凉爽,而长波光环境(红)让人觉得温暖,因此它们才被赋予了冷暖光的定义。冷暖色一直被定义为心理上的冷热感受。这项研究发现对短波长光敏感的ipRGC在蓝光下压抑脂肪组织产热,而在红光下脂肪组织处于活跃状态。因此我们在进入蓝光环境下产生的那种“冷”的感觉,有可能是由于脂肪产热被压抑而产生的真实感受。 这条光调控脂肪组织活性的环路可能是心理上冷暖光的生理结构基础。   工业化时代的代谢疾病—人造光源增加机体代谢负担。该项工作在人体的研究结果显示,昼夜节律会造成夜间人体的糖代谢能力相较白天更低,而光压抑血糖代谢是直接叠加在节律造成的夜间血糖代谢能力下降之上的(图2)。因此在夜间同时有光暴露的条件下,人体血糖代谢能力最差。工业化社会中,人类长时间的在夜间暴露于人造光源之下,加上现代人夜间饮食习惯给机体带来双重代谢负担进而可能诱发代谢疾病。大量公卫卫生学证据已经证实了这一点,最近瑞金医院宁光院士团队涉及近10万人的研究显示,夜间长期暴露于人造光下会增加血糖紊乱及糖尿病的患病风险。   这项光调节血糖代谢的机制研究,提示现代人健康生活应关注光线环境的健康,针对夜间光污染造成的罹患代谢疾病风险提高,应考虑生活环境中夜间人造光线的波长、强度和暴露时长。这项工作发现的感光细胞、神经环路和外周靶器官可为将来干预此过程提供潜在靶点。   研究工作得到国家自然科学基金、科技部、科学探索奖、中科院稳定支持基础研究领域青年团队项目、中国科大等的支持。合肥学院科研人员参与研究。图1.在小鼠上,光激活ipRGC-SONOXT-SONAVP-PVN-NTSVgat,压抑RPa和支配脂肪的交感神经,进而压抑棕色脂肪产热降低血糖耐受性。图2.在人上,光可能通过同样的神经环路机制压抑棕色脂肪产热降低血糖耐受性。相较于白天,夜晚人的血糖耐受性更低。
  • 全球最大心脏医疗设备商美敦力8亿美元收购阿迪安
    北京时间11月23日上午消息,据外电报道,全球最大的心脏医疗设备制造商美敦力公司(Medtronic)(MDT)宣布,将以8亿美元现金收购阿迪安(Ardian)公司。后者此前研发出一种高血压治疗仪,能阻断肾脏交感神经,从而切断从大脑传递到肾脏的血压增高信号。在此之前,美敦力公司已持有美国加州景山(MountainView)仪器公司的11%股权。  美敦力CEO比尔-霍金斯(Bill Hawkins)在9月表示,公司将适时进行收购,以填补业务的空白。由于心脏和脊椎治疗仪等核心业务出现下滑,该公司一直在寻求新的高增长点。  该公司的心脏与周围神经业务副总裁萨蒙(Sean Salmon)称:“阿迪安的技术成果是医疗仪器市场上最激动人心的增长点之一。”  阿迪安于11月17日公布的一项研究表明,该公司研发的一种导管仪器,能有效降低那些对药物或其他疗法无效的患者的高血压。该项研究在调查106名患者后发现,该仪器通过阻断掉肾脏交感神经,能将患者的血压由平均的178/96降低至146/84。  美敦力股价昨日到纽约时间下午4:15上涨10美分,至34.7美元。该股价在过去一年已累计下跌12%。
  • Nature突破! | 马秋富团队揭示针灸驱动迷走神经—肾上腺抗炎通路的神经解剖学基础
    针灸治疗疾病的核心机理之一是通过刺激身体特定的部位(穴位)来远程调节机体功能,而经络被认为是达到这种远程效应的重要传输载体。尽管现代解剖学研究尚未明确经络特异性结构基础的存在,但揭示了针刺刺激的远程效应可以通过躯体感觉神经-自主神经反射来实现。这种反射首先是激活来自位于背根神经节 (DRG) 或三叉神经节中的外周感觉神经纤维,随后将感觉信息传到脊髓和大脑,进而激活外周自主神经,最终实现对各种机能的调节。从上世纪70年代开始,就陆续发现此类反射存在躯体区域特异性。2020年哈佛大学医学院马秋富教授团队发表在Neuron的研究结果,揭示了低强度针刺刺激小鼠后肢穴位(如足三里ST36)可以激活迷走神经-肾上腺抗炎通路,而针刺刺激腹部穴位 (如天枢ST25) 却不能诱导出此抗炎通路(详见BioArt报道:Neuron | 马秋富团队报道针刺激活不同自主神经通路调节全身性炎症)。这种躯体区域特异性(或者说穴位部位的相对专一特异性)背后的神经解剖学基础至今尚不清楚。2021年10月13日,马秋富教授团队与复旦大学王彦青教授,中国中医科学院针灸研究所景向红教授团队合作(第一作者为柳申滨博士和王志福博士)在Nature又发表文章A neuroanatomical basis for electroacupuncture to drive the vagal-adrenal axis,实现了针灸研究的历史性突破,揭示了一类PROKR2-Cre标记的DRG感觉神经元,是低强度针刺刺激激活迷走神经-肾上腺抗炎通路所必不可少的。尤为值得关注的是,根据此类神经的躯体分布特点,可以预测在不同部位低强度电针刺激抗炎的效果,从而为穴位相对特异性的存在提供了现代神经解剖学基础。首先,PROKR2-Cre标记的有髓鞘的神经元主要富集表达于支配四肢节段的DRG中,并且此类神经元特异性支配四肢的深层筋膜组织(如骨膜、关节韧带和肌筋膜等),而不支配皮肤的表皮组织和腹部的主要筋膜组织(如腹膜)。其次,为了研究PROKR2-Cre标记的神经元在针刺诱导迷走神经-肾上腺抗炎通路中的作用,研究团队运用交叉遗传等方法特异性地敲除此类DRG感觉神经元。当敲除这类神经元后,低强度针刺刺激后肢穴位ST36不能激活迷走神经-肾上腺通路,也无法抑制LPS(细菌脂多糖)所诱发的炎症风暴;而敲除此类神经元并未影响高强度刺激后肢穴位ST36和腹部穴位ST25所诱导的交感神经抗炎通路。研究团队进一步运用交叉遗传的方法特异性诱导光敏蛋白CatCh表达于PROKR2-Cre标记的神经元,并用473nm蓝光特异性地激活支配后肢穴位ST36的此类感觉神经纤维。研究发现,激活此类神经纤维能显著诱发迷走传出神经的放电,并且能以迷走神经依赖的方式诱导肾上腺释放儿茶酚胺类神经递质,抑制LPS诱导的促炎细胞因子释放,进而显著提高动物的存活率。这一部分研究结果,几乎模拟了低强度电针刺激后肢穴位ST36的抗炎效果。最后,研究人员根据PROKR2-Cre标记的 感觉神经纤维的组织支配模式准确验证了对低强度电针刺激诱导的抗炎效应结构基础。而与下肢胫骨附近筋膜组织中的密集投射相反,下肢后部的肌肉组织中,包括小腿的腓肠肌和大腿区域的半腱肌,PROKR2-Cre感觉神经纤维支配很少。低强度针刺刺激这些部位未能显著抑制 LPS诱导的炎症反应。奇妙的是,PROKR2-Cre神经纤维很少投射的腓肠肌和半腱肌等部位,正好很少分布传统穴位。进一步研究发现, PROKR2-Cre标记的感觉神经元也密集支配到前肢的深层筋膜组织(如桡骨骨膜),此处为手三里穴区(LI10),进一步通过针尖靠近含有这类神经纤维的桡神经深支,对其进行了双侧低强度刺激,发现针刺刺激此穴位也可通过此类神经元和迷走神经依赖方式,显著抑制LPS诱导的炎症反应。以上研究表明,对于针刺刺激诱导迷走神经-肾上腺抗炎通路,存在躯体部位的选择性(如有效的 ST36 、LI10 和无效的 ST25穴位)、穴位特异性(如ST36 与无效的后肢肌肉中的传统非穴位)。这种穴位的相对特异性与PROKR2神经纤维的部位特异性分布有关。此外,针刺强度、深度、检测结果指标都是影响穴位特异性发挥作用的重要要素。这些发现充实了针灸等体表刺激疗法的现代科学内涵,为临床优化针刺刺激参数,诱发不同自主神经反射,从而治疗特定的疾病(如炎症风暴等)提供了重要的科学依据。据悉,该研究获得了复旦大学王彦青教授、中国中医科学院针灸研究所景向红研究员的支持帮助,福建中医药大学王志福副教授、中国中医科学院针灸研究所宿杨帅博士, 还有杨维、祁鲁、傅鸣洲参与了本研究的工作。
  • 《Cell》解释人类起鸡皮疙瘩的真正原因
    你是否想过,身为人类我们为什么会起鸡皮疙瘩?巧的是查尔斯• 罗伯特• 达尔文也考虑过这个问题。他在他著名的《进化论》中对鸡皮疙瘩进行了思考。他认为,鸡皮疙瘩也许能保护皮毛厚实的动物免受寒冷侵袭。但我们人类似乎并没有从这种反应中获益太多。那么,为啥我们还在进化过程中一直保留着鸡皮疙瘩呢?在一项新的研究中,哈佛大学的科学家发现了原因:引起鸡皮疙瘩的细胞类型对于调节再生毛囊和头发的干细胞也很重要。在皮肤下面,收缩产生鸡皮疙瘩的肌肉是连接交感神经和毛囊干细胞的桥梁。交感神经对寒冷的反应是在短期内收缩肌肉和引起鸡皮疙瘩,长期则是通过驱动毛囊干细胞激活和新头发生长。发表在《Cell》杂志上的这些发现让研究人员更好地了解了不同细胞类型是如何相互作用,从而将干细胞活动与外界环境的变化联系起来的。“我们一直对外界刺激如何调节干细胞的行为很感兴趣。皮肤是一个迷人的系统:它有多种被不同类型的细胞包围的干细胞,位于我们身体与外界的交界处。因此,它的干细胞可能会对一系列不同的刺激做出反应——从生态位、全身,甚至外部环境,”Ya-Chieh Hsu副教授说,他与国立台湾大学的Sung-Jan Lin教授合作领导了这项研究。“我们发现了一个有趣的双组分生态位,它不仅在稳定状态下调节干细胞,而且根据外界温度的变化来调节干细胞的行为。”调节毛发生长的系统许多器官由三种组织组成:上皮、间质和神经。在皮肤中,这三个血统以一种特殊的排列方式组织起来。交感神经是我们神经系统的一部分,它控制着人体的稳态和我们对外界刺激的反应,它与间质中的一个微小的平滑肌相连。这种平滑肌又与毛囊干细胞相连,毛囊干细胞是一种上皮干细胞,对毛囊再生和修复伤口至关重要。交感神经和肌肉之间的联系是众所周知的,因为它们是产生鸡皮疙瘩的细胞基础:寒冷会触发交感神经神经元发送神经信号,肌肉的反应是收缩并导致毛发竖立。然而,当用电子显微镜在极高分辨率下检查皮肤时,研究人员发现交感神经不仅与肌肉有关,而且与毛囊干细胞形成直接联系。事实上,神经纤维包裹在毛囊干细胞周围就像一条丝带。“我们在超微结构水平上看到神经和干细胞是如何相互作用的。神经元倾向于调节可兴奋的细胞,就像其他神经元或带有突触的肌肉一样。但我们惊讶地发现,它们与上皮干细胞形成类似突触的结构,而上皮干细胞并不是神经元的典型靶点。”接下来,研究人员证实了神经确实靶向了干细胞。交感神经系统通常在一个恒定的低水平激活以维持体内平衡,研究人员发现这种低水平的神经活动使干细胞保持在一个稳定的状态,准备再生。在长时间的寒冷中,神经在更高的水平上被激活,释放出更多的神经递质,使干细胞迅速激活,再生毛囊,长出新的毛发。研究人员还调查了是什么维持了与毛囊干细胞的神经联系。当移除与毛囊相连的肌肉时,交感神经收缩,与毛囊干细胞的神经连接丢失,表明肌肉是连接交感神经与毛囊的必要结构支撑。系统如何发育除了研究毛囊处于完全形成状态外,研究人员还研究了系统最初是如何发育的——肌肉和神经如何首先到达毛囊。“我们发现信号来自发育中的毛囊本身。它分泌一种调节平滑肌形成的蛋白质,然后吸引交感神经。然后在成年期,这种相互作用发生逆转,神经和肌肉一起调节毛囊干细胞,以再生新的毛囊,”本文第一作者Yulia Shwartz说。应对环境通过这些实验,研究人员发现了一种调节毛囊干细胞的双组分系统。神经是通过神经递质激活干细胞的信号成分,而肌肉是使神经纤维直接与毛囊干细胞相连的结构成分。“你可以用很多不同的方法来调节毛囊干细胞,它们是研究组织再生的极好模型,”Shwartz说。“这种特殊的反应有助于将组织再生与外界的变化(如温度)结合起来。这是一个两层的回应:鸡皮疙瘩是短期内提供某种缓解的快速方法。但当寒冷持续时,这就成了干细胞知道是时候再生新的毛发了。”未来,研究人员将进一步探索外部环境如何影响皮肤中的干细胞,包括在体内平衡状态下,以及在伤口愈合等修复情况下。
  • 新型芯片复制神经肌肉接头有助于为神经肌病测试药物
    新型芯片复制神经肌肉接头有助于为神经肌病测试药物麻省理工学院(MIT)工程师们开发出一种复制神经肌肉接头(神经和肌肉之间至关重要的连接)的微流控设备(microfluidic device)。该设备约有25美分硬币大小,包含单个肌条和一小组运动神经元。研究人员能够在逼真(现实)的三维基质中影响和观察两者之间的相互作用。研究人员对该设备中的神经元进行基因改造,使其对光照做出反应。通过将光照之间投射到(这些)神经元上,他们能够精确刺激这些细胞,发送信号激发肌肉纤维。研究人员还测量了设备内肌肉在被激发后抽搐或收缩的力量。该研究结果2016年8月3日在线发表于《Science Advances》期刊,可能帮助科学家们理解并识别药物以治疗肌萎缩侧索硬化(ALS,即卢伽雷氏症)和其他神经肌肉相关疾病。“神经肌肉接头涉及许多失能性疾病,其中有些是残酷而致命的,还有很多尚未被发现”领导该研究的MIT机械工程系研究生Sebastien Uzel说,“我们希望能够在体外形成神经肌肉接头,从而帮助我们理解某些疾病活动”。Sebastien Uzel现在是哈佛大学Wyss研究所博士后。自1970年代以来,科学家们已经提出了大量方法在实验室中模拟神经肌肉接头。大部分这些实验涉及在培养皿或小玻璃基板上生长肌肉和神经细胞。但这样的环境与(动物)体内状态相去甚远,在动物体内,肌肉和神经细胞存活于复杂的三维环境中,并且通常距离较远。“想想长颈鹿”Uzel说,“脊髓神经元所发出的轴突需要跨越非常大的距离才能与腿部肌肉连接。”为了在体外重建更逼真的神经肌肉接头,Uzel和同事们构造了一种微流控设备,该设备具有两个重要特性:1. 三维环境;2. 隔离肌肉和神经的隔间,从而模拟两者在人体内的自然分离状态。研究人员将肌肉和神经元细胞悬浮于隔间中,然后充满凝胶以模拟三维环境。为了生长肌肉纤维,研究团队使用了获得自小鼠的肌肉前体细胞,随后将其分化成肌肉细胞。他们将细胞注入微流控隔间,细胞会在隔间内生长并融合形成单个肌条。同样的,他们从干细胞分化出运动神经元,然后将所获得的神经细胞聚合体放置在第二个隔间中。在分化两种细胞之前,研究人员使用光遗传学(optogenetics)技术对神经细胞进行了基因改造。该研究共同作者、MIT机械和生物工程Cecil and Ida Green特聘教授Roger Kamm说:光“能够让你精确控制你想要激活的细胞”。在这样的狭小空间里,电极无法实现这一点。最后,研究人员为该设备添加了另一个特性:力传感。为了测量肌肉收缩,他们在肌肉细胞隔间内构造了两个微小的弹性支柱,位于肌肉纤维周围并能够被生长的肌肉纤维所包裹。随着肌肉收缩,支柱会被挤压在一起,形成位移,研究人员能够测量这些位移并转换为机械力。在测试该设备的实验中,Uzel和同事们首次观察到神经元在三维区域内向肌肉纤维伸展轴突。在观察到轴突建立连接时,他们用微小的蓝光激射刺激神经元,并立即观察到肌肉收缩。“发射闪光,就能观察到抽搐”Kamm说道。根据这些实验,Kamm说,这种微流控设备可能作为神经肌病药物测试卓有成效的试验场,甚至可以根据个体患者进行定制。“你可能从ALS患者获得多能细胞,将它们分化成肌肉和神经细胞,并且为特定患者制造整个系统”Kamm说,“然后你能够根据需要多次复制,同时测试不同的药物或疗法的组合,查看哪种疗法能够最有效地改善神经和肌肉之间的连接。”另一方面,他说,该设备在“建模操作协议(modeling exercise protocols)”中可能是有用的。例如,通过以不同的频率刺激肌肉纤维,科学家们能够研究重复压力如何影响肌肉的性能。“现在,随着所有这些新型微流控方法的开发,你能够开始建立神经元和肌肉的更复杂的模型”Kamm说,“神经肌肉接头是另一个现在可以被纳入测试模式的单位”。
  • 测谎新技术:眼球测谎仪识别谎言
    眼睛不会说谎(供图:CFP) 意识无法控制瞳孔大小(供图:Gettyimages) 新型眼球测谎仪(供图:Gettyimages) 意识无法控制瞳孔大小(供图:Gettyimages)   童话故事《木偶奇遇记》中,木偶人匹诺曹一撒谎,鼻子就会变长,谎话显而易见。现实生活中,虽然说谎话时我们的鼻子不会变长,但我们身体确实也会产生一些细微的生理变化,有的通过肉眼就可以观察到,有的则要通过精密的测谎仪器才测试出来。日前,美国犹他州大学的科学家研发出一款新型的眼球测谎仪,通过追踪眼球运动来判断被测试人有没有说谎。   眼球细微变化反映内心波动  最近,美国犹他州大学的研究人员开发出一种新的测谎工具——眼球测谎仪,即通过观察眼球运动的轨迹便能判断人是否说谎。研究人员让受测者在计算机上回答多个“是非题”,然后记录他们作答时的反应。眼球测谎仪的研究团队负责人、犹他州大学教育心理学家John Kircher在接受媒体采访时表示,人在撒谎的时候要比说真话时“多花一点心思”,因此说谎的人会有迹象可寻,比如:说谎者的瞳孔会扩张,而且需要更多时间来阅读题目和回答问题灯。这些细微变化都在瞬间发生,需要精密复杂的模型和测量系统进行区分判断。  John Kircher说,眼部追踪测谎技术和其他谎言识别技术在原理上有很大的区别。以往的技术通常都是测量一个人撒谎时的情绪反应,根据人情绪波动的各项生理反应数据,推断人是否说谎。而眼球追踪测谎技术则取决于人对某些事件的认知所做出的反应,针对受测者的认知反应。眼部追踪测谎技术从成本上只需传统技术的五分之一,同时不需要在受测者身上附加设备 一般的技术人员就可以操作眼部追踪测谎仪,而传统测谎仪需要特别受训的鉴定员来做检测。John Kircher相信他们的眼球跟踪测谎技术将来可以替代传统的测谎仪。  主观意志无法控制瞳孔大小  中山大学附属眼科医院神经眼科副主任医师杨晖表示,眼球测谎仪的应用原理在于人的主观意识无法控制瞳孔的大小变化。瞳孔是眼睛内虹膜中心的开口,是光线进入眼睛的通道。它在亮处缩小,在暗光处散大。在虹膜中有两种细小的肌肉,一种叫瞳孔括约肌,它围绕在瞳孔的周围,主管瞳孔的缩小,受动眼神经中的副交感神经支配 另一种叫瞳孔开大肌,它在虹膜中呈放射状排列,主管瞳孔的开大,受交感神经支配。  杨晖说,当一个人说谎的时候,他的内心难免会情绪波动,这时交感神经就会起作用,使瞳孔散大、心跳加快、冠状动脉扩张、血压上升等,所有的这一切变化都是人的主观意志无法控制的。例如当一名男子面对着心爱的女子时,他可以做到表面不露声色,但他的爱意会使得他内心不由自主地产生波澜,瞳孔也就随之扩散。  而副交感神经系统的作用则是保持身体在安静状态下的生理平衡,例如缩小瞳孔以减少刺激、心跳减慢以节省不必要的消耗等。“瞳孔的变化肉眼很难观察出,但现在已经研制出一些精密的仪器可以测量出来。例如在医学上也会用一种红外瞳孔记录仪来观察患者的瞳孔收缩变化,以判断眼睛有没发生病变。”杨晖说。  眼球向右转动多为说谎信号?  除了瞳孔的变化,眼球运动的轨迹也是眼球测谎仪判断是否说谎的一个指标。孩子说谎的时候因为心虚,所以脸庞发红,眼神闪烁,经常往下看。但大人说谎不仅不会脸红,甚至可以伪装出一副坦诚无比的样子。怎么能够判断他有没有在说谎呢?  中国NLP(神经语言程序学)学院认证的“NLP专业教练”邓隽元在接受记者采访时表示,在NLP的理论中,眼球转动的六个位置﹕右上﹑左上﹑右中﹑左中﹑右下﹑左下﹐每个位置都有不同的意义。在NLP中,右边代表将来,左边代表过去,上边代表视觉,中间代表听觉,下边代表感觉、理性思维,因此当眼睛转向左上方,表示在回想一些视觉上的记忆 眼睛转向左中方,表示在回想一些听觉上的记忆 眼睛转向左下方,表示在内心在进行一些理性思考,例如在思考 “3+3=?” 眼睛转向右上方,表示在思考未来 眼睛转向右中方,表示在想象一个声音,例如在想象询问某人问题时,对方会如何答复 眼睛转向右下方,表示正在体会一种身体上的感觉,例如体会着食指的感觉。  如果你想分辨出一个人是否说谎,可以问一些必须要回忆才能想起来的细节,比如“那天你去买衣服的路上碰到了哪些人?聊了些什么?”如果对方不经思考就看着你的眼睛马上回答,他可能在讲述已经编好的谎言 如果他的眼睛先向上、再向左转动,说明他可能在回忆真实的情况 如果眼睛先向上、后向右转动,说明他有可能正在编造谎言。  邓隽元说,这个眼球运动反应心理变化的理论适用于绝大部分人,但不是所有的人。如果这个人是一个左撇子,其左边和右边所代表的情况则正好相反。杨晖则指出,在两种情况下无法进行判断:一是如果被观察者得知会有人观察自己的眼睛时,他会刻意保持眼球不动,二是被观察者的眼球发生了疾病。  传统测谎仪:量化无形的心理变化  测谎原理  “测谎”并不是检测谎言本身,而是要检测一个人想隐瞒时的心理反应所引起的生理指标的变化。因此“测谎”可以说是一种“心理测试”,其基本假设就是被测者在说谎时,会出现一些生理反应,如心跳加快,血压升高等,以及一些行为上的变化。每个人都有自己的道德定位,面对这种道德冲突,人们会不由自主地产生一种矛盾心理,进而导致自主神经的活跃 条件反射,当罪犯被问及一些与犯罪行为相关的问题时,容易产生与犯罪过程中相同的情绪体验(如紧张、恐惧、兴奋)。  1921年美国加州伯克利市警察局的拉森组装了一台可记录血压、脉搏振幅与呼吸模式相关变化的便携仪器。约翰拉森从 1921年到1925年做了很多测谎测试。上世纪30年代,拉森的助手基勒研制了新型的基勒测谎仪,皮肤电阻作为第三通道增设到基勒测谎仪中。这是第一台能把呼吸、皮肤电阻和心脏反应都组合在一个比较单元的测谎仪,设计者申请了专利,在美国军方、警方推广应用。皮肤电阻是通过测量人手心发汗的程度了解人心理紧张状态的变化 呼吸波是反映人心理变化的重要生理指标之一,人紧张时,呼吸会下意识地发生一系列变化,如深呼吸、呼吸节律加快或变慢等 人在紧张时,心跳加快,使脉搏波的收缩压上升。  测谎过程  邓隽元告诉记者,通常在正式测谎之前,测谎员要以非审讯的方式与被测试人进行谈话,例如测谎员会问被测试人:“1加1是不是等于2?”当被测试人回答“是”的时候,有关仪器和人会记录下被测试人“说实话”时的种种心理特征和身体反应的信息 接着测试员再问:“1加1是不是等于4?”这次同样要求被测试人回答“是”,并同时记录下被测试人“说谎”时的种种心理特征和身体反应的信息。被测试人“说实话”和 “说谎话”时的种种细微反应被测试仪器记录下来后,汇集形成或者“知情”、或者“参与”的结论,接着才开始真正的测谎。  当测谎员提出问题后,发现被测试人回答时表现出的反应信息与之前“说谎”时的反应信息相似,则会将其答案视为“疑似说谎”,进而作进一步的调查问话。结束后,测谎员再进行全面分析,最终得出最后的判断。  撒谎的一些“微表情”:  1.单肩抖动——不自信 。  2.回答时生硬地重复问题——典型谎言 。  3.揉鼻子——掩饰真相(男人的鼻子里的海绵体在撒谎时容易痒) 。  4.话语重复 声音上扬——撒谎 。  5.惊讶表情超过一秒就是假惊讶 。  6.男人右肩微耸一下有可能是在说假话 。  7.当不能倒着将事情回忆一遍,那么事情肯定是编造的 。  8. 眼睛向左看是在回忆,向右看是在思考谎话。  链接:说谎时的生理变化  科研证明,人在说谎时生理上的确会发生变化,有一些肉眼可以观察到,如抓耳挠腮、腿脚抖动等一系列不自然动作 还有一些生理变化由于受植物神经系统支配而不易察觉,例如:  呼吸系统:呼吸速率和血容量异常,出现呼吸抑制和屏息   循环系统:脉搏加快,血压升高,面部、颈部皮肤苍白或发红   消化系统:胃收缩,消化液分泌异常,导致嘴、舌、唇干燥   皮肤:皮下汗腺分泌增加导致出汗,手指和手掌出汗尤其明显   眼睛:瞳孔放大   肌肉:肌肉紧张导致说话结巴。
  • 时空分辨药物代谢组学——中枢神经系统新药研发的可视化利器
    中国医学科学院北京协和医学院药物研究所贺玖明研究员团队以封底文章在《药学学报》英文刊(APSB)2022年第8期(IF:14.903)发表了题为“A temporo-spatial pharmacometabolomics method to characterize pharmacokinetics and pharmacodynamics in the brain microregions by using ambient mass spectrometry imaging”的研究论文,建立了一种时空分辨的代谢组学方法(基于AFADESI-MSI的时空药物代谢组学),可全景式描绘脑中药物代谢和效应的时空特征,为中枢神经系统作用新药研发提供了一种有力的可视化工具和新的视角。  封底图 | 表征鼠脑中中枢神经药物的微区域药代动力学和药效学的时空代谢组学方法策略和工作流程  研究背景  中枢神经系统(CNS)具有复杂而脆弱的结构,在大脑的许多微区域之间具有高度的互连性和相互作用。大脑是人体复杂的器官,可以细分为许多微区域。脑中多种内源性功能代谢物在不同的微区分布不均匀。脑微区的代谢酶、受体、配体、蛋白和血流的功能差异也会导致药物的空间分布和疗效差异。大脑是中枢神经系统疾病的靶点,大多数中枢神经系统药品只有在进入大脑后才会发挥作用。因此了解药物及相关内源代谢物在大脑中的原位分布的信息对于评估药物疗效、毒理学和药代动力学具有重要意义。  目前研究大脑的常用功能性脑成像技术(包括组织化学标记、免疫荧光、MRI、PET、全身放射自显影等),仅提供脑组织结构的图像,不能在分子水平上进行分析,可监测的物质种类也有限。另一方面,脑内药物分析通常使用的基于组织匀浆或微透析采样的高效液相色谱-质谱(HPLC-MS)技术获得的结果仅能反映采样微区的平均代谢水平,而缺乏分子在整个大脑中的空间分布的信息。质谱成像技术(MSI)不需要复杂的预处理和特殊的化学标记,具有高通量、高灵敏度和高分辨率的特点,可检测已知或未知小分子代谢物的定性、定量和空间分布信息。  本研究使用AFADESI-MSI空间代谢组学研究表征了临床中枢神经系统药物奥氮平(OLZ)和大鼠脑内内源性代谢物,并进行了给药期间的时空变化以及脑微区药物动力学和药效学研究,成功地展示了OLZ及其作用相关代谢物的时空特征,并为中枢神经系统药物作用的分子机制提供了新的见解。  研究思路  研究方法  1. 实验分组/研究材料:饲养一周的雄性 Sprague-Dawley 大鼠  (1) 实验组:4组(3只/组),口服OLZ溶液(50mg/mL)后 20 分钟、50 分钟、3 小时和 12 小时用高浓度乙醚。  (2) 对照组:1组,3只/组  2.技术路线  2.1. 鼠脑的微区划分:15个微区,包括尾状壳核(CP)、大脑皮质(CTX)、海马(HP)、下丘脑(HY)、丘脑(TH)、小脑皮质(CBC)、小脑髓质(CM)、髓质 (MD)、脑桥 (PN)、大脑导水管 (CA)、中脑 (MB)、穹窿 (FN)、梨状皮质 (PC)、嗅球 (OB) 和胼胝体 (CC)。  2.2 质谱成像:AFADESI-MSI分析(全扫描及MS2扫描)  2.3代谢物定性:人类代谢组数据库 (www.hmdb.ca)、Metlin、MassBank和LIPID MAPS  研究结果  1.通过AFADESI-MSI绘制大鼠大脑中的内源性代谢物和药物图谱  无论是正离子模式还是负离子模式,使用AFADESI-MSI空间代谢组学均可从治疗组和对照组脑组织切片中获得内源性代谢物信息。在100-500 Da的低质量范围内,可以检测到氨基酸、核苷、核苷酸、有机酸、脂肪酸等极性小分子代谢物和γ-氨基丁酸 (GABA)、肌酸、肉碱、乙酰肉碱和磷脂酰胆碱等神经递质类代谢物;在500-1000 Da的高质量范围内,可以检测到一些脂质,包括鞘磷脂(SM)、磷脂酰乙醇胺(PE)、磷脂酰胆碱(PC)、溶血磷脂酰胆碱(LysoPC)和磷脂酰肌醇 (PI) 等。原型药物 OLZ 及其代谢物 2-羟甲基 OLZ 在正离子模式下被检测,结果如图1C1和D1所示。这些结果表明,非靶向质谱成像的方法可以在一次实验中同时绘制外源性药物和内源性代谢物的图谱,并可以获得它们的空间分布特征和微区域丰度变化。  图1 | 使用 AFADESI-MSI 从脑组织切片获得的外源性药物和内源性代谢物的质谱成像结果  2.鼠脑中奥氮平(OLZ)及其代谢物的时空变化  OLZ是一种用治疗精神分裂症的药物,大脑是其主要靶器官。本实验为探究给药时间药物在大脑各功能微区的分布情况,分别在给药后20 min、50 min、3 h和12 h收集治疗组和对照组大鼠脑组织进行MSI分析。OLZ 及其代谢物 2-羟甲基 OLZ 的在鼠脑分布结果如图2A所示。  这些结果表明,OLZ 可以很容易地穿透脑血屏障,主要分散在脑室和脑实质组织中,但并不是均匀分布在大脑的所有微区域中。给药后20分钟发现OLZ主要分布在大脑皮质中。50分钟后,OLZ的水平显著增加。随着时间的推移,大脑中的药物信号迅速下降到成像检测限以下。同时作者发现,2-羟甲基OLZ主要分布在穹窿中,其在各个微区的分布格局与OLZ不同。  这些结果表明,OLZ药物的吸收、分布和代谢的速率在大脑的不同微区不同,表明微区对药代动力学有影响。它还证明了所提出的基于AFADESI-MSI 的时空药物代谢组学方法能够同时说明药物及其代谢物在大脑复杂微区域中的水平和空间分布的变化。  图2 | 脑微区OLZ和其代谢产物2-羟甲基OLZ的时空变化  3.OLZ 对神经递质类代谢物的的微区调控  OLZ药物治疗精神分裂的作用机制是阻断多巴胺 D2 受体或血清素 2A 受体调节神经递质类代谢物(NTs)。然而OLZ的微区效应和分子作用机制仍不清楚。因此作者分析了与OLZ生理活动密切相关的NTs的时空变化,包括GABA、Glu、谷氨酰胺 (Gln) 和腺苷。NTs的AUC变化率如图3B1-B7所示。  GABA(γ-氨基丁酸)是中枢神经中的一种神经递质,可抑制神经中枢。空间代谢组检测结果显示GABA(m/z 104.0706)主要分布在下丘脑中,药物干预后下丘脑的 GABA 受到轻微调节。但同时在梨状皮质和嗅球中观察到药物干预后GABA显著上调。Glu 是中枢神经中的一种主要神经递质,对神经细胞具有兴奋作用。在药物干预后,Glu及其代谢物Gln的时空动态模式在脑部微区中呈现出相对一致的变化趋势。腺苷广泛分布在中枢神经系统中,是大脑中的一种兴奋性和抑制性神经递质,并在脑中不均匀分布。并且在给药3小时后海马和下丘脑中的高水平腺苷显著增加,表明当药物积累时腺苷的上调会更加明显。组胺、乙酰胆碱(Ach)、牛磺酸等神经递质类物质都有各自特征的微区分布,以及在给药后具有上调的趋势。  上述神经递质类物质的靶向成像分析结果表明,该方法可以检测到与中枢神经药物作用机制相关的大量原型药物及其代谢物和内源性代谢物的空间分布和变化。这对于阐明中枢神经系统药物的作用机制和了解精神分裂症及相关疾病具有重要意义。   图3 | 药物对脑内NTs分布和AUC变化率的影响  4. OLZ 药物干预的微区代谢调控  组织和器官的内源性代谢变化可以反映药物刺激的效果。为探索药物干预后的微区代谢效应,通过药物代谢组学测试研究了内源性代谢物的分子谱及其动态变化的分布信息。分别在OLZ和生理盐水给药后 50分钟采集每组治疗和对照大鼠的三个脑组织样本进行微区域分析。  OPLS-DA结果表明,基于正离子模式和负离子模式下脑微区的定量分析,对照组和治疗组分别明显分开。总共筛选和鉴定了 90 种差异内源性代谢物,作为药物作用相关效应物,它们在大脑微区域中发挥了巨大作用。其中81种被MS2鉴定,9 种被同位素模式鉴定。差异代谢物包含了很多种类型的代谢物,包括氨基酸、脂肪酸、甘油磷脂、有机酸、多胺和酰基肉碱。  经过分析确定了治疗组和对照组之间显著差异的七种代谢途径,包括丙氨酸、天冬氨酸和谷氨酸代谢、D-谷氨酰胺和D-谷氨酸代谢、牛磺酸和亚牛磺酸代谢、淀粉和蔗糖代谢、甘油磷脂代谢、精氨酸和脯氨酸代谢、精氨酸生物合成、嘌呤代谢和柠檬酸循环(TCA循环)。下面对影响较大的丙氨酸、天冬氨酸、谷氨酸和甘油磷脂代谢的异常代谢途径进行重点分析。  图4 | 对照组和治疗组中鉴定的差异代谢物的层次聚类分析 (HCA)  4.1 丙氨酸、天冬氨酸和谷氨酸代谢紊乱  异常的Glu-Gln循环在精神分裂症的病理生理过程中起重要作用。丙氨酸、天冬氨酸和谷氨酸代谢途径代谢物在老鼠脑的时空分布如图5所示。柠檬酸在大脑大部分微区分布均匀;与对照组相比,表达显著提高,结果提示药物干预加速了TCA循环的代谢,为机体提供了更多能量。Glu也均匀分布在各个微区,药物干预后呈下调趋势。它的代谢物Gln 和 GABA,主要在下丘脑和的多个微区中上调。  根据通路分析和代谢谷氨酸脱羧酶(GAD)酶反应,推测OLZ直接激活GAD促进GABA合成。GABA可增加糖酵解中己糖激酶的活性,从而加速葡萄糖的代谢。空间分布结果表明葡萄糖分布在大脑的所有微区,但给药后主要分布在梨状皮质和嗅球中,给药后20分钟血糖水平显著升高。  图5 | 丙氨酸、天冬氨酸和谷氨酸代谢途径代谢物的时空分布  4.2.甘油磷脂代谢途径的紊乱  甘油磷脂有助于控制肝脏脂质代谢,促进记忆力,增强免疫力,延缓衰老。甘油磷脂代谢途径代谢物的时空分布如图6。这项研究的结果表明,在给药后,大多数脂质在大多数微区域中显示出上调。OLZ在临床应用中具有代谢副作用,如体重增加、血脂异常、高甘油三酯血症和胰岛素抵抗。实验结果证明,脂质代谢的上调可能导致OLZ治疗期间的副作用。  图6 | 甘油磷脂代谢途径代谢物的时空分布  相关讨论  作者开发的时空药物代谢组学方法,使用质谱成像技术MSI来表征大脑中枢神经药物的药代动力学和药效学。结果表明,该方法可有效识别与药物作用相关的内源性分子效应物。评估OLZ药物对脑组织的微区域效应,并证明其穿过血脑屏障后的微区域药代动力学和药效学方面的有效性。该方法清楚地展示了原型药物及其代谢物 2-羟甲基OLZ在大鼠大脑不同微区的药代动力学。也在脑部微区现一些神经递质类物质和其它小分子极性代谢物,并显示出与药物干预相关的多种代谢途径。发现天冬氨酸、谷氨酸和甘油磷脂代谢途径的调节可能与 OLZ 临床使用观察到的治疗和不良反应有关,为了解其作用的分子机制提供了关键信息。  小鹿  与基于LC-MS的常规药物代谢组学分析手段相比,基于AFADESI-MSI的时空药物代谢组学技术具有同时检测内源性和外源性物质的静态水平变化,并提供大脑不同微区的动态时间依赖性趋势和空间分布信息的优势,能够非常准确地呈现原位和微区域分子变化规律。在此基础上将药代动力学和药效学与代谢途径相关联,有利于获得关键信息,从而更深入地了解药物作用的分子机制。基于AFADESI-MSI 的时空药物代谢组学技术不仅是阐述中枢神经系统药物的原位药代动力学和药效学全面有效的工具,也可为脑组织内源性代谢物的变化以及其它动物组织的原位代谢研究提供重要信息。  该研究工作,药物所2017级硕士研究生刘丹为作者,贺玖明研究员为独立通讯作者。工作得到国家自然科学基金和医科院创新工程项目的资金资助。
  • 国家补助湖北2亿元 重点用于医疗仪器采购
    p  strong仪器信息网讯/strong 近期,国家发展改革委紧急下达第二批中央预算内投资2亿元,专项补助承担重症感染患者救治任务的华中科技大学同济医学院附属同济医院、华中科技大学同济医学院附属协和医院、湖北省人民医院的重症治疗病区建设,重点用于购置无创呼吸机、心电监护仪、床旁血滤机(CRRT)、体外膜肺氧合仪(ECMO)等重要医疗设备。/pp  无创呼吸机又称Continuous Positive Airway Pressure(持续气道正压通气)的英文缩写。CPAP在临床上用于治疗睡眠呼吸暂停综合症(SAS)及相关疾病,这些疾病所引起的血氧饱和度下降、交感神经张力增高、副交感神经张力下降血液二氧化碳浓度升高、PH值降低以及胸内负压增高,严重影响各种重要脏器功能。。/pp  心电监护仪是医院实用的精密医学仪器,能同时监护病人的动态实用的精密医学仪器。该设备具有心电信息的采集、存储、智能分析预警等功能。并具备精准监测、触屏操控、简单便捷等特点。/pp  CRRT的原理是利用高通透性血滤器,模拟肾小球滤过以及肾小管重吸收,在补充置换液的同时使血液中水分超滤,维持患者机体酸碱平衡并清除有害物质。它适应于多种疾病,包括各种心血管功能不稳定的、高分解代谢的或伴脑水肿的急慢性肾衰竭、多脏器功能障碍综合征、全身炎症反应综合征、充血性心力衰竭、急性呼吸窘迫综合征、挤压综合征、重症烧伤、急性坏死性胰腺炎、肝性脑病等。/pp  ECMO(Extracorporeal Membrane Oxygenation),中文名体外膜肺氧合,俗称“叶克膜”、“人工肺”,是一种医疗急救设备,用于对重症心肺功能衰竭患者提供持续的体外呼吸与循环,以维持患者生命。ECMO的本质是一种改良的人工心肺机,最核心的部分是膜肺和血泵,分别起人工肺和人工心的作用,可以对重症心肺功能衰竭患者进行长时间心肺支持,为危重症的抢救赢得宝贵的时间。ECMO是目前针对严重心肺功能衰竭最核心的支持手段,也誉称为重症患者的“最后救命稻草”,是一项顶尖的生命支持技术,它是代表一个医院、一个地区,乃至一个国家危重症急救水平的一门技术。/pp 《国家发展改革委紧急下达中央预算内投资2亿元 支持湖北省提高重症感染患者救治能力》通知全文如下:/pp  为深入贯彻落实习近平总书记对新型冠状病毒感染肺炎疫情防控工作的重要指示批示精神,按照党中央、国务院总体部署,国家发展改革委紧急下达第二批中央预算内投资2亿元,专项补助承担重症感染患者救治任务的华中科技大学同济医学院附属同济医院、华中科技大学同济医学院附属协和医院、湖北省人民医院的重症治疗病区建设,重点用于购置无创呼吸机、心电监护仪、床旁血滤机(CRRT)、体外膜肺氧合仪(ECMO)等重要医疗设备,保障重症患者得到集中统一救治,努力提高治愈率、降低病死率。/pp  下一步,国家发展改革委将坚决贯彻落实党中央、国务院决策部署,切实调整优化投资结构,将中央预算内投资优先向疫情重灾区应急医疗救治设施、隔离设施等传染病防治急需的项目倾斜,为坚决打赢疫情防控阻击战提供设施保障。/ppbr//p
  • 2023年度中国科学十大进展发布
    2024年2月29日,国家自然科学基金委员会发布2023年度中国科学十大进展,以下10项重大科学进展入选:1. 人工智能大模型为精准天气预报带来新突破2. 揭示人类基因组暗物质驱动衰老的机制3. 发现大脑“有形”生物钟的存在及其节律调控机制4. 农作物耐盐碱机制解析及应用5. 新方法实现单碱基到超大片段 DNA 精准操纵6. 揭示人类细胞 DNA 复制起始新机制7. “拉索”发现史上最亮伽马暴的极窄喷流和十万亿电子伏特光子8. 玻色编码纠错延长量子比特寿命9. 揭示光感受调节血糖代谢机制10. 发现锂硫电池界面电荷存储聚集反应新机制1 人工智能大模型为精准天气预报带来新突破盘古气象大模型的三维神经网络结构天气预报是国际科学前沿问题,具有重大的社会价值。现有数值天气预报范式源于20世纪50年代,即通过超算平台的大规模计算来求解大气运动偏微分方程组,实现对未来天气的预报。近些年使用该传统方法提升预报水平面临越来越大的挑战。华为云计算技术有限公司田奇、毕恺峰、谢凌曦等基于人工智能技术,提出了一种适配地球坐标系统的三维神经网络,能够有效处理天气数据中的复杂过程,并通过层次化时域聚合策略来有效减少迭代误差,成功实现了精准的中期天气预报。在1979-2017年全球天气再分析数据上训练后,构建了盘古气象大模型。该模型能够预报7天内的地表层和13个高空层的温度、气压、湿度、风速等气象要素,并将全球最先进的欧洲中长期天气预报中心(ECMWF)集成预报系统的预报时效提高了0.6天左右,在热带气旋的路径预报误差相较于ECMWF预报系统降低了25%。该模型仅需10秒即可完成全球7天重要气象要素的预报,计算速度较数值方法提升1万倍以上。该研究展示了人工智能和大数据在解决天气预报问题上的突破。2 揭示人类基因组暗物质驱动衰老的机制古病毒复活开启衰老的潘多拉魔盒人类基因组是生命活动的“密码本”,它控制器官再生和机体稳态,亦影响器官退行及衰老相关疾病的发生。在该密码本中,素有“暗物质”之称的非编码序列约占98%,其中约8%为内源性逆转录病毒元件,为数百万年前古病毒整合到人类基因组中的遗迹。古病毒序列在衰老过程中的作用及其机制是尚未开拓的科学疆域。中国科学院动物研究所刘光慧、曲静和中国科学院北京基因组研究所张维绮等利用多学科交叉手段,揭示人类基因组中沉睡的古病毒“化石”在细胞衰老过程中,可因表观遗传失稳等因素被再度唤醒、进而包装形成病毒样颗粒并驱动细胞和器官衰老的重要现象。并据此提出古病毒复活介导衰老程序性及传染性的理论以及阻断古病毒复活或扩散以实现延缓衰老的多维干预策略。通过对人类基因组中蛋白编码区域的“逆老”基因进行系统排查,发现可重启人类干细胞、运动神经元和心肌细胞活力,逆转关节软骨、脊髓及心脏衰老的新型分子靶标,并构建一系列针对器官退行的创新干预体系。以上发现为衰老生物学和老年医学研究建立了新的理论框架,为衰老及老年慢病的科学干预和积极应对人口老龄化奠定了有益的基础。3 发现大脑“有形”生物钟的存在及其节律调控机制初级纤毛——生物钟的“有形”指针昼夜节律紊乱与睡眠障碍、精神抑郁相关,严重时可导致肿瘤、糖尿病等重大疾病的发生和发展。由于缺乏对生物节律调节机制的认识,当前国际上尚未研发出针对节律紊乱性疾病的有效治疗药物。军事科学院军事医学研究院生物医学分析中心李慧艳、张学敏等发现大脑视交叉上核(SCN)神经元的初级纤毛,这一细胞“天线”样结构,每24小时伸缩一次,犹如生物钟的指针,初级纤毛可能通过调控SCN区神经元的“同频共振”调节节律,其机制与Shh信号通路密切相关。因此,SCN神经元的初级纤毛可能作为机体中的“中央生物钟”的结构基础,参与生物钟内稳态的维持,而靶向SCN初级纤毛的Shh信号通路可能是治疗与昼夜节律紊乱相关的人类疾病的潜在治疗策略。该“有形”生物钟的发现,对于理解生物钟的构造以及分子层面与细胞层面生物钟的联系具有重要意义。4 农作物耐盐碱机制解析及应用利用AT1成果培育的甜高粱在宁夏平罗盐碱地生长情况土壤盐碱化又称土壤盐渍化,是指土壤中积聚盐分形成盐碱土的过程。我国有近15亿亩盐碱地,其中高pH的苏打盐碱地约占60%。据估计,约5亿亩盐碱地具有开发利用潜能。长期以来,我们对植物耐盐碱性的机制认识尚有不足,阻碍了耐盐碱作物的培育和盐碱地的开发利用。中国科学院遗传与发育生物学研究所谢旗、中国农业大学于菲菲、华中农业大学欧阳亦聃等研究团队合作利用起源于非洲萨赫勒高盐碱地的高粱自然群体材料定位克隆到一个与耐碱性显著相关的主效基因AT1,并揭示了AT1在碱胁迫条件下调控水通道蛋白磷酸化水平来促进植物细胞中H2O2的外排从而赋予植物高耐盐碱性的机制。在盐碱地进行大田实验发现,基于耐盐碱等位基因AT1改良的作物耐盐碱能力显著提高,其中水稻、高粱和谷子等粮食作物均有效增产20%~30%。该研究为综合利用盐碱地和保障粮食安全提供了新思路。5 新方法实现单碱基到超大片段DNA精准操纵单碱基编辑到大尺度DNA精准操纵基因组编辑在生物学和医学领域具有广阔的应用前景。然而,基因组编辑在编辑精度、DNA操控尺度和灵活性等方面仍有较大的限制。中国科学院遗传与发育生物学研究所高彩霞团队联合北京齐禾生科生物科技有限公司赵天萌团队利用人工智能辅助的大规模蛋白结构预测方法对基因组编辑新酶进行发掘。他们建立了基于三级结构的全新蛋白聚类分析方法,鉴定出多个全新脱氨酶家族成员,并开发了一系列适用于多样化应用场景的新型碱基编辑工具,解决了利用单个AAV进行递送和大豆高效碱基编辑的难题。为突破植物大尺度DNA精准操纵的瓶颈,他们整合优化引导编辑系统与位点特异性重组酶,开发了植物大片段DNA精准定点插入技术PrimeRoot,可实现对10 Kb以上大片段DNA的高效定点整合。此外,他们通过对基因上游开放阅读框的从头设计与理性改造,开发了精细下调靶蛋白表达的全新技术体系,并创制了产量相关性状呈梯度变化的系列水稻新种质,为作物性状精细改良提供了新方法。以上研究通过开展基因组编辑元件挖掘方法和技术体系创新,实现了对基因组的精准操纵,为作物改良和基因治疗提供了重要支撑。6 揭示人类细胞DNA复制起始新机制人体MCM2-7双六聚体(MCM-DH)冷冻电镜结构及DNA复制起始调控步骤DNA复制起始的精准调控是维持人类基因组稳定、抑制遗传疾病和癌症发生的关键生命过程之一。6个MCM基因编码的MCM2-7蛋白的双六聚体(DH)在成千上万个复制原点的组装是解开双链DNA和启动复制的必经过程。但是MCM-DH在染色体上具体的组装和作用机制尚不清楚。香港大学翟元梁、香港科技大学党尚宇、戴碧瓘等解析了人类MCM-DH复合物(hMCM-DH)的2.59-Å高分辨率冷冻电镜结构。在该结构中,hMCM-DH可直接降低DNA双链的稳定性,将位于两个六聚体结合处的DNA双链解开,并拉伸产生初始的开口结构(IOS)。IOS在基因组中成簇且广泛地分布于无转录活性的基因间区,并与偶发的DNA复制起始区域高度重合。干扰IOS会抑制hMCM-DH的形成,进而抑制相应DNA复制的启动。该研究不仅揭示了人类MCM-DH组装及初始DNA解旋以促进复制起始的新机制,也为开发以DNA复制为靶标的抗癌药物提供了重要基础。7 “拉索”发现史上最亮伽马暴的极窄喷流和十万亿电子伏特光子拉索观测到的伽马暴GRB 221009A高能光子爆发的全过程伽马射线暴是宇宙大爆炸之后最剧烈的天体爆炸现象,万亿电子伏特(TeV)以上辐射观测对揭示其爆炸过程、辐射机制和探索新物理前沿都具有重要意义。2022年10月9日史上最亮的伽马射线暴GRB 221009A爆发信号飞越24亿光年的时空抵达地球。由中国科学院高能物理研究所曹臻领导的高海拔宇宙线观测站(简称“拉索”,英文LHAASO)国际合作组凭借拉索前所未有的高灵敏度和大视场优势,在国际上首次完整记录了伽马射线暴万亿电子伏特以上高能光子爆发的全过程,包括高能光子亮度在早期的快速增强过程,以及后期亮度突然快速减弱,由此确定此伽马射线暴的极端相对论喷流具有迄今已知最小的张角,揭开了此伽马射线暴成为史上最亮的秘密。拉索还精确测量了该伽马射线暴亮度随光子能量的变化,发现其亮度随能量变化的规律保持稳定,观测能谱延伸至十万亿电子伏特以上,超出了理论预期,挑战了伽马射线暴余辉辐射的标准模型。8 玻色编码纠错延长量子比特寿命量子纠错过程目前超导量子比特的错误率离实用化还相差十多个数量级,需要进行量子纠错以构建错误率更低的逻辑量子线路。量子纠错旨在充分利用无限维希尔伯特空间的冗余度来保护逻辑量子比特免受噪声的干扰。通过对错误的实时探测和纠正,逻辑量子比特的相干寿命将得以延长。然而,传统的量子纠错过程通常会不可避免地引入新的错误,使得量子纠错面临“越纠越错”的尴尬局面。如何使编码保护的逻辑量子比特的寿命超过体系中最佳物理量子比特,超越盈亏平衡点,是衡量量子纠错是否有效的关键判据。南方科技大学俞大鹏、徐源,福州大学郑仕标,清华大学孙麓岩等展示了一种基于超导电路量子电动力学架构的量子纠错方法,其核心技术是将逻辑量子比特二项式编码在一个与辅助超导比特色散耦合的微波谐振腔的离散光子数态中,其编码子空间与错误子空间严格正交。通过在辅助比特上施加截断频率梳脉冲,可高保真度地重复读取错误症状,并通过实时反馈控制反复纠正错误,从而有效延长逻辑量子比特的相干寿命,并超越盈亏平衡点达16%,实现了量子纠错正增益。该研究展示了量子纠错的优越性,表明了硬件高效的离散变量编码在容错量子计算中的潜力。9 揭示光感受调节血糖代谢机制“眼-脑-棕色脂肪轴”介导光调节血糖代谢神经机制光是生命最重要的外部环境因素之一,可调节一系列重要生理与病理过程。公共卫生研究表明,人造光是代谢紊乱的高危因素,例如夜间光污染会显著增加糖尿病等代谢性疾病风险。然而,光对血糖代谢调节的生物学机制不明。中国科学技术大学薛天等揭示了光调控生物(小鼠和人)血糖代谢的神经机制。在动物模型上发现光信号被眼内的视网膜固有光敏神经节细胞(ipRGCs)接收后,通过下丘脑视上核AVP神经元、脑干孤束核GABA抑制性神经元,经交感神经最终到达棕色脂肪组织。光通过这一多级神经环路抑制棕色脂肪的交感神经活动,降低脂肪组织消耗血糖引起的产热,导致机体血糖代谢能力下降。更为重要的是发现在人体上同样存在类似的光感受调节血糖代谢的机制,蓝光污染显著降低人体消耗血糖的能力。该研究发现全新的“眼-脑-外周脂肪轴”介导光对血糖代谢产热的调节机制,为防治光污染导致的糖代谢紊乱相关疾病提供了理论依据与潜在的干预靶点。10 发现锂硫电池界面电荷存储聚集反应新机制电化学原位透射电子显微镜技术研究锂硫电池界面反应锂硫电池具有极高的能量密度(理论值:2600 Wh kg-1)和较低的成本,然而受限于传统原位表征工具的时空分辨率及锂硫体系的不稳定性和环境敏感性等因素,在原子/纳米尺度上对锂硫电池界面反应的理解尚不深入。厦门大学廖洪钢、孙世刚和北京化工大学陈建峰等开发高时空分辨电化学原位液相透射电镜技术,耦合真实电解液环境和外加电场,实现对锂硫电池界面反应原子尺度动态实时观测和研究。发现电池活性材料表面分子聚集成为分子团进行反应,电荷转移可以首先存储在聚集分子团中,分子团得到电子但不会发生转化,直到获得足够电子后瞬时结晶转化。而没有活性的材料表面遵循经典的单分子反应途径,多硫化锂分子逐步转化为Li2S。模拟计算表明,活性中心与多硫化锂之间的静电作用促进了Li+和多硫分子的聚集,证实分子聚集体中的电荷可以自由转移。近百年来,电化学界面反应通常被认为仅存在“内球反应”和“外球反应”单分子途径。该研究揭示了电化学界面反应存在第三种“电荷存储聚集反应”机制,加深了对多硫化物演变及其对电池表界面反应动力学影响的认识,为下一代锂硫电池设计提供指导。
  • 国家重大科研仪器研制项目获得立项资助
    近日,国家自然科学基金委员会公布了国家重大科研仪器研制项目评审结果,由重庆医科大学附属第二医院的黄晶教授牵头,联合中科院声学所、北京安贞医院、超声医学工程国家重点实验室等单位申报的国家重大科研仪器研制项目“双频超声靶向高血压治疗仪”获得立项资助,项目直接经费716.02万元。  高血压患病人群巨大,其并发症是国人致残、致死的首要病因。肾去交感神经术(RDN)是高血压器械治疗的主流技术,可减少或消除高血压患者长期用药,为高血压治疗带来重大变革。但传统RDN存在有创性、消融盲目性和缺乏即刻疗效评价指标等卡脖子问题。“双频超声靶向高血压治疗仪”项目开创性地将双频/同轴/共焦聚焦超声系统和神经标测集成系统相结合,首次利用差频聚焦超声干涉效应形成低频振动声,用于肾神经标测和疗效验证,创建了无创超声消融靶向化和剂量个体化RDN治疗新技术。该项目的实施将大幅提升RDN的有效性和安全性,使RDN迈入无创化和精准化治疗时代,为广大高血压患者带来福音。  双频超声实现肾神经标测示意图  国家重大科研仪器研制项目面向科学前沿和国家需求,以科学目标为导向,资助对促进科学发展、探索自然规律和开拓研究领域具有重要作用的原创科研仪器与核心部件的研制,以提升我国的原始创新能力。2011年起,黄晶教授根据未来高血压治疗学科发展方向和RDN临床开展面临的实际问题,着手组建了一支涵盖医学、声学和电子工程交叉团队,先后突破多项技术瓶颈,完成原理样机研制,并实现主要技术参数指标。团队目前已申请项目相关国家发明专利23项,发表高水平SCI论文15篇。在未来,项目将不断优化技术,将我国无创超声高血压治疗研究推向国际领先水平,并为原创医疗器械的开发提供坚实基础。  附二院心血管内科团队  黄晶,二级教授,兼任中华医学会心血管病学分会委员,中国医师协会心血管内科医师分会常务委员,中华医学会心血管病学分会创新与转化学组副组长,中国医师协会高血压专业委员会常务委员,重庆市医师协会心血管内科医师分会会长等。长期从事自主神经调节心血管病治疗原创研究,探索使用超声治疗心血管疾病治疗新技术和相关仪器研发。研究团队在国际上首次实现体外聚焦超声大动物无创心肌消融、房室节阻断和肾去交感消融;首次完成无创超声肾去交感治疗顽固性高血压的临床研究。团队先后承担国家自然科学基金、国家科学仪器专项及国家科技支撑计划等项目十余项,在JACC、Hypertension、IJC等发表论著100余篇,获省部级奖励3项,授权发明及实用新型专利30余件。
  • 利用徕卡THUNDER成像系统探索微生物肠道免疫机制
    由SARS-CoV-2冠状病毒引起的Covid-19影响了世界的方方面面。免疫和治疗方法等抗病毒方向的研究在2020年具有高优先级,显微镜在这类研究中起着举足轻重的作用。了解受体结合、基因组释放、复制、组装和病毒出芽的基本原理及免疫应答,可以使用不同的方法和显微镜。鉴于显微镜在感染生物学中的重要作用,我们举例阐述不同的显微技术及其在这些研究领域中的应用。 研究背景人类出生后胃肠道立刻被复杂的微生物群落定植(1000余种,且数量100万亿),而这些肠道微生物群落影响宿主生理的多个方面,包括代谢、免疫反应、行为和昼夜节律等等。先前的研究认为肠道微生物群落主要是共生菌,共生菌可控制病原菌数量,而黏膜屏障免疫对于维持共生菌群和抵抗侵入性细菌感染至关重要。微生物-肠-脑轴是将大脑和肠道功能整合的双向信息交流系统,并涉及神经、免疫和内分泌机制。除了神经内分泌系统和神经免疫系统之外,该轴还包括了中枢神经系统(CNS)、自主神经系统(ANS)的交感神经和副交感神经分支以及肠道神经系统(ENS)。从肠道到CNS的传入纤维(如大脑、扣带回、小脑扁桃体和扁桃体皮质)以及肠道平滑肌的效应纤维是沿着微生物-肠-脑轴进行双向信息交流的主要途径。图1 微生物-肠-脑轴肠道神经系统(ENS)遍布肠道组织的每个角落,将收集到的信息迅速地传递到自体或非自体类型的细胞,织就一个庞大又复杂的网络系统。新涌现的多个研究报道发现ENS可以作为免疫系统的感应平台,但对ENS与上皮细胞的互作机制还知之甚少。 2019年12月,Jarret等人在Cell发表了题为Enteric Nervous System-Derived IL-18 Orchestrates Mucosal Barrier Immunity的文章。借助单分子mRNA荧光原位杂交(smFISH THUNDER Imager 3D Live Cell),研究发现ENS神经元分泌IL-18作用于肠道上皮细胞中的杯状细胞,促进杯状细胞抗菌蛋白(AMP)的表达,在肠道免疫中起着重要作用。研究过程鉴于大脑中神经元会分泌IL-18,而大量研究表明ENS可能在调节粘膜屏障免疫中发挥关键作用,因此研究人员大胆猜测肠道神经元也会分泌IL-18。接下来作者构建ENS特异性敲除IL-18小鼠和多种细胞类型特异性敲除IL-18R小鼠,并分别用鼠伤寒沙门氏菌(S.t)感染。之后作者通过共聚焦观察发现不携带ENS所产生的IL-18的小鼠则更容易受到感染。为了证实这一发现,研究人员使用了IL18 mRNA探针在小鼠中进行了单分子mRNA荧光原位杂交(smFISH),结果显示在IL-18-/-小鼠结肠中IL18 mRNA探针的信号丢失。图3 THUNDER验证结果与Confocal观察结果一致A)用于分析IL-18+神经元的Confocal正交视图。IL-18(红色),Tubb3(绿色)。 B)通过smFISH观察野生型与IL18-/-小鼠结肠中的IL18 mRNA(白色)和DAPI(蓝色)。同时通过smFISH检测小鼠肠组织中IL18与Tubb3的表达,观察到IL18 mRNA探针与神经元特异性Tubb3 mRNA探针共定位。图4 smFISH检测小鼠肠组织中IL18(红色)、Tubb3(白色)表达;DAPI(蓝色)表示细胞核总之,这些数据表明肠神经元是结肠中IL-18的新产生者。研究还结合了单细胞转录组技术来探究ENS来源IL-18的功能以及作用方式。 实验方法1. 处死小鼠,移出结肠并用冷PBS冲洗。纵向剖开结肠组织平铺于滤纸。2. 用4%多聚甲醛PBS溶液固定3小时,后置于30%蔗糖、4%PFA的PBS溶液中4℃过夜。3. 包埋,制成将7mm厚切片,并用于smFISH染色。4. 设计的探针库与Cy5(IL-18)、TMR(Tubb3)结合,将切片与smFISH探针库杂交。5. 封片前去除ENS内的自发荧光信号。6. 在Leica THUNDER Imager 3D Live Cell上进行smFISH成像,使用自带的THUNDER Computational Clearing设置。 看到这里大家可能会有一个疑问:为什么不用共聚焦做smFISH而是选择徕卡THUNDER?对,为什么?小编也提出过这个问题,但是下面这段话做出了很好地解释。smFISH的实验过程中探针会发出大量光子,而共聚焦则会显著限制光子收集的数量,为了最大限度回收这些光子,更建议使用宽场技术。 徕卡THUNDER凭借其高分辨、快速、大视野的特点,可大限度回收实验中smFISH探针发出的大量光子,减少光损耗,更适用于smFISH成像。不仅可以获得清晰锐利的图像,实验结果更便于统计分析且重复性高,是您进行组织大视野快扫的不二之选。 参考文献1、 Jarret et al., 2020, Cell 180, 50–632、 Brain Res. 2018 August 15 1693(Pt B): 128–1333、 Jung, Y. J.,et al., 2017, Sci Rep 7(1):173604、 Zhang, H., et al. 2018, Synth Syst Biotechnol 3(2): 113-120
  • 重磅!2023年度中国科学十大进展发布
    2024年2月29日,国家自然科学基金委员会发布2023年度中国科学十大进展,以下10项重大科学进展入选:1. 人工智能大模型为精准天气预报带来新突破2. 揭示人类基因组暗物质驱动衰老的机制3. 发现大脑“有形”生物钟的存在及其节律调控机制4. 农作物耐盐碱机制解析及应用5. 新方法实现单碱基到超大片段 DNA 精准操纵6. 揭示人类细胞 DNA 复制起始新机制7. “拉索”发现史上最亮伽马暴的极窄喷流和十万亿电子伏特光子8. 玻色编码纠错延长量子比特寿命9. 揭示光感受调节血糖代谢机制10. 发现锂硫电池界面电荷存储聚集反应新机制,时长06:30“中国科学十大进展”遴选活动旨在宣传我国重大基础研究科学进展,激励广大科技工作者的科学热情,开展基础研究科学普及,促进公众了解、关心和支持基础研究,在全社会营造浓厚的科学氛围。自2005年启动以来,已成功举办18届。“中国科学十大进展”遴选活动坚持由第三方推荐的原则,并由基础研究领域的高水平专家学者广泛参与投票,确保遴选结果的公正性和代表性。历年入选进展较为全面地记录了我国基础科学研究的重要成果,得到了社会各界广泛关注,已成为盘点我国基础研究领域年度重大科学成果的品牌活动。2023年度第19届“中国科学十大进展”遴选活动由国家自然科学基金委员会主办,国家自然科学基金委员会高技术研究发展中心(基础研究管理中心)和科学传播与成果转化中心承办,《中国基础科学》《科技导报》《中国科学院院刊》《中国科学基金》《科学通报》协办,分为推荐、初选、终选、审议4个环节。《中国基础科学》等推荐了2022年12月1日至2023年11月30日期间正式发表的600多项科学研究成果,由近100位相关学科领域专家从中遴选出30项成果,在此基础上邀请了包括中国科学院院士、中国工程院院士在内的2100多位基础研究领域高水平专家对30项成果进行投票,评选出10项重大科学研究成果,经国家自然科学基金委员会咨询委员会审议,最终确定了入选2023年度“中国科学十大进展”的成果名单。2023年度中国科学十大进展简介1 人工智能大模型为精准天气预报带来新突破盘古气象大模型的三维神经网络结构天气预报是国际科学前沿问题,具有重大的社会价值。现有数值天气预报范式源于20世纪50年代,即通过超算平台的大规模计算来求解大气运动偏微分方程组,实现对未来天气的预报。近些年使用该传统方法提升预报水平面临越来越大的挑战。华为云计算技术有限公司田奇、毕恺峰、谢凌曦等基于人工智能技术,提出了一种适配地球坐标系统的三维神经网络,能够有效处理天气数据中的复杂过程,并通过层次化时域聚合策略来有效减少迭代误差,成功实现了精准的中期天气预报。在1979-2017年全球天气再分析数据上训练后,构建了盘古气象大模型。该模型能够预报7天内的地表层和13个高空层的温度、气压、湿度、风速等气象要素,并将全球最先进的欧洲中长期天气预报中心(ECMWF)集成预报系统的预报时效提高了0.6天左右,在热带气旋的路径预报误差相较于ECMWF预报系统降低了25%。该模型仅需10秒即可完成全球7天重要气象要素的预报,计算速度较数值方法提升1万倍以上。该研究展示了人工智能和大数据在解决天气预报问题上的突破。2023年度中国科学十大进展2 揭示人类基因组暗物质驱动衰老的机制古病毒复活开启衰老的潘多拉魔盒人类基因组是生命活动的“密码本”,它控制器官再生和机体稳态,亦影响器官退行及衰老相关疾病的发生。在该密码本中,素有“暗物质”之称的非编码序列约占98%,其中约8%为内源性逆转录病毒元件,为数百万年前古病毒整合到人类基因组中的遗迹。古病毒序列在衰老过程中的作用及其机制是尚未开拓的科学疆域。中国科学院动物研究所刘光慧、曲静和中国科学院北京基因组研究所张维绮等利用多学科交叉手段,揭示人类基因组中沉睡的古病毒“化石”在细胞衰老过程中,可因表观遗传失稳等因素被再度唤醒、进而包装形成病毒样颗粒并驱动细胞和器官衰老的重要现象。并据此提出古病毒复活介导衰老程序性及传染性的理论以及阻断古病毒复活或扩散以实现延缓衰老的多维干预策略。通过对人类基因组中蛋白编码区域的“逆老”基因进行系统排查,发现可重启人类干细胞、运动神经元和心肌细胞活力,逆转关节软骨、脊髓及心脏衰老的新型分子靶标,并构建一系列针对器官退行的创新干预体系。以上发现为衰老生物学和老年医学研究建立了新的理论框架,为衰老及老年慢病的科学干预和积极应对人口老龄化奠定了有益的基础。2023年度中国科学十大进展3 发现大脑“有形”生物钟的存在及其节律调控机制初级纤毛——生物钟的“有形”指针昼夜节律紊乱与睡眠障碍、精神抑郁相关,严重时可导致肿瘤、糖尿病等重大疾病的发生和发展。由于缺乏对生物节律调节机制的认识,当前国际上尚未研发出针对节律紊乱性疾病的有效治疗药物。军事科学院军事医学研究院生物医学分析中心李慧艳、张学敏等发现大脑视交叉上核(SCN)神经元的初级纤毛,这一细胞“天线”样结构,每24小时伸缩一次,犹如生物钟的指针,初级纤毛可能通过调控SCN区神经元的“同频共振”调节节律,其机制与Shh信号通路密切相关。因此,SCN神经元的初级纤毛可能作为机体中的“中央生物钟”的结构基础,参与生物钟内稳态的维持,而靶向SCN初级纤毛的Shh信号通路可能是治疗与昼夜节律紊乱相关的人类疾病的潜在治疗策略。该“有形”生物钟的发现,对于理解生物钟的构造以及分子层面与细胞层面生物钟的联系具有重要意义。2023年度中国科学十大进展4 农作物耐盐碱机制解析及应用利用AT1成果培育的甜高粱在宁夏平罗盐碱地生长情况土壤盐碱化又称土壤盐渍化,是指土壤中积聚盐分形成盐碱土的过程。我国有近15亿亩盐碱地,其中高pH的苏打盐碱地约占60%。据估计,约5亿亩盐碱地具有开发利用潜能。长期以来,我们对植物耐盐碱性的机制认识尚有不足,阻碍了耐盐碱作物的培育和盐碱地的开发利用。中国科学院遗传与发育生物学研究所谢旗、中国农业大学于菲菲、华中农业大学欧阳亦聃等研究团队合作利用起源于非洲萨赫勒高盐碱地的高粱自然群体材料定位克隆到一个与耐碱性显著相关的主效基因AT1,并揭示了AT1在碱胁迫条件下调控水通道蛋白磷酸化水平来促进植物细胞中H2O2的外排从而赋予植物高耐盐碱性的机制。在盐碱地进行大田实验发现,基于耐盐碱等位基因AT1改良的作物耐盐碱能力显著提高,其中水稻、高粱和谷子等粮食作物均有效增产20%~30%。该研究为综合利用盐碱地和保障粮食安全提供了新思路。2023年度中国科学十大进展5 新方法实现单碱基到超大片段DNA精准操纵单碱基编辑到大尺度DNA精准操纵基因组编辑在生物学和医学领域具有广阔的应用前景。然而,基因组编辑在编辑精度、DNA操控尺度和灵活性等方面仍有较大的限制。中国科学院遗传与发育生物学研究所高彩霞团队联合北京齐禾生科生物科技有限公司赵天萌团队利用人工智能辅助的大规模蛋白结构预测方法对基因组编辑新酶进行发掘。他们建立了基于三级结构的全新蛋白聚类分析方法,鉴定出多个全新脱氨酶家族成员,并开发了一系列适用于多样化应用场景的新型碱基编辑工具,解决了利用单个AAV进行递送和大豆高效碱基编辑的难题。为突破植物大尺度DNA精准操纵的瓶颈,他们整合优化引导编辑系统与位点特异性重组酶,开发了植物大片段DNA精准定点插入技术PrimeRoot,可实现对10 Kb以上大片段DNA的高效定点整合。此外,他们通过对基因上游开放阅读框的从头设计与理性改造,开发了精细下调靶蛋白表达的全新技术体系,并创制了产量相关性状呈梯度变化的系列水稻新种质,为作物性状精细改良提供了新方法。以上研究通过开展基因组编辑元件挖掘方法和技术体系创新,实现了对基因组的精准操纵,为作物改良和基因治疗提供了重要支撑。2023年度中国科学十大进展6 揭示人类细胞DNA复制起始新机制人体MCM2-7双六聚体(MCM-DH)冷冻电镜结构及DNA复制起始调控步骤DNA复制起始的精准调控是维持人类基因组稳定、抑制遗传疾病和癌症发生的关键生命过程之一。6个MCM基因编码的MCM2-7蛋白的双六聚体(DH)在成千上万个复制原点的组装是解开双链DNA和启动复制的必经过程。但是MCM-DH在染色体上具体的组装和作用机制尚不清楚。香港大学翟元梁、香港科技大学党尚宇、戴碧瓘等解析了人类MCM-DH复合物(hMCM-DH)的2.59-Å高分辨率冷冻电镜结构。在该结构中,hMCM-DH可直接降低DNA双链的稳定性,将位于两个六聚体结合处的DNA双链解开,并拉伸产生初始的开口结构(IOS)。IOS在基因组中成簇且广泛地分布于无转录活性的基因间区,并与偶发的DNA复制起始区域高度重合。干扰IOS会抑制hMCM-DH的形成,进而抑制相应DNA复制的启动。该研究不仅揭示了人类MCM-DH组装及初始DNA解旋以促进复制起始的新机制,也为开发以DNA复制为靶标的抗癌药物提供了重要基础。2023年度中国科学十大进展7 “拉索”发现史上最亮伽马暴的极窄喷流和十万亿电子伏特光子拉索观测到的伽马暴GRB 221009A高能光子爆发的全过程伽马射线暴是宇宙大爆炸之后最剧烈的天体爆炸现象,万亿电子伏特(TeV)以上辐射观测对揭示其爆炸过程、辐射机制和探索新物理前沿都具有重要意义。2022年10月9日史上最亮的伽马射线暴GRB 221009A爆发信号飞越24亿光年的时空抵达地球。由中国科学院高能物理研究所曹臻领导的高海拔宇宙线观测站(简称“拉索”,英文LHAASO)国际合作组凭借拉索前所未有的高灵敏度和大视场优势,在国际上首次完整记录了伽马射线暴万亿电子伏特以上高能光子爆发的全过程,包括高能光子亮度在早期的快速增强过程,以及后期亮度突然快速减弱,由此确定此伽马射线暴的极端相对论喷流具有迄今已知最小的张角,揭开了此伽马射线暴成为史上最亮的秘密。拉索还精确测量了该伽马射线暴亮度随光子能量的变化,发现其亮度随能量变化的规律保持稳定,观测能谱延伸至十万亿电子伏特以上,超出了理论预期,挑战了伽马射线暴余辉辐射的标准模型。2023年度中国科学十大进展8 玻色编码纠错延长量子比特寿命量子纠错过程目前超导量子比特的错误率离实用化还相差十多个数量级,需要进行量子纠错以构建错误率更低的逻辑量子线路。量子纠错旨在充分利用无限维希尔伯特空间的冗余度来保护逻辑量子比特免受噪声的干扰。通过对错误的实时探测和纠正,逻辑量子比特的相干寿命将得以延长。然而,传统的量子纠错过程通常会不可避免地引入新的错误,使得量子纠错面临“越纠越错”的尴尬局面。如何使编码保护的逻辑量子比特的寿命超过体系中最佳物理量子比特,超越盈亏平衡点,是衡量量子纠错是否有效的关键判据。南方科技大学俞大鹏、徐源,福州大学郑仕标,清华大学孙麓岩等展示了一种基于超导电路量子电动力学架构的量子纠错方法,其核心技术是将逻辑量子比特二项式编码在一个与辅助超导比特色散耦合的微波谐振腔的离散光子数态中,其编码子空间与错误子空间严格正交。通过在辅助比特上施加截断频率梳脉冲,可高保真度地重复读取错误症状,并通过实时反馈控制反复纠正错误,从而有效延长逻辑量子比特的相干寿命,并超越盈亏平衡点达16%,实现了量子纠错正增益。该研究展示了量子纠错的优越性,表明了硬件高效的离散变量编码在容错量子计算中的潜力。2023年度中国科学十大进展9 揭示光感受调节血糖代谢机制“眼-脑-棕色脂肪轴”介导光调节血糖代谢神经机制光是生命最重要的外部环境因素之一,可调节一系列重要生理与病理过程。公共卫生研究表明,人造光是代谢紊乱的高危因素,例如夜间光污染会显著增加糖尿病等代谢性疾病风险。然而,光对血糖代谢调节的生物学机制不明。中国科学技术大学薛天等揭示了光调控生物(小鼠和人)血糖代谢的神经机制。在动物模型上发现光信号被眼内的视网膜固有光敏神经节细胞(ipRGCs)接收后,通过下丘脑视上核AVP神经元、脑干孤束核GABA抑制性神经元,经交感神经最终到达棕色脂肪组织。光通过这一多级神经环路抑制棕色脂肪的交感神经活动,降低脂肪组织消耗血糖引起的产热,导致机体血糖代谢能力下降。更为重要的是发现在人体上同样存在类似的光感受调节血糖代谢的机制,蓝光污染显著降低人体消耗血糖的能力。该研究发现全新的“眼-脑-外周脂肪轴”介导光对血糖代谢产热的调节机制,为防治光污染导致的糖代谢紊乱相关疾病提供了理论依据与潜在的干预靶点。2023年度中国科学十大进展10 发现锂硫电池界面电荷存储聚集反应新机制电化学原位透射电子显微镜技术研究锂硫电池界面反应锂硫电池具有极高的能量密度(理论值:2600 Wh kg-1)和较低的成本,然而受限于传统原位表征工具的时空分辨率及锂硫体系的不稳定性和环境敏感性等因素,在原子/纳米尺度上对锂硫电池界面反应的理解尚不深入。厦门大学廖洪钢、孙世刚和北京化工大学陈建峰等开发高时空分辨电化学原位液相透射电镜技术,耦合真实电解液环境和外加电场,实现对锂硫电池界面反应原子尺度动态实时观测和研究。发现电池活性材料表面分子聚集成为分子团进行反应,电荷转移可以首先存储在聚集分子团中,分子团得到电子但不会发生转化,直到获得足够电子后瞬时结晶转化。而没有活性的材料表面遵循经典的单分子反应途径,多硫化锂分子逐步转化为Li2S。模拟计算表明,活性中心与多硫化锂之间的静电作用促进了Li+和多硫分子的聚集,证实分子聚集体中的电荷可以自由转移。近百年来,电化学界面反应通常被认为仅存在“内球反应”和“外球反应”单分子途径。该研究揭示了电化学界面反应存在第三种“电荷存储聚集反应”机制,加深了对多硫化物演变及其对电池表界面反应动力学影响的认识,为下一代锂硫电池设计提供指导。
  • 质谱盛宴AOMSC, 赛默飞Orbitrap技术大放异彩
    AOMSC(Asia-Oceania Mass Spectrometry Conference)作为亚太地区顶级质谱盛会之一,1月4-7日在澳门胜利举行。此次大会汇集了来自多个国家(地区)的约400位质谱学者参加,议题覆盖质谱原理研究、质谱创新技术、组学研究、环境研究、中药及天然产物研究等多个维度;不仅展示了Graham Cooks、江桂斌院士、Yu-Ju Chen、Richard O’Hair、Catherine Costello等多位大咖视角下的质谱发展趋势,更提供了诸多全面新颖的业内专家观点,可谓给与会者带来了一场异彩纷呈的学术饕餮盛宴。 那就让我们精选一些热门话题,一探大咖学者们共同勾勒出的质谱盛世。 热点1:脂质、代谢组学近年来有关脂质的研究备受关注,脂质作为代谢组学的分支,与代谢组学一起成为本次会议的热门话题之一。因其结构和分类上的复杂性,脂质的研究一直存在较多的难点。美国德克萨斯州立大学圣安东尼奥医学研究中心的韩贤林教授作为脂质组学开创人之一,几十年来潜心脂质的研究,并心系脂质组学的发展。 韩教授对目前脂类研究的现状和主要技术做了系统的阐述和总结,如Shotgun Lipidomics,质谱成像技术等,为研究者开展脂质组学研究提供了坚实的基础。韩教授实验室所建立的Direct infusion方法,也成为脂类主要分析方法之一。韩教授对脂质组学的未来也做了前瞻性的阐述,认为脂质的准确定量,高通量全谱脂质的定性,特别是脂肪链双键位置的确定,多组学的联合,精准医疗以及单细胞研究将成为未来几年脂质组学主要研究方向。热点2:定量蛋白组学、蛋白结构分析质谱碎裂模式的发展一直推动着完整蛋白topdown分析研究不断深入,例如对于膜蛋白的topdown分析,topdown分析方法有利于研究完整蛋白的结构和修饰以及可能存在的相互作用。 对于跨膜蛋白,在Topdown实验中,传统的碎裂模式CID难以获得足够高的蛋白覆盖度,为了更好的获得蛋白序列信息,加州大学洛杉矶分校julian Whitelegge教授采用lumos质谱结合EThcd和UVPD等碎裂模式对完整跨膜蛋白进行native topdown分析,可以在10ppm质量精度内得到56%的蛋白覆盖度,同时可以使用MS3分析蛋白remain的修饰位点,结果利用该技术发现跨膜蛋白与某些脂质紧密结合,为跨膜蛋白与脂质相互作用提供新的研究思路。 热点3:精准医学针对临床蛋白质组学,陈玉如教授分享了最新进展:2009年FDA批准了第一个基于蛋白质组学发现的卵巢癌血清诊断试剂盒,给蛋白质组学工作者极大的鼓舞;NCI癌症基因组计划,共有来自12个国家的33个研究所参与,用深度覆盖的基因组学和蛋白质组学手段分析病人的组织,来更好地理解肿瘤发生、发展,同时发展用于肿瘤诊断和治疗的分子靶标,目前NCI已经完成了多个肿瘤的蛋白基因组工作,如结直肠癌、乳腺癌、卵巢癌、肝癌等,相关的工作已经发表,数据也已经公开在CPTAC的官网上。在多种蛋白质组学定量技术手段中,CPTAC采用了TMT定量技术,来达到蛋白质组10000个蛋白,磷酸化蛋白质组26,000个磷酸化位点的目标。 不仅在临床蛋白质组学,Orbitrap凭借高准确度及高分辨率的特性,在整个精准医学研究领域中都拥有极其广泛的应用。再例如,存在于中枢和外周神经系统的维持内环境稳态的一类肽类激素,针对神经肽Y(neuropeptide Y,NPY),其在抑制癫痫发生发展方面有着重要作用,并且能够执行抑制生殖、肌肉兴奋以及交感神经兴奋的功能,这些功能的执行就会导致人体的心率、血压和代谢水平的降低。除此之外,NPY还能够促进食欲,这样就使得NPY成为了减肥药物的一个很好的作用靶点。但是解析NPY体内合成方式及途径,指导后期了解生物过程起到重要作用。日本三得利有机生物研究所利用Orbitrap Fusion质谱仪高准确度,高分辨率的特性,识别分子量差距极小的NPY中间产物,确定pro-NPY最终产物为NPY-NH2肽段,为后期研究提供新方向。 热点4:创新技术与应用质谱成像技术可提供样品中分子的空间分布信息,在脂类,代谢组学、药物分布等诸多领域有着巨大的应用价值。美国威斯康星大学的李灵军教授采用建立的高空间分辨率的SubAP/MALDI结合高质量分辨率的Q Exactive HF技术,在甲壳类神经组织中发现了18种新型的神经肽类。将此方法应用在小鼠卵巢癌研究中,研究代谢物、脂类和神经肽的不同分布,使得生物分子的分布更加直观,为未来肿瘤的精准分类提供理论依据。本次大会中,基于Orbitrap的新技术新应用同样层出不穷,如单细胞组学研究、呼吸气研究、环境暴露组学研究等,都展示出极强的创新性与前瞻性。 以Orbitrap为代表的高分辨质谱技术大放异彩纵观此次大会,随着越来越多行业对质谱技术的研究与应用不断深入,高分辨质谱技术,作为被提及最多的话题,在此次大会中百花齐放,在越来越多的研究领域扮演着举足轻重的作用。而Orbitrap技术的出现,凭借独有的创新设计、超高分辨率和灵敏度,已经获得众多前沿科学家的广泛认可,成为高分辨质谱技术的不二选择。 从菲尼根到赛默飞,随着质谱技术的不断传承与精深,赛默飞已经拥有完善的质谱解决方案,帮助科学家实现前沿突破。此次会议中,全新的两款Orbitrap高分辨质谱新品Exploris 480和Eclipse备受质谱学者广泛关注,展位咨询络绎不绝。 色谱质谱明星产品前处理气相色谱离子色谱液相色谱气质联用液质联用AA/ICP/ICPMS软件 更多仪器配置和方案推荐色谱质谱全流程食品安全固废专项临床检测RoHS检测中药分析化药分析代谢组学
  • 烟的致癌作用
    吸烟会引起的不良反应及原因 有些人吸烟会引起头晕,恶心,ELISA试剂盒面色发黄等症状,严重者甚至站立不稳等。原因大约有三点,尼古丁中毒,缺氧及过敏症状。尼古丁中毒主要由于吸烟过量导致,通常是老烟枪面对的问题,情况严重时会猝死或引发心脏病等;而对于吸烟新手来说由于吸烟导致吸入一氧化碳,从而引起大脑缺氧,应及时呼吸新鲜空气严重时吸氧;而有些人对于香烟中含有的尼古丁与烟焦油等成分有过敏反应,就算吸入量不是很大也会有很严重的反应,因个人体质而异,最好及时就医。 香烟点燃后产生对人体有害的物质大致分为六大类: (1)醛类、氮化物、烯烃类,这些物质对呼吸道有刺激作用。 (2)尼古丁类,可刺激交感神经,引起血管内膜损害。 (3)胺类、氰化物和重金属,这些均属毒性物质。 (4)苯丙芘、砷、镉、甲基肼、氨基酚、其他放射性物质。这些物质均有致癌作用。 (5)酚类化合物和甲醛等,这些物质具有加速癌变的作用。ELISA试剂盒 (6)一氧化碳能减低红血球将氧输送到全身去能力。致癌作用 吸烟致癌已经公认。流行病学调查表明,吸烟是肺癌的重要致病因素之一,特别是鳞状上皮细胞癌和小细胞未分化癌。吸烟者患肺癌的危险性是不吸烟者的13倍,如果每日吸烟在35支以上,则其危险性比不吸烟者高45倍。吸烟者肺癌死亡率比不吸烟者高10~13倍。肺癌死亡人数中约85%由吸烟造成。吸烟者如同时接触化学性致癌物质(如石棉、镍、铀和砷等)则发生肺癌的危险性将更高。烟叶烟雾中的多环芳香碳氢化合物,需经多环芳香碳氢化合物羟化酶代谢作用后才具有细胞毒和诱发突变作用,ELISA试剂盒在吸烟者体内该羟化酶浓度较不吸烟者为高。吸烟可降低自然杀伤细胞的活性,从而削弱机体对肿瘤细胞生长的监视、杀伤和清除功能,这就进一步解释了吸烟是多种癌症发生的高危因素。吸烟者喉癌发病率较不吸烟者高十几倍。膀胱癌发病率增加3倍,这可能与烟雾中的β-萘胺有关。此外,吸烟与唇癌、舌癌、口腔癌、食道癌、胃癌、结肠癌、胰腺癌、肾癌和子宫颈癌的发生都有一定关系。临床研究和动物实验表明,烟雾中的致癌物质还能通过胎盘影响胎儿,致使其子代的癌症发病率显著增高。
  • 科学家开发双重靶向CAR-T细胞疗法应对实体瘤逃逸
    神经母细胞瘤(neuroblastoma,NB)是婴儿最常见的肿瘤。该病是由身体多个部位的未成熟神经细胞发展而来的一种癌症,通常起源于腹部或胸部的交感神经,最常起源于肾上腺。  目前,CAR-T细胞疗法在血液系统肿瘤领域的治疗效果出色,然而,实体瘤分子更加复杂且缺乏良好抗原靶点使得CAR-T细胞疗法在实体瘤领域的挑战巨大。因此,开发能够同时识别至少两种抗原的下一代CARs具有重要意义。  近日,北卡罗来纳大学教堂山分校的研究团队开发了一种新的治疗方法——基于双重靶向、分裂共刺激信号和共享CD3ζ链的免疫疗法。该疗法构建了同时针对NB疾病模型中的两种临床相关抗原GD2和B7-H3,可以实现快速和持续的抗肿瘤作用。值得一提的是,当肿瘤细胞中的抗原表达是异质性时,双CAR-T细胞可在体内应激时提供持续的高抗肿瘤活性以防止肿瘤因异种抗原表达而逃逸。相关研究结果于9月23日以“Dual-targeting CAR-T cells with optimal co-stimulation and metabolic fitness enhance antitumor activity and prevent escape in solid tumors”为题发表在《Nature Cancer》杂志上。   注:此研究成果摘自《Nature Cancer》,文章内容不代表本网站观点和立场。  论文链接:https://www.nature.com/articles/s43018-021-00244-2
  • 再帕尔阿不力孜团队新成果:时空分辨代谢组学与同位素示踪方法揭示中枢神经系统药物潜在靶标
    中国医学科学院&北京协和医学院药物研究所“天然药物活性物质与功能”国家重点实验室再帕尔•阿不力孜研究员团队,在《药学学报》英文刊(Acta Pharmaceutica Sinica B)发表了题为“时空分辨代谢组学与同位素示踪方法揭示中枢神经系统药物靶标”的研究论文。由于大脑结构与功能的复杂性,中枢神经系统(CNS)药物的作用机制研究及其靶标的发现与解析是具有挑战性的科学问题。围绕天然来源药物多靶标解析及其CNS药物的作用机制研究,该研究团队采用自主研制的敞开式空气动力辅助离子化质谱成像(AFADESI-MSI)技术,提出将空间分辨代谢组学与同位素示踪分析方法进行整合的研究策略,采用建立的质谱成像可视化分析方法开展了镇静催眠候选新药YZG-331的药物作用机制与多靶标解析研究。研究基于高灵敏、高覆盖的AFADESI-MSI分析方法,系统考察了YZG-331干预下内源性代谢物在大鼠脑微区中的时空动态分布特征,结合原位代谢组学数据处理方法,发现与YZG-331药物作用相关的功能代谢物,并由此定位至两条代谢通路。其中,“谷氨酰胺-谷氨酸-GABA”代谢通路分析与同位素葡萄糖示踪分析二者结果同时显示,GABA/谷氨酸比值在下丘脑区明显升高,则表明给予YZG-331后下丘脑中谷氨酸脱羧酶(GAD)活性可能增强。而“组氨酸-组胺-1-甲基组胺”代谢通路分析与同位素组胺示踪分析二者结果共同表明,给药后松果体区大量增加的组胺主要来源于外周组胺的升高及其对松果体的渗透。此外,给药后1-甲基组胺在丘脑和下丘脑区显著增加。结合体外方法和模型的验证,发现YZG-331可激动GAD酶活性增加GABA含量,并通过激动有机阳离子转运体3(OCT3)和氨基酸转运体1(LAT1)在外周释放组胺,同时可能通过激动OCT3转运体以及利用大鼠脑内HNMT酶自身的高活性,加速组胺代谢为1-甲基组胺。研究手段与策略有助于阐释CNS候选新药的药效作用机制和发现潜在的多靶标,为CNS药物研发及有效性、安全性评价等提供新的视角和可视化分析手段。博士生金波和逄雪超博士为共同第一作者;贺玖明研究员和再帕尔•阿不力孜教授为该论文的共同通讯作者。研究工作得到了国家自然科学基金、中国医学科学院医学与健康科技创新工程等项目的资助。Spatiotemporally resolved metabolomics and isotope tracing reveal CNS drug targetsBo Jin, Xuechao Pang, Qingce Zang, Man Ga, Jing Xu, Zhigang Luo, Ruiping Zhang, Jiangong Shi, Jiuming He*, Zeper Abliz*Acta Pharm Sin B 2022. https://doi.org/10.1016/j.apsb.2022.11.011作者简介再帕尔阿不力孜,博士生导师,二级教授,《药学学报》英文刊编委。中国医学科学院药物研究所研究员、北京协和医学院特聘教授,“天然药物活性物质与功能国家重点实验室”副主任、药物分析学系主任、药物分析研究室主任。中央民族大学药学院教授、“质谱成像与代谢组学”国家民委重点实验室主任。新世纪百千万人才工程国家级人选,享受国务院特殊津贴专家,国家民委领军人才。国务院学位委员会第七届药学学科评议组成员,教育部第七届科学技术委员会委员和第八届科技委药学与中医药学部委员,中国分析测试协会副理事长,中国化学会质谱分析专业委员会副主任委员等。先后担任“863”计划项目首席专家、国家重点研发计划项目负责人。长期从事质谱分析新方法与技术及其应用研究,在PNAS、Adv Sci、Anal Chem、Acta Pharm Sin B等学术期刊上发表论文120余篇;这些年在代谢组学、质谱成像新技术、空间分辨代谢组学与应用等方面取得一批创新成果。贺玖明,博士生导师,药物分析专业;中国医学科学院北京协和医学院药物研究所研究员,主要研究方向:质谱成像空间分辨代谢组学新技术新方法及其生物医药应用研究。开发出空气动力辅助离子化及质谱成像新技术和空间分辨代谢组学新方法,建立了以空间分辨代谢组学技术为特色的新药代谢研究平台。国家药品监督管理局创新药物安全与评价重点实验室学委委员;担任《药学学报》、Acta Pharm Sin B、J Pharm Anal青年编委,Molecules、TMR Modern Herbal Medicine和《药学研究》编委;中国医药生物技术协会药物分析技术分会常务委员,中国质谱学会常务委员。å
  • 血糖仪检测不准?你是否服用这些药物
    血糖是血液葡萄糖含量的简称。葡萄糖是人体的重要组成成分,也是能量的重要来源。正常人体每天需要很多的糖来提供能量,为各种组织、脏器的正常运作提供动力。所以血糖必须保持一定的水平才能维持体内各器官和组织的需要。血糖不宜过低,也不能过高。当血糖过高的时候,会增加肾小球的滤过压力,甚至会强制破坏肾小球的滤过功能,导致肾单位被破坏。除此之外,对神经、视网膜、心脑血管也有一定程度的损伤。 所以,定期对体内血糖水平进行监测是十分必要的。空腹时,全血血糖的正常值为3.9~6.1mmol/L,可换算为70~110mg/dL,凡是在此范围内的空腹全血血糖值都属于正常情况。长期服用一些药物会导致血糖值出现偏差,造成药物性高血糖。如降压药物、降脂药物、抗病毒药物、抗菌药物、免疫抑制剂、抗精神病类药物、糖皮质激素等。这些药物在用于治疗非血糖相关性疾病时,通过损害胰岛β细胞分泌功能而致胰岛素分泌不足,或降低外周组织对胰岛素的敏感性,进而致血糖升高。另外,服用一些药物短期内不会对血糖造成明显影响,检测时却会误导血糖仪,如对乙酰氨基酚、维生素C、水杨酸、尿酸、 胆红素、甘油三酯、麦芽糖、木糖等。其中,维生素C具有抗氧化作用,会影响血糖的测定,大部分在医院使用的血糖检测设备是通过葡萄糖氧化酶法检测血糖,葡萄糖氧化酶具有氧化的作用,而维生素C具抗氧化的效果,这会减弱葡萄糖氧化酶的氧化效果,从而导致测量值偏低。在日常生活中,血糖监测能够直接了解机体实际的血糖水平,有助于我们判断自身的健康情况,在疾病预防中起到重要作用。
  • 【Advanced NanoBiomed Research】全自动Digital WB系统助力神经退行性疾病药物递送系统研究
    来自美国顶尖公立大学北卡罗来纳大学教堂山分校(University of North Carolina at Chapel Hill,简称:UNC)的科学家们,利用全自动Digital Western Blot系统,对不同细胞来源的细胞外囊泡(Extracellular Vesicles, EVs)进行蛋白表征,探索不同细胞来源的EVs作为治疗神经退行性疾病药物递送系统的可能性,相应结果发表在Advanced NanoBiomed Research (IF: 13.052)。1EVs简介EVs的命名和分类细胞外囊泡(Extracellular Vesicles, EVs)是由细胞释放的各种具有膜结构的囊泡结构统称。EVs根据其来源(细胞类型)、大小、形态和载荷分为:微泡(microvesicles)、外泌体(exosomes)、凋亡小体(apoptotic bodies)和癌小体(oncosomes)。目前作为药物递送系统研究最多是微泡和外泌体。EVs通过质膜出芽形成的称为微囊泡(microvesicles);多囊泡内体(Multivesicular Endosomes,MVEs)与质膜融合后,释放的腔内囊泡(Intraluminal vesicles,ILVs)称为外泌体(exosomes)。EVs作为药物递送系统的优势EVs具有:A)能够穿过各种生物屏障,包括组织屏障或质膜,并通过endosomal运送载荷;B)利用内源性细胞机制,在细胞核内生产或装配成相应的载荷物,然后装载到多泡体(Multivesicular Bodies,MVBs)或质膜,并最终以EVs形式释放到细胞外;C)在脾脏和肝脏中具有较低的毒性,并且具有较低的免疫原性。因此EVs已作为脂质体(Liposome)、纳米颗粒的生物替代品,进入了药物递送领域,用于治疗各种疾病,包括癌症、神经系统疾病(阿尔茨海默病、帕金森病、中风)、传染病(脑膜炎、人类免疫缺陷病毒(HIV)和HIV相关痴呆)、炎症性关节炎、以及自身免疫和心血管疾病(动脉粥样硬化和心脏病等)。受体细胞摄入EVs的过程和机制EVs可以通过多种途径被内化,内化会将外源性EVs靶向典型的内体通路,从而到达多囊泡内体(MVEs)。EVs停靠在MVEs的质膜上,通过膜融合将其内容物释放到受体细胞中。同时EVs也可以直接与受体细胞膜融合,将内容物释放到受体细胞中。EVs还可以通过细胞表面的整合素(Integrins)-细胞粘附分子(ICAM)的结合或抗原呈递等方式,对受体细胞进行细胞信号通路的调节或免疫调节。2研究内容细胞外囊泡(EVs)将纳米颗粒大小与跨越生物屏障的非凡能力、低免疫原性和毒性特征相结合,成为了一类有前途的药物递送系统。因此如何成功应用这种输送生物化合物的自然方式,需要深入了解EV从其母细胞继承的内在特性。因此本文评估了不同来源的细胞释放的EVs,利用其将药物输送到大脑,来治疗神经退行性疾病。本文通过一些检测方法对原代巨噬细胞(mEV)、神经元(nEV)和星形胶质细胞(aEV)分泌的EV的形态、大小、zeta电位、表面蛋白进行鉴定和分析。结果显示与nEVs和aEVs相比,mEVs显示出对炎性组织更高水平的粘附性和靶向性。同时,在帕金森病转基因小鼠模型中,mEVs的大脑积累水平明显高于nEVs和aEVs。因此,mEVs被认为是最有前途的将药物输送到大脑的纳米载体系统。全自动Digital WB表征EVs膜蛋白揭示mEVs高粘附和靶向炎症组织能力HP90(HSP90):热休克蛋白,EVs表面特异性marker;TSG101:四跨膜蛋白,EVs表面特异性marker;Integrin α:整合素α,EVs表面特异性marker;CD11b:属于Integrin β2家族,通常在白细胞(如巨噬细胞)表面表达;CD9:四跨膜蛋白,EVs表面特异性marker。研究结果:本文利用利用全自动Digital Western Blot技术,对不同来源的EVs膜蛋白进行表征,结果显示与nEVs和aEVs相比,mEVs显示出最高水平的四跨膜蛋白和整合素的表达,表明mEVs对炎性组织的粘附性和靶向性更高。在帕金森病转基因小鼠模型中也得到了相同结论。证实mEVs对比nEVs和aEVs而言,是能将药物递送到大脑的更有前途的一种纳米载体系统。其它神经方面的研究请见以下链接:【Science】单细胞蛋白分析技术揭示肠脑神经回路新机制全自动Digital Western Blot揭示多小脑回畸形发病新机制Ella全自动ELISA在神经领域上的应用Wes助力:中科院阎锡蕴课题组协同北大医院神经内科郝洪军主任 共同揭示血脑屏障损伤机制Milo单细胞Western blot开启神经生物学研究新纪元Ella 平台推出神经退行性疾病Biomarker: Nf-L超敏检测方法Wes:定量研究神经退行性病变关键蛋白参考文献:1. Extracellular Vesicles as Drug Delivery System for the Treatment of Neurodegenerative Disorders: Optimization of the Cell Source.2.Shedding light on the cell biology of extracellular vesicles.3.Extracellular Vesicles as Drug Delivery Vehicles to the Central Nervous System.4.Extracellular vesicles as drug delivery systems: Why and how?5.β2 integrins As Regulators of Dendritic Cell, Monocyte, and Macrophage Function.
  • 清华大学开发出具有自发电场的可降解神经再生电子药物
    p style="text-indent: 2em "目前大量研究表明电刺激疗法在体外和体内均具有促进轴突快速定向再生,实现功能恢复的效果,但是目前提出的植入式电刺激器件新方案中还存在体积相对较大、不可降解需二次手术取出或者外部无线供能装置制备流程较复杂等一系列限制其临床转化的潜在问题。/ppbr//pp style="text-indent: 2em "周围神经损伤是周围神经干或其分支意外受到外界直接或间接创伤而发生损伤导致躯干和肢体的运动、感觉及自主神经功能障碍的一种临床病症。大量报道表明2.8%的创伤患者受到周围神经损伤的影响,且每年全世界约超过1百万人会遭受周围神经损伤疾病损害,严重影响患者的生活质量,部分患者甚至会因此而终身残疾。随着再生医学和组织工程的进步,组织工程化的人工神经导管得到了迅速发展,但自体神经移植仍是外周神经损伤修复的“金标准” ,而自体神经移植方法存在供体神经支配区永久性失神经功能丧失、供移植来源有限、供体部位的神经和缺损部位神经不匹配以及需要进行二次手术等问题。目前大量研究表明电刺激疗法在体外和体内均具有促进轴突快速定向再生,实现功能恢复的效果,但是目前提出的植入式电刺激器件新方案中还存在体积相对较大、不可降解需二次手术取出或者外部无线供能装置制备流程较复杂等一系列限制其临床转化的潜在问题。/ppbr//pp style="text-indent: 2em "近日,清华大学材料学院尹斓课题组开发了一种新型电刺激人工神经导管一体化的微型可降解电子器件,此类器件兼具人工神经导管的引导与长时间连续电刺激的双重作用,且其组成材料全部生物相容并在特定时间内发生降解且被人体所吸收或代谢,不需要进行二次手术取出。该研究成果以“A fully biodegradable and self-electrified device for neuroregenerative medicine”为题在国际著名学术期刊Science Advances上发表。/ppbr//pp style="text-indent: 2em "该研究采用Mg作为电池的负极,FeMn作为正极,体液为电解质溶液。此外,根据神经导管的力学性能与微观结构需求,对可降解电池的复合一体化神经导管的结构进行了设计,其中神经导管的最外层支架为多孔PCL,其主要作用为力学支撑,第二层为与神经组织力学性能相匹配的柔性PLLA-PTMC材料;最内层为PCL纤维薄膜,其主要作用为引导缺损神经再生。/ppbr//pp style="text-indent: 2em "此电刺激器件可在大鼠体内连续放电3天,且有限元计算得到电场强度分布范围为25?200 mV/mm,与促进DRG轴突生长、血旺细胞定向生长和PC12细胞增殖的电场强度范围区间相吻合。此外,此器件可在60℃的PBS溶液(pH为7.4)中约于56天内发生全部降解。/pp style="text-align: center text-indent: 2em "img style="max-width: 100% max-height: 100% width: 544px height: 496px " src="https://img1.17img.cn/17img/images/202012/uepic/d7f5fe83-8c96-4562-a2dd-3b0f41c38e28.jpg" title="75173778d9f84ca2a67cb180b41a5a03from=pc.jpg" alt="75173778d9f84ca2a67cb180b41a5a03from=pc.jpg" width="544" height="496"//pp style="text-align: center text-indent: 2em "图1. 可降解电刺激器件的结构、放电性能与降解性能/ppbr//pp style="text-align: center text-indent: 2em "在此基础上开展了此电刺激器件在体外对背根神经节细胞和血旺细胞的影响研究,分析了电刺激对胞内钙信号传导和所分泌神经营养因子的影响,发现此器件具有引导和促进轴突定向生长的作用,且能显著促进胞内钙离子的活性。此外,该器件还能促进血旺细胞的增值,且能显著促进其对BDNF, CNTF, NGF和VEGF的分泌。img src="https://img1.17img.cn/17img/images/202012/uepic/8c4e66b2-73a9-4ae2-85fd-6aa6c20b4eb5.jpg" title="d201c3dc776c4ef4beae25fa610fe190from=pc.jpg" width="552" height="346" style="width: 552px height: 346px "//pp style="text-align: center text-indent: 2em "图2. 可降解电刺激器件对背根神经节细胞的影响结果/pp style="text-align: center text-indent: 2em "img src="https://img1.17img.cn/17img/images/202012/uepic/1632f9ed-642f-45ee-bd59-6e6eca61240d.jpg" title="5e8d1450f79e45e79d695f13892abd57from=pc.jpg" width="568" height="273" style="width: 568px height: 273px "//pp style="text-align: center text-indent: 2em "图3. 可降解电刺激器件对血旺细胞的影响结果/ppbr//pp style="text-indent: 2em "此外,研究了此神经导管一体化电刺激器件对Sprague-Dawley大鼠坐骨神经10 mm缺损的修复效果,发现3周和9周后电刺激组的再生神经面积较空管组有显著增加,且可与自体神经移植组的再生神经面积相比拟,验证了此器件对神经的早期和中期神经再生的促进作用。通过对12周后再生神经组织和运动功能的研究,验证了电刺激对再生神经中轴突髓鞘化、靶肌肉的神经再支配和运动功能恢复的促进作用。/pp style="text-align: center "/pp style="text-align: center text-indent: 2em "img style="width: 436px height: 295px " src="https://img1.17img.cn/17img/images/202012/uepic/a93960e8-99df-431a-bd30-4d83b582b532.jpg" title="3192d1b688de492cbdd66b2d2e363c0cfrom=pc.jpg" width="436" height="295"//pp style="text-align: center text-indent: 2em "图4. 手术过程和3周后再生神经荧光染色结果/pp style="text-align: center text-indent: 2em "img style="max-width: 100% max-height: 100% width: 469px height: 524px " src="https://img1.17img.cn/17img/images/202012/uepic/15dc160f-479d-4532-b7aa-4b388fe9bd02.jpg" title="5ad3aabe9e87409180595df362d27b0bfrom=pc.jpg" alt="5ad3aabe9e87409180595df362d27b0bfrom=pc.jpg" width="469" height="524"//pp style="text-align: center text-indent: 2em "图5. 12周的再生神经髓鞘化、电生理、靶肌肉和运动功能结果/ppbr//pp style="text-indent: 2em "清华大学材料学院副教授尹斓为本文通讯作者,中国人民解放军总医院骨研所副主任彭江和副研究员王玉为共同通讯;清华大学材料学院博士后王柳为本文第一作者,中国人民解放军总医院硕士鲁长风、清华大学材料学院博士生杨淑慧和孙鹏程为共同一作;合作者包括清华大学材料学院王秀梅教授、清华大学生命学院熊巍研究员、清华大学电子系盛兴副教授、北京理工大学汪世溶副研究员和清华大学材料学院陈浩副教授。本工作得到了国家自然科学基金、博士后科学基金、北京市自然科学基金和国家重点研发计划等项目的共同资助。/ppbr//p
  • 日常生活噪声危害大,如何选择合适的噪声传感器监测?
    噪声污染是主要环境污染之一,但噪声污染与空气污染、水污染不同,它属于物理性污染(或称能量污染)。一般情况下噪声污染并不致命,且与声源同时产生同时消失。噪声源分布很广,较难集中管理。由于噪声渗透到人们生产和生活的各个领域,且能够直接感觉到它的污染,不像其他物质污染那样在产生后果时才受到注意,所以噪声诉讼成为城市环境诉讼案件中最多的。 一、噪声的危害1、对人听力的影响强的噪声可以引起耳部的不适,如耳鸣、耳痛、听力损伤。在噪声长期作用下,听觉器官的听觉灵敏度显著降低,称作“听觉疲劳”,经过休息后可以恢复。若听觉疲劳进一步发展便是听力损失,分轻度耳聋、中度耳聋以至完全丧失听觉能力。据测定,超过115dB的噪声将会造成耳聋。2、诱发多种疾病噪声间接的生理效应是诱发一些疾病。噪声会使大脑皮质的兴奋和压抑失去平衡,引起头晕、头疼、脑涨、耳鸣、多梦、失眠、嗜睡、心慌、记忆力减退、注意力不集中等症状,临床上称之为“神经衰弱症” 噪声还会对心血管系统造成损害,它可使交感神经紧张,从而出现心跳加快,心律不齐,心电图波升高或缺血性改变,传导阻滞,血管痉挛,血压变化等 噪声会加速心脏衰老,增加心肌梗塞发病率。3、对视力的影响噪声可造成眼疼、视力减退、眼花等症状 噪声会使人的胃功能紊乱,出现食欲不振、恶心、肌无力、消瘦、体质减弱等症状。4、对动物的影响噪声能对动物的听觉器官、视觉器官、内脏器官及中枢神经系统造成病理性变化。噪声对动物的行为有一定的影响,可使动物失去行为控制能力,出现烦躁不安、失去常态等现象,强噪声会引起动物死亡。鸟类在噪声中会出现羽毛脱落,影响产卵率等。5、对建筑物的影响当噪声超过140dB时,对轻型建筑开始有破坏作用。如,当超声速飞机在低空掠过时,在飞机头部和尾部会产生压力和密度突变,经地面反射后形成N形冲击波,传到地面时听起来像爆炸声,这种特殊的噪声叫做轰声。在轰声的作用下,建筑物会受到不同程度的破坏,如出现门窗损伤、玻璃破碎、墙壁开裂、抹灰震落、烟囱倒塌等现象。由于轰声衰减较慢,因此传播较远,影响范围较广。此外,在建筑物附近使用空气锤、打桩或爆破,也会导致建筑物的损伤。二、噪声传感器的选择技巧1、灵敏度的选择通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。2、频率响应特性传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。3、线性范围传感器的线性范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。4、稳定性传感器使用一段时间后,其性能保持不变化的能力称为稳定性。影响传感器长期稳定性的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。5、精度精度是噪声传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高。
  • 全球10大最贵药物榜单
    美国GoodRx网站公布了全球10大最贵药物榜单,其中诺华的SMA基因疗法Zolgensma以212.5万美元的天价位居榜首,且整体来看TOP10主要以治疗罕见病的孤儿药为主,其中生物药占据主要地位。目前我国关于“孤儿药”的研发甚少,罕见病患者所需的治疗药物基本依赖于国外进口,导致国内许多罕见病患者只能选择昂贵的进口药甚至无药可用。⑽Soliris(eculizumab)Soliris(依库珠单抗)是一种抑制剂终末补体 (C5a 和C5b)的单克隆抗体,用于治疗成人和儿童阵发性睡眠性血红蛋白尿症(PNH),非典型溶血性尿毒症综合征(aHUS)和成人视神经脊髓炎谱系障碍(NMOSD)。由美国Alexion Pharma研发,于2007年首次在美国批准上市,后陆续在欧洲、日本和中国上市。Soliris的包装及其上市情况⑼RavictiRavicti是Horizon Pharma公司研发的一种氮结合剂的小分子,用于部分2岁或以上尿素循环障碍(UCD)患者的长期治疗。Ravicti于2013年首先在美国上市,后续在许多国家上市,它作为一种液体制剂,患者每天需要服用三次,据统计,该药的年人均支出费用达69.5万美元。Ravicti的结构式及上市情况⑻Blincyto(blinatumomab)博纳吐单抗是Amgen公司研发的一个双特异性抗体(CD3和CD19),用于治疗费城染色体阴性前体B细胞急性淋巴细胞白血病(rrALL)。于2014年首次在美国获批上市,后陆续在欧洲、日本和中国上市。Blincyto采用周期给药,一个治疗周期包括给药前服用抗炎药物,后持续静脉输注28天,最后休息14天。Blincyto的作用机理和给药周期⑺BrineuraBrineura是由BioMarin研发的一种酶替代疗法,其活性成分(cerliponasealfa)是人类TPP1的重组形式,于2017年四月首次在美国被批准上市,成为首个针对晚发婴儿型神经元蜡样脂褐质沉积症(CLN2)的疗法,CLN2又被称为三肽基肽酶-1(TPP1)缺乏症,是Batten病的一种。治疗中需通过特殊脑室内注入装置将Brineura输送至患者脑脊髓液[2]。由于缺少竞争对手,其价格较为昂贵,每年治疗费用高达73万美元。脑室注入系统装置图⑹Folotyn(Pralatrexate)普拉曲沙是由Allos Therapeutics公司开发的一款叶酸代谢小分子抑制剂,于2009年9月获得美国FDA批准上市,后陆续在许多国家上市,是首个用于治疗复发性或难治性外周T细胞淋巴瘤(PTCL)的二氢叶酸还原酶抑制剂。Folotyn的给药方式为静脉注射,一般每周一次,其单价为5880美元,年治疗费约79万美元。Folotyn的结构式及上市情况⑸LuxturnaLuxturna是由Spark Therapeutics公司研发用于治疗RPE65基因突变导致的Leber先天性黑朦(LCA)的首个被获批上市的基因疗法注射剂(2017年底美国首次获批)。其作用机制是将RPE65序列编码到AAV2载体后将其注射到患者的视网膜内,从而使之表达[3],通常来说患者只需单次注射一支就可达到治疗的效果,Luxturna的单价为42.5万美元,双眼治疗费用为85万美元。Luxturna的作用机制示意图⑷MyaleptMyalept是由Amryt公司研发的用于治疗先天性或获得性全身脂肪代谢障碍患者的瘦素缺乏并发症。在患有全身性脂肪代谢障碍的患者中,脂肪组织的损失导致瘦素缺乏进而加剧了代谢异常,皮下注射的myalept通过结合并激活瘦蛋白受体(Leptin Receptor),进而提高患者的胰岛素敏感性以及降低食物的摄入量[5]。Myalept首次于2013年在日本上市,后陆续在美国、欧洲等地上市,由于Myalept是目前唯一治疗该罕见病的上市药,因此其定价较高,年治疗费用约89万美元。Myalept的作用机理示意图⑶DanyelzaDanyelza是由Y-mAbs公司研发的用于治疗骨骼或骨髓神经母细胞瘤的一种靶向神经节苷脂GD2的单克隆抗体。其杀死癌细胞的方式有两者:补体依赖性细胞毒性 ( CDC )和抗体依赖性细胞介导的细胞毒性 ( ADCC )。Danyelza的每个治疗周期为10天,分别在1、3、5天静脉给药,且给药前五天以及给药期间需要皮下注射粒细胞-巨噬细胞集落刺激因子(GM-CSF)和其它治疗疼痛的药物,治疗周期每四周重复一次,直到癌症缩小或消失。Danyelza于2020年获得美国FDA加速批准上市,年治疗费用约97万美元。Danyelza的作用机制和治疗周期⑵Zokinvy(Lonafarnib)Zokinvy是由EigerBio Pharmaceuticals公司研发的用于治疗哈金森-吉尔福德早衰综合征(HGPS)和早衰样核纤层蛋白病(PL)的小分子药物,它是一种口服法尼基转移酶抑制剂,通过抑制早衰蛋白的异戊二烯化,进而降低早衰蛋白在细胞核中的积累。Zokinvy于2020年获得美国FDA批准上市,是美国第一个用于治疗早衰的药物,年治疗费用约103万美元。Zokinvy的结构式⑴ZolgensmaZolgensma是由Novartis Pharma AG公司研发的用于治疗脊髓性肌萎缩(Spinal Muscular Atrophy,SMA)的AAV基因药物,于2019年首次在美国被批准上市,目前在全球已获批的SMA疗法有3款,分别是Zolgensma、lonis的Spinraza以及罗氏的Evrysdi。与另外两种药物相比,Zolgensma只需一次静脉注射给药,患者全身就能长期表达survival of motor neuron(SMN)蛋白,达到长期缓解甚至治愈的效果,因此其定价也较高,年治疗费用约212万美元。
  • 最新!2023年度“中国科学十大进展”发布
    2月29日,国家自然科学基金委员会发布了2023年度“中国科学十大进展”。2023年度“中国科学十大进展”主要分布在生命科学和医学、人工智能、量子、天文、化学能源等科学领域。2023年度“中国科学十大进展”分别为:• 人工智能大模型为精准天气预报带来新突破• 揭示人类基因组暗物质驱动衰老的机制• 发现大脑“有形”生物钟的存在及其节律调控机制• 农作物耐盐碱机制解析及应用• 新方法实现单碱基到超大片段DNA精准操纵• 揭示人类细胞DNA复制起始新机制• “拉索”发现史上最亮伽马暴的极窄喷流和十万亿电子伏特光子• 玻色编码纠错延长量子比特寿命• 揭示光感受调节血糖代谢机制• 发现锂硫电池界面电荷存储聚集反应新机制1、人工智能大模型为精准天气预报带来新突破天气预报是国家重大战略需求,也是国际科学前沿问题。华为云计算技术有限公司田奇团队在天气预报领域取得了新突破。基于人工智能方法,他们构建了一个三维深度神经网络模型,称为盘古气象大模型。其主要技术贡献有三点。一是采用了三维神经网络结构,更好地建模复杂的气象过程。二是采用地球位置编码技术,提升训练过程的精度和效率。三是训练具有不同预测时效的多个模型,减少迭代误差、节约推理时间。盘古气象大模型在某些气象要素的预报精度上超越了传统数值方法,且推理效率提高了上万倍。在全球高分辨率再分析数据上,盘古气象大模型在温度、气压、湿度、风速等重要天气要素上,都取得了更准确的预测结果,将全球最先进的欧洲气象中心集成预报系统的预报时效提高了0.6天左右。盘古气象大模型也可用于极端天气预报。在2023年汛期,盘古气象大模型成功预测了玛娃、泰利、杜苏芮、苏拉等影响我国的强台风路径。2、揭示人类基因组暗物质驱动衰老的机制在人类基因组中,“暗物质”——非编码序列占据了98%,其中有约8%是内源性逆转录病毒元件,它是数百万年前古病毒入侵并整合到人类基因组中的残留物,通常情况下处于沉默状态。然而,随着年龄的增长,这些沉睡的古病毒“化石”的封印是否会被揭开,进而加速我们身体的衰老进程尚不得而知。中国科学院动物研究所刘光慧研究员带领研究团队,通过搭建生理性和病理性衰老研究体系,结合高通量、高灵敏性和多维度的多学科交叉技术,揭示在衰老过程中,表观遗传“封印”的松动将导致原本沉寂的古病毒元件被重新激活,并进一步驱动衰老的“程序化”和“传染性”。这项工作提出了古病毒的“复活”驱动衰老及相关疾病的新理论,为理解衰老的内在机制和发展衰老干预策略提供了新依据,为科学评估和预警衰老、防治衰老相关疾病以及积极应对人口老龄化提供新思路。3、发现大脑“有形”生物钟的存在及其节律调控机制生物钟的准确性和稳定性与健康息息相关。由于缺乏对生物节律调节机制的认识,当前国际上尚未能研究出基于生物节律的有效治疗药物。大脑的视交叉上核(SCN)是生物钟的指挥中枢,但SCN如何维持机体内部节律稳定性,从而抵御外界环境的干扰,尚不清楚。军事医学研究院李慧艳研究员和张学敏研究员通过合作研究发现了大脑“有形”生物钟的存在。他们发现大脑生物钟中枢SCN神经元长有“天线”样的初级纤毛,每24小时伸缩一次,如同生物钟的指针,通过它可实现对机体生物钟的调控。大脑SCN区域具有大约2万个神经元。神奇的是,这2万个神经元始终保持着“同频共振”,维系着生物钟的稳定性,但机理始终是个谜团。他们发现初级纤毛可能通过调控SCN区神经元的“同频共振”调节节律,其机制与Shh信号通路密切相关。该“有形”生物钟的发现,对于理解生物钟的构造以及分子层面与细胞层面生物钟的联系具有重要意义,为节律调控新药研发开辟了新的路径。4、农作物耐盐碱机制解析及应用我国有15亿亩盐碱地未被有效利用,通过培育耐盐碱农作物,可提高盐渍化土地产能,将为我国粮食安全提供有效保障。尽管学术界对于植物耐盐性有较深入认知,但对植物耐碱胁迫的认识严重不足,这阻碍了耐盐碱作物的培育。盐碱地资料图。图片来源:视觉中国中国科学院遗传与发育生物学研究所谢旗领衔的8家单位科研团队联合攻关,在粮食作物耐盐碱领域取得重要突破。通过对耐盐碱差异大的高粱资源全基因组大数据进行关联分析,研究团队发现一个主效耐碱相关基因AT1,编码G蛋白亚基。不同的AT1基因突变型在调控这一过程中发挥决定作用,为作物耐碱理论研究提供了新视角。研究还发现在水稻、玉米及小作物谷子等主要粮食作物中AT1调控机制也是类似的,为主要作物的耐盐碱分子育种奠定了理论基础。在取得理论突破的基础上,团队对高粱进行耐盐碱育种改良。在宁夏平罗盐碱地进行的田间实验表明,AT1基因的利用能够使高粱籽粒产量和全株生物量增加。AT1基因还可用于改善主要禾本科作物水稻、小麦、小米和玉米等的耐盐碱性。5、新方法实现单碱基到超大片段DNA精准操纵基因组编辑是生命科学领域的颠覆性技术,将对医疗和农业等领域的发展产生重要影响。但是,精准基因组编辑技术的底层专利目前被国外垄断,我国亟待创制具有自主产权的新技术。另外,大片段DNA的精准操纵技术研发刚刚起步,将是全球基因组编辑技术竞争的制高点。中国科学院遗传与发育生物学研究所高彩霞团队与北京齐禾生科生物科技有限公司的赵天萌团队合作,实现了基因组编辑在方法建立、技术研发和工具应用的多层次创新。研究团队首次运用人工智能辅助的结构预测建立了蛋白聚类新方法,率先将基于结构分类的理念引入工具酶挖掘领域,并基于此开发了系列具有重要应用价值的新型碱基编辑器和我国完全拥有自主产权的、首个在细胞核和细胞器中均可实现精准碱基编辑的新型工具CyDENT。此外,研究团队开发了首个植物大片段DNA精准定点插入技术,为高效作物育种和植物合成生物学奠定了技术基础。研究团队还利用基因组编辑实现了作物性状的精准调控。该成果有望进一步拓宽基因组编辑的育种应用,助力作物种质创新。6、揭示人类细胞DNA复制起始新机制DNA复制从染色体上多个地方开始,这些地方被称为复制起始位点。复制起始过程分两步:一是在起始点上组装MCM双六聚体。二是激活MCM双六聚体,成为复制体,启动复制。如果这个过程出现问题,会导致严重的疾病,比如癌症、早衰和侏儒症等。为了深入了解人体细胞DNA复制是如何开始的,该项工作解析了人体内的MCM双六聚体复合物的冷冻电镜结构。在这个结构中,复制起点DNA,被固定在MCM的中央通道里,形成一个初始开口结构。形成该结构,DNA双链需要被拉伸和解开。该研究还发现,如果初始的开口结构被破坏,那么所有的MCM-DH就无法稳定地结合在DNA上,导致DNA复制完全被抑制,就像是复印机坏了,无法开始复印文件一样。这一发现对癌症治疗有重要的应用价值。因为癌症细胞在生长过程中必须进行DNA复制。在不影响正常细胞运作的情况下,通过阻止癌细胞在DNA上组装MCM双六聚体,将会是一种全新的、有效的、而且非常精准的抗癌疗法,为抗癌药物的研发开辟了新的道路。7、“拉索”发现史上最亮伽马暴的极窄喷流和十万亿电子伏特光子伽马射线暴(简称伽马暴)是天空中突然发生的短暂伽马射线爆发现象。近些年,一些望远镜发现了伽马暴在万亿电子伏特能段随时间下降的余辉,但早期起始阶段一直未被探测到。我国高海拔宇宙线观测站“拉索”(LHAASO)首次记录了伽马暴万亿电子伏特光子爆发的全过程,探测到早期的上升阶段,由此推断喷流具有极高的相对论洛伦兹因子。“拉索”还看到了GRB 221009A(史上最亮伽马暴,起源于24亿光年外的大质量恒星死亡瞬间)的余辉在700秒左右出现了快速下降,这一光变拐折现象被认为是观测者看到了喷流的边缘所致。从光变拐折的时间得到喷流的半张角仅有0.8度。这是迄今发现最窄的伽马暴喷流,意味着它实际上是一个典型结构化喷流的核心。我国高海拔宇宙线观测站“拉索”。图片来源:中国科学院高能物理研究所“拉索”还精确测量了高能伽马射线的能谱,呈现单一的幂律,延伸至十万亿电子伏特以上。这是伽马暴观测到的迄今最高能量的光子。在余辉标准模型下,高能余辉辐射起源于相对论电子的逆康普顿散射,理论预期这样的能谱在高能段会逐渐变软。但“拉索”的观测没有发现能谱变软现象,这对伽马暴余辉标准模型提出了挑战,意味着十万亿电子伏特光子可能产生于更复杂的粒子加速过程或者存在新的辐射机制。8、玻色编码纠错延长量子比特寿命理论上,量子计算机具有超越经典计算机的算力,但受噪声干扰后容易出现量子退相干,导致错误率比经典计算机至少高十多个量级。量子纠错是解决该问题的重要途径,通过量子编码使得一个被保护的逻辑量子比特的相干寿命,超过量子电路中最好的物理比特的相干寿命。此时,意味着纠错过程超越了量子纠缠的盈亏平衡点,这是构建逻辑量子比特的必要条件。但量子态具有不可克隆性,量子计算机无法通过备份来纠正错误,量子纠错过程会引入新的错误,造成误差累积,甚至出现越纠越错的局面。南方科技大学和深圳国际量子研究院的俞大鹏院士与徐源研究团队,联合福州大学郑仕标、清华大学孙麓岩等团队依据玻色编码量子纠错方案,开发了基于频率梳控制的低错误率宇称探测技术,大幅延长逻辑量子比特的相干寿命,超盈亏平衡点达16%,实现了量子纠错增益。该成果是通往容错量子计算道路上的一项重要成果。9、揭示光感受调节血糖代谢机制国内外多项公共卫生调查研究显示,夜间过多光暴露显著增加罹患糖尿病、肥胖等代谢疾病风险。然而,光是否以及如何调节机体的血糖代谢,是尚未解决的重要科学问题。中国科学技术大学薛天研究团队发现光暴露显著降低小鼠的血糖代谢能力。哺乳动物感光主要依赖视网膜上的视锥、视杆细胞和对蓝光敏感的自感光神经节细胞(简称ipRGC)。利用基因工程手段,研究团队发现光降低血糖代谢由ipRGC感光独立介导。进一步研究发现光信号经由视网膜ipRGC,至下丘脑视上核、室旁核,进而到达脑干孤束核和中缝苍白核,最后通过交感神经连接到外周棕色脂肪组织,并最终确定了光降低血糖代谢的原因,是光经由这条通路抑制棕色脂肪组织消耗血糖的产热。进一步研究表明,光同样可利用该机制降低人体的血糖代谢能力。这项研究发现了全新的“眼-脑-外周棕色脂肪”通路,回答了长久以来未知的光调节血糖代谢的生物学机理,拓展了光感受调控生命过程的新功能。这项工作发现的感光细胞、神经环路和外周靶器官,为防治光污染导致的糖代谢紊乱提供了理论依据与潜在的干预策略。10、发现锂硫电池界面电荷存储聚集反应新机制锂硫电池具有极高的能量密度和较低的成本,然而,锂硫电池的广泛应用还未能实现。因为它在充放电过程中,电池性能会快速下降。受限于传统原位显微研究技术的时空分辨率低及锂硫体系不稳定等因素,人们对其内部发生的化学反应过程尚不清楚,无法针对性解决问题。厦门大学廖洪钢、孙世刚和北京化工大学陈建峰等开发高分辨电化学原位透射电镜技术,耦合真实电解液环境和外加电场,实现对锂硫电池界面反应原子尺度动态实时观测和研究。近百年来,电化学界面反应通常被认为仅存在“内球反应”和“外球反应”单分子途径。该研究揭示出电化学界面反应存在第三种“电荷存储聚集反应”机制,加深了对多硫化物演变及其对电池表界面反应动力学影响的认识,为下一代锂硫电池设计提供指导。
  • 570余台套1.7亿元!葛兰素史克捐赠仪器给上海药物所
    p  4月28日上午,葛兰素史克(上海)医药研发有限公司(GSK)——中国科学院上海药物研究所(SIMM)仪器捐赠签约仪式在上海药物所举行。葛兰素史克全球神经系统药物研发总裁及中国研发中心总经理利民和中科院上海药物所所长蒋华良分别代表双方在捐赠协议书上签字。本次捐赠的仪器涉及生物和化学两大方面,涵盖神经精神系统药物研发的全部环节,总计570余台套,原值超过1.7亿元。/pp  蒋华良表示,上海药物所拟在保持现有仪器设备主体构架完整性的基础上,整合研究所的优势资源,拟建立“神经药理学中心实验室(筹)”,以感谢葛兰素史克公司的慷慨捐赠,为今后双方的合作奠定扎实的基础。上海药物所将基于此基础积极探索与葛兰素史克公司等国际知名药企开展战略合作的更多可能,创新开放合作形式,开展包括学术交流、成立合作基金、新药研发项目合作及技术平台共享等战略合作,在更高层面实现互助共赢。上海药物所将继续秉持与葛兰素史克公司同样的注重服务社会、支持中国新药研发的精神,将这批捐赠仪器对周边的企事业单位提供共享服务,以实现最大的社会效益。/pp  利民在致辞中表示,葛兰素史克公司一直致力于提高人们的健康水平和生活质量,并最终为社会发展作出贡献 上海药物所作为历史悠久的国立综合性创新药物研究机构,在神经精神疾病药物研发方面做出过重要贡献,目前亦有一批抗神经精神新药在临床或临床前研究阶段,双方有众多可共同为之努力的新方向。/pp  上海药物所副所长李佳在发言中指出,上海药物所在神经精神疾病药物研发领域有着长期的积累,是研究所的优势学科和重点建设方向,葛兰素史克公司此次的捐赠必将进一步提升上海药物所在神经精神疾病领域药物研发的能力。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201805/insimg/799c6baa-59cd-4fc5-994c-13ba284ff40d.jpg" title="01.jpg"//pp style="text-align: center "strong签约仪式现场/strong/p
  • 杀人于无形!由"金正男遇害案",看史上十大致命化学武器
    p  近日,一则《金正男在马来西亚遇刺案》席卷各地媒体头条,引起了各方的关注。凶手如何能在较短的时间内实施谋杀,又如何得以顺利逃脱,凶手在遍布监控的马来西亚机场使用的武器是什么?/pp  24日,马来西亚警察总长哈立德在吉隆坡发表声明,证实在吉隆坡第二国际机场遇袭死亡的朝鲜男子死于strongVX神经毒剂/strong,证实从“金哲”眼睛及嘴巴采集到的样本中检验出VX神经毒气成分,普通的化学试剂为何能成为杀人武器?下面,小编带你一起盘点一下那些杀人于无形的十大致命化学武器及其检测方法。/pp style="text-align: center "img style="width: 418px height: 529px " title="03.png" src="http://img1.17img.cn/17img/images/201702/insimg/977f3c82-3d96-406c-ad6a-a2b383b5aee2.jpg" width="524" height="723"/ /pp style="text-align: center "strong马方公布金正男尸检结果:面部眼部含VX神经性毒剂/strong/pp  神经性毒剂是一类剧毒的有机膦酸酯和有机膦酸酯类化合物,它们进入人体后作用于神经系统,通过抑制胆碱酯活性从而引起乙酰胆碱的蓄积,使胆碱能神经过度兴奋,最后导致呼吸、循环系统衰竭死亡。神经毒剂按化学机构和战术使用特点分为两大类:strong一类为G类毒剂/strong,以呼吸道吸入为主要中毒途径,如沙林(GB)、梭曼(GB)和塔崩(GA)等 strong另一类为V类毒剂/strong,以皮肤染毒吸收为主要中毒途径,如VX等。/pp  神经性毒剂的分析检测方法依样品来源不同而各异,其基质主要分为毒剂纯品、油样、土样、水样、擦拭样、气体样品和生物医学样品等。与其他基质样品相比,生物医学样品(例如:strong血清和尿液中的降解产物等/strong)的分析检测可以提供生物体接触神经性毒剂的明确证据,具有较强溯源性。色谱及色谱质谱联用技术具有高选择性、高灵敏度和可以进行化合物结构确证等优点,已经成为神经性毒剂及其相关化合物权威性鉴定的重要研究手段。 /pp  目前,针对于神经毒剂的检测方法主要包括:strong气相色谱法、气相色谱质谱法和液相色谱质谱法/strong。同时,随着现代仪器分析技术和生物技术的飞速发展,目前已经出现了实时、高选择性和高特异性的生物/化学传感器分析方法检测神经性毒剂,包括:strong干涉测定法、分子印迹法、显色法、荧光分析法和基于酶的生物传感法/strong等,被用于现场侦检和诊断。/ppspan style="color: rgb(0, 176, 240) "strong史上十大最致命的化学武器:/strong/spanstrong /strong/pp  strongNo.1、vx神经毒气/strong/pp  维埃克斯(VX)是一种比沙林毒性更大的神经性毒剂,是最致命的化学武器之一。它也是一种无色无味的油状液体,一旦接触到氧气,就会变成气体。工业品呈微黄、黄或棕色,贮存时会分解出少量的硫醇,因而带有臭味,主要是以液体造成地面、物体染毒,可以通过空气或水源传播,几乎无法察觉。人体皮肤与之接触或吸入就会导致中毒,头痛恶心是感染这种毒气的主要症状。VX毒气可造成中枢神经系统紊乱、呼吸停止,最终导致死亡。/pp style="text-align: center "img title="02.jpg" src="http://img1.17img.cn/17img/images/201702/insimg/e5657828-9506-4cc5-818e-2ebd469c5f6e.jpg"//pp style="text-align: center "strongvx神经毒气分子结构/strong/pp  据美国研究人员约翰· 林赛2003年在巴拿马首都推出《热带丛林之王》一书披露,美国军队60年代曾在巴拿马运河地区进行过化学武器试验,其中包括毒性很强的VX毒剂。/pp  此外值得一提的是,VX毒气弹在好莱坞大片中也曾大放异彩,在美国大片《石破天惊》中,尼古拉斯凯奇主演的化学专家斯坦利和老英国特工梅森潜入阿卡拉岛拆除毒气弹,与叛军斗智斗勇,在银幕上演了惊险的一剧。/pp  strongVX毒剂救治方式:/strong/pp  对VX毒剂的防护与对防护与对其他神经性毒剂的防护相同,应采取全身防护器材,即防毒面具、防毒斗篷、防毒手套、防毒靴套等,对中毒者急救可采用阿托品等药物,对其消毒可用次氯酸盐、二氯三聚异氰酸钠等消毒剂。/pp  strongNo.2、塔崩/strong/pp  塔崩(Tabun)是一种有极强的毒性的物质。它是清澈无色无味的液体,有轻微水果香味。由于它会严重地影响哺乳类动物神经系统的正常功能甚至致命,塔崩被视为一种神经毒素。/pp  塔崩为半持久性毒剂。适用于地面染毒,制成气溶胶也可用于空气染毒。1936年,德国的格哈德· 施拉德(G.Sc.h.rader)博士首次合成了塔崩,而他本人在次年初轻微中毒,成为塔崩的最早受害者。/pp  美国军用代号GA。在两伊战争中,伊拉克首次将塔崩较大规模地用于实战。1981年1月至11月,伊拉克军队曾向伊朗军队阵地发射了塔崩炮弹,造成了人员伤亡。塔崩虽然优于氢氰酸、光气等老式毒剂,可是由于其战术性能不及沙林,毒性只是沙林的1/3,因此属于逐渐淘汰的毒剂。/pp  strongNo.3、沙林/strong/pp  沙林(Sarin)可以麻痹人的中枢神经,是常用的军用毒剂,按伤害作用分类为神经性毒剂。/pp  沙林可以通过呼吸道或皮肤黏膜侵入人体,杀伤力极强,即使吸入少量数分钟之内也可致人死地。沙林工业品呈淡黄或黄棕色,纯的沙林无味,含杂质的沙林有水果香味。/pp  1995年在日本东京发生了沙林毒气事件,造成了较大的人员伤亡。2013年8月,在叙利亚大马士革再一次发生沙林毒气事件,造成约1300左右人员的死亡,联合国已派出叙利亚沙林毒气事件调查小组前往调查事故原因。/pp  strongNo.4、芥子气/strong/pp  芥子气为糜烂性毒剂,对眼、呼吸道和皮肤都有作用。全身中毒症状有全身不适、呕吐、抑郁、嗜睡等中枢抑制及副交感神经兴奋等症状。中毒严重可引起死亡。国际癌症研究中心(IARC)已确认为致癌物。/pp  德军在第一次世界大战中,首先在比利时的伊普尔地区对英法联军使用,并引起交战各方纷纷效仿。当时身为巴伐利亚步兵班长的希特勒作为参战士兵曾被英军的芥子气炮弹毒伤,眼睛暂时失明。/pp  据统计,在第一次世界大战中共有12000吨芥子气被消耗于战争用途 因毒气伤亡的人数达到130万,其中88.9%是因芥子气中毒。在第二次世界大战中,侵华日军曾在中国东北地区秘密驻有负责毒气研究和试验的516部队、731部队。/pp  strongNo.5、路易斯气/strong/pp  路易斯气是糜烂性毒剂的主要代表物之一。糜烂性毒剂主要通过呼吸道、皮肤、眼睛等侵入人体,破坏肌体组织细胞,造成呼吸道粘膜坏死性炎症、皮肤糜烂、眼睛剌痛畏光甚至失明等。这类毒剂渗透力强,中毒后需长期治疗才能痊愈。/pp  路易斯气是一种化学战争毒剂,其挥发性和穿透力均强于芥子气,能引起皮肤红肿、起泡以至溃烂,能伤害身体各部器官,特别是肺部。路易斯气是战争中常用的化学武器,应用在战争上时,会雾化。美国、日本、苏联和意大利都曾生产这种毒气。/pp  strongNo.6、毕兹/strong/pp  毕兹是一种无特殊气味的白色或微黄色的结晶粉末,学名为二苯羟乙酸-3-喹咛酯,属失能性毒剂。现代失能剂的概念是由英国人黑尔于1915年首先提出的,美国则争先对失能剂开展了广泛的研究工作。毕兹主要通过呼吸道中毒,症状以中枢神经系统功能紊乱为主。/pp  越战中美军曾多次使用毕兹,并把它们称作“仁慈”的武器。据有关资料记载,当时有许多越军官兵中毒失能后又被美军用刺刀残忍地捅死。/pp  strongNo.7、光气/strong/pp  光气由一氧化碳与氯气在日光下合成,为无色剧毒气体,它能伤害人体呼吸器官,严重时导致人体死亡。战争促进了化学武器的发展,一战中出现了多种毒剂,除了氯气外,又出现了光气,使用量达到10万吨之多,是残害生灵的战场毒魔。1915年12月19日,德军发射装填光气的火箭弹。英军阵地上有1000多人中毒,100多人死亡。/pp  strongNo.8、双光气/strong/pp  双光气,氯甲酸三氯甲酯的别称,无色液体,有刺激性气味,难溶于水,可作其他毒剂的溶剂如芥子气等。/pp  双光气为一种窒息性毒剂,即对人体的肺组织造成损害,导致血浆渗入肺泡引起肺水肿,从而使肺泡气体交换受阻,机体缺氧而窒息死亡。一战中德军曾用双光气作为化学武器。/pp  strongNo.9、氢氰酸/strong/pp  氢氰酸(HCN)是氰化氢的水溶液。有苦杏仁味,可与水及有机物混溶。战争使用状态为蒸气状,主要通过呼吸道吸入中毒。其症状表现为:恶心呕吐、头痛抽风、瞳孔散大、呼吸困难等,重者可迅速死亡。/pp  二战期间,德国法西斯曾用氢氰酸一类毒剂残害了集中营里250万战俘和平民。/pp  strongNo.10、氯气/strong/pp  氯气是一种有毒气体,它主要通过呼吸道侵入人体并溶解在黏膜所含的水分里,生成次氯酸和盐酸,对上呼吸道黏膜造成有害的影响:次氯酸使组织受到强烈的氧化 盐酸刺激黏膜发生炎性肿胀,使呼吸道黏膜浮肿,大量分泌黏液,造成呼吸困难,所以氯气中毒的明显症状是发生剧烈的咳嗽。/pp  症状重时,会发生肺水肿,使循环作用困难而致死亡。由食道进入人体的氯气会使人恶心、呕吐、胸口疼痛和腹泻。氯气是一种刺激性气体,含有剧毒,曾经在一战中作为化学武器使用。/p
  • 8762万943台/套 成都大学多个科研专项仪器设备采购需求公示
    日前,成都大学公示多个科研专项设备采购项目需求论证意见,包括农产品加工工程中心(杂粮)科研专项设备采购项目、整合医学研究院创新研究中心科研设备采购项目(基础医学、护理部分)、能源工程材料研究中心一期建设科研专项设备采购项目、农产品加工工程中心(肉类)科研专项设备采购项目、“手性药物创新研究中心”建设科研专项设备采购项目等,采购预算8761.961万元。  此次公示的采购需求包括多类别的仪器设备,气相色谱-三重四级杆质谱联用仪、高分辨飞行时间质谱仪、气相色谱质谱联用仪、制备型液相色谱仪、液相色谱质谱联用仪、超高效合相色谱仪、傅立叶变换近中红外显微成像系统、核磁共振波谱仪、扫描电镜、全自动凯氏定氮仪、实时荧光定量PCR仪等允许进口产品参与竞争;低场核磁共振成像与分析系统、自动凯氏定氮仪(带消化炉)、大容量电动移液器、紫外交联仪等不允许进口产品参与竞争。  采购单位联系人:杨老师84616108。  采购项目名称:成都大学农产品加工工程中心(杂粮)科研专项设备采购项目  采购预算:1200万元  项目清单包号名称数量(台/套)备注(是否允许进口产品参与竞争)第1包傅立叶变换近中红外显微成像系统1允许进口产品参与竞争色彩色差仪1允许进口产品参与竞争超低温冰箱1允许进口产品参与竞争第2包小型喷雾干燥仪1允许进口产品参与竞争冷冻干燥仪1允许进口产品参与竞争全自动凯氏定氮仪1允许进口产品参与竞争旋转蒸发系统1允许进口产品参与竞争样品均质机1允许进口产品参与竞争冷冻研磨机1允许进口产品参与竞争微波消解仪1允许进口产品参与竞争第3包数据分析服务器1分析型高速逆流色谱仪1不锈钢固体发酵罐1白酒酿酒设备1啤酒生产设备1独立送风隔离笼具1第4包纳米粒子/量子点合成仪1允许进口产品参与竞争细胞培养箱1允许进口产品参与竞争荧光分光光度计1允许进口产品参与竞争液相色谱仪1允许进口产品参与竞争模块化智能型高级流变仪1允许进口产品参与竞争第5包种子活力分析仪1允许进口产品参与竞争花粉活力分析仪1允许进口产品参与竞争全自动纤维素测定仪1允许进口产品参与竞争磨样机1允许进口产品参与竞争第6包全电动研究级正置荧光显微镜1允许进口产品参与竞争落地式高速大容量冷冻离心机1允许进口产品参与竞争  采购项目名称:成都大学整合医学研究院创新研究中心科研设备采购项目(基础医学、护理部分)  采购预算:1990.901万元  项目清单包号名称数量(台/套)备注(是否允许进口产品参与竞争)第一包实时荧光定量PCR仪1允许进口产品参与竞争冷冻台式高速离心机1允许进口产品参与竞争超低温冰箱1允许进口产品参与竞争纯水超纯水仪1允许进口产品参与竞争微量台式离心机5允许进口产品参与竞争差示热量扫描仪1允许进口产品参与竞争冷冻干燥机1允许进口产品参与竞争激光粒度仪(带Zeta点位测定)1允许进口产品参与竞争二氧化碳培养箱2允许进口产品参与竞争血气分析仪1允许进口产品参与竞争第二包酶标仪1允许进口产品参与竞争多功能酶标仪1允许进口产品参与竞争超灵敏多功能成像仪1允许进口产品参与竞争倒置荧光显微镜1允许进口产品参与竞争荧光显微成像系统1允许进口产品参与竞争第三包小动物行为分析系统1允许进口产品参与竞争冰冻切片机1允许进口产品参与竞争第四包微循环观测系统8一体集成化可移动机能实验教学系统20动物无创血压测量系统1离体组织器官恒温灌流系统2离体动物心脏灌流装置2避暗实验视频分析系统1足趾容积测量仪8热板仪8转棒仪1无干扰恒温加热兔台20超纯水机1大容量冷冻冰柜1多媒体教学设备2尿液分析仪3微量台式冷冻离心机1第五包大数据工作站1生物显微镜50第六包超低温冰箱2万分之一天平5十万分之一天平1电泳仪2垂直电泳槽2垂直电泳槽1允许进口产品参与竞争低速离心机2pH仪2恒温水浴锅2数显恒温金属浴加热器1超净工作台2光照培养箱1脱色摇床1全自动高压灭菌锅2专用-20度冰箱12-8度医用冷藏箱2生物安全柜1紫外可见分光光度计1高效液相色谱仪1磁力加热搅拌器16常温磁力搅拌器4油泵2循环水真空泵2全自动细胞计数仪1允许进口产品参与竞争抽真空烘箱2电热恒温鼓风干燥箱3涡旋混合器8快速梯度PCR仪2允许进口产品参与竞争旋片真空泵2防倒吸油泵1允许进口产品参与竞争旋转蒸发仪2隔膜真空泵1允许进口产品参与竞争冷却循环水装置1磁力加热搅拌器2允许进口产品参与竞争转移电泳槽1超微量核酸蛋白浓度测定仪1允许进口产品参与竞争双人单面超净工作台2隔水式培养箱2电热恒温鼓风干燥箱2脱色摇床1全波段酶标仪(含电脑和软件)1微孔板恒温振荡器1普通冰箱(实验用)4超纯水机1高压消毒灭菌器2第七包实地解剖实验系统1三叉神经及其分支模型2颈部浅、中、深层解剖模型2颈部浅层解剖模型2颈部中层解剖模型2颈部深层解剖模型2颜面浅层肌肉神经血管2颈部浅层神经和血管局解2头、面、颈部解剖和颈外动脉配布2下颌下三角解剖模型2纵隔2儿童纵隔23部件纵隔25部件纵隔2胸腔解剖模型2胸腔(胸腔内器官)解剖模型2髋肌及髂内动脉分布2颅顶层次解剖2手解剖放大2手解剖放大2足解剖模型2足底解剖及足底动脉分支2颈前肌局解2髋部局解模型2男性会阴模型2女性会阴模型2女性盆部层次解剖模型2颅内副交感神经立体模型2颅腔及头颈胸局部解剖2头、颈、胸静脉回流模型2鼻、口、咽、喉腔解剖模型2自主神经解剖模型2自主神经模型2脑脊髓与周围神经解剖模型(椎管内脊髓与脊神经)2头部、颈部层次解剖模型附脑神经和动脉2头部解剖模型2头部、颈部层次解剖模型附脑神经、脑动脉模型2脑神经在头颈部分布模型2口、鼻、咽、喉内侧面血管神经解剖模型2头面部血管神经模型2头部正中矢状切面附血管神经模型2头颈部肌肉、血管附脑模型2头颈胸部肌肉、血管附脑模型2第八包数字病理切片扫描系统1实验室通风系统+专用通风柜1第九包透明女性导尿模型4透明男性导尿模型4灌肠训练模型8多功能透明洗胃训练模型4不锈钢操作台8全功能护理人6老年人关爱护理模型4吸痰练习模型4心电监护仪1平台式呼吸机1护理人存放柜6输液泵2注射泵2多媒体心电图教学系统1高级成人护理教学系统1第十包数码互动实验室1数码互动实验室配套设备1投影仪及附件1第十一包数字人体虚拟解剖教学系统教师中控1数字人体解剖系统学生端(系统解剖)4数字人体解剖系统学生端(局部解剖)4第十二包医学形态学数字化教学平台系统(服务器端)1医学形态学数字化教学平台系统(学生端)41第十三包多媒体示教反示教系统2临床护理思维综合训练系统1第十四包图形处理系统1位置追踪摄像头8光学追踪系统软件1超4KVR场景管理器1VR场景管理器软件1智能无线传屏13D立体信号发射器1小间距LED13D主动立体眼镜30有源音箱1虚拟现实渲染软件1虚拟现实桥接软件1头戴显示设备20头显控制PC20交换机5五边课桌5多人适配软件系统20虚拟现实内容平台1配套服务器1异地多人协同平台软件1临床综合能力训练虚拟实训系统1新生儿护理仿真实训系统1人体组织结构虚拟展示仿真实训系统1人体眼球构造展示仿真实训系统1急救护理学-院外急救外置虚拟仿真教学系统1  采购项目名称:成都大学能源工程材料研究中心一期建设科研专项设备采购项目  采购预算:1969.58万元  项目清单包号名称数量(台/套)备注(是否允许进口产品参与竞争)第1包直线等离子体装置1第2包真空检漏仪1允许进口产品参与竞争红外测温仪1允许进口产品参与竞争第3包高速相机1允许进口产品参与竞争第4包等离子体清洗系统1第5包腐蚀/应力系统1第6包气相色谱仪1电镜能谱(SEM)1质谱仪1第7包傅里叶红外光谱仪1允许进口产品参与竞争第8包高温高压超临界水回路系统1第9包轮廓仪1允许进口产品参与竞争第10包X射线光电子能谱仪1允许进口产品参与竞争第11包X射线衍射仪1允许进口产品参与竞争  采购项目名称:成都大学农产品加工工程中心(肉类)科研专项设备采购项目  采购预算:1200万元  项目清单包号名称数量(台/套)备注(是否允许进口产品参与竞争)第1包扫描电镜1允许进口产品参与竞争第2包气相色谱-三重四级杆质谱联用仪1允许进口产品参与竞争全自动氨基酸分析仪1允许进口产品参与竞争第3包全波长酶标仪1允许进口产品参与竞争移液器(每套含5支)5允许进口产品参与竞争大容量离心机1允许进口产品参与竞争超净工作台1允许进口产品参与竞争多重定量分析检测系统1允许进口产品参与竞争PCR仪1允许进口产品参与竞争电穿孔1允许进口产品参与竞争转膜仪(半干转)1允许进口产品参与竞争离子色谱仪1允许进口产品参与竞争荧光检测器(配现有液相)1允许进口产品参与竞争第4包电子鼻1允许进口产品参与竞争电子舌1允许进口产品参与竞争研究级正置显微镜1允许进口产品参与竞争刀式研磨仪1允许进口产品参与竞争第5包低场核磁共振成像与分析系统1否第6包全自动隧道式烘烤机1否螺旋裹粉机1否自动卤制机1否真空灌肠机1否挤压成型机1否自动打卡机1否切条切块机1否压肉机1否挤压嫩化机1否包芯肉丸机1否肉类成型机1否自动锯割机1否生火腿挤压机1否鲜肉切片机1否调味机1否二次灭菌机1否真空包装袋检测机1否倾斜式真空包装机1否大容量电动移液器3把1否紫外交联仪1否脱色摇床1否蛋白电泳槽1否金属浴1否自动凯氏定氮仪(带消化炉)1否  采购项目名称:成都大学“手性药物创新研究中心”建设科研专项设备采购项目  采购预算:2401.48万元  项目清单包号名称数量(台/套)备注第1包真空冷冻干燥机1允许进口产品参与竞争变频隔膜真空泵5允许进口产品参与竞争油封式旋片真空泵20允许进口产品参与竞争磁力搅拌低温恒温槽(-40oC)4允许进口产品参与竞争磁力搅拌低温恒温槽(-80oC)4允许进口产品参与竞争熔点仪2允许进口产品参与竞争高分辨飞行时间质谱仪1允许进口产品参与竞争气相色谱质谱联用仪1允许进口产品参与竞争在线红外光谱仪(FTIR)1允许进口产品参与竞争差示扫描量热仪1允许进口产品参与竞争气相色谱仪2允许进口产品参与竞争制备型液相色谱仪1允许进口产品参与竞争第2包核磁共振波谱仪1允许进口产品参与竞争旋光仪1允许进口产品参与竞争液相色谱质谱联用仪1允许进口产品参与竞争圆二色光谱仪1允许进口产品参与竞争高效液相色谱仪(反相)7允许进口产品参与竞争第3包柱型连续流动氢化反应装置1允许进口产品参与竞争全自动微波合成仪1允许进口产品参与竞争超高效合相色谱仪1允许进口产品参与竞争高效液相色谱仪(正相)2允许进口产品参与竞争第4包超低温冰箱(双制冷系统)1超低温冰箱(单制冷系统)1防爆冰箱6防爆冰柜7高温程控马弗炉1制冰机3光催化反应系统1平行合成仪1手性液相色谱柱25非手性液相色谱柱2鼓风干燥箱12真空干燥箱5臭氧发生器1第5包手套箱2溶剂处理系统3循环水泵16旋转蒸发系统20第6包磁力搅拌器70不锈钢高压釜8电化学反应仪4十万分之一天平4万分之一天平10百分之一天平4手套箱2紫外灯10玻璃仪器及耗材一批1
  • “论文涉嫌造假”耽搁AD领域16年,关键是AD药物开发公司也在造假
    AD领域的药物研发失败率极高。最近发生的两件事或许能折射出其中的缘由:不仅学术界的AD领域开山之作在造假、制药领域也在“图片误用”。日前,一起“图像篡改”事件震惊了整个学术界,《科学》发布一篇长文调查,发现这篇论文被引用2300多次,目前这篇“图像篡改”的论文造假事件带给学术界的地震还在持续。该事件发酵后,美国制药公司Cassava Sciences也因涉嫌AD药物的数据欺诈面临控告。两起事件无不让AD领域的药物开发雪上加霜。近日,一则关于阿尔茨海默症(AD)药物欺诈的消息,登上了福克斯商业快讯的新闻头条,而这则新闻的主角,正是阿尔茨海默病药物Simufilam背后的制药公司——Cassava Sciences。此前,AD领域刚经历被引2300余次的开创性论文,涉嫌“图片误用”,误导AD领域长达16年。因数据造假,AD领域上市公司即将面临起诉2022年7月27日,美国司法部门已经对Cassava Sciences公司展开了刑事调查,因为他们怀疑该公司伪造了阿尔茨海默病药物 Simufilam的药物测试不仅如此,Cassava Sciences还在接受美国证券交易委员会的调查,理由是有人指控该公司操纵了与Simufilam药物相关的数据。一时间,Cassava Sciences就因“图像数据造假”问题,被送上了风口浪尖。但面对相关指控,Cassava Sciences一直都矢口否认,其律师Kate Watson Moss表示,“公司从未被指控犯罪,而且我们有充分的理由可以证明,Cassava Sciences从来没有参加过犯罪行为。”事实果真如此吗?俗话说“无风不起浪”,如果真如Watson Moss律师所说,那这家公司又为何会因为“欺诈”罪名被卷入刑事风波呢?Cassava Sciences到底做了什么事情?据路透社的报道称,Cassava Sciences之所以会被刑事调查,主要是因为两名医生的举报。这两名医生分别是 “制药巨头”强生公司前雇员、神经科学家大卫布雷特(David Bredt)和威尔康奈尔医学心血管研究所所长、心脏病专家杰弗里皮特(Geoffrey Pitt)。他们表示,Cassava Sciences在已经发表的研究当中,相关数据和试验照片有被处理过的痕迹。 左:David Bredt 右:Geoffrey Pitt面对业内两位权威人士的实名指控,Cassava Sciences的“图像数据造假”问题,似乎已经是板上钉钉的事实了。Cassava Sciences涉嫌造假一事,也不是最近才发生的事情,早在2021年就已经被媒体广泛曝光。数据图像造假,充斥着AD领域说起来,这已经不是阿尔茨海默症领域爆出的第一个“大瓜”了。2022年7月21日,《科学》杂志就已经发文称,美国明尼苏达大学(UMN)医学院神经科学系副教授、著名神经科学家Sylvain Lesné,被指控多篇论文中的数据图像造假(涉及2006年的Nature论文,将Aβ*56确定为与认知能力下降相关的有毒低聚物)。作为阿尔茨海默症研究方面的专家,Sylvain Lesné的“图像造假事件”在阿尔茨海默症领域着实掀起了不小的风浪,而Cassava Sciences此次的“图像数据造假”问题,与Sylvain Lesné可以说是如出一辙。如果说Sylvain Lesné的“翻车”是发生在阿尔茨海默症领域的一场“大地震”,那么近日爆出的Cassava Sciences涉嫌阿尔茨海默症药物欺诈”的消息,便是那场大地震之后的“强烈余震”,同样在阿尔茨海默症领域引起了巨大反响。随着Cassava Sciences此次造假问题的爆出,Sylvain Lesné的“图像造假事件”可以说是再一次被推向舆论中心。Ashe对《科学》一文的回应:“这是毁灭性的”学术界内对Aβ*56的相关研究众说纷纭,Lesné则完全保持沉默,最近在接受调查,而他的导师、明尼苏达大学教授Karen Hsiao Ashe也对此事做出了正面回应。接下来,我们看看Ashe是如何回应此事的,这篇文章由Ashe在alzforum.org网站上发布。明尼苏达大学教授Karen Hsiao Ashe关于查尔斯皮勒(Charles Piller)在《科学》杂志上发表的文章,我无法去评价有关我的前同事西尔万莱斯内(Sylvain Lesné)博士被指控不恰当地更改图像这件事,因为他现在正在明尼苏达大学接受正式调查。但我将评论皮勒先生的科学陈述,因为他对我的科学论文的描述是不准确的。这篇科学文章,暗示了我的工作通过鼓励开发针对淀粉样蛋白斑块的疗法,来误导阿尔茨海默病领域的研究人员。我们大多数人都知道淀粉样蛋白斑块是由Aβ组成的,但事实上,20 多年来,我一直担心靶向该斑块的药物可能会无效。根据我发表的工作(Liu et al., 2015 Ashe, 2020),很显然Aβ是有两种一般形式的,分别是1型和2型。1型的一种特殊形式(在我们的论文中称它为Aβ*56,我和实验室的其他同事在《科学》文章中将其称为“有毒低聚物”)会损害小鼠的记忆功能。而2型Aβ是在淀粉样斑块中发现的一种。药物开发人员反复针对的正是后一种形式,但均未成功。目前还没有针对1型Aβ的临床试验,我的研究表明1型Aβ与痴呆症相关性更强。皮勒先生却错误地将Aβ的两种形式混为一谈。皮勒先生的文章给了读者一种强烈的“暗示”,2006 年《自然》的这篇论文以某种方式点燃或者说推动了科学家们对阿尔茨海默氏症的Aβ靶向疗法的追求。我同意这种疗法的高失败率是令人沮丧的,并且AD的药物研发的确很昂贵。但读者必须知道的是,完全否认这一切是完全不真实的,几十年来,来自许多实验室的人类遗传学和小鼠模型已使许多药物开发人员得出结论,Aβ是一个非常合理的靶标。皮勒先生的文章将两个不同的问题混为一谈:a)对阿尔茨海默病药物开发困难的挫败感;b) 对科学不端行为的具体指控,涉及一系列关于Aβ假说某一特定方面的论文。皮勒先生的这篇文章混淆上述a和b,给读者的印象是——让学术不端的具体行为,为整个阿尔兹海默病药物开发的失败率买单,这是具有误导性的。几十年来,我一直致力于探寻阿尔茨海默病的病因,以便为患者找到更好的治疗方法,但近期发现一位同事可能通过篡改图像误导了我和科学界,这是毁灭性的。然而,更令人痛苦的是,发现一家主流的科学期刊公然歪曲了我工作的含义。学术界对《科学》一文的回应:争议颇大对于这一起震惊学术界的“造假门”事件,其他业内专家学者也纷纷发表了自己的看法。加州大学查尔斯格拉布(Charles Glabe)作出了回应,在实验中,格拉布等人提供了一种称为A11的抗体,并提供了验证它的标准,“可悲的是,这并不是我们领域中第一篇或最后一篇无法复制的高关注度的论文。”格拉布表示。格拉布认为,Aβ*56对低聚物毒性领域没有长期影响,因为它的主要新颖主张是SDS PAGE上特定的56K低聚物条带。在此期间,还有很多其他实验室聚焦于低聚物的研究,每种类型的低聚物具有不同的大小、形态和名称。因此,除了Aβ*56工作之外,实际上还有很多关于低聚物的研究在进行。“我认为有强有力的证据表明,淀粉样蛋白低聚物(Aβ,tau,突触核蛋白,Htt低聚物等)参与神经元内淀粉样蛋白聚集和病变在整个大脑中的传递,摄取和播种,导致淀粉样蛋白的神经元内积累和细胞死亡。”格拉布介绍道。根据格拉布的观点,他与Ashe都认为Aβ*56的图像篡改事件与整个淀粉样蛋白低聚物的研究不能混为一谈,除了Aβ*56外,还有许多可以被研究的对象。布莱根妇女医院安罗姆尼神经系统疾病中心联合主任丹尼斯塞尔科(Dennis Selkoe)也和格拉布观点相似,他此前接受了调查记者的采访,看到了一些对篡改图像的专业分析。“在2006年,我们中的许多人认为不太可能有一种受欢迎的低聚物引起突触毒性。我觉得这个问题对于一般的科学公信度来说,是最不幸的。这根本不是科学上的挫折,因为还有许多其他关于可溶性低聚物引起AD特征的令人信服的论文。”塞尔科在评论区表示。德国蒂宾根大学的(Mathias Jucker)对此也表示赞同。“Aβ * 56研究只是声称Aβ寡聚体是AD发病机制中的关键有毒物质,这只是相关的众多论文中的一篇。我认为如果没有Lesné的工作,该领域的发展不会有所不同,”他表示。当然,也有专家表示Lesné的研究已经在AD研究领域造成了不可估量的损失。“最直接的,最明显的损害是浪费了NIH的资金和该领域的思维浪费,因为人们正在利用这些结果作为自己实验的起点”,斯坦福大学神经科学家Thomas Südhof表示。简而言之,Lesné此次图像造假事件已发酵到引起了大量学术界专家的注视,而,Cassava Sciences公司的造假事件则是折射出AD领域药物研发乱象以及困境。这两起事件对科学研究的公信力产生了一定的负面影响,同时也连带到相关的药物研究遭受信任危机。参考资料1.Sylvain Lesné, Who Found Aβ*56, Accused of Image Manipulation.ALZFORUM.https://www.alzforum.org/news/community-news/sylvain-lesne-who-found-av56-accused-image-manipulation2.Us opens criminal probe pharma company potential alzheimers drug fraud:report.Foxbusiness.https://www.foxbusiness.com/economy/us-opens-criminal-probe-pharma-company-potential-alzheimers-drug-fraud-report.
  • 多肽药物测量能力获得国际互认
    p style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "中国计量科学研究院与国际计量局近期在国际计量权威期刊Metrologia联合发文,报道了双方联合主导的多肽药物缩宫素测量的国际比对情况。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 550px height: 199px " src="https://img1.17img.cn/17img/images/202011/uepic/70509efa-819b-4dc1-8b63-2012a79000f8.jpg" title="22.png" alt="22.png" width="550" height="199" border="0" vspace="0"//pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "缩宫素(oxytocin)又称催产素,其氨基酸序列为CYIQNCPLG(SS:C1-C6),C端转化为一级酰胺。缩宫素是下丘脑产生的一种神经肽,由垂体分泌。它在性生活、分娩和哺乳期间释放,以促进生物繁衍;另外,缩宫素发挥着多种心理作用,影响人的情绪和社会行为。作为治疗药物,缩宫素被广泛用于增强分娩时宫缩,及减少产后出血;在终止妊娠或治疗流产也起着关键作用。此外,缩宫素药物有缓解焦虑的效果,对自闭症有治疗作用。在缩宫素药物生产过程,对杂质和含量测定等方面存在行业需求和监管挑战。目前,世界各国正在开展多肽药物专著的撰写、现行官方专著的修订等活动。美国药典委员会和欧盟药典委员会提供了缩宫素标准物质,以支持其专著;英国国家生物制品检定所(NIBSC)为世界卫生组织(WHO)提供了缩宫素标准物质;各国计量机构也正在研制缩宫素标准物质。为实现缩宫素测量结果的溯源性、准确性、一致性,中国计量科学研究院与国际计量局化学部开展了缩宫素测量技术的合作研究,并联合主导了缩宫素测量技术的国际比对,即CCQM-K115. b/P55.2. b。通过参加该比对,各国显著提高了多肽药物中杂质测量和主成分含量的测量能力,对优化多肽药物生产工艺进而提升药物质量具有重要意义。通过主导并参加该国际比对,我国多肽药物测量能力获得国际互认。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em text-align: right "(文稿:李明)/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "2020年11月10-12日,中国计量科学研究院和国际计量局拟联合举办第三届 “药物及诊断试剂研发与质控——测量与标准,质量与安全(TD-MSQS 2020)” 国际研讨会,以期进一步促进该领域的学术交流和技术发展,提升企业的研发水平和产品质量。本次会议将在南京市政府的支持下,在江苏省南京市举行。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "本次会议可通过官方网站http://tdmsqs.ncrm.org.cn注册或扫描二维码注册,注册成功后请填写参会回执发送至会议邮箱pptd@nim.ac.cn。span style="text-align: center text-indent: 0em " /span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/afbfe4f5-bf8d-44dc-9923-be8177f44ec6.jpg" title="11.jpg" alt="11.jpg"//pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center "欢迎各位专家、同仁报名参会!/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "更多信息请关注会议官方网站:http://tdmsqs.ncrm.org.cn。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " /p
  • 加拿大拟修改食品药物法规
    加拿大近日发出G/SPS/N/CAN/394号通报,加拿大卫生部拟修改相关法规,准许将角叉菜胶作为冷冻鱼翅及冷冻加工鱼翅的乳化剂和稳定剂来使用,最大用量标准均为0.01%。同时还拟修改食品药物法规,准许将生育酚(tocopherols)作为冷冻鱼翅及冷冻加工鱼翅的抗氧化剂来使用,最大用量标准为300mg/kg。  作为提高法规体系应答能力的手段之一,在履行修订法规的同时,特签发临时营销许可(IMA),准许将角叉菜胶及生育酚(tocopherols)立即用于上述用途。
  • “70万一针”寡核苷酸药物进医保,此类药物的分析与表征您知道吗?
    导读2021年12月3日,国家医疗保障局召开新闻发布会公布2021年国家医保药品目录调整结果,于2022年1月1日正式执行。治疗罕见病脊髓性肌萎缩症(SMA)的药物诺西那生钠注射液被纳入医保,价格从曾经的70万一针降至3.3万,为患者及其家庭带来福音。SMA是一种罕见的遗传性神经肌肉疾病,是由于SMN1基因突变或缺失,造成与运动神经元密切相关的SMN蛋白缺乏,导致肌肉萎缩,大部分患者因为呼吸衰竭而死亡。诺西那生钠的有效成分是一种反义寡核苷酸,可以改变SMN2前mRNA的剪接,增加完整长度SMN蛋白的产生,达到治病的目的。什么是寡核苷酸药物?寡核苷酸药物通常指由人工合成的长度50个以内核苷酸组成的一类药物,包含单链或双链DNA或RNA。目前研究较多的是反义寡核苷酸药物(ASO)和小干扰RNA药物(siRNA)。与小分子药物和单抗药物靶向蛋白质不同,寡核苷酸药物通常靶向mRNA,从转录后水平进行治疗,具有特异性好、有效性高和长效性突出的优势。寡核苷酸药物分析和表征为了保证产品的安全性和有效性,寡核苷酸药物通常需要从分子量、碱基序列、解链温度Tm、产品纯度、有关物质等方面进行分析,需要使用质谱、生物惰性液相色谱、紫外分光光度计等仪器,岛津公司开发了一系列的解决方案,供您参考。分子量表征寡核苷酸药物通常使用固相亚磷酰胺化学法进行合成,亚磷酰胺单体是合成的关键原料。寡核苷酸药物的分子量则是其重要的产品属性。因此,检测寡核苷酸药物及其合成用原料亚磷酰胺单体的分子量是常用的质量控制手段。常用的分子量检测方法是质谱法。岛津质谱产品四极杆飞行时间质谱仪(LCMS-9030)、单四极杆质谱仪(LCMS-2050)和基质辅助激光解吸电离飞行时间质谱(MALDI-8030)都是寡核苷酸药物及其原料分子量表征的常用仪器。下面就为大家带来QTOF LCMS-9030测定寡核苷酸药物精确分子量和MALDI-8030测定亚磷酰胺单体分子量的精彩案例。• LCMS-9030分析寡核苷酸药物分子量岛津四极杆飞行时间质谱 LCMS-9030具有高分辨率、高质量数准确度和媲美三重四极杆灵敏度的特点,可以准确测定寡核苷酸分子量。寡核苷酸分子带负电,通常使用ESI负离子模式检测,在质谱图上常观测到一系列的多电荷离子,需要进行解卷积处理,得到寡核苷酸分子量。LCMS-9030结合Insight Explore CSD分析结果寡核苷酸药物序列: 5' -mG-mC*-mC*-mU*-mC*-dA-dG-dT-dC*-dT-dG-dC*-dT-dT-dC*-mG-mC*-mA-mC*-mC*-3' 理论单同位素分子量:6431.7239采用QTOF LCMS-9030采集一个长度为20 mer的寡核苷酸药物的高分辨质谱图,使用Insight Explore CSD进行解卷积处理,得到实测单同位素分子量为6431.7236,质量数偏差为0.05 ppm。• MALDI-8030分析亚磷酰胺单体的分子量采用MALDI-8030测定了四种亚磷酰胺单体的分子量,在线性正离子模式下,均检测到显著质谱峰,质荷比大小与钾离子加合峰相符。MALDI-8030体积紧凑、分析速度快、维护方便,是寡核苷酸样品分析的有力工具。序列确认寡核苷酸的序列同设计序列一致,是保证药物有效性的重要方面。采用MALDI-8030测定了长度为20 mer的一种寡核苷酸的分子量和碱基序列。寡核苷酸的MADLI-TOF质谱图主要以单电荷和双电荷形式存在,可直接读出分子量,操作简单,结果直观。利用源内裂解技术(ISD),寡核苷酸更倾向于形成w型碎裂离子,碎裂离子谱图更简单。通过比对这些碎片离子信息,可以较容易地读出核酸序列。寡核苷酸MALDI-ISD-TOF质谱图和碎裂离子解链温度(Tm)随着温度升高,双链核酸分子的双链结构开始打开,最终变成两条单链的结构。Tm是双链核酸分子双链结构解开一半时的温度,是双链核酸分子结构稳定性的重要指标。使用岛津UV Tm分析系统可以非常方便地测定双链核酸分子的Tm。该系统由紫外分光光度计、电热温度控制单元和Tm分析软件组成。Tm分析软件可以控制温度控制单元准确控温,升温速率12档可调,可满足双链核酸分子解链曲线的连续测定。Tm分析软件还可以自动分析解链曲线,给出准确的Tm数值。UV Tm分析系统组成(左)和核酸样品Tm分析结果(右)纯度分析使用生物惰性液相Nexera XS Inert结合Shim-pack Scepter C18色谱柱进行了寡核苷酸样品的快速纯度分析,寡核苷酸和其杂质分离良好。即使在50℃高温、0.1M TEAA的盐浓度条件下分析,也表现出良好的稳定性。基于有机杂化颗粒硅胶技术的Shim-pack Scepter C18,适合用于寡核苷酸纯度以及杂质分析。12 mer寡核苷酸样品纯度分析UHPLC色谱图递送介质分析递送介质是将核酸药物递送至靶组织,穿透细胞膜,进入细胞内部发挥药效的关键。脂质纳米粒(LNP)和聚乙烯亚胺(PEI)都是核酸药物的常用递送介质。LNP通常包含阳离子脂质、胆固醇、PEG修饰脂质和辅助性中性脂质,四种成分协同作用,将寡核苷酸包裹并递送到细胞内发挥作用。PEI是一种水溶性高分子聚合物,携带大量正电荷,可通过静电作用结合核酸药物,将其递送至细胞内,并保护其免受核酸酶降解。递送介质的含量检测对寡核苷酸药物给药方式、药学研究等具有重要意义。利用岛津生物惰性液相系统结合蒸发光散射检测器ELSD-LT III建立了定量分析LNP中四种成分含量,以及PEI含量的分析方法。结语天价寡核苷酸药物首进医保,使得这类药物在近期迅速刷屏,备受关注。对寡核苷酸药物进行分析和表征,可以更好地保证产品的药效和安全性。基于岛津丰富的分析仪器产品线,我们利用QTOF LCMS-9030、单四极杆质谱LCMS-2050、MALDI TOF质谱、UHPLC、UV Tm分析系统等技术平台,开发了分子量表征、核苷酸序列确认、Tm测定、纯度分析和递送介质分析的方法,助力寡核苷酸药物研发和质控,希望未来开发出更多更好的药物,造福患者。本文内容非商业广告,仅供专业人士参考。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制