当前位置: 仪器信息网 > 行业主题 > >

燃料浓度场

仪器信息网燃料浓度场专题为您整合燃料浓度场相关的最新文章,在燃料浓度场专题,您不仅可以免费浏览燃料浓度场的资讯, 同时您还可以浏览燃料浓度场的相关资料、解决方案,参与社区燃料浓度场话题讨论。

燃料浓度场相关的资讯

  • 蛋白质浓度测定常用的三种方法
    测定蛋白质浓度的方法有很多,科研工作者广泛使用的方法比如紫外吸收法,双缩脲法,BCA方法,Lowry法,考马斯亮蓝法,凯氏定氮法等等 ,今天小编以UV法,BCA法,考马斯亮蓝法,其中的三种方法的测定蛋白质浓度的原理、优缺点、操作以及注意事项做详细介绍。UV法这种方法是在280nm波长,直接测试蛋白。选择Warburg 公式,光度计可以直接显示出样品的浓度,或者是选择相应的换算方法,将吸光值转换为样品浓度。蛋白质测定过程非常简单,先测试空白液,然后直接测试蛋白 质。从而显得结果很不稳定。蛋白质直接定量方法,适合测试较纯净、成分相对单一的蛋白质。紫外直接定量法相对于比色法来说,速度快,操作简单;但是容易受 到平行物质的干扰,如DNA的干扰;另外敏感度低,要求蛋白的浓度较高。(1)简易经验公式 蛋白质浓度(mg/ml) = [1.45*OD280-0.74*OD260 ] * Dilution factor(2)精确计算 通过计算OD280/OD260的比值,然后查表得到校正因子F,再通过如下公式计算最终结果:蛋白质浓度(mg/ml) = F *(1/d) *OD 280 * D,其中d为测定OD值比色杯的厚度,D为溶液的稀释倍数BCA法原理:BCA(bicinchonininc acid)与二价铜离子的硫酸铜等其他试剂组成的试剂混合一起即成为苹果绿,即 BCA 工作试剂。在碱性条件下,BCA 与蛋白质结合时,蛋白质将 Cu2+ 还原为 Cu+,工作试剂由原来的苹果绿色变为紫色复合物。562 nm 下其光吸收强度与蛋白质浓度成正比。BCA 蛋白浓度测定试剂盒,Abbkine的蛋白质定量试剂盒(BCA法)提供一个简单,快捷,兼容去污剂的方法,准确定量总蛋白。成分试剂 A100 mL试剂 B2 mL标准蛋白(BSA)1 mL×2,1 mg/mL保存条件 运输温度:室温(标准蛋白 4~8 ℃ 运输)保存温度:室温(标准蛋白 -20 ℃ 保存)有效日期:12 个月使用方法方法一:96 孔板1. 配制 BCA 工作液:根据标准品和样品数量,按 50 体积试剂 A,1 体积试剂 B 配制适量 BCA 工作液。充分混匀。2. 将蛋白标准品按 0 μL,1 μL,2 μL,4 μL,6 μL,8 μL,10 μL 加入 96 孔板的蛋白标准品孔中。加灭菌双蒸水补足到 10 μL。取 10 μL 待测样品加入 96 孔板的待测样品孔中。每个测定要做 2~3 个平行。3. 向待测样品孔和蛋白标准品孔中各加入 200 μL BCA 工作液(即样品与工作液的体积比为 1:20),混匀。4. 37 ℃ 温浴 30 min。冷却至室温。5. 酶标仪 562 nm 波长下测定吸光度。6. 制作标准曲线。从标准曲线中求出样品浓度。方法二:试管法1. 配制工作液:根据标准品和样品数量,按 50 体积试剂 A,1 体积试剂 B 配制适量 BCA 工作液,充分混匀。工作液配制的量要与测定所用的比色杯对应。每个测定要做 2~3 个平行。本处列举的比色体系所用的是 0.5 mL 的比色杯。如比色杯规格不同,体系需要放大到实验将采用的比色杯准确读数所需要的体积。2. BSA 标准品和样品的准备:样品用水或其它不干扰显色反应的缓冲液配制,使待测定的浓度位于标准曲线的线性部分。每个反应准备 3 个平行测定。标准曲线一般 5~6 个点即可。根据样品的估测浓度确定各点的具体浓度。稀释 BSA 时可以用水或与样品一致的溶液。如待测样品的浓度约为 200 μg/mL,可按下表的次序加入 BSA 标准品、样品及 BCA 工作液。3. 取适量体积的标准蛋白,以蛋白液:工作液=1:20 的比例混匀。37 ℃ 温浴 30 min。冷却至室温。4. 将样品与标准品在 562 nm波长下测定吸光度。考马斯亮蓝法实验原理:考马斯亮蓝 (Coomassie Brilliant Blue) 法测定蛋白质浓度,是利用蛋白质―染料结合的原理,定量测定微量蛋白浓度快速、灵敏的方法。这种蛋白质测定法具有超过其他几种方法的突出优点,因而正在得到广泛的应用。目前,这一方法是也灵敏度最高的蛋白质测定法之一。考马斯亮蓝 G-250 染料,在酸性溶液中与蛋白质结合,使染料的最大吸收峰 (lmax) 的位置,由 465 nm 变为 595 nm,溶液的颜色也由棕黑色变为蓝色。通过测定 595 nm 处光吸收的增加量可知与其结合蛋白质的量。研究发现,染料主要是与蛋白质中的碱性氨基酸 (特别是精氨酸) 和芳香族氨基酸残基相结合。突出优点(1)灵敏度高,据估计比 Lowry 法约高四倍,其最di蛋白质检测量可达 1 mg。这是因为蛋白质与染料结合后产生的颜色变化很大,蛋白质-染料复合物有更高的消光系数,因而光吸收值随蛋白质浓度的变化比 Lowry 法要大的多。(2)测定快速、简便,只需加一种试剂。完成一个样品的测定,只需要 5 分钟左右。由于染料与蛋白质结合的过程,大约只要 2 分钟即可完成,其颜色可以在 1 小时内保持稳定,且在 5 分钟至 20 分钟之间,颜色的稳定性最好。因而完全不用像 Lowry 法那样费时和需要严格地控制时间。(3)干扰物质少。如干扰 Lowry 法的 K+、Na+、Mg2+ 离子、Tris 缓冲液、糖和蔗糖、甘油、巯基乙醇、EDTA 等均不干扰此测定法。缺点(1)由于各种蛋白质中的精氨酸和芳香族氨基酸的含量不同,因此考马斯亮蓝染色法用于不同蛋白质测定时有较大的偏差,在制作标准曲线时通常选用 g-球蛋白为标准蛋白质,以减少这方面的偏差。(2)仍有一些物质干扰此法的测定,主要的干扰物质有:去污剂、 Triton X-100、十二烷基硫酸钠 (SDS) 等。试剂与器材1、试剂 考马斯亮蓝试剂:考马斯亮蓝 G-250 100 mg 溶于 50 mL 95% 乙醇中,加入 100 mL 85% 磷酸,用蒸馏水稀释至 1000 mL。2、标准和待测蛋白质溶液(1)标准蛋白质溶液结晶牛血清蛋白,预先经微量凯氏定氮法测定蛋白氮含量,根据其纯度用 0.15 mol/L NaCl 配制成 1 mg/mL 蛋白溶液。(2)待测蛋白质溶液。 人血清,使用前用 0.15 mol/L NaCl 稀释 200 倍。3、器材 试管 1.5×15 cm(×6),试管架,移液管管 0.5 mL(×2) 1 mL(×2) 5 mL(×1);恒温水浴;分光光度计。操作方法 一、制作标准曲线 取 7 支试管,按下表平行操作。摇匀,1 h 内以 0 号管为空白对照,在 595 nm 处比色。绘制标准曲线:以 A595 nm 为纵坐标,标准蛋白含量为横坐标,在坐标纸上绘制标准曲线。二、未知样品蛋白质浓度测定 测定方法同上,取合适的未知样品体积,使其测定值在标准曲线的直线范围内。根据所测定的 A595 nm 值,在标准曲线上查出其相当于标准蛋白的量,从而计算出未知样品的蛋白质浓度(mg/mL)。注意事项(1)在试剂加入后的 5-20 min 内测定光吸收,因为在这段时间内颜色是最we定的。(2)测定中,蛋白-染料复合物会有少部分吸附于比色杯壁上,测定完后可用乙醇将蓝色的比色杯洗干净。(3)利用考马斯亮蓝法分析蛋白必须要掌握好分光光度计的正确使用,重复测定吸光度时,比色杯一定要冲洗干净,制作蛋白标准曲线的时候,蛋白标准品最好是从低浓度到高浓度测定,防止误差。
  • 文献解读丨通过M–N键长和配位调节提高质子交换膜燃料电池非贵金属M–N–C催化剂的稳定性
    质子交换膜燃料电池(PEMFC)被认为是一种有前途的可持续电化学能量转换装置,尤其是在交通应用中。目前,只有铂族金属(PGM)才能有效催化阴极上动力学缓慢的氧还原反应(ORR),但其高昂的成本和Pt的稀缺严重阻碍了PEMFC的大规模应用。因此,开发不含PGM的催化剂来部分或完全取代PGM催化剂是非常可取的。具有M-Nx/C活性位点的金属-氮-碳(M-N-C,M=Fe、Co、Mn等)催化剂,特别是Fe-N-C催化剂,在半电池和PEMFC测试中都表现出出色的初始ORR活性,可与商业Pt/C催化剂相媲美。然而,在M-N-C催化剂能够实际应用于PEMFC之前,必须克服许多艰巨的障碍,其中稳定性是最严峻的挑战。总的来说,由于对膜电极组件(MEA)的降解机制和复杂的多场(质/电/热)耦合环境了解不足,提供有效的解决方案来提高PEMFC中M-N-C催化剂的稳定性仍然极具挑战性。因此,开发具有显著增强稳定性的高性能M-N-C催化剂对于PEMFC的商业应用来说十分紧迫。方法与结果PAA-Fe-N和P(AA-MA)(5-1)-Fe-N催化剂的制备流程如图1所示。最简单的不饱和一元羧酸丙烯酸(AA)作为单体聚合成PAA,并与Fe3+螯合形成交联水凝胶。马来酸(MA)是一种二羧酸单体,用于与AA共聚合,以增加共聚物P(AA-MA)的羧酸含量。通过在共聚过程中调节AA/MA的摩尔比(5/1,3/1,1/1),可以轻易地调控共聚物中羧基的浓度和相应的与金属离子的结合常数。通过亲水性羧基和金属离子之间的螯合作用形成的交联水凝胶,可以通过随后在800°C下用氮前体进行高温处理,使所得的M–Nx/C位点原子分布在分级3D结构中。所得催化剂分别表示为PAA-Fe-N和P(AA-MA)-Fe-N。MA-Fe-N催化剂也被合成作为对照样品。图1 PAA-Fe-N和P(AA-MA)(5-1)-Fe-N催化剂制备示意图为了分析催化剂表面上C和N的价态,使用岛津的X射线光电子能谱仪(XPS)对其进行了分析表征。高分辨率C1s光谱中C-N键的形成表明N已经成功地掺杂在C骨架中。与PAA-Fe-N相比,P(AA-MA)(5-1)-Fe-N样品C-N键的位置发生了正向的位移,表明P(AA-MA)(5-1)-Fe-N样品具有更强的Fe-N相互作用。高分辨率N1s光谱表明,P(AA-MA)(5-1)-Fe-N样品具有比PAA-Fe-N更高的表面N含量(8.99 at%)和吡啶N/石墨N比例。P(AA-MA)(5-1)-Fe-N样品的表面Fe含量是PAA-Fe-N的3.5倍(0.44 vs 0.13 at%),ICP-MS分析也证实了这一趋势。可以推断,在引入MA后,P(AA-MA)(5-1)-Fe-N具有更高的Fe–Nx/C活性位点密度。57Fe Mö ssbauer(穆斯堡尔谱仪)被用来进一步探究样品中的Fe–N结构(图2c)。结果表明,具有可观QS值的D3位点(≈15%)说明PAA-Fe-N拥有比P(AA-MA)(5-1)-Fe-N更短的Fe-N键。采用X射线吸收光谱法(XAS)检测了样品的局部Fe-N配位结构。测量了P(AA-MA)(5-1)-Fe-N和PAA-Fe-N的X射线近边结构(XANES)的Fe K边。结果表明,P(AA-MA)(5-1)-Fe-N和PAA-Fe-N催化剂中的Fe都可以实现原子级分散,并且单个Fe原子与N(O)元素配位,而不是以Fe-Fe键的形式存在。P(AA-MA)(5-1)-Fe-N和PAA-Fe-N的Fe-N(O)键的平均键长分别为2.035 and 2.006 &angst ,与57Fe Mö ssbauer(穆斯堡尔谱仪)结果一致。根据文献,PAA-Fe-N样品中可能存在一些Fe-N2或Fe-N3物种(尽管Fe-N的拟合配位数仍然接近4),导致Fe-N(O)键长减少。相反,P(AA-MA)(5-1)-Fe-N中Fe-N位点的配位结构应以Fe-N4为主。图2 高分辨率C1s(a)和N1s(b)XPS光谱;以及(c)P(AA-MA)(5-1)-Fe-N和PAA-Fe-N样品的室温57Fe Mö ssbauer图谱;(d)P(AA-MA)(5-1)-Fe-N、PAA-Fe-N和Fe箔样品的k3加权FT-EXAFS光谱电化学测试表明(图3a-3c),与PAA-Fe-N以及其他催化剂相比,P(AA-MA)(5-1)-Fe-N具有更好的性能和稳定性。将Fe置换为Co或者Mn等金属后,该催化剂依然具有良好的性能,证实该策略具有有效性和普适性。通过物理和结构研究了催化剂在60℃下半电池性能退化的详细机制。AST测试后的催化剂的XRD图谱和TEM图像表明测试后具有与初始时相似的衍射峰和片状结构。图3e和3f为测试前后相应的FTEXAFS光谱。对于P(AA-MA)(5-1)-Fe-N,AST测试后没有明显的Fe-Fe键形成,证实了Fe-N键的稳定性以及随后催化剂Fe去金属化的耐受性。相反,循环5000次后,PAA-Fe-N中Fe-Fe键急剧增加。该结果明确确定,在60℃的稳定性测试过程中,PAA-Fe-N催化剂中确实发生了Fe-Nx/C位点的去金属化,并且部分分离的Fe原子可能迁移并形成微量的Fe2O3团簇,这些团簇在XRD中无法识别。利用岛津的X射线光电子能谱仪(XPS),证实在AST测试后,PAA-Fe-N中的表面Fe含量从0.13%增加到8.48%,而P(AA-MA)(5-1)-Fe-N表面Fe含量明显更少(从0.44%到2.89%)。更糟糕的是,Fe-Nx/C位点的破坏会促进Fenton反应的进行,进一步加速临近Fe-N的分解,结果与之前报道的电子能量损失谱(EELS)结果一致。请注意,其他降解机制,如碳腐蚀,可能同时发生在PAA-Fe-N上,因为AST后C含量从83.62%显著降低到58.07%。图3 a、b)P(AA-MA)(5-1)-Fe-N和PAA-Fe-N催化剂在25°C(a)和60°C(b)的O2饱和0.5 m H2SO4溶液中进行5000循环AST前后的ORR极化曲线,催化剂负载量:0.6 mg非PGM cm&minus 2,圆盘转速:900 rpm。c)先前报道的M–N–C催化剂在O2饱和0.5 M H2SO4中从0.6–1.0 V的AST的不同循环次数后的E1/2损失。d)P(AA-MA)-Co-N和PAA-Co-N催化剂在AST前后的ORR极化曲线。e、 f)P(AA-MA)(5-1)-Fe-N和PAA-Fe-N(AST前后)、Fe箔和Fe2O3样品的k3加权FT-EXAFS光谱。燃料电池性能测试(图4)结果表明,P(AA-MA)(5-1)-Fe-N催化剂表现出极高的活性和稳定性,在0.55 V下电流密度37 h几乎保持不变。图4 a、b)P(AA-MA)(5-1)-Fe-N和PAA-Fe-N催化剂在H2–O2(a)和H2–空气(b)条件下的燃料电池性能,阴极负载:3.0 mg cm&minus 2;c)P(AA-MA)(5-1)-Fe-N和PAA-Fe-N催化剂在PEMFC中0.55 V恒定电压下的稳定性测试期间的电流密度保持率;d)在H2–空气燃料电池中测试的各种M–N–C催化剂前20小时的电流密度保持率密度泛函理论(DFT)计算被用于进一步探究催化剂稳定性差异巨大的根源。研究了铁原子在载体上的吸附能(Ead)和Ead与整体粘性能量(Ecoh)之间的差异。计算表明,P(AA-MA)(5-1)-Fe-N具有比PAA-Fe-N更负的Fe原子吸附能(Ead)以及Ead和本体内聚能(Ead-Ecoh)之间更负的差异。图5 a)吸附能(Ead)和b)在没有(红色)和(蓝色)溶剂化校正的情况下计算的Fe–Nx/C系统的吸附能和内聚能(Ecoh)之间的差(负值越大意味着载体中嵌入的Fe原子对金属浸出或聚集更稳定);c)Fe–N2/C、d)Fe–N3/C和e)Fe–N4/C的结构和差分电荷密度等值面(青色和黄色等值面对应于&minus 0.02和+0.02 e&angst 的电荷密度轮廓。棕色、灰色、浅灰色和白色小球分别代表Fe、C、N和H原子)总之,通过调节金属离子和催化剂前体中聚合物之间的相互作用,开发了一种提高M-N-C催化剂稳定性的通用有效策略,从而可以微调M-N键长和最终催化剂中的配位。57Fe Mö ssbauer光谱和XAS证明,与具有15%低配位Fe-N2/N3部分的PAA-Fe-N相比,具有独有的Fe-N4/C位点和更长的Fe-N键的共聚P(AA-MA)(5-1)-Fe-N催化剂性能明显更好。性能最好的P(AA-MA)(5-1)-Fe-N催化剂在半电池和H2—空气燃料电池中都表现出极高的活性和稳定性,在AST 60℃后E1/2损失仅为6 mV,在0.55 V下电流密度37 h几乎保持不变,是迄今为止报道的同类催化剂中整体性能最好的。DFT计算表明,P(AA-MA)(5-1)-Fe-N具有比PAA-Fe-N更负的Fe原子吸附能(Ead)以及Ead和本体内聚能(Ead-Ecoh)之间更负的差,这说明了其优异的结构稳定性和对脱金属的耐受性的原因。文献题目《lmproving the Stability of Non-Noble-Metal M-N-C Catalysts for Proton-Exchange-Membrane Fuel Cellsthrough M-N Bond Length and Coordination Regulation》使用仪器岛津X射线光电子能谱仪(XPS)作者苗正培等 华中科技大学Zhengpei Miao, Xiaoming Wang, Zhonglong Zhao, Wenbin Zuo, Shaoqing Chen,Zhigiang Li, Yanghua He, Jiashun Liang, Feng Ma, HsingLin Wang Gang Lu,Yunhui Huang, Gang Wu, and Oing Li
  • LUMEX红外用于测定生物燃料FAME脂肪酸甲酯含量-阿曼燃料实验室
    2018年2月 - 塞拉莱,阿曼苏丹。 阿曼事世界上最大的燃料储存地之一,燃料储存过程需要密切进行监控。 Mina 集团的阿曼国石油实验室选购并使用LUMEX公司IR红外分析柴油中脂肪酸甲酯(FAME)含量监控,根据欧盟标准EN 14078:2014液体石油产品中的中间馏分油的脂肪酸甲酯( FAME)的含量的测定使用傅里叶红外光谱仪InfraLUM FT-08进行测定,可靠的产品质量和用户友好的操作方式受了客户的好评。生物柴油的主要成分是脂肪酸甲酯(FAME),是一种无毒、能生物降解、基本无硫和芳烃的优质清洁柴油,作为绿色环保的替代燃料,在欧洲和美国得到大力推广,是近年来世界能源领域的一个发展热电。欧盟各国对生物柴油的应用结果表明,生物柴油起动 性能与石油柴油无区别,可直接以100%浓度用于柴油发动机。柴油或加热燃料中的FAME含量测定有效鉴别燃料,可用于监控FAME对发动机或加油系统的影响。 LUMEX生物柴油解决方案提供可靠的FAME含量监控,可从0.05%(V / V)的最低浓度水平进行有效监控。仪器内置简单便捷的定量分析模块,集成到软件SpectraLUM中,可以即时以百分比的形式获得FAME测定结果,而无需额外的操作。Mina 石油公司实验室每月测定多次FAME含量以便进行工艺或过程控制,使用InfraLUM FT-08可以在几分钟内获得结果,极大提高了检测速率,降低了成本。 Lumex分析仪器还根据其他标准为柴油燃料的红外测试提供解决方案,例如ASTM D7371。针对石油天然气及燃料提供成套解决的方案,包括炼油、储存、运输等过程监控环节。 LUMEX公司自1991年成立以来一直致力于新产品和先进的技术方法的开发,现已拥有100多种分析方法,为全球用户提供相应行业解决方案,现产品和方法用户遍布全球80多个国家。 (来源:LUMEX公司)
  • 世界气象组织:2021年温室气体浓度创新高
    据央视新闻客户端消息,当地时间10月26日,世界气象组织发布最新一期《温室气体公报》,指出2021年二氧化碳、甲烷和氧化亚氮三种主要温室气体在地球大气中的浓度均创新高。根据该报告,自近40年前开始系统测量以来,2021年的甲烷浓度出现了最大同比增幅。这一异常增长原因尚不清楚,但似乎是生物和人类引发的结果。2020年至2021年,二氧化碳浓度增幅也大于过去十年的平均年增长率。报告显示,1990年至2021年,长寿命温室气体(二氧化碳、甲烷和氧化亚氮等在大气中滞留时间长的温室气体)对气候的增温效应增加了近50%。2021年二氧化碳、甲烷和氧化亚氮的浓度值分别为1750年工业化前水平的149%、262%和124%。世界气象组织秘书长塔拉斯指出,最新《温室气体公报》再次强调了采取紧急行动,减少温室气体排放,并防止未来全球温度进一步上升的必要性。他表示,一些具有成本效益的战略可用于应对甲烷排放问题,特别是应对化石燃料的排放,应立即实施这些战略。最紧迫的优先事项是削减二氧化碳排放,因为它是气候变化和相关极端天气的主要驱动因素,并将通过极地冰层损失、海洋增温和海平面上升等方式影响气候数千年。塔拉斯说,我们需要改变工业、能源和运输系统以及整体生活方式。所需变革在经济上是可承受的,在技术上也是可能的,但时间已经不多了。《联合国气候变化框架公约》第二十七次缔约方大会(COP27)将于11月在埃及举行。世界气象组织计划在会议前夕提交其《2022年全球气候状况》临时报告,说明温室气体如何继续推动气候变化和极端天气。
  • 助力双碳,“氢”心打造-燃料电池汽车用氢质量分析方案(Ⅱ)
    助力双碳,“氢”心打造-燃料电池汽车用氢质量分析方案(Ⅱ)原创 飞飞 赛默飞色谱与质谱中国高丽1. 前言 随着全球能源消费结构向低碳转型的加速,氢能作为一种来源丰富、绿色低碳、应用广泛的二次能源和工业还原物料而备受瞩目。氢能是我国战略性新兴产业和未来产业重点发展方向,是我国实现2060年“碳中和”目标的重要途径。氢燃料电池汽车的研发和应用是我国氢能利用的重点应用产业,氢气质量是确保燃料电池正常运行的关键因素之一。作为燃料电池能量来源的氢气主要来自工业副产氢、电解制氢、化工原料制氢和化石能源制氢,不同生产方式制取的氢气不可避免地会产生相应的杂质组分,会对燃料电池的性能和寿命产生不同程度的影响。经过十几年探索和验证,发现二氧化碳、甲烷、氮、氩、氦等杂质组分会降低氢气的分压,导致燃料电池局部氢气供应不足,可能造成电池反极并发生碳蚀现象。一氧化碳会占据PEM催化剂的活性位而阻碍氢气在催化剂上的吸附,降低氢气电离出质子的速率,严重时会导致催化剂完全失活等。由此可见,氢气的纯度及杂质含量会对PEMFC的性能造成严重的损害并降低其使用寿命、影响效率和安全等,因而,准确而快速的测定燃料氢气的纯度和杂质含量是极其重要的。赛默飞与北京石科院合作,采用1台气相色谱仪,配置TCD、FID和PDD三个检测器、多阀多色谱柱分析系统检测质子交换膜燃料电池汽车用氢气中氦、氩、氮、一氧化碳、二氧化碳和烃类组分,建立燃料电池用氢质量分析方案,所有测试结果均满足新修订国标的要求。2. 仪器及配置 表1 气相色谱仪仪器配置(点击查看大图)3. 结果与讨论 3.1氢中微量一氧化碳和二氧化碳检测用气体标准样品或通过气体稀释仪将一氧化碳和二氧化碳标气稀释至0.05 µ mol/mol~10 µ mol/mol 范围内的8个浓度级别并进行检测并绘制多点校正曲线(强制过原点),典型样品色谱图见图1,一氧化碳和二氧化碳测试校正曲线相关系数分别是0.9999和0.9992。图1 一氧化碳和二氧化碳分析(PDD流路)典型色谱图(点击查看大图)重复性及检出限测试用气体稀释仪配制0.05 μmol/mol的样品,平行测定至少10次,样品峰面积的相对标准偏差、方法检出限结果列于表2中。样品叠加色谱图见图2。从测试结果得到2种杂质的检出限均低于20 ppb。图2 一氧化碳和二氧化碳检出限测试谱图(点击查看大图)表2 样品组分低浓度点连续10针进样重复性及检出限测试结果(点击查看大图)3.2氢中烃类组分检测用气体标准样品或通过气体稀释仪将烃类标气分别稀释至6个浓度级别,甲烷浓度范围0.1 µ mol/mol~5.3 µ mol/mol,其他烃组分浓度范围0.1 µ mol/mol~2 µ mol/mol,绘制校正曲线(强制过原点)。烃类组分典型色谱图见图4,绘制校正曲线见图3,绘制校正曲线的线性相关系数均大于0.9992。图3 烃类组分(FID流路)典型色谱图(点击查看大图)重复性及检出限测试用气体稀释仪配制0.1 μmol/mol的样品,平行测定至少7次,样品保留时间、峰面积和峰高的相对标准偏差,方法检出限结果列于表3中,从测试结果得到烃组分杂质的检出限均低于0.1 ppm。表3 烃组分低浓度点连续7针进样重复性及检出限测试结果(点击查看大图)3.3氢中氦、氩、氮组分检测用气体标准样品或通过气体稀释仪将氦、氩、氮标气稀释至5个浓度级别(10 µ mol/mol~602 µ mol/mol范围内),绘制多点校正曲线(强制过原点),TCD流路典型样品色谱图见图4,测试校正曲线相关系数均大于0.9992。图4 氢中氦氩氮(TCD流路)典型色谱图(点击查看大图)重复性及检出限测试用气体标准样品平行测定7次, 样品保留时间、峰面积和峰高的相对标准偏差,方法检出限结果列于表4中,七针测试叠加色谱图见图5。从测试结果得到氦、氩、氮组分的检出限均低于10 ppm。图5 氢中氦氩氮低浓度点叠加色谱图(点击查看大图)表4 氦氩氮低浓度点连续7针进样重复性及检出限测试结果(点击查看大图)结 论方案操作简单,灵敏度高、能够满足质子交换膜燃料电池汽车用氢气对杂质的分析需求。经验证考察,各杂质组分相关系数均大于0.9992,满足GB/T 37244《质子交换膜燃料电池汽车用燃料 氢气》、团标T/CECA-G 0179—2022《氢气中氦、氩、氮和烃类的测定 气相色谱-热导和火焰离子化检测器法》和团标T/CECA-G 0181—2022《氢气中一氧化碳和二氧化碳的测定 气相色谱-氦离子化检测器法》对校准曲线相关系数、检出限等要求;同时,也完全满足 GB/T 3634.2和ISO 14687中规定的各杂质的检出限要求。如需合作转载本文,请文末留言。
  • 俄发现检测航天燃料中氮氦成分的简便方法
    7月3日 液态航天燃料中化学性质不活泼的氮气、氦气必须限制在一定含量内,否则会影响发动机工作。但检测燃料中这两种气体的传统化学方法很麻烦,为此俄研究人员开发出了一套更简便的物理检测法。   在给运载火箭加注液态燃料时,需用氮气和氦气加压,将燃料注入燃料箱。在这一过程中,部分氮气和氦气会进入燃料。这两种气体的化学性质均不活泼,如果其在燃料中的比例超过一定限度,就会影响燃料燃烧和发动机工作,因此在发射前必须检测燃料中的氮气、氦气含量。   用于这种检测的传统气相色谱分离法须在实验室进行,其所需的燃料气化和分离时间较长,各种成分需逐一化验,且样品的腐蚀性强,这些都给检测工作带来诸多困难。为了规避这些不便,莫斯科“化学自动设备”公司的科学家开发出了一套简单有效的物理检测法。   该公司发布的新闻公报说,在为火箭加注燃料时,燃料液面上方会自然出现燃料蒸气,其中就含有用于加压的部分氮气和氦气。这时氮气、氦气在燃料蒸气中的浓度,与它们在液态燃料中的浓度存在稳定的比例关系。氮气、氦气在燃料蒸气中的浓度高低,会影响气温、气压、导热性等多项物理参数,检测这些参数并运用俄研究者新开发的一组方程就能计算出蒸气中的氮气、氦气含量,进而推算出这两种气体在液态燃料中的含量。   参与此项研发的研究人员德米特里施特罗姆指出,上述物理检测法可在加注航天燃料的同时进行,且高效、安全。在下一阶段,俄研究者准备进一步装配设备,完善他们开发的新检测法。
  • 助力双碳,“氢”心打造-燃料电池汽车用氢质量分析方案(Ⅰ)
    助力双碳,“氢”心打造-燃料电池汽车用氢质量分析方案(Ⅰ)原创 飞飞 赛默飞色谱与质谱中国高丽摘要:含硫化合物、甲醛、有机卤化物01背景氢能因为其具有绿色无污染、零排放等优势,是未来国家能源体系的重要组成部分,是我国战略性新兴产业和未来产业重点发展方向,是我国实现2060年“碳中和”目标的重要途径。氢燃料电池汽车的研发和应用是我国氢能利用的重点应用产业,我国也将其列为战略性新兴产业予以扶持,随着质子交换膜燃料电池汽车(PEMFCV)的发展,人们越来越关注燃料电池用氢质量对燃料电池性能的影响。作为燃料电池能量来源的氢气主要来自工业副产氢、电解制氢、化工原料制氢和化石能源制氢。不同生产方式制取的氢气不可避免地会产生相应的杂质组分,会对燃料电池的性能和寿命产生不同程度的影响。经过十几年探索和验证,我们了解到氢中杂质会对PEMFC的性能造成严重的损害作用并降低其使用寿命,不同种类的杂质如硫化氢、羰基硫、二氧化硫、硫醇、硫醚等都会对PEMFC阴极催化剂产生不可逆的毒化作用等等。综上,氢气的纯度及杂质含量会对PEMFC的性能造成严重的损害并降低其使用寿命、影响效率和安全等,因而,准确而快速的测定燃料氢气的纯度和杂质含量是极其重要的。2023年赛默飞与北京石科院合作,参与氢能新国标的修订工作。采用低温预富集技术与Thermo Scientific&trade ISQ&trade 7610气质联用仪、SCD检测器对燃料氢中硫化物、甲醛和卤化物等杂质进行检测,建立燃料电池用氢质量分析方案,所有测试结果均满足新修订国标的要求。02线性测试2.1 按实验测试条件进样,硫化物典型色谱图见图1;目标物浓度0.1 ppb-10 ppb范围内,7种含硫化合物相关系数均大于0.998,硫化物多浓度点校正曲线见表1;2.2 按实验测试条件进样,卤化物典型色谱图见图2;甲醛浓度1-400 ppb范围内,相关系数为0.9998、有机卤化物浓度在1-100 ppb范围内,8种有机卤化物相关系数均大于0.998,其多浓度点校正曲线见表2。图1 硫化物分析典型色谱图(点击查看大图)表1 硫化物线性相关系数(点击查看大图)1-甲醛;2-一氯甲烷;3-溴甲烷;4-三氯一氟甲烷;5-二氯甲烷;6-顺-1,2-二氯乙烯;7-三氯甲烷;8-四氯乙烯;9-氯苯图2 甲醛、有机卤化物TIC图和定量通道谱图(点击查看大图)表2 甲醛、有机卤化物线性相关系数(点击查看大图)向下滑动查看所有内容03重复性测试 3.1 按实验测试条件,对摩尔分数为0.05 nmol/mol混合硫化物标气连续测定7次,硫化物各组分RSD均小于5%,7针标气叠加谱图见图3,重复性测试结果见表3。1-硫化氢;2-羰基硫硫化物;3-乙硫醇;4-甲硫醚;5-二硫化碳;6-噻吩;7-二甲基二硫醚图3 0.05 ppb硫化物组分7针叠加色谱图(点击查看大图)表3 硫化物各组分重复性测试结果(点击查看大图)3.2 按实验测试条件,对摩尔分数为1 nmol/mol甲醛、有机卤化物标准气体连续测定7次,所有组分的RSD 表4 甲醛、有机卤化物各组分重复性测试结果(点击查看大图)04检出限测试含硫化合物的检出限值低至0.01×10-3 μmol/mol,样品色谱图见图5;甲醛检出限值低至0.1×10-3 μmol/mol,样品的TIC图见图6;一氯甲烷等卤化物检出限值低至0.5×10-3 μmol/mol,样品的TIC图见图7。1-硫化氢;2-羰基硫;3-乙硫醇;4-甲硫醚;5-二硫化碳;6-噻吩;7-二甲基二硫醚图5 硫化物检出限测试谱图(点击查看大图)图6 甲醛检出限测试TIC图(点击查看大图)1-一氯甲烷;2-溴甲烷;3-三氯一氟甲烷;4-二氯甲烷;5-顺-1,2-二氯乙烯;6-三氯甲烷;7-四氯乙烯;8-氯苯图7 有机卤化物检出限测试TIC图(点击查看大图)向下滑动查看所有内容总 结方案适用于GB/T 37244质子交换膜燃料电池汽车用氢气中含硫化合物、甲醛和有机卤化物的测定;也可用于工业氢、高纯氢和超纯氢中含硫化合物、甲醛和有机卤化物的测定。建立的燃料电池用氢质量分析系统实现:1. 方法的检出限和测定范围满足工作要求 2. 方法准确可靠,满足各项方法特性指标的要求 3. 方法具有普遍适用性,易于推广使用。如需合作转载本文,请文末留言。
  • 孩子误服火锅燃料中毒 全国网友帮找解毒剂
    有网友曝料,昨天下午4点左右,黄女士的儿子小宝(化名)因误服了家中的火锅液体燃料导致中毒,急需解毒剂甲吡挫而在网上求助。  黄女士表示,家人误把无色的火锅燃料液体当作水使用而使小宝误食。昨天下午5点左右,家人发现小宝头痛后,将其送到医院。经军事医学科学院附属307医院化验,小宝血液中检测到二乙二醇(浓度为1020ng/ml)和乙二醇(浓度为540ng/ml),急需解毒剂进行治疗。“知道这个消息后,很多朋友帮忙转发求药,今天我们接到了全国多地的帮助电话。”  黄女士称,经过洗胃、血液净化等治疗,小宝血液中的毒素含量已经降低。医院王医生表示,这种的病例十分少见。目前,小宝仍需在儿童重症监护室接受治疗。今天晚上8点左右,黄女士告诉记者,经朋友帮助,解毒剂将会在明早从日本空运至北京。
  • ECHO发布固体在生(回收)燃料生物降解呼吸仪(土壤/堆肥/塑料)新品
    固体在生(回收)燃料生物降解呼吸仪DRI技术使用真实动态呼吸指数(DRI)确定检测固体再生(回收)燃料的当前有氧微生物活动速率。 目前的好氧微生物活动率测量固体再生(回收)燃料的实际化学和物理性质下的生物稳定性。n 固体在生(回收)燃料固体在生(回收)燃料(SRF,也称为“垃圾衍生燃料”- RDF)是由非危险废物准备的固体燃料,用于焚烧或混合焚烧厂的能量再生(回收)。“准备好”在这里意味着加工,均质化和升级到可以在生产者和用户之间交易的质量。它们可以来自家庭垃圾,商业垃圾,工业垃圾和其他可燃垃圾。它们已被用于替代水泥窑,发电站和工业锅炉中的化石燃料。 n 原理固体在生(回收)燃料生物降解呼吸仪DRI测量O2来确定在确定的连续气流和绝热条件下可降解有机物质中微生物的活性。样品在密封的容器(绝热)中测量,产生由欧盟和其他标准确定的受控条件。 n 测试过程和控制该测试包括根据滞后的持续时间将样品保持在动态测试系统中观察1天至4天阶段(如果存在),以小时间隔(RDRI h)获取指数值。此外,如果在第四天结束时,RDRI趋势是恒定的或增长的,则通过获得至少其他24个值(RDRI h)来延长呼吸测量测试。连续气流式有氧装置,包括:l 气密密封的绝热反应器,最小操作体积以升表示,等于或小于以毫米表示且不大于30毫米的平均样品尺寸(例如,对于平均尺寸小于10毫米的样品,反应器体积是10升),反应器结构必须在离开反应器之前迫使输入空气穿过整个样品,避免混入输入空气和排出空气;l 反应堆气密性验证系统;l 曝气系统配有流量调节器和容量计;l 用于抽取废气中氧浓度的系统(%/v);l 数据采集系统以1小时间隔连续记忆测量参数,记忆的数据必须是在所考虑的间隔期间读取的所有值的平均值(至少60)。 n 符合国际/欧洲标准和用途l UNI 11184 - 通过DRI确定生物稳定性,生物稳定性决定了易于生物降解的有机物质分解 的程度。l EN 15590 - 通过DRI确定目前的好氧微生物活动速率,该方法估计了气味产生的潜力,载体吸引等。目前的生物降解速率可以用毫克O2 kg-1 dm h -1表示。l 固体废物降解的其他应用。 n 优点l 多通道系统:3, 或6或12通道, 测量三个相似的不同样本进行统计评估; l 即插即用设计(易于安装,使用和维护);l -每个容器中包含温度传感器;l 自动冷凝水去除系统;l 温度,流量,压力和湿度测量;l 传感器O2:范围0-25%,精度:2%;l 各种尺寸的容器:2l,10l,20l,30l;l 用户友好软件与excel导出文件;l 远程电脑控制;l 气泵;l 无需特殊连接;l 适用于不同领域的各种应用;l 选配传感器,如二氧化碳或甲烷,用于详细过程分析和监控;l 用于容器,控制器和PC的机架(支架); n 技术规格l 尺寸 - 控制器:48 x 40 x 28 cm;重量:17kg;l 尺寸 - 容器支架:140 x 60 x 150 cm;重量:50kg;l 尺寸 - 10升容器:42 x 42 x 45 cm;重量:9kg;l 尺寸 - 2升容器:33 x 33 x 28 cm;重量:5.5kg。 n 亿斯埃欧呼吸仪DRI软件创新点:检测固体再生(回收)燃料的当前有氧微生物活动速率 多通道系统:3, 或6或12通道 固体在生(回收)燃料生物降解呼吸仪(土壤/堆肥/塑料)
  • 【热点应用】质子交换膜燃料电池生产中催化剂浆料的颗粒特性表征
    燃料电池(Fuel Cell)市场前景 为缓解世界性能源危机的加剧,减少传统能源对环境造成的污染;有序推进碳中和的各项任务目标,不断深化能源结构优化,提高能源开发整体效益成为摆在我国科研工作人员及新能源产业开发从业者面前的重要课题。 燃料电池(Fuel Cell)是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。它是继水力发电、热能发电和原子能发电之后的第四种发电技术。 燃料电池用燃料和氧气作为原料;同时没有机械传动部件,故没有噪声污染,排放出的有害气体极少。由此可见,从节约能源和保护生态环境的角度来看,燃料电池是最有发展前途的发电技术[1]。 作为一种新的高能量密度、高能量转化率、环保型的电源装置受到全世界的广泛关注,并具有广阔的应用前景。 一、质子交换膜燃料电池目前,燃料电池主要被分为六类[2]。碱性燃料电池(AFC,Alkaline Fuel Cell)、磷酸盐燃料电池(PAFC,Phosphorous Acid Fuel)、熔融碳酸盐燃料电池(MCFC,Molten Carbonate Fuel Cell)、固体氧化物燃料电池(SOFC,Solid Oxide Fuel Cell)、质子交换膜燃料电池(PEMFC,Proton Exchange Membrane Fuel Cell)和直接甲醇燃料电池(DMFC,Direct Methanol Fuel Cell)。采用聚合物质子交换膜作电解质的PEMFC,与其它几种类型燃料电池相比,具有工作温度低、启动速度快、模块式安装和操作方便等优点,被认为是电动车、潜艇、各种可移动电源、供电电网和固定电源等的最佳替代电源[3]。如图1所示,膜电极(membrance-electrode assembly, MEA)是由质子交换膜、催化层与扩散层 3 个部分组成,是质子交换膜燃料电池 (PEMFC)电化学反应的主要场所,也是决定质子交换膜燃料电池 (PEMFC) 的成本、性能和耐久性的核心关键部件。 二、质子交换膜燃料电池的催化剂浆料分析 催化剂浆料涂布是膜电极生产的关键步骤之一,要求催化层涂敷均匀,同时尽量减少铂含量以降低成本,因此必须对浆料进行严格的质量控制。 催化剂浆料的颗粒粒度和分散性能会影响浆料粘度、聚合物电解质的分布和形态、催化剂的利用率、催化剂和聚合物电解质的相互作用以及催化层的均匀性和连续性等重要参数,最终影响膜电极的电化学性能[4]。 如图 2 所示,常见的活性催化剂为铂基纳米颗粒,最佳粒度范围为 2~5nm,但这些纳米颗粒不是独立存在的,而是分散在碳载体颗粒上。单个碳载体颗粒的粒度范围为 20~40nm,在浆料中碳载体通常以团聚体的形式存在,粒度在亚微米至微米范围。聚合物电解质分散成不同形态(棒状或线团)、粒度在 70 nm~2.5 µm 之间的团聚体,与碳载催化剂混合形成催化剂浆料。催化剂和聚合物电解质分散在特定的溶剂中,需要控制团聚物的粒度,优化催化剂和电解质导体团聚物的相互作用。 对于聚合物电解质团聚体,粒度在200~400 nm范围有利于提高氢气/空气的反应性能。碳载体催化剂会出现未充分分散或过度分散的情况[5]。 在未充分分散时,碳载体是高度团聚的;离子交联聚合物只覆盖在团聚物外部,内部的铂催化剂无法与电解质充分接触,因此利用率不高。 过度分散时,团聚物破裂,铂催化剂颗粒与碳载体分离,影响其在氧化还原反应中的活性。 理想的分散状态是形成由碳载体催化剂组成的小团聚体,电解质聚合物在这些团聚体上均匀分布,能够提高催化剂的利用率[6]。 粒度是催化剂浆料的关键性指标,但浆料由不同尺度的颗粒混合物组成,要准确测量浆料的粒度有一定的难度,目前还没有一种技术可以全面表征所有颗粒的粒度。 X 射线衍射 (XRD)、激光衍射 (LD) 和动态光散射 (DLS) 是三种常用的材料表征技术,用于表征不同尺度的颗粒,结合三种技术能够全面表征催化剂浆料中的颗粒特性。 三、马尔文帕纳科解决方案 —— X 射线衍射技术X 射线衍射 (XRD) 通常用于确定小于 100 nm 的纳米晶粒尺寸。快速测量单个衍射峰(1~3 分钟),足以利用峰宽的 Scherrer 分析来计算晶粒尺寸。另外,如果测量多个衍射峰(20 分钟以上),则可采用全谱拟合技术,更精确地计算晶粒尺寸和点阵参数。图 3 显示了使用 Aeris 台式 X 射线衍射仪收集的 X 射线衍射数据,样品是分散在三种不同碳载体颗粒上的催化 Pt 粉末。 如表 1 所示,分散在 Ketjenblack EC-300J 碳黑上的 Pt 的平均晶粒尺寸比分散在 Vulcan XC72 碳或 Vulcan XC72R 碳上的 Pt 略小。晶粒尺寸的变化会改变催化活性和耐用性。全谱拟合分析还表明,EC-300J 上分散的 Pt 比 Vulcan XC72 或 Vulcan XC72R 上的 Pt 的点阵参数更大。该点阵参数也大于已公布的 Pt 的参考值3.9231 Å。[6]较大的点阵参7数可能表明表面引起了点阵应变或合金杂质可能改变催化活性。 XRD 可以分析分散体、固体碎片以及粉末。例如,碳载体 Pt 催化剂纳米颗粒可以在粉末分散到浆料中后和浆料印刷并固化在膜片或气体扩散层上后进行测量。图 4 显示了 40% Pt 在 Vulcan XC72 碳上的 XRD 数据,这些碳可作为粉末、浆料和催化剂涂覆膜 (CCM) 上的固化电极层。在所有情况下,Pt 衍射峰均可通过其他成分中解析出纳米粒尺寸计算,如表 2 所总结。 如图4所示,浆料和催化剂涂覆膜(CCM)样品与粉末样品相比,铂衍射峰变窄,说明这两中样品的铂晶粒尺寸变大。铂催化剂的这种粗化现象可能表明,在溶剂中的碳载体催化剂粉分散过程中,浆料变得过热。因此,在超声处理过程中,通常使用 5℃ 的水浴对浆料进行冷却。[8]在加工过程中,晶粒尺寸的变化(如颗粒粗化),会影响催化剂活性。 四、马尔文帕纳科解决方案—— 激光衍射技术激光衍射技术 (LD)是测量颗粒粒度分布的常用分析方法,粒度范围从十几纳米到几个毫米。动态范围宽,非常适合分析催化剂浆料的粒度分布。激光衍射法操作简便,测试速度快,通常不到1分钟,也非常适合生产过程控制。此外,激光衍射技术还可以研究工艺条件变化对浆料粒度分布的影响。 图 5 是使用 Mastersizer 3000 激光粒度仪对稀释后的催化剂浆料重复5次的粒度测试结果。该浆料中颗粒的粒度呈双峰分布,峰值在1 µm左右的颗粒占最大体积分数,20nm左右的颗粒体积分数占比较小。如表 3 所示,该浆料的粒度分布结果相对标准偏差(RSD)10 µm) 存在,这说明还需要增加剪切或者使用更高能量的分散方法进一步分散,才能达到合格的催化剂浆料要求。 五、马尔文帕纳科解决方案 —— 动态光散射技术 与激光衍射法相比,动态光散射 (DLS) 更适合于测量纳米级颗粒的平均粒度,范围从1 nm 至 1 µm。 将催化剂浆料以 1:10 比例分散在异丙醇(IPA)中,用Zetasizer Ultra纳米粒度仪测量催化浆料的平均粒度。稀释后的浆料仍然是高度不透明的,采用非侵入背散射 (NIBS)技术进行测量,重复测量5次。如图 7 所示,尽管浆料不透明,5次测量的相关曲线的一致性很好。图 8 是催化剂浆料的粒度分布图。如表 4所示,体积平均粒度为 1.04 µm,多分散指数也比较大(0.1)说明浆料的粒度分布宽,与激光衍射法的结果吻合。动态光散射技术(DLS)主要是检测颗粒的布朗运动产生的散射光光强波动,颗粒的散射光强与粒径的 6 次方成正比,大颗粒的信号很容易掩盖小颗粒的信号,因此动态光散射法(DLS)没有观察到激光衍射法测得的小颗粒。 动态光散射技术还可用于测量催化剂浆料的 Zeta 电位,研究电解质聚合物与碳载催化剂之间的相互作用,确定电解质聚合物在催化剂上的均匀分布。Zeta电位与浆料的离子浓度有关,可以通过对碳载体颗粒功能化改性或者改变电解质聚合物浓度来调节。通常来讲,特别是在介电常数较高的分散介质(如甲醇)中,Zeta 电位越高,浆料的稳定性越好。Zeta 电位分析还可以用于优化配方,改进浆料的稳定性。事实上,已经有研究报道可以通过模型根据初级颗粒的粒度和体系的Zeta 电位来预测催化剂浆料稳定[9]。 六、结论 通过X射线衍射技术发现,浆料和阴极催化剂涂覆膜中的晶粒尺寸比催化剂粉末大。这种颗粒粗化现象通常是由于浆料在分散过程中过热引起的。激光衍射法检测到在20 nm附近有大量初级颗粒,说明催化剂浆料出现了过度分散的现象。 联合使用激光衍射、X射线衍射和动态光散射技术,可以从不同尺度表征催化剂浆料,优化和监测催化浆料配方和稳定性。使用 Mastersizer 3000 激光粒度仪测量催化剂浆料的粒度分布,可评估临界颗粒分散的有效性。使用 Zetasizer 纳米粒度及Zeta电位仪进行 Zeta 电位测量,可研究聚合物电解质和碳载催化剂的相互作用,预测浆料稳定性。使用 Aeris 台式 X 射线衍射仪,可以测量纳米催化剂的晶粒尺寸,验证防止纳米颗粒粗化的方法的有效性。 参考文献[1] 陈光. 新材料概论:科学出版社,2003年[2] Kamaruzzaman.Sopian ,Wan Ramli Wan Daud.Challenges and Future Developments in Proton Exchange Membrane Fuel Cells [J].Renewable.Energy.2006,31(5):719~727[3] 胡嫦娥,刘琼,周敏. 质子交换膜燃料电池的研究现状. 新能源网. 2016.[4] D. Papageorgopoulos, US Dept. of Energy Hydrogen and Fuel Cells Program Report, FY 2018 Annual Progress Report[5] Orfanidi et al,J. Electrochem. Soc.165 (2018) F1254[6] Wang et al, ACS Appl. Energy Mater. (2019) DOI: 10.1021/acsaem.9b01037[7] Swanson Natl. Bur. Stand. (U.S.) Circ. (1953) 539 1 31[8] Sharma et al, Materials chemistry and Physics 226 (2019) 66-72[9] Shukla et al, J. Electrochem. Soc.164 (2017) F600-F609 关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。
  • 岛津推出便携式气体浓度分析仪CGT-7100
    岛津新型便携式气体浓度分析仪CGT-7100日前在中国上市。便携式气体浓度分析仪CGT-7100为全内置型分析仪,将样气制冷器和泵等预处理单元内置于主机中,采用All in One设计实现单机即可测量。该分析仪既可用于CO、CO2 、CH4气体高浓度测量,又可用于燃烧器研究开发及品质管理、氢燃料电池实验、温室气体CH4、CO2研究以及CO2的固定、回收等相关研究用途。在天然气制氢燃料改质装置使用的催化剂研究中,可应用于微小流量且高浓度的CO、CO2浓度检测。该产品具有拆卸部件少、简洁、故障率低及易于维护等优点。 便携式气体浓度分析仪CGT-7100有以下类型:类型1:一般燃烧废气排放气体监测用CO-CO2-O2检测仪类型2:温室气体监测用CH4-CO2检测仪类型3:燃烧器检查及研究监测用CO-CO2检测仪类型4:燃料电池研究用CO-CH4检测仪类型5:催化剂研究用CO-CO2检测仪(小流量监测类型)CGT-7100外观
  • 北京博赛德科技有限公司汽车用燃料氢气痕量杂质分析解决方案上市了!
    北京博赛德依据《质子交换膜燃料电池汽车用燃料氢气》(GB/T37244-2018)的要求及氢气中杂质实际分析中的难点和常见问题,推出了《汽车用燃料氢气痕量杂质分析解决方案》,该解决方案主要内容包括:BCT9700D动态稀释仪、BCT9900H氢能源杂质分析仪及后续分离检测系统。方案可实现单针进样分析汽车用燃料氢气中的硫化物、甲醛、甲酸等各目标组分检出限均低于其标准限值1个数量级以上。检出限低、性能稳定、准确度高精密度均小于10%,准确度均在90%-110%之间,优秀的检出限、精密度、准确度水平可以准确反映氢气中杂质的含量,有利于评估杂质对燃料电池的影响。BCT9900H氢能源电池杂质预浓缩仪北京博赛德基于近二十年VOCs检测分析经验,和中国石化石油化工科学研究院强强合作,共同开发了BCT9900H氢能源电池杂质分析仪。整套系统结合了EPATO15和HJ759标准方法对浓缩系统硬件及质控要求,同时针对氢气中杂质组分的特点和氢燃料电池行业的特有要求,在常规预浓缩仪的基础上进行了硬件升级改造,让捕集系统更加适合杂质的痕量分析,并结合开发优化后的专用氢杂质分析方法,可实现12种杂质组分的样品检测分析。产品特点专用捕集阱专用的捕集阱设计,克服了填料阱易残留、解析速度慢、载气流速大(需要分流进样)、被测物质易分解(如甲酸)等问题体积计量准确通过EVC电子体积控制,进样精度≤1ml,且可实现不同基质的样品体积测量,如氢气基质等,体积计量准确,精密度高系统无吸附样品流路全部经过惰性化处理,并经过严格的惰性测试,可避免吸附目标物质,保证高回收率避免交叉污染数控阀设计可实现将阀芯旋转到任意位置,能完全隔离捕集阱和样品,更好的避免了交叉污染适用性强测试浓度范围可达0.01ppb-ppm级别,适用于氢气成品中痕量杂质分析、氢气半成品中杂质分析应用范围:分析汽车用燃料氢气中的硫化物、甲醛、甲酸等组分检出限低:检出限低于国家标准中最大允许浓度限值的1个数量级以上BCT9700D动态稀释仪BCT9700D动态稀释仪基于理想气体状态方程的原理,采用限流器结合电子压力控制器(EPC)的方式,对气体流量进行控制和调节,实现对样品/标气的稀释。BCT9700D动态稀释仪BCT9700D可实现标气/样品稀释后直接进样分析,为气体质量检测、现场样品检测、仪器标定与质控等工作的准确性提供保障。产品特点采用动态稀释的原理,稀释后的样品/标气可直接进行分析,无需存储容器,降低目标组分的反应机会;采用限流器结合EPC进行流量控制,不使用质量流量计,避免交叉污染,稀释精度高,结果更准确;稀释倍数范围大,单次最大稀释倍数可达2000倍,可显著增加被测样品的浓度范围;整个稀释系统无需庞大的混合腔体,且气体经过的所有管线均经过惰性涂覆,避免目标组分在稀释过程中产生吸附和交叉污染;仪器内置加热单元和温度控制器,系统温度稳定,仪器稳定性更高。应用案例更多详情,欢迎来电垂询!
  • 生态系统可抵消部分化石燃料碳排放
    p   国际社会公认,当前气候变化主要是由CO sub 2 /sub 浓度升高造成的。而减缓CO sub 2 /sub 浓度升高的主要途径一是节能减排,二是调节自然生态系统固碳。前者效果明显,而后者的作用依然在探索之中。中国科学家通过5年持续观察研究得出结论:中国陆地生态系统在2001年—2010年期间平均年固碳2.01亿吨,相当于抵消了同期中国化石燃料碳排放量的14.1%。《美国科学院院刊》以专辑形式发表了该项目的7篇研究论文。 /p p   当今世界范围最大的野外调查项目 /p p   陆地生态系统可以通过植被的光合作用吸收大气中的大量CO sub 2 /sub 。利用陆地生态系统固碳,是减缓大气CO sub 2 /sub 浓度升高最为经济可行和环境友好的途径。2011年初,中科院启动了“应对气候变化的碳收支认证及相关问题”专项,下设“生态系统固碳”研究,力图通过对中国各类生态系统的碳储量和固碳能力进行系统调查和观测,揭示中国陆地生态系统碳收支特征、时空分布规律以及国家政策的固碳效应。 /p p   项目首席科学家之一方精云院士说,来自中科院及高校、部委所属35个研究院所的350多名科研人员,按照专项统一的实验设计和调查方法,系统调查了中国陆地生态系统(森林、草地、灌丛、农田)碳储量及其分布,调查样方17000多个、累计采集各类植物和土壤样品超过60万份。“这是当今世界范围最大的野外调查项目,为研究中国植被生产力、碳收支以及生物多样性的宏观格局提供了大量野外实测数据,也为我国国土资源规划、保护与利用等提供了重要的本底数据。” /p p   生态工程和秸秆还田均固碳 /p p   自2015年开始,科研人员创新科研组织模式、打破课题间壁垒、实现数据完全共享,在凝练出若干个重大科学问题的基础上,对所有采集数据,统一汇总整理,统一控制数据质量、统一数据挖掘,从多个层面系统深入地分析了中国陆地生态系统碳源汇特征、驱动因素以及相应的生态系统功能,取得了一系列原创性重大成果。 /p p   中国科学家的代表性成果包括:1.中国陆地生态系统在过去几十年一直扮演着重要的碳汇角色。在2001年—2010年期间,陆地生态系统年均固碳2.01亿吨,相当于抵消了同期中国化石燃料碳排放量的14.1% 其中,中国森林生态系统是固碳主体,贡献了约80%的固碳量,而农田和灌丛生态系统分别贡献了12%和8%的固碳量,草地生态系统的碳收支基本处于平衡状态 2.首次在国家尺度上通过直接证据证明人类有效干预能提高陆地生态系统的固碳能力。例如,我国重大生态工程(天然林保护工程、退耕还林工程、退耕还草工程,以及长江和珠江防护林工程等)和秸秆还田管理措施的实施,分别贡献了中国陆地生态系统固碳总量的36.8%(7400万吨)和9.9%(2000万吨) 3.首次在国家尺度上开展了群落层次的植物化学计量学研究,验证了生态系统生产力与植物养分储量间的正相关关系,揭示了植物氮磷元素的生产效率 4.首次揭示了生物多样性与生态系统生产力和土壤碳储量之间的相关关系,证实了增加生物多样性不仅能提高生态系统的生产力,而且可以增加土壤的碳储量。 /p p   审稿人对成果高度评价 /p p   对于中国科学家的论文,美国科学院院士InderM. Verma认为:“该专辑主题不仅在科学上,而且在社会领域都非常重要,应该会在世界上引起广泛的兴趣和产生重大的影响。”“论文为证实生态恢复工程对中国碳汇的影响方面作出了重要贡献。” /p p   另一位审稿人指出:“该研究非常重要。论文提供的翔实、独特的数据库将有助于地理学家、生物地球化学家、植物生态学家、生态生理学家、模型学家在大尺度范围上验证一些以往在小尺度上得到的假说。” /p p   有国内专家指出,这项研究成果也从科学角度有力地宣示了中国在生态文明建设中的成就,不仅提供了人类干预促进生态系统碳吸收的新见解,也为其他发展中国家提供了可借鉴的经验。 /p
  • 福岛核电站1号机管道氢气浓度超仪器上限
    日本东京电力公司24日确认,经过再次调查,发现福岛第一核电站1号机组连接安全壳的两处管道内几乎充满了氢气。不过由于没有火源和氧气,爆炸的风险较低。日本经产省原子能安全保安院已经要求彻底调查。   东电公司23日上午曾宣布,在连接1号机组安全壳的管道中意外地检测出了浓度超过1%的氢气。由于在核泄漏事故处理中一直向安全壳内注入较安全的氮气,因此东电公司认为爆炸的危险很低。   氢气是在向安全壳注水的喷淋系统的两处管道内检测出来的。东电公司认为,氢气有可能是今年3月核泄漏事故初期燃料棒套管与水反应以及此后水被放射线照射分解产生的,然后逆流到了管道中。   23日当天,东电公司利用可燃性气体浓度仪再次测量了1号机组的两处管道,结果显示可燃气体的浓度已经超出了仪器的上限。东电公司认为,气体几乎全部是氢气,其他可燃性气体的可能性很低,今后将准确测定氢气浓度,并采取向管道内注入氮气等措施。   在氢气浓度超过4%,同时氧气浓度超过5%的时候,就有爆炸的危险,但东电公司说管道内几乎没有氧气,所以爆炸的危险很低。   东电公司准备为1号机组安全壳安装净化设备,用于清除安全壳内空气中含有的放射性物质,为此对管道进行了检查,上述两处管道已计划截断。东电公司认为预定安装同样净化设备的2号和3号机组的管道内也可能含有大量氢气,正准备调查。
  • 【创新方案】氢燃料电池用氢中痕量硫化物杂质分析
    加拿大ASD公司推出的痕量硫化物应用方案得到了强烈的市场反响。近期,我们升级了痕量硫化物专用气相色谱分析系统KA8000plus-S,该系统重点用于超痕量水平检测氢燃料电池用氢中的所有硫基化合物,具有无需预浓缩,直接探峰1~5ppb,检测限小于0.5ppb(以重复性计),高稳定性、高灵敏度等优势,为痕量硫化物分析带来全新的解决方案。硫化物专用气相色谱KA8000plus-S该系统采用100%ASD自主技术及相关设备,其中增强型等离子体放电检测器Epd,可用于所有检测,包括已知难以分析的硫化合物和甲醛。与传统的SCD和FPD/PFPD相比,Epd技术是固态的,仅需要惰性的载气即可运行。对于包括H2S在内的硫成分,它也不需要预浓缩,直接测量样品浓度1~5ppb, 检测限案例:西南化工研究院实验室KA8000plus-S系统---氢燃料电池用氢质量分析方案特点 直接探峰1~5ppb,检测限 无需样品预浓缩 操作仪器不需要燃料气,只需氦气即可 高稳定性、高灵敏度方案基本配置◆ KA8000plus-S硫化物专用气相色谱仪 包括:SePdd 增强型等离子体放电检测器 PLSV 惰性6通阀+2ml惰性定量环◆ ASDPure载气体纯化器(出口杂质方案应用详情请联系:fzhu@asdevices.cn
  • 欢迎参加安捷伦网上讲座:重整燃料与炼厂气分析的创新方法 — 通过使用大阀箱提高分析性能
    欢迎参加安捷伦网上讲座:重整燃料与炼厂气分析的创新方法 — 通过使用大阀箱提高分析性能 确保产品质量和安全性、严格的监管要求和环境管理、以及效率提升的需求都对您的实验室提出了严峻的挑战。现在,安捷伦将举办免费的在线研讨会,邀请业内权威专家为您带来解决难题的技巧和方法:日期:2014 年 3 月 10 日(星期一)时间:北京时间 15:00-16:00主题:重整燃料与炼厂气分析的创新方法 — 通过使用大阀箱提高分析性能主讲人:张道平,安捷伦科技(中国)有限公司资深应用工程师,拥有二十余年气相色谱产品使用和方法开发经验,近年来主要研究方向为能源和化工 Agilent 7890B 气相色谱系统增加了外部大阀箱,可极大地提高安捷伦科技公司所生产气相色谱系统的分析性能。本次免费的在线研讨会涉及以下几个方面:新系统的硬件及其功能概述回顾大阀箱在按照 ASTM D1945 和 D1946 方法进行快速炼厂气分析(RGA)以及高容量炼厂气分析(RGA)的应用按照 ASTM D3606、D4815 和 D5580 方法分析重整燃料中的苯、芳香化合物和含氧化合物演讲主题将回顾硬件配置、方法优化和分析建议等 注册链接:https://agilenteseminar-sc.webex.com/agilenteseminar-sc/onstage/g.php?d=960274098&t=a 关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20,600 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2013财年,安捷伦的净收入达到 68亿美元。了解关于安捷伦的详细信息,请访问www.agilent.com.cn。 安捷伦于2013年9月19日正式宣布拆分为两家上市公司,并通过免税剥离方式拆分出电子测量公司。新的电子测量公司名称为Keysight Technologies(是德科技)。预计整个拆分将于2014年11月初完成。
  • 纺织品和皮革禁用偶氮染料检测将迎来一场革命
    受浙江省科技厅委托,嘉兴市科学技术局于2010年12月31日组织浙江大学、浙江工商大学、浙江省检验检疫科学技术研究院、上海应用技术学院、嘉兴学院的专家在嘉兴主持召开项目验收、鉴定会。嘉兴检验检疫局主持的一项省科技厅面上工业项目“纺织品和皮革禁用偶氮染料生物检测技术的研究”(计划编号:2009C31014)顺利通过了验收、鉴定。   中国是全球纺织品和皮革制品的生产和出口大国,在国际市场上作用举足轻重。1994年德国颁布《食品及日用消费品法》第二修正案后,禁用偶氮染料的检测就由此展开。目前,国内外禁用偶氮染料的检测方法标准主要有国家标准、德国标准、欧盟标准和国际标准。所有这些标准方法基本类似,均采用常规的仪器分析方法。这些方法有很大的不足:一是前处理复杂,工作强度大 二是消耗大量的化学试剂,不仅成本高,而且污染环境 三是分析检测速度慢 四是所需仪器设备价格昂贵,维护修理费用也很大。因此,迫切需要一种操作简单、成本低、绿色环保、快速方便的新型检测方法。   由嘉兴检验检疫局、浙江清华长三角研究院、中科院嘉兴中心应用化学分中心联合承担的省科技厅面上工业项目“纺织品和皮革禁用偶氮染料生物检测技术的研究”,针对上述问题进行了开创性的探索。以其中一种芳香胺为例,经过半抗原的修饰与合成、全抗原的合成、抗体的制备与纯化等一系列工作,成功研制出该芳香胺的试剂盒,独创性地将免疫分析方法引入纺织品和皮革禁用偶氮染料的检测,取得了良好的效果。该项目通过验收、鉴定,填补了该领域国际空白。   该项目通过验收、鉴定,为下一步研制出可测试所有芳香胺的试剂盒奠定了基础。一旦取得成功,那么纺织品和皮革禁用偶氮染料的检测将迎来一场革命,原来需要复杂的前处理、大量的化学试剂、昂贵的仪器、长时间的分析将被简单的前处理、少量的缓冲液、普通的96孔板所代替,其分析时间将大大缩短。
  • 氢能产业要发展,质量检测标准应先行!——访氢能与燃料电池分析方法标准制定工作组组长潘义研究员
    为推进气候变化治理和能源转型,促进能源行业供给改革,保障国民经济和民生的可持续和高质量发展,我国以负责任的大国担当态度提出了“3060双碳”目标。氢能因其来源广、燃烧热值高、能量密度大、可储存、可再生的特点,成为我国节能减排和能源变革过程中最理想的能源互联媒介。近几年,国家各部委和地方政府密集出台了一系列促进氢能产业发展的顶层设计方案,以中石化、中石油、国家能源集团、国家电投等为代表的相关央企纷纷布局氢能产业链。质子交换膜燃料电池(PEMFC)汽车作为氢能利用的重要场景,我国早在2006年就将其列入了国家中长期科学和技术发展规划纲要。氢气作为燃料电池汽车的能量载体,其质量的优劣将直接影响PEMFC的运行和寿命正常与否。国内外相关科研机构围绕氢气中杂质组分对燃料电池的损伤机理开展了大量的探索与验证工作,各种微痕量杂质对燃料电池会产生不同的影响:水含量过高会使气体的扩散效率下降,阻止气体到燃料电池的催化层进行反应,影响燃料电池的效率、稳定性和耐久性;二氧化碳、甲烷、氮、氩、氦等杂质组分会降低氢气的分压,导致燃料电池局部氢气供应不足,可能造成电池反极并发生碳蚀现象;一氧化碳会占据 PEM 催化剂的活性位而阻碍氢气在催化剂上的吸附,降低氢气电离出质子的速率,严重时会导致催化剂完全失活;不同种类的硫化物如硫化氢、硫氧碳、二氧化硫、硫醇、硫醚等都会对PEMFC 阴极催化剂产生不可逆的毒化作用;甲酸和甲醛具有类似的毒化作用,两者均会在电池膜电极催化剂表面产生吸附,从而降低反应表面积;氨会降低电池电极电化学反应界面,对 PEMFC 性能产生不可逆的损坏;卤离子在电池阴极上与氧气的竞争吸附会影响燃料电池的工作效率,降低电池性能;颗粒物杂质会占据膜电极的活性位影响电池性能效率,并会影响氢气储存和反应系统的安全[1]。氢燃料质量相关标准的进化史目前ISO以及各个国家针对PEMFC所用燃料氢气中对电池性能以及关键零部件会会造成损害的杂质组分/种类和限值都作了明确的规定,并制定了相应的标准,如ISO 14687:2019、ISO 21087:2019、ISO 19880-8:2020、BS EN 17124:2018、SAE J 2719:2015和GB/T 37244-2018等。我国PEMFC汽车用燃料氢气的现行产品标准为GB/T 37244-2018,最初是以团体标准T/CECA-G 0015-2017的形式于2017年12月发布实施,后在2018年12月以国家标准的形式发布,2019年7月开始实施,该标准中对杂质组分种类和限值要求完全参照国际标准ISO 14687-2:2012和SAE J2719:2015。ISO 14687系列标准经历20多年的制定完善过程,最初以氢燃料质量标准ISO 14687:1999版本发布,后经2004年美国能源部召开的研讨会讨论将氢燃料的关注重点由纯度(Purity)转变为质量(Quality),并与2012年形成ISO 14687-2:2012,该标准系统规定了14类杂质组分的组成和限值要求。目前国际上现行有效的产品质量标准 ISO 14687:2019 由ISO/TC 197 Hydrogen technologies(国际标准化组织氢能技术委员会)于2019年发布,相较于国内现行版本 GB/T 37244-2018 有以下异同处(具体指标见表1)。BS EN 17124:2018规定的内容与ISO 14687:2019完全一致。在对氢气纯度、非氢气总量、水、氧、氦、二氧化碳、一氧化碳、氨、甲酸、总卤化物、最大颗粒物浓度等这11个指标的要求上,ISO 14687:2019与GB/T 37244-2018保持了一致。两者的主要区别在于,ISO 14687:2019放宽了对甲烷、氮、氩和甲醛等4个杂质含量限值的要求,其中对甲烷的含量限值作了单独规定,为100 μmol/mol;氮和氩由原来的合计不超过100 μmol/mol,更改为各自不超过300 μmol/mol;总烃含量的计量方式由“按照甲烷计”更改为“按照C1计且不包含甲烷”;甲醛的含量限量值由原来的0.01 μmol/mol提高为0.2 μmol/mol;总硫含量的计量方式也由“按照硫化氢计”更改为“按照S1计”。此外,ISO 14687:2019还针对一氧化碳、甲醛、甲酸的总含量提出不可超过0.2 μmol/mol的要求。需要注意的是,ISO 14687:2019标准内“总硫”参数所推荐的检测方法ASTM D7652已经于2020年作废了,目前ISO/TC 197正在组织开展ISO 14687:2019下一个版本的修订工作。表1. 国内外现行标准对燃料电池用氢杂质组分的限量值要求项目名称GB/T 37244-2018ISO 14687:2019氢气纯度(摩尔分数)99.97%99.97%非氢气总量300 μmol/mol300 μmol/mol单种/类杂质的最大浓度水(H2O)5 μmol/mol5 μmol/mol总烃2 μmol/mol(按甲烷计)2 μmol/mol(按Cl计、不含甲烷)甲烷(CH4)/100 μmol/mol氧(O2)5 μmol/mol5 μmol/mol氦(He)300 μmol/mol300 μmol/mol氮(N2)100 μmol/mol(两者总量)300 μmol/mol氩(Ar)300 μmol/mol二氧化碳(CO2)2 μmol/mol2 μmol/mol一氧化碳(CO)0.2 μmol/mol0.2 μmol/mol总硫0.004 μmol/mol(按H2S计)0.004 μmol/mol(按S1计)甲醛(HCHO)0.01 μmol/mol0.2 μmol/mol甲酸(HCOOH)0.2 μmol/mol0.2 μmol/mol氨(NH3)0.1 μmol/mol0.1 μmol/mol总卤化物(按卤离子计)0.05 μmol/mol0.05 μmol/mol颗粒物1 mg/kg1 mg/kg我国现行质子交换膜燃料电池汽车用氢气GB/T 37244-2018中提出了需要关注的氢燃料质量有影响的系列杂质组分限量值要求,并针对每种杂质组分分别引用了不同的分析方法标准。考虑到氢气背景条件下的适用性,从经济适用性等角度考虑,笔者认为部分方法标准还存在可以优化和提升的空间。氢能工作组全力开展检测方法标准化体系建设工作产业要发展,标准需先行。质子交换膜燃料电池用氢气作为产业“前端生产的产品”和“后端应用的原料”,建立准确可靠、具有溯源性的质量检测分析方法标准体系至关重要。在制定标准的过程中,要注重标准的质量:既不能造成标准实施过程中技术门槛和成本过高,现场适用性差,变为“僵尸标准”;亦要注意尽量采用先进的技术和方法,有利于技术的更新迭代,促进产业进步发展;既要响应国家提倡的分析仪器装备国产化要求,尽量实现技术自主可控;同时还要兼顾氢能产业对在线和离线测试需求的特点。为了健全我国氢燃料质量分析方法标准体系,2019年3月7日,经全国气体标准化技术委员会批准,依托中国测试技术研究院化学研究所为秘书处,成立全国气体标准化技术委员会气体分析分技术委员会氢能与燃料电池分析方法标准制定工作组(SAC/TC206/SC1/WG1,以下简称“氢能工作组”),氢能工作组负责国内氢能与燃料电池领域气体分析标准化的归口工作。工作组成立之后,在全国气体标准化技术委员会的指导下,秘书处承担单位组织科研人员,并联合工作组各成员单位,针对GB/T 37244和ISO 14687标准中规定的质子交换膜燃料电池汽车用氢气质量检测所涉及到的所有气态组分杂质和颗粒物组分杂质的取样和检测开展联合科研攻关和标准化工作,主要包括各类组分分析方法标准,气体分析术语标准,气体标准样品/物质制备方法,气体采样、取样方法标准等方面。如何确保痕量甚至是超痕量水平的测量需求,准确的取样、高水平的分析方法以及量值稳定、准确、可靠的气体标准物质是非常重要的三个环节。基于以上原则,结合全国气体标准化技术委员会在气体分析方法标准领域的经验积累和氢能工作组的技术优势,我们从2019年开始组织开展了大量针对性的标准化研究工作,目前已经联合国内外的优势分析仪器厂家共同开发了多个整体解决方案。针对不同指标灵活搭配检测仪器针对8个无机和烃类杂质组分需要3台不同仪器检测的问题,中国测试技术研究院的研究人员以岛津GC-2030气相色谱为应用测试平台,采用多阀多柱,热导检测器、火焰离子化检测器和甲烷转化炉组合的气相色谱分析方法,实现一次进样完成8个参数的准确定性定量分析,分析谱图见图1,实验表明THC、CO、CH4、CO2、Ar、O2、He、N2的线性相关系数R20.995,检出限分别为0.020 μmol/mol、0.033 μmol/mol、0.039 μmol/mol、0.14 μmol/mol、0.25 μmol/mol、0.32 μmol/mol、9.5 μmol/mol、1.7 μmol/mol。图1. 氢气中甲烷、二氧化碳、一氧化碳、氧、氦、氮、氩等7个组分的连续7次进样典型谱图针对标准中限值最为严格和分析难度最大的总硫含量(4 nmol/mol),中国测试技术研究院的研究人员开发了基于不同来源的氢气中9种典型硫化合物的低温富集与GC-SCD相结合的在线分析解决方案。此方案主要包括高准确度微痕量氢气中多组分硫化物混合气体标准物质、集成了在线动态稀释功能的半导体低温富集系统和硫化学发光气相色谱仪。结果表明此系统的校准曲线的相关系数高于0.999,仪器检出限不高于0.050 nmol/mol,方法检出限最低可达到0.01 nmol/mol,精密度和准确度令人满意(RSD5%,SD15%)。开发的系统成功地应用于实际样品分析[2]。在该方案中,将毛细管色谱柱更换为非保留色谱柱即可用于氢气样品中总硫的分析。图2. 低温富集-GC-SCD在线分析系统数据示意图(出峰顺序为:H2S、COS、CH3SH、C2H5SH、CH3SCH3、CS2、CH3SC2H5、C4H4S和C2H5SC2H5)(左图浓度为0.1、0.2、0.5、1、4、8、10、15、20、30和40 nmol/mol;右图为0.1、0.2,0.5和1 nmol/mol)图3. 燃料电池汽车用氢中痕量硫化物解决方案系统组成图标准的最大价值在于服务社会进步、经济发展和产业创新,其最大使命在于指导、规范和约束使用者得到合理、科学和准确的结论。分析方法在实验室离线使用以及现场在线应用中,要充分考虑方法的适用性、合理性、安全性和经济性,氢能工作组在充分调研和前期实验研究的基础上,紧跟国际上最新的燃料电池用氢气质量标准ISO14687:2019中规定的杂质组分组成和限值要求,分别整理了一些分析方法解决方案供检测实验室和现场参考使用,具体见表2。表2. 针对ISO 14687要求的气体杂质组分分析方法解决方案杂质参数名称限量值要求分析方法解决方案总烃(按Cl计、不含甲烷)2 μmol/mol“三阀四柱+GC-(TCD+FID+MTN)”,在线/离线(注:可采用电化学氧气分析仪在线监控O2组分)甲烷(CH4)100 μmol/mol一氧化碳(CO)0.2 μmol/mol二氧化碳(CO2)2 μmol/mol氧(O2)5 μmol/mol氦(He)300 μmol/mol氮(N2)300 μmol/mol氩(Ar)300 μmol/mol总硫(按S1计)0.004 μmol/mol“低温富集+GC-SCD”,在线/离线甲酸(HCOOH)0.2 μmol/mol“FTIR”或“低温富集+GC-MS”,在线/离线甲醛(HCHO)0.2 μmol/mol“FTIR”或“低温富集+GC-MS”或“CRDS”,在线/离线氨(NH3)0.1 μmol/mol“FTIR”或“CRDS”或“在线吸收-离子色谱法”,在线/离线总卤化合物(按卤离子计)0.05 μmol/mol无机卤化物:“在线吸收-离子色谱法”,在线/离线;有机卤化物:“预浓缩+GC-MS”或“预浓缩+GC-ECD”,在线/离线水分5 μmol/mol露点法、电容法、石英晶体震荡;在线/离线颗粒物1 mg/kg在线滤膜取样+称重法目前,氢能工作组正在组织开展的与燃料氢气质量检测相关的国家标准制修订项目有:“气体分析 质子交换膜燃料电池用氢气质量分析方法 指南(制定)”、“气体分析 微型热导气相色谱法(制定)”、“GB/T 28726-2012 气体分析 氦离子化气相色谱法(修订)”、“气体中微量水分的测定”系列标准修订,“气体中微量氧的测定”系列标准修订等;正在开展的团体标准制定项目:《气体分析 氢气中硫化物含量的测定 低温富集-硫化学发光气相色谱法》、《气体分析 氢气中氨含量的测定 光腔衰荡光谱法》、《气体分析 氢气中氩、氧、氦、甲烷、非甲烷总烃、一氧化碳、二氧化碳含量的测定 气相色谱法》。同时,氢能工作组已组织团队完成了“氢气中甲烷、一氧化碳、二氧化碳、甲醛、甲酸、氨和氯化氢的测定 傅里叶变换红外光谱法”、“氢气中卤化物的测定 在线吸收-离子色谱法”、“甲醛的测定 低温富集-气相色谱/质谱法”、“气体中微量水分的测定 电容法”、“高压气态氢气的取样方法”等系列方法标准的前期验证试验工作,下一步将在全国气体标准化技术委员会的组织下积极申报国家标准,完善涉及燃料氢气质量检测相关的取样和分析方法标准体系,满足我国氢能产业高质量发展对气体分析标准化的需求。参考文献[1] 潘义,邓凡锋,王维康,杨嘉伟,张婷,林俊杰,龙舟,姚伟民,方正.车用燃料氢气中杂质组分分析方法标准化现状与探讨——以质子交换膜燃料电池汽车为例[J].天然气工业,2021,41(04):115-123.[2] Yi P, Feng F D, Zheng F, et al. Integration of cryogenic trap to gas chromatography-sulfur chemiluminescent detection for online analysis of hydrogen gas for volatile sulfur compounds[J]. Chinese Chemical Letters, 2021(DOI:10.1016/j.cclet.2021.05.067)(作者:中国测试技术研究院化学研究所 潘义,邓凡锋)
  • 北大研究称PM2.5浓度升高可增居民早亡风险
    一份在西安市进行的中国科学家研究,近期在国际顶级流行病学期刊《美国流行病学期刊》上发表。   研究首次分析了我国PM2.5及其化学组分浓度变化和居民死亡率变化的对应关系。该研究发现,我国北方城市冬季采暖期间,PM2.5及其关键化学组分浓度增高时,因急性心肺疾病发病导致的早亡风险也明显增加。   中国此类研究成果首发国际期刊   近期,国际顶级流行病学期刊《美国流行病学期刊》发表了北大前沿交叉学科研究院环境与健康中心研究员黄薇等人在西安市所做的PM2.5相关的流行病学研究。在流行病学领域中,《美国流行病学》创刊最早,这是该期刊二十年来首次发表我国大气污染与居民健康危害关系的研究成果。   据悉,这也是我国首次在国际期刊上发表我国PM2.5及其化学组分急性暴露与居民死亡率之间关系的研究。   心脑血管疾病死亡风险增加更高   “PM2.5暴露与居民超额死亡风险存在显著关联。”黄薇说,她和她的同事分析了2004年到2008年西安市户籍居民的每日因病和自然死亡人数,试图寻找PM2.5急性暴露与居民超额死亡风险增加的关联。PM2.5急性暴露指的是急性病的发作,如冠心病、脑血栓、心梗、心绞痛等。“超额死亡”,指在正常死亡概率之外,因为空气污染贡献的死亡率。   根据该研究,在排除了年龄、性别、时间效应和气象因素等影响因素之后,当PM2.5浓度每增加103微克/立方米时,居民全部死因的超额死亡风险会增加2.29%,滞后时间在1-2天。心脑血管疾病增加的超额死亡风险更高,为3.08%。   北方城市供暖致PM2.5影响大   研究另外发现,我国北方城市冬季采暖期中,PM2.5的急性暴露对心脑血管和呼吸系统疾病患者的影响尤为显著。   黄薇解释,之所以选择西安,是因为西安冬季采暖,春秋季还受到沙尘的影响,因此,西安地区的PM2.5来源基本代表了我国北方城市细颗粒物的主要来源。   黄薇说,我国北方冬季采暖期颗粒物排放水平升高,低温条件下污染物扩散受到影响,因此冬季PM2.5暴露的健康影响可能更为显著。根据其分析,化石燃料燃烧产生的二次粒子、硫化物、元素碳,在采暖期,对心肺系统疾病死亡的关联更为显著。
  • 氢风徐来-岛津Nexis SCD-2030助力燃料电池用氢气中硫化物在线分析
    我国 “双碳”目标的提出彰显负责任的大国形象,亦是可持续高质量发展的内在需求。在此宏观愿景下,“零碳排放”的氢能产业方兴未艾,燃料电池汽车作为氢能应用的重要场景,其能量供应体氢气质量的优劣至关重要。近期,中国测试技术研究院技术人员通过长期、深入、系统的研究,开发出一整套燃料电池用氢气中痕量硫化物的低温富集-GC-SCD在线分析系统,研发成果文章发表于Chinese Chemical Letters, 作为分析系统检测部分的核心,岛津的Nexis SCD-2030硫化学发光检测器大显身手。 氢燃料电池是很有前途的能源之一,它可以实现能源的循环生产,避免温室气体或污染副产品的排放。然而,即使在痕量水平(nmol/mol)的硫化物(SCs)也会导致催化剂不可逆的毒化作用,损伤并缩短燃料电池的寿命。此外,高反应活性的SCs可能会在复杂的环境中导致反应产生不同种类和浓度的SCs,为了更好地实时动态的监控SCs含量,在线分析系统至关重要。 在此背景下,研究人员开发了基于不同来源的氢气中9种典型SCs的低温富集与GC-SCD相结合的在线分析系统,结果表明此系统的校准曲线的相关系数高于0.999,仪器检出限不高于0.050 nmol/mol,方法检出限最低可达到0.01 nmol/mol,精密度和准确度令人满意(RSD5%,SD15%)。开发的系统成功地应用于实际样品分析。图1. 低温富集-GC-SCD在线分析系统示意图 该系统由基准参考混合气体(PRGM)在线稀释、低温富集和GC-SCD三个主要部分组成,模块编号为1至14,分别代表1:压力传感器、2:开关阀门、3:临界流锐孔、4:H2纯化器、5:质量流量计MFC1、6:三通管、7:质量流量计MFC2、8:气泵、9:六通阀、10:低温捕集阱、11:GC、12:总硫分析用非保留色谱柱、13:形态硫分析用毛细管色谱柱、14:SCD检测器。 图2. 低温富集-GC-SCD在线分析系统数据示意图 混合气体标准物质的GC-SCD色谱图(出峰顺序为:H2S、COS、CH3SH、C2H5SH、CH3SCH3、CS2、CH3SC2H5、C4H4S和C2H5SC2H5),浓度为0.1、0.2、0.5、1、4、8、10、15、20、30和40 nmol/mol(从内到外)(左)并放大0.1、0.2,0.5和1 nmol/mol(右)。 表1. 某实际样品的数据分析结果表 实验结果表明,该在线分析系统可以实现快速在线、高灵敏度、精密度和准确度测定H2中SCs混合物。如上表实际样品分析案例所示,测定实际样品中的SCs,分析结果可低至0.09 nmol/mol,样品分析时间小于30分钟,证明该在线分析系统是快速、高效测定实际H2样品中痕量硫化物的理想解决方案。岛津新一代Nexis SCD-2030硫化学发光检测器
  • 大昌华嘉-法国fogale在线活细胞浓度分析仪样机试用活动火热进行中
    活动日期:即日起到2012年12月31号   发酵过程中,细胞浓度是一个非常重要的生理参数,不但可以计算比生长速率,底物消耗速率、生物量产率和维持系数等参数,还可以及时判断是否有染菌等异常情况发生。目前测量细胞浓度的方法主要有化学法(DNA/RNA分析)和物理法(干重、光密度、呼吸商等)两大类。一般来说,与物理法相比,化学法能较准确的测量有代谢活性的生物量,缺点是花费时间长,而利用物理法测量,无法区分处于悬浮状态的颗粒和微生物,也无法分别活死细胞。   法国foagale根据细胞的介电特性,推出全新的在线活细胞浓度分析仪EVO200,该仪器不仅可以以光密度(OD)法测定发酵液中总细胞的浓度,还可以根据电容法测定活细胞的浓度,配合特有分分析软件和扫描软件,仪器可以分析发酵过程中细胞的比活力和比生长速率,得到细胞状态的各项参数和细胞的平均直径,帮助您及时了解生物过程的变化。是现在生物制药工业和发酵过程的理想的过程分析工具,仪器符合GMP和FDA的要求。   为了使中国的用户能够体验到这项最新的监测技术,给中国的发酵行业提供一项全新的监测手段,大昌华嘉公司联合法国fogale公司在中国开展全面的样机试用和在线细胞浓度解决方案活动,现在您只需要填写申请表格,发送至:joyce.hu@dksh.com 我们会第一时间安排工程师和仪器为您提供全面的支持服务,并有机会得到样机试用的机会。   仪器特点:   1:浊度法OD600(光密度)检测总细胞浓度   2:电容法检测活细胞浓度,无需染色   3:总细胞和活细胞同时测量确定细胞的比生长速率   4:符合FDA和GMP的要求,可提供证书   5:支持SIP/CIP,没有维护耗材   6:快速、准确、信号稳定   7:仪器自动记录,可以实现生物量反馈控制   8:彩色触摸屏显示   技术参数:   生物量浓度范围电容率 0-700pF/cm   动物细胞:最小105细胞/ml , 最大109细胞/ml   酵母,细菌,真菌:1g/L-200g/L干重 最小5g/L(高耗氧培养基中)   分辨率0.01*106细胞/ml   0.02g/L酵母干重   电导范围0.5-100ms/cm   选配选配生物量分光光度计:进行细胞生物特性图谱分析   选配连续培养模式   数据存储内置数据存储卡   密封性IP65保护.不锈钢密封   模拟输出4-20mA模拟信号   数值输出OPC协议, USB, Mod BUS数据输入/串口   探头类型12mm直径(120-420mm长)、25mm直径   一次性传感器   卫生型卡箍街头、316不锈钢,头部4个白金电极,EPDM O型密封圈   法国fogale公司evo200仪器主要特点和介绍:   http://www.instrument.com.cn/netshow/SH102538/C146411.htm   http://www.fogalebiotech.com/biotech-biomass-sensor/evo 回执表 姓名 客户编号: 职务 单位/部门 地址 邮编: 电话 传真: Email 以前的细胞浓度测定方法 所用细胞 1. 动物细胞 2. 真菌、酵母 3. 细菌 4. 植物细胞 5.藻类 6. 其他 科研方向 1.科学研究 2.生物制药、疫苗、抗体 3.发酵饮料 4.食品发酵 5.其他
  • 大昌华嘉公司新增法国FOGALE公司在线活细胞浓度分析仪
    FOGALE公司创立于1983,是电容、光学和超声技术领域的权威企业。FOGALE BIOTEC位于美国马萨诸塞州、剑桥,专注于研发和销售上游发酵和细胞培养高端设备, Biomass细胞浓度测量系统是全球最先进的在线细胞分析系统,仪器采用电容法的原理,在线实时测量细胞的浓度,为生物发酵和细胞培养领域提供一种全新的检测手段。 目前Biomass系统已成功应用于啤酒行业,和细胞制药行业,在欧美制药和饮料行业已得到广泛的应用,目前中国企业已经开始使用上这项全新的技术。 FOGALE 公司主要产品: 1:EVO200 双通道-活细胞浓度分析仪 http://www.instrument.com.cn/netshow/SH102538/C146411.htm 2:IBiomass 465 四通道活细胞浓度分析仪 http://www.instrument.com.cn/netshow/SH102538/C146412.htm 3:IBiomass box 经济型在线活细胞分析仪 http://www.instrument.com.cn/netshow/SH102538/C146416.htm 4:biopod F200 微型平行生物反应器(100ml) http://www.instrument.com.cn/netshow/SH102538/C146432.htm 关于 DKSH (大昌华嘉) 大昌华嘉是专注于亚洲地区的全球领先市场拓展服务集团。正如&rdquo 市场拓展服务&rdquo 一词所述,大昌华嘉致力于帮助其它公司和品牌拓展现有市场或新兴市场业务。大昌华嘉在全球35个国家设有650个分支机构-其中630家分布于亚太地区,拥有24,000多名专业员工。 科学仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。 2011年,在中国科学仪器行业目前最高级别的峰会&ldquo 2011中国科学仪器发展年会(ACCSI 2011) &rdquo 上,大昌华嘉(DKSH)喜获&ldquo 最具影响力经销商&rdquo 奖。 更多信息,请联系: 中国上海徐汇区虹梅路1801号凯科国际大厦2208室,200233 电话 +86 400 821 0778 传真 +86 21 3367 8466
  • 2015年海淀区环保局增加300套PM2.5大气颗粒物浓度监测仪
    海淀区环保局相关负责人近日在海淀区人代会上透露,今年海淀区要增设300个PM2.5探头,以方便有针对性地采取防控措施。同时,今年海淀区还将加快推动实施《海淀区高污染燃料禁燃区实施方案》,力争到年底前实现无燃煤锅炉。 据介绍,2014年海淀区全面推进以防治PM2.5为重点的大气污染防治工作,大气污染物中PM2.5年均浓度同比下降8.2%,完成了PM2.5年均浓度下降5%的目标。 2015年,海淀区将围绕清洁空气行动计划目标任务,全方位加强大气污染防治工作。海淀区将围绕压减燃煤、控车减油、治污减排和清洁降尘四大重点领域,落实淘汰老旧车、优化重点行业车辆结构、削减挥发性有机物、调整退出落后产能、规范绿色施工、强化空气重污染应急管理等47项重点措施。 目前海淀区正与清华大学下属有关机构合作进行PM2.5趋势监测的分析研究。为此,今年上半年海淀区就将在相关镇街,以及海淀区与其他区县交界处新布设300个PM2.5探头。通过大幅增加布设的监测点位,方便有关部门分析PM2.5的来源和发展趋势。通过这一工作的开展,将可提高对PM2.5的整体防控,能够更加有针对性地采取相关举措。 此外,今年海淀区还将加快推动实施《海淀区高污染燃料禁燃区实施方案》,力争到2015年底前实现无燃煤锅炉,到2017年底前四环路以内建成禁燃区,到2020年四环路以外建成禁燃区,实现全境建成禁燃区。
  • 气相色谱质谱联用法检测染料中多环芳烃
    前言多环芳烃(PAHs)是分子中含有两个或者两个以上的苯环的碳氢化合物的总称。随着多环芳烃的环数增加、化学结构的变化和疏水性的增强,其抗生物讲解能力和致癌性会增大,对人体的呼吸、循环、神经系统,肝脏、肾脏造成损害。 国际生态纺织品研究和检验协会发布的2020版Eco-passport standard的规定,对染料中24种多环芳烃的总值限制为50mg/Kg,并对其中7种物质的限值规定不得超过5mg/Kg,萘不得超过10mg/Kg,可见染料行业对多环芳烃的检测方法的重要意义。 GB/T 41071-2021《染料产品中多环芳烃的测定》标准在今年7月1日正式实施,新标准针对染料产品分析制定了专属方法。搭配岛津的GCMS产品给您带来全新的染料检测体验。 图1 样品制备流程图2 18种PAHs标准溶液色谱图 标准曲线浓度5、10、50、100、500μg/L的多环芳烃混合标准溶液,进样分析,得到标准曲线:图3 部分组成标准曲线 重复性和检出限:浓度为5ng/mL的标液连续进样6针。 采用岛津气相色谱- 质谱联用仪,对染料中的PAHs进行分析,结果表明线性关系及重复性良好,灵敏度高,定量准确,完全满足国际生态法规中规定的检测要求。 GCMS-QP2020 NX特点 1. 超强抗污染性能,降低维护频率 ※可旋转的预四极,减少主四极污染。※超高效大容量真空系统,有效降低离子源污染 2. 操作简单,易于维护※Easy sTop功能,可以在维护进样口时无需关闭真空泵,大大减少仪器待机时间。 ※创新ClickTek技术,实现徒手维护,全面提升用户分析体验。 3. 集成高灵敏度和低实验成本※先进技术提高离子化效率,降低基质干扰和背景噪音,实现高信噪比。※超快速扫描,有效降低高质量端歧视。※“Ecology Mode”生态模式,节省仪器的耗电量及载气消耗量。 本文内容非商业广告,仅供专业人士参考。
  • 科学家合成出可替代柴油的生物燃料
    据美国物理学家组织网近日报道,美国科学家们使用合成生物学方法,修改了大肠杆菌和一个酿酒酵母的菌株,制造出了没药烷的前体物没药烯。测试表明,对没药烯进行加氢反应生成的没药烷是一种“绿色”的生物燃料,有潜力替代D2柴油。研究发表在《自然通讯》杂志上。   “这是科学家们首次报告称没药烷可替代D2柴油,也是首次报告称可通过大肠杆菌和酿酒酵母生产出没药烷。”该研究的主要作者、美国能源部下属的联合生物能源研究所(JBEI)代谢工程(通过基因工程方法改变细胞的代谢途径)项目主管李淳太(音译)说。   与日俱增的燃料成本以及对燃烧化石燃料会加剧全球变暖趋势的担忧等,驱使科学家想尽一切办法寻找碳中和的可再生能源。从多年生牧草和其他非食品植物以及农业废物的纤维素生物质中提取出的液态生物燃料一直被认为有潜力替代汽油、柴油和航空煤油。   不过,现有占主流的生物燃料乙醇只能有限地用于汽油发动机中,而无法用于柴油机或航空喷气式发动机内 另外,乙醇也会腐蚀石油管道和油罐,人们急需可与现有发动机、运输和存储设备兼容的高级生物燃料。   联合生物能源研究所是美国能源部于2007年建立的三个生物能源研究中心之一,他们正在加紧研制从国家层面来讲性价比高的生物燃料。其中一个研究对象是拥有15个碳原子(柴油燃料一般有10到24个碳原子)的倍半萜烯。   该研究的合作者、联合生物能源研究所所长杰伊科斯林表示:“倍半萜烯的能源含量特别高,其物理化学性质也与柴油和航空燃油一样,尽管植物是其天然来源,但对细菌进行转基因修改是最方便且性价比最高的大规模制造高级生物燃料的方法。”   在此前的研究中,李淳太团队对大肠杆菌和酿酒酵母的一个新的甲羟戊酸途径(对生物合成至关重要的代谢反应)进行了基因修改,使这两个微生物过度生产出了化学物质尼基二磷酸(FPP),使用酶可将其合成为理想的萜烯。在最新研究中,李淳太和同事使用该甲羟戊酸途径制造出了没药烷(萜烯类化合物家族的一员)的前体物没药烯,并通过加氢反应制造出没药烷。   科学家们对没药烷进行的燃料性能方面的测试表明,其拥有作为生物燃料的潜能。李淳太说:“没药烷和D2柴油的性能几乎一样,但其有分叉的环式化学结构,这使其凝固点和浊点更低,作为生物燃料使用,这是一大优势。我们可设计一个甲羟戊酸途径来产生没药烯,该平台几乎与制造防蚊虫药物青蒿素的平台一样,我们唯一需要做的修改是引入一个烯萜类合成酶并对该途径进行进一步修改以提高大肠杆菌和酿酒酵母产生没药烯的数量。”   李淳太团队想将烯属烃还原酶编入大肠杆菌和酿酒酵母体内,以取代没药烯加氢反应的化学处理步骤,使所有化学反应都在微生物体内进行。他说:“这类用酶促进的加氢反应极具挑战性,也是我们的长期目标。我们也将研究使用生物质中提取出来的糖作为碳源生产没药烯的可行性。”
  • 燃料电池活化过程对催化性能提升的影响
    为了降低质子交换膜燃料电池的制造成本,我们通常会使用颗粒很小但表面积很大的碳颗粒负载催化剂在电极上。这种催化剂在阳极帮助质子很快地传递到膜上,而在阴极则协助产生水。质子导电电解质如Nafion在这个过程中扮演着重要角色,它有效地将质子在催化剂层内传递。质子导电电解质的存在让催化剂能在三维空间里发挥作用,只有那些直接接触膜的催化剂才能发挥作用,其他部分催化剂会被浪费掉。新制造的低负载催化剂PEM燃料电池在开始运行时不会立即达到最佳性能,通常需要一个预处理或磨合期。在这段时间内,电池性能会逐渐提高,根据不同的元件组合可能需要数小时甚至数天。这段时间不仅消耗了氢燃料,还会延长整个燃料电池调试过程。本研究通过三种不同的PEM燃料电池活化方法(1,2,3)对催化剂性能提升的影响进行了分析: 一、先CO氧化剥离再升高温度和压力(升温升压)活化图1 铂负载0.17 mg cm-2 时CO氧化剥离与升温升压结合对燃料电池性能的影响 阴极由30%的Nafion和70%的E-TEK 20% Pt/Vulcan XC-72组成,Pt负载为0.17 mg cm-2。 测试在35℃的电池温度下进行,氢气和空气加湿温度为45℃(35/45/45℃,电池温度35℃,阳极增湿45℃,阴极增湿45℃。曲线1为电池经过4 h以上的磨合过程后的性能。在大多数时间内,将电池电压设置在0.4 V左右,并在上述温度下周期性地将负载从OCV扫至0.1 V左右。在此过程中,电池性能逐渐提高,但约3 h后,电池性能不再明显提高。然后进行了3次CO氧化剥离循环。第一次、第二次、第三次CO氧化剥离后的燃料电池性能分别用曲线2、3、4表示。如图所示,每次CO氧化剥离后,燃料电池的性能都有了相当大的提高。当进行第四次CO氧化剥离时,没有观察到进一步的增加。因此,曲线4代表了该MEA使用CO氧化剥离所能达到的最佳性能。将燃料电池暴露在一个升温升压过程中,在75/95/90℃和20/30 psig下持续1小时。在条件返回到35/45/45℃后,再次测量其性能。图1中的曲线5说明了燃料电池的性能得到了进一步的提高。实际上,无需进行四次CO氧化剥离,仅进行升温升压活化即可达到曲线5所示的性能。换句话说,如果使用升温升压进行活化,从性能的角度来看,不需要进行任何预先的CO氧化剥离活化。最后发现,如果在升温升压活化后进行CO氧化剥离,燃料电池的性能可以进一步提高,如图1曲线6所示。如果在第一次活化之后重复使用升温升压进行另一次活化无法实现性能提升。显然,在升温升压活化后进行CO氧化剥离可以进一步提高燃料电池的性能。图2 铂负载0.3 mg cm-2 时CO氧化剥离与高温高压相结合对燃料电池性能的影响在阴极Pt负载为0.3 mg cm-2的催化剂涂层膜(CCM)上进行了类似的测试,结果如图2所示。曲线7是燃料电池在磨合过程完成后的性能。曲线8和曲线9表示两次CO氧化剥离后的性能。第三次CO氧化剥离时,性能与曲线9相似。因此,曲线9代表了CO氧化剥离所能达到的最佳性能。然后在75/95/90℃和20/30 psig下使用升温升压进行活化1小时。之后在35/45/45℃下的燃料电池性能如曲线10所示。显然,升温升压活化实现了显著的增加。当进行额外的CO氧化剥离时,燃料电池的性能再次提高,如曲线11所示。二、先析氢再升温升压活化图3 升温升压结合析氢对燃料电池性能的影响曲线12是完成磨合过程的性能。曲线13、14、15为三次析氢活化循环后的表现。第一次析氢比第二次更能提高燃料电池的性能,第二次比第三次更能提高燃料电池的性能。之后,将燃料电池暴露在75/95/90℃和20/30 psig的条件下1小时。活化后,再次测试燃料电池在35/45/45℃下的性能,结果如图3曲线16所示。通过此活化实现了性能的进一步提高。当使用升温升压进行第二次活化时,当电流密度低于1.3 A cm-2时,燃料电池的性能略有提高,但当电流密度高于1.3 A cm-2时,性能略有下降。三、先升温升压再析氢和CO氧化剥离 图4升温升压结合析氢和CO氧化剥离对燃料电池性能的影响曲线19(对比曲线18)显示,在活化步骤后,在75/95/90℃和20/30 psig下使用升温升压,持续1小时,观察到性能显著提高。然后进行析氢步骤,实现了性能的提高(曲线20与19)。析氢后,进行CO氧化剥离,但没有观察到性能的提高(曲线21与曲线20)。这些结果表明,在使用升温升压活化后,无论是析氢还是CO氧化剥离都能够将燃料电池推向最大性能。四、结论这些活化方法是(1)升高温度和压力,(2)析氢,(3) CO氧化剥离。这些方法中的任何一种都可以有效地激活PEM燃料电池,但仅使用一种方法无法完成活化。当方法(2)或(3)在方法(1)之前进行时,活化结果与方法(1)本身相似。换句话说,在实施方法(1)之前,不需要按照方法(2)或(3)进行任何激活。 燃料电池测试系统980pro但是,在方法(1)之后进行方法(2)或(3)时,可以进一步提高燃料电池的性能,在这种情况下,使用方法(2)或(3)都可以获得类似的结果。因此,活化程序的最佳组合是在高温高压下进行活化,然后进行析氢或CO氧化剥离,这样才能最大限度提升燃料电池的性能。参考文献 [1] Xu Z , Qi Z , He C ,et al.Combined activation methods for proton-exchange membrane fuel cells[J].Journal of Power Sources, 2006, 156(2):315-320.DOI:10.1016/j.jpowsour.2005.05.072.以上内容由理化有限公司技术中心整理,有不足之处请指正,转载请注明出处。
  • 氢燃料电池迎“东风”,国产环试仪器借力打响“进击战”
    p style=" text-align: justify text-indent: 2em " 近年来,我国陆续建立了一系列关于氢燃料电池的政策。《国家创新驱动发展战略纲要》、《能源技术革命创新行动计划(2016年~2030年》、《汽车产业中长期发展规划》等国家级规划中,都明确了氢能与燃料电池产业的战略性地位。随着国家政策的进一步明晰,氢燃料电池的发展、应用已提上日程。 /p p style=" text-align: justify text-indent: 2em " 据中汽协数据,截止2019年底,我国氢燃料电池汽车累计销量6000台,已达成《节能与新能源汽车技术路线图》中到2020年实现5000辆燃料电池汽车规模的阶段性目标。有业内人士预计2020年可达10000辆,超先前预期。然而,我国氢燃料电池装机量的快速发展也面临着巨大的挑战,特别是氢燃料电池的环境安全保障技术等。 /p p style=" text-align: justify text-indent: 2em " 以此,仪器信息网特别采访了上海机动车检测认证技术研究中心有限公司(以下简称:上海汽检)氢燃料技术专家裴博士、大连锐格新能源科技有限公司(以下简称:锐格新能源)市场总监刘艳喜 span style=" text-indent: 2em " ,以及重庆阿泰可科技股份有限公司(以下简称:重庆阿泰可)总工程师周建,围绕氢燃料电池的检测技术、设备要求等进行了交流。 /span /p section style=" box-sizing: border-box text-align: justify " section style=" margin-top: 10px margin-bottom: 10px text-align: center position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" width: 100% border-bottom: 5px solid rgb(169, 211, 214) box-sizing: border-box " section style=" display: inline-block vertical-align: bottom margin-bottom: -5px border-bottom: 5px solid rgb(1, 135, 207) font-size: 19px padding: 5px line-height: 1em box-sizing: border-box " p style=" margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " span style=" font-size: 18px " strong 氢燃料电池检测需求激增,相关仪器迎来风口 /strong /span /p /section /section /section /section p style=" text-align: justify text-indent: 2em " 氢燃料电池的发电性能受多项因素影响,伴随不同的操作而有不同的表现。其在不同情况下的性能表现,常需要高精度的仪器去测量才能判断。因此,在发展氢燃料电池技术的过程中,性能检测不可或缺。相同的原因,整合燃料电池系统更是依赖精确的检测结果去匹配发展。 /p p style=" text-align: justify text-indent: 2em " 2017年7月,《新能源汽车生产企业及产品准入管理规定》开始实施,该文件规定了新能源汽车生产企业准入审查要求,并且设定了新能源汽车产品专项检验项目及依据标准,唯有通过相关检测才能获得准入凭证。这一文件出台后,氢燃料电池检测成为了硬性规定。 /p p style=" text-align: justify text-indent: 2em " 在《新能源汽车生产企业及产品准入管理规定》(2017)的推动下,国内氢燃料电池行业在发展的起步阶段就产生了大量的检测设备采购需求。 /p p style=" text-align: justify text-indent: 2em " 随着氢燃料电池行业的深入发展和氢燃料电池技术的更新迭代,检测市场的需求更是显著提升,无论是第三方检测机构、电堆系统企业、燃料电池测试设备专业生产厂家,都在加快引进、研发新一代的检测仪器。其中,上海汽检瞄准了燃料电池检测市场商机,并购进相关检测设备,设立了氢燃料电池检测中心;锐格新能源则不断迭代现有测试设备,以期占领氢燃料电池测试设备技术的最前沿。 /p p style=" text-align: center text-indent: 0em " img src=" https://img1.17img.cn/17img/images/202008/uepic/0d97986b-426e-4d14-9130-341252d59f3c.jpg" title=" 图片3.png" alt=" 图片3.png" style=" text-align: center white-space: normal max-width: 100% max-height: 100% width: 450px height: 253px " width=" 450" vspace=" 0" height=" 253" border=" 0" / /p p style=" text-indent: 0em text-align: center " a href=" https://www.smvic.com.cn/pages/index.html" target=" _self" style=" text-decoration: underline " span style=" text-align: center font-size: 14px color: rgb(0, 112, 192) " strong 上海机动车检测认证技术研究中心有限公司 /strong strong /strong strong /strong /span /a /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202008/uepic/89c5315f-4149-4bfe-901b-3e39bb0bae3a.jpg" title=" 锐格新能源.jpg" alt=" 锐格新能源.jpg" width=" 450" vspace=" 0" height=" 300" border=" 0" / /p p style=" text-align: center " a href=" http://www.rigorpower.com/" target=" _self" span style=" font-size: 14px text-decoration: underline color: rgb(0, 112, 192) " strong span style=" color: rgb(0, 112, 192) font-size: 14px " 大连锐格新能源科技有限公司 /span /strong /span /a /p p style=" text-align: justify text-indent: 2em " “当前,我国氢能产业蓬勃发展,创造出了数万亿的巨大市场容量,虽然氢燃料电池检测在整个氢能产业体量当中是较小的一环,却是不可或缺的最重要的一环。”锐格新能源市场总监刘艳喜说到。 /p section style=" box-sizing: border-box text-align: justify " section style=" margin-top: 10px margin-bottom: 10px text-align: center position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" width: 100% border-bottom: 5px solid rgb(169, 211, 214) box-sizing: border-box " section style=" display: inline-block vertical-align: bottom margin-bottom: -5px border-bottom: 5px solid rgb(1, 135, 207) font-size: 19px padding: 5px line-height: 1em box-sizing: border-box " p style=" margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong span style=" font-size: 18px " 国产设备正崛起,电池检测环节已打破进口仪器依赖局面 /span /strong /p /section /section /section /section p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 2em " 行业发展初期,由于缺乏专业的国内 /span span style=" text-align: justify text-indent: 2em " 仪器 /span span style=" text-align: justify text-indent: 2em " 厂商提供测试 /span span style=" text-align: justify text-indent: 2em " 设备 /span span style=" text-align: justify text-indent: 2em " 以满足 /span span style=" text-align: justify text-indent: 2em " 氢 /span span style=" text-align: justify text-indent: 2em " 燃料电池系统的研究与开发,用户只能选用 /span span style=" text-align: justify text-indent: 2em " Greenlight /span span style=" text-align: justify text-indent: 2em " 、 /span span style=" text-align: justify text-indent: 2em " Feulcon /span span style=" text-align: justify text-indent: 2em " 等少数进口品牌的测试 /span span style=" text-align: justify text-indent: 2em " 仪器 /span span style=" text-align: justify text-indent: 2em " ,或自行搭建一个简易的 /span span style=" text-align: justify text-indent: 2em " 氢 /span span style=" text-align: justify text-indent: 2em " 燃料电池测试平台,用于检验 /span span style=" text-align: justify text-indent: 2em " 氢 /span span style=" text-align: justify text-indent: 2em " 燃料电池电堆和发动机。 /span /p p style=" text-align: justify text-indent: 2em " 如今,随着一批国产氢燃料电池检测仪器企业的崛起,国内氢燃料电池产业在检测环节已经开始打破依赖进口仪器的局面。当前,纯科研类、小功率氢燃料电池检测仪器,国外品牌的占有率相对偏高;而大功率、实用型氢燃料电池检测仪器,则偏重国产。 /p p style=" text-align: justify text-indent: 2em " 上海机动车检测认证技术研究中心氢燃料电池技术专家裴博士讲到:“氢燃料电池商业化应用处于起步阶段,其工程化水平尚不成熟,急需相关测试技术作为保障。而测试所需要的国产设备也处于开发验证阶段,需要典型企业担当重任,尤其在核心部件基础性能、环境适应性、可靠性、耐久性等领域。” /p p style=" text-align: justify text-indent: 2em " “在氢燃料电池研发和生产环节的各种运行评测以及各种工况下性能和操作技术的模拟评测中,安全性无疑是一个重要课题。”锐格新能源总监刘艳喜提到,“氢燃料电池和氢燃料电池发动机系统在批量生产前会进行苛刻的模拟试验,尤其是苛刻的模拟环境测试,比如耐温、耐湿、盐雾、IP防护、海拔高度、冷启动等,均需要环境试验箱的参与。” /p p style=" text-align: justify text-indent: 2em " 作为氢燃料电池检测设备,环境试验箱需要进行严谨的现场调试、难度大、时间长、多系统联调联动,而国内企业产品性价比高、售后服务及时,能快速解决生产中遇到的问题。上海汽检在选购试验箱以及锐格新能源在产业链产品协同推介时,均选择了与一家国内试验箱生产厂商——重庆阿泰可进行合作。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 244px " src=" https://img1.17img.cn/17img/images/202009/uepic/8f78d08a-9ca2-478c-8275-255f2c6b71b4.jpg" title=" WechatIMG32.jpeg" alt=" WechatIMG32.jpeg" width=" 450" height=" 244" border=" 0" vspace=" 0" / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/SH104061/" target=" _self" span style=" text-decoration: underline color: rgb(0, 112, 192) " strong span style=" color: rgb(0, 112, 192) font-size: 14px " 重庆阿泰可 /span /strong /span span style=" text-decoration: underline color: rgb(0, 112, 192) " strong span style=" color: rgb(0, 112, 192) font-size: 14px " 科技股份有限公司 /span /strong /span /a a href=" https://www.instrument.com.cn/netshow/SH104061/" target=" _self" strong style=" text-decoration: underline " span style=" font-size: 14px " /span /strong span style=" text-decoration-style: initial text-decoration-color: initial " strong /strong /span /a /p p style=" text-align: justify text-indent: 2em " 仪器信息网了解到,重庆阿泰可成立于2006年,是国内专业从事气候环境试验设备的首家上市公司。2014年,公司专门设立了汽车事业部,以便进一步深入研发氢燃料电池及汽车类的环境试验箱技术。目前,重庆阿泰可已推出涉氢高温度试验箱、温湿度试验箱、高原模拟试验箱等一系列专为氢燃料电池研发所用的环境试验设备。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 253px " src=" https://img1.17img.cn/17img/images/202008/uepic/37046556-a97d-4052-8b26-a649ee3ba6d1.jpg" title=" 图片5.png" alt=" 图片5.png" width=" 450" vspace=" 0" height=" 253" border=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 14px " 重庆阿泰可汽车事业部 /span /strong /span /p section style=" box-sizing: border-box text-align: justify " section style=" margin-top: 10px margin-bottom: 10px text-align: center position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" width: 100% border-bottom: 5px solid rgb(169, 211, 214) box-sizing: border-box " section style=" display: inline-block vertical-align: bottom margin-bottom: -5px border-bottom: 5px solid rgb(1, 135, 207) font-size: 19px padding: 5px line-height: 1em box-sizing: border-box " p style=" margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong span style=" font-size: 18px " 环试仪器可达国外先进水平,满足氢燃料电池检测高要求 /span /strong /p /section /section /section /section p style=" text-align: justify text-indent: 2em " 目前,环试设备品类包括标准和非标准型的高低温(湿热)试验箱、温度冲击试验箱、低压试验箱、淋雨试验箱、盐雾试验箱、沙尘试验箱等,而用于氢燃料电池的试验箱类型主要有高低温(湿热)试验箱和高原环境模拟低气压试验箱。重庆阿泰可总工程师周建介绍到:“高低温(湿热)试验箱主要测试氢燃料电池及其系统在不同温度、湿度环境下的工况与稳定性,包括极端环境下的安全性等;高原环境模拟低气压试验箱主要针对氢燃料电池及其系统在不同海拔高度环境下的工况和可靠性。” /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 283px " src=" https://img1.17img.cn/17img/images/202008/uepic/959f798b-aadb-46b8-930f-309c97132b20.jpg" title=" 图片6.png" alt=" 图片6.png" width=" 450" vspace=" 0" height=" 283" border=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 14px " 氢燃料电池防爆高原气候舱 /span /strong /span strong /strong /p p style=" text-align: center " span style=" font-size: 14px " img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/202008/uepic/18d07aac-89fe-430d-9b54-6fcf96d2dfe5.jpg" title=" 图片7.png" alt=" 图片7.png" width=" 450" vspace=" 0" height=" 338" border=" 0" / /span strong span style=" font-size: 14px " br/ /span /strong /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 14px " 氢燃料电池专用试验箱 /span /strong /span strong /strong /p p style=" text-align: justify text-indent: 2em " 环境试验箱的应用场景非常广泛,如航空航天、军事、造船、电工电子、医疗、仪器仪表、石油化工、汽车、新能源等领域,但由于氢的特殊性,用于氢燃料电池的试验箱设备要求无疑要高于其他应用场景。 /p p style=" text-align: justify text-indent: 2em " 一是用于氢燃料电池及系统实验的试验箱安全等级要求高。如果实验室为涉氢环境的防爆实验室,则整个环境试验箱(包括箱体、机组、控制柜等)需要进行整机防爆设计;或者采用分体式,即箱体采用全防爆,布置在涉氢房间內;而机组、控制柜等其他模块采用常规方式,放在非涉氢房间内。如果实验室为非防爆实验室,则只需要环境箱箱内防爆(包括空气调节单元、风机、传感器、加热、照明、排气、泄压要防爆处理,以及需要防静电、防火化设计等),以保证在箱内出现氢气泄漏时的安全。二是在试验过程中试验箱要对箱内氢气浓度进行实时监控,避免试验中氢气泄漏对安全的影响,并与排风系统、测试台架进行安全联动等。三是消防灭火要求,试验箱配备火焰探测器以七氟丙烷等相应的自动及手动灭火装置。四是电堆或电池发动机散热比较大的特性,环境箱如何在大散热量的状态下保证试验的稳定与可靠,也是有别与于传统环境箱的地方。 /p p style=" text-align: justify text-indent: 2em " 此外,根据氢燃料电池的测试要求,试验箱要求具备新风系统、尾排系统,水氢空接口,以及预留氢气控温接口,以确保进入燃料电池发动机的氢气与环境箱温度一致。 /p p style=" text-align: justify text-indent: 2em " 从上海汽检的选择和锐格新能源的推介来看,重庆阿泰可的试验箱设备无疑满足了以上要求,其环试设备不仅具有良好的稳定性、动态性,达到了国外同行业中的先进水平,还创新性地配有降低劳动强度的装置,以适应高频次的测试需求。 /p section style=" box-sizing: border-box text-align: justify " section style=" margin-top: 10px margin-bottom: 10px text-align: center position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" width: 100% border-bottom: 5px solid rgb(169, 211, 214) box-sizing: border-box " section style=" display: inline-block vertical-align: bottom margin-bottom: -5px border-bottom: 5px solid rgb(1, 135, 207) font-size: 19px padding: 5px line-height: 1em box-sizing: border-box " p style=" margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong span style=" font-size: 18px " “革命尚未成功”,各个环节仍需努力 /span /strong /p /section /section /section /section p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 然而,目前用于 /span span style=" text-indent: 2em " 氢 /span span style=" text-indent: 2em " 燃料 /span span style=" text-indent: 2em " 电池 /span span style=" text-indent: 2em " 的环境试验 /span span style=" text-indent: 2em " 设备 /span span style=" text-indent: 2em " 仍存在一些技术痛 /span span style=" text-indent: 2em " 点 /span span style=" text-indent: 2em " 。如 /span span style=" text-indent: 2em " 氢 /span span style=" text-indent: 2em " 燃料电池发动机在低气压环境下运行的精度保证问题,高原环境模拟试验箱如何保证发动机所需的温湿度、低气压、新风量 /span span style=" text-indent: 2em " / /span span style=" text-indent: 2em " 尾排量等多因素的综合控制精度仍是环境试验设备需要解决的难点。此外,上海汽检裴博士还提到了市场上已经提出的相关的技术指标要求,比如:常规的环境温度模拟范围 /span span style=" text-indent: 2em " -40 /span span style=" text-indent: 2em " ~ /span span style=" text-indent: 2em " 80 /span span style=" text-indent: 2em " ℃,精度± /span span style=" text-indent: 2em " 1 /span span style=" text-indent: 2em " ℃,并需要提供相对快速的降温速度;环境湿度模拟范围 /span span style=" text-indent: 2em " 10 /span span style=" text-indent: 2em " ~ /span span style=" text-indent: 2em " 95%RH /span span style=" text-indent: 2em " ,精度 /span span style=" text-indent: 2em " ≤± /span span style=" text-indent: 2em " 5%RH外,还需要模拟燃料电池专用的海拔 span style=" text-align: justify text-indent: 32px " ≤4500m、动态热源状态下温度控制等氢燃料电池环境模拟、氢气预冷等尚待解决的特殊问题。这就需要应用方和供应商之间的紧密协同,共同开发 /span /span span style=" text-indent: 2em " 。 /span /p p style=" text-align: justify text-indent: 2em " “希望我国环境试验箱的研发、生产企业能够设计出充分满足市场需求的产品,为氢燃料电池的测试提供更加丰富的模拟场景。”锐格新能源市场总监刘艳喜还表示,“环境试验箱与测试平台是密不可分的整体,希望未来锐格新能源与阿泰可采用战略联盟等互助方式进行合作,共同助力我国氢燃料电池行业健康快速发展。” /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 253px " src=" https://img1.17img.cn/17img/images/202008/uepic/784248ad-daca-4c76-bb85-9d563f266de2.jpg" title=" 图片8.png" alt=" 图片8.png" width=" 450" vspace=" 0" height=" 253" border=" 0" / /p p style=" text-align: justify text-indent: 2em " 随着近几年氢燃料电池的快速发展和相关检测标准的不断完善,市场对检测仪器需求激增的同时,对其技术要求也越来越高,尤其用于安全可靠性检测的环试仪器。安全可靠性测试虽是氢燃料电池汽车产业体量中较小的一环,却是必不可少的一环,而这一环的运行离不开环试仪器的支持。愿各产业链共同努力,助力我国氢燃料电池产业健康快速发展。 /p p br/ /p
  • 烟草或成为生物燃料 基因改造后含油量提高
    研究人员说,烟草经由基因改造后含油量大幅提高,有望“变身”生物燃料,为解决当前能源危机提供新思路。   “能源植物”   美国托马斯杰斐逊大学生物技术基金会实验室研究人员维亚切斯拉夫安德里阿诺夫说,同其他植物相比,烟叶能提取出更多油和糖,是诱人的“能源植物”。   安德里阿诺夫的研究团队改变了烟草的基因,使烟叶含油量大幅提高。改造后烟叶可提取的烟油是普通烟叶的21倍。   研究成果发表于《植物生物工程学》杂志的一期生物燃料特刊。   美联社30日援引研究人员的话报道,烟叶不会直接提供动力,从烟叶中提取的油和糖才是真正的燃料。所以人们不必担心堵在车流中会吸入“二手烟”。   另外,烟草不是粮食原料,以烟叶提取物开发燃料不会减少食物来源,这是它相较大豆、玉米等农作物的优势所在。   美国可再生燃料协会发言人马特哈特维希对烟草成为生物燃料持乐观态度:“烟草无疑可以发挥作用 任何植物都有成为生物燃料的潜能。”   美联社分析,本届美国政府强调开发非传统能源的重要性,烟草变身生物燃料的研究契合这一政策导向。“金草叶”或将有助解决美国能源危机。   烟草减产   联合国粮农组织数据显示,过去10年间,世界范围内烟草产量减少1.5% 美国烟草产量减少39%。烟草业估测数据显示,美国2009年香烟销量较前一年下滑8%。   多种因素导致美国烟草减产。鉴于香烟消费税上升、民众日益关注健康、政府颁布各种禁烟令,美国香烟需求锐减,直接导致烟草业“缩水” 政府采取政策引导、提供资金支持烟农种植其他作物也是烟草减产原因之一。   可再生燃料协会发言人哈特维希说,美国烟草种植业近年遭受重创。研究成果对烟草种植农民也许是个机遇。   “其他作物也可能成为生物燃料来源,但采用烟草是考虑它不属于粮食作物,”安德里阿诺夫说,“我从不少烟农那里得到反馈,他们希望种植烟草,但不是当前用途。”   烟农福音?   一些烟农说,他们必须看到烟草用于制造生物燃料的整个过程和经济效益后才能断定新思路是否可行。   国际烟草种植业协会负责人罗杰夸尔斯说,烟农最初听到烟草新用途兴奋不已。不过截至目前,研究仍处于基础阶段。   北卡罗来纳州烟农艾伦伍滕种植了约61公顷烟草。他所在地区曾有50个烟草种植农场,如今只剩4个。   伍滕说,美国禁烟令和吸烟限制较为普遍,致使香烟销量下滑,烟草种植业每况愈下,“每周、每月都在下滑”。由于成本提高、利润下滑,部分烟农转而种植其他作物或者干脆放弃种植业。   不过,安德里阿诺夫对“金草叶”前景看好:“当烟叶作燃料的时代来临,你就会铆足劲儿种植烟草。”
  • 美国首次试飞使用藻类植物作燃料飞机
    据美国媒体报道,美国大陆航空公司6日一架以生物燃料作为部分燃料的飞机进行了试飞。大陆航空公司称这是首次以取自藻类等植物的燃料作为飞机燃料。   据公司称,该飞机也首次尝试使用了双引擎。其中一个引擎使用了一半生物燃料、一半普通燃料。另一个引擎则完全使用普通飞机燃料。   藻类等植物因为环保的特点,被看作第二代生物燃料。预计会在未来广泛应用。
  • 基于cielo和naica系统,多重PCR荧光染料该怎么选呢
    什么是多重PCR?多重PCR(multiplex Polymerase Chain Reaction,mPCR)也称复合PCR,它是在同一PCR反应体系中加入一对以上引物,各对引物分别结合在模板相对应位置,最终扩增出一条以上目的DNA片段(图1),其反应原理、反应试剂和操作过程与一般PCR相同。▲ 图1:多重PCR反应示意图(图源网络,侵删)荧光定量PCR可以实现多重PCR吗?当然是可以的,荧光定量PCR除了常规的单基因定量外,也是可以实现多个基因的同时检测。单基因检测我们一般使用染料法,通过染料分子与双链DNA的结合来进行PCR反应的实时监测,但是这种结合是非特异的,我们无法区分同一个PCR反应体系中的多个目的DNA片段,因此需要采用另一种方式来同时进行多基因的检测,也就是探针法。▲ 图2:染料法和探针法的检测原理(图源网络,侵删)探针法通过与模板特异性结合的探针解决了特异性的问题,同时不同的探针可以标记不同的荧光基团,通过对不同探针之间的识别,从而实现对多个基因的同时检测和定量。但是这又带来一个问题,就是在针对不同基因设计探针时该如何选择荧光基团呢?在选择荧光基团时首先要考虑一个问题,您要使用的仪器所配置的荧光通道是怎样的,这里就以Azure Cielo™ 6实时荧光定量PCR系统和Stilla naica® 6色微滴芯片式数字PCR系统为例来进行说明。▲ 图:多重检测示意图(图源网络,侵删)Azure Cielo™ 6实时荧光定量PCR系统共有6个荧光通道,最多可同时检测6个基因。为什么能同时检测这么多基因呢,这里就要科普一个小知识了,那就是荧光是怎么产生的。当激发光照射到荧光基团上时,荧光基团就会发出发射光,也就是我们需要的荧光信号,对于不同的荧光基团,其接收的激发光和发射的发射光波长都是不一样的,因此需要根据机器的特性进行选择。对于Azure Cielo™ 6实时荧光定量PCR系统,只要使用的荧光基团在6个通道的激发和发射波长的范围内,都支持使用。其次,Azure Cielo™ 6实时荧光定量PCR系统的荧光检测通道的设计之初,就是要覆盖市面上大多数的荧光基团类型,所以基本不需要担心探针适配性问题。▲ 图4:Azure Cielo™ 6实时荧光定量PCR系统的荧光检测通道naica® 6色微滴芯片式数字PCR系统荧光探针的选择与Azure Cielo™ 6相似,对于naica® 6色微滴芯片式数字PCR系统而言,其同样配置有6个荧光检测通道,6个通道的波长范围也基本覆盖了市面上大部分的荧光基团,无需担心适配性和选择问题。|欢迎来电垂询|naica️® 六色微滴芯片数字PCR系统开放试用,大家可以拨打电话010-57256059或者官网官微申请,诚挚邀请您到Stilla数字PCR中国技术示范与服务中心参观,期待与您相见。naica® 六通道微滴芯片数字PCR系统法国Stilla Technologies公司naica® 六通道微滴芯片数字PCR系统,源于Crystal微滴芯片式数字PCR技术,自动化微滴生成和扩增,每个样本孔可实现6荧光通道的检测,智能化识别微滴并进行质控,3小时内即可获得至少6个靶标基因的绝对拷贝数浓度。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制