当前位置: 仪器信息网 > 行业主题 > >

人氧化低密度脂蛋白

仪器信息网人氧化低密度脂蛋白专题为您整合人氧化低密度脂蛋白相关的最新文章,在人氧化低密度脂蛋白专题,您不仅可以免费浏览人氧化低密度脂蛋白的资讯, 同时您还可以浏览人氧化低密度脂蛋白的相关资料、解决方案,参与社区人氧化低密度脂蛋白话题讨论。

人氧化低密度脂蛋白相关的资讯

  • 研究揭示仿生脂蛋白系统重塑肿瘤物理屏障增强T细胞浸润
    基于免疫检查点抑制剂(ICIs)的免疫治疗正在成为一种革命性的肿瘤治疗方案,仅适用于一小部分癌症患者。ICIs的临床反应主要依赖于肿瘤组织中浸润的效应T淋巴细胞(CTL)识别并杀死肿瘤细胞。然而,肿瘤组织中CTL浸润较为有限,且复杂的瘤内物理屏障严重阻碍CTL的浸润,削弱了ICIs的治疗效果。因此,如何重塑肿瘤内物理屏障以增强CTL的浸润成为提高ICIs介导的免疫治疗迫切需要解决的难题。  1月29日,中国科学院上海药物所研究员张志文、李亚平,以及沈阳药科大学教授王思玲团队合作完成的最新研究成果,以Bioinspired lipoproteins of furoxans-oxaliplatin remodels physical barriers in tumor to potentiate T-cell infiltration为题,在线发表在《先进材料》(Advanced Materials)上。该研究提出并证实利用仿生脂蛋白系统高效递送一氧化氮(NO)供体-奥沙利铂前药,通过重塑肿瘤物理屏障促进CTL瘤内浸润、增强ICIs免疫治疗的新策略。   对乳腺癌及结肠癌的临床样本检测发现,肿瘤部位广泛存在各种细胞外基质组分但CD8+ T浸润严重缺乏。基于此,科研团队设计合成了一种细胞内还原响应的NO供体-奥沙利铂前药(FO),构建高效靶向瘤内各种基质细胞的仿生脂蛋白系统(S-LFO)。研究显示,S-LFO能够在肿瘤部位高效蓄积、渗透进入肿瘤深部区域,并可到达瘤内肿瘤相关成纤维细胞(CAFs)、肿瘤相关巨噬细胞(TAMs)和血管内皮细胞(ECs)等基质细胞。S-LFO处理后能够显著促进肿瘤血管正常化、灌注能力和血管密度,降低TAMs和CAFs的比例,清除Collagen、Fibronectin和chondroitin sulfate等主要细胞外基质成分,为促进CTL的瘤内浸润铺平了道路。进一步研究发现,S-LFO能够显著增加肿瘤部位CD3+CD8+ T细胞以及表达IFN-γ、Granzyme B亚型的比例,与对照组相比分别提高2.96、5.02和8.65倍,并显著促进CD8+ T细胞向瘤内4T1-GFP癌细胞区域的浸润和扩散能力,进而在胰腺癌PANC02、乳腺癌4T1和结直肠癌CT26等肿瘤模型中,与aPD-L1合用显著增强了抑制肿瘤生长和延长存活期的疗效。该策略为重塑肿瘤基质屏障提高CTL浸润增强ICIs的免疫治疗效果提供了新方法。          研究工作得到国家自然科学基金、山东省自然科学基金和复旦-SIMM联合研究基金等的资助。  论文链接
  • 新品上市|低密度聚乙烯拉伸流变性能新技术--VADER 1000
    摘要在单轴拉伸流动中测量了三种选定的商用低密度聚乙烯(LDPE)的非线性流变性能。使用三种不同的设备进行测量,包括拉伸粘度装置(EVF),自制长丝拉伸流变仪(DTU-FSR)和商用长丝拉伸流变仪(VADER-1000)。通过测试显示,EVF的测量结果受到最大Hencky应变4的限制,而两个长丝拉伸流变仪能够在达到稳态的更大Hencky应变值下探测非线性行为。利用长丝拉伸流变仪的能力,我们表明具有明显差异的线性粘弹性的低密度聚乙烯可以具有非常相似的稳定拉伸粘度。这表明有可能在一定的速率范围内独立控制剪切和拉伸流变。关键词拉伸流变;聚乙烯;聚合物熔体;非线性粘弹性正文多年来,控制聚合物流体的流变行为作为分子化学的一个性能,引起了学术界和工业界的极大兴趣。最成功和最多产的理论预测的流变行为的纠缠聚合物系统是De Gennes(1971)和Doi和Edwards(1986)提出的 "管模型"。然而,尽管三十年来人们一直在努力改进管模型,但即使对于最简单的情况,即单分散线性聚合物体系,缠结聚合物在拉伸流动中的非线性流变行为仍然没有得到充分理解(Huang等人,2013a;Huang等人,2013b)。低密度聚乙烯等工业聚合物是最复杂的缠结聚合物系统,它们不仅具有高度的多分散性,而且还含有不同的支化分子结构。预测低密度聚乙烯的流变行为,特别是拉伸流动中的非线性行为,是非常具有挑战性的。在明确定义的模型系统上,已经进行了探索延伸流中支化聚合物动力学的实验工作(Nielsen等人,2006;Van Ruymbeke等人,2010;Lentzakis等人,2013)以及商业聚合物系统,如低密度聚乙烯LDPEs。有几个小组观察到低密度聚乙烯LDPE的瞬时拉伸应力的最大值(Raible等人,1979;Meissner等人,1981;M¨unstedt和Laun,1981)。Rasmussen等人(2005年)首次报告了应力过冲后的稳定应力,并通过比较长丝拉伸流变仪和十字槽拉伸流变仪的测量结果(Hoyle等人,2013年)以及比较恒定拉伸速率和恒定应力(蠕变)实验(Alvarez等人,2013年)进行了实验验证。已经开发了几个模型(Hoyle等人,2013;Wagner等人,1979;Hawke等人,2015),试图了解应力过冲背后的物理学。然而,这些模型都不能实际用于预测工业中低密度聚乙烯LDPE的流变行为,因为这些模型包含许多与分子结构没有直接关系的拟合参数。最近,Read等人(2011)提出了一个预测方案,能够计算随机长链支化聚合物熔体的线性和非线性粘弹性,作为其形成的化学动力学的函数。这些预测似乎与剪切流和拉伸流中三个低密度聚乙烯的测量结果非常一致。然而,测得的拉伸数据受到最大Hencky应变约为3.5的限制,并且没有显示出稳定状态的迹象,而模拟结果则达到了更大的 Hencky应变值,并预测了每个应变速率的稳定应力。在更大的Hencky应变值下预测非线性行为的质量仍然是未知的。此外,在Read等人(2011)的模拟中,没有预测到应力过冲。在这项工作中,我们介绍了三种不同的商用低密度聚乙烯的拉伸测量。这三种低密度聚乙烯是根据Read等人(2011)的模型预测而专门设计的。预计它们具有不同的零剪切速率粘度,但在非线性拉伸流动的大变形中具有相似的应力-应变反应。测量是在三个不同的设备上进行的,包括两个长丝拉伸流变仪和一个拉伸粘度夹具。我们表明,长丝拉伸流变仪的测量结果可以达到5以上的大Hencky应变值,在那里达到非线性稳定状态。我们还表明,低密度聚乙烯LDPE样品在拉伸流动中的大Hencky应变值具有相似的非线性行为,包括相同的应力过冲幅度和过冲后的相同稳定应力,尽管Read模型预测没有应力过冲现象。这些结果表明,低密度聚乙烯LDPE熔体的非线性粘弹性可以通过选择性聚合方案来控制。实验材料陶氏化学公司提供了三种类型的商用低密度聚乙烯树脂,分别为PE-A、PE-B和PE-C。所有样品都是颗粒状的。表1总结了样品的特性,包括密度、熔体流动指数(I2)、重量-平均摩尔质量(Mw)、数量-平均摩尔质量(Mn)和熔体强度。重量-平均摩尔质量是由多角度激光散射法确定的,而数量-平均摩尔质量是由微分折射率确定的。摩尔质量值是若干次重复的平均数。熔体强度是用通用流变仪结合通用ALR-MBR 71.92挤出机测量的。测量是在150℃下进行的,产量为600g/h。模具的长度为30毫米,直径为2.5毫米。表1实验是在24mm/s2的加速度下进行的。纺丝线的长度被设定为100毫米。流变仪测试在膜生物反应器挤出机系统清扫30分钟后进行,并一直运行到纺丝线失效。通过力-拉速数据拟合出一个四参数交叉函数,根据拟合的破坏速度曲线确定破坏时的力。表中的数据是五次连续测量的平均数。力学谱三种低密度聚乙烯样品的线性粘弹性(LVE)特性是通过小振幅振荡剪切(SAOS)测量得到的。TA仪器公司的ARES-G2流变仪采用25毫米的板-板几何形状。图1所有样品的时间-温度偏移因子αT作为温度的函数,参考温度为Tr= 150℃测量是在氮气中,在130℃和190℃之间的不同温度下进行的。对于每个样品,使用时间-温度叠加(TTS)程序,在参考温度Tr= 150℃时,数据被移动到单个主曲线。所有样品的时间-温度偏移系数(αT)与单一的阿伦尼乌斯公式一致,其形式为其中活化能∆H = 65 kJ/mol。R是气体常数,T是以开尔文表示的温度。在图1中,偏移因子αT被绘制为温度的函数。拉伸应力测量拉伸应力测量使用三种不同的设备:TA仪器的延伸粘度夹具(EVF)、自制的长丝拉伸流变仪(DTU-FSR)(Bach等人,2003a)和Rheo Filament的商用长丝拉伸流变仪(VADER-1000)。将不同设备的结果进行相互比较。用于EVF测量的样品在150℃下压缩成型,在低压10bar下3分钟,在高压150bar下1分钟,然后用淬火冷却盒在150bar下淬火冷却到室温。在短时间内,当冷却盒插入时,样品会出现压力损失。在相对较低的温度下进行短时间的压缩成型是为了防止样品的任何潜在氧化或降解。样品模具为特氟隆涂层,尺寸为100×100 0.5mm。从约20mm长的铭牌上冲压出12.7mm-12.8mm宽的样品。最终样品的厚度约为0.6mm。在EVF测量中,样品被插入设备中,在150℃下180s的平衡时间后,样品以0.005s-1的应变速率被预拉伸15.44s,然后松弛80s,然后样品被拉伸。报告的Hencky应变是由圆柱体的旋转计算出来的。通常情况下,使用EVF的拉伸测量仅限于样品保持均匀的情况。EVF一次旋转所能达到的Hencky应变值通常低于4,与EVF相比,长丝拉伸仪器并不依赖于沿拉伸方向的均匀变形的假设。事实上,由于板材上的无滑移条件,变形在轴向上是不均匀的。这些设备只是探测了通常在中间细丝平面发现的最小直径平面内的变形和应力之间的关系。在这个平面外的剩余材料只需要固定在研究的薄片上,就像在固体力学测试中用狗骨形状来固定材料一样。长丝拉伸装置确实依赖于最小直径平面内的径向均匀变形的假设。Kolte等人(1997年)的模拟表明,在长丝中间平面几乎没有任何径向应力变化。用激光测微计来测量中丝薄片的直径。为了探索更高的应变,在DTU-FSR和VADER 1000流变仪都采用了在线控制方案,该方案首先由Bach等人(2003b)使用,后来由Mar´ın等人(2013)发表,用于在拉伸过程中控制长丝中平面的直径,以便在样品断裂前确保恒定的应变速率。根据样品的类型,DTU-FSR和VADER-1000都可以达到最大Hencky应变值7。在长丝拉伸流变仪上进行测量之前,样品被热压成半径为R0、长度为L0的圆柱形试样。长宽比定义为∆0= L0/R0。样品在150℃下压制,并在相同温度下退火10分钟,然后冷却至室温。在测量中,所有样品被加热到150℃,在180s的平衡时间后,样品在拉伸实验之前被预拉伸到Rp的半径。对于DTU-FSR,R0= 4.5mm,L0= 2.5mm,Rp在3到4.5mm之间,而对于VADER-1000,R0 = 3.0mm,L0= 1.5mm,Rp = 2.5mm。在拉伸测量过程中,力F(t)由称重传感器测量,中间灯丝平面的直径2R(t)由激光测微计测量。在拉伸流动开始的小变形时,由于变形场中的剪切分量,部分应力差来自于压力的径向变化。这种影响可以通过Rasmussen等人(2010)描述的校正因子来补偿。 对于大应变,校正消失,对称平面中应力的径向变化变得可以忽略不计(Kolte等人,1997)。对于本工作中的所有样本,当Hencky应变值大于2时,校正值小于4 %,Hencky应变和中丝平面上应力差的平均值计算如下其中mf是灯丝的重量,g是重力加速度。应变率定义为ϵ• =dϵ/dt,拉伸应力增长系数定义为η-+=〈σzz-σrr 〉/ϵ• 结果和讨论线性粘弹性图2(a)显示了所有样品在参考温度150℃下的储能模量G’和损耗模量G”与角频率ω的函数关系。(b)表示在150°C相应的复数粘度η*。图中的两个星号来自稳定剪切测量,在 150°C下剪切速率为0.005 s-1图2(a)显示了所有样品在参考温度150℃下的储能模量G’和损耗模量G”与角频率ω的函数关系。相应的复数粘度η*绘制在图2(b)中。图中实线是多模麦克斯韦(multimode Maxwell fitting)拟合的结果。Maxwell relaxation modulus多模麦克斯韦弛豫模量G(t)由下式给出 其中gi和τi列于表2。表中的零剪切速率粘度η0通过下式计算 在图2(b)中,很明显三个样品具有不同的零剪切速率粘度。然而,在图2(a)、(b)中,似乎PE-C的线性行为在较低频率下接近PE-A,在较高频率下与PE-B重叠。而且在ω 1 rad/s时,PE-C的G′和G″曲线几乎与PE-A平行,垂直位移因子约为0.6。表2 LDPE 在 150°C 熔体的线性粘弹性启动和稳定状态下的拉伸流变图3(a)显示了PE-A在150℃时的拉伸应力增长系数与时间的关系。图中比较了EVF、DTU-FSR和VADER-1000的测量值。图中的虚线是根据表2中列出的麦克斯韦弛豫谱计算的LVE包络线。EVF的测量值受到最大Hencky应变4的限制,在图3(b)中可以清楚地看到。其中测量的应力是作为Hencky应变的函数绘制的。两个长丝拉伸流变仪的测量值能够达到大于5的较大Hencky应变值,在该值下观察到稳定的应力。图3我们注意到EVF和长丝拉伸测量之间存在明显的偏差。我们认为EVF测量的应力太低,特别是在低应变率下,Hoyle等人(2013)也观察到这一点,他们将长丝拉伸测量值与Sentmanat拉伸流变仪测量值进行了比较。因此,对于图3(b)中的ϵ• =0.01 s-1,已经与ϵ• =0.5有偏差,而对于ϵ• =2.5 s-1,EVF测量与DTU-FSR测量一致,最高ϵ• 为3.5。请记住,在EVF中,只有横截面的初始面积是已知的;在拉伸过程中横截面面积的变化不是测量的,而是由一个假设均匀单轴拉伸速率不变的方程计算出来的。此外,在EVF测量中,样品宽度为12.8mm略微超过了Yu等人(2010)建议的12.7mm的上限,这导致在更大的Hencky应变值下的平面延伸而不是单轴延伸。相比之下在DTU-FSR和VADER-1000中,中间直径一直被测量,因此在拉伸过程中横截面的实际面积是已知的,由此计算出中间细丝平面中的真实Hencky应变。借助于在线控制方案,在整个测量过程中保证了单轴拉伸过程中恒定的Hencky应变率。来自DTU-FSR和VADER-1000的大Hencky应变值的数据由于力小而有些分散。此外,在拉伸速率超过0.4s-1时,使用DTU-FSR和VADER-1000进行的测量观察到了应力过冲的现象。由于仪器中采用的控制方案的限制,使用两个长丝拉伸流变仪进行测量的拉伸速率不超过2.5s-1。在长丝拉伸中,表面张力可能对测量的应力有影响,尤其是在长丝中间平面的半径非常小,大的亨基应变值的时候。在所有的测量中,最小的半径是R = 0.12mm。如果我们把低密度聚乙烯LDPE的表面张力γ = 0.03 J/m2,表面张力效应产生的最大应力是σsur =γ/R = 250Pa。在图3(b)中,很明显,对于所有达到Hencky应变大于4的测量,测量的应力高于104Pa。因此可以忽略表面张力效应。图4图4显示了PE-C在150℃时拉伸应力增长系数与时间的函数关系。DTU-FSR和VADER-1000的测量结果非常一致。在0.15和2.5s-1之间的中间拉伸速率下,EVF的测量值与DTUFSR一致。拉伸速率低于0.1s-1时,偏差越来越大。根据DTU-FSR和VADER-1000的测量,在拉伸速率快于0.4s-1时,再次观察到应力过冲。图5图5比较了DTU-FSR测量的拉伸流动中PE-A和PE-C的非线性行为。如图2所示,PE-A和PE-C具有不同的线性粘弹性,这也由图5(a)中不同的LVE包络表示。在拉伸流的启动过程中,PE-A和PE-C也有不同的非线性反应。从图5a中可以清楚地看出,在所有拉伸速率下,PE-C 比 PE-A 有更明显的应变硬化。然而,在图5(a)、(b)中,有趣的是,尽管PE-A和PE-C最初有不同的非线性行为,但是它们在更大的Hencky应变值下具有相同的反应,并且在每个应变速率达到相同的拉伸稳态粘度,如图6所示。图6还显示在快速应变率下,拉伸稳态粘度表现出幂律行为,粘度比例约为ε• -0.6,这与Rasmussen等人(2005)和Alvarez等人(2013)的观察结果一致。应该注意的是,如图5(b)所示,相同的非线性行为仅在Hencky应变值大于4时观察到,这一点无法通过EVF测量。图6图7(a)比较了PE-B与PE-C在150℃时的拉伸应力增长系数。在所提出的速率下,PE-B没有显示任何应力过冲。尽管PE-B和PE-C在线性和非线性流变学方面的表现不同,但在每种拉伸速率下,它们的相对应变硬化量似乎是相似的。在图7(b)中可以更清楚地看到这一点。图7(b)中比较了Trouton比率。Trouton 比值定义为Tr = η-+ /η0,其中η0是零剪切率粘度,其数值列于表2。可以看出,在每个拉伸速率下,PE-B达到与PE-C相同的最大Trouton比率,证实它们具有相同的相对应变硬化量。图7结论我们使用三种不同的设备测量了三种商用低密度聚乙烯样品的拉伸流变性能。这三种设备在拉伸流变的启动方面给出了一致的结果。然而,EVF的测量结果受到最大Hencky应变4的限制,而两个长丝拉伸流变仪达到了更大的Hencky应变值,在这里可以观察到应力过冲和稳态粘度。此外,EVF的测量仅在取决于应变速率的应变范围内跟随长丝拉伸测量。尽管三种低密度聚乙烯样品具有不同的线性粘弹性能,但已经表明,PE-A和PE-C在Hencky应变值大于4时具有非常相似的非线性rhelogical行为,而PE-B和PE-C具有相同的相对应变硬化量。上述结果表明,工业低密度聚乙烯的非线性流变性可以通过聚合来调整。特别是,有可能合成一种聚合物(PE-C),其具有比参考聚合物(PE-A)低得多的粘弹性模量,但仍具有与参考聚合物相同的拉伸粘度。
  • 安捷伦科技推出的全新自动化蛋白样品前处理解决方案可提高复杂工作流程的精密度和通量
    安捷伦科技推出的全新自动化蛋白样品前处理解决方案可提高复杂工作流程的精密度和通量 2014 年 6 月 17 日,北京 — 安捷伦科技公司(纽约证交所:A) 今日宣布推出两种自动化蛋白样品前处理解决方案:AssayMAP 磷酸化肽富集解决方案和 Affinity 纯化工作流程解决方案。它们是安捷伦整套产品系列的一部分,可帮助客户优化最具挑战性的蛋白样品前处理工作流程。 传统的样品前处理方法在手动操作时间和重现性方面往往表现出难以维持和不稳定等不足。相反,AssayMAP 磷酸化肽富集解决方案为质谱分析提供高重现性且自动化的磷酸化肽富集。利用 Affinity 纯化工作流程可直接纯化目标抗体或通过固定化抗体进行纯化,以捕获其抗原。 安捷伦生命科学解决方案分部的副总裁兼总经理 Yvonne Linney 说道:“安捷伦正在全面改善基于液质联用系统的蛋白质分析,包括样品前处理、分离和分析型质谱。我们将仪器研发工作与 AssayMAP 样品前处理解决方案相结合,提供从样品到分析的更完善的端到端工作流程解决方案。AssayMAP 是一种平台技术,能够帮助分析科学家最大程度提高工作效率,以此取得更大的成功。” AssayMAP 平台采用当代先进的方法来克服样品前处理所面临的挑战。此款简便易用的解决方案包含由软件进行直观操作的经过验证的自动化方案(AssayMAP Bravo 液体处理仪器),以及一套经优化适用于蛋白分析工作流程的 AssayMAP 小柱。可结合各项应用执行功能强大的一体化工作流程。AssayMAP 帮助客户充分利用这种分析方法的优势对多肽进行可靠的鉴定,从而使完成大型质谱分析项目成为可能。 要了解更多信息,请访问 Agilent AssayMAP 多肽样品前处理网站。 关于安捷伦科技公司 安捷伦科技公司(纽约证交所:A) 是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20600 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2013 财年,安捷伦的净收入达到 68 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn。 2013 年 9 月 19 日,安捷伦宣布将通过对旗下电子测量公司进行免税剥离,分拆为两家上市公司的计划。分拆后的电子测量公司命名为是德科技 (Keysight Technologies, Inc.),此次分拆预计将于 2014 年 11 月初完成。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 中国首个PCSK9抑制剂安进瑞百安获批
    p   8月8日,安进中国宣布,瑞百安& reg (英文名Repatha& reg ,通用名依洛尤单抗evolocumab)注射液已于7月31日获得国家药品监督管理局(原国家食品药品监督管理总局)批准,成为首个在中国获批用于治疗成人或12岁以上青少年纯合子型家族性高胆固醇血症(HoFH)的PCSK9抑制剂。前蛋白转化酶枯草溶菌素/Kexin 9型(PCSK9)通过与低密度脂蛋白(LDL)受体(LDLR)结合,降低肝脏从血液中清除低密度脂蛋白胆固醇(LDL-C)的能力。瑞百安& reg 通过抑制PCSK9与LDLR的结合,增加了能够清除血液中LDL的LDLR的数目,从而降低LDL-C水平。 /p p   瑞百安& reg (依洛尤单抗)可与饮食疗法和其他降低密度脂蛋白(LDL)的治疗(如他汀类药物、依折麦布、LDL分离术)合用,以进一步降低低密度脂蛋白胆固醇(LDL-C)水平。LDL-C升高被确认为是心血管疾病(CVD)的重要风险因素,。 /p p   纯合子型家族性高胆固醇血症是一种常染色体(共)显性遗传病,是一种罕见病。其临床表现主要为患者从出生就处于高血清LDL-C水平暴露状态,因此动脉粥样硬化性心血管疾病(ASCVD)风险明显增高。若不接受适当治疗,可在儿童及青年期发生心绞痛或心肌梗死,并于20-30岁之前死亡。其它临床症状还表现为皮肤/腱黄色瘤、脂性角膜弓等。 /p p   中华医学会心血管病学分会主任委员,复旦大学附属中山医院葛均波院士表示:“纯合子型家族性高胆固醇血症的发病率约为1/16万~1/100万。由于HoFH患者LDL-C水平高于常人数倍且现有治疗方式较为局限,大多数患者无法有效控制LDL-C水平以避免心血管事件。依洛尤单抗可通过抑制PCSK9来显著降低LDL-C水平,它在中国的获批对HoFH患者来说是宝贵的及时雨,为他们带来了延续生命与提升生活质量的希望。” /p p   临床研究数据显示,瑞百安& reg 能够显著降低HoFH患者通过饮食和调脂药物治疗仍无法降低的LDL-C水平。较安慰剂相比(治疗12周时),瑞百安& reg 降低HoFH患者LDL-C等线水平达31%,其显著的疗效和良好的安全性在对HoFH患者长期治疗的研究中(1年)也再次得到证实。 /p p   安进亚太区负责人兼总经理温陈佩茜女士表示:“作为首个在中国获批的PCSK9抑制剂,瑞百安& reg 为纯合子型家族性高胆固醇血症这一罕见疾病的患者带来生命的希望,这使我们感到振奋和欣喜。我们将继续投入重疾和慢性病领域,以更高效的方式将创新药物引入中国市场,践行安进服务患者的使命,助力健康中国建设。” /p p   瑞百安& reg 此前已获得欧盟委员会(EC)、美国食品药品监督管理局(FDA)等机构的批准,在欧盟、美国、澳大利亚、日本等60多个国家和地区上市。 /p p    span style=" color: rgb(255, 0, 0) " strong 关于瑞百安& reg (evolocumab依洛尤单抗) /strong /span /p p   瑞百安& reg (英文名Repatha& reg ,通用名 依洛尤单抗evolocumab)是一种人单克隆免疫球蛋白G2(IgG2),针对人前蛋白转化酶枯草溶菌素kexin 9型(PCSK9)。瑞百安& reg 与PCSK9结合,抑制循环PCSK9与低密度脂蛋白(LDL)受体(LDLR)的结合,从而阻止PCSK9介导的LDLR降解,使得LDLR可重新循环回至肝细胞表面。通过抑制PCSK9与LDLR的结合,瑞百安& reg 增加了能够清除血液中的LDL的LDLR的数量,从而降低LDL-C水平。 /p p   瑞百安& reg 已在超过60个国家和地区获批,包括美国、日本、加拿大以及欧盟所有28个成员国。在其他国家的申请目前正在进行中。 /p p & nbsp /p
  • 《Nature》:冷冻电镜蛋白解析再获突破!或成为癌症治疗的下一个主要分子靶点
    p style=" text-indent: 2em text-align: justify margin-top: 15px " ATP-柠檬酸裂解酶(ACLY)是一种中心代谢酶,催化ATP依赖性柠檬酸和辅酶A(CoA)转化为草酰乙酸和乙酰-CoA1-5。哥伦比亚大学的科学家们与Nimbus Therapeutics的研究人员合作,利用冷冻电镜技术揭开了这种代谢酶的神秘面纱,这种酶可能成为癌症治疗的下一个主要分子靶点,这项研究的最新进展发表于《Nature》杂志。 br/ /p p style=" text-indent: 2em text-align: justify margin-top: 15px " 首先,我们来了解下究竟什么是ACLY。ATP-柠檬酸裂解酶(ACLY)是一种中心代谢酶,催化ATP依赖性柠檬酸和辅酶A(CoA)转化为草酰乙酸和乙酰-CoA。乙酰辅酶A对脂肪酸的代谢、胆固醇的生物合成以及蛋白质的乙酰化和异戊烯化至关重要。作为抗癌药物的靶标,ACLY一直备受关注,因为许多癌细胞依赖它进行肿瘤的转移与扩散。 ACLY也是抗血脂异常和肝脂肪变性的靶向位点,部分药物目前正在进行3期临床试验。当前已报道许多ACLY抑制剂,但其中大多数仅具有很弱的活性。 /p p style=" text-indent: 2em text-align: justify margin-top: 15px " 虽然之前的实验已经成功完成了该酶的片段,但此次哥伦比亚大学Liang Tong及其研究团队的工作揭示了在高分辨率下人类ACLY的完整结构。Liang Tong教授表示,“ACLY是一种控制细胞内许多过程的代谢酶,包括癌细胞中的脂肪酸合成。通过抑制这种酶,我们可以控制癌症的生长。此外,该酶还具有包括包括调节胆固醇生物合成等其他作用,因此针对该酶的抑制剂也可用于控制胆固醇水平。同时,靶向治疗是癌症研究的一个热点领域,癌细胞中的某些特定分子会帮助它们生长,分裂和传播,而此次解析的ACLY酶也是其关键的一员。通过阻断这些分子的作用,我们可以有效的抑制肿瘤生长与扩增。” /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/72498bef-69fb-42c1-b014-c2870a88485b.jpg" title=" 1111.jpg" alt=" 1111.jpg" / /p p style=" text-indent: 2em text-align: justify margin-top: 15px " 今年早些时候,另一组研究人员展示了一项针对高胆固醇治疗的口服疗法bempedoic acid的3期临床试验结果。该药物是第一代ACLY抑制剂,单独服用可降低低密度脂蛋白(LDL)胆固醇30%,与他汀类药物联合使用可降低20%。 /p p style=" text-indent: 2em text-align: justify margin-top: 15px " 目前已经发现ACLY在几种类型的癌症中过表达,并且实验已经证实“关闭”ACLY可引起癌细胞停止生长和分裂。了解ACLY的复杂分子结构将使研究者了解到该分子最佳的抑制区域,为靶向药物开发铺平道路。 /p p style=" text-indent: 2em text-align: justify margin-top: 15px " Liang Tong及其研究团队使用纽约结构生物学中心的设施,使用冷冻电镜技术(Cryo-EM)来解析ACLY的复杂结构。 Cryo-EM允许使用电子显微镜对冷冻生物样本进行高分辨率成像。然后将一系列二维图像计算重建为精确、详细的复杂生物结构(如蛋白质,病毒和细胞)的三维模型。 /p p style=" text-indent: 2em text-align: justify margin-top: 15px " 冷冻电镜结果揭示了有效抑制ACLY的意外机制。研究小组发现,抑制剂结合需要酶结构的显着变化。然后,这种结构变化间接阻断底物与ACLY的结合,从而防止酶活性发生。这种新的ACLY抑制机制可以为开发治疗癌症和代谢紊乱的药物提供更好的方法。 /p p br/ /p
  • 我国学者在纳米二氧化硅诱导心血管损伤新机制方面取得进展
    图1 纳米二氧化硅穿过气血屏障吸附载脂蛋白A-I并导致其耗竭的模型示意图  在国家自然科学基金项目(批准号:21976145、22176206)等资助下,中国科学院生态环境研究中心宋杨研究员与西南大学研究团队合作在纳米二氧化硅诱导心血管损伤新机制方面取得进展。研究成果以“纳米二氧化硅颗粒暴露通过消耗血清载脂蛋白A-I诱导矽肺患者心血管损伤(Serum apolipoprotein A-I depletion is causative to silica nanoparticles-induced cardiovascular damage)”为题,于2021年10月29日在线发表在《美国科学院院刊》(PNAS)上。论文链接:https://www.pnas.org/content/118/44/e2108131118。  游离二氧化硅粉尘俗称矽尘,是工业界广泛存在的职业健康有害因素。近年来流行病学研究发现,长期接触矽尘不仅可以引发矽肺,游离二氧化硅细颗粒物的暴露还会对心血管系统产生重要影响,但其损伤机制尚不清楚。  该研究团队发现,经呼吸暴露的纳米二氧化硅在小鼠肺泡中通过吸附肺表面活性物质穿过气血屏障,进入血液循环系统。肺表面活性物质的包裹显著促进了纳米二氧化硅在血液中吸附载脂蛋白A-I,从而显著缓解了纳米二氧化硅的细胞毒性和促炎效应。随着纳米二氧化硅在血液中快速清除,血液中的载脂蛋白A-I被大量消耗,从而导致了动脉粥样硬化的发生。因此,长期呼吸暴露纳米二氧化硅颗粒可诱发小鼠心血管损伤,但实验同时证明,载脂蛋白A-I模拟肽的补充可显著减缓该损伤效应的发生。在临床样本中,矽肺患者血清中的载脂蛋白A-I的浓度较健康人乃至冠心病患者显著降低,这进一步验证了纳米二氧化硅暴露对载脂蛋白A-I的清除作用(图1)。  该研究揭示了纳米二氧化硅诱导心血管损伤的新机制,为深入开展纳米颗粒暴露诱导心血管疾病防治研究提供了新思路。
  • 西安交通大学第二附属医院576.00万元采购基因测序仪,流式细胞仪,核酸蛋白分析,细胞计数器,核酸提...
    html,body{-webkit-user-select:text }*{padding:0 margin:0 }.web-box{width:100% text-align:center }.wenshang{margin:0auto width:80% text-align:center padding:20px10px010px }.wenshangh2{display:block color:#900 text-align:center padding-bottom:10px border-bottom:1pxdashed#ccc font-size:16px }.sitea{text-decoration:none }.content-box{text-align:left margin:0auto width:80% margin-top:25px text-indent:2em font-size:14px line-height:25px }.biaoge{margin:0auto /*width:643px */width:100% margin-top:25px }.table_content{border-top:1pxsolid#e0e0e0 border-left:1pxsolid#e0e0e0 font-family:Arial /*width:643px */width:100% margin-top:10px margin-left:15px }.table_contenttrtd{line-height:29px }.table_content.bg{background-color:#f6f6f6 }.table_contenttrtd{border-right:1pxsolid#e0e0e0 border-bottom:1pxsolid#e0e0e0 }.table-left{text-align:left padding-left:20px }详细信息西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告陕西省-西安市状态:公告更新时间:2022-07-29招标文件:附件1西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告发布时间:2022072915:11:08西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告项目概况西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目招标项目的潜在投标人应在线上获取招标文件,并于2022年08月24日09时30分(北京时间)前递交投标文件。一、项目基本情况项目编号:XBMH2022152项目名称:西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目预算金额:576万元/年采购需求:西安交通大学第二附属医院采购分子组及大明宫院区医用试剂一批。本项目共分24个标段,各标标段具体采购的标的物及预算如下:标段号序号采购标的物名称检测方法采购预算(万元/年)中标家数参数要求招标最小单位第1标段(180万)1乙型肝炎病毒核酸定量检测PCR荧光探针法180万1家每测试2沙眼衣原体核酸检测每测试3淋球菌核酸测定每测试4解脲脲原体核酸检测每测试5单纯疱疹病毒II型核酸测定每测试7人巨细胞病毒核酸定量检测每测试8结核分枝杆菌核酸检测每测试9肺炎支原体核酸检测试剂盒每测试10EB病毒核酸检测每测试11幽门螺旋杆菌核酸检测每测试12肠道病毒71型核酸检测每测试13肠道病毒通用型核酸检测每测试14乙型肝炎病毒基因分型检测每测试15丙型肝炎病毒基因分型检测试剂盒每测试16人感染H7N9禽流感病毒RNA检测每测试17甲型H1N1流感病毒RNA检测每测试18季节性流感病毒H3亚型核酸检测每测试19季节性流感病毒H1亚型核酸检测每测试20Ⅰ群肠道沙门氏菌核酸检测每测试21发热伴血小板减少综合征布尼亚病毒核酸检测每测试22柯萨奇病毒A16型核酸检测每测试23柯萨奇病毒A6型核酸检测每测试24柯萨奇病毒A10型核酸检测每测试25呼吸道合胞病毒核酸检测试剂盒每测试26登革病毒核酸检测每测试27HIV1核酸测定试剂盒每测试28中东呼吸综合征冠状病毒核酸检测每测试29寨卡病毒核酸检测每测试30B族链球菌核酸检测每测试31人博卡病毒核酸检测每测试32腺病毒核酸检测每测试33人鼻病毒核酸检测每测试34乙型肝炎病毒前C区/BCP区突变检测PCR反向点杂交法每测试35乙型肝炎病毒YMDD基因突变检测每测试36人乳头瘤病毒核酸检测及基因分型(至少标段含20种)PCR反向点杂交法每测试372019nCoV核酸快速检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等耗材)荧光PCR法(快速扩增)1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限小于等于500copy/L5快速核酸释放技术6扩增时间小于50分钟每测试382019nCoV核酸检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限≤500copy/mL每测试39诺如病毒RNA荧光PCR法每测试40多瘤病毒(BKV、JCV)每测试41人偏肺病毒(HMPV)每测试42副流感病毒PIV每测试43甲型流感病毒每测试44乙型流感病毒每测试45呼吸道病毒核酸六重联检(甲、乙型流感病毒、腺病毒、呼吸道合胞病毒、副流感病毒1型、副流感病毒2型)每测试46白血病融合基因每测试47细小病毒(B19)胶体金法每测试第2标段(145万)1核酸提取或纯化试剂磁珠法145万1家每测试2丙型肝炎病毒核酸定量检测PCR荧光探针法每测试3丙型肝炎病毒基因分型检测每测试4HBVDNA/HCVRNA/HIVRNA(1+2)型三联检测每测试5乙型肝炎病毒核酸定量检测(高敏)检测下限≤10copies/mL每测试6乙型肝炎病毒基因分型检测每测试7丙型肝炎病毒核酸定量检测(高敏)检测下限≤25copies/mL每测试8丙型肝炎病毒核酸定量检测(超敏)检测下限≤15copies/mL每测试9EB病毒核酸定量检测检测下限≤400copies/mL每测试10人巨细胞病毒核酸定量检测检测下限≤400copies/mL每测试11沙眼衣原体核酸检测、解脲脲原体核酸检测、淋球菌核酸检测检测下限≤400copies/mL每测试12新型冠状病毒2019nCoV核酸检测,最低检测下限≤200copy/L(标段含采样管及保存液、提取试剂、扩增试剂、八连管)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4最低检测下限≤200copy/mL每测试13高危型人乳头状瘤病毒DNA检测(15种)荧光PCR法(无需杂交)每测试132019nCoV、甲型流感病毒、乙型流感病毒核酸三联检荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL14腺病毒核酸检测荧光PCR法每测试第3标段(30万)新冠核酸快检试剂2019nCoV核酸快速检测试剂(标段含采样管及保存液、保存管、提取试剂、扩增试剂、吸头、八连管等)快速核酸检测30万1家1磁珠法提取;2.全检测流程≤80分钟3检测模式:核酸提取、扩增检测均在同一封闭;4独立模块,随来随测,独立检测。5.目的基因不少于双靶标(ORFlab基因、N基因);6检测最低下限小于500copy/mL;7检测通量≥8;每测试第4标段(6万)(MTHFRC677T基因检测+高血压个体化治疗基因检测+HLAB27核酸检测等)MTHFRC677T基因检测(3个位点)PCR熔解曲线法6万1家每测试人类CYP2C19基因分型检测每测试CYP2D6*10、CYP2C9*3、ADRB1(1165GC)、AGTR1(116AC)、ACE(I/D)检测每测试人运动神经元存活基因1(SMN1)检测每测试测序反应通用试剂盒(高血压个体化治疗基因检测)聚合酶链杂交法每测试测序反应通用试剂盒(叶酸)每测试测序反应通用试剂盒(他汀类)每测试测序反应通用试剂盒(氯比格雷)每测试测序反应通用试剂盒(华法林)每测试测序反应通用试剂盒(硝酸甘油)每测试人类HLAB27核酸检测荧光PCR法每测试高血压个体化治疗基因检测试剂(5个位点)每测试人类HLAB*5801基因每测试B族链球菌核酸检测每测试结核分枝杆菌复合群核酸检测恒温扩增荧光法每测试MTHERC677基因检测PCR金磁微粒层析法每测试第5标段(20万)(免费按需提供检测的质控品、校准品、辅助试剂及一次性耗材)恒温扩增相关试剂(20万)结核TBRNA检测恒温扩增法20万1家每测试乙肝HBVRNA检测每测试泌尿生殖道病原体RNA检测(沙眼衣原体、解脲脲原体、淋病奈瑟菌、生殖支原体)每测试第6标段(5万)细菌耐药基因检测耐甲氧西林金黄色葡萄球菌耐药基因检测荧光PCR法5万1家每测试碳青霉烯耐药基因KPC检测每测试鲍曼不动杆菌耐碳青霉烯类抗生素基因(OXA23)检测每测试耐万古霉素肠球菌基因(vanA,vanB)检测每测试第7标段(20万)呼吸道病原菌核酸检测呼吸道病原菌核酸检测(标段括常见细菌、特殊病原体如嗜肺军团菌、结核分枝杆菌、肺炎支原体、肺炎衣原体、流感嗜血杆菌等)恒温扩增芯片法20万1家每测试第8标段(30万)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱30万1家每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试类固醇激素类类固醇激素18项(二氢睾酮、脱氢表雄酮硫酸酯、脱氢表雄酮、皮质醇(氢化可的松)、雌酮、17α羟孕酮、孕烯醇酮、皮质酮、11去氧皮质醇、脱氧皮质酮、雄烯二酮、17α羟孕烯醇酮、睾酮、醛固酮、雌二醇、雌三醇、可的松(皮质素)、孕酮)1.82.5ng串联质谱每测试原醛激素5项(醛固酮、血管紧张素I,皮质醇,脱氧皮质酮、可的松)每测试四种激素萃取液(醛固酮、皮质醇,脱氧皮质酮、可的松)每测试血儿茶酚胺代谢检测(肾上腺素、去甲肾上腺素、多巴胺、变肾上腺素、去甲变肾上腺素)每测试尿儿茶8项(DA,E,NE,MN,NMN,3MT,HVA,VMA)每测试高香草酸和香草扁桃酸萃取液每测试人体代谢物浓度胆汁酸谱15项(胆酸、牛磺胆酸、甘氨脱氧胆酸、石胆酸、甘氨胆酸、牛磺熊脱氧胆酸、脱氧胆酸、牛磺石胆酸、甘氨熊脱氧胆酸、熊脱氧胆酸、甘氨石胆酸、牛磺鹅脱氧胆酸、鹅脱氧胆酸、牛磺脱氧胆酸、甘氨鹅脱氧胆酸)串联质谱每测试药物浓度检测免疫抑制剂(他克莫司、环孢霉素A、西罗莫司)药物浓度检测串联质谱每测试抗癫痫药(卡马西平、卡马西平10,11环氧化物、奥卡西平、10羟基卡马西平、丙戊酸/苯巴比妥、苯妥英钠、拉莫三嗪、托吡酯、左乙拉西坦)药物浓度检测每测试抗菌药(万古霉素、伏立康唑、替考拉宁、利奈唑胺、美洛培南、替加环素、莫西沙星、氟康唑)药物浓度检测每测试抗肿瘤药(甲氨蝶呤、氟尿嘧啶、多西他赛、多柔比星)每测试镇静催眠药(阿普唑仑、氯硝西泮、咪达唑仑、劳拉西泮、奥沙西泮、唑吡坦、艾司唑仑、替马西泮、溴西泮)药物浓度检测每测试抗抑郁药(米氮平、帕罗西汀、舍曲林、西酞普兰、艾司西酞普兰、文拉法辛、O–去甲文拉法辛、曲唑酮、氟西汀+去甲氟西汀、氟伏沙明、度洛西汀、安非他酮、羟安非他酮)药物浓度检测每测试抗精神病药(氯氮平及去甲氯氮平、氯丙嗪、利培酮+9–羟基利培酮、喹硫平、阿立哌唑、脱氢阿立哌唑、奥氮平、齐拉西酮、氨磺必利、丙戊酸、舒必利、氟哌啶醇、奋乃静、氟奋乃静)药物浓度检测每测试第9标段(8万)阿司匹林耐药基因检测LTC4S一代测序技术8万1家为临床服用阿司匹林是否存在抵抗提供帮助每测试PTGS1每测试GP1BA高血糖个体化用药基因检测外周血液基因组中的CYP2C9、OCT2、SLCO1B1、PPARy基因多态性性为临床鉴别患者对降糖药物敏感性提供帮助每测试SLCO1B1ApoE检测SLCO1B1检测*1b和*5两个位点;ApoE检测E2和E4两个位点每测试个体化用药指导AGTR1/ACE/ADRB1CY2D6/CYP2C9/CYP3A5/NPPA检测高血压合理用药;总共检测7个基因,10位点每测试CYP2C19氯吡格雷用药每测试CYP2C9VKORC1华法林初始剂量每测试MTHFR检测评判叶酸代谢能力,指导合理补充叶酸每测试ALDH2检测判断硝酸甘油用药无效风险,评估酒精代谢能力每测试细胞因子联合检测试剂细胞因子六联检(IL2\IL4\IL6\IL10\IFNγ\TNFα);流式细胞术(2类注册证)每测试细胞因子七联检(IL2\IL4\IL6\IL10\IL17A\IFNγ\TNFα) 每测试细胞因子八联检(IL2\IL4\IL6\IL10\IL12P70\IL17A\IFNγ、TNFα) 每测试PD1(程序性死亡蛋白1)每测试十二联检(IL1β\IL2\IL4\IL6\IL8\IL10\IL12P70\IL17A\IFNγ\TNFα\IFNα)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试串联质谱检测3多种氨基酸检测试剂盒串联质谱每测试抗生素药物浓度检测试剂盒(阿米卡星、亚胺培南西司他丁、头孢哌酮舒巴坦、哌拉西林他唑巴坦、美罗培南、替加环素、利奈唑胺、万古霉素、去甲万古霉素、替考拉宁、氟康唑、伏立康唑、醋酸卡泊芬净)每测试第10标段(5万)1白色念珠菌核酸检测荧光PCR法5万1家每测试2光滑假丝酵母菌核酸检测每测试3热带假丝酵母菌菌核酸检测每测试4金黄色葡萄球菌和耐甲氧西林金黄色葡萄球菌核酸检测每测试5沙门氏菌和志贺氏菌核酸检测每测试6单纯疱疹病毒1型(HSV1)核酸检测每测试7单纯疱疹病毒2型(HSV2)核酸检测每测试8人感染H7N9禽流感病毒RNA检测每测试9麻疹病毒和风疹病毒核酸检测每测试10人乳头瘤病毒核酸检测及基因分型(至少标段含20种)荧光PCR定量法(无需杂交)每测试第11标段(大明宫)(60万)肝炎系列+新冠抗体+胃蛋白酶原乙型肝炎病毒表面抗体测定试剂盒磁微粒化学发光法60万1家每测试乙型肝炎病毒表面抗原测定试剂盒每测试乙型肝炎病毒e抗原测定试剂盒每测试乙型肝炎病毒e抗体测定试剂盒每测试乙型肝炎病毒核心抗体测定试剂盒每测试乙型肝炎病毒前S1抗原测定试剂盒每测试戊型肝炎病毒IgM测定试剂盒每测试丙型肝炎病毒抗体测定试剂盒每测试胃蛋白酶原Ⅰ测定试剂盒每测试胃蛋白酶原Ⅱ测定试剂盒每测试新型冠状病毒(2019nCoV)抗体检测试剂盒(磁微粒化学发光法)每测试抗HCV质控品每毫升HBcAb质控品每毫升HBeAb质控品每毫升HBeAg质控品每毫升HBsAb质控品每毫升HBsAg质控品每毫升抗HAVIgM质控每毫升抗HEVIgM质控品每毫升白介素6测定试剂盒(CMIA)每测试降钙素原测定每测试超敏C反应蛋白测定每测试肌酸激酶同工酶测定每测试心肌肌钙蛋白I测定每测试心肌肌钙蛋白T测定每测试肌红蛋白测定每测试心型脂肪酸结合蛋白测定每测试N端脑钠肽前体测定每测试白介素6质控品IL6免费提供胃蛋白酶原I质控品PGI免费提供胃蛋白酶原II质控品PGII免费提供人类免疫缺陷病毒抗原抗体测定试剂盒每测试梅毒螺旋体抗体测定试剂盒每测试甲型肝炎病毒IgM抗体测定试剂盒每测试激发液免费提供预激发液免费提供清洗液免费提供整装反应杯免费提供整装吸头免费提供样本稀释液免费提供FDP+DD纤维蛋白/原降解复合物胶乳免疫比浊法/颗粒增强免疫比浊法每测试D二聚体检测每测试FDP、D二聚体控制品每毫升D二聚体校准品每毫升FDP校准品每毫升生化类超敏C反应蛋白免疫比浊法每测试尿微量白蛋白测定每测试糖化白蛋白每测试糖化血红蛋白高压液相色谱法每测试第12标段(6万)多种心脑血管药物基因核酸样本预处理试剂心血管个性化用药指导11基因检测+核酸质谱法6万1家每测试心血管个性化用药指导21基因检测每测试高血压个性化用药指导9基因检测每测试冠心病个性化用药指导4基因检测每测试氯吡格雷+阿司匹林个性化用药基因检测每测试抗栓个性化用药9基因检测每测试儿童安全用药基因检测(核心板)每测试叶酸及营养每测试精神类药物基因核酸样本预处理试剂抑郁症个性化用药指导10基因检测每测试精神分裂症个性化用药10基因检测每测试癫痫个性化用药12基因检测每测试焦虑个性化用药9基因检测每测试肿瘤基因检测核酸样本预处理试剂化疗用药每测试男性18项高发肿瘤风险基因筛查(含BRCA基因)每测试女性21项高发肿瘤风险基因筛查(含BRCA基因)每测试核酸样本预处理试剂遗传性耳聋基因检测(20位点)每测试第13标段(5万)肝癌检测高尔基体蛋白73磁微粒化学发光免疫分析法5万1家每测试甲胎蛋白异质体比率(AFPL3%)每测试异常凝血酶原每测试感染三项1.全程C反应蛋白(CRP)上转发光免疫分析每测试2.血清淀粉样蛋白(SAA)每测试3.降钙素原(PCT)每测试第14标段(8万)ApoE基因型载脂蛋白EApoE基因型检测基因芯片法8万1家每测试第15标段(4万)SDC2基因甲基化检测人类SDC2基因甲基化检测荧光PCR法4万1家每测试第16标段(3万)S9甲基化Septin9基因甲基化检测荧光探针法3万1家每测试第17标段(25万)一次性加样枪头一次性加样枪头200微升迪肯酶免一体机专用25万1家每个一次性加样枪头1000微升每个核酸检测耗材盒装灭菌无酶吸头10微升核酸检测专用每个盒装灭菌无酶吸头100微升每个盒装灭菌无酶吸头200微升每个盒装灭菌无酶吸头1000微升每个加长型滤芯枪头(200ul)每个加长型滤芯枪头(10ul)每个HPV细胞保存液HPV细胞保存液(标段含采样器和保存管)5mlHPV分型专用每管采样管及保存管鼻拭子采样管、咽拭子采样管RNA检测标本采集每个第18标段(2万)六项呼吸道病毒核酸联合检测六项呼吸道核酸联合检测(甲、乙型流感病毒,呼吸道合胞病毒,腺病毒,肺炎支原体,人鼻病毒)荧光PCR法2万1家1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试六项呼吸道病原菌核酸检测六项呼吸道病原菌核酸检测(肺炎链球菌、肺炎克雷伯杆菌、流感嗜血杆菌、铜绿假单胞菌、嗜肺军团菌、金黄色葡萄糖菌)荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试第19标段(1万)传染病三项血液筛查核酸检测HBV+HCV+HIV血液筛查核酸检测荧光PCR法1万1家每测试第20标段(3万)心脑血管疾病风险预测MTHFRC677T基因检测(3个位点)PCR金磁微粒层析法2万1家每测试ALDH2(Glu504Lys)基因检测每测试氧化型低密度脂蛋白金磁微粒免疫层析法每测试S100β蛋白检测每测试早产早破预测胰岛素样生长因子结合蛋白1(IGFBP1)——胶体金与酶免方法1万胎膜早破诊断每测试胎儿纤维连接蛋白(fFN)——早产风险预测每测试第21标段(3万)颗粒酶B及穿孔素联合检测GranzymeB抗体试剂流式细胞计数法2万1家每测试穿孔素(Perforin)抗体试剂每测试CD45检测试剂(APCCy7)每测试CD3检测试剂(PerCP)每测试CD8检测试剂(APC)每测试CD16检测试剂(CD16PECy7)每测试CD56检测试剂(CD16PECy7)每测试HLAB27基因分型HLAB27基因分型检测荧光PCR法1万每测试百日咳杆菌核酸检测百日咳杆菌核酸检测荧光PCR法每测试第22标段(3万)耳聋基因检测遗传性耳聋易感基因检测(至少20种基因位点)PCR反向点杂交2万1家每测试艰难梭菌抗原及毒素快检艰难梭菌谷氨酸脱氢酶抗原GDH及毒素A/B酶联免疫层析法1万每测试第23标段(2万)SDC2和TFPI2基因甲基化联合检测SDC2和TFPI2基因甲基化联合检测试剂盒荧光PCR法2万1家每测试第24标段(2万)呼吸道病毒6项呼吸道合胞病毒、呼吸道腺病毒、人偏肺病毒、副流感病毒Ⅰ型、副流感病毒Ⅱ型、副流感病毒Ⅲ型荧光PCR法1万最低检测限:1000copies/mL每测试诺如病毒核酸检测诺如病毒RNA检测(粪标本)荧光PCR法0.5万每测试肠道病毒核酸检测试剂可检测肠道病毒,如柯萨奇病毒A组2型、4型、5型、6型、7型、9型、10型、12型、16型;柯萨奇病毒B组1型、2型、3型、4型、5型;肠道病毒C组;肠道病毒71型和埃可病毒。荧光PCR法0.5万(咽拭子)每测试合计共24个标段,总计576万元各供应商可选择参投一个或多个标段,可兼投兼中,但必须对所投标段内全部标的进行投标报价,不得缺项、漏项。本项目(不接受)联合体投标。二、申请人的资格要求:1、基本资格条件:符合《政府采购法》第二十二条规定的供应商条件;1.1、提供在中华人民共和国境内注册的营业执照(或事业单位法人证书,或社会团体法人登记证书,或执业许可证)、组织机构代码证和税务登记证复印件【如已办理了多证合一,则仅需提供合证后的营业执照】,如供应商为自然人的需提供自然人身份证明。1.2、提供2021年度任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或具有财务审计资质的单位出具的2020年度财务会计报告或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证);2021年以后新成立企业提供成立之日至开标前任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证)。1.3、提供2021年以来至少一个月的纳税证明或完税证明(提供增值税、企业所得税至少一种),纳税证明或完税证明上应有代收机构或税务机关的公章或业务专用章。依法免税的供应商应提供相关文件证明。1.4、提供2021年以来至少一个月的社会保障资金缴存单据或社保机构开具的社会保险参保缴费情况证明。依法不需要缴纳社会保障资金的供应商应提供相关文件证明。1.5、提供履行合同所必需的设备和专业技术能力的书面声明。1.6、提供参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明。2、落实政府采购政策需满足的资格要求:本项目非专门面向中小企业采购。3、特定资格条件:3.1、供应商应授权合法的人员参加投标全过程,其中法定代表人直接参加投标的,须出具法人身份证,并与营业执照上信息一致;法定代表人授权代表参加投标的,须出具法定代表人授权书及授权代表身份证。3.2、投标产品纳入医疗器械(或药品)管理的,须提供供应商有效的医疗器械(或药品)经营许可证或经营备案凭证。3.3、投标产品纳入医疗器械(或药品)管理的,须提供产品有效的医疗器械(或药品)注册证或备案凭证。3.4、若投标产品为进口,供应商须提供有效的完整授权链的产品授权书(授权期限不足2年的须附能够提供持续供货的声明材料,英文授权须提供中文翻译版;制造商直接参与投标的不提供此项)。若投标产品为国产且纳入医疗器械(或药品)管理的,供应商须提供投标产品制造商有效的营业执照和生产许可证。3.5、供应商未被列入“信用中国”网站(www.creditchina.gov.cn)以下情形之一:①记录失信被执行人;②重大税收违法案件当事人名单。同时,在中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中查询没有处于禁止参加政府采购活动的记录名单。本项目(不接受)联合体投标。三、获取招标文件1、时间:2022年08月01日至2022年08月05日,法定工作日每天上午09:0012:00,法定工作日每天下午14:0017:00(北京时间,法定节假日除外)地点:线上发售方式:(1)根据陕西省人民政府《关于加强新型冠状病毒感染的肺炎防控工作的通告》要求,本次招标文件采用线上发售,供应商在文件发售期以内将单位介绍信(介绍信中必须注明项目名称、项目编号、标段号)、经办人身份证、联系电话及电子邮箱等资料,加盖投标单位公章的彩色扫描件发送至邮箱714884417@qq.com,并及时关注邮箱回复消息。(2)招标文件售价人民币¥7200.00元(本招标项目各标段招标文件之和,每单个标段300元),售后不退。(标书费交纳信息:账户名称:陕西西北民航招标咨询有限公司;开户银行:建行西安高新科技支行;账号:61001925700052502533;转帐事由:项目名称简称、编号、标段号,如以个人名义转入,须备注单位名称。财务电话:029883479258013),采购代理机构在收到邮件并确认文件收费到账后,通过邮箱向供应商发售招标文件,请及时查收。四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年08月24日09时30分(北京时间)开标时间:2022年08月24日09时30分(北京时间)地点:西安市唐延路3号唐延国际中心AB区8楼开标室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜:(1)招标文件售价为每标段300元。(2)本项目接受进口产品投标。(3)采购项目需要落实的政府采购政策:1、《财政部国家发展改革委关于印发〈节能产品政府采购实施意见〉的通知》(财库〔2004〕185号);2、《国务院办公厅关于建立政府强制采购节能产品制度的通知》(国办发〔2007〕51号);3、《财政部环保总局关于环境标志产品政府采购实施的意见》(财库〔2006〕90号);4、《财政部司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号);5、《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号);6、《财政部发展改革委生态环境部市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库〔2019〕9号);7、《关于运用政府采购政策支持乡村产业振兴的通知》(财库〔2021〕19号);8、《政府采购促进中小企业发展管理办法》(财库〔2020〕46号);9、陕西省财政厅关于印发《陕西省中小企业政府采购信用融资办法》(陕财办采〔2018〕23号)。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:西安交通大学第二附属医院地址:西安市西五路157号联系方式:冯老师029876798612.采购代理机构信息名称:陕西西北民航招标咨询有限公司地址:西安市唐延路3号唐延国际中心AB区8楼联系方式:佘冰霞029883479878046/139912653493.项目联系方式项目联系人:佘冰霞电话:029883479878046/13991265349(2022.07.27)重新招标公告分子组及大明宫耗材项目.pdf×扫码打开掌上仪信通App查看联系方式$('.clickModel').click(function(){$('.modelDiv').show()})$('.closeModel').click(function(){$('.modelDiv').hide()})基本信息关键内容:基因测序仪,流式细胞仪,核酸蛋白分析,细胞计数器,核酸提取仪,液相色谱仪,PCR开标时间:2022-08-2409:30预算金额:576.00万元采购单位:西安交通大学第二附属医院采购联系人:点击查看采购联系方式:点击查看招标代理机构:陕西西北民航招标咨询有限公司代理联系人:点击查看代理联系方式:点击查看详细信息西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告陕西省-西安市状态:公告更新时间:2022-07-29招标文件:附件1西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告发布时间:2022072915:11:08西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告项目概况西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目招标项目的潜在投标人应在线上获取招标文件,并于2022年08月24日09时30分(北京时间)前递交投标文件。一、项目基本情况项目编号:XBMH2022152项目名称:西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目预算金额:576万元/年采购需求:西安交通大学第二附属医院采购分子组及大明宫院区医用试剂一批。本项目共分24个标段,各标标段具体采购的标的物及预算如下:标段号序号采购标的物名称检测方法采购预算(万元/年)中标家数参数要求招标最小单位第1标段(180万)1乙型肝炎病毒核酸定量检测PCR荧光探针法180万1家每测试2沙眼衣原体核酸检测每测试3淋球菌核酸测定每测试4解脲脲原体核酸检测每测试5单纯疱疹病毒II型核酸测定每测试7人巨细胞病毒核酸定量检测每测试8结核分枝杆菌核酸检测每测试9肺炎支原体核酸检测试剂盒每测试10EB病毒核酸检测每测试11幽门螺旋杆菌核酸检测每测试12肠道病毒71型核酸检测每测试13肠道病毒通用型核酸检测每测试14乙型肝炎病毒基因分型检测每测试15丙型肝炎病毒基因分型检测试剂盒每测试16人感染H7N9禽流感病毒RNA检测每测试17甲型H1N1流感病毒RNA检测每测试18季节性流感病毒H3亚型核酸检测每测试19季节性流感病毒H1亚型核酸检测每测试20Ⅰ群肠道沙门氏菌核酸检测每测试21发热伴血小板减少综合征布尼亚病毒核酸检测每测试22柯萨奇病毒A16型核酸检测每测试23柯萨奇病毒A6型核酸检测每测试24柯萨奇病毒A10型核酸检测每测试25呼吸道合胞病毒核酸检测试剂盒每测试26登革病毒核酸检测每测试27HIV1核酸测定试剂盒每测试28中东呼吸综合征冠状病毒核酸检测每测试29寨卡病毒核酸检测每测试30B族链球菌核酸检测每测试31人博卡病毒核酸检测每测试32腺病毒核酸检测每测试33人鼻病毒核酸检测每测试34乙型肝炎病毒前C区/BCP区突变检测PCR反向点杂交法每测试35乙型肝炎病毒YMDD基因突变检测每测试36人乳头瘤病毒核酸检测及基因分型(至少标段含20种)PCR反向点杂交法每测试372019nCoV核酸快速检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等耗材)荧光PCR法(快速扩增)1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限小于等于500copy/L5快速核酸释放技术6扩增时间小于50分钟每测试382019nCoV核酸检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限≤500copy/mL每测试39诺如病毒RNA荧光PCR法每测试40多瘤病毒(BKV、JCV)每测试41人偏肺病毒(HMPV)每测试42副流感病毒PIV每测试43甲型流感病毒每测试44乙型流感病毒每测试45呼吸道病毒核酸六重联检(甲、乙型流感病毒、腺病毒、呼吸道合胞病毒、副流感病毒1型、副流感病毒2型)每测试46白血病融合基因每测试47细小病毒(B19)胶体金法每测试第2标段(145万)1核酸提取或纯化试剂磁珠法145万1家每测试2丙型肝炎病毒核酸定量检测PCR荧光探针法每测试3丙型肝炎病毒基因分型检测每测试4HBVDNA/HCVRNA/HIVRNA(1+2)型三联检测每测试5乙型肝炎病毒核酸定量检测(高敏)检测下限≤10copies/mL每测试6乙型肝炎病毒基因分型检测每测试7丙型肝炎病毒核酸定量检测(高敏)检测下限≤25copies/mL每测试8丙型肝炎病毒核酸定量检测(超敏)检测下限≤15copies/mL每测试9EB病毒核酸定量检测检测下限≤400copies/mL每测试10人巨细胞病毒核酸定量检测检测下限≤400copies/mL每测试11沙眼衣原体核酸检测、解脲脲原体核酸检测、淋球菌核酸检测检测下限≤400copies/mL每测试12新型冠状病毒2019nCoV核酸检测,最低检测下限≤200copy/L(标段含采样管及保存液、提取试剂、扩增试剂、八连管)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4最低检测下限≤200copy/mL每测试13高危型人乳头状瘤病毒DNA检测(15种)荧光PCR法(无需杂交)每测试132019nCoV、甲型流感病毒、乙型流感病毒核酸三联检荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL14腺病毒核酸检测荧光PCR法每测试第3标段(30万)新冠核酸快检试剂2019nCoV核酸快速检测试剂(标段含采样管及保存液、保存管、提取试剂、扩增试剂、吸头、八连管等)快速核酸检测30万1家1磁珠法提取;2.全检测流程≤80分钟3检测模式:核酸提取、扩增检测均在同一封闭;4独立模块,随来随测,独立检测。5.目的基因不少于双靶标(ORFlab基因、N基因);6检测最低下限小于500copy/mL;7检测通量≥8;每测试第4标段(6万)(MTHFRC677T基因检测+高血压个体化治疗基因检测+HLAB27核酸检测等)MTHFRC677T基因检测(3个位点)PCR熔解曲线法6万1家每测试人类CYP2C19基因分型检测每测试CYP2D6*10、CYP2C9*3、ADRB1(1165GC)、AGTR1(116AC)、ACE(I/D)检测每测试人运动神经元存活基因1(SMN1)检测每测试测序反应通用试剂盒(高血压个体化治疗基因检测)聚合酶链杂交法每测试测序反应通用试剂盒(叶酸)每测试测序反应通用试剂盒(他汀类)每测试测序反应通用试剂盒(氯比格雷)每测试测序反应通用试剂盒(华法林)每测试测序反应通用试剂盒(硝酸甘油)每测试人类HLAB27核酸检测荧光PCR法每测试高血压个体化治疗基因检测试剂(5个位点)每测试人类HLAB*5801基因每测试B族链球菌核酸检测每测试结核分枝杆菌复合群核酸检测恒温扩增荧光法每测试MTHERC677基因检测PCR金磁微粒层析法每测试第5标段(20万)(免费按需提供检测的质控品、校准品、辅助试剂及一次性耗材)恒温扩增相关试剂(20万)结核TBRNA检测恒温扩增法20万1家每测试乙肝HBVRNA检测每测试泌尿生殖道病原体RNA检测(沙眼衣原体、解脲脲原体、淋病奈瑟菌、生殖支原体)每测试第6标段(5万)细菌耐药基因检测耐甲氧西林金黄色葡萄球菌耐药基因检测荧光PCR法5万1家每测试碳青霉烯耐药基因KPC检测每测试鲍曼不动杆菌耐碳青霉烯类抗生素基因(OXA23)检测每测试耐万古霉素肠球菌基因(vanA,vanB)检测每测试第7标段(20万)呼吸道病原菌核酸检测呼吸道病原菌核酸检测(标段括常见细菌、特殊病原体如嗜肺军团菌、结核分枝杆菌、肺炎支原体、肺炎衣原体、流感嗜血杆菌等)恒温扩增芯片法20万1家每测试第8标段(30万)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱30万1家每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试类固醇激素类类固醇激素18项(二氢睾酮、脱氢表雄酮硫酸酯、脱氢表雄酮、皮质醇(氢化可的松)、雌酮、17α羟孕酮、孕烯醇酮、皮质酮、11去氧皮质醇、脱氧皮质酮、雄烯二酮、17α羟孕烯醇酮、睾酮、醛固酮、雌二醇、雌三醇、可的松(皮质素)、孕酮)1.82.5ng串联质谱每测试原醛激素5项(醛固酮、血管紧张素I,皮质醇,脱氧皮质酮、可的松)每测试四种激素萃取液(醛固酮、皮质醇,脱氧皮质酮、可的松)每测试血儿茶酚胺代谢检测(肾上腺素、去甲肾上腺素、多巴胺、变肾上腺素、去甲变肾上腺素)每测试尿儿茶8项(DA,E,NE,MN,NMN,3MT,HVA,VMA)每测试高香草酸和香草扁桃酸萃取液每测试人体代谢物浓度胆汁酸谱15项(胆酸、牛磺胆酸、甘氨脱氧胆酸、石胆酸、甘氨胆酸、牛磺熊脱氧胆酸、脱氧胆酸、牛磺石胆酸、甘氨熊脱氧胆酸、熊脱氧胆酸、甘氨石胆酸、牛磺鹅脱氧胆酸、鹅脱氧胆酸、牛磺脱氧胆酸、甘氨鹅脱氧胆酸)串联质谱每测试药物浓度检测免疫抑制剂(他克莫司、环孢霉素A、西罗莫司)药物浓度检测串联质谱每测试抗癫痫药(卡马西平、卡马西平10,11环氧化物、奥卡西平、10羟基卡马西平、丙戊酸/苯巴比妥、苯妥英钠、拉莫三嗪、托吡酯、左乙拉西坦)药物浓度检测每测试抗菌药(万古霉素、伏立康唑、替考拉宁、利奈唑胺、美洛培南、替加环素、莫西沙星、氟康唑)药物浓度检测每测试抗肿瘤药(甲氨蝶呤、氟尿嘧啶、多西他赛、多柔比星)每测试镇静催眠药(阿普唑仑、氯硝西泮、咪达唑仑、劳拉西泮、奥沙西泮、唑吡坦、艾司唑仑、替马西泮、溴西泮)药物浓度检测每测试抗抑郁药(米氮平、帕罗西汀、舍曲林、西酞普兰、艾司西酞普兰、文拉法辛、O–去甲文拉法辛、曲唑酮、氟西汀+去甲氟西汀、氟伏沙明、度洛西汀、安非他酮、羟安非他酮)药物浓度检测每测试抗精神病药(氯氮平及去甲氯氮平、氯丙嗪、利培酮+9–羟基利培酮、喹硫平、阿立哌唑、脱氢阿立哌唑、奥氮平、齐拉西酮、氨磺必利、丙戊酸、舒必利、氟哌啶醇、奋乃静、氟奋乃静)药物浓度检测每测试第9标段(8万)阿司匹林耐药基因检测LTC4S一代测序技术8万1家为临床服用阿司匹林是否存在抵抗提供帮助每测试PTGS1每测试GP1BA高血糖个体化用药基因检测外周血液基因组中的CYP2C9、OCT2、SLCO1B1、PPARy基因多态性性为临床鉴别患者对降糖药物敏感性提供帮助每测试SLCO1B1ApoE检测SLCO1B1检测*1b和*5两个位点;ApoE检测E2和E4两个位点每测试个体化用药指导AGTR1/ACE/ADRB1CY2D6/CYP2C9/CYP3A5/NPPA检测高血压合理用药;总共检测7个基因,10位点每测试CYP2C19氯吡格雷用药每测试CYP2C9VKORC1华法林初始剂量每测试MTHFR检测评判叶酸代谢能力,指导合理补充叶酸每测试ALDH2检测判断硝酸甘油用药无效风险,评估酒精代谢能力每测试细胞因子联合检测试剂细胞因子六联检(IL2\IL4\IL6\IL10\IFNγ\TNFα);流式细胞术(2类注册证)每测试细胞因子七联检(IL2\IL4\IL6\IL10\IL17A\IFNγ\TNFα) 每测试细胞因子八联检(IL2\IL4\IL6\IL10\IL12P70\IL17A\IFNγ、TNFα) 每测试PD1(程序性死亡蛋白1)每测试十二联检(IL1β\IL2\IL4\IL6\IL8\IL10\IL12P70\IL17A\IFNγ\TNFα\IFNα)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试串联质谱检测3多种氨基酸检测试剂盒串联质谱每测试抗生素药物浓度检测试剂盒(阿米卡星、亚胺培南西司他丁、头孢哌酮舒巴坦、哌拉西林他唑巴坦、美罗培南、替加环素、利奈唑胺、万古霉素、去甲万古霉素、替考拉宁、氟康唑、伏立康唑、醋酸卡泊芬净)每测试第10标段(5万)1白色念珠菌核酸检测荧光PCR法5万1家每测试2光滑假丝酵母菌核酸检测每测试3热带假丝酵母菌菌核酸检测每测试4金黄色葡萄球菌和耐甲氧西林金黄色葡萄球菌核酸检测每测试5沙门氏菌和志贺氏菌核酸检测每测试6单纯疱疹病毒1型(HSV1)核酸检测每测试7单纯疱疹病毒2型(HSV2)核酸检测每测试8人感染H7N9禽流感病毒RNA检测每测试9麻疹病毒和风疹病毒核酸检测每测试10人乳头瘤病毒核酸检测及基因分型(至少标段含20种)荧光PCR定量法(无需杂交)每测试第11标段(大明宫)(60万)肝炎系列+新冠抗体+胃蛋白酶原乙型肝炎病毒表面抗体测定试剂盒磁微粒化学发光法60万1家每测试乙型肝炎病毒表面抗原测定试剂盒每测试乙型肝炎病毒e抗原测定试剂盒每测试乙型肝炎病毒e抗体测定试剂盒每测试乙型肝炎病毒核心抗体测定试剂盒每测试乙型肝炎病毒前S1抗原测定试剂盒每测试戊型肝炎病毒IgM测定试剂盒每测试丙型肝炎病毒抗体测定试剂盒每测试胃蛋白酶原Ⅰ测定试剂盒每测试胃蛋白酶原Ⅱ测定试剂盒每测试新型冠状病毒(2019nCoV)抗体检测试剂盒(磁微粒化学发光法)每测试抗HCV质控品每毫升HBcAb质控品每毫升HBeAb质控品每毫升HBeAg质控品每毫升HBsAb质控品每毫升HBsAg质控品每毫升抗HAVIgM质控每毫升抗HEVIgM质控品每毫升白介素6测定试剂盒(CMIA)每测试降钙素原测定每测试超敏C反应蛋白测定每测试肌酸激酶同工酶测定每测试心肌肌钙蛋白I测定每测试心肌肌钙蛋白T测定每测试肌红蛋白测定每测试心型脂肪酸结合蛋白测定每测试N端脑钠肽前体测定每测试白介素6质控品IL6免费提供胃蛋白酶原I质控品PGI免费提供胃蛋白酶原II质控品PGII免费提供人类免疫缺陷病毒抗原抗体测定试剂盒每测试梅毒螺旋体抗体测定试剂盒每测试甲型肝炎病毒IgM抗体测定试剂盒每测试激发液免费提供预激发液免费提供清洗液免费提供整装反应杯免费提供整装吸头免费提供样本稀释液免费提供FDP+DD纤维蛋白/原降解复合物胶乳免疫比浊法/颗粒增强免疫比浊法每测试D二聚体检测每测试FDP、D二聚体控制品每毫升D二聚体校准品每毫升FDP校准品每毫升生化类超敏C反应蛋白免疫比浊法每测试尿微量白蛋白测定每测试糖化白蛋白每测试糖化血红蛋白高压液相色谱法每测试第12标段(6万)多种心脑血管药物基因核酸样本预处理试剂心血管个性化用药指导11基因检测+核酸质谱法6万1家每测试心血管个性化用药指导21基因检测每测试高血压个性化用药指导9基因检测每测试冠心病个性化用药指导4基因检测每测试氯吡格雷+阿司匹林个性化用药基因检测每测试抗栓个性化用药9基因检测每测试儿童安全用药基因检测(核心板)每测试叶酸及营养每测试精神类药物基因核酸样本预处理试剂抑郁症个性化用药指导10基因检测每测试精神分裂症个性化用药10基因检测每测试癫痫个性化用药12基因检测每测试焦虑个性化用药9基因检测每测试肿瘤基因检测核酸样本预处理试剂化疗用药每测试男性18项高发肿瘤风险基因筛查(含BRCA基因)每测试女性21项高发肿瘤风险基因筛查(含BRCA基因)每测试核酸样本预处理试剂遗传性耳聋基因检测(20位点)每测试第13标段(5万)肝癌检测高尔基体蛋白73磁微粒化学发光免疫分析法5万1家每测试甲胎蛋白异质体比率(AFPL3%)每测试异常凝血酶原每测试感染三项1.全程C反应蛋白(CRP)上转发光免疫分析每测试2.血清淀粉样蛋白(SAA)每测试3.降钙素原(PCT)每测试第14标段(8万)ApoE基因型载脂蛋白EApoE基因型检测基因芯片法8万1家每测试第15标段(4万)SDC2基因甲基化检测人类SDC2基因甲基化检测荧光PCR法4万1家每测试第16标段(3万)S9甲基化Septin9基因甲基化检测荧光探针法3万1家每测试第17标段(25万)一次性加样枪头一次性加样枪头200微升迪肯酶免一体机专用25万1家每个一次性加样枪头1000微升每个核酸检测耗材盒装灭菌无酶吸头10微升核酸检测专用每个盒装灭菌无酶吸头100微升每个盒装灭菌无酶吸头200微升每个盒装灭菌无酶吸头1000微升每个加长型滤芯枪头(200ul)每个加长型滤芯枪头(10ul)每个HPV细胞保存液HPV细胞保存液(标段含采样器和保存管)5mlHPV分型专用每管采样管及保存管鼻拭子采样管、咽拭子采样管RNA检测标本采集每个第18标段(2万)六项呼吸道病毒核酸联合检测六项呼吸道核酸联合检测(甲、乙型流感病毒,呼吸道合胞病毒,腺病毒,肺炎支原体,人鼻病毒)荧光PCR法2万1家1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试六项呼吸道病原菌核酸检测六项呼吸道病原菌核酸检测(肺炎链球菌、肺炎克雷伯杆菌、流感嗜血杆菌、铜绿假单胞菌、嗜肺军团菌、金黄色葡萄糖菌)荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试第19标段(1万)传染病三项血液筛查核酸检测HBV+HCV+HIV血液筛查核酸检测荧光PCR法1万1家每测试第20标段(3万)心脑血管疾病风险预测MTHFRC677T基因检测(3个位点)PCR金磁微粒层析法2万1家每测试ALDH2(Glu504Lys)基因检测每测试氧化型低密度脂蛋白金磁微粒免疫层析法每测试S100β蛋白检测每测试早产早破预测胰岛素样生长因子结合蛋白1(IGFBP1)——胶体金与酶免方法1万胎膜早破诊断每测试胎儿纤维连接蛋白(fFN)——早产风险预测每测试第21标段(3万)颗粒酶B及穿孔素联合检测GranzymeB抗体试剂流式细胞计数法2万1家每测试穿孔素(Perforin)抗体试剂每测试CD45检测试剂(APCCy7)每测试CD3检测试剂(PerCP)每测试CD8检测试剂(APC)每测试CD16检测试剂(CD16PECy7)每测试CD56检测试剂(CD16PECy7)每测试HLAB27基因分型HLAB27基因分型检测荧光PCR法1万每测试百日咳杆菌核酸检测百日咳杆菌核酸检测荧光PCR法每测试第22标段(3万)耳聋基因检测遗传性耳聋易感基因检测(至少20种基因位点)PCR反向点杂交2万1家每测试艰难梭菌抗原及毒素快检艰难梭菌谷氨酸脱氢酶抗原GDH及毒素A/B酶联免疫层析法1万每测试第23标段(2万)SDC2和TFPI2基因甲基化联合检测SDC2和TFPI2基因甲基化联合检测试剂盒荧光PCR法2万1家每测试第24标段(2万)呼吸道病毒6项呼吸道合胞病毒、呼吸道腺病毒、人偏肺病毒、副流感病毒Ⅰ型、副流感病毒Ⅱ型、副流感病毒Ⅲ型荧光PCR法1万最低检测限:1000copies/mL每测试诺如病毒核酸检测诺如病毒RNA检测(粪标本)荧光PCR法0.5万每测试肠道病毒核酸检测试剂可检测肠道病毒,如柯萨奇病毒A组2型、4型、5型、6型、7型、9型、10型、12型、16型;柯萨奇病毒B组1型、2型、3型、4型、5型;肠道病毒C组;肠道病毒71型和埃可病毒。荧光PCR法0.5万(咽拭子)每测试合计共24个标段,总计576万元各供应商可选择参投一个或多个标段,可兼投兼中,但必须对所投标段内全部标的进行投标报价,不得缺项、漏项。本项目(不接受)联合体投标。二、申请人的资格要求:1、基本资格条件:符合《政府采购法》第二十二条规定的供应商条件;1.1、提供在中华人民共和国境内注册的营业执照(或事业单位法人证书,或社会团体法人登记证书,或执业许可证)、组织机构代码证和税务登记证复印件【如已办理了多证合一,则仅需提供合证后的营业执照】,如供应商为自然人的需提供自然人身份证明。1.2、提供2021年度任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或具有财务审计资质的单位出具的2020年度财务会计报告或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证);2021年以后新成立企业提供成立之日至开标前任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证)。1.3、提供2021年以来至少一个月的纳税证明或完税证明(提供增值税、企业所得税至少一种),纳税证明或完税证明上应有代收机构或税务机关的公章或业务专用章。依法免税的供应商应提供相关文件证明。1.4、提供2021年以来至少一个月的社会保障资金缴存单据或社保机构开具的社会保险参保缴费情况证明。依法不需要缴纳社会保障资金的供应商应提供相关文件证明。1.5、提供履行合同所必需的设备和专业技术能力的书面声明。1.6、提供参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明。2、落实政府采购政策需满足的资格要求:本项目非专门面向中小企业采购。3、特定资格条件:3.1、供应商应授权合法的人员参加投标全过程,其中法定代表人直接参加投标的,须出具法人身份证,并与营业执照上信息一致;法定代表人授权代表参加投标的,须出具法定代表人授权书及授权代表身份证。3.2、投标产品纳入医疗器械(或药品)管理的,须提供供应商有效的医疗器械(或药品)经营许可证或经营备案凭证。3.3、投标产品纳入医疗器械(或药品)管理的,须提供产品有效的医疗器械(或药品)注册证或备案凭证。3.4、若投标产品为进口,供应商须提供有效的完整授权链的产品授权书(授权期限不足2年的须附能够提供持续供货的声明材料,英文授权须提供中文翻译版;制造商直接参与投标的不提供此项)。若投标产品为国产且纳入医疗器械(或药品)管理的,供应商须提供投标产品制造商有效的营业执照和生产许可证。3.5、供应商未被列入“信用中国”网站(www.creditchina.gov.cn)以下情形之一:①记录失信被执行人;②重大税收违法案件当事人名单。同时,在中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中查询没有处于禁止参加政府采购活动的记录名单。本项目(不接受)联合体投标。三、获取招标文件1、时间:2022年08月01日至2022年08月05日,法定工作日每天上午09:0012:00,法定工作日每天下午14:0017:00(北京时间,法定节假日除外)地点:线上发售方式:(1)根据陕西省人民政府《关于加强新型冠状病毒感染的肺炎防控工作的通告》要求,本次招标文件采用线上发售,供应商在文件发售期以内将单位介绍信(介绍信中必须注明项目名称、项目编号、标段号)、经办人身份证、联系电话及电子邮箱等资料,加盖投标单位公章的彩色扫描件发送至邮箱714884417@qq.com,并及时关注邮箱回复消息。(2)招标文件售价人民币¥7200.00元(本招标项目各标段招标文件之和,每单个标段300元),售后不退。(标书费交纳信息:账户名称:陕西西北民航招标咨询有限公司;开户银行:建行西安高新科技支行;账号:61001925700052502533;转帐事由:项目名称简称、编号、标段号,如以个人名义转入,须备注单位名称。财务电话:029883479258013),采购代理机构在收到邮件并确认文件收费到账后,通过邮箱向供应商发售招标文件,请及时查收。四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年08月24日09时30分(北京时间)开标时间:2022年08月24日09时30分(北京时间)地点:西安市唐延路3号唐延国际中心AB区8楼开标室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜:(1)招标文件售价为每标段300元。(2)本项目接受进口产品投标。(3)采购项目需要落实的政府采购政策:1、《财政部国家发展改革委关于印发〈节能产品政府采购实施意见〉的通知》(财库〔2004〕185号);2、《国务院办公厅关于建立政府强制采购节能产品制度的通知》(国办发〔2007〕51号);3、《财政部环保总局关于环境标志产品政府采购实施的意见》(财库〔2006〕90号);4、《财政部司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号);5、《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号);6、《财政部发展改革委生态环境部市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库〔2019〕9号);7、《关于运用政府采购政策支持乡村产业振兴的通知》(财库〔2021〕19号);8、《政府采购促进中小企业发展管理办法》(财库〔2020〕46号);9、陕西省财政厅关于印发《陕西省中小企业政府采购信用融资办法》(陕财办采〔2018〕23号)。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:西安交通大学第二附属医院地址:西安市西五路157号联系方式:冯老师029876798612.采购代理机构信息名称:陕西西北民航招标咨询有限公司地址:西安市唐延路3号唐延国际中心AB区8楼联系方式:佘冰霞029883479878046/139912653493.项目联系方式项目联系人:佘冰霞电话:029883479878046/13991265349(2022.07.27)重新招标公告分子组及大明宫耗材项目.pdf
  • 脂联素:代谢综合征治疗新方法
    代谢综合征及其治疗瓶颈   代谢综合征包括高胰岛素血症、糖耐量异常、肥胖、高血压,以高甘油三酯和低高密度脂蛋白胆固醇为特点的血脂异常,以及低密度脂蛋白相关的小颗粒导致动脉粥样硬化等病症,是当前发达国家或发展中国家的主要死因之一。   近来的科学研究表明,在代谢综合征中,胰岛素抵抗和高脂血症是2个关键指标,两者密切相关并贯穿于代谢综合征过程中。因此,当诊断代谢综合征时,应对2型糖尿病的危险因素和加速动脉粥样硬化性血管疾病的因素有充分认知。   动脉粥样硬化被认为是一种慢性炎症性的脂类代谢疾病,其复杂的病理生理过程始于在动脉壁上含有大量胆固醇的脂蛋白吸引血流中的单核细胞黏附并侵入血管内皮细胞层,这些细胞吸收脂蛋白后分化为巨噬细胞,后者在这一过程中发挥了关键作用。巨噬细胞继续积聚大量脂类,最终形成泡沫细胞,并在动脉壁上形成胆固醇性病变斑块。由于巨噬细胞转化为泡沫细胞是形成动脉粥样硬化病变的关键环节,所以防止或逆转胆固醇积聚,以及巨噬细胞和泡沫细胞的形成,进而防止或减少动脉粥样硬化病变,成为近年来科研的重要课题之一。   由于代谢综合征由一组紧密相关的病症组成,目前除改变生活方式和单纯治疗单一症状外(即使治疗单一症状也并非易事),至今尚无全面治疗代谢综合征的首选方法。因此,寻找一种有效的治疗方法去应对代谢综合征及多种危险因素并存的情况,无疑是一种巨大挑战。   脂联素的发现及其功能   脂联素最初由克隆脂肪细胞特异表达基因而来,因此该物质是脂肪细胞特异性表达的细胞因子。   近年来的流行病学证据表明,在2型糖尿病胰岛素抵抗、肥胖和心血管疾病等患者中,血液循环中的脂联素水平有所下降,这种低血浆脂联素水平与上述疾病状态下脂联素基因在脂肪组织中的表达减少有关。另有证据表明,与低脂联素血症和胰岛素抵抗一样,脂联素基因多态性也可能是2型糖尿病的病因之一。然而,脂联素基因变异程度与低脂联素血症、肥胖和胰岛素抵抗的产生,其代谢作用及机制尚未明确。   此外,脂联素已被证实能促进骨骼肌和心肌细胞的脂质氧化,并能减少肝细胞的肝葡萄糖生成。因此,脂联素与改善糖耐量、降低血浆甘油三酯等体内代谢活动有关。   巨噬细胞:脂肪组织胰岛素抵抗的根源   巨噬细胞在体内是一种来源于单核细胞系统的多核吞噬细胞,具有高度可塑性及迁移性,能从骨髓随血液循环进入各种组织,并影响这些组织细胞的表型与功能(图)。最近的研究表明,巨噬细胞可能在代谢疾病的发生发展过程中发挥重要作用。研究证实,巨噬细胞在肥胖者的脂肪组织中大量增加,在极端的例子中,巨噬细胞可占脂肪组织的40%。脂肪组织是胰岛素作用的靶组织之一,而巨噬细胞能分泌胰岛素抵抗性炎症细胞因子,这一特点使其成为了脂肪组织对胰岛素抵抗的潜在根源。有关概念指出,巨噬细胞能对胰岛素的靶组织产生直接影响,从而导致靶组织出现胰岛素抵抗。   此外,动物模型研究也显示了巨噬细胞导致胰岛素抵抗的因果作用。当动物被喂食高脂食物时,特异性敲除巨噬细胞中的某些炎症基因能对这些动物产生保护作用,有利于增强葡萄糖耐量并减轻高胰岛素血症。上述结果显示,巨噬细胞在炎症细胞引起的胰岛素抵抗过程中至关重要,阻止巨噬细胞浸润对胰岛素靶组织的不利炎症反应及异常代谢影响,有望成为改善体内胰岛素敏感性的重要手段之一。   脂联素:通过抑制巨噬细胞来发挥功能   脂联素虽然不在巨噬细胞中表达,但其已被证实能通过下调清道夫受体A和胆固醇酰基转移酶1(ACAT1)的基因表达,从而抑制巨噬细胞转化为泡沫细胞。研究证明,脂联素也可能通过抑制单核细胞向巨噬细胞迁移并转化成泡沫细胞以及减轻细胞的炎症过程,来抑制体内血管壁的动脉粥样硬化。在脂类代谢中,低脂联素水平或能增加富含甘油三酯的血浆脂蛋白及产生泡沫细胞的脂肪氧化物,同时减少高密度脂蛋白,从而促进泡沫细胞形成。   另有体外细胞培养试验证明,脂联素对内皮细胞的细胞间黏附分子1(ICAM-1)、血管细胞黏附分子1(VCAM-1)和E-选择素等基因表达也有抑制作用。   此外,越来越多的证据表明,心血管死亡率与低血浆脂联素水平紧密相关,进一步证实了脂联素具有抗炎和抗动脉粥样硬化的重要作用。   脂联素:治疗代谢综合征的新方法   我们最近的研究结果表明,在人THP-1巨噬细胞中直接表达脂联素可以调节脂类代谢,减少巨噬细胞转化为泡沫细胞,从而证实了脂联素的抗炎、抗动脉粥样硬化作用, 以及脂联素在抑制巨噬细胞转化成泡沫细胞过程中的作用。   由于巨噬细胞是一种高塑性循环细胞,它们能通过血液循环进入各种靶组织,进而影响这些组织或细胞的功能。因此,为了研究脂联素和巨噬细胞在体内的功能作用,我们建立了巨噬细胞特异性脂联素转基因小鼠模型,并证明了脂联素在小鼠巨噬细胞中的特异表达能显著减少巨噬细胞中胆固醇和甘油三酯的积聚,并能减少巨噬细胞转化为泡沫细胞,进而改善动脉粥样硬化病变程度。此外,脂联素在小鼠巨噬细胞中的表达还能使全身代谢活跃组织的炎症细胞因子水平有所降低,如单核细胞化学趋化蛋白质1(MCP-1)和肿瘤坏死因子等,从而提高生理性葡萄糖耐量及胰岛素敏感性的整体水平。   综上所述,我们的研究结果表明,通过脂联素来抑制巨噬细胞浸润或升高血液循环中的脂联素水平,能影响其他组织和细胞的重要代谢活动,进而改变生理性代谢功能的整体水平,或能成为一种治疗代谢综合征的新方法。
  • 仪器表征,科学家开发新型纳米药物,用于治疗动脉粥样硬化!
    【科学背景】动脉粥样硬化是一种以动脉斑块逐渐沉积为特征的疾病,最终可能导致严重的动脉血栓事件。因此,抗炎策略在临床治疗中显现出巨大的潜力。近来,Canakinumab抗炎血栓结果研究(CANTOS)临床试验对约10,000名心肌梗死后患者进行了研究,结果显示,使用Canakinumab(一种中和促炎性IL-1β细胞因子的单克隆抗体)的治疗显著减少了心血管事件的发生。然而,这一疗法也增加了致命感染的风险,主要是因为中性粒细胞减少,宿主防御能力受到削弱。另一个临床试验,心血管炎症减少试验(CIRT),则表明低剂量甲氨蝶呤的系统治疗未能有效减少促炎细胞因子的表达或心血管事件。这些结果提示,若能将治疗药物有效地递送至动脉壁病变区域,将可能显著提高疗效并减少副作用。此外,病灶巨噬细胞中过量的活性氧(ROS)是促进动脉粥样硬化进展的另一个关键因素。ROS过量产生会增加氧化应激,导致细胞凋亡并激活炎症反应。由于炎症在动脉粥样硬化过程中引起ROS的过量生成,因此尽管具有挑战性,但同时解决炎症和抑制病灶ROS生成的治疗策略对于动脉粥样硬化的管理具有重要意义。虽然一些纳米治疗剂在临床前研究中显示出双重治疗功能,但其在疾病部位的低积累、复杂的合成路线和潜在的毒性问题仍然是临床转化的障碍。因此,迫切需要合成具有抗氧化和抗炎功能并且能在疾病部位高效积累的生物相容性纳米材料。为此,科学家们将研究目光投向了二维(2D)黑磷纳米片(BPNSs)。由于其独特的物理化学特性和优异的生物相容性,BPNSs在纳米医学领域得到了广泛研究。最近的一项临床前研究表明,BPNSs可以有效清除过量的ROS,改善急性肾损伤。基于这一发现,四川大学华西医院宋相容课题组和哈佛大学医学院的陶伟、Wei Chen合作开发了具有良好生物相容性和高病灶巨噬细胞积累能力的靶向BPNS纳米治疗剂。与传统的纳米载体递送药物策略不同,作者采用了一种创新的“纳米药物递送药物”方法,用于治疗动脉粥样硬化。具体而言,作者利用BPNSs的药物携带能力,将解决炎症的脂质介质Resolvin D1(RvD1)加载其中。RvD1负载的BPNSs不仅能够清除周围的ROS,且在病灶巨噬细胞中选择性地释放RvD1,从而在载脂蛋白E缺乏(Apoe&minus /&minus )小鼠的动脉粥样硬化模型中增强抗动脉粥样硬化效果。【科学亮点】(1)实验首次开发了靶向肽修饰的黑磷纳米治疗剂(BPNSs@PEG-S2P/R),旨在解决动脉粥样硬化治疗中的挑战。(2)实验通过将2D PEGylated BPNSs结合S2P靶向肽和抗炎药物RvD1,成功实现了以下几点结果:&bull BPNSs@PEG-S2P/R能有效积聚于动脉粥样硬化斑块的病灶巨噬细胞,并在S2P肽的协助下渗透斑块。&bull 药物RvD1在ROS响应性释放的方式下,被有效递送至病灶巨噬细胞,展现出显著的抗炎效果。&bull BPNSs@PEG-S2P/R不仅能同时清除ROS,还能抑制病灶巨噬细胞中ROS诱导的炎症反应。&bull 在Apoe&minus /&minus 小鼠模型中,BPNSs@PEG-S2P/R显著减少了斑块面积,并提高了斑块的稳定性。&bull 在动脉粥样硬化斑块中,BPNSs@PEG-S2P/R能有效抑制巨噬细胞负担、炎症反应和氧化应激。&bull 长期治疗后,BPNSs@PEG-S2P/R未引起小鼠免疫或毒性不良反应。【科学图文】图1:BPNSs@PEG-S2P/R的合成策略和抗动脉粥样硬化机制示意图。图2:BPNSs@PEG-S2P/R的表征及RvD1负载和释放研究。图3:BPNSs@PEG-S2P/R处理后细胞摄取、ROS清除能力、抗炎效果、氧化低密度脂蛋白摄取和泡沫细胞形成的体外分析。图4:BPNSs@PEG-S2P/R的药代动力学和生物分布。图5:通过量化病变面积和评估斑块稳定性特征,评估BPNSs@PEG-S2P/R在Apoe&minus /&minus 小鼠中的抗动脉粥样硬化效果。图6:单细胞转录组学揭示了BPNSs@PEG-S2P/R治疗调控主动脉病灶巨噬细胞的基因和关键分子通路。【科学结论】本研究深入探索了动脉粥样硬化的复杂病理机制,突出了慢性炎症和ROS过量生成在疾病发展中的关键作用。通过利用二维黑磷纳米片(BPNSs)的独特特性,如优异的生物相容性和强大的ROS清除能力,本文创新性地设计了靶向肽修饰的纳米治疗剂,实现了双重治疗功能:有效清除ROS并解决斑块中的炎症。这一“纳米药物递送药物”的策略不仅有效提高了治疗效果,还显著减少了对机体的不良影响。研究结果不仅在动物模型中验证了其显著的疗效和安全性,而且通过单细胞水平的分析揭示了治疗机制的深层次调控,为未来开发治疗动脉粥样硬化及其他炎症性疾病的新型纳米药物提供了重要的价值。这些成果不仅有望促进相关领域的进一步研究和临床应用,还为纳米技术在个体化医疗和精准治疗中的广泛应用提供了有力支持,为解决复杂疾病治疗中的关键挑战开辟了新的道路。原文详情:He, Z., Chen, W., Hu, K. et al. Resolvin D1 delivery to lesional macrophages using antioxidative black phosphorus nanosheets for atherosclerosis treatment. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01687-1
  • 武汉大学宋保亮团队揭示胆固醇代谢新机制,对治疗心血管等疾病有重大潜在应用
    胆固醇作为具有四环的脂质,是一种难以分解的强促炎分子,可加速动脉粥样硬化和非酒精性脂肪性肝炎。高胆固醇是心血管疾病的主要危险因素,目前没有药物能够通过直接促进胆固醇排泄来降低胆固醇。人类遗传学研究发现,功能丧失的去唾液酸糖蛋白受体1 (Asialoglycoprotein receptor 1, ASGR1) 变体与低胆固醇和降低心血管疾病风险有关。ASGR1仅在肝脏中表达并介导血液去唾液酸糖蛋白的内化和溶酶体降解。然而,ASGR1影响胆固醇代谢的机制尚不清楚。2022年8月3日,武汉大学宋保亮团队在Nature 在线发表题为“Inhibition of ASGR1 decreases lipid levels by promoting cholesterol excretion”的研究论文。该论文发现Asgr1缺乏通过稳定肝X受体α (liver X receptor α, LXRα) 来降低血清和肝脏中的脂质水平,LXRα上调ABCA1和ABCG5/G8,这分别促进胆固醇转运到高密度脂蛋白和排泄到胆汁和粪便。ASGR1缺乏阻断糖蛋白的内吞作用和溶酶体降解,降低溶酶体中的氨基酸水平,从而抑制mTORC1并激活AMPK,一方面AMPK通过减少其泛素连接酶BRCA1/BARD1来增加LXRα;另一方面,AMPK抑制控制脂肪生成的甾醇调节元件结合蛋白 (sterol regulatory element-binding protein, SREBP1)。抗ASGR1中和抗体通过增加胆固醇排泄来降低血脂水平,并显示出与阿托伐他汀或依折麦布这两种广泛使用的降胆固醇药物的协同有益作用。总之,该研究表明靶向ASGR1可上调LXRα、ABCA1和ABCG5/G8,抑制SREBP1和脂肪生成,从而促进胆固醇排泄并降低血脂水平。胆固醇稳态是通过肠道胆固醇吸收、血浆脂蛋白摄取、从头生物合成以及胆固醇分解代谢和排泄之间的复杂相互作用实现的。迄今为止,降胆固醇药物主要分为三大类:他汀类药物是3-羟基-3-甲基戊二酰辅酶A还原酶 (HMGCR) 的竞争性抑制剂,通过降低胆固醇生物合成和上调低密度脂蛋白 (LDL) 受体 (LDLR) 提高低密度脂蛋白 (LDL) 摄取来降低血浆胆固醇;依折麦布是一种肠道胆固醇吸收抑制剂,通过抑制Niemann-Pick C1样1的内吞作用来阻止胆固醇摄入;PCSK9抑制剂通过稳定LDLR4增加肝脏LDL摄取。尽管这些药物已被广泛使用,但仍有很大一部分患者患有复发性心血管疾病 (cardiovascular disease, CVD),他们的 LDL 胆固醇水平未能达到指南中推荐的目标水平。最重要的是,这些现有的降胆固醇药物都没有通过直接促进胆固醇分解代谢或排泄来降低胆固醇。mTORC1和AMPK是感知细胞营养和控制新陈代谢的两个主要调节器,它们通过多种机制受到反向调控。尽管AMPK已被提议作为代谢疾病的潜在治疗靶点,但泛AMPK激动剂会导致心脏肥大,从而阻碍其临床应用。除了激活AMPK的组织特异性作用外,细胞AMPK还受药物、营养物质和AMP的不同调节,导致不同靶点的磷酸化。因此,选择性激活AMPK对于在没有副作用的情况下开发药物至关重要。胆固醇通过ABCG5和ABCG8异二聚体排泄到胆汁和肠腔。ABCG5或ABCG8突变导致谷甾醇血症,这是一种以甾醇积累和过早动脉粥样硬化为特征的罕见疾病。小鼠肝脏中过表达ABCG5/G8基因增加了肝胆分泌胆固醇同时降低了血浆胆固醇。ABCG5/G8的表达主要受LXR在转录水平上的调节,LXR的药理激活通过上调ABCG5/G8增加胆固醇流出。然而,LXR也增加了SREBP1(也称为 ADD1),它驱动脂肪酸生物合成基因的表达,导致肝脏脂肪有害变性和高甘油三酯血症。因此,在临床上直接使用LXR激动剂不能用于治疗高胆固醇血症。该研究揭示mTORC1和AMPK可以被ASGR1所调控。mTORC1被去唾液酸糖蛋白的溶酶体消化释放的氨基酸激活,这些氨基酸通过ASGR1介导的内吞作用进入肝细胞。抑制ASGR1会阻断受体介导的内化和随后的去唾液酸糖蛋白的溶酶体消化,从而激活AMPK并抑制mTORC1。这种机制为选择性激活AMPK提供了高度定位的信号。ASGR1的调控LXR的机制模型(图源自Nature )胆固醇流出通过增加LXRα和ABCG5/G8,LXRα使ABCA1升高,显示更高的高密度脂蛋白 (HDL) 胆固醇和更低的低密度脂蛋白 (LDL) 胆固醇,也改善了脂蛋白谱。由于mTORC1抑制和AMPK激活,SREBP1被抑制,因此阻止了脂肪生成。此外,缺失Ttc39b增加了LXRα和ABCG5/G8而没有激活SREBP1,证实ABCG5/G8的表达可以与SREBP1的表达分离。由于ASGR1几乎只在肝细胞中表达,因此靶向ASGR1绕过了泛AMPK激动剂的不良副作用,为肝脏特异性激活AMPK和抑制mTORC1 铺平了道路。总之,该研究提供了一种独特的降低胆固醇的方法,抑制ASGR1会增加胆汁和粪便中的胆固醇排泄,ASGR1的功能丧失变体与降低非HDL胆固醇和减少复发性心血管疾病相关,这提示抑制ASGR1是治疗心血管疾病安全有效的方法。原文链接https://www.nature.com/articles/s41586-022-05006-3
  • 深度学习辅助从冷冻电镜密度图逐步组装多结构域蛋白质
    冷冻电子显微镜的进展为大分子蛋白质结构测定提供了潜力,但是在多域蛋白质的域间方向建模,成功率仍然很低。近日,Nature子刊,作者使用冷冻电子显微镜开发了自动的域增强建模(DEMO-EM)方法。DEMO-EM方法通过结合刚体域拟合和柔性装配模拟(具有深度神经网络域间距离分布的灵活装配模拟)的渐进式结构精调程序,从冷冻电子显微镜图中组装多域蛋白结构。该方法在包含多达 12 个连续和不连续结构域的大规模蛋白质基准集上进行了测试,这些结构域具有中到低分辨率的密度图,其中,对于 97% 的案例,DEMO-EM 生成的模型具有正确的域间方向(模板建模分数(TM 分数)0.5),并且优于最先进的方法。DEMO-EM流程图使用结核分枝杆菌依赖性因子的三域蛋白进行说明从查询序列开始,域边界首先由FUpred和ThraDom预测,每个域的模型由DI-TASSER生成。同时,使用深度学习卷积网络DomainDist预测域间距离。其次,每个域模型都通过拟牛顿搜索独立地拟合到密度图。第三,初始全长模型通过两步刚体REMC模拟优化,以最小密度图和全长模型之间的DCS。第四,使用由DCS、域间距离分布和基于知识的力场引导的REMC模拟,通过原子级、分段级和域级精调的柔性装配对从刚体装配模拟中选择的最低DCS模型进行精调,得到decopy构象由SPICKER聚类以获得质心模型。最后,对全原子模型再次进行柔性装配模拟,其中质心模型的约束增加了能量,最终模型是用FASPR和FG-MD侧链重新包装后的最低能量模型构建。DEMO-EM是一种基于冷冻电镜图的多域蛋白质结构确定的分层方法,由四个连续步骤组成:(1)确定域边界并对单个域建模(2)将域模型与密度图匹配初始框架生成(3)用于域位置和方向优化的刚体域结构组装(4)全长结构模型的柔性结构组装和细化模拟从冷冻电镜合成密度图构建多结构域蛋白从查询的氨基酸序列开始,首先应用LOMETS[1]从PDB创建多个模版比对,其中ThreaDom用于根据域保守分数预测域边界。如果蛋白质被LOMETS定义为“简单”目标,并且比对覆盖率95%,则应用ThraDom预测的域定义。否则,通过FUpred(通过最大化域内接触的数量[3]和最小化由基于深度学习的神经网络ResPRE[2])预测的接触图上的域间接触的数量来预测域边界。接下来使用DI-TASSER[4]生成每个域的结构模型,它是I-TASSER[5]的一个版本,通过将深度学习预测的残基间接触和距离图以及氢键电位结合到迭代搜索全基因组和宏基因组序列数据库来构建多序列比对(MSA)。然后根据TripletRes预测的接触选择最前面的MSA,将其输入到ResPRE[2],TripletRes是基于深度残基神经网络预测距离图、氢键网络和扭转角。这些预测的约束被集成到I-TASSER力场中以指导replica-exchange 蒙特卡洛模拟(REMC)。最终模型由SPICKER聚类并由FG-MD改进。对于包含来自查询序列不同区域的两个或多个片段的不连续域,域模型是通过顺序连接所有片段的序列获得的。基于深度神经网络的域间距离预测为了帮助指导域方向组装,域间距离图由深度残差神经网络算法DomainDist预测,DomainDist 是TripletRes 的扩展,最初开发它是为了基于共进化矩阵的三元组预测残基间接触图,但在这里扩展以预测 2-20 Å 范围内 36 个 bin 内残基间距离的概率。DomainDist 程序在从 PDB 收集的 26,151 种蛋白质的非冗余数据集上进行训练,其中每种蛋白质的 MSA 是使用 HHblits搜索 Unilust30 序列数据库构建的. 除了 TripletRes 中采用的二维 (2D) 协同进化特征外,还采用了三个一维 (1D) 特征,包括隐马尔可夫模型、Potts 模型的序列和场参数的 one-hot 表示并平铺到两个维度并与二维协同进化特征连接。神经网络结构是按照卷积策略设计的,使用 ResNet 基础模块。神经网络模型由 Adam 优化算法训练,以最小化交叉熵损失。尽管 DEMO-EM 只考虑了域间距离信息,但在训练过程中同时考虑了域内和域间距离信息。基于拟牛顿的域匹配和冷冻电子密度图对于来自 DI-TASSER 的每个单独的域模型,我们使用有限内存Broyden-Fletcher-Goldfarb-Shanno (L-BFGS),一种具有六维 (6D) 平移-旋转自由度的准牛顿优化算法,来识别与密度图相关性最高的域的最佳位置和方向。由于L-BFGS是一种局部优化方法,其结果取决于初始解,因此作者通过枚举欧拉角的所有组合( φ, θ and ψ ),以步长Srot_ang穿过密度图空间。对于domain pose,密度相关分数(density correlation score,DCS)用于指导L-BFGS模拟。Nvol是voxels的个数(网格点),ρEM (vi ) 是第i个voxel的实验密度。decopy结构探针密度定义为:刚体域组装执行两轮刚体域组装模拟以优化域位置和方向。在第一轮中,这些域被视为粒子,并进行快速的REMC模拟,以根据全局模拟密度相关性调整各个域的位置。第二轮刚体REMC模拟用于微调域位姿,其具有更详细的能量立场。原子级灵活的域组装和细化灵活的域组装和细化过程包含两个阶段的模拟,具有渐进的voxels分辨率和采样焦点。在第一阶段,实施了6种不同的动作,(1)LMProt 扰动,(2)围绕连接两个末端的轴的片段旋转,(3)片段沿序列的构象移位,(5)刚体段平移,(5)刚体尾部旋转和(6)刚体域级平移和旋转。第二阶段,使用在所有原子上计算的DCS实现Voxel大小为2 Å 的更精细的密度图。此外,所有残基都有相同的概率被选中进行移动和采样。当交换次数达到 100 时,模拟终止。选择最低能量的诱饵来构建最终模型,侧链原子由 FASPR 重新包装,然后是 FG-MD 细化。结果表2显示了从同一组预测域模型开始时从 MDFF 和 Rosetta 获得的结果,其中初始构象由 Situs 和 MAINMAST 建模组装。这些数据再次表明,DEMO-EM 的表现优于 MDFF、Rosetta 和 MAINMAST,全长模型的平均 TM 分数分别比 MDFF、Rosetta 和 MAINMST 高 60.0%、87.2% 和 144.4%。最后,作者在所有 51 个案例上将 DEMO-EM 与最先进的端到端深度学习结构预测方法 AlphaFold2 进行了比较。由上表所示, 虽然 AlphaFold2 预测的单个域的 TM-score (0.89) 比 DEMO-EM (0.84) 高,这可能是因为 DI-TASSER 构建的域模型质量较低,整体质量DEMO-EM 构建的全长模型(TM-score 为 0.88)优于 AlphaFold2(TM-score 为 0.84),DEMO-EM 在 28 出时获得了比 AlphaFold2 更高的 TM-score 51 种蛋白质。作者还将 AlphaFold2 构建的相同全长模型输入 MDFF、Rosetta 和 DEMO-EM,以检查灵活组装和细化过程的性能。所有方法都改进了初始全长模型,即使对于最佳预测模型,也显示了冷冻电镜数据的有用性。源代码:https://zhanggroup.org/DEMO-EM/参考资料[1] Zheng, W. et al. LOMETS2: improved meta-threading server for fold-recognition and structure-based function annotation for distant-homology proteins. Nucleic Acids Res. 47, W429–W436 (2019)[2]Li, Y., Hu, J., Zhang, C., Yu, D.-J. & Zhang, Y. ResPRE: high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks. Bioinformatics 35, 4647–4655 (2019)[3] Zheng, W. et al. FUpred: detecting protein domains through deep-learning based contact map prediction. Bioinformatics 36, 3749–3757 (2020)[4] Zheng, W. et al. Protein structure prediction using deep learning distance and hydrogen‐bonding restraints in CASP14. Proteins 89, 1734–1751 (2021)[5]Yang, J. et al. The I-TASSER suite: protein structure and function prediction. Nat. Methods 12, 7–8 (2015).
  • 美国PSS发布PSS Nicomp 380 N3000 Plus 顶配纳米粒度仪新品
    Nicomp 380 系列纳米激光粒度仪 专为复杂体系提供高精度粒度解析方案基本信息仪器型号:N3000 Plus工作原理:动态光散射(Dynamic Light Scattering, DLS)检测范围: 0.3nm-10.0μm Nicomp 380 N3000系列纳米激光粒度仪是在原有的经典型号380DLS基础上升级配套而来,采用动态光散射(Dynamic Light Scattering, DLS)原理检测分析颗粒的粒度分布,粒径检测范围 0.3nm – 10μm。其配套粒度分析软件复合采用了高斯( Gaussian)单峰算法和拥有专利技术的 Nicomp 多峰算法,对于多组分、粒径分布不均匀分散体系的分析具有独特优势。技术优势1、APD(LDC)超高灵敏度检测器;2、多角度检测(multi angle)模块;3、可搭配不同功率光源;4、精确度高,最接近样品真实值;5、快速检测,可以追溯历史数据;6、结果数据以多种形式和格式呈现;7、符合USP,CP等个多药典要求;8、无需校准;9、复合型算法:(1)高斯(Gaussion)单峰算法与专利的Nicomp多峰算法自由切换10、模块化设计便于维护和升级;(1)可自动稀释模块专利;(2)搭配多角度检测器;(3)自动进样系统(选配);Nicomp多峰分布概念 基线调整自动补偿功能和高分辨率多峰算法是Nicomp 380系列仪器所独有的两个主要特点,Nicomp创始人Dave Nicole很早就认识到传统的动态光散射理论仅给出高斯模式的粒度分布,这和实践生产生活中不相符,因为现实中很多样本是多分散体系,非单分散体系,而且高斯分布灵敏性不足,分辨率不高,这些特点都制约了纳米粒度仪在实际生产生活中的使用。其开创性的开创了Nicomp多峰分布理论,大大提高了动态光散射理论的分辨率和灵敏性。图一:Nicomp多分分布数据呈现 如图一:此数据为Nicomp创始人Dave Nicole亲测其血液所得的真实案例。其检测项目为:高密度脂蛋白,低密度脂蛋白和超低密度脂蛋白,由图中可以看出,其血液中三个组分的平均粒径分别显示在7.0nm;29.3nm和217.5nm。由此可见,Nicomp分布模式可以有效反应多组分体系的粒径分布。Nicomp多峰分布优势 Nicomp系列仪器均可以自由在Gaussian分布模式和Nicomp多峰分布模式中切换。其不仅可以给出传统的DLS系统的结果,更可以通过Nicomp多峰分布模式体现样品的真实情况。依托于Nicomp系列仪器一系列优异的算法和高灵敏性的硬件设计,Nicomp纳米激光粒度仪可以有效区分1:2的多分散体系。图二:高斯分布及Nicomp多峰分布对比图 如图二:此数据为检测93nm和150nm的标粒按照1:2的比例混合后所测得的数据。左边为高斯分布(Gaussian)结果,右图为Nicomp多峰分布算法结果,两者都为光强径数据。从高斯分布可以得到此混合标粒的平均粒径为110nm-120nm之间,却无法得到实际的多组分体系结构。从右侧的Nicomp多峰分布可以得到结果为双峰,即如数据呈现,体系中的粒子主要分布于98.2nm以及190nm附近,这和实际情况相符。 为满足不同客户的实际检测需求,我司的Nicomp 380 N3000会配备相应的配置,旨在为客户们在控制成本的基础上,得到需求的解决方案,达到收益最大化。产品优势模块化设计 Nicomp 380纳米激光粒度仪是全球率先在应用动态光散射技术上的基础上加入多模块方法的先进粒度仪。随着模块的升级和增加,Nicomp 380的功能体系越来越强大,可以用于各种复杂体系的检测分析。自动稀释模块 带有专利的自动稀释模块消除了人工稀释高浓度样品带来的误差,且不需要人工不断试错来获得合适的测试浓度,这大大缩短了测试者宝贵时间,且无需培训,测试结果重现性好,误差率<1%。380/HPLD大功率激光器 美国PSS粒度仪公司在开发仪器的过程中,考虑到在各种极端实验测试条件中不同的需求,对不同使用条件和环境配置了不同功率的激光发生器。大功率的激光器可以对极小的粒子也能搜集到足够的散射信号,使得仪器能够得到极小粒子的粒径分布。同样,大功率激光器在测试大粒子的时候同样也很有帮助,比如在检测右旋糖酐大分子时,折射率的特性会引起光散射强度不足。 因为大功率激光器的特性,会弥补散射光强的不足和衰减,测试极其微小的微乳、表面活性剂胶束、蛋白质以及其他大分子不再是一个苛刻的难题。即使没有色谱分离,Nicomp 380纳米粒径分析仪甚至也可以轻易估算出生物高分子的聚集程度。雪崩二极管 (APD-LDC)超高灵敏度检测器 Nicomp 380纳米粒径分析仪可以装配各种大功率的激光发生器和军品级别的雪崩二极管检测器(相比较传统的光电倍增管有7-10倍放大增益效果)。 APD通常被用于散射发生不明显的体系里来增加信噪比和敏感度,如蛋白质、不溶性胶束、浓度极低的体系以及大分子基团,他们的颗粒的一般浓度为1mg/mL甚至更低,这些颗粒是由对光的散射不敏感的原子组成。APD外置了一个大功率激光发生器模块,在非常短的时间内就能检测分析纳米级颗粒的分布情况。380/MA多角度检测器 粒径大于100 nm的颗粒在激光的照射下不会朝着各个方向散射。多角度检测角器通过调节检测角度来增加粒子对光的敏感性来测试某些特殊级别粒子。Nicomp 380可以配备范围在10°-175,步长0.7°的多角度测角器,从而使得单一90°检测角测试不了的样品,通过调节角度进行检测,改善对大粒子多分散系粒径分析的精确度。工作原理目录结构: 1.前言 2.动态光散射原理 3.动态光散射理论:光的干涉 小知识:光电倍增管(PMT) 小知识:光电二极管(APD) 5.粒子的扩散效应 6.Stoke-Einstein方程式 7.自相关函数原理 前言 近十几年来,动态光散射技术(Dynamic Light scattering, DLS),也被称为准弹性光散射(quasi-elastic light scattering, QELS)或光子相关光谱法(photon correlation spectroscopy, PCS),已经被证明是表征液体中分散体系的粒径分布(PSD)的极有用的分析工具。DLS技术的有效检测粒径范围——从5am(0.005微米)到10几个微米。DLS技术的优势相当明显,尤其是当检测到300nm以下亚微米的粒径范围时,在此区间,其他的技术手段大部分都已经失效或者无法得到准确的结果。因此,基于DLS理论的设备仪器被广泛采用用以表征特定体系的粒度分布,包括合成的高分子聚合物(如乳胶,PVCs等),水包油和油包水的乳剂,囊泡,胶团,微粒,生物大分子,颜料,燃料,硅土,金属晶体,陶瓷和其他的胶体类混悬剂和分散体系。动态光散射原理 下图所示为DLS系统的简单的示意图。激光照射到盛有稀释的颗粒混悬液的玻璃试管中。此玻璃试管温度恒定,每一个粒子被入射光击发后向各个方向散射。散射光的光强值和粒径的分子量或体积(在特定浓度下)成比例关系,再带入其他影响参数比如折射率,这就是经典光散射(Classic light scattering)的理论基础。 图1:DLS系统示意图最新的动态光散射方法(DLS)从传统的光散射理论中分离,不再关注于光散射的光强值,而关注于光强随着时间的波动行为。简单来说,我们在一定角度(一般使用90°角)检测分散溶剂中的混悬颗粒的总体散射光信息。由于粒度的扩散,光强值不断波动,理论上存在有非常理想化的波动时间周期,此波动时间和粒子的扩散速度呈反比例关系。我们通过光强值的波动自相关函数的计算来获得随时间变化的衰减指数曲线。从衰减时间常量τ,我们可以获得粒子的扩散速度D。使用Stokes-Einstein 方程式,我们最终可以计算得出颗粒的半径(假定其是一个圆球形状)。动态光散射理论:光的干涉 为了容易理解什么叫做强度随时间波动,我们必须先理解相干叠加(coherent addition)或线性叠加(superposition)的概念,进一步要知道检测区域内的不同的粒子产生了很多独立散射光,这些独立的散射光相干叠加或互相叠加的最终结果就是光强。这种物理现场被称为“干涉”。下图是光干涉图样。 每一束独立的散射光波到达检测器和入射激光波长有相位关系,这主要取决于悬浮液中颗粒的精确定位。所有的光波在PMT检测器的表面的狭缝中混合在一起,或者叫干涉在一起,最终在特定的角度可以检测得到“净”散射光强值,在DLS系统中,绝大部分都使用90度角。 小知识——光电倍增管(PMT) 光电倍增管(Photomultiplier,简称PMT),是一种对紫外光、可见光和近红外光极其敏感的特殊真空管。它能使进入的微弱光信号增强至原本的108倍,使光信号能被测量。光电倍增管示意图小知识——光电二极管(APD) 光电倍增管是由玻璃封装的真空装置,其内包含光电阴极 (photocathode),几个二次发射极 (dynode)和一个阳极。入射光子撞击光电阴极,产生光电效应,产生的光电子被聚焦到二次发射极。其后的工作原理如同电子倍增管,电子被加速到二次发射极产生多个二次电子,通常每个二次发射极的电位差在 100 到 200 伏特。二次电子流像瀑布一般,经过一连串的二次发射极使得电子倍增,最后到达阳极。一般光电倍增管的二次发射极是分离式的,而电子倍增管的二次发射极是连续式的。 应用 光电倍增管集高增益,低干扰,对高频信号有高灵敏度的优点,因此被广泛应用于高能物理、天文等领域的研究工作,与及流体流速计算、医学影像和连续镜头的剪辑。雪崩光电二极管(Avalanche photodiodes,简称APDs)为光电倍增管的替代品。然而,后者仍在大部份的应用情况下被采用。 动态光散射理论: 粒子的扩散效应 悬浮的粒子并不是静止不动的,相反,他们以布朗运动(Brownian motion)的方式无规则的运动,布朗运动主要是由于临近的溶剂分子冲撞而引起的。因此,到达PMT检测区的每一束散射光随时间也呈无规则波动,这是由于产生散射光的粒子的位置不同而导致的无规则波动。因为这些光互相干涉在一起,在检测器中检测到的光强值就会随时间而不断波动。粒子很小的位移需要在相位上产生很大的变化,进而产生有实际意义的波动,最终这些波动在净光强值上反应出来。 DLS测量粒径技术的关键物理概念是基于粒子的波动时间周期是随着粒子的粒径大小而变化的。为了简化这个概念,我们现在假定粒子是均一大小的,具有相同的扩散系数(diffusion coefficient)。分散体系中的小粒子运动的快,将会导致光强波动信号变化很快;而相反地,大粒子扩散地毕竟慢,导致了光强值的变化比较慢。 图示4使用相同的时间周期来观测不同大小(小,中,大)的粒子产生的散射光强变化,请注意,横坐标是时间t。 我们需要再次强调,光强的波动并不是因为检测区域内粒子的增减引起的 而是大量的粒子的位置变动(位移)而引起的。 Stokes Einstein Equation DLS技术的目标是从原始数据(raw data)中确定粒子的扩散系数“D”。原始数据主要是指光强信号的波动,比如上述图4中所示。通过扩散系数D我们可以很容易的计算出粒子的半径,这时候就是广为人知的Stokes-Einstein方程式:D=kT/6πηR (2)这里k 指的是玻尔兹曼常数1.38 x 10-16 erg K-1;T是绝对温度;η是分散溶剂的额剪切粘度,比如20℃的水的η=1.002×10-2 泊; 从上述公式2中我们可以看到,通常情况下,粒子的扩散系数D会随着温度T的上升而增加。温度进而也会影响溶剂粘度η。例如,纯水的粘度在25℃下会落到0.890×10-2泊,和20℃下相比会有10%的改变。毫无疑问,溶剂的粘度越小,粒子的无规则扩散速度会越大,从而导致光强的波动也越快。因此,温度T的变化和粒径的变化是完全分不开的,因为他们都影响到了扩散系数D。正因为这个原因,样本的温度必须保持恒定,而且必须非常精确,这样才能获得有实际意义的扩散系数D。 从图4的“噪声”信号中无法直接提取出扩散系数。但是可以清楚地看到,信号b比信号c波动地快,但是比信号a波动地慢,因为,信号b地粒径一定在a和c之间,这只是很直观地得到一个结论而已。然而,量化此种散射信号是一个很专业地课题。幸而,我们有数学方法来解决这个问题,这就是自相关函数(auto-correlation)。自相关函数原理 现在让我们设定散射光强的自相关函数为IS(t),在上述图4中可以看到其随时间而波动。我们用C(t’)来标识自相关函数。C(t’)可以通过如下方程式3来表达:C(t’)= (3)括号表示有很多个t和对应的Is值。也就是说,一次计算就是运行很多Is(t)*Is(t-t’) 的加和,所有都具有相同的间隔时间段t’。 图5是典型的Is(t)的波形图,通过这张图,我们可以认为C(t’)和Is(t)之间有简单的比例关系,这张图的意义在于通过C(t’)函数可以通过散射光强Is(t)的波动变化“萃取”出非常有用的信息。 自相关函数C(t’)其实是表征的不同大小的粒子随时间而衰变的规律。 点击下载工作原理仪器参数粒径检测范围0.3 nm - 10 μm分析方法动态光散射,Gaussian单峰算法和 Nicomp多峰算法pH值范围1-14温度范围0℃-90 ℃(±0.1℃控温精度,无冷凝)浓度40%w/v激光光源至少35mW激光光源检测角度多角度(10°- 175°,包含90°,步进0.7°)检测器APD-LDC(雪崩二极光电倍增管,可7-10倍增益放大)可用溶剂水相,绝大多数有机相样品池标准4 mL样品池(1cm×4cm,高透光,石英玻璃或塑料)1mL样品池(玻璃,高透光率微量样品池,微量进样10μL)分析软件必配科研级软件符合 21 CFR Part 11 规范分析软件(可选)验证文件有电压220 – 240 VAC,50Hz 或100 – 120 VAC,60Hz计算机配置要求Windows 7及以上版本windows操作系统,40Gb硬盘,1G内存,光驱,USB接口,串口(COM口)外形尺寸56 cm * 41 cm * 24cm辅助增益模块自动稀释模块自动进样器(选配)重量约26kg(与配置有关)配件大功率激光光源PSS使用一系列大功率激光二极管来满足更多更苛刻的要求。使用大功率激光照射,以便从小粒子出货的足够的入射光。15mW, 35mW, 50mW, 100mW — 波长为635nm 的红色二极管。20 mW 50 mW 和 100 mW 波长为 514.4nm的绿色二极管。雪崩光电二极管检测器(APD Detector)提供比普通光电倍增管(PMT)高7-10倍的灵敏度。自动稀释系统模块将初始浓度较高的样本自动稀释至可检测的的浓度,可稀释初始固含量为50%的原始样品,本模块收专利保护,其可免除人工稀释样品带来的外界环境的干扰和数据上的误差,此技术被用于批量进样和在线检测的过程中。多角度检测系统模块提供多角度的检测能力。使用高精度的步进电机和针孔光纤技术可对散射光的接收角度进行调整,可为微粒粒径分布提供可高分辨率的多角度检测。对高浓度样品(≤40%)以及大粒子多分散系的粒径提供了提供15至175度之间不同角度上散射光的采集和检测自动滴定模块(选配)样品的浓度及PH值是Zeta电位的重要参数,搭配瑞士万通的滴定仪进行检测,真正实现了自动滴定,自动调节PH值,自动检测Zeta电位值。免除外界的干扰和数据上的误差,精确分析出样品Zeta电位的趋势。样品池标准4 mL样品池(1cm×4cm,高透光,石英玻璃或塑料);1mL样品池(玻璃,高透光率微量样品池,最小进样量10μL)。自动进样器(选配)批量自动进样器能实现60个连续样本的分析而无需操作人员的干预。因此它是一个非常好的质量控制工具,能增大样品的处理量。大大节省了宝贵的时间。应用领域 纳米载药纳米药物研究近些年主要着重在药物的传递方向并发展迅猛,纳米粒的大小可以有效减少毒性和副作用。所以,控制这些纳米粒的粒径大小是非常必要的。 磨料磨料既有天然的也有合成的,用于研磨、切削、钻孔、成形以及抛光。磨料是在力的作用下实现对硬度较低材料的磨削。磨料的质量取决于磨料的粗糙度和颗粒的均匀性。化学机械抛光液(CMP SLURRY)化学机械抛光是半导体制造加工过程中的重要步骤。化学机械抛光液是由腐蚀性的化学组分和磨料(通常是氧化铝、二氧化硅或氧化铈)两部分组成。抛光过程很大程度上取决于晶片表面构型。晶片的加工误差通常以埃计,对晶片质量至关重要。抛光液粒度越均匀、不聚集成胶则越有利于化学机械抛光加工过程的顺利进行。 陶瓷陶瓷在工业中的应用非常广泛,从砖瓦到生物医用材料及半导体领域。在生产加工过程中监测陶瓷颗粒的粒度及其粒度分布可以有效地控制产品的性能和质量。 粘土粘土是一种含水细小颗粒矿物质天然材料。粉砂与粘土类似,但粉沙的颗粒比粘土大。粘土中易于混杂粉砂从而降低粘土的等级和使用性能。ISO14688定义粘土的颗粒小于63μm。 涂料涂料种类繁多,用途广泛。涂料的颗粒大小及粒度分布直接影响涂料的质量和性能。污染物监测粒度检测分析在产品的污染监测方面起着重要作用,产品的污染对产品的质量影响巨大。绝大多数行业都有相应的标准、规程或规范,必须严格遵守和执行,以保证产品满足质量要求。化妆品无论是普通化妆品还是保湿剂、止汗剂,它们的性能都直接与粒度的大小和分布有关。化妆品的颗粒大小会影响其在皮肤表面的涂抹性能、分布均匀性能以及反光性能。保湿乳液(一种乳剂)的粒度小于200纳米时才能被皮肤良好吸收,而止汗剂的粒度只有足够大时才能阻塞毛孔起到止汗的作用。 乳剂乳剂是两种互不相溶的液体经乳化制成的非均匀分散体系,通常是水和油的混合物。乳剂有两种类型,一种是水分散在油中,另一种是油分散在水中。常见的乳剂制品有牛奶(水包油型)和黄油(油包水型),加工过程中它们均需均质化处理到所需的粒径大小以期延长保质期。 乳剂乳剂是两种互不相溶的液体经乳化制成的非均匀分散体系,通常是水和油的混合物。乳剂有两种类型,一种是水分散在油中,另一种是油分散在水中。常见的乳剂制品有牛奶(水包油型)和黄油(油包水型),加工过程中它们均需均质化处理到所需的粒径大小以期延长保质期。 食品食品的原料(粉末及液体)通常来源于不同的加工厂,不同来源的原料必须满足某些特定的标准以使制品的质量均一稳定。原料性质的任何波动都会对食品的口味和口感产生影响。用原料的粒度分布作为食品质量保证和质量控制(QA/QC)的一个指标可确保生产出质量均以稳定的食品制品。液体工作介质/油液体工作介质(如:油)越来越昂贵,延长液体介质的寿命是目前普遍关心的问题。机械设备运转过程中会产生金属屑或颗粒落入工作介质中(如:油浴润滑介质或液力传递介质),因此需要一种方法来确定介质(油)的更换周期。通过监测工作介质(油)中颗粒的分布和变化可以确定更换工作介质的周期以及延长其使用寿命。墨水随着打印机技术的不断发展,打印机用的墨水变得越来越重要。喷墨打印机墨水的粒度应当控制在一定的尺度以下,且分布均匀,大的颗粒易于堵塞打印头并影响打印质量。墨水是通过研磨方法制得的,可用粒度检测分析仪器设备监测其研磨加工过程,以保证墨水的颗粒粒度分布均匀,避免产生聚集的大颗粒。
  • 【Nature】赛多生物分析三剑客助力甲病毒受体快速发现
    甲病毒(Alphavirus)是包膜RNA病毒,可引发皮疹、关节痛、急性发热疾病,甚至致命的脑炎。该病毒属包括东方马脑炎病毒(EEEV)、塞姆利基森林病毒(SFV)、辛德毕斯(SINV)病毒和基孔肯亚病毒(CHIKV)等。病毒包膜蛋白以正二十面体对称排列,E2和E1糖蛋白形成异质二聚体,聚成80个三聚体,介导病毒和细胞膜的受体结合与融合。甲病毒结构示意图研究分享近期发表在Nature期刊的一项研究中[1],哈佛医学院的科学家们发现极低密度脂蛋白受体(VLDLR)是典型的甲病毒SFV的受体,而EEEV和SINV病毒的E2/E1糖蛋白也与VLDLR的配体结合域(LBD)相互作用介导病毒进入细胞,受体是与VLDLR密切相关的载脂蛋白E受体2(ApoER2)。赛多利斯生物分析三剑客——Octet® 分子互作分析系统,Incucyte® 实时活细胞分析系统以及iQue® 高通量流式细胞仪在这篇文章中大放异彩。1. 细胞水平筛选甲病毒受体利用CRISPR和模拟甲病毒的假病毒系统在细胞水平进行甲病毒受体筛选。将甲病毒复制子系统转化为基于DNA的报告病毒颗粒(SFV RVP)系统(或称之为假病毒),GFP为报告基因。当细胞被假病毒感染后,报告基因被整合到细胞基因组中,表达GFP产生绿色荧光。构建针对人类基因组中膜相关蛋白的向导RNA(sgRNAs)文库。使用该文库对感染SFV RVPs的HEK293T细胞进行CRISPR/Cas9筛选。发现使VLDLR(极低密度脂蛋白受体)基因沉默可以抑制SFV RVP的干扰,说明VLDLR是SFV的受体。这篇文章有大量数据检测SFV RVP对细胞的相对感染率,iQue® 高通量流式细胞仪当仁不让地成了这个测试的主力。左、中、右分别为活细胞群,单细胞群和GFP阳性细胞群。相对感染率Relative infection (%) = (加入抗体or阻断蛋白or受体的GFP阳性细胞/未加入抗体or阻断蛋白or受体的GFP阳性细胞) × 100%左:VLDLR敲除后,SFV的感染能力大大降低右:加入VLDLR的抗体,可以阻断SFV对细胞的感染iQue® 高通量流式细胞仪的优势在于:- 高通量速度快:5分钟即可完成一块96孔板检测;- 操作简便:“混匀-测定”,免洗流程,确保抗体靶点空间构象免遭破坏;- 节约样品:最少仅需几微升样品,节约靶标抗原和珍贵细胞。iQue® 高通量流式细胞仪2. 分子水平研究甲型病毒E2/E1蛋白与受体的结合为了搞清楚甲病毒E2/E1蛋白是否直接与VLDLR和ApoER2的LBD(ligand binding domain)结构域结合,作者生成并纯化了甲病毒的病毒样颗粒(VLP)。使用基于生物层干涉(BLI)的Octet® 分子互作分析系统进行分析,发现VLDLRLBD-Fc可以直接结合SFV、SINV和EEEV VLP。而RAP(一种VLDLR阻断剂)可以阻断甲病毒和VLDLR的结合。进一步从分子水平验证了VLDLR的LBD结构域是甲病毒的结合位点。Octet® Red 96e测试:用AHC(anti-human Fc)传感器固化受体,然后加入100 μg/mL阻断蛋白RAP或者Tf,然后与甲病毒VLP (20 nM) 结合5分钟Octet® 分子互作分析系统的优势在于:- 非标记Direct binding是趋势,结果更准确;- 快速测定亲和力,更加定量化地表征分子互作;- 无洗涤步骤,可测弱亲和力(解离快);- 写入了美国药典,文章多,认可度广;- 万金油技术,可以用于检测DNA,小分子,蛋白质等各种生物分子,比如这篇文章检测的就是病毒颗粒样品;- 操作简便,耗材及维护成本低。3. 细胞成像研究病毒对细胞的感染皮质神经元是甲病毒感染的细胞种类之一,并引起脑炎。用Incucyte® 实时活细胞分析仪检测了甲病毒对神经元的感染率。加入VLDLR的LBD结构域或者RAP,可以阻断甲病毒的感染。用Incucyte® S3检测iPSC分化的神经元对SFV RVP的感染。GCU阈值5,用Top-hat算法进行背景扣除。经过22小时培养后,计算GFP荧光面积。相对感染率Relative infection (%) = (加入抗体or阻断蛋白or受体的GFP阳性细胞/未加入抗体or阻断蛋白or受体的GFP阳性细胞) × 100%Incucyte® 实时活细胞分析系统优势在于:1) 贴壁生长的神经细胞相对其他细胞比较脆弱,Incucyte® S3放入培养箱中,不需要移动培养板,对拍照的人为干扰最小。而流式等技术需要对细胞消化处理,可能会大大影响其活性和检测的准确性;2) 配备无毒害免干扰的活细胞分析试剂,智能的神经细胞分析软件,以及趋化、迁移、3D肿瘤球和类器官模块;3) 通量高,一次可同时进行多达6块多孔板的实验,灵活选择不同的物镜和荧光通道。天下武功,唯快不破。赛多利斯生物分析三剑客——Octet® ,iQue® 和Incucyte® 相比同类检测工具都具备更高的通量及功能,可以帮助药物研发和科研工作者快速拿到准确的数据,在内卷的环境中迅速占领一席之地!-参考文献-1. Clark, L.E., Clark, S.A., Lin, C. et al. VLDLR and ApoER2 are receptors for multiple alphaviruses. Nature 2021. DOI:10.1038/s41586-021-04326-0
  • 内江市某公司通过仪器信息网成功订购远慕KIM-1蛋白和人L-FABP蛋白
    上海远慕是国内elisa试剂盒优质供应商,本司代理销售不同elisa试剂盒品牌的进口/国产elisa试剂盒,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品,赢得客户一致好评,欢迎来电咨询! 内江市某公司通过仪器信息网成功订购远慕KIM-1蛋白和人L-FABP蛋白: ELISA的样本实验准备 在收集样本前都必须有一个完整的计划,必须清楚要检测的成份是否足够稳定。对收集后当天就进行检测的样本,及时储存在4℃备用。对于隔天再检测的样本,及时分装后冻存在-20℃备用,有条件的,最好-71℃冻存备用。标本反应(此时蓝色立转黄色)。终止液的加入顺序应尽量与底物液的加入顺序相同。为了保证实验结果的准确性,底物反应时间到后应尽快加入终止液。 8.用酶联仪在450nm波长依序测量各孔的光密度(OD值)。 在加终止液后15分钟以内进行检测。 注: 1. 用户在初次使用试剂盒时,应将各种试剂管离心数分钟,以便试剂集中到管底。 2. 每次实验留一孔作为空白调零孔,该孔不加任何试剂,只是最后加底物溶液及2N H2SO4。测量时先用此孔调OD值至零。 3. 为防止样品蒸发,试验时将反应板放于铺有湿布的密闭盒内,酶标板加上盖或覆膜。 4. 未使用完的酶标板或者试剂,请于2-8℃保存。标准品、生物素标记抗体工作液、辣根过氧化物酶标记亲和素工作液请依据所需的量配置使用。请勿重复使用已稀释过的标准品、生物素标记抗体工作液或、辣根过氧化物酶标记亲和素工作液。 5. 建议检测样品时均设双孔测定,以保证检测结果的准确性。 洗板方法 手工洗板方法:吸去(不可触及板壁)或甩掉酶标板内的液体;在实验台上铺垫几层吸水纸,酶标板朝下用力拍几次;将推荐的洗涤缓冲液至少0.3ml注入孔内,浸泡1-2分钟。根据需要,重复此过程数次。 自动洗板:如果有自动洗板机,应在熟练使用后再用到正式实验过程中。 计算 以标准物的浓度为横坐标(对数坐标),OD值为纵坐标(普通坐标),在半对数坐标纸上绘出标准曲线,根据样品的OD值由标准曲线查出相应的浓度;再乘以稀释倍数;或用标准物的浓度与OD值计算出标准曲线的直线回归方程式,将样品的OD值代入方程式,计算出样品浓度,再乘以稀释倍数,即为样品的实际浓度。 注意事项 1. 当混合蛋白溶液时应尽量轻缓,避免起泡。 2. 洗涤过程非常重要,不充分的洗涤易造成假阳性。 3. 一次加样时间最好控制在5分钟内,如标本数量多,推荐使用排枪加样。 4. 请每次测定的同时做标准曲线,最好做复孔。 5. 如标本中待测物质含量过高,请先稀释后再测定,计算时请最后乘以稀释倍数。 6. 在配制标准品、检测溶液工作液时,请以相应的稀释液配制,不能混淆。 7. 底物请避光保存。 8. 不要用其它生产厂家的试剂替换试剂盒中的试剂。 我们给这位客户介绍了该产品并报完价格发去产品说明书,客户和我们沟通的非常顺畅,了解我们的产品后,客户对我们非常有信心,当即就下了订单,下面是和客户的沟通记录: 远慕生物,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品,赢得客户一致好评,欢迎来电咨询与订购!
  • 非变性质谱技术融合结构生物学和组成蛋白组学
    大家好,本周为大家分享一篇发表在Accounts of Chemical Research上的综述,Native Mass Spectrometry at the Convergence of Structural Biology and Compositional Proteomics [1],文章的通讯作者是美国西北大学的Neil L. Kelleher教授。生命活动由一系列生物大分子相互作用驱动,这些相互作用距今已进化了数十亿年。正如乙酰化和磷酸化等共价修饰可以改变蛋白质的功能一样,与金属、小分子和其他蛋白质的非共价相互作用也可以改变蛋白质的功能。然而,传统的蛋白质组学方法会分离非共价相互作用并使蛋白质变性,导致许多蛋白质水平的生物学信息尚未被发现或仅靠推断获取。就在过去的几年中,质谱(MS)技术不断发展,目前已具备维持内源性蛋白复合物完整组成并表征其特征的能力。采用非变性质谱(Native Top-Down MS, nTDMS)激活蛋白复合体,可以释放部分或全部亚基,通过与中性气体或固体表面碰撞,在进一步表征之前分离。亚单位质量、母离子质量和活化亚单位的碎片离子可以拼凑出复合物的精确分子组成,包括蛋白质修饰在内的相互作用也能被阐明,并与人类疾病状态下的功能障碍联系起来。在本综述中,作者详述了nTDMS技术目前的发展和未来在表征更大的生物复合体方面所面临的挑战。目前,nTDMS可以靶向内源性核小体复合物,而病毒颗粒、外泌体和高密度脂蛋白颗粒表征或将在未来几年内得到深度解析。为充分解决这类大小为兆到千兆道尔顿级别的复合物的表征,未来的工作将主要集中于非变性分离、单离子质谱(Single ion mass spectrometry)和新的数据类型。为了实现这一目标,Kelleher教授课题组近年来发展了一系列策略,概括为以下几个方面(1)靶向非变性质谱表征整个核小体(图1);(2)非靶向蛋白质组学深度解析内源性蛋白质复合物;(3)单分子质谱(Single molecule MS)。其中提到,阻止对非变性蛋白质进行整体表征最大的障碍之一可能是分子量分布于100 kDa到1 MDa的复合物的分辨率较差。而电荷检测MS通过直接测量离子电荷提供大型复合物的分子分布。此外有研究表明,通过对单分辨离子进行centroiding和rebinning,Orbitrap仪器的有效分辨率可以在电荷检测工作流程之上大大提高。在这种被称为“单离子质谱法(Individual Ion Mass Spectrometry, I2MS)”的技术中,可以同时检测数千个单离子,并允许在复杂混合物中分配约500种proteoforms的质量(前提是它们先前已被表征并且在数据库中可查找)。I2MS可用于分析病毒样颗粒和AAVs(图2)。图1. 核小体表征图2. 病毒颗粒检测未来随着技术的发展和创新,nTDMS都将扩展到研究极其稀缺和高度异质的生物复合物,了解蛋白质间的相互作用以及它们是如何出错的(例如错误折叠,在功能失调的化学计量和组成中形成复合物)。这些将不仅为疾病治疗的发展提供信息,还将深化我们在分子水平上对生命的理解。撰稿:张颖编辑:李惠琳原文:Native Mass Spectrometry at the Convergence of Structural Biology and Compositional Proteomics
  • 卫生部解读反式脂肪酸管理及相关科学知识
    近期,有关反式脂肪酸对健康危害的话题引起了社会的广泛关注。为解答公众疑问,倡导居民健康饮食,现就反式脂肪酸的管理及相关科学知识介绍如下。   一、我国对反式脂肪酸的管理措施   我国政府一直在积极倡导健康生活方式和平衡膳食,以减少总脂肪及反式脂肪酸的摄入。卫生部2007 年发布的《中国居民膳食指南》建议,每人每天食用油不超过25克 总脂肪的摄入量要低于每天总能量摄入的30%,同时建议我国居民要“远离反式脂肪酸,尽可能少吃富含氢化油脂的食物”。   卫生部2007年12月发布了《食品营养标签管理规范》,规定反式脂肪酸含量可以标示在“脂肪”下面,当反式脂肪酸含量≤0.3g/100g食品时,可标示为“0”或声称“无 ”或“不含”反式脂肪酸。   卫生部于2010年4月发布66项乳品安全国家标准,其中在GB10765《婴儿配方食品》中,明确规定了原料“不应使用氢化油脂”,且终产品中“反式脂肪酸最高含量应小于总脂肪酸的3%” 另外在GB10767《较大婴儿和幼儿配方食品》、GB10769《婴幼儿谷类辅助食品》、GB10770《婴幼儿罐装辅助食品》中,也明确规定了原料“不应使用氢化油脂”。同时出台了GB5413.36《婴幼儿食品和乳品中反式脂肪酸的测定》的国家食品安全标准。   我国食品工业界也在不断改进油脂和食品生产工艺,减少反式脂肪酸的产生和使用。   二、国际上对反式脂肪酸的管理措施   关于反式脂肪酸,国际社会已经提出消费警示或限制食物中反式脂肪酸的含量。世界卫生组织建议:为增进心血管健康,应尽量控制膳食中的反式脂肪酸,最大摄取量不超过总能量的1%。也就是说,如果按一个成年人平均每天摄入能量2000千卡来算,则每天摄入反式脂肪酸不应超过2.2克。   一些国家采取在食品标签上强制标示反式脂肪酸的方式来管理反式脂肪酸。如美国食品和药品管理局要求自2006年1月起,对加工食品中的反式脂肪酸进行强制标示。加拿大于2005年12月开始要求强制标示。丹麦则要求从2004年1月1日起,禁售反式脂肪酸占总脂肪2%以上的油脂。欧洲国家反式脂肪酸的摄入量与美国相比要低,因此欧盟目前还没有做出对反式脂肪酸强制标示的规定,仅在部分国家提出减少反式脂肪酸摄入的建议。   三、反式脂肪酸及其对健康的影响   从化学结构上讲,反式脂肪酸是指含有反式非共轭双键结构不饱和脂肪酸的总称。   从人类食用油脂开始,就有反式脂肪酸的存在。因为反刍动物体内的微生物会产生少量天然反式脂肪酸,人们在食用牛羊肉、奶类等食品时,会摄入少量的天然反式脂肪酸。   上世纪七八十年代,为适应特殊加工工艺的要求,西方工业国家纷纷对植物油进行氢化,在这一过程中,部分油脂的不饱和双键可以发生异构化,生成反式脂肪酸,不同植物油氢化后产生的反式脂肪酸含量差异较大。由于氢化后的油脂具有熔点高、氧化稳定性好、货架期长、风味独特、口感更佳等优点,且成本上更占据优势,这一工艺在上世纪被西方工业国家广泛使用,以人造奶油、起酥油、煎炸油等产品的形式投放市场,从而导致了反式脂肪酸在西方国家的一些糕点、饼干、油炸食品等食品中广泛存在。   此外,植物油在脱色、脱臭高温等精炼过程中或过度加热、反复煎炸等过程中也会产生少量的反式脂肪酸。   有研究表明长期过量食用氢化加工产生的反式脂肪酸可引起人体血脂代谢异常,增加低密度脂蛋白胆固醇(LDL-C)含量,降低高密度脂蛋白胆固醇(HDL-C)含量,从而增加心血管疾病发生的风险。另外,也有一些报道显示反式脂肪酸长期过量摄入可能会增加糖尿病、肥胖等慢性疾病的风险。   但对于食物中的天然反式脂肪酸,尚没有资料证明其对健康的不利影响,部分研究显示天然的反式脂肪酸对人体健康可能有益处。   四、人群反式脂肪酸的摄入状况   反式脂肪酸来源于植物油的氢化过程,因此一些使用这类氢化油脂加工的食品可能含有反式脂肪酸。经常使用氢化油加工的食品有夹心或酥性饼干、蛋黄派、咖啡伴侣等,但根据所使用的氢化油种类及量的不同,这些产品中反式脂肪酸的含量可能差别较大。   文献报道西方国家的反式脂肪酸摄入量较高。如美国20岁以上成年人日均反式脂肪酸的摄入量为5.8克,约占总能量的2.6% 欧盟14个国家的调查显示,男性的日均摄入量为1.2-6.7克,女性1.7-4.1克,分别相当于总能量的0.5-2.1%(男性)和0.8-1.9(女性) 日本的推算结果则认为其居民的日均反式脂肪酸摄入量约为1.56克,占总能量的0.7%。   目前,我国有研究报道,城市居民每天摄入的反式脂肪酸平均在1克左右,仅占总能量的0.5%左右,低于西方国家的居民摄入水平和世界卫生组织的建议控制值。
  • LC-MS 2050助力药品杂质分析-方便准确我全都要!
    背景介绍近年来,随着人们生活水平的提高、生活方式的改变,高血压合并冠心病的发病率呈逐年增高趋势,其患者多伴有不同程度的血脂异常,阿托伐他汀钙为他汀类血脂调节药,可减少胆固醇的合成,增加低密度脂蛋白受体合成,使血胆固醇和低密度脂蛋白胆固醇水平降低,中度降低血清甘油三酯水平和增加高密度脂蛋白水平。阿托伐他汀钙常与氨氯地平等降压药联用,不仅能够有效控制高血压患者的血压水平,还具有抗动脉粥样硬化作用,明显减少心血管意外事件的发生。 在进行阿托伐他汀钙原料药质量控制时,一般用HPLC-UV法评价纯度,但传统的UV检测器对于无/弱紫外吸收的物质和共流出物无法进行有效的检测,在出现未知杂质时也无法确认其结构,此时我们需要质谱来进行检测。岛津新推出的LCMS- 2050小型化单四极杆质谱系统,其高灵敏度和高选择性可轻松应对无紫外吸收峰、共流出峰,利用Mass-it功能可以将质量信息自动添加到PDA检测器数据中以方便识别峰,并使用源内CID技术分析和识别杂质,您可同时享受如同LC检测器般方便的操作体验和质谱检测器的灵敏准确! 分析条件取市售阿托伐他汀钙原料药(纯度98%)样品溶解成1 mg/mL的溶液。采用Nexera HPLC和LCMS-2050相结合的LC-MS系统进行分析。 分析条件如下 表1 梯度洗脱程序质谱条件Mass-it对阿托伐他汀溶液进行同时紫外-质谱检测,得到的紫外图谱如图1所示。阿托伐他汀出峰在10.5 min,在主峰前后检测到多个杂质峰。利用岛津的Mass-it功能可以将从LCMS-2050中获得的质量信息沿保留时间叠加在紫外图谱上。这样可以直观地了解主要组分和杂质的大量信息,也容易检查是否存在紫外吸收低的隐藏组分。 图1阿托伐他汀的紫外色谱和质谱信息图 源内CID为了进一步对杂质结构进行确认,需要通过离子碎片信息来进行定性分析。LCMS-2050可以通过向Qarray施加电压,在样品进入质谱四极杆分析之前,诱导分析物分子的碰撞解离来测量碎片信息,这种用于结构阐明的测量碎片离子的技术被称为源内CID。 图2源内CID技术图解 用源内CID对上述两种杂质得到的质谱如图3所示。为了阐明结构,将检测到的离子碎片的m/z与通过ACD/Labs MS Workbook Suite软件对已知杂质进行模拟的碎片信息进行匹配。结果显示杂质1和2分别为EP10.4中列出的杂质H和G(图3)。 图3 杂质1与杂质2碎片信息 操作简便LCMS-2050打破了质谱操作维护要求较高的“刻板印象”。在产品设计、仪器控制、数据分析等方面,我们都追求将其作为LC检测器的可用性。LCMS-2050体积小巧,可理想融合在现有实验室里,与岛津LC系统均可连接;它设置简单与光学检测器同样便捷,真空停止状态下,启动后6分钟即可开始工作,启动后,还可以自动检查仪器状态;配合LabSolutions LCMS软件从数据采集到数据分析,提供全程支持,并配有 “AI”积分处理算法,消除分析人员熟练程度和分析经验等的差异而产生的偏差;离子导入口(DL)无需使用工具便可轻松更换,且无需卸除真空状态,停机时间短。为了您的轻松使用,我们在每一个细节竭尽全力~ 总 结在Nexera HPLC系统中添加质谱检测器用于原料药和杂质分析,可轻松获得分子量信息,利用Mass-it功能可将质量信息直接叠加在标准的UV色谱图上,使操作人员可以一目了然地解读分析数据,杂质的结构可以通过源内CID进行确认,LCMS-2050与现有LC系统融合,显著提高数据质量和运营效率。 本文内容非商业广告,仅供专业人士参考。
  • 高表达抗体蛋白下游工艺技术进展
    p   摘 要:随着抗体药物上游大规模高效培养技术的飞速发展,抗体蛋白的表达浓度有了大幅度的提高,这给下游纯化工艺带来了巨大的压力。为了突破下游技术瓶颈,整个世界生物制药产业都加大了对下游技术的革新力度,近年来也取得了丰硕的成果。本文就抗体药物的纯化策略、最新技术进展以及技术应用等方面做一个调研,以期能对本部门的相关研究工作有所助益。 /p p   关键词:抗体 下游工艺 纯化 技术进展 /p p   自1997年来,全球抗体药物市场经历了一个快速发展的阶段,总销售额从1997年的3.1亿美元增长到2008年的400亿美元,复合增长率高达55%,而且增长势头还在持续 [1]。国际上通常把年销售额超过10 亿美元的品牌药称为“重磅炸弹”药物,很大一部分抗体药物都已迈入“重磅炸弹”行列。在2008年全球15大药品中,抗体药物占据了1/3,且排名仍在上升,这意味着几乎每种单抗药物的成功开发都代表着巨大的市场前景[2]。受益于此,全球主要的生物制药公司都获利颇丰,可见抗体药物具有巨大的经济价值和社会价值。 /p p   抗体药物生产技术门槛高,需要掌握抗体筛选、抗体重组、高表达细胞株构建和大规模悬浮培养等核心技术,其下游关键技术是长期以来的薄弱之处。哺乳动物细胞表达系统具有活性高、稳定性好等优点,已成为抗体等生物制品最重要的系统之一,为抗体药物的产业化提供可能。目前,国际上该项技术发展较快,已趋成熟,以默克公司为代表的流加培养生产规模达10000L以上,以贝尔公司为代表的灌流培养生产规模达200L以上,蛋白表达浓度为1-10g/L。我国在该技术领域起步较晚,基础较差,但近年来经过努力,已经实现了该项技术的突破,流加培养规模达500L以上,灌流培养规模达100L以上,蛋白表达浓度为0.2-2g/L[2]。 /p p   随着动物细胞表达抗体产品大规模高效培养技术的快速发展,下游纯化工艺越来越成为抗体药物生产中主要的技术瓶颈[3]。因此,如何提高下游工艺的生产效率就成为了抗体药物研发必须解决的问题。本文就国际上高表达抗体蛋白下游工艺的研究进展做一个调研,使本人及同事们能了解国际上的研究成果和发展趋势,以期能对本部门的相关研究工作有所助益。 /p p   1. 抗体药物纯化策略 /p p   每个单抗的等电点、电荷密度、疏水性、糖基化程度等生化性质各不相同。选择单抗的纯化方法,既要了解它们的共性,又要了解它们的个性,从而制定相应的纯化策略(表1)。 /p p   1.1 抗体药物下游工艺一般策略 /p p   CHO和NSO等哺乳动物细胞表达系统主要用来生产治疗性单抗,临床剂量大(数十至几百毫克/dose),批产量达公斤级,纯度要求极高。层析技术是抗体分离纯化的核心技术,一般采用经典的三步纯化策略:粗纯-中间纯化-精细纯化。粗纯的主要目的是捕获、浓缩和稳定样品,约80%的下游工艺用Protein A亲和层析进行快速捕获,一步即可达到95%以上的纯度。治疗用抗体一般使用动物细胞大规模高密度无血清悬浮培养进行生产,不仅对终产品的单体含量有严格的规定,还必须去除各种潜在的杂质以满足药品安全的要求,因此在粗纯之后还需要进行中间纯化和精细纯化,去除宿主细胞蛋白(HCP)、宿主DNA、抗体聚集体和变体等,常用的层析技术有离子交换、凝胶过滤、疏水层析等[4]。 /p p   2003 年初,中国SFDA下属的中国药品与生物制品检定所(NICPBP)公布了《人用单克隆抗体质量控制技术指导原则》[5]。生产者除须保证最终抗体产品纯度,还需要验证所用的纯化方法能有效对潜在的污染物,如HCP、免疫球蛋白、宿主DNA、用于生产腹水抗体的刺激物、内毒素、培养液成分、层析凝胶析出成分(脱落的Protein A配基)进行去除 并能有效的去除/灭活病毒。也就是说,在设计下游工艺时,需多角度综合考虑抗体本身的性质、抗体的来源、发酵培养技术、发酵液蛋白浓度、宿主杂质、抗体批间的差异、潜在污染及病毒灭活等问题。此外,治疗用抗体在生产和纯化过程中还会由于糖基化程度不同、蛋白酶作用、以及脱氨基和脱酰胺等反应而产生带电性质不同的多种抗体变体 另外,抗体氧化、聚集和片段化也是常见的降解途径[4]。针对这些变体,一方面,在表达和纯化过程中选择参数(如pH、盐浓度等)时要充分考虑到目标抗体的稳定性 另一方面,应控制细胞培养的条件(DO、渗透压等),同时加快下游分离纯化的速度,最大程度上避免抗体在纯化过程中产生变体,从而保证终产品的均一性和高的比活,也有利于控制终产品的内毒素水平。 /p p style=" text-align: center " span style=" font-size: 14px "   表1 单抗特性及纯化策略 /span /p p style=" text-align: center " img title=" 11111.png" style=" float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/e2693d21-e711-4b42-bb9c-53b5b7848f82.jpg" / /p p style=" text-align: center " img title=" 2222.png" style=" float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/5035b8d3-81f1-4e6b-96d7-3e12b347a344.jpg" / /p p   1.2 新型的两步层析技术与纯化工艺整合 /p p   近年来,GE Healthcare公司开发出了新型的亲和捕获介质Mabselect SuRe和混合作用模式的强阴离子交换介质Capto adhere(这两种介质的主要特点将在下文详细介绍)。凭借着MabSelect SuRe的卓越性能以及Capto adhere的复合多除杂功能,使得抗体纯化工艺由经典的三步层析转变为两步层析得以实现。这种新型的两步层析技术的工艺流程是:在细胞培养表达以后,采用0.2-0.45μm的中空纤维膜技术进行澄清,然后用MabSelect SuRe捕获,酸性条件洗脱后直接pH 4.0 病毒灭活,澄清过滤后穿透方式上Capto adhere,这一步离子交换之前或之后会有一步20nm纳滤去病毒,最后50K膜超滤浓缩和洗滤进行缓冲液置换。整个工艺如图1,这一工艺平台已经尝试过多个不同的抗体并取得成功(表2),同时很多实验表明这一工艺平台适合多数抗体的生产。有些抗体如果通过优化结果不甚满意, 通过增加一步Capto Q也基本上可以达到要求或是采用Capto S-Capto Q(这两种介质的主要特点将在下文详细介绍)的工艺步骤[4]。 /p p style=" text-align: center "   img width=" 450" height=" 374" title=" 1.jpg" style=" width: 435px height: 258px " src=" http://img1.17img.cn/17img/images/201808/insimg/401b7d6a-ad5b-4c9a-9eee-2376ebef51fa.jpg" / /p p style=" text-align: center "   span style=" font-size: 14px " 图1 抗体生产两步层析法主导的抗体纯化最新工艺[6] /span /p p   Mabselect SuRe可以达到99%以上的抗体纯度,亲和洗脱峰使用Capto adhere的流穿模式进行精纯:使抗体分子流穿而聚合体、HCP、脱落的Protein A配基等杂质结合在柱上加以去除。这样仅用两步层析就可以得到符合药用级质量要求的高纯度抗体产品,大大缩短了工艺时间,提高了生产效率,同时增加了收率,降低了生产成本。 /p p style=" text-align: center " img width=" 599" height=" 164" title=" 2.jpg" style=" width: 580px height: 159px " src=" http://img1.17img.cn/17img/images/201808/insimg/ce7191a4-3940-4315-8122-856bbbadbc24.jpg" / /p p style=" text-align: center "    span style=" font-size: 14px " 表2 两步法用于多种抗体的纯化结果(括号内数值为纯化前)[4] /span /p p   2. 抗体药物下游技术最新研究进展 /p p   2.1 样品澄清 /p p   2.1.1 中空纤维膜过滤技术 /p p   中空纤维膜是近年来发展起来的新型切向流膜分离技术,与盒式膜包相比,中空纤维膜可以直接处理高固含量和高黏度的粗料液,具有容尘量高、速度快、剪切力小、成本低等优点。目前,中空纤维微滤膜已经广泛用于生物制药的各个领域[7]。 /p p   对于动物细胞培养液,可以将高密度的培养液直接用中空纤维微滤膜(0.22或0.45μm)进行澄清,而无需事先经过离心和预过滤,步骤少,速度快,收率高,成本低。和离心机比较,具有极高的澄清度,因此中空纤维澄清后的细胞培养液可直接Protein A亲和层析进行纯化。 /p p   中空纤维膜澄清细胞培养液的优势有:(1)步骤少,速度快,收率更高(通过有效的洗滤可使样品收率稳定而且高于离心机),同时最大程度上避免抗体降解而影响产品均一性。(2)成本低:不仅省去了连续流高速离心机昂贵的前期投资和运转的日常维护成本,还节省了离心后死端过滤的成本。中空纤维膜物理化学性质稳定,可以通过清洗而反复使用,成本低廉。(3)有利于内毒素控制:中空纤维膜稳定的化学性质可以耐受1M NaOH 40-50℃和氧化剂NaClO的清洗,从而有效去除内毒素 封闭的系统,也更有利于生产过程中内毒素的控制。此外,大部分中空纤维滤柱还可以进行高压灭菌。(4)低剪切力:中空纤维采用低剪切力的开放式流道,不仅可以处理含有高固含量的料液,还避免了蛋白质活性分子在高剪切力下的聚集变性,有利于抗体的稳定。(5)工艺耐用性强:相比死端过滤,中空纤维澄清具有很好的操作灵活性和耐用性,可以通过调整操作参数(流速、TMP)处理不同性质的细胞培养液。(6)易于线性放大:通过维持切向流速、TMP 等参数恒定,方便地进行线性放大,生产规模的处理量可达几千升料液,目前国内销售最大的中空纤维膜过滤系统已达400m2且生产稳定[8]。 /p p   2.1.2 深层过滤介质 /p p   深层过滤采用两种机制去除颗粒。首先是拦截,颗粒由于自身的物理尺寸在过滤器内被截留。它们可能被困在过滤器表面,因此根本没有进入基质,或在通过深层过滤基质的曲径时被俘获(筛选)。颗粒拦截伴随过滤器压差增高,因为它的基质被不断累积的颗粒堵塞。第二种机制是吸附,比过滤器拦截精度更小的颗粒能够从流体中被吸附去除。这种机制是通过深层过滤基质上的净电荷实现的[26]。 /p p   目前应用比较广泛的双层膜深层过滤介质有Millipore公司的Millistak+HC、Sartorius公司的Sartobran-P、Pall公司的Supradisc HP等。Millistak+HC深层过滤介质由纤维素和无机助滤剂(聚丙稀粘合的硅藻土)组成,包裹在聚丙烯外壳内 它由两层全厚度深层滤板(上游一层粗过滤和下游一层精细过滤)组成,附带一层RW01纤维素膜终过滤。Sartobran-P深层过滤介质由醋酸纤维素滤膜、聚丙烯外壳和支撑层组成,加强型的滤膜有良好的机械强度,有利于在反复的过滤和灭菌过程中保持完好无损 采用了折叠膜,在体积小巧的同时还保证了超大的过滤面积。Supradisc HP深层过滤介质由纤维素、硅藻土、带正电荷树脂和聚丙烯组成 也由两层全厚度深层滤板(上游一层粗过滤和下游一层精细过滤)组成。 /p p   2.2最新抗体捕获技术 /p p   2.2.1 MabSelect介质 /p p   MabSelect是第一个使用高流速琼脂糖凝胶作为骨架的新型Protein A层析介质,专为大规模抗体纯化而设计,适合快速高效的进行抗体生产和放大,已经成为单抗纯化和放大的标准介质。 /p p   MabSelect的特点有:(1)更高的流速和动态载量:Protein A经基因工程改造,C端含一个半胱氨酸,形成一个定向的硫酯键,同时增加了对IgG的有效结合。Protein A和凝胶偶联时采用了全新的单点偶联工艺,降低了空间位阻,因此可以在使用更高流速的条件下增加动态载量:在线形流速为500cm/hr和柱床高度为20cm(停留时间2.4min)的条件下,每毫升MabSelect的动态载量可以达到& gt 30mg IgG。(2)更低的非特异性吸附,抗体纯度更高:Mabselect介质高度亲水性的琼脂糖骨架最大程度上降低了非特异性吸附,使得洗脱峰中杂蛋白和DNA更少,有利于后期抗体的精细纯化。著名的抗体生产商IDEC公司以及R.Hahn的研究显示,Mabselect对CHO细胞HCP的吸附比其它Protein A介质低7倍[9-10]。R.L.Fahrner等的研究显示,Mabselect所得抗体的DNA残留量比其它Protein A介质低30%[11]。(3)更低的Protein A脱落:MabSelect由于通过新型环氧共价交联技术,Protein A的脱落比其它同类介质低,这不仅有利于抗体纯化,还延长了介质的使用寿命,降低了生产成本。(4)更易于工艺的线性放大:通过实验室条件的优化,MabSelect 可以在保持线性流速和上样比例等参数不变的条件下,通过增加柱直径进行线性放大。(5)MabSelect 易于清洗与除菌,寿命更长、更经济:在长期连续的生产中,有效的在位清洗(CIP)有助于延长介质使用寿命,但一般的Protein A介质往往不能耐受NaOH,只能使用高浓度的尿素或盐酸胍进行清洗,效果远不如NaOH且成本非常高。而MabSelect的CIP和除菌程序简单,用很常规、经济的试剂如50mM NaOH+1M NaCl或50mM NaOH+0.5M Na2SO4就可以有效去除沉淀和变性物质 用非离子去污剂或酒精可以去除通过疏水作用结合的物质 用0.1M醋酸和20%酒精可以在位灭菌(SIP)。经测试,Mabselect配合CIP(50mMNaOH+1M NaCl)纯化三百次后,抗体产品纯度与收率不变[12]。 /p p   2.2.2 MabSelect Xtra介质 /p p   Mabselect Xtra介质是在Mabselect介质的基础上优化而来,是目前市场上所有的商品化Protein A介质中载量最高的亲和层析介质之一。它除了具有MabSelect介质的全部特点外,还具有载量最高和非特异性吸附更低的特点。 /p p   Mabselect Xtra介质使用孔径更大的多孔高流速琼脂糖作为骨架,同时减小介质粒径。这样不仅增加了比表面积和配基密度,还降低了传质阻力,从而有效的增加了动态载量。其动态载量超过41mg/ml,在工艺生产过程中可以有效减少层析柱的体积,从而降低生产成本。R.Hahn的研究显示,Mabselect Xtra对CHO细胞HCP的吸附比其它Protein A介质更是低了近10倍[13]。 /p p   2.2.3 MabSelect SuRe介质 /p p   MabSelect SuRe介质也是在Mabselect介质的基础上优化而来,是目前市场上唯一耐强碱的Protein A亲和层析介质,寿命最长,稳定性最好[10]。它除了具有MabSelect介质的全部特点外,还具有以下特点:(1)可以耐受0.1-0.5M NaOH:MabSelectSuRe具有不同于其它Protein A介质的同型四聚体配基-SuRe配基,即使在强碱条件下也不易变性或脱落,可以用高达0.5M NaOH进行CIP和SIP,能有效去除沉淀和变性物质,大大降低了抗体产品被内毒素污染和批间交叉污染的风险,有利于延长介质使用寿命,同时还大大降低了CIP和SIP的成本。(2)更温和的洗脱,避免抗体聚集,提高收率:同型四聚体配基避免了不同配基与抗体Fc段亲和性的差异,也消除了某些域对Fab段的亲和作用,使得洗脱条件更加均一而温和。Mabselect SuRe介质可以用更高的pH进行洗脱,有效避免了抗体在低pH下的聚集,产品纯度和均一性更高,浊度也更低[14]。(3)不同抗体洗脱所需pH差异小:由于消除了对抗体Fab段的亲和作用,使得同一种属亚型的不同抗体分子洗脱所需的条件更接近,有利于平台技术的建立,进一步降低了不同的抗体分离纯化工艺的研发成本。(4)SuRe 配基稳定性更好:SuRe配基对碱和蛋白酶更稳定,纯化过程中脱落更少(& lt 10ppm),有利于后期脱落配基的进一步去除。 /p p   2.2.4 ProSep-vA Ultra介质 /p p   ProSep-vA Ultra介质是将自然界非动物性来源的Protein A交联于700Å 的多孔性玻璃珠骨架上,是刚性和不可压缩的介质。ProSep-vA Ultra介质具有如下特点:低反压性 不收缩、不溶胀 高动态载量 极低的Protein A脱落 高重复使用性,标准化的清洗和除菌操作[27]。 /p p   2.2.5 ProSep Ultra Plus介质 /p p   ProSep Ultra Plus介质是在ProSep-vA Ultra介质基础上优化而来,也是目前市场上所有的商品化Protein A介质中载量最高的亲和层析介质之一。它除了具有ProSep-vA Ultra介质的全部特点外,还具有载量最高、纯化效率更高、工艺更易于放大、成本更低等特点[28]。 /p p   2.2.6 MEP Hypercel介质 /p p   MEP Hypercel复合作用模式介质是一种灵活的层析介质设计,也称之为疏水电荷诱导层析(HCIC),用于捕获和纯化从实验室到生产规模的抗体和各种重组蛋白。MEP Hypercel介质由一个独特的连接4-巯基乙基吡啶(4-MEP)的刚性纤维素骨架组成。纤维素骨架赋予高孔隙率、化学稳定性和低非特异性吸附。平均直径80-100μm,在低反压下有优良的流速特性。MEP Hypercel介质在大规模使用时具有显著优势,基于它的配基结构,可选择性地捕获免疫球蛋白。组合其它传统的方法如离子交换、疏水作用,甚至用在Protein A之后从不同的料液中直接捕获或中度纯化抗体,以增强对宿主DNA、HCP和聚合体的清除。MEP Hypercel介质有助于建立一个简化的工艺流程,节省操作步骤(例如洗滤、超滤等) 预计有更长的使用寿命,因为它可以耐受苛刻的CIP方法(0.5-1M NaOH,30-60分钟接触时间),而所有因素都有利于降低成本[29]。 /p p   2.3最新精细纯化技术 /p p   2.3.1 CaptoFamily系列介质 /p p   新型的Capto S,Q系列介质是以高流速琼脂糖为骨架,同时交联了非常“柔软”的葡聚糖链,这样不仅增加了比表面积,同时降低了传质阻力和空间位阻,使得介质在高流速下的动态载量大大增加,有利于提高生产效率,降低成本。 /p p   Capto S,Q系列介质可以装填在直径60cm的工业层析柱中使用高达500cm/h 的流速进行纯化(柱高30cm)。这样不仅有利于工艺放大后大规模层析柱的填装,还大大提高了生产效率,每步层析更短的操作时间也有效避免了抗体分子在分离纯化过程中产生各种变体和聚合体,使得收率更好,终产品的活性更高、性质更均一。 /p p   2.3.2 Captoadhere介质 /p p   为了进一步减少抗体分离纯化步骤,提高特定杂质的去除效率,以满足日益增长的治疗用抗体的生产需要,2007 年初,GE Healthcare公司推出了新型复合作用模式的强阴离子交换介质:Capto adhere介质。Capto adher介质专为治疗用抗体的分离纯化而设计,其配基综合了阴离子交换、氢键和疏水等多种复杂的作用方式,因此对于抗体的聚合体具有非常独特而高效的去除能力。此外,通过有效的实验设计(DoE),流穿模式的Capto adher介质还可以同时有效去除脱落的Protein A配基、HCP、宿主DNA、内毒素和潜在的病毒,并使得结合MabSelect SuRe的抗体两步层析纯化工艺成为现实(表3)。Capto adhere还具有很强的病毒去除能力,如MVM病毒的去除能力可达5.9个Log。目前,新型的两步法抗体层析纯化工艺已经被国内外诸多知名药企广泛用于多种抗体的分离纯化,各项指标均符合治疗用抗体的要求。Capto adher层析还可以和阴离子交换(Capto Q)和疏水层析等结合使用,以达到更高的质量要求[15]。 /p p style=" text-align: center "    img title=" 3.jpg" src=" http://img1.17img.cn/17img/images/201808/insimg/4aa1c980-c9be-44e9-82b5-899ba9f7eec9.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " 表3 两步层析纯化工艺对污染物的去除效果[15] /span /p p   2.3.3膜层析技术 /p p   PALL Life Science公司自10余年前颠覆性地开发出独一无二的层析产品-Mustang膜层析系列产品后,经过不断地技术改造,于近年推出全新Mustang Q XT家族,扩展了膜层析工艺放大产品线。膜层析技术,相对于传统的柱层析,无需层析填料和层析柱等复杂构件,直接通过膜式过滤器,经过简单的过滤环节即可达到纯化目的。Mustang Q以16层超级打褶的聚醚砜过滤膜作为基架,上面偶联了季胺基等功能基团,可以使生物分子流经的时候与功能位点迅速结合,具有高流速和高动态载量等优点。 /p p   Sartorius Stedim公司也开发出了一整套膜层析技术,包括Sartobind S,Q,C和D离子交换、Sartobind IDA(亚氨基二乙酸)金属螯合、Sartobind醛、Sartobind环氧基和Sartobind Protein A(重组)等膜层析系列产品。Sartobind在很多蛋白和病毒纯化应用中可以取代传统耗时、繁琐的层析步骤。膜吸附器的快速纯化特点使蛋白分离可以在高流速下获得高收率,较传统柱层析流速最高能提高100倍,达到20-40 CV/min。传统颗粒胶95%以上的结合位点集中在颗粒胶内部。Sartobind膜层析的结合位点是均一地交联到交叉偶联的增强纤维素骨架内0.5-1μm厚的薄层上。大孔结构和快速吸附结合特性使膜吸附器可以忽略扩散时间因素。同时多微孔膜结构不存在传统颗粒胶的孔内扩散问题。在对流情况下,流动相的分子运动只由泵压力决定。因此,膜吸附器具有操作周期极短、流速和处理能力极高的特点[30]。 /p p   与离子交换柱层析相比,离子交换膜层析技术已经被证明利用高动态结合能力吸附大量的生物分子,如病毒、HCP和宿主DNA。最近,阴离子交换膜层析技术已经被作为柱层析技术的替代技术用于Protein A亲和捕获后的mAb中微量污染物的去除[16]。 /p p   2.4终产品的浓缩洗滤 /p p   多维纯化得到的洗脱峰可以用Kvick Lab/Process盒式膜包进行快速浓缩和缓冲液置换。Kvick盒式膜包的优点有:(1)无热原:很多时候,仅用0.5M NaOH 清洗难以彻底去除膜表面的热原。Kvick盒式膜包化学性质非常稳定,可以使用1M NaOH在40-50℃下进行彻底的SIP/CIP,避免最终超滤浓缩时引入热原而影响产品质量。(2)孔径均一、速度快:Kvick盒式膜包孔径更均一,甚至可以使用50-100K的膜包进行抗体浓缩而不漏过,速度更快,大大节省了操作时间。(3)易于线性放大:通过保持流速、TMP等参数恒定,可以直接线性放大到生产规模。 /p p   Amicon Ultra系列超滤离心管可以用来进行抗体的快速浓缩、脱盐及缓冲液置换。它具有如下特点:(1)效率高:一步法离心达到25到80倍浓缩。(2)节省时间:垂直结构的膜,避免堵膜,减少浓差极化,可以用超快离心速度极短时间完成 最少10分钟即可完成浓缩、脱盐或缓冲液置换。(3)收率高:独特的反转离心设计,有利于取得最大回收率且避免了人为移液误差 低吸附滤膜和聚丙烯内壳,使回收率高达90%以上。(4)不漏液、无损失:100%完整性测试确保不漏液 独特的死体积设计避免过度离心至干,没有样品损失。(5)广泛的化学相容性:与广泛的溶剂兼容,适用于pH1-pH9,热封膜杜绝了粘合剂和下游溶出物污染。 /p p   Vivaspin系列超滤离心管同样是进行蛋白质快速浓缩和缓冲液置换的常用产品。获得专利的垂直膜配合狭长的流道设计,有效地避免滤膜堵塞,提高浓缩速度 同时在浓缩管底部设计有死端结构,确保即使离心时间过长也不会发生样品被甩干的现象。Vivaspin可灵活选用三种不同材质的超滤膜:聚醚砜、三醋酸纤维和Hydrosart。它的另一个特点是有两种回收浓缩液的方法,既可以直接用移液器从浓缩管底部吸取,也可以将浓缩液反转离心到回收管内,加盖密封保存,这两种方法都保证了高回收率。Vivaspin经过一次离心,最高可以将蛋白溶液浓缩300倍。 /p p   2.5终产品的除菌除病毒过滤 /p p   浓缩后的样品,最终经过0.22μm无菌滤器进行除菌过滤。ULTA Pure SG,HC除菌滤器具有过滤速度快、化学稳定性好、载量高和溶出物少等优点,细菌挑战实验表明其除菌能力大于7log。除菌过滤过程的优化主要从三个方面入手:操作过程中过膜压力的控制、过膜流速以及单位膜载量控制,这三个参数优化以后,可以在同种类型、材质的NFF膜上进行线性放大,否则很容易影响收率。 /p p   Durapore除菌级亲水性滤膜由亲水性PVDF材料制造,具有可靠的除菌保证以及低蛋白吸附量、低析出、无纤维脱落、广泛的化学兼容性等优点,是常用的除菌滤膜。Durapore 0.22μm亲水性滤膜用于液体除菌或去除微粒,0.1μm亲水性滤膜用于液体中去除微粒、微生物和支原体。装有Durapore亲水性滤膜的滤器有Millipak、Opticap XL、Opticap XLT、筒式滤器和Optiscale等。Millipak滤器独特的堆叠盘状设计使残留量最小并且无颗粒脱落,因此适合于高附加值产品的终端过滤和灌装。Millipak和Opticap XL滤器都有O型圈垫片和软管倒钩连接的上游排气阀和排空阀设计,使操作简单易控。Opticap XL和XLT滤器的结构设计,特别耐高温、高压条件,在除菌过程中提供更高的稳定性和可靠性,同时更易清洗。Optiscale一次性滤器专为小规模工艺筛选和工艺放大所设计,是工艺评估的理想工具。 /p p   目前被广泛应用的生物制品病毒去除的方法是纳米膜过滤。纳米膜过滤有如下优点:(1)针对性强,实用性广:纳米膜过滤只与病毒和目的蛋白的大小有关,无论病毒是否有脂包膜外壳、是否耐热,纳米膜过滤都能将之去除。(2)毒性小,下游污染少:能有效去除杀灭病毒后可能留下的如抗原和核酸蛋白混合物等病毒标志物,有效降低下游污染,是纳米膜的另一特点。大多数病毒灭活处理都使用有毒或致突变的理化试剂,从而必须在使用后从蛋白质溶液中清除,而纳米膜过滤不存在毒性问题,只是在验证中要考虑到滤器浸出物的风险。(3)蛋白活性高,回收率高:纳米膜过滤是在正常条件下的pH、渗透压和温度下进行的温和的生产步骤,其蛋白回收率和活性都很高,通常在90%—95%。基于体外分析、实验研究和临床经验,纳米膜过滤试验都没有显示出蛋白质改变或是新抗原的产生。纳米膜过滤不改变制品特性,这一特点促进了监管机构认可和产品的注册。 /p p   日本Asahi Kasei公司于1989年推出了第一款专门为清除生物制药产品中病毒颗粒而设计的过滤器Planova,由亲水铜铵再生纤维素制成的中空纤维微孔膜,装入聚碳酸酯壳体中。Millipore公司的Viresolve NFP膜是一种复合PVDF膜,过滤盒被设计来从高纯蛋白溶液中移除小型病毒,如B19,蛋白质溶液中,B19的去除量通常& gt 4 log。PALL Life Science公司的Ultipor VF DV50和DV20膜式过滤器可以从生物流体中去除显著数量级的病毒,同时目标蛋白可以很好地通过。滤芯由三层独特的亲水、低蛋白吸附的PVDF滤膜经新月型打褶方式构成,过滤面积大,具有可靠、安全和高流量等特点。Sartorius Stedim生产的Virosart CPV为聚醚砜过滤器,能去除& gt 4 log的PPV和& gt 6 log的逆转录病毒。 /p p   2.5扩张柱床吸附层析技术 /p p   扩张柱床吸附层析技术(EBA)是上世纪九十年代初期进入下游生产,整合了发酵和下游纯化的技术。新一代STREAMLINE Direct扩张柱床设备及介质是EBA技术中最成熟的产品。通过条件优化,STREAMLINE能直接从浑浊的发酵液中捕获目标生物分子,细胞碎片及不吸附的杂质穿过扩张床内悬浮的介质被冲洗掉,将以往澄清、浓缩、捕获等步骤整合为一步,达到粗纯化的效果(图2)[17]。 /p p   STREAMLINE的操作过程如下[17-18]:(1)起始:将STREAMLINE介质倒入扩张柱中。(2)平衡:从下向上流的缓冲液,将STREAMLINE柱内的吸附介质悬浮起来,形成稳定的、充分平衡好的扩张床。(3)上样:发酵液带菌体从柱底进入,目标生物产品吸附在STREAMLINE介质上 不吸附的宿主杂质及菌体碎片随液流从柱顶排出。(4)淋洗/穿透:进一步用缓冲液将不吸附的杂质洗掉。(5)洗脱:洗脱液洗脱目标生物产品。(6)CIP/再生:用1M NaOH+1M NaCl进行CIP。整个操作过程如图3所示。 /p p style=" text-align: center " img title=" 4.jpg" src=" http://img1.17img.cn/17img/images/201808/insimg/07a79270-4b7d-4fe5-bc9a-125837562297.jpg" / /p p style=" text-align: center "   span style=" font-size: 14px "  图2 传统纯化工艺与STREAMLINE [17] /span /p p style=" text-align: center " img title=" 5.jpg" src=" http://img1.17img.cn/17img/images/201808/insimg/333de887-f92b-405d-9094-9ec89635f74d.jpg" / /p p style=" text-align: center " span style=" font-size: 14px "   图3 STREAMLINE的基本工作原理和操作过程[18] /span /p p style=" text-align: center "   span style=" font-size: 14px "  (箭头示液体过柱时的流向) /span /p p   STREAMLINE介质是一系列包裹着石英芯,以琼脂糖为骨架的介质。特殊设计的STREAMLINE扩张柱床可以产生稳定的向上拔的扩张液流,每一颗不同比重的STREAMLINE介质,悬浮在自身重力和扩张升力平衡的位置原地扰动。STREAMLINE 技术是稳态扩张,样品流均匀分布整个床体,目标产物吸附均匀,穿透小,回收率高,类似于固定床吸附性层析[19]。 /p p   3. 抗体最新下游技术应用实例 /p p   Lonza Biologics公司是全球最大的抗体合同生产商之一,为了开发一个稳定的20000L的抗体生产工艺,其纯化开发部门对多个不同的抗体亲和层析凝胶进行了有效的比较,他们发现Mabselect SuRe的动态载量高、使用寿命最长、Protein A脱落最低,实验数据明确支持放大到1.4m直径的柱子用于20000L培养规模的经济生产[4]。 /p p   德国的Roche公司一种用于肿瘤治疗的单抗已进入临床Ⅲ期。他们将目前几种Protein A介质进行充分的比较之后,选择了高载量、更易于装柱和寿命更长的Mabselect。目的抗体是通过无血清培养的转染的杂交B淋巴细胞表达的IgG1。将过滤后的无细胞上清上样到Mabselect填充的FineLINE柱,直径300cm,柱高20cm,上样的浓度是30mg/ml。洗脱后,洗脱液立即用磷酸钾中和pH值到6.8-7.0,再用凝胶过滤检测,结果表明比活超过90%,纯度在95%以上[20]。 /p p   Cytheris公司是法国一家生物制药公司,目前正在研制一种用CHO细胞表达的免疫调节剂(临床Ⅱ期)。原先的工艺采用传统层析法,但不能稳定去除病毒。改进后,在工艺的第一步使用Mustang Q对污染物进行捕获,取得了25%去除率的良好结果 同时对MVM、MLV和Re03三种病毒也达到超过4个Log的滴度降效果,而整个工艺对病毒的去除效率普遍提高了7-11个Log。说明Mustang Q的使用对下游层析起到了很好的保护作用。 /p p   在第五届生物制药工艺优化大会上,Crucell公司介绍了他们对腺病毒(AAV)纯化工艺的摸索。与传统的层析填料相比,Mustang Q膜层析的开放孔道的设计使对病毒的动态载量大大提高30倍左右,回收率在80%以上。用40L的膜层析柱相当于1000L的传统层析柱的效果,节省了验证工作,提高了工艺经济性,十分有利于放大生产。 /p p   德国的Boehringer Mannheim公司生物制药部,用STREAMLINE技术代替传统工艺生产400L CHO细胞培养的Fc融合蛋白,结果样品回收率提高14%,缓冲液减少25%,时间缩短47%[17]。 /p p   世界最大的制药公司-GlaxoSmithKline公司,使用特别设计的BioProcess全自动层析系统和STREAMLINE扩张柱生产药用脂蛋白疫苗,比原工艺产品体积缩小2倍,纯化系数1.5,内毒素减少100倍[17]。 /p p   日本YOSHITOMI公司正在使用多套STREAMLINE 1000系统生产人重组白蛋白,与原生产工艺产品纯度相同,产率提高30%,时间减少一半,年产量为12.5吨[17]。 /p p   AVECIA公司重新设计临床Ⅲ期药品生产工艺,选用STREAMLINE技术及SOURCE新型凝胶,生产效率提高12倍,回收率提高1倍[17]。 /p p   2001年,ILEX制药公司的CAMPATH获得FDA批准。该单克隆抗体使用Sartobind Q离子交换层析模块以流穿的方式进行精制,这是膜吸附器首次被批准应用于治疗性蛋白的生产,证明了膜层析技术通过了证实和测试[30]。 /p p   4. 展望 /p p   随着抗体产品上游大规模高效培养技术的进一步发展,实验室规模哺乳动物细胞表达水平可以达到25g/L,如果这一水平能够有效放大到生产,将对下游生产纯化带来更大的压力。所以下游纯化工艺的技术发展也是势在必行。 /p p   以下一些发展方向可能成为下游工艺未来发展的重要关注点:(1)刚性更好、载量更高、耐碱性更好的完全亲水琼脂糖凝胶的开发[4]。(2)优化操作次序,降低缓冲液消耗的更大规模生产线的应用[21]。(3)通过单抗的氨基酸序列预测下游工艺关键参数:亲和层析洗脱pH条件、离子交换层析洗脱pH和盐浓度条件、病毒灭活pH等[22]。(4)下游工艺的成本消耗占全部成本的50-80%,亲和捕获是下游工艺的最关键步骤,通过改进亲和配体,提高捕获能力,节省成本[23]。(5)新型层析系统全程实时控制纯化过程,在线检测HCP、宿主DNA、Protein A等的含量[24]。(6)由于在去除杂质方面的优势,膜层析将会得到飞速的发展,未来工艺甚至可能完全基于膜层析而不是柱层析[25]。 /p p   参考文献 /p p   [1] 刘亚明,薛章.生物制药:迎接抗体药物的黄金时代.医药细分子行业研究报告,2009. /p p   [2] 陈志南.基于抗体药物的我国生物制药产业化发展前景.2008中国药学会学术年会暨第八届中国药师周论文集,2008. /p p   [3]Gail Dutton.Trends in Monoclonal AntibodyProduction.Feature Articles,2010, 30(4). /p p   [4]孙文改,苗景赟.抗体生产纯化技术.中国生物工程杂志,2008,28(10):141-152. /p p   [5]《人用单克隆抗体质量控制技术指导原则》.NICPBP(中国药品与生物制品检定所),2003. /p p   [6]Capto adhere:用于生产单抗的两步纯化操作.GE Healthcare公司技术资料. /p p   [7]中空纤维滤柱分离纯化应用集锦.GE Healthcare公司技术资料. /p p   [8]中空纤维膜过滤技术在单抗生产中的应用.GE Healthcare公司技术资料. /p p   [9]Amersham Biosciences.Downstream Gab’02 Abstracts,Extended Reports from the 2nd International Symposium on DownstreamProcessing of Genetically Engineered Abtibodies and Related Molecules. PortoPortugal,2002,12-14. /p p   [10] R.Hahn,R.Schlegel,A.Jungbauer.Comparison of Protein A affinity sorbents.JChromatogr B,2003,790:35-51. /p p   [11] R.L.Fahrner,et al. Performancecomparison of Protein A affinity chromatography sorbents for purifyingrecombinant monoclonal antibodies.BiotechnolAppl Biochem,1999,30:121-128. /p p   [12] K.Brorson,J.Brown,et al.Identification of protein A media performanceattributes that can be monitored as surrogates for retrovirus clearance duringextended re-use.Journal ofChromatography A,2003,989:155-163. /p p   [13] R.Hahn,et al.Comparison of Protein A affinity sorbents Ⅲ,Life time study.J Chromatogr A,2006,1102:224-231. /p p   [14] S. Ghose,et al. Antibody Variable RegionInteractions with Protein A: Implications for the Development of GenericPurification Processes. Biotechnol Bioeng,2005,92(6):665-673. /p p   [15]用复合配基阴离子交换柱去除单克隆抗体(Mab)的污染物.BioProcessInternational技术资料. /p p   [16]利用Mustang Q膜层析从Protein A纯化的单克隆抗体中去除污染. PALL LifeScience公司技术资料. /p p   [17]整合发酵和下游纯化的新技术:扩张柱床吸附技术.GE Healthcare公司技术资料. /p p   [18]余晓玲,米力,姚西英,陈志南.扩张柱床吸附层析与固定柱床层析纯化单克隆抗体的比较.中国生物工程杂志,2003,23(1):61-64. /p p   [19]High-throughput monoclonal antibody purification.GE Healthcare公司技术资料. /p p   [20]抗体纯化手册.GE Healthcare公司技术资料. /p p   [21]Purification Strategies to Process 5 g/L Titers ofMonoclonal Antibodies. BioPharm International技术资料. /p p   [22] T.Ishihara,T.Kadoya.Accelerated purification process development ofmonoclonal antibodies for shortening time to clinic:Designand case study of chromatography processes.J Chromatogr A,2007,1176(1-2):149-156. /p p   [23] A.Cecilia,A.Roque,et al.Antibodies and Genetically Engineered RelatedMolecules:Production and Purification.BiotechnolProg,2004,20:639-654. /p p   [24] S.Flatman,I.Alam,et al.Process analytics for purification of monoclonal antibodies.JChromatogr B,2007,848:79-87. /p p   [25]ProcessChromatography:Five Decades of Innovation.BioPharmInternational技术资料. /p p   [26]双层滤板膜堆在单抗工艺上的大规模澄清过滤应用评估.BioProcessInternational技术资料. /p p   [27]Affinity Chromatography Media.Millipore公司技术资料. /p p   [28]ProSep Ultra Plus ChromatographyMedia.Millipore公司技术资料. /p p   [29]MEP Hypercel混合模式层析填料. PALL LifeScience公司技术资料. /p p   [30]Sartobind膜层析技术高效的蛋白纯化工具. SartoriusStedim公司技术资料. /p p /p
  • 高表达抗体蛋白下游工艺技术进展
    p   随着抗体药物上游大规模高效培养技术的飞速发展,抗体蛋白的表达浓度有了大幅度的提高,这给下游纯化工艺带来了巨大的压力。为了突破下游技术瓶颈,整个世界生物制药产业都加大了对下游技术的革新力度,近年来也取得了丰硕的成果。本文就抗体药物的纯化策略、最新技术进展以及技术应用等方面做一个调研,以期能对本部门的相关研究工作有所助益。 br/ /p p   自1997年来,全球抗体药物市场经历了一个快速发展的阶段,总销售额从1997年的3.1亿美元增长到2008年的400亿美元,复合增长率高达55%,而且增长势头还在持续 [1]。国际上通常把年销售额超过10 亿美元的品牌药称为“重磅炸弹”药物,很大一部分抗体药物都已迈入“重磅炸弹”行列。在2008年全球15大药品中,抗体药物占据了1/3,且排名仍在上升,这意味着几乎每种单抗药物的成功开发都代表着巨大的市场前景[2]。受益于此,全球主要的生物制药公司都获利颇丰,可见抗体药物具有巨大的经济价值和社会价值。 br/ /p p   抗体药物生产技术门槛高,需要掌握抗体筛选、抗体重组、高表达细胞株构建和大规模悬浮培养等核心技术,其下游关键技术是长期以来的薄弱之处。哺乳动物细胞表达系统具有活性高、稳定性好等优点,已成为抗体等生物制品最重要的系统之一,为抗体药物的产业化提供可能。目前,国际上该项技术发展较快,已趋成熟,以默克公司为代表的流加培养生产规模达10000L以上,以贝尔公司为代表的灌流培养生产规模达200L以上,蛋白表达浓度为1-10g/L。我国在该技术领域起步较晚,基础较差,但近年来经过努力,已经实现了该项技术的突破,流加培养规模达500L以上,灌流培养规模达100L以上,蛋白表达浓度为0.2-2g/L[2]。 /p p   随着动物细胞表达抗体产品大规模高效培养技术的快速发展,下游纯化工艺越来越成为抗体药物生产中主要的技术瓶颈[3]。因此,如何提高下游工艺的生产效率就成为了抗体药物研发必须解决的问题。本文就国际上高表达抗体蛋白下游工艺的研究进展做一个调研,使本人及同事们能了解国际上的研究成果和发展趋势,以期能对本部门的相关研究工作有所助益。 /p p   1. 抗体药物纯化策略 /p p   每个单抗的等电点、电荷密度、疏水性、糖基化程度等生化性质各不相同。选择单抗的纯化方法,既要了解它们的共性,又要了解它们的个性,从而制定相应的纯化策略(表1)。 /p p   1.1 抗体药物下游工艺一般策略 /p p   CHO和NSO等哺乳动物细胞表达系统主要用来生产治疗性单抗,临床剂量大(数十至几百毫克/dose),批产量达公斤级,纯度要求极高。层析技术是抗体分离纯化的核心技术,一般采用经典的三步纯化策略:粗纯-中间纯化-精细纯化。粗纯的主要目的是捕获、浓缩和稳定样品,约80%的下游工艺用Protein A亲和层析进行快速捕获,一步即可达到95%以上的纯度。治疗用抗体一般使用动物细胞大规模高密度无血清悬浮培养进行生产,不仅对终产品的单体含量有严格的规定,还必须去除各种潜在的杂质以满足药品安全的要求,因此在粗纯之后还需要进行中间纯化和精细纯化,去除宿主细胞蛋白(HCP)、宿主DNA、抗体聚集体和变体等,常用的层析技术有离子交换、凝胶过滤、疏水层析等[4]。 /p p   2003 年初,中国SFDA下属的中国药品与生物制品检定所(NICPBP)公布了《人用单克隆抗体质量控制技术指导原则》[5]。生产者除须保证最终抗体产品纯度,还需要验证所用的纯化方法能有效对潜在的污染物,如HCP、免疫球蛋白、宿主DNA、用于生产腹水抗体的刺激物、内毒素、培养液成分、层析凝胶析出成分(脱落的Protein A配基)进行去除 并能有效的去除/灭活病毒。也就是说,在设计下游工艺时,需多角度综合考虑抗体本身的性质、抗体的来源、发酵培养技术、发酵液蛋白浓度、宿主杂质、抗体批间的差异、潜在污染及病毒灭活等问题。此外,治疗用抗体在生产和纯化过程中还会由于糖基化程度不同、蛋白酶作用、以及脱氨基和脱酰胺等反应而产生带电性质不同的多种抗体变体 另外,抗体氧化、聚集和片段化也是常见的降解途径[4]。针对这些变体,一方面,在表达和纯化过程中选择参数(如pH、盐浓度等)时要充分考虑到目标抗体的稳定性 另一方面,应控制细胞培养的条件(DO、渗透压等),同时加快下游分离纯化的速度,最大程度上避免抗体在纯化过程中产生变体,从而保证终产品的均一性和高的比活,也有利于控制终产品的内毒素水平。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/1eb75a7d-0f0f-4f60-8224-a3984ccff0e3.jpg" title=" 表1.png" alt=" 表1.png" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201810/uepic/f8ff0f67-6f0b-4295-ab81-05543e5efbd8.jpg" title=" 表2.png" alt=" 表2.png" / br/ strong 表1 单抗特性及纯化策略 /strong /p p   1.2 新型的两步层析技术与纯化工艺整合 /p p   近年来,GE Healthcare公司开发出了新型的亲和捕获介质Mabselect SuRe和混合作用模式的强阴离子交换介质Capto adhere(这两种介质的主要特点将在下文详细介绍)。凭借着MabSelect SuRe的卓越性能以及Capto adhere的复合多除杂功能,使得抗体纯化工艺由经典的三步层析转变为两步层析得以实现。这种新型的两步层析技术的工艺流程是:在细胞培养表达以后,采用0.2-0.45μm的中空纤维膜技术进行澄清,然后用MabSelect SuRe捕获,酸性条件洗脱后直接pH 4.0病毒灭活,澄清过滤后穿透方式上Capto adhere,这一步离子交换之前或之后会有一步20nm纳滤去病毒,最后50K膜超滤浓缩和洗滤进行缓冲液置换。整个工艺如图1,这一工艺平台已经尝试过多个不同的抗体并取得成功(表2),同时很多实验表明这一工艺平台适合多数抗体的生产。有些抗体如果通过优化结果不甚满意, 通过增加一步Capto Q也基本上可以达到要求或是采用Capto S-Capto Q(这两种介质的主要特点将在下文详细介绍)的工艺步骤[4]。 /p p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201810/uepic/a804fe1c-9660-4ab2-8cc4-177870630ce5.jpg" title=" 图1.png" alt=" 图1.png" style=" text-align: center " / /p p style=" text-align: center " strong 图1 抗体生产两步层析法主导的抗体纯化最新工艺[6] /strong /p p   Mabselect SuRe可以达到99%以上的抗体纯度,亲和洗脱峰使用Capto adhere的流穿模式进行精纯:使抗体分子流穿而聚合体、HCP、脱落的Protein A配基等杂质结合在柱上加以去除。这样仅用两步层析就可以得到符合药用级质量要求的高纯度抗体产品,大大缩短了工艺时间,提高了生产效率,同时增加了收率,降低了生产成本。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/3ef7b3a2-9f79-4e74-8a71-6a6cbcbea5ec.jpg" title=" 图2.png" alt=" 图2.png" / /p p style=" text-align: center " strong 表2 两步法用于多种抗体的纯化结果(括号内数值为纯化前)[4] /strong /p p   2. 抗体药物下游技术最新研究进展 /p p   2.1 样品澄清 /p p   2.1.1 中空纤维膜过滤技术 /p p   中空纤维膜是近年来发展起来的新型切向流膜分离技术,与盒式膜包相比,中空纤维膜可以直接处理高固含量和高黏度的粗料液,具有容尘量高、速度快、剪切力小、成本低等优点。目前,中空纤维微滤膜已经广泛用于生物制药的各个领域[7]。 /p p   对于动物细胞培养液,可以将高密度的培养液直接用中空纤维微滤膜(0.22或0.45μm)进行澄清,而无需事先经过离心和预过滤,步骤少,速度快,收率高,成本低。和离心机比较,具有极高的澄清度,因此中空纤维澄清后的细胞培养液可直接Protein A亲和层析进行纯化。 /p p   中空纤维膜澄清细胞培养液的优势有:(1)步骤少,速度快,收率更高(通过有效的洗滤可使样品收率稳定而且高于离心机),同时最大程度上避免抗体降解而影响产品均一性。(2)成本低:不仅省去了连续流高速离心机昂贵的前期投资和运转的日常维护成本,还节省了离心后死端过滤的成本。中空纤维膜物理化学性质稳定,可以通过清洗而反复使用,成本低廉。(3)有利于内毒素控制:中空纤维膜稳定的化学性质可以耐受1M NaOH 40-50℃和氧化剂NaClO的清洗,从而有效去除内毒素 封闭的系统,也更有利于生产过程中内毒素的控制。此外,大部分中空纤维滤柱还可以进行高压灭菌。(4)低剪切力:中空纤维采用低剪切力的开放式流道,不仅可以处理含有高固含量的料液,还避免了蛋白质活性分子在高剪切力下的聚集变性,有利于抗体的稳定。(5)工艺耐用性强:相比死端过滤,中空纤维澄清具有很好的操作灵活性和耐用性,可以通过调整操作参数(流速、TMP)处理不同性质的细胞培养液。(6)易于线性放大:通过维持切向流速、TMP 等参数恒定,方便地进行线性放大,生产规模的处理量可达几千升料液,目前国内销售最大的中空纤维膜过滤系统已达400m2且生产稳定[8]。 /p p   2.1.2 深层过滤介质 /p p   深层过滤采用两种机制去除颗粒。首先是拦截,颗粒由于自身的物理尺寸在过滤器内被截留。它们可能被困在过滤器表面,因此根本没有进入基质,或在通过深层过滤基质的曲径时被俘获(筛选)。颗粒拦截伴随过滤器压差增高,因为它的基质被不断累积的颗粒堵塞。第二种机制是吸附,比过滤器拦截精度更小的颗粒能够从流体中被吸附去除。这种机制是通过深层过滤基质上的净电荷实现的[26]。 /p p   目前应用比较广泛的双层膜深层过滤介质有Millipore公司的Millistak+HC、Sartorius公司的Sartobran-P、Pall公司的Supradisc HP等。Millistak+HC深层过滤介质由纤维素和无机助滤剂(聚丙稀粘合的硅藻土)组成,包裹在聚丙烯外壳内 它由两层全厚度深层滤板(上游一层粗过滤和下游一层精细过滤)组成,附带一层RW01纤维素膜终过滤。Sartobran-P深层过滤介质由醋酸纤维素滤膜、聚丙烯外壳和支撑层组成,加强型的滤膜有良好的机械强度,有利于在反复的过滤和灭菌过程中保持完好无损 采用了折叠膜,在体积小巧的同时还保证了超大的过滤面积。Supradisc HP深层过滤介质由纤维素、硅藻土、带正电荷树脂和聚丙烯组成 也由两层全厚度深层滤板(上游一层粗过滤和下游一层精细过滤)组成。 /p p   2.2最新抗体捕获技术 /p p   2.2.1 MabSelect介质 /p p   MabSelect是第一个使用高流速琼脂糖凝胶作为骨架的新型Protein A层析介质,专为大规模抗体纯化而设计,适合快速高效的进行抗体生产和放大,已经成为单抗纯化和放大的标准介质。 /p p   MabSelect的特点有:(1)更高的流速和动态载量:Protein A经基因工程改造,C端含一个半胱氨酸,形成一个定向的硫酯键,同时增加了对IgG的有效结合。Protein A和凝胶偶联时采用了全新的单点偶联工艺,降低了空间位阻,因此可以在使用更高流速的条件下增加动态载量:在线形流速为500cm/hr和柱床高度为20cm(停留时间2.4min)的条件下,每毫升MabSelect的动态载量可以达到& gt 30mg IgG。(2)更低的非特异性吸附,抗体纯度更高:Mabselect介质高度亲水性的琼脂糖骨架最大程度上降低了非特异性吸附,使得洗脱峰中杂蛋白和DNA更少,有利于后期抗体的精细纯化。著名的抗体生产商IDEC公司以及R.Hahn的研究显示,Mabselect对CHO细胞HCP的吸附比其它Protein A介质低7倍[9-10]。R.L.Fahrner等的研究显示,Mabselect所得抗体的DNA残留量比其它Protein A介质低30%[11]。(3)更低的Protein A脱落:MabSelect由于通过新型环氧共价交联技术,Protein A的脱落比其它同类介质低,这不仅有利于抗体纯化,还延长了介质的使用寿命,降低了生产成本。(4)更易于工艺的线性放大:通过实验室条件的优化,MabSelect 可以在保持线性流速和上样比例等参数不变的条件下,通过增加柱直径进行线性放大。(5)MabSelect 易于清洗与除菌,寿命更长、更经济:在长期连续的生产中,有效的在位清洗(CIP)有助于延长介质使用寿命,但一般的Protein A介质往往不能耐受NaOH,只能使用高浓度的尿素或盐酸胍进行清洗,效果远不如NaOH且成本非常高。而MabSelect的CIP和除菌程序简单,用很常规、经济的试剂如50mM NaOH+1M NaCl或50mM NaOH+0.5M Na2SO4就可以有效去除沉淀和变性物质 用非离子去污剂或酒精可以去除通过疏水作用结合的物质 用0.1M醋酸和20%酒精可以在位灭菌(SIP)。经测试,Mabselect配合CIP(50mMNaOH+1M NaCl)纯化三百次后,抗体产品纯度与收率不变[12]。 /p p   2.2.2 MabSelect Xtra介质 /p p   Mabselect Xtra介质是在Mabselect介质的基础上优化而来,是目前市场上所有的商品化Protein A介质中载量最高的亲和层析介质之一。它除了具有MabSelect介质的全部特点外,还具有载量最高和非特异性吸附更低的特点。 /p p   Mabselect Xtra介质使用孔径更大的多孔高流速琼脂糖作为骨架,同时减小介质粒径。这样不仅增加了比表面积和配基密度,还降低了传质阻力,从而有效的增加了动态载量。其动态载量超过41mg/ml,在工艺生产过程中可以有效减少层析柱的体积,从而降低生产成本。R.Hahn的研究显示,Mabselect Xtra对CHO细胞HCP的吸附比其它Protein A介质更是低了近10倍[13]。 /p p   2.2.3 MabSelect SuRe介质 /p p   MabSelect SuRe介质也是在Mabselect介质的基础上优化而来,是目前市场上唯一耐强碱的Protein A亲和层析介质,寿命最长,稳定性最好[10]。它除了具有MabSelect介质的全部特点外,还具有以下特点:(1)可以耐受0.1-0.5M NaOH:MabSelectSuRe具有不同于其它Protein A介质的同型四聚体配基-SuRe配基,即使在强碱条件下也不易变性或脱落,可以用高达0.5M NaOH进行CIP和SIP,能有效去除沉淀和变性物质,大大降低了抗体产品被内毒素污染和批间交叉污染的风险,有利于延长介质使用寿命,同时还大大降低了CIP和SIP的成本。(2)更温和的洗脱,避免抗体聚集,提高收率:同型四聚体配基避免了不同配基与抗体Fc段亲和性的差异,也消除了某些域对Fab段的亲和作用,使得洗脱条件更加均一而温和。Mabselect SuRe介质可以用更高的pH进行洗脱,有效避免了抗体在低pH下的聚集,产品纯度和均一性更高,浊度也更低[14]。(3)不同抗体洗脱所需pH差异小:由于消除了对抗体Fab段的亲和作用,使得同一种属亚型的不同抗体分子洗脱所需的条件更接近,有利于平台技术的建立,进一步降低了不同的抗体分离纯化工艺的研发成本。(4)SuRe 配基稳定性更好:SuRe配基对碱和蛋白酶更稳定,纯化过程中脱落更少(& lt 10ppm),有利于后期脱落配基的进一步去除。 /p p   2.2.4 ProSep-vA Ultra介质 /p p   ProSep-vA Ultra介质是将自然界非动物性来源的Protein A交联于700Å 的多孔性玻璃珠骨架上,是刚性和不可压缩的介质。ProSep-vA Ultra介质具有如下特点:低反压性 不收缩、不溶胀 高动态载量 极低的Protein A脱落 高重复使用性,标准化的清洗和除菌操作[27]。 /p p   2.2.5 ProSep Ultra Plus介质 /p p   ProSep Ultra Plus介质是在ProSep-vA Ultra介质基础上优化而来,也是目前市场上所有的商品化Protein A介质中载量最高的亲和层析介质之一。它除了具有ProSep-vA Ultra介质的全部特点外,还具有载量最高、纯化效率更高、工艺更易于放大、成本更低等特点[28]。 /p p   2.2.6 MEP Hypercel介质 /p p   MEP Hypercel复合作用模式介质是一种灵活的层析介质设计,也称之为疏水电荷诱导层析(HCIC),用于捕获和纯化从实验室到生产规模的抗体和各种重组蛋白。MEP Hypercel介质由一个独特的连接4-巯基乙基吡啶(4-MEP)的刚性纤维素骨架组成。纤维素骨架赋予高孔隙率、化学稳定性和低非特异性吸附。平均直径80-100μm,在低反压下有优良的流速特性。MEP Hypercel介质在大规模使用时具有显著优势,基于它的配基结构,可选择性地捕获免疫球蛋白。组合其它传统的方法如离子交换、疏水作用,甚至用在Protein A之后从不同的料液中直接捕获或中度纯化抗体,以增强对宿主DNA、HCP和聚合体的清除。MEP Hypercel介质有助于建立一个简化的工艺流程,节省操作步骤(例如洗滤、超滤等) 预计有更长的使用寿命,因为它可以耐受苛刻的CIP方法(0.5-1M NaOH,30-60分钟接触时间),而所有因素都有利于降低成本[29]。 /p p   2.3最新精细纯化技术 /p p   2.3.1 CaptoFamily系列介质 /p p   新型的Capto S,Q系列介质是以高流速琼脂糖为骨架,同时交联了非常“柔软”的葡聚糖链,这样不仅增加了比表面积,同时降低了传质阻力和空间位阻,使得介质在高流速下的动态载量大大增加,有利于提高生产效率,降低成本。 /p p   Capto S,Q系列介质可以装填在直径60cm的工业层析柱中使用高达500cm/h 的流速进行纯化(柱高30cm)。这样不仅有利于工艺放大后大规模层析柱的填装,还大大提高了生产效率,每步层析更短的操作时间也有效避免了抗体分子在分离纯化过程中产生各种变体和聚合体,使得收率更好,终产品的活性更高、性质更均一。 /p p   2.3.2 Captoadhere介质 /p p   为了进一步减少抗体分离纯化步骤,提高特定杂质的去除效率,以满足日益增长的治疗用抗体的生产需要,2007 年初,GE Healthcare公司推出了新型复合作用模式的强阴离子交换介质:Capto adhere介质。Capto adher介质专为治疗用抗体的分离纯化而设计,其配基综合了阴离子交换、氢键和疏水等多种复杂的作用方式,因此对于抗体的聚合体具有非常独特而高效的去除能力。此外,通过有效的实验设计(DoE),流穿模式的Capto adher介质还可以同时有效去除脱落的Protein A配基、HCP、宿主DNA、内毒素和潜在的病毒,并使得结合MabSelect SuRe的抗体两步层析纯化工艺成为现实(表3)。Capto adhere还具有很强的病毒去除能力,如MVM病毒的去除能力可达5.9个Log。目前,新型的两步法抗体层析纯化工艺已经被国内外诸多知名药企广泛用于多种抗体的分离纯化,各项指标均符合治疗用抗体的要求。Capto adher层析还可以和阴离子交换(Capto Q)和疏水层析等结合使用,以达到更高的质量要求[15]。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/282961ea-e704-47d1-aabd-f044e108f59c.jpg" title=" 图3.png" alt=" 图3.png" / /p p style=" text-align: center " strong 表3 两步层析纯化工艺对污染物的去除效果[15] /strong /p p   2.3.3膜层析技术 /p p   PALL Life Science公司自10余年前颠覆性地开发出独一无二的层析产品-Mustang膜层析系列产品后,经过不断地技术改造,于近年推出全新Mustang Q XT家族,扩展了膜层析工艺放大产品线。膜层析技术,相对于传统的柱层析,无需层析填料和层析柱等复杂构件,直接通过膜式过滤器,经过简单的过滤环节即可达到纯化目的。Mustang Q以16层超级打褶的聚醚砜过滤膜作为基架,上面偶联了季胺基等功能基团,可以使生物分子流经的时候与功能位点迅速结合,具有高流速和高动态载量等优点。 /p p   Sartorius Stedim公司也开发出了一整套膜层析技术,包括Sartobind S,Q,C和D离子交换、Sartobind IDA(亚氨基二乙酸)金属螯合、Sartobind醛、Sartobind环氧基和Sartobind Protein A(重组)等膜层析系列产品。Sartobind在很多蛋白和病毒纯化应用中可以取代传统耗时、繁琐的层析步骤。膜吸附器的快速纯化特点使蛋白分离可以在高流速下获得高收率,较传统柱层析流速最高能提高100倍,达到20-40 CV/min。传统颗粒胶95%以上的结合位点集中在颗粒胶内部。Sartobind膜层析的结合位点是均一地交联到交叉偶联的增强纤维素骨架内0.5-1μm厚的薄层上。大孔结构和快速吸附结合特性使膜吸附器可以忽略扩散时间因素。同时多微孔膜结构不存在传统颗粒胶的孔内扩散问题。在对流情况下,流动相的分子运动只由泵压力决定。因此,膜吸附器具有操作周期极短、流速和处理能力极高的特点[30]。 /p p   与离子交换柱层析相比,离子交换膜层析技术已经被证明利用高动态结合能力吸附大量的生物分子,如病毒、HCP和宿主DNA。最近,阴离子交换膜层析技术已经被作为柱层析技术的替代技术用于Protein A亲和捕获后的mAb中微量污染物的去除[16]。 /p p   2.4终产品的浓缩洗滤 /p p   多维纯化得到的洗脱峰可以用Kvick Lab/Process盒式膜包进行快速浓缩和缓冲液置换。Kvick盒式膜包的优点有:(1)无热原:很多时候,仅用0.5M NaOH 清洗难以彻底去除膜表面的热原。Kvick盒式膜包化学性质非常稳定,可以使用1M NaOH在40-50℃下进行彻底的SIP/CIP,避免最终超滤浓缩时引入热原而影响产品质量。(2)孔径均一、速度快:Kvick盒式膜包孔径更均一,甚至可以使用50-100K的膜包进行抗体浓缩而不漏过,速度更快,大大节省了操作时间。(3)易于线性放大:通过保持流速、TMP等参数恒定,可以直接线性放大到生产规模。 /p p   Amicon Ultra系列超滤离心管可以用来进行抗体的快速浓缩、脱盐及缓冲液置换。它具有如下特点:(1)效率高:一步法离心达到25到80倍浓缩。(2)节省时间:垂直结构的膜,避免堵膜,减少浓差极化,可以用超快离心速度极短时间完成 最少10分钟即可完成浓缩、脱盐或缓冲液置换。(3)收率高:独特的反转离心设计,有利于取得最大回收率且避免了人为移液误差 低吸附滤膜和聚丙烯内壳,使回收率高达90%以上。(4)不漏液、无损失:100%完整性测试确保不漏液 独特的死体积设计避免过度离心至干,没有样品损失。(5)广泛的化学相容性:与广泛的溶剂兼容,适用于pH1-pH9,热封膜杜绝了粘合剂和下游溶出物污染。 /p p   Vivaspin系列超滤离心管同样是进行蛋白质快速浓缩和缓冲液置换的常用产品。获得专利的垂直膜配合狭长的流道设计,有效地避免滤膜堵塞,提高浓缩速度 同时在浓缩管底部设计有死端结构,确保即使离心时间过长也不会发生样品被甩干的现象。Vivaspin可灵活选用三种不同材质的超滤膜:聚醚砜、三醋酸纤维和Hydrosart。它的另一个特点是有两种回收浓缩液的方法,既可以直接用移液器从浓缩管底部吸取,也可以将浓缩液反转离心到回收管内,加盖密封保存,这两种方法都保证了高回收率。Vivaspin经过一次离心,最高可以将蛋白溶液浓缩300倍。 /p p   2.5终产品的除菌除病毒过滤 /p p   浓缩后的样品,最终经过0.22μm无菌滤器进行除菌过滤。ULTA Pure SG,HC除菌滤器具有过滤速度快、化学稳定性好、载量高和溶出物少等优点,细菌挑战实验表明其除菌能力大于7log。除菌过滤过程的优化主要从三个方面入手:操作过程中过膜压力的控制、过膜流速以及单位膜载量控制,这三个参数优化以后,可以在同种类型、材质的NFF膜上进行线性放大,否则很容易影响收率。 /p p   Durapore除菌级亲水性滤膜由亲水性PVDF材料制造,具有可靠的除菌保证以及低蛋白吸附量、低析出、无纤维脱落、广泛的化学兼容性等优点,是常用的除菌滤膜。Durapore 0.22μm亲水性滤膜用于液体除菌或去除微粒,0.1μm亲水性滤膜用于液体中去除微粒、微生物和支原体。装有Durapore亲水性滤膜的滤器有Millipak、Opticap XL、Opticap XLT、筒式滤器和Optiscale等。Millipak滤器独特的堆叠盘状设计使残留量最小并且无颗粒脱落,因此适合于高附加值产品的终端过滤和灌装。Millipak和Opticap XL滤器都有O型圈垫片和软管倒钩连接的上游排气阀和排空阀设计,使操作简单易控。Opticap XL和XLT滤器的结构设计,特别耐高温、高压条件,在除菌过程中提供更高的稳定性和可靠性,同时更易清洗。Optiscale一次性滤器专为小规模工艺筛选和工艺放大所设计,是工艺评估的理想工具。 /p p   目前被广泛应用的生物制品病毒去除的方法是纳米膜过滤。纳米膜过滤有如下优点:(1)针对性强,实用性广:纳米膜过滤只与病毒和目的蛋白的大小有关,无论病毒是否有脂包膜外壳、是否耐热,纳米膜过滤都能将之去除。(2)毒性小,下游污染少:能有效去除杀灭病毒后可能留下的如抗原和核酸蛋白混合物等病毒标志物,有效降低下游污染,是纳米膜的另一特点。大多数病毒灭活处理都使用有毒或致突变的理化试剂,从而必须在使用后从蛋白质溶液中清除,而纳米膜过滤不存在毒性问题,只是在验证中要考虑到滤器浸出物的风险。(3)蛋白活性高,回收率高:纳米膜过滤是在正常条件下的pH、渗透压和温度下进行的温和的生产步骤,其蛋白回收率和活性都很高,通常在90%—95%。基于体外分析、实验研究和临床经验,纳米膜过滤试验都没有显示出蛋白质改变或是新抗原的产生。纳米膜过滤不改变制品特性,这一特点促进了监管机构认可和产品的注册。 /p p   日本Asahi Kasei公司于1989年推出了第一款专门为清除生物制药产品中病毒颗粒而设计的过滤器Planova,由亲水铜铵再生纤维素制成的中空纤维微孔膜,装入聚碳酸酯壳体中。Millipore公司的Viresolve NFP膜是一种复合PVDF膜,过滤盒被设计来从高纯蛋白溶液中移除小型病毒,如B19,蛋白质溶液中,B19的去除量通常& gt 4 log。PALL Life Science公司的Ultipor VF DV50和DV20膜式过滤器可以从生物流体中去除显著数量级的病毒,同时目标蛋白可以很好地通过。滤芯由三层独特的亲水、低蛋白吸附的PVDF滤膜经新月型打褶方式构成,过滤面积大,具有可靠、安全和高流量等特点。Sartorius Stedim生产的Virosart CPV为聚醚砜过滤器,能去除& gt 4 log的PPV和& gt 6 log的逆转录病毒。 /p p   2.5扩张柱床吸附层析技术 /p p   扩张柱床吸附层析技术(EBA)是上世纪九十年代初期进入下游生产,整合了发酵和下游纯化的技术。新一代STREAMLINE Direct扩张柱床设备及介质是EBA技术中最成熟的产品。通过条件优化,STREAMLINE能直接从浑浊的发酵液中捕获目标生物分子,细胞碎片及不吸附的杂质穿过扩张床内悬浮的介质被冲洗掉,将以往澄清、浓缩、捕获等步骤整合为一步,达到粗纯化的效果(图2)[17]。 /p p   STREAMLINE的操作过程如下[17-18]:(1)起始:将STREAMLINE介质倒入扩张柱中。(2)平衡:从下向上流的缓冲液,将STREAMLINE柱内的吸附介质悬浮起来,形成稳定的、充分平衡好的扩张床。(3)上样:发酵液带菌体从柱底进入,目标生物产品吸附在STREAMLINE介质上 不吸附的宿主杂质及菌体碎片随液流从柱顶排出。(4)淋洗/穿透:进一步用缓冲液将不吸附的杂质洗掉。(5)洗脱:洗脱液洗脱目标生物产品。(6)CIP/再生:用1M NaOH+1M NaCl进行CIP。整个操作过程如图3所示。 /p p    /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/dba748ae-d64e-479c-8fb1-ea738ef437da.jpg" title=" 图4.jpg" alt=" 图4.jpg" / /p p style=" text-align: center " strong 图2 传统纯化工艺与STREAMLINE [17] /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/0f71d1a8-a218-43f5-8c1f-917bd4f432a5.jpg" title=" 图5.png" alt=" 图5.png" / /p p style=" text-align: center " strong 图3 STREAMLINE的基本工作原理和操作过程[18](箭头示液体过柱时的流向) /strong /p p   STREAMLINE介质是一系列包裹着石英芯,以琼脂糖为骨架的介质。特殊设计的STREAMLINE扩张柱床可以产生稳定的向上拔的扩张液流,每一颗不同比重的STREAMLINE介质,悬浮在自身重力和扩张升力平衡的位置原地扰动。STREAMLINE技术是稳态扩张,样品流均匀分布整个床体,目标产物吸附均匀,穿透小,回收率高,类似于固定床吸附性层析[19]。 /p p   3. 抗体最新下游技术应用实例 /p p   Lonza Biologics公司是全球最大的抗体合同生产商之一,为了开发一个稳定的20000L的抗体生产工艺,其纯化开发部门对多个不同的抗体亲和层析凝胶进行了有效的比较,他们发现Mabselect SuRe的动态载量高、使用寿命最长、Protein A脱落最低,实验数据明确支持放大到1.4m直径的柱子用于20000L培养规模的经济生产[4]。 /p p   德国的Roche公司一种用于肿瘤治疗的单抗已进入临床Ⅲ期。他们将目前几种Protein A介质进行充分的比较之后,选择了高载量、更易于装柱和寿命更长的Mabselect。目的抗体是通过无血清培养的转染的杂交B淋巴细胞表达的IgG1。将过滤后的无细胞上清上样到Mabselect填充的FineLINE柱,直径300cm,柱高20cm,上样的浓度是30mg/ml。洗脱后,洗脱液立即用磷酸钾中和pH值到6.8-7.0,再用凝胶过滤检测,结果表明比活超过90%,纯度在95%以上[20]。 /p p   Cytheris公司是法国一家生物制药公司,目前正在研制一种用CHO细胞表达的免疫调节剂(临床Ⅱ期)。原先的工艺采用传统层析法,但不能稳定去除病毒。改进后,在工艺的第一步使用Mustang Q对污染物进行捕获,取得了25%去除率的良好结果 同时对MVM、MLV和Re03三种病毒也达到超过4个Log的滴度降效果,而整个工艺对病毒的去除效率普遍提高了7-11个Log。说明Mustang Q的使用对下游层析起到了很好的保护作用。 /p p   在第五届生物制药工艺优化大会上,Crucell公司介绍了他们对腺病毒(AAV)纯化工艺的摸索。与传统的层析填料相比,Mustang Q膜层析的开放孔道的设计使对病毒的动态载量大大提高30倍左右,回收率在80%以上。用40L的膜层析柱相当于1000L的传统层析柱的效果,节省了验证工作,提高了工艺经济性,十分有利于放大生产。 /p p   德国的Boehringer Mannheim公司生物制药部,用STREAMLINE技术代替传统工艺生产400L CHO细胞培养的Fc融合蛋白,结果样品回收率提高14%,缓冲液减少25%,时间缩短47%[17]。 /p p   世界最大的制药公司-GlaxoSmithKline公司,使用特别设计的BioProcess全自动层析系统和STREAMLINE扩张柱生产药用脂蛋白疫苗,比原工艺产品体积缩小2倍,纯化系数1.5,内毒素减少100倍[17]。 /p p   日本YOSHITOMI公司正在使用多套STREAMLINE 1000系统生产人重组白蛋白,与原生产工艺产品纯度相同,产率提高30%,时间减少一半,年产量为12.5吨[17]。 /p p   AVECIA公司重新设计临床Ⅲ期药品生产工艺,选用STREAMLINE技术及SOURCE新型凝胶,生产效率提高12倍,回收率提高1倍[17]。 /p p   2001年,ILEX制药公司的CAMPATH获得FDA批准。该单克隆抗体使用Sartobind Q离子交换层析模块以流穿的方式进行精制,这是膜吸附器首次被批准应用于治疗性蛋白的生产,证明了膜层析技术通过了证实和测试[30]。 /p p   4. 展望 /p p   随着抗体产品上游大规模高效培养技术的进一步发展,实验室规模哺乳动物细胞表达水平可以达到25g/L,如果这一水平能够有效放大到生产,将对下游生产纯化带来更大的压力。所以下游纯化工艺的技术发展也是势在必行。 /p p   以下一些发展方向可能成为下游工艺未来发展的重要关注点:(1)刚性更好、载量更高、耐碱性更好的完全亲水琼脂糖凝胶的开发[4]。(2)优化操作次序,降低缓冲液消耗的更大规模生产线的应用[21]。(3)通过单抗的氨基酸序列预测下游工艺关键参数:亲和层析洗脱pH条件、离子交换层析洗脱pH和盐浓度条件、病毒灭活pH等[22]。(4)下游工艺的成本消耗占全部成本的50-80%,亲和捕获是下游工艺的最关键步骤,通过改进亲和配体,提高捕获能力,节省成本[23]。(5)新型层析系统全程实时控制纯化过程,在线检测HCP、宿主DNA、Protein A等的含量[24]。(6)由于在去除杂质方面的优势,膜层析将会得到飞速的发展,未来工艺甚至可能完全基于膜层析而不是柱层析[25]。 /p p   参考文献 /p p   [1] 刘亚明,薛章.生物制药:迎接抗体药物的黄金时代.医药细分子行业研究报告,2009. /p p   [2] 陈志南.基于抗体药物的我国生物制药产业化发展前景.2008中国药学会学术年会暨第八届中国药师周论文集,2008. /p p   [3]Gail Dutton.Trends in Monoclonal AntibodyProduction.Feature Articles,2010, 30(4). /p p   [4]孙文改,苗景赟.抗体生产纯化技术.中国生物工程杂志,2008,28(10):141-152. /p p   [5]《人用单克隆抗体质量控制技术指导原则》.NICPBP(中国药品与生物制品检定所),2003. /p p   [6]Capto adhere:用于生产单抗的两步纯化操作.GE Healthcare公司技术资料. /p p   [7]中空纤维滤柱分离纯化应用集锦.GE Healthcare公司技术资料. /p p   [8]中空纤维膜过滤技术在单抗生产中的应用.GE Healthcare公司技术资料. /p p   [9]Amersham Biosciences.Downstream Gab’02 Abstracts,Extended Reports from the 2nd International Symposium on DownstreamProcessing of Genetically Engineered Abtibodies and Related Molecules. PortoPortugal,2002,12-14. /p p   [10] R.Hahn,R.Schlegel,A.Jungbauer.Comparison of Protein A affinity sorbents.JChromatogr B,2003,790:35-51. /p p   [11] R.L.Fahrner,et al. Performancecomparison of Protein A affinity chromatography sorbents for purifyingrecombinant monoclonal antibodies.BiotechnolAppl Biochem,1999,30:121-128. /p p   [12] K.Brorson,J.Brown,et al.Identification of protein A media performanceattributes that can be monitored as surrogates for retrovirus clearance duringextended re-use.Journal ofChromatography A,2003,989:155-163. /p p   [13] R.Hahn,et al.Comparison of Protein A affinity sorbents Ⅲ,Life time study.J Chromatogr A,2006,1102:224-231. /p p   [14] S. Ghose,et al. Antibody Variable RegionInteractions with Protein A: Implications for the Development of GenericPurification Processes. Biotechnol Bioeng,2005,92(6):665-673. /p p   [15]用复合配基阴离子交换柱去除单克隆抗体(Mab)的污染物.BioProcessInternational技术资料. /p p   [16]利用Mustang Q膜层析从Protein A纯化的单克隆抗体中去除污染. PALL LifeScience公司技术资料. /p p   [17]整合发酵和下游纯化的新技术:扩张柱床吸附技术.GE Healthcare公司技术资料. /p p   [18]余晓玲,米力,姚西英,陈志南.扩张柱床吸附层析与固定柱床层析纯化单克隆抗体的比较.中国生物工程杂志,2003,23(1):61-64. /p p   [19]High-throughput monoclonal antibody purification.GE Healthcare公司技术资料. /p p   [20]抗体纯化手册.GE Healthcare公司技术资料. /p p   [21]Purification Strategies to Process 5 g/L Titers ofMonoclonal Antibodies. BioPharm International技术资料. /p p   [22] T.Ishihara,T.Kadoya.Accelerated purification process development ofmonoclonal antibodies for shortening time to clinic:Designand case study of chromatography processes.J Chromatogr A,2007,1176(1-2):149-156. /p p   [23] A.Cecilia,A.Roque,et al.Antibodies and Genetically Engineered RelatedMolecules:Production and Purification.BiotechnolProg,2004,20:639-654. /p p   [24] S.Flatman,I.Alam,et al.Process analytics for purification of monoclonal antibodies.JChromatogr B,2007,848:79-87. /p p   [25]ProcessChromatography:Five Decades of Innovation.BioPharmInternational技术资料. /p p   [26]双层滤板膜堆在单抗工艺上的大规模澄清过滤应用评估.BioProcessInternational技术资料. /p p   [27]Affinity Chromatography Media.Millipore公司技术资料. /p p   [28]ProSep Ultra Plus ChromatographyMedia.Millipore公司技术资料. /p p   [29]MEP Hypercel混合模式层析填料. PALL LifeScience公司技术资料. /p p   [30]Sartobind膜层析技术高效的蛋白纯化工具. SartoriusStedim公司技术资料. /p
  • 上海有机所等揭示糖基化修饰调控阿尔茨海默病beta淀粉样蛋白病理性聚集机制
    在阿尔茨海默病(AD)进展中,存在beta淀粉样蛋白(β-Amyloid,Aβ)的积累。Aβ在受影响的脑组织区域形成病理性聚集,被认为与AD的发生、进展和表型密切相关。多种翻译后修饰(如磷酸化、硝基化、糖基化等)对Aβ的病理性聚集及体内生物活性具有重要且不同的调控作用。在AD患者脑内,多种病理相关蛋白的糖基化位点、数量和水平都发生了显著性改变,表明了糖基化修饰在AD发生和发展中的重要意义。2011年,科学家对AD病人脑脊液中的Aβ片段进行鉴定,检测到之前未在哺乳动物中发现的酪氨酸O-糖基化修饰,然而由于天然来源的翻译后修饰蛋白丰度低、微观不均一等困难,Aβ糖基化修饰的生物学功能及在疾病中的作用尚未能得以阐释。  近日,中国科学院上海有机化学研究所生物与化学交叉研究中心刘聪课题组与北京大学药学院董甦伟课题组合作,在J. Am. Chem. Soc.上发表题为O-Glycosylation Induces Amyloid-β to Form New Fibril Polymorphs Vulnerable for Degradation的研究论文,利用化学合成策略构建了一系列含不同O-糖基化修饰的均一结构Aβ,并系统研究了糖基化修饰对Aβ病理性聚集的调控作用及其构效关系。  该研究中,研究人员首先合成了三种O-糖修饰的酪氨酸砌块,糖基分别是α-GalNAc, Galβ1-3GalNAc和Neuα2,3Galβ1-3GalNAc。然后,通过固相多肽合成策略将上述三种酪氨酸砌块制备相应的Aβ糖肽。然而,Aβ含有较多大位阻氨基酸,且自身疏水性强、容易聚集,再加上糖基的引入,给Aβ糖肽的合成带来了不少困难。为了克服这些合成难题,研究人员利用微波辅助的合成策略以及多赖氨酸亲水标签等方法,以较高效率获得了结构均一、含有不同O-糖修饰的Aβ糖肽。他们进一步对三种Aβ糖肽和不含糖链的Aβ多肽进行性质表征,发现糖基化修饰能够显著抑制Aβ的聚集,并且抑制效果与糖链结构相关。通过对Aβ聚集/解聚动力学的进一步研究,表明糖基修饰可以降低纤维结构的稳定性。在酶解实验中,糖基修饰的Aβ纤维表现出了更差的酶解稳定性。  为进一步阐述糖基化修饰降低Aβ纤维稳定性的分子机理,研究人员通过冷冻电镜技术(Cryo-EM),获得了Galβ1-3GalNAc糖型Aβ纤维的3.1埃近原子级分辨率结构。糖基修饰的Aβ组装形成了一种全新的淀粉样纤维结构,其纤维核心由6-42位氨基酸残基组成,并且在Tyr10残基侧链附近可以观察到修饰糖基的电子密度。通过与未修饰的Aβ纤维核心结构进行比较,研究发现Tyr10的糖基化会增大其与相邻氨基酸残基的空间位阻,从而导致整个Aβ纤维核心结构的重排。相较而言,糖基化Aβ纤维的结构具有更小的原纤维间交互界面,且仅由两对盐桥(Asp23和相邻原纤维的Lys28)所维持。这为糖基化修饰降低Aβ纤维稳定性提供了分子层面的解释。  该工作首次发现糖基化修饰在动态调控Aβ病理性聚集方面的重要功能,为后续研究不同糖基修饰对神经退行性疾病病理蛋白聚集的生物活性及病理毒性的调控作用,提供了有利的研究工具及新的研究思路。该工作得到了国家自然科学基金委、北京市自然科学基金委和中科院稳定支持基础研究领域青年团队计划的资助。  论文链接
  • 基于NMR的代谢组学研究助力新冠肺炎重症早发现*
    虽然造成新冠肺炎(COVID-19)的新型冠状病毒(SARS-CoV-2)主要是呼吸道病毒,但这种疾病会累及全身的器官。除了肺部损伤和呼吸困难外,新冠肺炎患者还表现出神经、肾、肝和血管受损的症状。 研究表明,新冠肺炎患者具有与健康对照者不同的、提示代谢紊乱和血脂异常的代谢谱,且它们也与疾病的严重度相关联。这提升了利用代谢组学来识别具有最高重症风险的新冠肺炎患者的可能性。然而,大多数此类研究只是将新冠肺炎患者与健康对照者进行比较,导致无法确定这种关联是新冠肺炎特有的,还是只是提示危重疾病的普适性标志。 来自德国吕贝克大学的研究人员,通过将接受重症监护室(ICU)治疗的新冠肺炎患者,与在同一ICU进行心源性休克治疗的患者进行比较,研究了代谢谱的特异性。 近乎完美的区分 研究人员分析了5名接受ICU治疗的新冠肺炎患者、11名新冠病毒检测阴性的心源性休克患者,以及58名健康对照者的代谢和脂蛋白谱。他们在布鲁克Avance IVDr平台*(配备TXI探头的布鲁克核磁共振代谢分析系统)上总共分析了276份血清样品。初步的非靶向NMR代谢组学和脂质组学研究表明,新冠肺炎患者与健康对照者及心源性休克患者之间都存在差异。通过针对性分析,研究人员能够量化来自NMR谱图的代谢物和脂蛋白,并识别引起最大差异的代谢物类别。这些分析实现了对新冠肺炎患者与健康对照者及心源性休克患者近乎完美的区分。 为了进一步研究新冠肺炎的代谢影响,研究人员对代谢物和脂蛋白进行了比对分析。结果显示,有许多与能量状态紊乱、肝损伤和血脂异常相关的一致变化。 与其他重症患者截然不同的代谢谱 被识别出的一些关键特征包括低谷氨酰胺/谷氨酸比值,这是由分解代谢疾病状态下谷氨酰胺消耗增加所导致的。这一重症感染的典型指标与新冠肺炎有关联,但与心源性休克无关联。 苯丙氨酸是新冠肺炎患者出现上升的另一特征参数。该氨基酸通常在肝脏中代谢,其水平上升提示肝功能受损。 一些标志物提示能量代谢严重紊乱和代谢抑制,包括葡萄糖水平升高,以及组氨酸、蛋氨酸和乳酸水平降低。但是,这些变化只是新冠肺炎患者相比健康对照者所存在的差异,而与心源性休克患者相比没有这些差异,这表明它们可能不是新冠肺炎所特有的,而是提示危重患者能量状态紊乱的普适性指标。 根据之前的研究,研究人员还发现,新冠肺炎患者的脂蛋白谱严重紊乱,提示心血管疾病风险上升。该脂蛋白谱中很大一部分都与心源性休克患者不同。尤其要提到的是,新冠肺炎患者的极低密度脂蛋白(VLDL)、小颗粒VLDL组分及中密度脂蛋白水平上升——它们相比更大的低密度脂蛋白颗粒更易导致动脉粥样化;因此是引起心血管疾病和心脏损伤的风险因素。此外,新冠肺炎患者的甘油三酯水平相比健康对照者和心源性休克患者都有上升。 惊人的关联 该研究还研究了无症状感染或轻症之后持续发生的代谢变化。为此,研究人员分析了来自18个具有新冠病毒抗体的人的34份血清样本,并与来自相同年龄和性别的、不具有新冠病毒抗体的对照者的样本进行了比较。两组患者在采血前的急性冠状病毒感染检测均为阴性。 主成分分析(PCA)显示,两组之间的代谢谱和脂蛋白谱无显著差异,区分度很低,说明总体血清谱无显著差异。研究人员表示,这意味着新冠肺炎感染康复之后代谢谱回归正常。 然而,在来自曾经的轻症感染者的样本中,发现了抗体滴度和代谢健康标志物之间的关联。例如,抗体滴度与心血管风险标志物(包括小颗粒LDL-6、胆固醇和磷脂)呈负相关。还发现抗体滴度与作为代谢健康标志物的甘氨酸呈正相关。研究人员指出,他们无法从现有数据中确定因果关系,但拥有健康的代谢状态的个体可能更有可能对病毒产生有效的免疫反应,使得感染后的抗体滴度更高。 总之,研究人员表示,他们的发现表明新冠肺炎重症患者的代谢高度紊乱,包括分解代谢状态、肝损伤和严重血脂异常等。这一信息表明,基于NMR的代谢组学研究可被进一步用于患者的识别和分层,以帮助预测新冠肺炎的严重度。 *布鲁克核磁共振波谱仪仅供研究人员使用,不能用于临床诊断。 参考资料 Schmelter F, Foeh B, Mallagaray A et al. (2021) Metabolic markers distinguish COVID-19 from other intensive care patients and show potential to stratify for disease risk. medRxiv preprint. doi: https://doi.org/10.1101/2021.01.13.21249645.
  • 新品速递│天隆人类ApoE、SLCO1B1基因多态性检测试剂盒获批上市!
    天隆ApoE、SLCO1B1基因检测试剂通过NMPA三类审批近日,天隆智造有证家族再添新成员——人类ApoE、SLCO1B1基因多态性检测试剂盒( 荧光PCR法),通过我国药监局(NMPA)三类医疗器械审批(国械注准20233400658),为个体化用药,精准医疗再添新利器!ApoE、SLCO1B1与他汀个体化用药血脂异常是心血管疾病的重要危险因素之一[1],中国成人血脂异常总体患病率高达40.40%,且我国儿童青少年高胆固醇血症患病率也在不断升高[2]。《中国血脂管理指南(2023年)》强调:健康的生活方式是降低低密度脂蛋白胆固醇(LDL-C)及非高密度脂蛋白胆固醇(非HDL-C)的基础,而他汀类药物是降胆固醇治疗的基石,推荐中等强度他汀作为中国血脂异常人群的常用药物[3]。他汀类药物是降低低密度脂蛋白胆固醇(LDL-C)水平从而降低心血管疾病风险的药物。但是其疗效具有明显的个体差异。在部分人群中,他汀类药物会引起严重的不良反应,如肝功能紊乱、横纹肌溶解症等。药物基因组学研究表明,他汀类药物在肝脏代谢和转运会因个体遗传特性而不同,特别是参与他汀类药物肝脏代谢的关键性转运蛋白,如有机阴离子转运多肽(OATP1B1)(SLCO1B1基因编码)以及载脂蛋白E (ApoE)的基因多态性可影响他汀类药物的血浆及肝脏浓度,从而影响他汀类药物的疗效和安全性[4-6]。天隆ApoE、SLCO1B1基因多态性检测试剂盒助力他汀降脂更安全天隆科技自主研发的人类ApoE、SLCO1B1基因多态性检测试剂基于荧光PCR技术平台,选用具有高抗干扰特性的Taq 酶和配套缓冲体系,可耐受血液中的PCR抑制因子,对稀释全血可直接扩增,能定性检测人全血样本中ApoE基因c.388TC和c.526CT位点、SLCO1B1基因c.388AG和c.521TC位点的基因型,用于指导他汀类药物的合理用药,助力更安全降脂。检测流程产品优势位点全面根据最新临床权威指南等资料,检测他汀类药物相关基因位点,指导用药更为精准。操作简便对稀释全血样本可直接扩增,无需进行DNA提取。判读精准强大的软件分析功能,结果精准,易判读。结果可靠内标质控可全程监控检测过程。量体裁衣,精准用药,天隆方案助您安全降脂!参考文献[1] 胡盛寿,高润霖等. 中国心血管病报告(2018)概要. 中国循环杂志 2019 年 3 月 第 34 卷 第 3 期.[2] 诸骏仁,高润霖,赵水平等. 中国成人血脂异常防治指南(2016年修订版) [J]. 中国循环杂志,2016,31(10): 937-953.[3] 中国血脂管理指南修订联合专家委员会.中国血脂管理指南(2023年)[J].中华心血管病杂志.2023,51(3):221-255.[4] 2015年,中国卫健委《药物代谢酶和药物作用靶点基因检测技术指南(试行)》.[5] The Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for SLCO1B1, ABCG2, and CYP2C9 and statin-associated musculoskeletal symptoms[J]. Clinical Pharmacology & Therapeutics, 2022.[6] Statin-associated muscle symptoms: impact on statin therapy—European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management[J]. European Heart Journal, 2015(17):1012-1022.文字编辑:李春燕美术编辑:吴 优责任编辑:李 驰会议推荐扫码直达报名页面第七届PCR前沿技术与应用网络会议(iCPCR 2023)时间专场主题6月28日 上午新产品与新技术6月28日 下午分子诊断应用6月29日 上午药品/生物制品应用6月29日 下午农林育种应用6月30日 上午动植物疫病应用(上)6月30日 下午动植物疫病应用(下)
  • 新品速递│天隆人类ApoE、SLCO1B1基因多态性检测试剂盒获批上市!
    天隆ApoE、SLCO1B1基因检测试剂通过NMPA三类审批近日,天隆智造有证家族再添新成员——人类ApoE、SLCO1B1基因多态性检测试剂盒( 荧光PCR法),通过我国药监局(NMPA)三类医疗器械审批(国械注准20233400658),为个体化用药,精准医疗再添新利器!ApoE、SLCO1B1与他汀个体化用药血脂异常是心血管疾病的重要危险因素之一[1],中国成人血脂异常总体患病率高达40.40%,且我国儿童青少年高胆固醇血症患病率也在不断升高[2]。《中国血脂管理指南(2023年)》强调:健康的生活方式是降低低密度脂蛋白胆固醇(LDL-C)及非高密度脂蛋白胆固醇(非HDL-C)的基础,而他汀类药物是降胆固醇治疗的基石,推荐中等强度他汀作为中国血脂异常人群的常用药物[3]。他汀类药物是降低低密度脂蛋白胆固醇(LDL-C)水平从而降低心血管疾病风险的药物。但是其疗效具有明显的个体差异。在部分人群中,他汀类药物会引起严重的不良反应,如肝功能紊乱、横纹肌溶解症等。药物基因组学研究表明,他汀类药物在肝脏代谢和转运会因个体遗传特性而不同,特别是参与他汀类药物肝脏代谢的关键性转运蛋白,如有机阴离子转运多肽(OATP1B1)(SLCO1B1基因编码)以及载脂蛋白E (ApoE)的基因多态性可影响他汀类药物的血浆及肝脏浓度,从而影响他汀类药物的疗效和安全性[4-6]。天隆ApoE、SLCO1B1基因多态性检测试剂盒助力他汀降脂更安全天隆科技自主研发的人类ApoE、SLCO1B1基因多态性检测试剂基于荧光PCR技术平台,选用具有高抗干扰特性的Taq 酶和配套缓冲体系,可耐受血液中的PCR抑制因子,对稀释全血可直接扩增,能定性检测人全血样本中ApoE基因c.388TC和c.526CT位点、SLCO1B1基因c.388AG和c.521TC位点的基因型,用于指导他汀类药物的合理用药,助力更安全降脂。检测流程产品优势位点全面根据最新临床权威指南等资料,检测他汀类药物相关基因位点,指导用药更为精准。操作简便对稀释全血样本可直接扩增,无需进行DNA提取。判读精准强大的软件分析功能,结果精准,易判读。结果可靠内标质控可全程监控检测过程。量体裁衣,精准用药,天隆方案助您安全降脂!参考文献[1] 胡盛寿,高润霖等. 中国心血管病报告(2018)概要. 中国循环杂志 2019 年 3 月 第 34 卷 第 3 期.[2] 诸骏仁,高润霖,赵水平等. 中国成人血脂异常防治指南(2016年修订版) [J]. 中国循环杂志,2016,31(10): 937-953.[3] 中国血脂管理指南修订联合专家委员会.中国血脂管理指南(2023年)[J].中华心血管病杂志.2023,51(3):221-255.[4] 2015年,中国卫健委《药物代谢酶和药物作用靶点基因检测技术指南(试行)》.[5] The Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for SLCO1B1, ABCG2, and CYP2C9 and statin-associated musculoskeletal symptoms[J]. Clinical Pharmacology & Therapeutics, 2022.[6] Statin-associated muscle symptoms: impact on statin therapy—European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management[J]. European Heart Journal, 2015(17):1012-1022.
  • 岛津的食用油中反式脂肪酸含量检测方案
    油脂是人们摄取能量和必须脂肪的主要来源,在人体内经过分解生成甘油和脂肪酸,对人体的健康起着至关重要的作用。脂肪酸经过一个复杂的代谢过程,生成饱和脂肪酸和不饱和脂肪酸。最近有研究表明不饱和脂肪酸中的反式脂肪酸(TFA)能引起血清总胆固醇和低密度脂蛋白的升高,同时降低高密度脂蛋白胆固醇含量,增加患心血管疾病的危害等。 由于TFA对人类健康的威胁,联合国农粮组织和世界卫生组织于1994年提出食品中的TFA含量应低于4%,由于很多食品中含有油脂,因此TFA含量的检测显得格外重要。美国官方农业化学家协会(AOAC)于1999年首先建立了食品中TFA的分析方法,丹麦政府依据该国营养委员会对TFA潜在危害性的研究结论,于2003年6月,制定了严格的规定,成为世界上第一个对食品中TFA设立法规进行限制的国家。美国食品和药品监督管理局在2003年7月作出了规定:自2006年1月1日起,食品营养标签上必须标注产品的饱和脂肪酸含量及TFA的含量。我国在2009年也颁布了中华人民共和国出入境检验检疫行业标准,其中规定了《傅里叶变换红外光谱仪检测食品及油脂中反式脂肪酸含量的方法》和《毛细管气相色谱法测试食品中反式脂肪酸含量的方法》。 岛津公司参考SN/T 2326-2009《傅里叶变换红外光谱仪检测食品及油脂中反式脂肪酸含量的方法》,采用傅里叶变换红外光谱和水平衰减全反射附件建立了不同食用油中反式脂肪酸的含量检测方案。本方案以反式脂肪酸和卡诺拉油为标准,配制各种不同含量反式脂肪酸的标准溶液进行分析。通过傅里叶变换红外光谱仪和水平衰减全反射附件技术(ATR-FTIR)进行红外定量分析,利用反式脂肪酸在966 cm-1的吸收作为定量依据,得到曲线相关系数R为0.998,回收率在75~117%之间,RSD为1.1%。结果表明,用ATR-FTIR技术测试食用油中反式脂肪酸含量,该方法曲线线性较好,重现性良好,回收率令人满意,是一种快速简单的测试方法。 方案中使用了岛津新一代傅里叶变换红外光谱仪IRAffinity-1。IRAffinity-1具有高信噪比,达到30,000:1 以上;配备了自动除湿装置,易于维护;外形小巧,占地面积小;标配杂质分析程序;多种附件可以选择。 岛津傅里叶变换红外光谱仪IRAffinity-1 欲知详情请点击傅里叶变换红外光谱仪测试食用油中的反式脂肪酸含量。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 银杏叶危机空出50亿市场 24个品种千家企业可瓜分
    p   近期全国沸沸扬扬的银杏叶事件,最终确认牵涉药企49家,其中不乏扬子江、海王、康恩贝、云南白药等大型公司和上市公司。目前各地医院、药店在当地药监部门的督导下,纷纷将银杏叶片剂、胶囊剂、滴丸、分散片等下架停止销售,生产企业采取有力的召回措施对进入市场的银杏叶制剂召回,按照国家局补充检验方法甄别处理。 br/ /p p   银杏叶制剂在上世纪60年代由德国最大的植物药企业威玛舒培博士药厂率先研制成功(金纳多),并于1972年申请了专利,是依据现代医学理论和药理学、化学知识对银杏叶中有效成分进行粗提取、分离后的一类单植物提取物制剂,主要含有黄酮苷和银杏内酯,前者可清除氧自由基,抑制细胞膜脂质过氧化及低密度脂蛋白氧化修饰作用 后者可选择性拮抗血小板活化因子(PAF)的有害作用,降低血小板聚集、改善血液流变学。 /p p   临床多用于治疗心、脑血管疾病如冠心病心绞痛、脑血管痉挛、脑供血不全、记忆力衰退,经过长期临床实验发现:银杏叶制剂在治疗慢性充血性心力衰竭、高血压、肾病以及肝纤维化等方面也有较好效果。 /p p   我国将银杏叶固体制剂按照中医药 理论进行分类管理,其提取物、片剂、胶囊、滴丸等被收载在中国药典2010年版一部,按照中医理论,本产品具有活血化瘀通络的功能,主治瘀血阻络引起的胸痹心痛、中风、半身不遂、舌强语塞 冠心病稳定性心绞痛、脑梗死见上述症候者。 /p p   有关数据表明,世界上银杏叶制剂的年销售额达到50亿美元,自上世纪90年代起,一直是治疗脑血管疾病的首选药物。我国银杏叶制剂年销售额从2000年的6亿元发展到2007年的22亿,2014年已经超过50亿。已经成为我国心脑血管领域植物药领先品种之一。 /p p   在我国现有的中药制剂产品中,有一大批产品中药制剂其药理药效不亚于市场火爆的银杏叶制剂。机会永远是留给有准备的企业,本次银杏叶事件,已经让一大批医生、患者重新选择合适的药物来替代银杏叶制剂,而昔日火爆的银杏叶制剂要想重新收复失地,估计还需要一个较为漫长的过程。 /p p   笔者认为,下列产品如果能充分利用本次机会,争夺银杏叶制剂市场暂时产生的空白,是一个绝佳的机会。下面是笔者统计出了有望从此获益的24个品种,牵涉到近千家企业(928家)。 /p p br/ /p
  • 多项重要成果!中国科学家一天连发3篇Science
    p   近年来,中国基础研究进步明显,在国际顶尖学术期刊上中国科学家发表的高水平学术论文也越来越多,部分研究领域经常会有重大突破性进展。 /p p   《自然》(Nature)、《科学》(Science)和《细胞》(Cell)作为目前国际上最顶尖的学术期刊,每期发表文章数量都很少,发表文章基本也代表了相关领域的顶尖研究成果。此前,青塔已经多次报道2018年前5个月中国高校和科研院所发表的部分CNS文章。 /p p   进入6月份,这种势头依然非常强劲。今天(6月8日),中国科学家又连发3篇Science,这种情况非常罕见。其中,南京农业大学、中国农科院等合作发表1篇,中科院上海生化细胞所、武汉大学宋保亮研究组与新疆医科大学马依彤合作组等联合发表1篇,中国科学院生物物理所的章新政教授与李梅教授等合作发表1篇。 /p p strong   南京农业大学、中国农科院等合作发表一篇Science /strong p /p p & nbsp /p p style=" TEXT-ALIGN: center" img title=" 01.jpg" src=" http://img1.17img.cn/17img/images/201806/insimg/f53f2794-7d86-48b6-8d1e-63d17154be0e.jpg" / /p p & nbsp /p p   最近,中国农业科学院副院长、中国工程院院士万建民领衔的科研团队系统解析了水稻粳稻与籼稻杂种不育问题及遗传特性,发现自私基因系统控制水稻杂种不育,并影响稻种基因组的分化。该研究有望解决水稻杂种不育难题。相关研究成果6月8日在线发表于《科学(Science)》期刊。 /p p   自私基因是指双亲杂交后,父本或母本中能控制其自身的DNA片段优先遗传给后代的基因。它使亲本自身的遗传信息能更多、更快地复制,并能更多地传递给子代,其遗传不符合孟德尔遗传规律。2017年《科学(Science)》曾报道了小鼠和线虫自私基因的非孟德尔遗传现象。这些研究表明在动物中自私基因驱动了基因组的进化,并影响了物种自身的稳定性。但关于植物的相关研究尚未有任何报道。 /p p   杂交稻对解决我国粮食安全问题作出了巨大贡献。但如何进一步提高杂交稻的产量,急需寻找新的技术途径。研究表明,水稻籼粳亚种间杂交稻比目前的杂交稻能进一步提高单产15%-30%,但籼粳杂种存在半不育的问题,严重制约了籼粳杂交稻产量的提高。万建民院士团队在解决这一难题上取得了突破性进展。 /p p   研究发现,水稻杂种不育性受水稻自私基因位点qHMS7的控制,并发现水稻包含三个紧密连锁的基因ORF1、ORF2和ORF3,其中ORF1基因编码一个未知功能的蛋白 ORF2基因编码一个杀配子的毒性蛋白,以母体效应导致花粉死亡 而ORF3基因编码一个解毒蛋白,以配子体效应保护配子,使携带ORF3基因的花粉可育。在“祖先野生稻-普通野生稻-亚洲栽培稻”的演化过程中,ORF1一直被保留,ORF2从没有毒性功能逐步演变成有毒性功能的类型,ORF3是在普通野生稻中由ORF1基因复制产生,并获得解毒功能,在随后的稻种驯化过程中被选择传递到亚洲栽培稻品种。研究表明,粳稻品种同时携带毒性的ORF2和解毒的ORF3,而南方野生稻只含有无毒性的ORF2,在其杂种F1中,携带南方野生稻基因型的花粉因缺乏ORF3保护而死亡,携带粳稻品种基因型的花粉因有ORF3保护而存活,最终导致后代中没有纯合的南方野生稻基因型个体存在,群体分离不符合经典的孟德尔遗传模式。 /p p   该研究阐明了自私基因在维持植物基因组的稳定性和促进新物种的形成中的分子机制,探讨了毒性-解毒分子机制在水稻杂种不育上的普遍性,为揭示水稻籼粳亚种间杂种雌配子选择性致死的本质提供了理论借鉴。 /p p   该研究由中国农科院与南京农业大学合作完成,并得到中国农科院科技创新工程的大力支持。 /p p & nbsp /p p strong   中科院上海生化细胞所、武汉大学等联合发表一篇Science /strong p /p p & nbsp /p p style=" TEXT-ALIGN: center" img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201806/insimg/223f4494-8d8c-4656-bc1f-7b00ce4238a0.jpg" / /p p   论文题目为A LIMA1 variant promotes low plasma LDL-cholesterol and decreases intestinal cholesterol absorption(《LIMA1基因变异减少小肠胆固醇吸收并降低血浆低密度脂蛋白胆固醇水平》)(doi: 10.1126)。武汉大学宋保亮教授和新疆医科大学第一附属医院马依彤教授为共同通讯作者,中国科学院上海生化细胞所张莹钰博士、新疆医科大学第一附属医院付真彦博士、武汉大学生命科学学院魏健博士为共同第一作者。 /p p   血浆中“低密度脂蛋白胆固醇(LDL-C)”浓度升高是导致心脑血管疾病的主要风险。LDL-C水平受遗传和饮食双重控制,了解人体LDL-C水平的遗传调控机制是疾病诊治和医药研发的先决条件,而目前只有少数影响LDL-C的基因被鉴定出来。不同种族之间LDL-C的含量及冠心病的发病率有很大差异。 /p p   为揭示新的胆固醇调控基因,宋保亮课题组与马依彤团队合作,在针对新疆人群心脑血管疾病的风险调查中,发现了一个家族性低LDL-C的哈萨克族人家系,通过全基因组外显子测序和基因关联性分析,发现LIMA1基因罕见移码突变(K306fs)与低LDL-C显著相关。深入研究发现,LIMA1特异性表达在小肠上,通过与NPC1L1蛋白(该通路也由宋保亮团队前期工作系统揭示)互作将后者锚定到肌球蛋白Myosin Vb上,从而调控小肠胆固醇的吸收。 /p p   这项研究为降胆固醇提供了新的药物研发靶点。该研究还有助于理解为什么哈萨克族人虽然消耗较多牛羊肉,但心脑血管疾病患病率低于汉族人群。 /p p & nbsp /p p strong   中科院生物物理所揭示玉米光系统I的结构与捕光复合物I和II超复合 /strong p style=" TEXT-ALIGN: center" img title=" 3.jpg" src=" http://img1.17img.cn/17img/images/201806/insimg/73a19499-eb3e-4e39-953e-3feaee068674.jpg" / /p p   在氧合光合作用期间,光系统II(PSII)和I(PSI)串联操作并紧密耦合以允许有效的光驱动电子传输。两种光系统都是含有核心复合物和外围天线系统的多亚基超分子复合物。在光合作用的工厂中,外围天线由集光组件(LHCs)组成。形成PSI-LHCI复合物的LHCIs(含有Lhca载脂蛋白)与PSI核心相关,而LHCII(含有Lhcb载脂蛋白)大部分与PSII核心相连,构成PSII-LHCII复合物。 PSI或PSII的天线系统具有不同的成分组成,因此具有不同的光吸收性质。红色和远红光分别优先刺激PSII和PSI,并且波动的照射可能导致两个光系统的不均匀激发。 /p p   平衡捕光对高效光合作用至关重要 因此,植物已经在自然环境中不断变化的光照条件下发展了短期和长期的适应。状态转换是在几分钟的时间尺度上发生的短时间响应,并且在光质改变时允许两个光系统之间的能量均衡分布。在状态转换期间,三聚LHCII(由Lhcb1-3的不同组合组成)可逆地被磷酸化和去磷酸化,该过程由质体醌(PQ)的氧化还原状态控制并受叶绿体激酶(STN7)和磷酸酶(PPH1)称为TAP38)在植物中。在状态1中,LHCII主要与PSII相关并将激发能量转移到PSII核心。在有利于PSII激发的光照条件下,PSII的过度激活导致PQ库的减少,STN7激酶的激活以及随后LHCII的N末端区域的磷酸化。一部分磷酸化的LHCII(移动LHCII)在类囊体膜内从PSII横向移动到PSI,形成PSI-LHCI-LHCII超复合物并导致从状态1切换到状态2.移动LHCII作为PSI除了LHCI之外,还增加了向PSI核心转移的能量。在自然光条件下,状态转换对于优化植物生长和适应性是必需的。 /p p   在16-分辨率下的PSI-LHCI-LHCII超复合物的结构揭示了与LHCI相反侧上的PSI核心相关的单一LHCII三聚体,然而蛋白质 - 蛋白质和LHCII和PSI之间的色素 - 色素相互作用尚不清楚。尽管以前已经解决了植物LHCII的晶体结构,但是在这些结构中没有观察到含有磷酸化位点的LHCII的N-末端尾部。关于磷酸化LHCII如何增强其与PSI的相互作用,这仍然是一个未解决的问题。植物PSI-LHCI包括由14个亚基(PsaA至L,PsaN和PsaO)组成的核心复合物和包含4个组成两个异二聚体(Lhca1-Lhca4和Lhca2-Lhca3)的四个LHCI蛋白的外围天线系统。最近的豌豆PSI-LHCI晶体结构揭示了16个亚基的结构和位置,但在这些结构中未观察到两个植物特异性亚基PsaN和PsaO。完整的PSI-LHCI结构应该能够更好地理解PSI-LHCI复合物内的能量转移。 /p p   在这项研究中,来自中国科学院生物物理所的章新政教授与李梅教授团队利用冷冻电镜解析的玉米PSI-LHCI-LHCII的结构,揭示了LHCII和PSI之间的识别位点。 PSI子单元PsaN和PsaO分别在PSI-LHCI界面和PSI-LHCII界面处观察到。 每个亚基通过一对叶绿素分子将激发传递给PSI核心,从而揭示天线与PSI核心之间能量转移的前所未见的路径。这些发现阐明了全新的能量传递路径,让我们能更好地了解光合作用这一重要的生化反应。 /p p & nbsp /p p style=" TEXT-ALIGN: right"   (来源:南京农业大学新闻网、武汉大学新闻网、iNature微信公众号等) /p /p /p /p
  • 太原市中心医院258.00万元采购洗板机,酶标仪,气体流量计,荧光显微镜
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 太原市中心医院太原市市县乡一体化胸痛/卒中中心高质量发展建设项目无创颅内压监测、智能脑卒中预防筛查分级分析仪等医疗设备公开招标采购的采购公告 山西省-太原市-小店区 状态:公告 更新时间: 2023-09-28 招标文件: 附件1 一、项目基本情况项目编号: 1401992023AGK00984 项目名称: 太原市中心医院太原市市县乡一体化胸痛/卒中中心高质量发展建设项目无创颅内压监测、智能脑卒中预防筛查分级分析仪等医疗设备公开招标采购 资金来源:财政资金预算金额:2,580,000元最高限价:2,580,000元采购需求:共一包,具体以第四部分采购需求为准。 采购清单 序号 名称 数量 预算单价(元) 金额小计(元) 对应的中小企业划分标准所属行业 1 智能脑卒中预防筛查分级分析仪 1台 400,000 400,000 工业 2 多功能酶标仪 1台 250,000 250,000 工业 3 荧光显微镜 1台 250,000 250,000 工业 4 免疫定量分析仪 1台 140,000 140,000 工业 5 无创颅内压监测 1台 550,000 550,000 工业 6 便携颅内血管多普勒TCD 1台 270,000 270,000 工业 7 睡眠呼吸osa初筛监测仪 3台 50,000 150,000 工业 8 全数字彩色多普勒超声诊断系统(便携) 1台 120,000 120,000 工业 9 多功能卒中溶栓称重床 2台 100,000 200,000 工业 10 ﹣80度医用冰箱 1台 95,000 95,000 工业 11 动态血压监测仪 5台 20,000 100,000 工业 12 心电图检查仪 2台 20,000 40,000 工业 13 快速血脂检测仪 5台 2,000 10,000 工业 14 快速血糖检测仪 10台 500 5000 工业 总价(元) 2,580,000 产品描述 序号 名称 参数要求 1 智能脑卒中预防筛查分级分析仪 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》1、主要参数1.1 仪器类型:数据采集终端-全自动生化分析仪一台,可实现脑卒中指标快速联合检测;结果可按卒中危险分层指标,可自动划分“低危、中低危、中高危、高危、极高危”≥5个危险等级并出具报告;1.2 分析速度: 分光光度法≥200测试/小时;1.3 光学系统:免维护;波长:340nm-800nm,≥8个波长;1.4 检测诊断脑中风危险指标:【胆固醇(CHO),甘油三酯(TG),高密度脂蛋白胆固醇(HDL-C),低密度脂蛋白胆固醇(LDL-C),超敏C反应蛋白(hs-CRP),脂蛋白a(LPa),载脂蛋白E(APOE),同型半胱氨酸(HCY)、缺血修饰白蛋白(IMA)、血管紧张素转化酶(ACE),纤维蛋白原降解产物(FDP),D二聚体(D-D),糖化血清蛋白(GSP)、糖化白蛋白(GA),游离脂肪酸(FFA),脂蛋白相关磷脂酶A2(LP-PLA2)、低密度脂蛋白胆固醇(sdLDL-C)】;1.5 分析方法:终点法、动力学法;1.6 反应时间:≤10分钟;1.7 干扰项目:可以设置干扰项目,避免检测项目间干扰;1.8 同时检测项目:≥20项;1.9 最小样品体积:≤150ul;1.10 最小总反应体积:≤200ul; 1.11 温度控制系统:设定温度:37℃;温度准确度:36.7℃-37.3℃;温度波动度:0.2℃;1.12 孵育温度:37℃;1.13 试剂仓温度:2℃-8℃,系统自动记录试剂盘温度变化;1.14 检测计数:系统自动统计各项目检测次数,总检测数;1.15 恒温孵育系统:干式恒温系统或非接触式液体恒温系统或接触式液体恒温系统;1.16 冷启动时间:≤10分钟;1.17 质控和校准管理:使用独立冷藏样品盘,质控和定标可随时测定;1.18 光源:使用卤钨灯,寿命≥1800小时;1.19 检测波长:≥8个固定波长,波长范围340nm-800nm;1.20 探针功能:具有样品探针液面探测、防撞保护功能、防堵针报警、自动处理功能;1.21 耗水量:≤10 L/小时;1.22 进样系统:轨道式样品架进样或圆盘方式进样;1.23 加样功能:样本针,具有液面感应、随量跟踪、立体防撞保护、自动清洗等功能;1.24 自动吸样:2ul-50ul,0.1ul递进;1.25 自动清洗功能:测定仪自动清洗加样装置;1.26 扫描功能:1.26.1 能实现标本条码扫描: 免费与医院LIS系统连接,自动识别条码信息;1.26.2 能实现试剂条码扫描:免费自动识别试剂条码,无需手动添加试剂信息;1.27 数据储存功能:具有数据贮存功能,系统自身对数据进行了备份处理,将数据储存在计算机的硬盘中;1.28 数据输出功能:能实现专业的评估报告输出;具有数据统计功能,设有测试统计、工作量统计、收费统计和结果统计;1.29 测定方法:具有终点法,两点法,动力学法等测定方法;1.30 定标模式:具有线性(单点、两点和多点)、logit-log4p、logit-log5p、spline、指数函数等≥6种定标模式;1.31 急诊功能:急诊样本,可随时插入,不限数量;1.32 批检测样本:每批≥20个,可无限量多批次输入;1.33 数据库共享功能:可以实现建立本地数据库。2、硬件配置要求智能脑卒中预防筛查系统软件系统运行所需要的最小硬件配置要求如下:2.1 CPU配置要求:CPU 2.0 GHz 处理器或同等处理器以上;2.2 内存配置要求:2 GByte RAM以上;2.3 硬盘配置要求:100 GByte以上;2.4 主显示器要求:主显示器的屏幕分辨率≥1024x768;3、软件功能及要求3.1 配套脑卒中风险辅助筛查软件一套;3.2 系统可实现自动风险评估功能,具备医生签字功能,能快速实现意见审定工作;具备同时实现在客户端和网页端提交风险评估数据功能;可与医院信息系统对接,实现医院数字化平台的信息共享。 2 多功能酶标仪 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》主要参数1.1 操作方式:外接电脑全面控制,鼠标、键盘操作;1.2 测试方法:速率法、两点法、终点法;1.3 测量范围:0Abs-4.000Abs;1.4 滤光片: 配置≥5片(340nm、405nm、450nm、492nm和630nm) ,最多可装载8片,配置的每个波长均具备检测功能;1.5 紫外光检测:具备紫外光检测功能,满足微量样本的临床生化分析需求,可开展AST、ALT等生化检测项目;1.6 重复性:<0.5%;1.7 稳定性:±0.005;1.8 振板功能:具备速度和时间可调; 1.9 孵育功能:内置孵育器,可实现机内实时孵育;1.10 孵育温控范围:高于环境温度4℃至50℃之间;1.11 项目设置:在同一块板上可同时设置12个以上不同的项目;1.12 对照设置:可在任意位置设置5对以上的阴阳性对照;1.13 存储:可存储500组以上程序,10万个以上测试结果;1.14 质控:可做Westguard多规则质控和即刻法质控,可存储≥3年的质控图;1.15 配备全自动洗板机一套。 3 荧光显微镜 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》主要参数1.1 主机:1.1.1 光学系统:无限远校正光学系统,国际标准齐焦距离≤45mm。保证光通过目镜到物镜整个光路中的所有棱镜及镜片时的绝对平行; 1.1.2 具有明场、荧光观察方式,同时可扩展相差,偏光等观察方式;1.1.3 ≥五位物镜转换器;1.1.4 放大倍数:≥40X;≤1000X;1.1.5 透射光照明:LED照明;1.1.6 调焦:带有同轴粗、微调焦装置;调焦旋钮高度可调节, 操作舒适;1.1.7 宽视野三目镜筒:视野≥20mm,倾角≥30度;1.1.8 载物台:低位置同轴驱动旋钮的高抗磨损性陶瓷覆盖层载物台;用户可自己将操作杆左右手更换;X-Y移动无暴露齿条;1.1.9 可扩展五人共览,最多十人共览。1.2 光学部件:1.2.1 万能聚光镜:带有孔径光阑的聚光镜,有效光阑刻度上具有彩色标注且与物镜颜色代码对应,可确保快速正确匹配物镜与光阑;1.2.2 高性能消色差物镜:4X、10X 、20X 、40X、100X。1.3 荧光部件1.3.1 LED荧光光源 ;1.3.2 使用寿命长≥1万小时,无需更换灯泡;1.3.3 激发模块可单独控制;1.3.4 三色荧光滤块适用于常规荧光标记应用;1.4 数码摄像头1.4.1 芯片:1/1.8英寸,逐行扫描;1.4.2 630万分辨率、最大分辨率≥3072*2048;1.4.3 曝光时间100us-16s,手动/自动/区域曝光;1.4.4 内置不低于64MB图像缓存,电子快门;1.4.5 A/D转换:12bit;1.4.6 传输支持不低于高速USB3.0,全分辨下最高30fps;。1.5 分析软件1.5.1 采集图像:支持多种型号专业CCD,支持TWAIN接口;1.5.2 对图像中的直线显示线上灰度强度变化,从而反映图像中各个点的光亮度以及色阶深度的变化特性;1.5.3 在图像上添加注释、箭头等功能,可以表示图像中的重点关注部位;1.5.4 可调节亮度、对比度、伽玛值以及灰度显示范围,并可以单独调节RGB各通道的亮度,对图像添加伪彩色、改变色彩模式以及色阶位数等功能,可以改变图像分辨率、旋转图像等各种操作,支持反转、低通、高通、锐化等滤镜,使图像关注点和各荧光通道获得最佳的显示效果;1.5.5 可对单荧光通道图片做色彩合成;1.5.6 合成透射光和荧光通道图像,显示荧光在细胞上的定位图像;1.5.7 输入硬件信息即可实现添加标尺功能;1.5.8 可以做离线白平衡、视场平整度以及背景校正等处理;1.5.9 可以测量直线长度、曲线长度、矩形面积、圆面积、周长、角度等多个参数,并把测量结果输出到EXCEL,并于后期分析处理。 4 免疫定量分析仪 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》主要参数1.1 检测项目:磷脂酶、NT-proBNP、D-Dmier、cTnI/CK-MB/MYO三联卡、PCT/CRP二联卡、S100-β、NGAL;1.2 检测通量:可同时检测样本数≥4,每项检测时间≤15分钟;1.3 检测操作:无需单独孵育器无需人工值守自动孵育并检测;1.4 定标:内标技术,临床使用无需额外定标和导入标准曲线;1.5 检测样本:全血、血清、血浆、脑脊液;1.6 样本预处理:直接加样,无需稀释等预处理;1.7 项目识别:自动识别;1.8 打印:直接连接打印机打印正式检验报告,提供激光打印机一套;1.9 质控:厂家负责提供质控测试卡(液);1.10 维保:保修≥5年,维修响应时间≤1小时,维修超过24小时提供备用机;1.11 通讯:4G模块实现远程求助以及上下级医院之间的通讯。 5 无创颅内压监测 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》主要参数1.1 刺激光源 1.1.1 光源:LED黄光;1.1.2 频率:至少0.3Hz-1.25Hz可调;1.1.3 脉冲触发宽度:至少2ms-940ms可调1.1.4 闪光模式:“0”、“1”可选。1.2 放大器: 1.2.1 放大倍数≥2×104 ;1.2.2 共模抑制比≥128db;1.2.3 放大器带宽:0.2Hz-35Hz和0.2Hz-350Hz两组可选; 1.2.4 幅频特性:(1)放大器带宽0.2Hz-35Hz时,0.2Hz-35Hz范围内输出信号变化幅度不超过3db;(2)放大器带宽0.2Hz-350Hz时,0.2Hz-350Hz范围内输出信号变化幅度不超过3db。1.2.5 阻带特性:无输入信号时(输入短路),输出电压≤0.1V 。1.3 颅内压监测范围:70㎜-1200㎜;1.4 测试误差:<8% ;1.5 检测时间:≤1分钟 ;1.6 连续工作时间≥12h ;1.7 控制参数基准自动校验 ;1.8 检测电极:葵花状电极、插接式医用一次性针电极;1.9 显示屏:防爆彩色液晶触摸显示屏,能自由翻盖、任意角度定位; 1.10 主要功能:颅内压无创检测及监护、脑灌注压的换算;1.11 特殊功能:脑疝预警、药效比对、病症聚类;1.12 仪器为推车一体式机型;1.13 激光打印机,最大可打印A4规格报告单 ;1.14 内置UPS不间断电源,当外部电源断开后,UPS电源供电15分钟以上 ;1.15 全中文操作系统,可快速录入病人姓名、年龄、住院号、检测医师等信息;1.16 履约验收时提供国家法定检测机构对设备所做的接触人体部件的生物相容性检验报告:1.16.1 检测电极符合生物相容性国家标准的由法定检测机构所出具的检验报告;1.16.2 闪光眼罩符合生物相容性国家标准的由法定检测机构所出具的检验报告。2. 主要配置数量:2.1无创颅内压监测仪主机 1台;2.2 无创颅内压监测仪软件(免费与医院信息系统对接) 1套; 6 便携颅内血管多普勒TCD ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》1、主要技术参数与性能要求:1.1 FFT采样率128、256、512、1024;1.2 探头工作模式及流速范围:流速测量范围不窄于20cm/s-1000cm/s;1.3 取样容积范围:1nm-20 mm;1.4 深度范围:6mm-195 mm;1.5 增益范围:1dB-55 dB;1.6 动态范围:1dB-40 dB;1.7 功率范围:0%-100 %,在保持高灵敏度和高穿透力的基础上,功率范围在0mw-180mw之间;1.8 角度补偿范围:0°-85°;1.9 滤波调节范围:50Hz-800Hz(12档);1.10 谱图色阶:≥5种,操作界面可调节;1.11 M波色阶:≥6种,操作界面可调节;1.12 检查参数:收缩期流速(Vs)、平均流速(Vm)、舒张期流速(Vd)、阻力指数(RI)、搏动指数(PI)、收缩期/舒张期速度比值(S/D)、心率(HR)、加速度(a)、频宽指数(SBI)、热指数(TI)、短暂高强度信号(HITS);1.13 通道/深度:单通道/单深度、单通道/九深度;1.14 多深度-M波联动:各深度的深度范围与M波深度范围一致,调节M波的深度坐标,多深度的深度范围相应变化;调节多深度的深度,不影响M波的深度坐标;1.15 智能流程:检测技术、分析诊断;1.16 报告单功能:多种模板选择、模板自定义、报告单另存为图片/PDF文件、血管批量导入报告单、词条可编辑导入或导出、快速出报告单(从检查页面直接出报告单)、从病案界面直接出报告单;1.17 联网及统计:数据分类统计、网络数据库读写;1.18 探头要求:W 2M探头1个,CW 4M探头1个;1.19 探头保护功能:探头自动休眠功能。2、主要配置:2.1 彩色经颅多普勒诊断系统软件,免费与医院信息系统对接;2.2 TCD主机、数据线; 7 睡眠呼吸osa初筛监测仪 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》1、主要技术参数与性能要求1.1 设备适用于儿童及成人;1.2 通道数≥12导,包括呼吸气流(口鼻气流压力和口鼻气流热敏)、胸腹呼吸(独立RIP胸导联、独立RIP腹导联)、脉搏血氧饱和度、脉率、脉搏波、体位等参数;1.3 软件分析参数定义符合最新睡眠医学会睡眠及其相关事件判读手册;1.4 设备腕部主机具备全彩液晶内屏;1.5 设备腕部主机可以显示记录状态;1.6 设备采用内置锂电池供电,实时监测模式下续航时间≥30小时1.7 腕部主机设备具备Type-C四合一接口1.8 主机内置双蓝牙模块,可通过电脑端蓝牙无线连接;1.9 设备具有环境光监测功能,可通过环境光自动识别出关灯和开灯时间;1.10 设备内存卡可不≥32Gb;1.11 设备主机具有可连续记录患者数据的功能;1.12 软件可对不同信号自定义设置高通滤波、低通滤波、工作频率;1.13 报告可导出为WORD、EXCEL、PDF格式,同时可自定义报告模板;1.14 数据采集格式采用国际通用EDF格式,可将数据导入至其它所需要软件平台进行分析;1.15 软件具有一键导出不同病例患者的各项监测生理指标至Excel中,便于临床医务人员进行科研及其他数据收集操作;1.16 分析软件具有全中文操作界面,可生成全中文分析报告;1.17 软件可自动翻页和滚动,速度不低于30s/屏,时间可调;可以手动或自动分析呼吸事件、缺氧等事件,并最终生成统计结果和报告。2、主要设备配置2.1 腕部主机1台;2.2 胸部主机1台; 8 全数字彩色多普勒超声诊断系统(便携) ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》1、主要设备配置与配件:1.1 主机;1.2 凸阵探头。2、主要技术参数与性能要求:2.1 显示器:≥12英寸显示器;2.2 显示器角度可上下调整90°2.3 数字波束增强器2.4 双波束合成2.5 探头接口:≥2个探头接口, 互通互用,全部激活; 2.6 二维灰阶模式2.7 谐波成像模式2.8 M型模式2.9 彩色M型模式2.10 具备解剖M型2.11 三同步成像模式2.12 彩色多普勒成像2.13 频谱多普勒(包括脉冲多普勒、高脉冲重复频率、连续多普勒)2.14 能量多普勒成像2.15 组织多普勒成像,要求不低于四种模式组织多普勒(TVI,TEI,TVM,TVD)2.16 频谱多普勒成像2.17 具备二维双幅对比成像2.18 具备宽景成像2.19 具备IMT自动测量2.20 具备梯形成像2.21 具备3D/4D容积成像2.22 具备组织特异性成像2.23 具备空间复合成像技术2.24 具备原始数据处理,可对存储的图像进行参数调节2.25 具有一键优化功能,支持二维、彩色多普勒、频谱多普勒一键优化2.26 具有穿刺引导功能,穿刺线角度可视可调,可左右、平行移动调节穿刺线2.27 具备网络连接DICOM 3.02.28 视频/音频输出、输入接口:video、USB2.0;输出接口:video、USB2.0、VGA)2.29 具备USB口≥2个,且为通用模式2.30 具备光盘刻录机2.31 具备喷墨、数字、视频打印机2.32 最大显示深度≥38cm;2.33 具备实时动态聚焦,发射聚焦≥8段2.34 B、B/M、PWD、Color、 Doppler模式下声输出功率可视可调 2.35 系统总动态范围:30-180dB2.36 总增益调节范围≥100dB可视可调2.37 18厘米深度,全视野下,腹部探头二维帧频≥24帧/秒;心脏探头二维帧频≥60帧/秒2.38 具备全局放大功能,支持前端放大和后端放大,最大放大倍数≥10倍2.39 伪彩图谱: ≥8种2.40 B型灰阶图:≥10级可调2.41 包括速度、速度方差、能量、方向能量显示等2.42 取样框偏转: ≥±25度 (线阵探头)2.43 18厘米深度,全视野下,腹部探头彩色帧频≥8帧/秒,心脏探头彩色帧频≥18帧/秒2.44 彩色优先级≥100级可视可调2.45 具备同屏左右双幅同时显示B+C功能2.46 具备B/C 同宽2.47 具备彩色隐藏功能2.48 包括脉冲多普勒、高脉冲重复频率、连续多普勒2.49 脉冲多普勒最大测量血流速度(PW)≥20m/s2.50最小测量速度,非噪声信号:≤0.2mm/s2.51 显示布局:支持不低于5种不同模式显示布局,支持全屏频谱2.52 取样宽度及位置范围:0.5-40mm 2.53 频谱多普勒自动包络测量技术2.54 频谱多普勒角度快速矫正2.55 零位移动:≥16 级2.56 多种导出图像格式:动态图像、静态图像以PC格式直接导出,无需特殊软件即能在普通PC 机上直接观看图像。2.57 内置硬盘容量≥500 GB,支持动、静态图像的采集、存储、回放和传输 2.58 电影回放:≥1024帧2.59 图像格式:支持JPG、BMP3探头腹部探头 9 多功能卒中溶栓称重床 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》1、技术参数与性能要求:1.1 配置 床头、四小护栏、中控刹车、称重系统;1.2 规格尺寸≥2200mmx1020mmx(450-730)mm(不包括床头高度);1.3 升降功能。1.3.1 背部升降:升降角度0°-80°;1.3.2 腿部升降:升降角度0°-50°;1.3.2 整体升降:整体升降高度≥280mm;1.3.2 左翻身:33°-37°;1.3.2 右翻身:33°-37°;1.3.2 前倾角度:10°-14°;1.3.2 后倾角度:10°-14°。1.4 床面板:1.4.1 床面:钢板厚度≥1.0mm,钢板内填加强筋增加强度,有透气孔;床板四周内焊接加强筋;1.4.2 病床靠背与腿板升降连接采用2.5壁厚管材;1.4.3 床板链接采用钢质铰链,模具冲压成型,单片厚度3mm。1.5 床身主要部件:1.5.1 床框采用≥30mmx60mmx2.0mm碳钢矩管;1.5.2 床体四角有输液架插孔,根据需要任意选择输液位置。1.6 ABS阻尼护栏:阻尼隐藏式护栏,可立卧定位,装有气弹簧缓冲护栏提升与下降的速度,通过提手开关实现上下提升功能。四片分体内宿式护栏,塑钢材质一体注塑成型制作,背部及腿部护栏可分别升降管制,内缩式护栏设计使病患转床时具零间隙转运功能,避免跌落。1.7 床头床尾板:1.7.1 塑料注塑成型;1.7.2 挂结构,拆卸方便;1.7.3 非中空设计,前后塑料局部融合。1.8 脚轮:1.8.1 床脚采用≥30mmx50mmx2.0mm钢制框架; 1.8.2 中控脚轮四个,床尾中控刹车功能,转动应灵活、可靠,脚轮与床架装配牢固,制动后病床不会有相对滑动,方便推行及控制,脚轮主架和轮芯采用强承载能力的材质,轮面材质耐磨,具备耐油、耐水、耐药性和耐霉菌的特性,同时还具有减震降噪的作用,脚轮内部配备精密轴承,降低噪音。1.9 传动系统:电机≥6个,单个电机推力≥6000N,电机电源参数24V,电动实现背部升降,腿部升降,整体升降。整体升降高度:280MM(床面离地面最低450MM,离地面最高730MM),背部升降范围: 70°-80° ,脚部升降范围:30°-40°,右翻身:33°-37°,左翻身33°-37°,前倾角度:10°-14°,后倾角度:10°-14°;1.10 控制系统:通过手控板操作完成医疗床各种功能,有背部升降(上下),腿部曲伸(上下),整体升降(上下),左翻身、右翻身、前后倾斜功能的按键;1.11 配套含输液架:伸缩式,四钩可折叠,不锈钢材质,高低可调带锁紧装置;1.12 配套含床垫:床垫尺寸和分段与床相配,床垫套全脱设计;1.13 承重:床体静态承重≥400KG。 10 ﹣80度医用冰箱 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》1、主要技术参数与性能要求:1.1 样式:立式;1.2 容积:≥700L;1.3 运行功率:≤1400W;1.4 温度范围:-40℃— -86℃;1.5 噪音:部件间装有减震材料,机组周围装有防火吸音棉;1.6 外门隔热层:无CFC高密度聚氨酯发泡;1.7 内门:2扇,材质为不锈钢;1.8 内门隔热层:无CFC高密度聚氨酯发泡;1.9 搁板:3层,材质为不锈钢,隔板挂条带刻度,可调节高度;1.10 显示面板:屏幕尺寸为液晶触摸屏,可进行操作及显示各种与设备相关的信息; 屏幕显示信息包括:箱内温度、环境温度、输入电压、显示消音、设备运行模式、日期时间、屏幕状态(是否锁屏)、设备运行状态(是否正常);屏幕可显示温度历史曲线,可直接实现历史温度曲线查询及下载;屏幕可显示异常信息,可直接查询最近半年出现的各种冰箱运行异常信息;屏幕可显示两种运行状态“节能模式”“高性能模式”,用户可根据实际需求选择运行状态;屏幕可显示两种权限管理方式“授权模式”“普通模式”,供用户选择,更科学的保障冰箱的运行安全;屏幕可显示开门信息以及下载1.13 温度控制:采用微电脑控制系统;电子温度控制及显示,断电记忆,调节精度为0.1℃;1.14 报警系统:具备高低温报警、传感器故障报警、冷凝器脏堵报警、环温异常报警、电压异常报警、断电报警、门开报警、电池电量低报警、远程报警接口,所有的报警信息以及历史记录可在液晶屏查询;1.15 报警方式:具备声光报警方式;所有报警可通过预留的远程报警端口实现远程报警,也可选配短信通知等报警方式,报警逻辑使蜂鸣器被静音后,报警状态持续存在的情况下,蜂鸣器会恢复工作;1.16 电器安全:备用电池确保断电后报警及记录内部温度72小时,电池寿命提醒功能可在电池需更换前提示用户;键盘锁定、密码保护功能,防止随意调整运行参数;断电保护:在恢复供电时,所有设备的同时启动会对电网造成较大冲击,从而可能导致断路器跳闸;针对这种情况特别设计的设备延时启动功能可使设备在恢复期间延时数分钟启动,使设备平稳的重新运行;宽电压带适用:在198V-242V范围内正常使用; 11 动态血压监测仪 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》1、设备配置与配件:1.1 配置1采集盒子;1.2 软件。2、技术参数与性能要求:2.1 数据连接:USB数据线、蓝牙;2.2 测量方法:示波法;2.3 压力测量范围:0kPa-37kPa(0mmHg-280mmHg);2.4 脉率测量范围:50bpm-240bpm;2.5 分辨率:血压读数的分辨率为1mmHg,脉搏读数的分辨率为1BPM;2.6 准确性:应符合标准国家相关要求,无论升压还是降压,在量程中的任何测量点上,袖带内压力测量的最大误差应为±3mmHg;2.7 脉率准确性:±2BPM;2.8 最大袖带压:血压监测仪袖带压力超过40.0kPa(300mmHg)时应自动打开电磁阀放气;袖带压处在2kPa(15mmHg)以上时间小于3min;2.9 泄气:在充气系统阀门全开快速放气的情况下,压力从35kPa(260mmHg)降到2kPa(15mmHg)的时间不超过10s;2.10 数据储存器:闪存储存高达999个读数;2.11 测量间隔时间:血压测量的间隔时间可选择为5-120分钟内每间隔5分钟的任何一种,时间误差不超过选择值的5%;2.12 内置加速感应器,支持患者运动状态检测,帮助血压分析;2.13 血压示值范围:0mmHg- 300mmHg;2.14 测量范围:收缩压:30mmHg-250mmHg,舒张:10mmHg-220 mmHg。3、动态血压分析软件:3.1 存储记录全过程动态血压波形;3.2 分析界面操作简洁,可提供符合临床使用习惯的汇总页报告;3.3 具备设置昼、夜、早晨、特殊等多种不同时间间隔测量方案;3.4 为临床提供丰富全面的图形报告,包含圆饼图、散点图、趋势图、直方图;3.5 免费与医院信息系统连接。 12 心电图检查仪 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》1、基本要求:1.1 同屏显示,同步采集,同步热敏记录12导心电波形;1.2 显示屏≥9.0英寸,屏幕亮度可调,具备背景网格显示,支持全屏触控操作;1.3 本机具有一体化标准物理全键盘设计,支持拼音、五笔等输入法。2、性能要求:2.1 A/D转换:24bit;2.2 采样率:≥16000Hz;2.3 频率响应:0.01Hz-250Hz;2.4 内部噪声:≤12.5μVp-p;2.5 时间常数:≥3.2 s;2.6 耐极化电压:±910mV;2.7 输入电流:≤0.01μA。3、功能要求:3.1 ECG输入通道:标准12导联心电信号同步采集;3.2 导联选择:手动/自动可选,支持标准导联体系,同时具备导联标识自定义功能;3.3 采集时间设置:波形实时采集和冻结时长均可达60s,同时可进行两页、三页、四页紧凑版热敏打印格式;3.4 支持实时采样、预采样、触发采样、周期采样模式,支持节律分析;3.5 可同屏显示12导同步心电波形,同时支持3x4、3x4+1R、3x4+3R、6x2、6x2+1R、6x2+3R、12x1等多种显示布局;3.6 屏幕显示信息:心电波形、时间、心率、ID、工作状态、导联脱落信息、联网状态信息、外接设备状态信息等;3.7 自动异常报警功能:可自动对异常心率、导联脱落、外设连接、高频信号干扰情况进行实时监测报警;3.8 支持起搏检测功能;3.9 热敏打印布局:3x4、3x4+1R、3x4+3R、6x2、6x2+1R、6x2+3R、12x1;3.10 热敏记录纸:折叠纸;3.11 设备内置存储器,可存储病历≥800例,存储满后机器可循环存储;3.12 支持U盘、SD卡的扩容存储。4、电源:交直流两用且自动转换,电源要求100-240V(50/60Hz), 内置锂电池充满电后可连续工作≥1小时。 13 快速血脂检测仪 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》主要参数1.1仪器要求:小型快速检测仪器1.21.2 配套试剂:血脂测试条;1.3 检测项目:总胆固醇(CHOL),甘油三脂(TG),高密度脂蛋白(HDL),低密度脂蛋白(LDL);1.4 样本类型:全血(未梢全血或静脉全血)、血清、血浆;1.5 样本加样量:<40μL;1.6 检测速度:≤2分钟;1.7 结果表达:液晶显示结果,并标配外接打印机打印,标准USB接口,可与计算;1.8 通信进行数据传输;1.9 评估系统:仪器自带血脂管理及冠心病风险评估系统软件;1.10 电源:AAA电池/DC4.5V;1.11 存储:≥500组数据及其测试日期及时间以及编号;1.12省电模式:2分钟内无任何操作分析仪自动关机;1.13 分析仪尺寸:小型设备可手持; 14 快速血糖检测仪 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》主要参数1.1 检测原理:FAD-GDH;1.2 血样:新鲜的毛细血管全血、静脉全血、动脉全血;1.3 采血方式:虹吸式;1.4 检测值:校正为血浆血糖值;1.5 血样量:≥0.8uL;1.6 测量方法:葡萄糖氧化酶法;1.7 检测时间:≤5秒;1.8 检测范围:1.1mmol/L-33mmol/L;1.9 存储器:1000个左右血糖或血糖质控液测量结果;1.10 自动关闭:2分钟内无任何操作;1.11 Hct范围:20%-70%;1.12 退条方式:自动退条;1.13 准确度及干扰:可通过≥20多种药物和代谢产物干扰; 注:1.所有招标内容除特别标注为“进口产品”外,均采购国产产品,即非“通过中国海关报关验放进入中国境内且产自关境外的产品”,投标货物及服务各项技术标准应当符合国家强制性标准。2.招标内容标注为“进口产品”的,满足需求的国产产品和进口产品按照公平竞争原则实施采购。合同履行期限:签订合同之日起30日历天内完成。本项目不接受联合体投标。二、投标人资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定:(1)具有独立承担民事责任的能力;(2)具有良好的商业信誉和健全的财务会计制度;(3)具有履行合同所必需的设备和专业技术能力;(4)有依法缴纳税收和社会保障资金的良好记录;(5)参加政府采购活动前三年内,在经营活动中没有重大违法记录;(6)法律、行政法规规定的其他条件。2.落实政府采购政策需满足的资格要求:无3.本项目的特定资格要求:投标人投标时须提供投标人的《医疗器械经营许可证》或《第二类医疗器械经营备案凭证》。三、招标文件获取时间及方法 自公告发布之日起 5 个工作日,登录中国政府采购网山西分网(www.ccgp-shanxi.gov.cn),通过项目采购公告下方点击“潜在供应商”免费下载招标文件。四、提交投标文件截止时间、开标时间、地点和方式提交投标文件截止时间及开标时间:2023年10月20日09点 30分(北京时间)方式:登录中国政府采购网山西分网上传投标文件。投标截止时间前未完成提交的,将拒收投标文件。开标时登录中国政府采购网山西分网在规定时间内解密电子投标文件,解密设备及网络环境由投标人自行准备。五、招标公告期限自本项目招标公告发布之日起5个工作日。六、其他补充事宜1.投标人应于开标前在中国政府采购网山西分网(www.ccgp-shanxi.gov.cn)进行供应商注册。 联系电话:957632.投标人参与项目遇到系统操作问题,请及时联系客服电话。联系电话:95763 七、对本次招标提出询问,请按以下方式联系1.采购人信息名称: 太原市中心医院 地址: 山西省太原市小店区汾东大街256号 联系人: 张玉梅 联系电话: 13835116510 2.集中采购代理机构信息名称:太原市公共资源交易中心 地址:太原市万柏林区南屯路1号太原市为民服务中心四层 联系人:才贺涛 联系电话:0351-2377096 附件信息: 公开招标文件.doc597.4K × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:洗板机,酶标仪,气体流量计,荧光显微镜 开标时间:2023-10-20 09:00 预算金额:258.00万元 采购单位:太原市中心医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:太原市公共资源交易中心 代理联系人:点击查看 代理联系方式:点击查看 详细信息 太原市中心医院太原市市县乡一体化胸痛/卒中中心高质量发展建设项目无创颅内压监测、智能脑卒中预防筛查分级分析仪等医疗设备公开招标采购的采购公告 山西省-太原市-小店区 状态:公告 更新时间: 2023-09-28 招标文件: 附件1 一、项目基本情况项目编号: 1401992023AGK00984 项目名称: 太原市中心医院太原市市县乡一体化胸痛/卒中中心高质量发展建设项目无创颅内压监测、智能脑卒中预防筛查分级分析仪等医疗设备公开招标采购 资金来源:财政资金预算金额:2,580,000元最高限价:2,580,000元采购需求:共一包,具体以第四部分采购需求为准。 采购清单 序号 名称 数量 预算单价(元) 金额小计(元) 对应的中小企业划分标准所属行业 1 智能脑卒中预防筛查分级分析仪 1台 400,000 400,000 工业 2 多功能酶标仪 1台 250,000 250,000 工业 3 荧光显微镜 1台 250,000 250,000 工业 4 免疫定量分析仪 1台 140,000 140,000 工业 5 无创颅内压监测 1台 550,000 550,000 工业 6 便携颅内血管多普勒TCD 1台 270,000 270,000 工业 7 睡眠呼吸osa初筛监测仪 3台 50,000 150,000 工业 8 全数字彩色多普勒超声诊断系统(便携) 1台 120,000 120,000 工业 9 多功能卒中溶栓称重床 2台 100,000 200,000 工业 10 ﹣80度医用冰箱 1台 95,000 95,000 工业 11 动态血压监测仪 5台 20,000 100,000 工业 12 心电图检查仪 2台 20,000 40,000 工业 13 快速血脂检测仪 5台 2,000 10,000 工业 14 快速血糖检测仪 10台 500 5000 工业 总价(元) 2,580,000 产品描述 序号 名称 参数要求 1 智能脑卒中预防筛查分级分析仪 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》1、主要参数1.1 仪器类型:数据采集终端-全自动生化分析仪一台,可实现脑卒中指标快速联合检测;结果可按卒中危险分层指标,可自动划分“低危、中低危、中高危、高危、极高危”≥5个危险等级并出具报告;1.2 分析速度: 分光光度法≥200测试/小时;1.3 光学系统:免维护;波长:340nm-800nm,≥8个波长;1.4 检测诊断脑中风危险指标:【胆固醇(CHO),甘油三酯(TG),高密度脂蛋白胆固醇(HDL-C),低密度脂蛋白胆固醇(LDL-C),超敏C反应蛋白(hs-CRP),脂蛋白a(LPa),载脂蛋白E(APOE),同型半胱氨酸(HCY)、缺血修饰白蛋白(IMA)、血管紧张素转化酶(ACE),纤维蛋白原降解产物(FDP),D二聚体(D-D),糖化血清蛋白(GSP)、糖化白蛋白(GA),游离脂肪酸(FFA),脂蛋白相关磷脂酶A2(LP-PLA2)、低密度脂蛋白胆固醇(sdLDL-C)】;1.5 分析方法:终点法、动力学法;1.6 反应时间:≤10分钟;1.7 干扰项目:可以设置干扰项目,避免检测项目间干扰;1.8 同时检测项目:≥20项;1.9 最小样品体积:≤150ul;1.10 最小总反应体积:≤200ul; 1.11 温度控制系统:设定温度:37℃;温度准确度:36.7℃-37.3℃;温度波动度:0.2℃;1.12 孵育温度:37℃;1.13 试剂仓温度:2℃-8℃,系统自动记录试剂盘温度变化;1.14 检测计数:系统自动统计各项目检测次数,总检测数;1.15 恒温孵育系统:干式恒温系统或非接触式液体恒温系统或接触式液体恒温系统;1.16 冷启动时间:≤10分钟;1.17 质控和校准管理:使用独立冷藏样品盘,质控和定标可随时测定;1.18 光源:使用卤钨灯,寿命≥1800小时;1.19 检测波长:≥8个固定波长,波长范围340nm-800nm;1.20 探针功能:具有样品探针液面探测、防撞保护功能、防堵针报警、自动处理功能;1.21 耗水量:≤10 L/小时;1.22 进样系统:轨道式样品架进样或圆盘方式进样;1.23 加样功能:样本针,具有液面感应、随量跟踪、立体防撞保护、自动清洗等功能;1.24 自动吸样:2ul-50ul,0.1ul递进;1.25 自动清洗功能:测定仪自动清洗加样装置;1.26 扫描功能:1.26.1 能实现标本条码扫描: 免费与医院LIS系统连接,自动识别条码信息;1.26.2 能实现试剂条码扫描:免费自动识别试剂条码,无需手动添加试剂信息;1.27 数据储存功能:具有数据贮存功能,系统自身对数据进行了备份处理,将数据储存在计算机的硬盘中;1.28 数据输出功能:能实现专业的评估报告输出;具有数据统计功能,设有测试统计、工作量统计、收费统计和结果统计;1.29 测定方法:具有终点法,两点法,动力学法等测定方法;1.30 定标模式:具有线性(单点、两点和多点)、logit-log4p、logit-log5p、spline、指数函数等≥6种定标模式;1.31 急诊功能:急诊样本,可随时插入,不限数量;1.32 批检测样本:每批≥20个,可无限量多批次输入;1.33 数据库共享功能:可以实现建立本地数据库。2、硬件配置要求智能脑卒中预防筛查系统软件系统运行所需要的最小硬件配置要求如下:2.1 CPU配置要求:CPU 2.0 GHz 处理器或同等处理器以上;2.2 内存配置要求:2 GByte RAM以上;2.3 硬盘配置要求:100 GByte以上;2.4 主显示器要求:主显示器的屏幕分辨率≥1024x768;3、软件功能及要求3.1 配套脑卒中风险辅助筛查软件一套;3.2 系统可实现自动风险评估功能,具备医生签字功能,能快速实现意见审定工作;具备同时实现在客户端和网页端提交风险评估数据功能;可与医院信息系统对接,实现医院数字化平台的信息共享。 2 多功能酶标仪 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》主要参数1.1 操作方式:外接电脑全面控制,鼠标、键盘操作;1.2 测试方法:速率法、两点法、终点法;1.3 测量范围:0Abs-4.000Abs;1.4 滤光片: 配置≥5片(340nm、405nm、450nm、492nm和630nm) ,最多可装载8片,配置的每个波长均具备检测功能;1.5 紫外光检测:具备紫外光检测功能,满足微量样本的临床生化分析需求,可开展AST、ALT等生化检测项目;1.6 重复性:<0.5%;1.7 稳定性:±0.005;1.8 振板功能:具备速度和时间可调; 1.9 孵育功能:内置孵育器,可实现机内实时孵育;1.10 孵育温控范围:高于环境温度4℃至50℃之间;1.11 项目设置:在同一块板上可同时设置12个以上不同的项目;1.12 对照设置:可在任意位置设置5对以上的阴阳性对照;1.13 存储:可存储500组以上程序,10万个以上测试结果;1.14 质控:可做Westguard多规则质控和即刻法质控,可存储≥3年的质控图;1.15 配备全自动洗板机一套。 3 荧光显微镜 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》主要参数1.1 主机:1.1.1 光学系统:无限远校正光学系统,国际标准齐焦距离≤45mm。保证光通过目镜到物镜整个光路中的所有棱镜及镜片时的绝对平行; 1.1.2 具有明场、荧光观察方式,同时可扩展相差,偏光等观察方式;1.1.3 ≥五位物镜转换器;1.1.4 放大倍数:≥40X;≤1000X;1.1.5 透射光照明:LED照明;1.1.6 调焦:带有同轴粗、微调焦装置;调焦旋钮高度可调节, 操作舒适;1.1.7 宽视野三目镜筒:视野≥20mm,倾角≥30度;1.1.8 载物台:低位置同轴驱动旋钮的高抗磨损性陶瓷覆盖层载物台;用户可自己将操作杆左右手更换;X-Y移动无暴露齿条;1.1.9 可扩展五人共览,最多十人共览。1.2 光学部件:1.2.1 万能聚光镜:带有孔径光阑的聚光镜,有效光阑刻度上具有彩色标注且与物镜颜色代码对应,可确保快速正确匹配物镜与光阑;1.2.2 高性能消色差物镜:4X、10X 、20X 、40X、100X。1.3 荧光部件1.3.1 LED荧光光源 ;1.3.2 使用寿命长≥1万小时,无需更换灯泡;1.3.3 激发模块可单独控制;1.3.4 三色荧光滤块适用于常规荧光标记应用;1.4 数码摄像头1.4.1 芯片:1/1.8英寸,逐行扫描;1.4.2 630万分辨率、最大分辨率≥3072*2048;1.4.3 曝光时间100us-16s,手动/自动/区域曝光;1.4.4 内置不低于64MB图像缓存,电子快门;1.4.5 A/D转换:12bit;1.4.6 传输支持不低于高速USB3.0,全分辨下最高30fps;。1.5 分析软件1.5.1 采集图像:支持多种型号专业CCD,支持TWAIN接口;1.5.2 对图像中的直线显示线上灰度强度变化,从而反映图像中各个点的光亮度以及色阶深度的变化特性;1.5.3 在图像上添加注释、箭头等功能,可以表示图像中的重点关注部位;1.5.4 可调节亮度、对比度、伽玛值以及灰度显示范围,并可以单独调节RGB各通道的亮度,对图像添加伪彩色、改变色彩模式以及色阶位数等功能,可以改变图像分辨率、旋转图像等各种操作,支持反转、低通、高通、锐化等滤镜,使图像关注点和各荧光通道获得最佳的显示效果;1.5.5 可对单荧光通道图片做色彩合成;1.5.6 合成透射光和荧光通道图像,显示荧光在细胞上的定位图像;1.5.7 输入硬件信息即可实现添加标尺功能;1.5.8 可以做离线白平衡、视场平整度以及背景校正等处理;1.5.9 可以测量直线长度、曲线长度、矩形面积、圆面积、周长、角度等多个参数,并把测量结果输出到EXCEL,并于后期分析处理。 4 免疫定量分析仪 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》主要参数1.1 检测项目:磷脂酶、NT-proBNP、D-Dmier、cTnI/CK-MB/MYO三联卡、PCT/CRP二联卡、S100-β、NGAL;1.2 检测通量:可同时检测样本数≥4,每项检测时间≤15分钟;1.3 检测操作:无需单独孵育器无需人工值守自动孵育并检测;1.4 定标:内标技术,临床使用无需额外定标和导入标准曲线;1.5 检测样本:全血、血清、血浆、脑脊液;1.6 样本预处理:直接加样,无需稀释等预处理;1.7 项目识别:自动识别;1.8 打印:直接连接打印机打印正式检验报告,提供激光打印机一套;1.9 质控:厂家负责提供质控测试卡(液);1.10 维保:保修≥5年,维修响应时间≤1小时,维修超过24小时提供备用机;1.11 通讯:4G模块实现远程求助以及上下级医院之间的通讯。 5 无创颅内压监测 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》主要参数1.1 刺激光源 1.1.1 光源:LED黄光;1.1.2 频率:至少0.3Hz-1.25Hz可调;1.1.3 脉冲触发宽度:至少2ms-940ms可调1.1.4 闪光模式:“0”、“1”可选。1.2 放大器: 1.2.1 放大倍数≥2×104 ;1.2.2 共模抑制比≥128db;1.2.3 放大器带宽:0.2Hz-35Hz和0.2Hz-350Hz两组可选; 1.2.4 幅频特性:(1)放大器带宽0.2Hz-35Hz时,0.2Hz-35Hz范围内输出信号变化幅度不超过3db;(2)放大器带宽0.2Hz-350Hz时,0.2Hz-350Hz范围内输出信号变化幅度不超过3db。1.2.5 阻带特性:无输入信号时(输入短路),输出电压≤0.1V 。1.3 颅内压监测范围:70㎜-1200㎜;1.4 测试误差:<8% ;1.5 检测时间:≤1分钟 ;1.6 连续工作时间≥12h ;1.7 控制参数基准自动校验 ;1.8 检测电极:葵花状电极、插接式医用一次性针电极;1.9 显示屏:防爆彩色液晶触摸显示屏,能自由翻盖、任意角度定位; 1.10 主要功能:颅内压无创检测及监护、脑灌注压的换算;1.11 特殊功能:脑疝预警、药效比对、病症聚类;1.12 仪器为推车一体式机型;1.13 激光打印机,最大可打印A4规格报告单 ;1.14 内置UPS不间断电源,当外部电源断开后,UPS电源供电15分钟以上 ;1.15 全中文操作系统,可快速录入病人姓名、年龄、住院号、检测医师等信息;1.16 履约验收时提供国家法定检测机构对设备所做的接触人体部件的生物相容性检验报告:1.16.1 检测电极符合生物相容性国家标准的由法定检测机构所出具的检验报告;1.16.2 闪光眼罩符合生物相容性国家标准的由法定检测机构所出具的检验报告。2. 主要配置数量:2.1无创颅内压监测仪主机 1台;2.2 无创颅内压监测仪软件(免费与医院信息系统对接) 1套; 6 便携颅内血管多普勒TCD ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》1、主要技术参数与性能要求:1.1 FFT采样率128、256、512、1024;1.2 探头工作模式及流速范围:流速测量范围不窄于20cm/s-1000cm/s;1.3 取样容积范围:1nm-20 mm;1.4 深度范围:6mm-195 mm;1.5 增益范围:1dB-55 dB;1.6 动态范围:1dB-40 dB;1.7 功率范围:0%-100 %,在保持高灵敏度和高穿透力的基础上,功率范围在0mw-180mw之间;1.8 角度补偿范围:0°-85°;1.9 滤波调节范围:50Hz-800Hz(12档);1.10 谱图色阶:≥5种,操作界面可调节;1.11 M波色阶:≥6种,操作界面可调节;1.12 检查参数:收缩期流速(Vs)、平均流速(Vm)、舒张期流速(Vd)、阻力指数(RI)、搏动指数(PI)、收缩期/舒张期速度比值(S/D)、心率(HR)、加速度(a)、频宽指数(SBI)、热指数(TI)、短暂高强度信号(HITS);1.13 通道/深度:单通道/单深度、单通道/九深度;1.14 多深度-M波联动:各深度的深度范围与M波深度范围一致,调节M波的深度坐标,多深度的深度范围相应变化;调节多深度的深度,不影响M波的深度坐标;1.15 智能流程:检测技术、分析诊断;1.16 报告单功能:多种模板选择、模板自定义、报告单另存为图片/PDF文件、血管批量导入报告单、词条可编辑导入或导出、快速出报告单(从检查页面直接出报告单)、从病案界面直接出报告单;1.17 联网及统计:数据分类统计、网络数据库读写;1.18 探头要求:W 2M探头1个,CW 4M探头1个;1.19 探头保护功能:探头自动休眠功能。2、主要配置:2.1 彩色经颅多普勒诊断系统软件,免费与医院信息系统对接;2.2 TCD主机、数据线; 7 睡眠呼吸osa初筛监测仪 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》1、主要技术参数与性能要求1.1 设备适用于儿童及成人;1.2 通道数≥12导,包括呼吸气流(口鼻气流压力和口鼻气流热敏)、胸腹呼吸(独立RIP胸导联、独立RIP腹导联)、脉搏血氧饱和度、脉率、脉搏波、体位等参数;1.3 软件分析参数定义符合最新睡眠医学会睡眠及其相关事件判读手册;1.4 设备腕部主机具备全彩液晶内屏;1.5 设备腕部主机可以显示记录状态;1.6 设备采用内置锂电池供电,实时监测模式下续航时间≥30小时1.7 腕部主机设备具备Type-C四合一接口1.8 主机内置双蓝牙模块,可通过电脑端蓝牙无线连接;1.9 设备具有环境光监测功能,可通过环境光自动识别出关灯和开灯时间;1.10 设备内存卡可不≥32Gb;1.11 设备主机具有可连续记录患者数据的功能;1.12 软件可对不同信号自定义设置高通滤波、低通滤波、工作频率;1.13 报告可导出为WORD、EXCEL、PDF格式,同时可自定义报告模板;1.14 数据采集格式采用国际通用EDF格式,可将数据导入至其它所需要软件平台进行分析;1.15 软件具有一键导出不同病例患者的各项监测生理指标至Excel中,便于临床医务人员进行科研及其他数据收集操作;1.16 分析软件具有全中文操作界面,可生成全中文分析报告;1.17 软件可自动翻页和滚动,速度不低于30s/屏,时间可调;可以手动或自动分析呼吸事件、缺氧等事件,并最终生成统计结果和报告。2、主要设备配置2.1 腕部主机1台;2.2 胸部主机1台; 8 全数字彩色多普勒超声诊断系统(便携) ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》1、主要设备配置与配件:1.1 主机;1.2 凸阵探头。2、主要技术参数与性能要求:2.1 显示器:≥12英寸显示器;2.2 显示器角度可上下调整90°2.3 数字波束增强器2.4 双波束合成2.5 探头接口:≥2个探头接口, 互通互用,全部激活; 2.6 二维灰阶模式2.7 谐波成像模式2.8 M型模式2.9 彩色M型模式2.10 具备解剖M型2.11 三同步成像模式2.12 彩色多普勒成像2.13 频谱多普勒(包括脉冲多普勒、高脉冲重复频率、连续多普勒)2.14 能量多普勒成像2.15 组织多普勒成像,要求不低于四种模式组织多普勒(TVI,TEI,TVM,TVD)2.16 频谱多普勒成像2.17 具备二维双幅对比成像2.18 具备宽景成像2.19 具备IMT自动测量2.20 具备梯形成像2.21 具备3D/4D容积成像2.22 具备组织特异性成像2.23 具备空间复合成像技术2.24 具备原始数据处理,可对存储的图像进行参数调节2.25 具有一键优化功能,支持二维、彩色多普勒、频谱多普勒一键优化2.26 具有穿刺引导功能,穿刺线角度可视可调,可左右、平行移动调节穿刺线2.27 具备网络连接DICOM 3.02.28 视频/音频输出、输入接口:video、USB2.0;输出接口:video、USB2.0、VGA)2.29 具备USB口≥2个,且为通用模式2.30 具备光盘刻录机2.31 具备喷墨、数字、视频打印机2.32 最大显示深度≥38cm;2.33 具备实时动态聚焦,发射聚焦≥8段2.34 B、B/M、PWD、Color、 Doppler模式下声输出功率可视可调 2.35 系统总动态范围:30-180dB2.36 总增益调节范围≥100dB可视可调2.37 18厘米深度,全视野下,腹部探头二维帧频≥24帧/秒;心脏探头二维帧频≥60帧/秒2.38 具备全局放大功能,支持前端放大和后端放大,最大放大倍数≥10倍2.39 伪彩图谱: ≥8种2.40 B型灰阶图:≥10级可调2.41 包括速度、速度方差、能量、方向能量显示等2.42 取样框偏转: ≥±25度 (线阵探头)2.43 18厘米深度,全视野下,腹部探头彩色帧频≥8帧/秒,心脏探头彩色帧频≥18帧/秒2.44 彩色优先级≥100级可视可调2.45 具备同屏左右双幅同时显示B+C功能2.46 具备B/C 同宽2.47 具备彩色隐藏功能2.48 包括脉冲多普勒、高脉冲重复频率、连续多普勒2.49 脉冲多普勒最大测量血流速度(PW)≥20m/s2.50最小测量速度,非噪声信号:≤0.2mm/s2.51 显示布局:支持不低于5种不同模式显示布局,支持全屏频谱2.52 取样宽度及位置范围:0.5-40mm 2.53 频谱多普勒自动包络测量技术2.54 频谱多普勒角度快速矫正2.55 零位移动:≥16 级2.56 多种导出图像格式:动态图像、静态图像以PC格式直接导出,无需特殊软件即能在普通PC 机上直接观看图像。2.57 内置硬盘容量≥500 GB,支持动、静态图像的采集、存储、回放和传输 2.58 电影回放:≥1024帧2.59 图像格式:支持JPG、BMP3探头腹部探头 9 多功能卒中溶栓称重床 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》1、技术参数与性能要求:1.1 配置 床头、四小护栏、中控刹车、称重系统;1.2 规格尺寸≥2200mmx1020mmx(450-730)mm(不包括床头高度);1.3 升降功能。1.3.1 背部升降:升降角度0°-80°;1.3.2 腿部升降:升降角度0°-50°;1.3.2 整体升降:整体升降高度≥280mm;1.3.2 左翻身:33°-37°;1.3.2 右翻身:33°-37°;1.3.2 前倾角度:10°-14°;1.3.2 后倾角度:10°-14°。1.4 床面板:1.4.1 床面:钢板厚度≥1.0mm,钢板内填加强筋增加强度,有透气孔;床板四周内焊接加强筋;1.4.2 病床靠背与腿板升降连接采用2.5壁厚管材;1.4.3 床板链接采用钢质铰链,模具冲压成型,单片厚度3mm。1.5 床身主要部件:1.5.1 床框采用≥30mmx60mmx2.0mm碳钢矩管;1.5.2 床体四角有输液架插孔,根据需要任意选择输液位置。1.6 ABS阻尼护栏:阻尼隐藏式护栏,可立卧定位,装有气弹簧缓冲护栏提升与下降的速度,通过提手开关实现上下提升功能。四片分体内宿式护栏,塑钢材质一体注塑成型制作,背部及腿部护栏可分别升降管制,内缩式护栏设计使病患转床时具零间隙转运功能,避免跌落。1.7 床头床尾板:1.7.1 塑料注塑成型;1.7.2 挂结构,拆卸方便;1.7.3 非中空设计,前后塑料局部融合。1.8 脚轮:1.8.1 床脚采用≥30mmx50mmx2.0mm钢制框架; 1.8.2 中控脚轮四个,床尾中控刹车功能,转动应灵活、可靠,脚轮与床架装配牢固,制动后病床不会有相对滑动,方便推行及控制,脚轮主架和轮芯采用强承载能力的材质,轮面材质耐磨,具备耐油、耐水、耐药性和耐霉菌的特性,同时还具有减震降噪的作用,脚轮内部配备精密轴承,降低噪音。1.9 传动系统:电机≥6个,单个电机推力≥6000N,电机电源参数24V,电动实现背部升降,腿部升降,整体升降。整体升降高度:280MM(床面离地面最低450MM,离地面最高730MM),背部升降范围: 70°-80° ,脚部升降范围:30°-40°,右翻身:33°-37°,左翻身33°-37°,前倾角度:10°-14°,后倾角度:10°-14°;1.10 控制系统:通过手控板操作完成医疗床各种功能,有背部升降(上下),腿部曲伸(上下),整体升降(上下),左翻身、右翻身、前后倾斜功能的按键;1.11 配套含输液架:伸缩式,四钩可折叠,不锈钢材质,高低可调带锁紧装置;1.12 配套含床垫:床垫尺寸和分段与床相配,床垫套全脱设计;1.13 承重:床体静态承重≥400KG。 10 ﹣80度医用冰箱 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》1、主要技术参数与性能要求:1.1 样式:立式;1.2 容积:≥700L;1.3 运行功率:≤1400W;1.4 温度范围:-40℃— -86℃;1.5 噪音:部件间装有减震材料,机组周围装有防火吸音棉;1.6 外门隔热层:无CFC高密度聚氨酯发泡;1.7 内门:2扇,材质为不锈钢;1.8 内门隔热层:无CFC高密度聚氨酯发泡;1.9 搁板:3层,材质为不锈钢,隔板挂条带刻度,可调节高度;1.10 显示面板:屏幕尺寸为液晶触摸屏,可进行操作及显示各种与设备相关的信息; 屏幕显示信息包括:箱内温度、环境温度、输入电压、显示消音、设备运行模式、日期时间、屏幕状态(是否锁屏)、设备运行状态(是否正常);屏幕可显示温度历史曲线,可直接实现历史温度曲线查询及下载;屏幕可显示异常信息,可直接查询最近半年出现的各种冰箱运行异常信息;屏幕可显示两种运行状态“节能模式”“高性能模式”,用户可根据实际需求选择运行状态;屏幕可显示两种权限管理方式“授权模式”“普通模式”,供用户选择,更科学的保障冰箱的运行安全;屏幕可显示开门信息以及下载1.13 温度控制:采用微电脑控制系统;电子温度控制及显示,断电记忆,调节精度为0.1℃;1.14 报警系统:具备高低温报警、传感器故障报警、冷凝器脏堵报警、环温异常报警、电压异常报警、断电报警、门开报警、电池电量低报警、远程报警接口,所有的报警信息以及历史记录可在液晶屏查询;1.15 报警方式:具备声光报警方式;所有报警可通过预留的远程报警端口实现远程报警,也可选配短信通知等报警方式,报警逻辑使蜂鸣器被静音后,报警状态持续存在的情况下,蜂鸣器会恢复工作;1.16 电器安全:备用电池确保断电后报警及记录内部温度72小时,电池寿命提醒功能可在电池需更换前提示用户;键盘锁定、密码保护功能,防止随意调整运行参数;断电保护:在恢复供电时,所有设备的同时启动会对电网造成较大冲击,从而可能导致断路器跳闸;针对这种情况特别设计的设备延时启动功能可使设备在恢复期间延时数分钟启动,使设备平稳的重新运行;宽电压带适用:在198V-242V范围内正常使用; 11 动态血压监测仪 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》1、设备配置与配件:1.1 配置1采集盒子;1.2 软件。2、技术参数与性能要求:2.1 数据连接:USB数据线、蓝牙;2.2 测量方法:示波法;2.3 压力测量范围:0kPa-37kPa(0mmHg-280mmHg);2.4 脉率测量范围:50bpm-240bpm;2.5 分辨率:血压读数的分辨率为1mmHg,脉搏读数的分辨率为1BPM;2.6 准确性:应符合标准国家相关要求,无论升压还是降压,在量程中的任何测量点上,袖带内压力测量的最大误差应为±3mmHg;2.7 脉率准确性:±2BPM;2.8 最大袖带压:血压监测仪袖带压力超过40.0kPa(300mmHg)时应自动打开电磁阀放气;袖带压处在2kPa(15mmHg)以上时间小于3min;2.9 泄气:在充气系统阀门全开快速放气的情况下,压力从35kPa(260mmHg)降到2kPa(15mmHg)的时间不超过10s;2.10 数据储存器:闪存储存高达999个读数;2.11 测量间隔时间:血压测量的间隔时间可选择为5-120分钟内每间隔5分钟的任何一种,时间误差不超过选择值的5%;2.12 内置加速感应器,支持患者运动状态检测,帮助血压分析;2.13 血压示值范围:0mmHg- 300mmHg;2.14 测量范围:收缩压:30mmHg-250mmHg,舒张:10mmHg-220 mmHg。3、动态血压分析软件:3.1 存储记录全过程动态血压波形;3.2 分析界面操作简洁,可提供符合临床使用习惯的汇总页报告;3.3 具备设置昼、夜、早晨、特殊等多种不同时间间隔测量方案;3.4 为临床提供丰富全面的图形报告,包含圆饼图、散点图、趋势图、直方图;3.5 免费与医院信息系统连接。 12 心电图检查仪 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》1、基本要求:1.1 同屏显示,同步采集,同步热敏记录12导心电波形;1.2 显示屏≥9.0英寸,屏幕亮度可调,具备背景网格显示,支持全屏触控操作;1.3 本机具有一体化标准物理全键盘设计,支持拼音、五笔等输入法。2、性能要求:2.1 A/D转换:24bit;2.2 采样率:≥16000Hz;2.3 频率响应:0.01Hz-250Hz;2.4 内部噪声:≤12.5μVp-p;2.5 时间常数:≥3.2 s;2.6 耐极化电压:±910mV;2.7 输入电流:≤0.01μA。3、功能要求:3.1 ECG输入通道:标准12导联心电信号同步采集;3.2 导联选择:手动/自动可选,支持标准导联体系,同时具备导联标识自定义功能;3.3 采集时间设置:波形实时采集和冻结时长均可达60s,同时可进行两页、三页、四页紧凑版热敏打印格式;3.4 支持实时采样、预采样、触发采样、周期采样模式,支持节律分析;3.5 可同屏显示12导同步心电波形,同时支持3x4、3x4+1R、3x4+3R、6x2、6x2+1R、6x2+3R、12x1等多种显示布局;3.6 屏幕显示信息:心电波形、时间、心率、ID、工作状态、导联脱落信息、联网状态信息、外接设备状态信息等;3.7 自动异常报警功能:可自动对异常心率、导联脱落、外设连接、高频信号干扰情况进行实时监测报警;3.8 支持起搏检测功能;3.9 热敏打印布局:3x4、3x4+1R、3x4+3R、6x2、6x2+1R、6x2+3R、12x1;3.10 热敏记录纸:折叠纸;3.11 设备内置存储器,可存储病历≥800例,存储满后机器可循环存储;3.12 支持U盘、SD卡的扩容存储。4、电源:交直流两用且自动转换,电源要求100-240V(50/60Hz), 内置锂电池充满电后可连续工作≥1小时。 13 快速血脂检测仪 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》主要参数1.1仪器要求:小型快速检测仪器1.21.2 配套试剂:血脂测试条;1.3 检测项目:总胆固醇(CHOL),甘油三脂(TG),高密度脂蛋白(HDL),低密度脂蛋白(LDL);1.4 样本类型:全血(未梢全血或静脉全血)、血清、血浆;1.5 样本加样量:<40μL;1.6 检测速度:≤2分钟;1.7 结果表达:液晶显示结果,并标配外接打印机打印,标准USB接口,可与计算;1.8 通信进行数据传输;1.9 评估系统:仪器自带血脂管理及冠心病风险评估系统软件;1.10 电源:AAA电池/DC4.5V;1.11 存储:≥500组数据及其测试日期及时间以及编号;1.12省电模式:2分钟内无任何操作分析仪自动关机;1.13 分析仪尺寸:小型设备可手持; 14 快速血糖检测仪 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》主要参数1.1 检测原理:FAD-GDH;1.2 血样:新鲜的毛细血管全血、静脉全血、动脉全血;1.3 采血方式:虹吸式;1.4 检测值:校正为血浆血糖值;1.5 血样量:≥0.8uL;1.6 测量方法:葡萄糖氧化酶法;1.7 检测时间:≤5秒;1.8 检测范围:1.1mmol/L-33mmol/L;1.9 存储器:1000个左右血糖或血糖质控液测量结果;1.10 自动关闭:2分钟内无任何操作;1.11 Hct范围:20%-70%;1.12 退条方式:自动退条;1.13 准确度及干扰:可通过≥20多种药物和代谢产物干扰; 注:1.所有招标内容除特别标注为“进口产品”外,均采购国产产品,即非“通过中国海关报关验放进入中国境内且产自关境外的产品”,投标货物及服务各项技术标准应当符合国家强制性标准。2.招标内容标注为“进口产品”的,满足需求的国产产品和进口产品按照公平竞争原则实施采购。合同履行期限:签订合同之日起30日历天内完成。本项目不接受联合体投标。二、投标人资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定:(1)具有独立承担民事责任的能力;(2)具有良好的商业信誉和健全的财务会计制度;(3)具有履行合同所必需的设备和专业技术能力;(4)有依法缴纳税收和社会保障资金的良好记录;(5)参加政府采购活动前三年内,在经营活动中没有重大违法记录;(6)法律、行政法规规定的其他条件。2.落实政府采购政策需满足的资格要求:无3.本项目的特定资格要求:投标人投标时须提供投标人的《医疗器械经营许可证》或《第二类医疗器械经营备案凭证》。三、招标文件获取时间及方法 自公告发布之日起 5 个工作日,登录中国政府采购网山西分网(www.ccgp-shanxi.gov.cn),通过项目采购公告下方点击“潜在供应商”免费下载招标文件。四、提交投标文件截止时间、开标时间、地点和方式提交投标文件截止时间及开标时间:2023年10月20日09点 30分(北京时间)方式:登录中国政府采购网山西分网上传投标文件。投标截止时间前未完成提交的,将拒收投标文件。开标时登录中国政府采购网山西分网在规定时间内解密电子投标文件,解密设备及网络环境由投标人自行准备。五、招标公告期限自本项目招标公告发布之日起5个工作日。六、其他补充事宜1.投标人应于开标前在中国政府采购网山西分网(www.ccgp-shanxi.gov.cn)进行供应商注册。 联系电话:957632.投标人参与项目遇到系统操作问题,请及时联系客服电话。联系电话:95763 七、对本次招标提出询问,请按以下方式联系1.采购人信息名称: 太原市中心医院 地址: 山西省太原市小店区汾东大街256号 联系人: 张玉梅 联系电话: 13835116510 2.集中采购代理机构信息名称:太原市公共资源交易中心 地址:太原市万柏林区南屯路1号太原市为民服务中心四层 联系人:才贺涛 联系电话:0351-2377096 附件信息: 公开招标文件.doc597.4K
  • 方舟子:反式脂肪酸究竟有多可怕
    食用油的安全问题时不时地会成为舆论的热点。前一阵子国内媒体热炒过地沟油,最近又开始热炒“植物奶油”或“氢化油”,说它们富含危害健康的反式脂肪酸,“被专家列入人类食物历史上最大的灾难之一”。并称现在不少欧美国家已经开始对氢化油封杀、叫停,但在国内仍然可以看到普遍使用氢化油的情形。   果真如此吗?在回答这个问题之前,我们需要先知道什么是反式脂肪酸。这个名字听上去就很反面,但其实是根据其分子结构命名的,很中性。脂肪由脂肪酸和甘油结合而成。脂肪酸的样子像一条长长的链条,是由一个个的碳原子串起来的,碳原子上面还有氢原子与之结合。碳原子的化合价是4价,可以跟其他原子形成4个共价键,氢则是1价。在链条中间的碳原子,由于已与两个碳原子相连,最多还可以结合两个氢原子。如果链条上每一个碳原子都尽可能多地与氢原子结合,我们就说这种脂肪酸达到了饱和状态,称之为饱和脂肪酸。动物脂肪和某些植物油(包括椰子油、棕榈油和可可油)的脂肪酸属于饱和脂肪酸。   在饱和状态下,链条中的碳原子彼此是以单键相连的。有的脂肪酸的链条中间的两个碳原子彼此是以双键相连的,这时这两个碳原子都分别只与一个氢原子结合,处于不饱和状态,我们把这种脂肪酸叫做不饱和脂肪酸。这两个以双键相连的碳原子,如果它们的氢原子位于同一侧,叫做顺式,这种脂肪酸就叫顺式脂肪酸。如果它们的氢原子分别位于两侧,就叫做反式脂肪酸。顺式脂肪酸的链在双键的地方打了一个弯,性质不稳定。反式脂肪酸则和饱和脂肪酸一样是直链,比较稳定。   在从前,食用的脂肪主要是动物脂肪,例如黄油、奶油、猪油,它们比较稀少、昂贵。植物油倒是便宜,但是供食用的植物油的脂肪酸基本上都是顺式脂肪酸,它们很不稳定,是液体,而且容易变质,这是由于自由基攻击链条中的双键造成的。20世纪初,德国化学家威廉诺曼想到了一个解决办法,给植物油中的双键提供氢原子,让它们变饱和,这个过程称为氢化,这样制造出来的油就叫氢化油。如果所有的双键都被氢化、饱和了,顺式脂肪酸就变成了饱和脂肪酸。但是通常只有部分双键被饱和,由于工艺的原因,在氢化的工程中剩下的双键两头的碳原子的结构发生了变化,它们的氢原子由顺式变成了反式。这样,氢化油就含有大量的反式脂肪酸。   植物油氢化之后,变成了半固体,性质稳定、不容易变质,可以代替动物脂肪使用,而且价格要便宜得多。从德国、英国开始(而不是像国内某些专家说的,是美国人干的“好事”),氢化油很快地被大规模生产,在食品加工业中获得了广泛应用,被用来制作糕点、调味品和油炸食品。在上世纪60年代,人们已认识到摄入动物脂肪会增加心血管疾病的风险,植物油相对来说比较健康。这个时候,使用氢化植物油取代动物脂肪,被认为不仅经济上合算,而且对健康也更有利。   从上世纪80年代末开始,人们逐渐认识到氢化植物油对健康的危害实际上比动物脂肪还要大。这主要是由于其中的反式脂肪酸引起的,它增加的心血管疾病的风险,比动物脂肪中的饱和脂肪酸还高。衡量心血管疾病的风险的一个标志是血液中胆固醇的含量。胆固醇有两种,一种是“坏”胆固醇(低密度脂蛋白胆固醇),如果它的含量过高,就会慢慢地在动脉管壁沉积下来,形成粥样小瘤,导致动脉硬化。一种是“好”胆固醇(高密度脂蛋白胆固醇),能够防止粥样小瘤的形成。饱和脂肪酸能增加“坏”胆固醇的含量,相应地增加了心血管疾病的风险。而反式脂肪酸除了能增加“坏”胆固醇的含量,同时还能降低“好”胆固醇的含量,相当于双重增加了心血管疾病的风险。顺式脂肪酸则没有这个问题,有的顺式脂肪酸反而能降低心血管疾病的风险。   即使在摄入的量很少时(只占食物热量的1%~3%),反式脂肪酸对心血管疾病的风险仍然很明显。反式脂肪酸可能还有其他方面的危害,但还没有确证。反式脂肪酸除了能给人体提供能量之外,没有营养价值,反而有害,那么就应该尽量减少摄入它,越少越好。世界卫生组织的建议是每天摄入的反式脂肪酸的量不要超过食物热量的1%,大致相当于不要超过2克,吃一份炸薯条就远远超过这个量了(大约含5~6克反式脂肪酸)。所以如果经常吃快餐、糕点、油炸食品、零食的话,是很难不超过这个限量的。一个美国人平均每天摄入的反式脂肪酸的量是5.8克。   在这种情况下,就会考虑是否用政府的力量来限制、禁止反式脂肪酸的使用。但是目前只有丹麦等个别国家和纽约等个别城市采取了行动。一些厂家被迫或自愿改变配方,推出“不含反式脂肪酸”的产品。但是这类产品往往是用动物脂肪或棕榈油等含饱和脂肪酸的植物油来代替氢化植物油,同样对健康有害。“植物奶油”固然不好,天然奶油也最好避免。在反对使用反式脂肪酸的同时,还要提倡使用顺式脂肪酸,才是健康之道。
  • 食品药品监督总局医械产品最新分类,基因测试盒为Ⅲ类
    国家食品药品监督管理总局办公厅7月20日发布《关于多功能超声骨刀等127个产品分类界定的通知》。  通知称,为适应医疗器械监督管理工作的需要,总局组织有关单位和专家对多功能超声骨刀等127个产品的管理类别进行了界定。其中:作为Ⅲ类医疗器械管理的产品8个 作为II类医疗器械管理的产品60个 作为I类医疗器械管理的产品36个 不作为医疗器械管理18个 视具体情况而定的产品5个。  一、作为Ⅲ类医疗器械管理的产品(8个)  (一)多功能超声骨刀:由主机、手机、工作尖、冲洗管和脚踏组成,用于牙科和口腔外科的植牙切骨手术、鼻窦增高手术、骨修型、拔牙、残根、断裂植体移除、牙周病治疗、根体清洁和根管移除。分类编码:6823。  (二)磁场成像系统:由操作台、数据采集室、患者检查床体、龙门、传感器系统和数据分析系统以及软件组成,通过磁传感器采集心脏的电生理功能的磁信号并以图形方式显示这些数据,对被检测人员进行心脏猝死风险分析预测。分类编码:6821。  (三)糖尿病管理应用程序:软件产品。通过蓝牙连接特定的血糖仪,将血糖值从血糖仪传输到移动设备,同时,具有药物计算(用药剂量指导)功能。分类编码6870。  (四)胶囊式内窥镜镜姿态控制器:由永磁体和外壳组成,通过产生驱动磁场,对人体吞服的胶囊内镜产生拉力和扭矩力,改变驱动磁场的方向和作用在胶囊内镜上的强度,从而驱动胶囊内镜在胃腔或结肠内滚动、旋转和倾斜运动,实现对胶囊内镜的运动控制和姿态调整。用于在患者进行消化道胶囊内窥镜检查时控制胶囊内窥镜的运动。分类编码:6822。  (五)胶囊式内窥镜控制系统:由电动检查床、体外磁控装置、图像工作站和紧急控制装置组成,与胶囊式内窥镜配套使用,用于在人体胃和十二指肠检查中,控制患者吞服的胶囊式内窥镜的姿态、方向和运动。分类编码:6822。  (六)内镜用气囊控制器:由主机(包括气泵、传感器)、手控面板、脚踏开关、供气导管、电源、连接器、过滤器组成。配合特定的一次性气囊辅助导引导管使用,控制气囊充气、放气。分类编码:6877。  (七)基因检测试剂盒(微阵列芯片法):由微阵列芯片(用于飞行时间质谱系统对核酸样本分析时的核酸样本的承载)、质控品(用于对微阵列芯片的性能指标的质控)、引物P1(与自备试剂合用,扩增质控品,产物对微阵列芯片的性能进行质控)、引物P2(与自备试剂合用,扩增质控品,产物对微阵列芯片的性能进行质控)、引物Y(与自备试剂合用,扩增目的核酸片段,对微阵列芯片性能进行质控)5 部分组成。产品适用于飞行时间质谱系统对人体来源样本中的特定基因进行分析。用于临床体外诊断。分类编码:6840。  (八)8种食源性细菌核酸检测试剂盒(LAMP法):由8连反应液管、阳性对照、基因组、阴性对照、DNA 提取液组成。用于疑为食源性疾病病人粪便、肛拭、呕吐物等样本中8 种常见食源性细菌(沙门菌、志贺菌、金黄色葡萄球菌、霍乱弧菌、副溶血性弧菌、单增李斯特菌、奇异变形杆菌、大肠杆菌O157) 核酸的快速检测,用于食源性疾病的辅助诊断。分类编码:6840。  二、作为II类医疗器械管理的产品(60个)  (一)牙齿研磨器:由一次性无菌研磨容器和研磨机组成,用于将拔掉的牙齿研磨成符合一定大小的颗粒物。颗粒物经过清洗液消毒转化为无菌颗粒,移植到牙洞和骨缺损处。分类编码:6806。  (二)上/下肢功能康复训练器:由基座、活动部件以及控制部件组成,由电机驱动,设备带动患者上肢和(或)下肢进行被动运动,从而进行上肢和(或)下肢的康复性训练。分类编码:6826。  (三)认知康复诊断系统:由硬件和专用软件组成,用于脑外伤、脑卒中、帕金森病、各种痴呆等脑部疾病或创伤所致认知障碍,儿童疾病如脑瘫、儿童多动症、自闭症以及智障等各种原因导致的认知障碍的诊断及辅助康复。分类编码:6826。  (四)认知康复训练与评估软件:用于脑外伤、脑卒中、帕金森病、各种痴呆等脑部疾病或创伤所致认知障碍的评估及训练。分类编码:6870。  (五)关节活动度评估与训练系统:主要由传感器、软件、绑带和蓝牙模块组成,用于脑卒中(脑梗死、脑出血)患者肢体运动功能障碍的康复评估与主动运动训练。分类编码:6826。  (六)上肢康复训练数据采集传输系统:主要由上肢运动数据采集模块(采集模块可为手套形式)和无线数据接收模块组成,用于将脑卒中(中风)、脊髓损伤(偏瘫)、工伤、外伤等引起的上肢功能障碍患者主动康复训练的运动数据采集并提交远程康复医生,作为医生诊断和指导训练的依据。分类编码:6821。  (七)下肢淋巴水肿治疗仪:由控制台、球形阀、隔板圈环、治疗床遥控装置、紧急关闭按钮、治疗床和电缆组成。在下肢上施加间歇性负压,用于治疗下肢淋巴水肿。分类编码:6826。  (八)上肢康复仪:由机器手、塑料手托、手垫套装、控制盒、前臂支撑座、前臂支撑座承托件、连接线、电源适配器和训练软件组成,通过采集表面肌电信号并进行处理,判断使用者的意图,训练软件控制机器手的运动从而协助使用者进行手部运动。用于脑卒中后导致上肢瘫痪患者的康复训练。分类编码:6826。  (九)诊断检查灯:包含LED 光源,用于为诊断、治疗的局部区域提供照明。分类编码:6820。  (十)上消化道pH-阻抗动态监测仪:主要由pH-阻抗动态监测采集仪、上消化道pH-阻抗分析软件、pH-阻抗导管电极和电源适配器组成,用于胃食管反流病(GERD) 、食管内酸或非酸反流、喉咽反流等反流性疾病的临床诊断,评估药物及手术治疗的效果。分类编码:6821。  (十一)胃肠电检测系统:主要由胃肠电图仪及胃肠电检测与自动分析软件组成,通过检测病人多通道胃电,记录人体胃肠部体表生物电信号,来评估胃慢波,供胃肠疾病临床诊断参考。分类编码:6821。  (十二)医用神经电刺激仪:主要由神经电刺激仪主机、人机交互软件、电极电缆线和电极片组成。非高频电刺激治疗设备。用于功能性消化不良及颈椎病、腰椎间盘突出症、肩周炎引起的颈肩腰腿疼痛的治疗。分类编码:6826。  (十三)刺激呈现与响应收集系统:由视觉刺激系统、音频系统、反应控制手柄、同步盒及处理软件组成。配合功能磁共振扫描器,用于在功能磁共振成像时为患者呈现音频和视频的刺激,并完成对该刺激响应的收集。分类编码:6828。  (十四)一次性雾化器套件:由雾化杯、伸缩波纹管、咬嘴组成,配合超声雾化机使用,超声雾化机产生的超声波作用于雾化杯内的药液,使药液雾化成微小颗粒,通过导管输送给患者。无菌产品。类编码:6866。  (十五)低周波治疗仪:主要由主机、导电线、电池组成,用于促进精明穴、耳垂穴周围相关部位的血液循环,缓解肌肉因疲惫或受伤而引起的疼痛。分类编码:6826。  (十六)护眼仪:由主机、眼罩、耳机、电源适配器组成,通过由微电脑芯片控制眼罩来产生磁场,作用于眼部周围的睛明、攒竹、太阳、四白等穴位。用于假性近视和轻度近视青少年,预防近视发生。分类编码:6826。  (十七)色觉缺陷检查仪:由主机、舒适控制器(选配件)及电源电缆组成。根据患者的主观判断给出人眼色觉的定性结论和参考数据,用于测试人眼色觉缺陷。分类编码:6821。  (十八)直肠测压管:由管体、塑配件和球囊组成,与肛肠动力仪配套,用于对直肠内压力进行测量。无菌产品。分类编码:6866。  (十九)尿动力学导管:由管体、塑配件和球囊组成,与尿动力仪配套,用于对尿道内压力和膀胱内压力进行测量。无菌产品。分类编码:6866。  (二十)测压连接套装:由灌注连接管、硅胶连接管、连接管和三通延长管组成,与肛肠动力仪和尿动力仪配套,用于将直肠测压管或尿动力学导管与肛肠动力仪或尿动力仪直接连接。无菌产品。分类编码:6866。  (二十一)髓内钉远端孔瞄准系统:通过电子感应器感应置于髓内钉内部的磁导针的位置,再利用外部机械结构实现外部支架的调整,以找到远端交锁螺丝的螺孔。用于股骨髓内钉和胫骨髓内钉手术中辅助瞄准髓内钉远端交锁螺丝螺孔。分类编码:6821。  (二十二)一次性使用输尿管结石封堵器:由外鞘管、弹簧圈内芯和推进器组成,用于以内窥镜方式抓取、移除结石时固定输尿管内的结石。分类编码:6822。  (二十三)双目视力仪:由主机、手持式控制器和电源线组成。根据患者的主观判断给出人眼视力的定性结论和参考数据,用于测试人眼视敏度、视力和色觉缺陷。分类编码:6820。  (二十四)一次性使用肛瘘旋转锉削器:由内撬柄、外撬柄组成,与外接的有源吸引切割器配合,在肛瘘管里使用。用于摘除剥离瘘管壁硬结组织。无菌产品。分类编码:6809。  (二十五)组配式软钻接头:由卡头和连杆组成,髋关节置换手术工具。用于在术中与钻头连接,为髋臼螺钉钻孔。分类编码:6810。  (二十六)软钻:主要由接头、钢丝绳和钻头组成,配合软钻导向器,并连接电动工具或软钻手柄,用于骨科髋关节置换手术时,在髋臼钻孔。分类编码:6810。  (二十七)柱形开髓钻:骨科髋关节置换手术时,与有源器械相连接,用于钻开髓腔。分类编码:6810。  (二十八)自闭与多动障碍干预仪:主要由单通道低通滤波器、听觉统合训练器、主机、自闭与多动评估和训练用具以及专用软件组成。通过对音乐、听觉语言、可视序列诱导信号进行实时检测、处理,为沟通交流、语言听处理功能的评估诊断和康复训练提供相关信息,以及康复过程的动态评估与实时监控。用于自闭症、注意力缺陷与多动障碍的诊断评估、康复训练及康复指导。分类编码:6826。  (二十九)电刀清洁片:由泡棉垫、粗糙面、背胶和x 光感应线构成。用于手术中电刀的清洁使用,不和人体接触,一次性使用。无菌产品。分类编码:6801。  (三十)放射性粒子植入防护枪:主要由一次性植入枪芯、一次性弹夹、植入枪托、专用配套推杆、弹夹防护套组成。与一次性使用粒子及输送用穿刺针配套,用于对操作者为肿瘤患者的内放射性治疗时的防护及粒子输送、防护。分类编码:6834。  (三十一)医用X线胶片扫描仪:扫描医用X射线胶片提取影像,用于医生阅片及诊断。分类编码:6831。  (三十二)口腔影像获取软件:由安装光盘及随机文件组成。安装于计算机上,与口腔设备通过数据传输获取影像,再将获取的影像传输给影像归档系统。分类编码:6870。  (三十三)呼吸阀:由呼气阀主体、进气口、排气口、阀盖、阀盖对准凹口、阀盖对准翼片、隔膜、隔膜对准凹口、隔膜对准翼片和压力传感器端口盖组成,接口符合YY1040.1-2003中非金属圆锥接头的要求。是一种多患者使用的呼气器械,与持续正压通气系统一同使用,使用时一端连接面罩,另一端连接呼吸管路。用于在低持续正压通气压力时,在患者回路中提供连续泄漏通路,从而减少患者对CO2的重复呼吸。分类编码6854。  (三十四)皮肤放大镜:主要由灯头(包含LED光源)、放大镜、物镜、手柄、电池组成,用于对患者皮肤的病变组织进行放大观察。分类编码:6822。  (三十五)认知功能训练系统:主要由显示屏、主机、嵌入式软件构成,从视、听及视听结合等方面来训练受训者的注意力、记忆力、手眼协调和执行能力,通过对训练者的成绩分析,针对性的给训练者进行训练,以提高训练者的执行功能。用于认知功能缺陷的辅助治疗。分类编码:6826。  (三十六)医用康复理疗仪:主要由助步行走装置、颈椎牵引装置、腰部按摩装置、腰椎牵引装置、电机及智能控制部分组成,用于颈椎病、腰椎病及下肢体运动障碍的康复理疗。分类编码:6826。  (三十七)非标准视标液晶视力表:主要由主机和红绿识别镜组成。在液晶屏幕上显示各种检查用视标及图形,使用非标准视标,用于视力检查以及其他视觉功能的检查。分类编码:6820。  (三十八)电子助视器:由图像采集控制模块、稳压电路控制模块、阅读平台滑动模块、液晶显示模块及电池充电模块组成,由摄像头对目标进行图像取样,并通过电子技术对图像进行放大、对比度调整、色彩模式调整处理。用于辅助眼科疾病患者 (弱视)日常阅读。分类编码:6820。  (三十九)电热煮沸消毒器:主要由主体、器盖、电热管和电器控制组成,利用电热管进行加热。用于医疗器械的煮沸消毒。分类编码:6857。  (四十)上肢功能康复系统:由手柄传感器(含绑带)、多功能训练球(含绑带)、多功能训练板、计算机、垫子、USB转接盒和软件组成。用于通过训练,帮助神经、骨科康复患者进行上肢功能训练,辅助提高其上肢运动功能及手部精细运动能力。分类编码:6826。  (四十一)胸腹传感带:主要由胸腹传感织带(含有传感器)、电极扣、自粘带组成,将胸部、背部以及腹部起伏变化转变为电信号,采集记录人体呼吸规律变化。与呼吸监测仪器配合,用于呼吸运动检测、睡眠呼吸检测,检测结果用于疾病诊断。分类编码:6821。  (四十二)灸用灸疗机:主要由机头、支架、遥控器及底座构成。具有根据实时监测的温度控制驱动电机,在超过安全温度设定时控制灸疗机自动报警并且停止灸疗 设定灸疗时间,确保灸疗的灸量 选择灸疗手法和模式 监控施灸的灸量、施灸时皮肤的温度、施灸时间、灸疗手法及模式等功能。不含灸治用灸。用于替代传统手工灸疗。分类编码:6827。  (四十三)酸性氧化电位水中心供水系统:主要由一台主控机及被其控制的多台(两台或以上)酸性氧化电位水生成机组成,将产生的酸化水用容器收集在一起,再通过管道将容器中的酸化水输送到各使用科室。用于医用器具、手术器械的常规消毒。分类编码:6857。  (四十四)冷敷器(冷敷袋):冷敷器由冰桶、控制盒、水管、气管、电源及冰袋组成。冷敷袋由冰袋、快速接头、连接管组成。冷敷器利用外来冷源配合加压装置对损伤组织局部进行冷敷、加压,降低局部组织温度,用于急性软组织损伤(踝、肘、肩部扭伤、肌肉损伤)早期、闭合性四肢关节骨折早期、四肢骨折及关节术后的早期和急性软组织疼痛的冷敷治疗。冷敷袋配合冷敷器,用于急性软组织损伤(踝、肘、肩部扭伤、肌肉损伤)早期、闭合性四肢关节骨折早期、四肢骨折及关节术后的早期和急性软组织疼痛的冷敷治疗。分类编码:6858。  (四十五)手术导航光学定位用反光小球:由载体球和反光罩组成,其中载体球中加工有支座安装孔,反光球罩表面的反光膜用于从空间各方向发射设备发射的外光。无菌产品。通过安装支座将小球支撑在手术工具上,利用追踪反光小球的空间位置,获取工具空间位置和方向。用于为手术导航的光学定位设备或其他光学设备提供空间位置标识。分类编码:6854。  (四十六)痕迹蛋白测定试剂盒(散射比浊法):由β痕迹蛋白试剂(抗体)、β痕迹蛋白补充试剂(缓冲液)组成。用于体外定量测定人血清、血浆、尿、脑脊液和含有鼻或耳分泌物的脑脊液(脑脊液漏)中β痕迹蛋白(BTP)。临床上用于残余肾功能、肾小管损伤、脑脊液渗漏的辅助评估和辅助诊断。分类编码:6840。  (四十七)尿半乳糖检测试剂盒:由反应装置、纯化装置、标准液组成,用于定性检测人体尿液中半乳糖,临床上仅用于乳糖不耐受的辅助诊断,不用于遗传性半乳糖血症的辅助诊断。分类编码:6840。  (四十八)金黄色葡萄球菌鉴定试剂盒(乳胶凝集法):由试剂1(包被人血纤维蛋白原的致敏乳胶颗粒试剂)、试剂2(包被未致敏的乳胶颗粒的阴性质控试剂)和检测卡组成,用于经形态学观察、革兰染色、触酶试验等确认为葡萄球菌后的进一步鉴定。分类编码:6840。  (四十九)三磷酸腺苷检测试剂盒:主要由裂解试剂、质控品、ATP 检测试剂、过滤柱组成,通过检测临床痰液或尿液样本中病原菌(包括细菌和真菌)胞内的ATP,可用于临床痰液样本中病原菌感染的快速筛选。分类编码:6840。  (五十)胰岛素样生长因子结合蛋白3 (IGFBP-3) 测定试剂盒(酶联免疫法):由校准品、质控品、反应板、酶结合物、校准品/质控品信息卡及其它必要辅助试剂组成,用于定量测定人血清胰岛素样生长因子结合蛋白3 (IGFBP-3) 。临床用于生长激素分泌异常的辅助诊断、评估垂体功能、监测生长激素疗法的疗效。分类编码:6840。  (五十一)抑制素A (INH A)测定试剂盒(酶联免疫法):由校准品、质控品、反应板、酶结合物、校准品/质控品信息卡及其它必要辅助试剂组成,用于定量测定人血清抑制素A (INH A)。临床上用于唐氏综合征的产前筛查,在辅助生殖技术中应用于黄体功能的异常检测。分类编码:6840。  (五十二)特异性生长因子测定试剂盒(化学法):由试剂1(识别物)、试剂2(显色剂)、校准品、质控品组成,用于体外测定人血清中特异性生长因子的含量。临床上用于急性炎症监测、免疫系统紊乱的辅助诊断。分类编码:6840。  (五十三)小而密低密度脂蛋白胆固醇检测试剂盒:由试剂1和试剂2 组成,用于体外定量测定人血清中小而密低密度脂蛋白胆固醇的含量,辅助诊断动脉粥样硬化。分类编码:6840。  (五十四)免疫细胞培养基和处理试剂:由基础培养基和白细胞介素(IL)、干扰素(INF)、肿瘤坏死因子(TNF)、生长因子(GF)等细胞因子或它诱导剂组成。用于骨髓、外周血、脐带血等样本中淋巴细胞的体外诱导、处理和分离培养。培养后的细胞仅用于临床体外诊断,不用于回输等治疗用途。分类编码:6840。  (五十五)糖化血红蛋白层析柱:主要由聚合物凝胶、层析柱件、密封栓等组成,配合高效液相色谱仪或特定糖化血红蛋白分析仪使用,检测人体样本中的糖化血红蛋白,用于血糖监测和糖尿病的辅助诊断。分类编码:6840。  (五十六)泪液渗透压测定仪:由读卡器、测定笔、测定卡配件托盘、电子检测卡、测定卡、质控液组成,用于测定人类泪液渗透压的仪器。用于同其他临床诊断方法一起,协助对疑似患有干眼症的患者进行诊断。分类编码:6840。  (五十七)集成式细胞处理系统:由超净工作台、离心机、紫外消毒装置、恒温振荡器、保暖桶、配料置物架组成。用于医疗机构及实验室在百级洁净环境下用专用的一次性耗材对从人体抽取的脂肪组织进行分离、提取操作,提取其中的脂肪间充质细胞群。用于临床检验。分类编码:6841。  (五十八)一次性使用运送采样盒:由采样棒、试管、管帽、试剂管、生理盐水组成,临床上用于对患者耳、鼻、咽喉、生殖等分泌物的样本采集及预处理。以无菌形式提供。分类编码:6841。  (五十九)内窥镜用送水送气附件:该产品由送水管路、送水送气管路、适配器、一次性内窥镜用水瓶和卡扣组成。除适配器外,其他均为环氧乙烷灭菌,无菌包装。与内窥镜配合使用,用于向胃肠道内窥镜输送空气或CO2以及无菌水。分类编码:6822。  (六十)静脉用药配置舱:主要由通风系统、空调系统、电气系统组成。通过正压保护和负压屏障及气流循环过滤避免药液在配置过程中因空气传播造成的污染,为静脉用药配制提供洁净配置环境,并为配置工作人员提供防护。用于静脉药物调配和菌种培养等需要在无菌环境下进行操作,避免操作过程中产生的生物气溶胶对操作人员和操作对象的污染。分类编码:6840。  三、作为I类医疗器械管理的产品(36个)  (一)马镫形多功能腿架:由脚靴、靴垫、气压杆、锁紧把手和脚靴支撑杆组成。利用边轨夹固定在手术床两侧,通过操作手柄,在气动助力下实现上下、左右调节。用于为泌尿科、妇产科及普外科截石位体位提供定位支撑。分类编码:6854。  (二)飞秒透镜分离铲:由铲片和柄部组成。非无菌提供,可重复使用。用于在飞秒激光手术过程中,待激光机打出透镜瓣后,铲起分离上皮和透镜瓣之间的粘联,便于透镜镊夹持透镜瓣从上皮层中取出。分类编码:6804。  (三)飞秒透镜镊:由头部和柄部组成。用于飞秒激光手术过程中夹持角膜瓣,从上皮层中取出。非无菌提供,可重复使用。分类编码:6804。  (四)飞秒分离匙:由匙状头部和柄部组成。用于飞秒激光手术过程中,分离角膜瓣。非无菌提供,可重复使用。分类编码:6804。  (五)位置定位器:种植手术修复过程中,用于标记和确定替代体在模型和牙桥架上的相应位置。在口腔外部环境使用,非无菌产品。分类编码:6806。  (六)钻针深度停止器:为带有螺丝的空心圆柱体,可以固定在牙钻上。在种植手术过程中,用于控制钻孔的深度,使牙钻停止于设置的深度。非无菌产品。分类编码:6806。  (七)钻针引导器:为一个套管。在种植手术过程中,用于将牙钻引导至正确方向。非无菌产品。分类编码:6806。  (八)骨磨引导器:在口腔内使用。使用时,将本产品固定到种植体内,然后将骨磨安放到本产品上。在种植手术过程中,用于引导骨磨放入正确的位置。非无菌产品。分类编码:6806。  (九)一次性使用胃镜咬口:由咬口、鼻部吸氧口、口部吸氧口、供氧管接口、弹力带系环和弹力带组成。设有吸氧通道。用于胃镜检查时维持被检者的开口状态。非无菌产品。分类编码:6866。  (十)种植体扫描体:固定在种植体上。用于牙科修复体计算机辅助设计的制作过程中,辅助口内扫描机获取清晰的3D 图像。非无菌产品。分类编码:6806。  (十一)机用螺丝刀:与有源牙科手机相连,用于旋紧、旋松种植体附件。非无菌提供,不接触中枢神经系统或血液循环系统,不在内窥镜下使用。分类编码:6806。  (十二)视功能检查仪:主要由主机、手柄控制器或操控软件、外接口组成。采用标准视标,通过更换不同视表图的视标,用于眼科常规视觉功能检查。分类编码:6820。  (十三)胸腰骶固定器:主要由背板、控制手柄、搭扣、腰带连接魔术贴、腰带、后板紧固带、前板紧固带、硬性前板、硬性后板、硬板衬垫套和腰带组成。用于手术后辅助固定,非移位脊椎骨折、椎管狭窄、椎间盘突出、退行性脊柱病变的辅助固定。分类编码:6826。  (十四)自助取片机:与医用胶片配套使用,供自助打印胶片和报告使用。分类编码:6831。  (十五)热敏胶片:由热敏层、PET 胶片基、保护层组成。用于记录CT、MRI、CR、DR、胸部X射线透视系统输出的数字信号的图像。用于记录影像图像供临床诊断。分类编码:6831。  (十六)一次性五官科清洗套装:主要由鼻物光子系统:由发光二极管灯和光子转化凝胶(不含药)组成。发光二极管灯产生峰值未为446 nm的蓝光,部分蓝光经光子转化凝胶吸收后被转化发射出470~550nm、560~590nm和615~625nm的不同波长光的集合,不同波长的光具有不同皮肤穿透特性,并以光子能的形式同时作用于表皮和真皮。用于治疗16岁(含)以上患者的寻常痤疮。如产品依据GB/T 20145的蓝光视网膜危害类别为II类,作为II类医疗器械管理 如产品依据GB/T 20145的蓝光视网膜危害类别为III类,作为III类医疗器械管理。分类编码:6826。  (四)混合配药针:由储液腔、过滤器、进气器件帽、穿刺器保护套组成。通过混合配药针内外大气压差进行液体的分配或抽取,用于药液的配制和抽取。如仅作为指定中继泵的附件,不作为医疗器械管理 如用于药房或病房的普通配药,作为II类医疗器械管理,分类编码:6815。  (五)一次性使用无菌配药针:由针管、进排气槽和针座组成,用于药液的抽取和加注。如仅作为指定中继泵的附件,不作为医疗器械管理 如用于药房或病房的普通配药,作为II类医疗器械管理。分类编码:6815。  此外,CFDA还表示:对于不作为医疗器械管理的,如已受理尚未完成注册审批的,食品药品监管部门应按规定不予注册,相关注册申请资料予以存档。尚在有效期内的医疗器械注册证书不得继续使用。
  • PNAS|沈庆涛团队引入“退火”技术提高冷冻电镜解析蛋白分辨率
    退火——在冶金学中很常见——将金属或合金加热到设定温度,保持该温度,然后将金属冷却到室温,以改善材料的物理性质,有时还改善材料的化学性质。退火材料倾向于采用同质状态并容易组装成三维 (3D) 或二维 (2D) 晶体。人们可以通过原子力显微镜 (AFM)、X 射线衍射 (XRD) 或电子显微镜 (EM) 轻松地观察到这种规则堆积。退火是否对生物大分子,尤其是蛋白质表现出类似的影响,是一个迷人的科学问题。2022年2月22日,上海科技大学沈庆涛研究员团队等在PNAS发表题为Annealing synchronizes the 70S ribosome into a minimum-energy conformation的研究论文,将退火技术引入冷冻电镜解析蛋白质结构,在模拟退火中引入了一个类似的概念,以预测生物大分子的最小能量构象。通过实验验证,在自由能分析中,以快速冷却速率退火可以将 70 S核糖体同步到具有最小能量的非旋转状态。此结果不仅提供了一种简单而可靠的方法来稳定蛋白质以进行高分辨率结构分析,而且有助于理解蛋白质折叠和温度适应。与金属和有机聚合物不同,蛋白质和蛋白质复合物通常是由化学上不同的亚基以不同的几何形状结合在一起的离散实体。这种显着的结构异质性阻碍了通过 AFM 或 XRD 直接确定结构。相比之下,cryo-EM 分辨率的最新进展为在单分子水平上获得高分辨率蛋白质结构提供了绝佳机会。通过使用冷冻电镜比较退火前后的详细结构,可以获得退火影响蛋白质构象的直接实验证据。退火提高了局部分辨率研究中,选择来自大肠杆菌的载脂蛋白状态 70 S核糖体作为模型,其中 30 S亚基经历热驱动的亚基间旋转并表现出显着的结构灵活性以及明显的自由能。在 0°C 下将纯化的脱基态 70 S核糖体培养 5 分钟,然后立即将核糖体快速冷冻以进行低温 EM 分析,这可能保留了与玻璃化之前相同的构象(描绘为未退火状态)。筛选了收集到的 70 S核糖体颗粒通过 2D 和 3D 分类丢弃明显的垃圾和拆卸的核糖体。根据金标准傅里叶壳相关性,从 200,000 个随机选择的粒子中重建得到最终分辨率为 2.6 Å 的结构。由于缺乏稳定因素,例如信使 (mRNA) 和转移 RNA (tRNA),对未退火的 70 S核糖体的局部分辨率估计表明,在 2.6 至 7.2 埃范围内的整个密度图上存在可变分辨率(图 1A )。相对于 50 S亚基,30 S亚基——尤其是它的头部结构域——没有得到很好的解析,这在其他脱辅基态核糖体中很常见。图1 退火提高了 70 S核糖体的局部分辨率为了量化不同区域的分辨率变化,通过平均选定区域内的局部分辨率值来计算局部分辨率。分析表明,50 S亚基的平均局部分辨率为 3.1 Å,而 30 S亚基的分辨率要低得多——只有 5.2 Å。此外,30 S头域的分辨率更低——平均分辨率为 6.1 Å(图 1 B )。50 S和 30 S亚基之间的亚基间棘轮是分辨率差的主要原因;30 S的亚基内漩涡亚基是次要的,这会降低头部域的分辨率。为简单起见,使用 30 S亚基的局部分辨率作为标记来监测退火对 70 S核糖体的影响。未退火的、加热的和退火的核糖体结构变化退火使柔性区域稳定退火诱导的分辨率改善在整个 70 S核糖体中并不均匀。相对于 30 S亚基的 1.5-Å 分辨率提高,良好分辨的 50 S亚基在退火后仅提高了 0.3 Å(即从 3.1 Å 值到 2.8 Å 值)(图 1 B ) . 因此,退火对具有更大结构灵活性的低分辨率区域特别有益。为了进一步验证这一推论,我们对未退火和退火 70 S之间相同子区域的平均局部分辨率进行了综合统计分析核糖体。例如,退火将不同区域的平均局部分辨率提高到 0.1、0.6、0.8、1.2 和 2.0 Å 的水平;未退火核糖体中相应区域的局部分辨率范围为 2.5 至 3.0、3.0 至 3.5、4.0 至 4.5、5.0 至 5.5 和 5.5 至 6.0 Å(图 2 A ) 。指数曲线与数据非常吻合,表明未退火的 70 S核糖体具有更大的灵活性,对应于退火后局部分辨率的更大提高。图 2 退火稳定了 70 S核糖体的柔性区域讨论不限于金属、合金或半导体,我们通过实验证明退火还可以使 70 S核糖体同步到具有窄构象分布的最小能量状态(图 3)。核糖体/核小体的结晶具有类似退火的处理,其中研究人员通常将核糖体/核小体加热到 37 °C 和 55 °C 之间,然后将它们降低到室温 (19 °C)。对 70 S核糖体进行严格退火以进行结晶将有助于探索退火对70 S核糖体的物理和化学影响,如在冶金学中。除了 70 S核糖体,在其他生物大分子上退火,特别是那些具有动态结构的大分子,将有助于验证该方法的普遍性。图3 模型说明退火可以使核糖体同步到最小能量状态并提高局部分辨率。显示了自由能曲线(实线)和粒子分布概率(浅绿色峰)。结构灵活性虽然对蛋白质功能至关重要,但阻碍了研究人员应用结构研究在分子水平上阐明功能的能力。持续的努力——例如关键残基的突变,引入额外的二硫键,添加抗体/结合蛋白 ,或在溶液中或甘油内交联/葡萄糖梯度——对于优化样品以提高结构稳定性很有用。然而,这样的努力耗时且缺乏明确的方向,最终的结构仅限于固定状态,有时甚至会在额外的操作后发生扭曲。退火——适当加热和冷却的组合——对蛋白质没有破坏性,是一种简便而可靠的高分辨率冷冻电镜方法。有趣的是,与通过戊二醛交联的 70 S核糖体相比,退火提高了 50 S和 30 S亚基的局部分辨率。研究人员还尝试通过在低温 EM 图像处理期间对柔性区域进行局部细化来提高局部分辨率。我们对未退火和退火核糖体的灵活 30 S亚基进行了局部改进。在局部细化后,未退火核糖体的 30 S亚基的平均局部分辨率提高了 ~1 Å,达到 4.2 Å。与通过退火提高分辨率不同,局部细化本身仍然导致 30 S亚基头部域的平均分辨率不足 5.5 Å 。显然,退火和局部细化通过不同的机制提高了局部分辨率。退火可以将生物大分子驱动到最小能量状态,并且无论区域大小如何,都可以全局提高整个地图的分辨率。作为对照,局部细化在算法级别上起作用,并且仅适用于大小合理的区域。当我们对退火核糖体应用局部细化时,30 S亚基的主体和头部结构域分别提高到 2.9 和 3.9 Å。这表明退火与柔性区域的局部细化兼容,并且可以进一步优化局部分辨率以进行详细的结构分析。可以使用退火将蛋白质同步到最低能量状态,这可能有利于许多单分子方法,例如光镊和单分子荧光共振能量转移 。人们还可以使用退火来研究温度适应和蛋白质折叠,并促进分子动力学模拟中的算法开发。因此,研究人员应彻底研究退火机制并进一步优化退火条件以提高分辨率。本研究由国家重点研发计划项目2017YFA0504800(Q.-TS)、2021YFF1200403(Q.-TS)和2018YFC1406700(Q.-TS)和国家自然科学基金项目31870743(Q. .-TS)等支持。论文链接:https://www.pnas.org/content/119/8/e2111231119#sec-6
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制