当前位置: 仪器信息网 > 行业主题 > >

水化过程研究

仪器信息网水化过程研究专题为您整合水化过程研究相关的最新文章,在水化过程研究专题,您不仅可以免费浏览水化过程研究的资讯, 同时您还可以浏览水化过程研究的相关资料、解决方案,参与社区水化过程研究话题讨论。

水化过程研究相关的论坛

  • 【第三届原创参赛】生物分离技术与过程研究进展

    【第三届原创参赛】生物分离技术与过程研究进展

    维权声明:本文为gl19860312原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任。 本实验室主要工作就是:微生物发酵与代谢调控 、蛋白的分离纯化 、生物材料的研发与生产( 化妆品 、面膜、人工血管 、人工骨................)http://ng1.17img.cn/bbsfiles/images/2010/12/201012061854_264948_2019107_3.jpg 生物分离技术与过程研究进展摘要: 生物大分子包括多肽、酶、蛋白质、核酸( DNA 和RNA) 以及多糖等。生物大分子分离技术是生命科学研究中的关键技术之一。当前,各学科之间的交叉渗透为生物大分子分离技术的发展提供了更多的契机。对以沉淀、透析、超滤和溶剂萃取为代表的传统分离技术, 以及色谱, 电泳等现代分离技术的发展概况、原理、特点及应用进行了综述。分析了生物分离过程研究的现状和发展趋势, 着重介绍生物分离过程的研究新趋势———高效集成化, 并列举了亲和双水相分配技术, 亲和膜分离技术以及扩张床吸附技术等集成化技术及其在生物分离过程中的应用。前言 分离是生物工程产品生产中的基本技术环节,如图1 所示, 生物产品生产流程的主要步骤是各类分离操作 。对于现代生物技术产品, 分离成本可占产品总成本的70 %~90 %。生物产品自身特性及生产过程和终端使用的特殊性对于产品纯度及杂质含量方面提出了很高的要求, 发展高效生物分离技术成为生物工程技术领域的一个重要的研究课题。   http://ng1.17img.cn/bbsfiles/images/2010/12/201012061837_264944_2019107_3.jpg 进入20 世纪90 年代, 生物科学、生物技术基础研究与化工分离学科、材料学科等相关学科的进步极大地推动了新型高效生物分离技术的发展。同时生物分离过程特性的研究也逐渐为研究者们所重视。本文着重介绍这两方面的研究进展, 并对其发展方向和前景进行讨论。传统分离方法 常用的传统生物大分子分离方法有沉淀、透析、超滤和溶剂萃取等。它们都是一些较早就建立起来的分离方法, 至今仍然被广泛应用。 如在蛋白质领域, 应用盐析法使蛋白质沉淀出来已有80 多年的历史。其突出的优点是成本低, 不需要特别昂贵的设备; 操作简单、安全;对许多生物活性物质具有稳定作用。该法虽然分辨能力不高,但在粗级分离中仍然被经常采用。有机溶剂沉淀法也是较早使用的沉淀方法之一。有机溶剂对于许多蛋白质、核酸、多糖和小分子生化物质都能产生沉淀作用。其引起沉淀的主要原因在于改变介质的介电常数,以及类似盐析的争夺水化水现象。等电点沉淀法利用具有不同等电点的两性电解质, 在达到电中性时溶解度最低,易发生沉淀, 从而实现分离的方法。氨基酸、蛋白质、酶和核酸都是两性电解质, 可以利用此法进行初步的沉淀分离, 此法主要用于在分离纯化流程中去除杂蛋白,而不用于沉淀目的物。非离子型多聚物是20 世纪60 年代发展起来的一类重要的沉淀剂, 它们具有很强的亲水性和较大的溶解度, 在溶液中可通过空间位置排斥作用使生物大分子、病毒和细菌等聚集沉淀。该法温和的操作条件和较高的沉淀效能[/f

  • 【原创大赛】微观世界的奥秘 | 水泥水化后的另一个世界

    【原创大赛】微观世界的奥秘 | 水泥水化后的另一个世界

    水泥是无机非金属材料中用量最大的建筑材料之一,已成为当今世界第二大制品。自 1985 年起,中国水泥产量 21 年来一直雄居世界第一,到 2005 年,中国的水泥年产量已达 1.064 亿吨,占世界水泥产量的 48% 左右。世界上水泥品种已达上百种,但硅酸盐类水泥仍占主导地位。[b][color=#cc0000]水化反应[/color][color=#cc0000][/color][/b]水泥的水化反应是一个极其复杂的过程,不仅包括孰料矿物的水化反应,还包括各种混合材的反应,此外,还涉及到微观孔结构的形成以及水分传输的过程。硅酸盐水泥的水化产物特性在水泥的水化反应研究中具有重要的意义。水化产物的成分性质对水泥石后期强度的发展以及混凝土结构的强度发展具有决定性的影响。硅酸盐水泥与水作用后,生成的主要水化产物为水化硅酸钙和水化铁酸钙凝肢,氢氧化钙、水化铝酸钙和水化硫铝酸钙晶体。在完全水化的水泥石中,水化硅酸钙约占 70%,氢氧化钙约占 20% ,钙矶石和单硫型硫铝酸钙约占 7%。下面对主要水化产物(水化硅酸钙和氢氧化钙)作一些介绍。[color=#cc0000][b]水化硅酸钙[/b][/color][color=#cc0000][b][/b][/color][align=center][color=#cc0000][b][img=,180,190]https://ng1.17img.cn/bbsfiles/images/2019/07/201907241637338648_6602_3963489_3.jpg!w690x732.jpg[/img] [img=,180,190]https://ng1.17img.cn/bbsfiles/images/2019/07/201907241638216077_5048_3963489_3.jpg!w690x732.jpg[/img] [img=,180,190]https://ng1.17img.cn/bbsfiles/images/2019/07/201907241638409945_2459_3963489_3.jpg!w690x732.jpg[/img][/b][/color][/align][align=center]图1 飞纳电镜下的水化硅酸钙[/align]水泥水化产物,从占有的比例和体积看,首推水化硅酸钙(C-S-H 凝胶)。在水泥水化的后期,水泥水化反应渐趋减慢,各种水化产物逐渐填满原来由水所占据的空间。通过扫描电镜图像观察,由于大量锚片状、纤维状 C-S-H 凝胶的交叉攀附,从而使原先分散的水泥颗粒及其水化产物连结起来,构成一个三维空间牢固结合较密实的整体,最终在水泥石硬化后构成水泥石强度。因此,水化硅酸钙凝胶对水泥布的强度及其他主要性质起支配作用。[color=#cc0000][b]氢氧化钙[/b][/color][align=center][img=,270,286]https://ng1.17img.cn/bbsfiles/images/2019/07/201907241640009296_1919_3963489_3.jpg!w690x732.jpg[/img] [img=,270,286]https://ng1.17img.cn/bbsfiles/images/2019/07/201907241640229368_8065_3963489_3.jpg!w690x732.jpg[/img][/align][align=center]图2 水泥水化产生的氢氧化钙[/align][align=left]水泥水化反应的过程中,除了生成水化硅酸钙凝胶外,还会生成大量的氢氧化钙(CH)。[/align][align=left][/align][align=left]CH 微溶于水,在溶液中的浓度很快达到过饱和,并立即以六方板状或者方形晶体析出。[/align][align=left][/align][align=left]扫描电镜拍摄到的水泥石图像中的 CH 为层状结构、方形、片状形态,这使它对水泥石的强度贡献极少,而其层间较弱的连接,也可能是水泥石受力时裂缝的发源地。CH 的强度很低,稳定性极差,在侵蚀条件下是首先遭到侵蚀的组分,而且它们多在水泥石和集料的界面处富集并结晶成粗大晶粒,因而界面的黏结被削弱,成为水泥基材料中最薄弱环节。[/align][align=left][/align][align=left]水泥是工业生产中最重要的原材料之一。水泥的水化反应过程是水泥发挥其各项性能的基础,正确地理解水泥的水化反应对于充分发挥水泥效能,选择合适的水泥使用条件,解决其在生产使用中各种问题具有重要意义。[/align][align=left][/align][align=left][color=#cc0000][b]参考文献[/b][/color][/align][align=left]陈永霞. 混凝土中水泥的水化过程及主要水化产物特性 . 青海交通科技, 2013(3):5-6.[/align]

  • 全谷物含有大量纤维和不可消化的碳水化合物

    全谷物含有大量纤维和不可消化的碳水化合物,如-葡聚糖。这些碳水化合物不会在小肠中被吸收,而是会进入大肠,促进肠道中有益细菌的生长。有研究表明,粗粮可以促进对人体友好的双歧杆菌、乳酸菌和拟杆菌的生长。

  • 环保部关于地表水化学需氧量测定方法问题的复函

    环境保护部函环函75号 关于地表水化学需氧量测定方法问题的复函松辽流域水资源保护局:  你局《关于测定地表水化学需氧量取样方式有关问题的请示》(松辽水资保〔2011〕9号)收悉。经研究,函复如下:  《地表水环境质量标准》(GB 3838-2002)和《水质 化学需氧量的测定 重铬酸盐法》(GB 11914-89)中分别规定了采集地表水样品和测定样品中化学需氧量的要求。在实际监测工作中,应按照上述标准的规定,将采集后的水样自然沉降,取上层非沉降部分作为试样;在测定之前,应将上述试样充分摇匀,再按标准要求进行测定。  二○一一年三月二十九日主题词:环保 监测 标准 复函抄送:各省、自治区、直辖市环境保护厅(局),中国环境监测总站。

  • 婴幼儿奶粉中的碳水化合物知多少?

    襁褓中的婴幼儿是温室中的小花,一直是大家呵护的对象,而婴幼儿奶粉的质量问题理所当然的是人们目光聚焦之处。婴儿配方奶或母奶中的营养成分您知道多少?碳水化合物亦称糖类化合物,是生命活动所需能量的主要来源。母乳中2-8%的固体成分为乳糖,乳糖是母乳中碳水化合物的主要来源,而乳糖甜度是蔗糖的约五分之一,一般高质量婴儿奶粉中的碳水化合物应来自乳糖。乳糖近年来的价格大幅增加,有机乳糖就更加昂贵。 一些奶粉使用相对便宜的蔗糖、麦芽糊精、淀粉糖等替代部分乳糖,但有研究显示蔗糖和淀粉糖对健康有长期影响。欧盟于2009年禁止含蔗糖的婴儿奶粉在欧盟国家销售。在欧盟国家,乳糖过敏宝宝的奶粉需由医生准许才能购买含蔗糖奶粉。有人认为:蔗糖是人体发育的主要能量来源,婴儿正处在生长发育的早期阶段,其智力、骨骼、神经、肌肉的发育需要消耗较大的能量,所以在婴儿奶粉中除添加适量的添加蔗糖是非常必要的;也有人认为蔗糖可能会损害牙齿珐琅质,会使婴儿吃得过饱,导致儿童肥胖,在极少数情况下,会引发致命的代谢紊乱。婴儿奶粉中应不应该添加蔗糖?蔗糖含量的高低对婴儿的身体健康有什么样的影响?对此,您如何看呢?

  • 【讨论】关于碳水化合物的计算

    [size=4]按国家标准碳水化合物式计算出来的100-水份-脂肪-灰分-蛋白质-膳食纤维可是我最近在做一个腌菜其氯化钠含量达到7%左右已经可以影响到碳水化合物的结果了请问该不该减去氯化钠呢?减不合标准不减不合常理...大家说说意见吧[/size]

  • 碳水化合物的计算大家来讨论?

    碳水化合物的计算 食品营养标签中的碳水化合物是指每克产生能量为17kJ/g (4kcal/g)的部分,数值可由减法或加法获得。  减法:食品总质量分别减去蛋白质、脂肪、水分、灰分和膳食纤维的质量,即是碳水化合物的量。  加法:淀粉和糖的总和即为碳水化合物。  总碳水化合物指碳水化合物和膳食纤维的总和。我想说的是:减法中要减去膳食纤维的质量,我们做的时候没有减去,得出的结果是总碳水化合物的质量而且算能量的时候是 蛋白质 脂肪 碳水化合物 膳食纤维 分解产生的能量 我们算的时候 也没有用到膳食纤维 我理解的是他这个碳水化合物是总的 其中包含了膳食纤维 所以我感觉没有必要一定要算出膳食纤维 请各位大师给予知道啊!

  • 碳水化合物的测定

    如题,碳水化合物总量 大家是如何测定的,按照什么方法? 这个含量等同于总糖吗?

  • 【资料】水化学。pdf格式

    水化学.pdf格式。354页。化学工业出版社。2001年[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=42125]水化学.pdf[/url][color=red]【由于该附件或图片违规,已被版主删除】[/color]

  • 检测结果是碳水化合物为0,请问我标签印刷刻意强调无糖还需要在碳水化合物

    [font=SimSun, STSong, &]检测结果是碳水化合物为0,请问我标签印刷刻意强调无糖还需要在碳水化合物下面一栏标注糖为0吗?[/font][font=SimSun, STSong, &]1、如果不需要标注,那打假人员说依据GB7718 -2011 4.1.4.2 如果在食品的标签上特别强调一种或多种[/font][font=SimSun, STSong, &]配料或成分的含量较低或无时,应标示所强调配料或成分在成品中的含量。你宣称无糖,未在配料或[/font][font=SimSun, STSong, &]成品中标示含量。[/font][font=SimSun, STSong, &]2、如果在碳水化合物下面标注糖为0,那我们没有检测糖为0啊,但是实际你碳水化合物为0,那糖肯[/font][font=SimSun, STSong, &]定为0[/font]

  • 碳水化合物=淀粉+糖,这个糖是指总糖么?

    如题,食品营养标签中需要标碳水化合物的含量,碳水化合物可以由加法或者减法获得。减法好理解,加法我有些不明白:加法中的糖应该是指单糖、双糖和低聚糖的总和,这是不是指我们平时测定的总糖啊?在测定总糖时,低聚糖是包括在其中了的吗?请大家指点下!

  • 核磁共振_应用研究水泥浆体中可蒸发水的1H 核磁共振弛豫特征及状态演变

    应用背景水泥基材料作为一种多相复合材料,其水化硬 化过程中的相组成和转变一直是人们关注的热点。水作为水泥基材料的重要组分,与水泥粉体混合后初始以液相状态填充在水泥颗粒的间隙,在随后的水化硬化过程中,一部分参与水化反应变成化学结合水,成为凝胶产物微晶的一部分,这部分水通过干燥蒸发的方法也不能去除,因而也被称为不可蒸发水;现代水泥基材料科学的研究表明,不可蒸发水的含量与材料水化反应的程度和产物的晶体结构相关,而可蒸发水的含量及其状态与材料的抗冻性、抗腐蚀性、徐变、干燥收缩等性能关系密切.由于水泥水化反应随时间变化的连续性,不可蒸发水和可蒸发水的含量及状态也在不断变化.研究水泥基材料中水的相转变,探索不同状态的水的演变规律,对于充分认识水泥基材料的组成和结构,揭示材料的劣化机理具有重要意义.低场核磁共振技术对多孔介质中水的研究应用已逐步从生命科学、地球物理等领域扩展到建筑材料领域,该方法可在不破坏样品的前提下,利用水分子中质子的弛豫特性研究水含量及其分布的变化,具有快速、连续、无损的优势。下面简单介绍采用核磁共振测试系统水泥浆体中可蒸发水的1H 核磁共振弛豫特征及状态演变。核磁共振分析各试样弛豫信号经反演后的分布如图 1 所示http://pic.yupoo.com/niumagqw2/FzHASNRH/ZttTn.png,所有样品的 弛豫时间分布均呈1 个或2 个主峰,并伴有少量微弱的次峰。主峰分布在0.1~10.0 ms 的范围内,随着养护时间的延长,弛豫峰逐步向左移动,即分布趋向于短弛豫时间。试样弛豫时间分布趋短是由于随着龄期的增长水化产物不断增多,逐步将原先较大的孔隙填充细化,未反应的可蒸发水逐渐分布在较小的孔隙中.如图2 所示,各试样平均弛豫时间随龄期增长而下降,早期1~7 d 内下降快,之后变化平缓。http://pic.yupoo.com/niumagqw2/FzHASxqc/fV08h.png从上图中可以看出中的3 条曲线变化趋势一致,其斜率均由 水灰比大的试样其平均弛豫时间大于水灰比小的,饱水养护的大于密闭养护的。(参考文献:水泥浆体中可蒸发水的1H 核磁共振弛豫特征及状态演变》 硅 酸 盐 学 报 2009, Vol.37, NO.10

  • 【讨论】碳水化合物和总糖

    平时计算碳水化合物,都是用100-水分-灰分-蛋白质-脂肪-膳食纤维后得到的。这次做了个固体样品,按这样测出来是75%左右。结果用酸水解后苯酚硫酸法测定了总糖,样品的总糖测出来只有57%。按理说碳水化合物都是总糖,那还有一部分总糖方法未检出的是什么呢?

  • sem这是水化硅酸钙吗

    sem这是水化硅酸钙吗

    sem这是水化硅酸钙吗 [img=,568,429]https://ng1.17img.cn/bbsfiles/images/2023/03/202303112253557477_9002_5943694_3.jpg!w568x429.jpg[/img]是碱激发高炉矿渣土样

  • “美研究称粮食危害比油脂大”,这是阴谋吗?

    固有观点认为,多吃油脂类食物容易导致肥胖,且不利心脏健康。然而,据俄罗斯“医学论坛”新闻网11月24日消息,美研究人员称,吃油脂类食物比吃粮食对身体的危害要小。研究过程中,志愿者被要求尝试不同的饮食方案。结果发现,饮食中增加饱和脂肪比例并不会使志愿者血液中的脂肪含量增加。然而,增加粮食比例却会使志愿者的脂肪酸含量增加。为此,研究人员指出,多吃粮食可能会危害健康,导致心脏疾病。 研究人员表示,人体血液中的脂肪含量并不取决于油脂的进食量,而是取决于碳水化合物的进食量。研究人员认为,即使比现在许多发达国家所建议的油脂摄取量多吃三倍,也不会危害人体健康。因此,人们可以停止坚决抵制黄油、干酪、肉食以及奶油等食物。我觉得,最后的建议(黑色加粗文字)才是亮点!怎么看,都感觉有“阴谋”的味道啊。你的感觉呢?

  • 固化工艺研究和固化过程在线监测——低价、简便、高效的实时热分析技术研究

    固化工艺研究和固化过程在线监测——低价、简便、高效的实时热分析技术研究

    [color=#990000]摘要:差示扫描量热(DSC)和调制式扫描量热(MDSC)技术在复合材料固化工艺研究中应用十分广泛,但无法应用于固化过程的在线实时监测。为解决固化过程在线监测难题、提高固化工艺优化效率和实现仿真计算的准确考核,需要在差示扫描量热技术基础上开发低价、简便、高效和实时的新型热分析技术。本文介绍了近些年来在此领域内最具代表性的几篇研究报道,分析这些研究的特点和不足,并提出了后续工作的技术方案。[/color][color=#990000]关键词:固化工艺、固化过程、固化度、差示扫描量热、DSC、调制式差示扫描量热、MDSC、MTDSC、比热容、热扩散系数、导热系数[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#cc0000]1.问题的提出[/color][/b] 在复合材料研究过程中,需要对固化工艺进行研究和优化。而在复合材料生产过程中,为保证复合材料成品质量及生产的可重复性,理想方式是对复合材料固化过程进行实时在线监测,确保固化过程中各部分充分固化、累积残余应力和温度非均匀性引起的应变尽可能小、控制复合材料固化温度避免热降解以及降低完全固化的总时间。为了实现固化工艺研究和优化以及固化过程的实时在线监测,需要针对材料固化过程中可监测的物理量,并结合固化过程中出现的物理化学反应特性,采用相应准确有效的测试技术。在固化工艺中,当前常用来判断固化是否完成的直接准则是最能表现固化反应的固化度,但在固化工艺研究和固化度监测方面面临着以下三方面的技术难题需要解决:(1)现有扫描量热技术测试样品小,测试结果与实际生产现场有差异 目前用于研究固化工艺最有效的手段是差示扫描量热(DSC)技术以及灵敏度和精度更高的调制式扫描量热(MDSC)技术,树脂供应商大多采用这两种技术提供树脂固化度信息。这两种技术的局限性是测试样品量很小,与实际固化过程中的产品尺寸和形状有巨大差异,扫描量热技术测试得到的固化工艺过程和参数很难在实际固化工艺中直接使用,还需要进行大量固化工艺优化研究工作。(2)现有扫描量热技术无法应用于在线实时监测 由于基于热动力学原理,并且可以与固化工艺具有完全相同的温度、压力和气氛变化过程,目前的各种扫描量热技术作为最成功的热分析技术,可以说是完美解决了微量样品层面的热分析问题,为固化工艺研究和优化、为固化工艺仿真计算研究提供了准确的基础数据。但目前热分析技术的最大局限性是无法推广应用到产品生产现场,无法采用扫描量热技术对固化过程进行在线实时监测,无法对固化工艺研究和仿真模拟结果进行快速的在线实时验证。(3)现有在线监测技术无法达到扫描量热技术的准确性,未达到实用水平 尽管扫描量热技术无法推广应用到生产现场,但为了满足复合材料研制和生产需要,近些年来开发了许多新技术来进行固化过程的实时在线监测。这些技术大多采用间接方法,而且种类繁多,主要分为光纤法、超声法、电学法和热学法。尽管这些方法都证明了其在监测固化过程中的有效性,但也存在局限性,还都无法替代扫描量热技术的有效性,每一种方法只能监测部分参数,在使用时需要根据具体条件进行选择评估,而且这些测试方法目前大多还都停留在实验室研究阶段,还未看出具有多大的市场使用前景。[b][color=#cc0000]2.解决方案[/color][/b] 综上所述,为了准确了解固化中的吸放热过程、实现固化工艺设计、快速准确寻找最佳固化工艺过程,并能对整个固化过程进行实时在线监测,就需要在扫描量热技术的基础上,开发新的测试技术并应用到实际固化工艺中,所开发的新技术方案主要包括以下几方面内容: (1)首先要解决大尺寸规则形状样品或材料的热分析测试问题,即在各种大尺寸的板状、柱状和球型模具/样品和构件上实现扫描量热测试功能,这相当于把DSC测试功能拓展到大尺寸规则模具/样品和构件上。 (2)解决材料热物理性能测试问题,即在DSC比热容测试能力基础上,增加了在整个固化过程中的热扩散系数和导热系数的连续测量能力,在得到固化特性的同时得到复合材料传热特性,这相当于把MDSC测试功能拓展到大尺寸规则模具/样品和构件上。 (3)最终要解决单样品热分析测试技术问题,一方面要避免像DSC和MDSC那样需要同时进行参考样品测试,另一方面还要避免使用传统热物性测试中那样长时间稳态一维热流测试形式,而是需要仅采用温度传感器测量模具/样品和构件内外的温度和热流变化,并在与固化工艺相同的升温、恒温和降温的动态过程中,同时测量得到多个热物理性能参数,如热扩散系数、热焓、比热容和导热系数,最终得到固化度等相应的固化工艺参数。[b][color=#cc0000]3.本文目的[/color][/b] 上述解决方案是当前复合材料固化度监测及固化反应动力学研究的发展方向,对复合材料研制和生产有着重大意义,特别是热分析技术在固化工艺和固化过程中的应用研究方面,很多研究机构和学校都开展了研究工作,但并没有取得实质性进展,基本还停留在实验室探索阶段。本文将介绍近些年来在此领域内最具代表性的几篇研究报道,分析各种研究的特点和不足,为后续的技术攻关提供参考。[b][color=#cc0000]4.温度调制型DSC:MDSC技术[/color][/b] 经典的DSC技术可以测量微小样品比热容随温度的变化特性,由此常用于固化反应动力学的研究和分析,但无法测量样品的热扩散系数和导热系数,因此采用DSC技术无法对固化过程中的热传递进行研究,无法了解材料内部的温度分布,进而使得无法进行固化工艺的优化。另外,传统的DSC对于微量样品的微弱吸热和放热还是不能提供足够高的灵敏度和精度。 为此,结合传统的Angstrom技术,在DSC技术基础上开发了温度调制型DSC(MDSC)技术,即在以往DSC测试的温度变化曲线上叠加了温度调制波,由此大幅度提高了测量灵敏度和测量精度,同时还实现了热扩散系数的测量。 目前,MDSC技术已经非常成熟,并有相应的商品化测试仪器,如图4-1所示。很多研究机构采用MDSC仪器对固化过程中的热传递进行研究,如侯进森等人对碳纤维/环氧树脂预浸料固化过程中不同纤维方向上的导热系数进行了测量。[align=center][color=#cc0000][img=,690,230]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141816583388_7031_3384_3.png!w690x230.jpg[/img] [/color][/align][color=#cc0000][/color][align=center]图4-1 MDSC测量原理和测试仪器[/align] 尽管MDSC已经具有很高的测量精度和灵敏度,但这种技术复合材料固化工艺研究和在线监测中的应用十分有限,主要因为以下原因: (1)样品量太小,很难保证样品对复合材料的代表性; (2)测试模型假设被测样品始终处于温度均匀状态,这就造成MDSC测试模型无法放大应用到大尺寸样品和固化部件的热分析测试; (3)与DSC一样,MDSC同样需要结合参考材料同时进行测量,这也限制了这种技术的实际应用; (4)为了保证MDSC技术中规定的边界条件,在被测样品周围需要配备复杂的配套装置,这在固化工艺现场根本无法实现。[b][color=#cc0000]5.固化过程的其他热分析技术研究[/color][/b] 到目前为止,固化过程中其他热分析技术的研究,主要侧重于对恒温固化过程中热物理性能变化过程的测量,重点是测量热扩散系数的变化规律,然后用不同阶段的热扩散系数来表征固化度C,即:[align=center][img=,690,57]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141817455522_5587_3384_3.png!w690x57.jpg[/img][/align] 式中,B、A和D分别是液态、随时间推移和完全固化状态下的热扩散系数值。[color=#cc0000]5.1. Friis-Pedersen等人的研究工作(2006年)[/color] 较早尝试将DSC热分析技术推广应用到复合材料固化过程在线监测的是德国的Friis-Pedersen等人,他们模仿MDSC技术进行了初步的研究工作。在他们的研究中,模仿MDSC同样采用了Angstrom测量原理进行定点温度交变调制,模仿MDSC仪器结构搭建了一套经典的Angstrom法薄板热扩散系数测量装置,如图5-1所示,可以测量薄板材料(面积为100mm×100mm,厚度约为3mm)在不同恒定温度固化过程中热扩散系数的变化过程,并由此热扩散系数变化过程来表征复合材料固化度特性。[align=center][color=#cc0000][img=,690,226]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141817271162_7843_3384_3.png!w690x226.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-1 试验装置示意图[/color][/align] 尽管采用了已知热扩散系数的硼硅酸盐玻璃对此测量装置进行了测量误差考核,并标称测量误差小于3%,但从文献报道来看,整个装置简陋,重复性测量结果偏差很大。特别是对于低粘度未固化树脂以及厚度的变化情况测试会有很多问题。 Friis-Pedersen等人还分别采用两种DSC仪器分别对微量样品的比热容进行了测量,并结合上述装置测量得到热扩散系数和密度计算得到了导热系数,通过对比证明了固化度与热扩散系数和导热系数的变化密切相关,采用热扩散系数来表征固化度甚至在灵敏度上更优于比热容。 尽管Friis-Pedersen等人的研究工作比较简易,测量误差也较大,但在采用热物理性能参数来表征固化度方面进行了积极的探索,并获得了初步的结果,证明了采用热扩散系数来表征固化度是一种切实可行的技术途径,并具有显著特点。[color=#cc0000]5.2. Rudolph 等人的研究工作(2016年)[/color] 为了实现固化过程的在线监测,基于经典的Angstrom法薄板热扩散系数测试技术,德国的Rudolph 等人搭建了一套更简易的试验装置来测量环氧树脂固化过程中的热扩散系数变化,并基于上述固化度的定义来对固化过程进行表征。 装置的测量原理基于经典的Angstrom法,如图5-2所示,不同之处在于温度的调制不是传统的正弦波,而是采用了三角波,相应的热扩散系数测量公式则采用了参数估计算法获得。[align=center][color=#cc0000][img=,690,136]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818091906_4688_3384_3.png!w690x136.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-2 基本思想是假设一维热流,评估两个温度信号之间的差异。a)样品描绘,b)顶部和底部温度信号[/color][/align] 为模拟在线固化过程,Rudolph 等人搭建的试验装置模仿了真空袋成型工艺,如图5-3所示,被测环氧树脂样品尺寸为直径29mm、厚度不超过3mm,样品装在外径为30mm、高度为4mm的铝制料盒内。试验参数中设置了温度振荡周期长度为4分钟,振荡幅度被设置为2K。[align=center][color=#cc0000][img=,690,136]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818230117_8499_3384_3.png!w690x136.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-3 实验装置:1)隔离试验箱;2)温度控制器;3)用于温度测量和控制的PC机;4)测量放大器;5)室温显示;6)带有温度传感器的样品;7)铝块;8)珀尔帖元件;9)散热器[/color][/align] 采用这套试验装置,分别在不同温度下进行了固化过程中的热扩散系数测试,热扩散系数转换为固化度后的结果如图5-4所示。[align=center][color=#cc0000][img=,400,300]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818383568_7396_3384_3.png!w690x519.jpg[/img] [/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-4 在不同温度下测量热扩散系数推断出环氧树脂的固化度[/color][/align] 通过上述Rudolph 等人的工作,至少可以看出以下几方面的优缺点: (1)再一次证明了热扩散系数作为固化度评价参数的有效性; (2)对于板材结构的复合材料固化过程,可以用很简易的装置就可以实现固化度的在线监测,特别是仅采用单面加热和厚度方向双点测温的方式,就可以在线实时对整个固化过程的固化度变化进行测试表征,这已经非常接近实用化水平。 (3)出于测试方法需要,样品加热采用的是单面加热三角波温度调制方式,这种加热方式显然不符合常规固化工艺线性加热模式,增加了在线监测设备的复杂程度。同样,这种测试结构并不适合低粘度液体以及厚度变化的固化过程。 (4)Rudolph 等人的工作实际上为今后的实用化研究奠定了一个基础,这种单面加热方式完全可以拓展到常规固化工艺中的线性加热模式,即只需采用一个温度传感器测量板材中心位置在固化过程中的温度变化,就可以实现板材固化过程的在线实时监测。 沈阳航空航天大学的卢少微等人出于对巴基纸(Buckypaper)作为温度传感器在固化工艺在线监测中的应用研究,借鉴了上述Rudolph 等人的工作,直接在真空袋固化工艺中研究固化度与巴基纸的电阻温度系数关系。尽管直接采用温度传感器在线监测固化过程的有效性十分有限,但他们对巴基纸的研究不失为给今后固化工艺中使用的温度传感器增加了一种可选性。[color=#cc0000]5.3. Struzziero等人的研究工作(2019年)[/color] 上述研究工作基本都是基于板材固化工艺的在线热扩散系数测试测试方法,但这些水平结构的固化过程并不适合流动性较强的低粘度液体树脂的固化过程监测,而且监测过程中样品厚度会发生变化而带来测量误差。为了提高材料的适用性,Struzziero等人采用了柱状结构的传热模型报道了在线固化监测的研究工作。 Struzziero等人研究的测试方法还是基于经典的Angstrom技术,在定点温度下交变调制加热温度来测量得到热扩散系数。设计的测量装置包括一个带冷却管的铜块,其中心有一个圆柱孔用于容纳直径为7mm、壁厚为1mm、高度40mm的空心铜管。该装置如图5-5所示。[align=center][color=#cc0000][img=,690,223]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818568815_9052_3384_3.png!w690x223.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-5(a)实验装置;(b)截面图;(c)俯视图[/color][/align] 液体树脂倒入铜管,然后用软木塞封闭。软木塞在其中心有一个开口,以允许放置在中心的热电偶接触树脂。然后将铜管插入铜块的圆柱形孔中,两块隔热板放置在铜块的上下两侧,一根柔性电热丝缠绕在冷却管周围。铜块温度由温度控制器调节加热软线上的功率进行控制而产生周期性的变化。由于树脂的热惯性,在树脂区域中心测量的温度是相位滞后的周期性曲线,树脂和铜温度的周期性变化信号如图5-6所示,通过相位差的测量可以得到相应的热扩散系数。[align=center][color=#cc0000][img=,600,352]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141819092006_7113_3384_3.png!w690x405.jpg[/img] [/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-6 树脂区域边界和中心的温度变化[/color][/align] 每次测试前,树脂在铜管中的填充量为四分之三左右,用软木密封封闭,并放置在铜块中。随后,外径0.5mm的测量热电偶探针穿过软木塞密封件的中心开口,使热电偶敏感区位于树脂的几何中心位置。在测试过程中,铜块温度调制所采用的幅度为1℃、一个调制周期为4分钟。Struzziero等人采用搭建的测量装置对三类材料进行了测试,第一类是非固化材料甘油作为该方法的考核;第二类包括一种脱气、预混合、单组分树脂,专门设计用于树脂传递模塑工艺的环氧树脂RTM6和另一种为灌注应用设计的低反应性单组分液态环氧树脂890RTM;第三类是采用液体增韧环氧树脂的双组分系统,用于缠绕和拉挤成型的XU3508/XB3473。 Struzziero等人用上述装置测量了上述材料不同温度下的热扩散系数,并采用MDSC进行了比热容测量和固化表征,同时还建立了相应的固化动力学模型,由此来进行相应的对比和验证。 通过甘油的导热系数测量验证了与文献值相差约为8%,需要注意的是这个偏差是包含了测量装置热扩散系数测量误差和MDSC比热容测量误差的合成误差。 Struzziero等人在此测量装置上开展了大量研究,在此就不再详细介绍。总之,Struzziero等人的工作再一次有效证明的热扩散系数表征固化过程的有效性,同时还证明了测量液体热固性塑料固化过程中的热扩散系数方面是可靠的,测量精度由树脂区域中心热电偶放置的精度控制,要求位置精度为0.5mm以将测量误差限制在3%以下。固化环氧树脂的导热系数测试结果显示出对固化度的线性依赖增加和对温度的反向线性依赖,所得结果可以根据声子输运解释为固化材料中的主要热载体。实验装置测量结果可用于生成材料表征数据,这些数据是建立固化模拟所需的精确导热本构模型所必需的。 Struzziero等人的工作最重要的是验证了固化过程中热扩散系数和导热系数变化的准确测量,热扩散系数和导热系数的获得可以更可靠地预测热梯度、放热现象和缺陷,如残余应力,有助于提高固化工艺预测的整体精度。另外,Struzziero等人的圆柱体测试结构,从测试模型上已经完全接近于实际固化工艺,而且还可以进行各种形式的推广应用。[b][color=#cc0000]6.分析[/color][/b] 上述研究工作基本上都是模仿MDSC而采用了Angstrom技术,同时也证明了测量得到的热扩散系数和导热系数完全可以用于固化评价。由于加热方式的复杂性,使得这种Angstrom技术还是无法应用到实际复合材料固化工艺中的在线监测,还只能停留在样品级别的应用。为了真正在复合材料固化工艺中采用热分析技术实现在线监测,依阳公司通过前期的大量研究,做出如下分析: (1)基于MDSC发展历史做出的分析:在DSC测试过程中,由于样品量小,样品的吸热和放热量以及热流信号都十分微弱,而Angstrom温度交变测试是一种灵敏度和精度很高的技术,因此MDSC采用了Angstrom技术实现了灵敏度和精度的大幅度提高,并同时实现了热扩散系数测量,结合已经具有的比热容测试能力,MDSC可用来测量导热系数。 (2)从实际固化工艺做出的分析:在产品生产固化工艺中,产品尺寸普遍较大,吸热和放热量以及热流信号普遍都较大,从信噪比分析来看根本无需高灵敏度的Angstrom技术。另外,在实际固化工艺设备上也很难实现Angstrom技术要求的温度交变调制。 (3)从热扩散系数测试技术做出的分析:尽管上述研究文献报道都是基于交变的Angstrom技术,但不采用这种交变技术,只通过加热变化过程也能准确测量出热扩散系数,而这种加热变化过程与固化工艺中的加热过程完全相同。这也就是说在现有固化工艺设备和固化加热过程中,通过工件中单点温度的测量,可以准确得到整个固化过程中的热扩散系数变化。 (4)从比热容测试技术做出的分析:DSC和MDSC的强大之处在于可以对热流进行测量,从而量化得到吸热和放热变化过程,其技术关键是采用了参考材料的对比测试,这也是限制DSC技术推广应用于在线热分析的主要障碍。这个主要障碍目前也有解决途径,就是设法将参考材料等效到现场固化工艺加热装置上,从而可以具备DSC的所有测试能力。[b][color=#cc0000]7.总结[/color][/b] 通过上述研究文献综述和分析,针对固化工艺研究和固化过程在线监测,可以描绘出这样一个技术愿景: (1)因为都是基于升温和降温过程,可以将差示扫描量热(DSC)技术等效到固化工艺设备上,只通过简单增加相应的温度传感器等,就基本可以实现MDSC的大部分功能,至少能具备热焓、比热容、热扩散系数和导热系数的测试能力,实现高效的固化过程在线监测。 (2)这是一种单点测温和基于一维传热的测试技术,可以应用在各种尺寸和形状的复合材料固化工艺中,造价极低使用便捷,单点植入式温度传感器对复合材料整体性能影响小。 (3)随着分布光纤技术和巴基纸(Buckypaper)技术的发展,温度传感器可以采用分布式植入结构,将会更高效的进行固化工艺现场监测。[b][color=#cc0000]8.参考文献[/color][/b](1)王奕首, 李煜坤, 吴迪, et al. 复合材料液体成型固化监测技术研究进展. 航空制造技术, 2017, 538(19):50-59.(2)侯进森, 叶金蕊, 王长春, et al. 碳纤维/环氧树脂预浸料固化过程中的热导率测定. 复合材料学报, 2012(4):23-28.(3)Friis-Pedersen H H, Pedersen J H, Haussler L, et al. Online measurement of thermal diffusivity during cure of an epoxy composite. Polymer testing, 2006, 25(8): 1059-1068.(4)Rudolph M, Naumann C, Stockmann M. Degree of cure definition for an epoxy resin based on thermal diffusivity measurements. Materials Today: Proceedings, 2016, 3(4): 1144-1149.(5)Lu S, Zhao C, Zhang L, et al. Real time monitoring of the curing degree and the manufacturing process of fiber reinforced composites with a carbon nanotube buckypaper sensor. RSC Advances, 2018, 8(39): 22078-22085.(6)Struzziero G, Remy B, Skordos A A. Measurement of thermal conductivity of epoxy resins during cure. Journal of Applied Polymer Science, 2019, 136(5): 47015.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【分享】GB/T 12959-2008 水泥水化热测定方法

    GB/T 12959-2008 水泥水化热测定方法2008-01-09发布,即将于2008-08-01实施。代替GB/T 12959-1991、GB/T 2022-1980。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=92236]GB/T 12959-2008 水泥水化热测定方法[/url]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制