当前位置: 仪器信息网 > 行业主题 > >

水解反应

仪器信息网水解反应专题为您整合水解反应相关的最新文章,在水解反应专题,您不仅可以免费浏览水解反应的资讯, 同时您还可以浏览水解反应的相关资料、解决方案,参与社区水解反应话题讨论。

水解反应相关的资讯

  • 季胺化反应的发展及P-SAX季胺盐高分子聚合物的使用场景
    季铵盐中由于含有季铵基甚至有的还含有双键,故可以和诸多的不饱和单体共聚,在水溶液中带正电荷,生成阳离子型或两性离子型水溶性聚合物,很容易吸附于固一液或固一气界面上而被用作絮凝剂、抗静电剂、导电纸涂层及油田化学剂。另外,在现代社会中,表面活性剂的应用日趋广泛。季按盐类表面活性剂具有重要的用途,此外也可被用作柔软剂、抗静电剂、颜料分散剂、矿物浮选剂和沥青乳化剂、金属缓蚀剂及相转移催化剂等,在纺织印染、塑料加工、医疗卫生、日用化工、石油化工、金属加工等行业得到广泛应用。能够合成季铵盐的反应就是季胺化反应。过去几年,大部分是通过简单的合成反应获得季铵盐,例如:○ 在乙酸乙酯作溶剂的条件下与三乙胺混合加热、回流、搅拌进行季胺化反应得到三乙基对(邻)硝基苄基氯化铵;○ 以N-乙基苯胺为原料,经羟乙基化、氯乙基化、季铵化合成N-苯基-N-乙基氨基乙基三甲基氯化铵;○ 通过γ-氯丙基甲基硅氧烷—二甲基硅氧烷共聚物和N,N-二甲基苄基胺的季铵化反应合成了带有苄基二甲基γ-硅丙基氯化铵侧基的聚硅氧烷;○ 用雌二醇经溴乙基化、咪唑乙基化、季铵化和水解反应,合成一类新型的取代苯甲基雌甾咪唑鎓盐;○ 由1,3,5-三甲基-2,4,6-三(咪唑甲基)苯与1,3,5-三(溴甲基)苯直接合成了洞状咪唑鎓环番3(C30H33N63+Br-33H2O)等。P-SAX季铵盐高分子聚合物就是Welchrom P-SAX固相萃取小柱中主要的填料原料,其聚合物的合成方法就是会用到季胺化的反应方法。P-SAX是一种混合型阴离子交换反相吸附剂,对酸性化合物具有高的选择性和灵敏度。Welchrom P-SAX固相萃取小柱设计用于克服传统高分子聚合物基质混合型固相提取吸附剂的局限性。它是一种在pH0~14范围内稳定的混合型强阴离子交换、水可浸润性合物吸附剂。现在可使用可靠的固相提取来检测、确认或定量各种样品基质中的酸性化合物及其代谢物。利用Welchrom P-SAX固相萃取小柱的选择性和稳定性,可通过固相提取步骤从复杂的样品中将分析物分成两部分:酸性化合物和碱性/中性化合物。分流提取物可通过多种分析方法或多种联用分析技术(LC/MS和GC/MS)进行分析。Welchrom P-SAX固相萃取小柱广泛应用于净化不同基质如血清、尿液、塑料制品或者食品中的酸性和中性化合物,如奶粉及奶制品中三聚氰酸的检测。
  • 康宁高通量微通道反应器技术在化工生产中的应用暨万吨级G5新品发布会
    纽约州康宁- 康宁公司(纽约证券交易所代码:GLW)今日宣布康宁反应器AFR (Advanced-Flow Reactors)技术取得了重大进展,推出单台年通量万吨的G5反应器,拓展了康宁AFR技术在医药、农药、精细化工、特种化工、新材料等领域的本质安全连续生产大吨位解决方案。浙江巍华新材料股份有限公司、上海惠和化德生物科技有限公司与康宁反应器技术有限公司合作,采用康宁G5微通道反应器成功实现了单套年通量万吨级农药中间体全连续化生产,成为全球首套康宁万吨级G5微反应装置,至今已经安全稳定运行6个月。“康宁反应器技术拥有18年创新积累、12年工业化经验。解决方案覆盖从实验室多功能开发平台到模块化工业化连续生产、以及流动化学教育平台和培训。康宁持续创新、提升功能、拓宽领域,G5就是我们努力创新的最新例证。”康宁反应器技术有限公司总裁兼总经理姜毅博士说,“G5不仅实现了单台年通量高达万吨,而且和康宁其它工业化解决方案(G3, G4, GP4)一样做到无缝放大。”浙江巍华新材为全球大型农药和医药客户专业研发和生产氯甲苯和三氟甲苯系列。目前有两条生产线采用了康宁G5反应器,装置运行半年来安全稳定,各项指标均达到既定目标:实现了重氮化反应 + 水解反应 + 下游分离纯化的全连续稳定生产,实验室到G5无放大效应,全流程收率和年净利润大幅度提升,生产本质安全化,重氮化持液量减少99.99%;水解持液量减少96.5%,减少占地90%,人工80%,减少三废和能耗。 “从原来老车间里的9个间隙釜到现在只需要几升就可以达到同样的产能的G5连续微反应和连续分离纯化,我们见证了颠覆性创新带来的令人惊叹的转变。” 浙江巍华新材总经理潘强彪博士说,“开车过程平稳、迅捷,上海惠和化德开发的AFR连续工艺高效独特。该项目的成功是巍华、惠和化德、康宁“共赢合作”的范例,为巍华接下来的多个AFR连续生产项目实施提供了宝贵的经验”。上海惠和化德生物科技有限公司是一家创新型流动化学工艺技术开发公司,是康宁在华的第一家康宁反应器应用认证实验室(AQL),使用康宁微通道反应器和其他流动化学工具,为客户提供连续流合成工艺包和生产项目落地服务。 “康宁独特的模块化微反应工艺开发和大生产平台系列对项目的按时交付和成功运行起了至关重要的作用。” 上海惠和化德创始人兼总经理马兵博士说。 “特别是我们团队在康宁G1反应器开发的工艺能够无缝放大到G5规模,完全消除了项目在交付进程和投资上风险。”为了满足客户具体化学品连续生产的产能、多功能性、灵活性和项目综合效益需求,康宁为客户提供性价比合理的连续工业化生产解决方案,采用并联多组G4 (年通量2000吨)、GP4(年通量3500吨),也成功实现了多套万吨级年通量AFR连续生产装置(山东京博集团益丰生化等)。这些装置都实现了无缝放大和安全稳定连续运行,其中在浙江医药股份有限公司的年通量万吨级AFR装置已经稳定运行达3年。康宁持续与医药、农药、精细化工和新材料行业的重要客户全面合作,在亚洲、欧洲和美国安装了60多条康宁AFR微反应连续工业生产线。康宁高通量微通道AFR反应器是一种本质安全的技术,能够降低爆炸风险和危害程度;实现高效、高质量化工连续生产;降低生产成本、占地和能耗,减少对环境的影响。
  • 康宁AFR与安捷伦在线 LC 的完美结合助力工艺高效开发!
    前言本应用展示了Corning Advanced-Flow Reactor流动化学反应器与Agilent Infinity Lab 在线液相色谱结合使用的能力。概要本文将主要介绍应用康宁低流量连续流微反应器对乙酰基水杨酸(阿司匹林)的水解反应进行研究。通过对反应工艺的参数改变,结合在线安捷伦LC数据分析,可以实时优化反应条件,获得最佳反应结果。图1.乙酰基水杨酸水解反应方程式研究过程一. 实验仪器Corning AFR:低流量反应器(LF)Agilent 1290 Infinity II HPLC 在线检测系统二. 实验方法Corning AFR 是一种可灵活调整的模块化微反应设备,具有独特的康宁心形结构专利设计,可将反应物高效混合及换热以优化反应。图2.反应流程装置图对于所有实验:换热器设置为 86 °C;乙酰水杨酸的浓度为 0.016 M;硫酸的浓度在 0.16、0.375、0.75 和 1.5 M 的浓度范围内变化。停留时间及相应的反应器进料流速变化见表 1。表 1. 乙酰水杨酸和硫酸停留时间和进料流速三. 分析方法作者使用Agilent ZORBAX Eclipse Plus C18,4.6 × 50 mm, 1.8 μm色谱柱,流动相为A:水 + 0.1% 甲酸 B: 乙腈 + 0.1% ,柱温50℃,分析流速2ml/min,暂停时间1.5min,进样体积1 μL 。产物从反应器流出后直接注入到液相色谱仪。取样速度:100 μL/min;等待时间:3.6 秒。每个实验条件时间点,需要系统达到稳态条件。在线 HPLC监测进程中,一旦相关目标分析物在峰面积百分比一致达到稳定,就会记录并分析相关数据。四、结果分析与讨论1. 为确保该反应条件设置能够生成高质量数据,将 0.2 mg/mL 乙酰水杨酸和水杨酸的混合物从Corning LF反应容器泵送到 Agilent Infinity Lab Online LC ,每 3 分钟抽取一次样品并立即进行分析。乙酰水杨酸和水杨酸的峰面积精度分别为 1.1% 和 1.3%,保留时间精度分别为 0.07% 和 0.06%(图 3)图3.乙酰水杨酸和水杨酸HPLC图2. 从Agilent Infinity Lab Online LC的结果从直观上可以快速分析:(A)开始与乙酰水杨酸的反应 (B)大约一半的乙酰水杨酸已经水解为乙酰水杨酸(C)几乎完全反应。图4. 间歇式酸催化水解乙酰水杨酸的研究进展【编者语】流动化学与在线检测最大的优势在于:反应进程一目了然,可以快速改变反应条件; 一次实验可以得到多组反应工艺参数;参数优化后,通过在线检测控制产品质量;康宁反应器可以与多种在线检测设备相结合(红外、拉曼、液相、核磁等)3. 为了优化反应,更仔细地考察停留时间和酸浓度。改变物料在Corning LF反应器中的停留时间,相应地修改了输送硫酸和乙酰水杨酸溶液的注射泵流速(表2)。乙酰水杨酸的温度和浓度分别保持恒定在 86 °C 和 0.016 M。从连续流反应器流出的产物连接到在线 LC 系统,每 3 分钟抽取一次样品。当分析物和产物的面积百分比恒定时达到稳定状态。表2 . 停留时间和LC在线监反应组分的组成及杂质含量4. 综上本实验应用展示了康宁AFR卓越的传质和传热效率,使得反应条件改变响应更及时,无放大效应,易升级放大;采样和结果分析通过安捷伦在线 LC 监控软件进行记录,以本质安全、高效经济的方式实现实验条件监控的完全自动化。总结康宁微反应器不仅可以与LC连用,还可以与Spinsolve 系列NMR 分析仪器连用;对两相或多相液体反应结合Zaiput系列分离器可实现在线分离;连续流反应器与在线检测设备相结合,可以实现药品的快速工艺优化;智能化全连续药品生产已成为可能。参考文献:Agilent Technologies application note, publication number 5994-3528EN, 2021.★康宁一体化合成平台★康宁专注于微反应技术的创新,同时与世界一流创新团队紧密合作,打造“微反应+微分离+在线检测”- 连续化学反应快速筛选平台。该工艺平台自动化程度高,反应结果瞬间可知。康宁反应器开放的系统可以与众多PAT设备以及分析软件链接。可对工艺条件进行快速筛选,在短时间内建立强大的化合物库。欢迎您联系我们,共同探讨最新合成技术!康宁“微反应+微分离+在线检测”一体化合成平台
  • 莱伯泰科微波蛋白水解技术助力标准开发,开启氨基酸分析新时代!
    ‍‍‍‍‍‍‍‍‍‍在最新发布的标准方法 《NY/T3870-2021硒蛋白中硒代氨基酸的测定》中,采用了ETHOS UP微波蛋白质水解系统,HPLC-AFS法检测硒蛋白中硒代氨基酸。‍‍ETHOS UP微波蛋白质水解系统的使用,大大提高了蛋白质的水解效率,彻底改变了氨基酸分析中样品前处理的现状,开启了氨基酸分析的新时代!‍‍‍‍‍‍ 在氨基酸的测定中,提取水解技术一直是制约整个分析过程的关键环节。传统酸解法需要在烘箱中110℃水解22小时,还需要手动充氮气创造惰性环境,整个流程不但非常耗时、操作繁琐,而且研究发现,在长时间的盐酸水解过程中,多种不稳定的氨基酸,如硒代氨基酸、含硫氨基酸、色氨酸等,几乎完全被破坏。而ETHOS UP微波蛋白质水解系统的应用,将传统需要22个小时的蛋白质水解过程缩短到20-40分钟,避免了传统酸水解法水解时间长、硒代氨基酸在水解过程中不稳定的技术难题。全自动化抽真空通氮气,避免了繁琐的手动操作过程,让实验人员进一步领略到了自动化设备带来的便利。‍‍‍‍‍‍微波蛋白质水解系统‍‍‍‍ETHOS UP微波蛋白质水解系统技术特点☆ 高效微波加热方式,将传统需要22个小时的蛋白质水解过程缩短到20-40分钟,大幅提高工作效率;☆ 全自动化抽真空通氮气,确保氨基酸不会发生氧化降解,避免了繁琐的手动操作过程;☆ 高温高压单反应水解腔,一个水解腔可同时处理25个样品,确保完全一致的反应温度和压力,与传统的处理方式相比,保证样品处理的一致性;☆ 高精度的数字温度控制程序,直接控制反应液体温度,整个水解过程反应条件精确控制,标准化自动化的工作程序。改变了传统烘箱水解不能精确反应和控制样品液体温度的缺陷;☆ 样品可直接放在 HPLC样品瓶中水解,无需转移。
  • 核酸降解知多少
    导语在实验过程中,最心累的莫过于好不容易提取的核酸却降解了。那么核酸为什么会发生降解呢,我们又该如何预防呢?关于核酸降解,你了解多少呢?让我们一起对核酸降解一探究竟吧。 什么是核酸 核酸是一种高分子化合物,核苷酸是构成核酸的基本单位。核酸水解后得到许多核苷酸,核苷酸是组成核酸的基本单位,即组成核酸分子的单体。一个核苷酸分子是由一分子含氮的碱基、一分子五碳糖和一分子磷酸组成的。根据五碳糖的不同可以将核苷酸分为脱氧核糖核苷酸和核糖核苷酸。如果5-碳糖是核糖,则形成的聚合物是RNA;如果5-碳糖是脱氧核糖,则形成的聚合物是DNA。 核酸降解本质 核酸降解是DNA/RNA分子中的碱基和戊糖间的氮糖苷键,或磷酸二酯键在物理因素、化学因素和生物因素等作用下发生水解,使DNA/RNA链发生断裂。核苷磷酸化酶:能分解核苷生成含氨碱基和戊糖的磷酸酯酶。广泛存在于生物体内,催化的反应可逆。可在核苷水解酶作用下继续分解核苷成嘌呤碱、嘧啶碱和戊糖。核苷水解酶:主要存在于植物和微生物体内,只水解核糖核苷。 核酸降解原因 DNA降解的因素很多,主要分为物理因素,化学因素和生物因素。一、物理因素:温度,机械剪切力、核酸的反复冻融、高温煮沸及辐射等。二、化学因素:PH值,水解反应,氧化反应等。三、生物因素:酶解及微生物侵染等作用。一、物理因素的影响★ 温度:高温条件下,RNA不稳定,易加速磷酸二酯键的水解,使核酸降解;★ 机械剪切力:包括剧烈震荡、搅拌、细胞突然至于低渗溶液中,以及让溶液快速通过狭长的孔道;★ 核酸的反复冻融、高温煮沸及辐射等,均会导致核酸的降解。二、化学因素影响水解★ PH值:氢离子参与催化磷酸二酯键、糖苷键的水解,但糖苷键比磷酸二酯键更易被酸水解。过高或过低的PH值都易破坏复键。核酸(特别是RNA)在碱性溶液中十分容易降解;★ 氧化反应:会氧化碱基中的含氨杂环,使其变性,从而改变一级与二级的核酸构象;★ 苯酚在空气中被氧化生成醌,它能够产生自由基,直接用于DNA的分离,会使磷酸酯键断裂,造成DNA的降解。三、生物因素影响★ 酶解:核酸酶可以催化水解多聚核苷酸链中的磷酸二酯键,直接破坏核酸的一级结构,使其降解。1.核酸酶(磷酸二酯酶)核酸内切酶:在环境或生物体内具有识别双链DNA分子中特定核苷酸序列,并由此切割DNA双链的核酸内切酶统称为限制性核酸内切酶。作用方式从多聚核苷酸链中间开始,在某一个位点切断磷酸二酯键。如DNase,RNase等。核酸外切酶:核酸外切酶的作用方式是从多聚核苷酸链的一端(3' -端或5' -端)开始,逐个水解切除核苷酸。如蛇毒磷酸二酯酶,牛脾磷酸二酯酶等。2.核苷酸酶(磷酸单酯酶)专一性的磷酸单酯酶:3' -核苷酸酶,5' -核苷酸酶非专一性磷酸单酯酶。★ 微生物侵染:微生物会将DNA作为营养物质或是其分泌的化学物质含酶。 预防降解的方法 预防RNA降解的方法:★ 去除环境中RNase酶的污染或强有力地抑制其活性。★ 获取样品后最好立即提取RNA,若无条件立即实验,应于-80℃液氮中保存样品,提取时取出样品后立即在低温下研磨裂解细胞,以防RNA降解。★ 在总RNA提取分离的最初阶段,联合使用Rnase的特异抑制剂,尽可能的灭活胞内的Rnase的活性。★ 避免样品的反复冻融。★ 保证裂解液的质量,裂解液的用量不足,也会导致RNA降解。★ RNA提取后,放入-80℃保存,防止降解。预防DNA降解的方法:★ 简化操作步骤,缩短提取过程,以减少各种有害因素对核酸的破坏;★ 减少化学物质对DNA的降解,为避免过酸、过碱对DNA双链中磷酸二酯键的破坏;★ 防止基因组DNA的生物降解,主要是DNase降解基因组DNA,Dnase需要二价金属阳离子Mg2+等的激活,可用EDTA等金属离子整合剂整合Mg2+以抑制Dnase的活性;★ 减少物理因素对DNA的降解,物理降解因素主要包括机械剪切力(如剧烈震荡、搅拌等);★ 避免样品的反复冻融,可将DNA分装保存于缓存液中;★ 所有试剂应用无菌水配制,耗材经高温灭菌;★ 避免DNA的过高温处理等。
  • 防护服能降解毒素?核磁共振波谱给你答案
    图片来源:Pixabay.com美国科学家开发出一种与锆基金属有机框架(MOFs)集成的水凝胶,可以快速降解化学战中使用的有机磷类神经毒剂。与现有的粉状MOF吸附材料不同,这种水凝胶材料不需要添加水,便于用在防护口罩或服装上。这项研究日前发表在《化学催化》上。“以有机磷为基础的神经毒剂是人类已知毒性最强的化学物质之一。”西北大学化学教授、论文通讯作者Omar Farha说,“在这项工作中,我们将MOFs和含胺交联水凝胶整合到布料中,以建立适当的微环境,进而促进神经毒剂的快速降解,并提供实时保护。”虽然科学家之前已经证明了MOFs在实验室中快速分解有机磷制剂和类似模拟物质的能力,但事实证明,这些粉末吸附剂很难直接集成到防护布中。当神经毒素与锆6簇结合时,通常会使粉末和纤维复合催化剂失活。这一缺陷要求使用碱性溶液再生MOFs的催化位点——这不会阻止MOFs被用于消除储存的化学武器,但会阻碍它们在穿戴防护装备中的使用。为了克服这一挑战,Farha及同事设计了一种基于MOF的织物复合系统,该系统使用胺基水凝胶中的水分解神经毒剂。这种材料的工作原理是将3个关键组分结合在一起,进行水解反应,从而去除有毒的有机磷剂。MOF的锆节点提供了一个路易斯酸性位点,它能激活磷中心(神经毒剂的活性部分),而水凝胶孔则捕获必要的水,最后水凝胶主链上的碱性胺基生成羟基,促进对有机磷底物的攻击,进而使水解产物在锆中心上发生置换(即催化周转)。研究人员将这种水凝胶复合材料与棉纤维结合,并用模拟或实际神经毒剂进行了测试。他们使用核磁共振波谱分析了产品和衬底,发现复合材料在短短10分钟内化学转化了99%的试剂,即使在密封瓶中保存3个月,也能保持这种高水平的催化活性。虽然将其集成到现有产品还需要进一步的工程和测试,但由于材料生产方法简单且易于扩展,Farha认为大规模生产基于该材料的面罩和防护服在未来是可能的。
  • 日立LA8080蛋白水解法&生理体液法分析氨基酸
    氨基酸是组成生物体中蛋白质的基本单元,主要以下列两种形式存在:一种是以结合态存在于肽和蛋白质中,被称为标准氨基酸,这类氨基酸约有20种,分析这类氨基酸的方法被称为“蛋白水解法(标准分析法)”;另一种是以游离态存在于生理体液(如血浆,尿液等)、食品(如肉制品,饮料等)中,这些氨基酸包含氨基酸代谢物和前体,被称为游离氨基酸,因其直接影响食品的口感与风味,近年来备受关注。游离氨基酸比标准氨基酸的种类丰富,至今已知主要有约40种,分析这类氨基酸的方法被称为“生理体液法”。高效液相色谱柱后衍生法是氨基酸分析最常用的方法,一般通过色谱柱分离后,进行柱后衍生再测定。茚三酮柱后衍生法是通过离子交换色谱柱分离氨基酸后,与茚三酮试剂混合发生化学反应(显色),可在可见光区进行检测,此方法可靠性与稳定性高,被广泛应用。下面使用日立全自动氨基酸分析仪LA8080,分别采用蛋白水解法&生理体液法测定样品中的标准氨基酸和多种游离氨基酸。缓冲液和衍生试剂可使用市售配件,适用于品质管理等常规分析。蛋白水解(PH)法日立全自动氨基酸分析仪LA8080采用长寿命高理论塔板数3 μm分离柱,可在30 min内实现标准氨基酸分离度全部大于1.2分离。并且通过调整洗脱程序,还可把分析时间从30 min更进一步缩短到24 min,实现氨基酸的超高速分析。生理体液(PF)法日立全自动氨基酸分析仪LA8080采用第三代衍生技术—TDE3,填充高效热传导材料,提高传热效率,检出限进一步提高到2.5 pmol,使用寿命是第二代的2.5倍。从上述结果中可见,对于复杂的生理体液,LA8080仍然能够实现高灵敏度和分离度的检测。日立全自动氨基酸分析仪LA8080采用日立独家的长寿命高灵敏度的第三代TDE3尖端衍生技术,以及长寿命高理论塔板数3 μm分离柱使氨基酸的分析进入超高速全自动分析的时代。
  • 螺盖试管促销
    螺盖试管(圆底培养管) 标准圆底培养试管,设计符合ASTM E982 Type Ⅵ Class A要求硼硅酸盐玻璃材质,管壁厚度均匀,可最大程度承受热传递石炭酸盖子,硅橡胶/PTFE墊片 可高温灭菌,有白色标记区广泛适用于组织、细菌培养,水解反应等 货号 描述(容量、直径x长度) 包装 单价 特价 VJEQ-38013-13100-100# 8毫升、13x100mm 100个/箱 550.00/箱 440.00/箱 VJEQ-312016-16100-100# 12毫升、16x100mm 100个/箱 650.00/箱 520.00/箱 VJEQ-316016-16125-100# 16毫升、16x125mm 100个/箱 700.00/箱 560.00/箱 VJEQ-320016-16150-100# 20毫升、16x150mm 100个/箱 750.00/箱 600.00/箱 VJEQ-325020-20125-100# 25毫升、20x125mm 100个/箱 1100.00/箱 880.00/箱 VJEQ-330020-20150-100# 30毫升、20x150mm 100个/箱 1150.00/箱 920.00/箱 VJEQ-350025-25150-100# 50毫升、25x150mm 100个/箱 2550.00/箱 2040.00/箱 促销时间:2010年12月13日至2011年6月30日
  • anpel样品瓶架促销
    anpel样品瓶架, PP材质,适合存放&Phi = 12mm,2mL样品瓶。产品特点:1、选用优质PP材质,可耐受常见绝大多数有机溶剂的腐蚀,也可用于120℃以下&Phi = 12mm,2mL钳口瓶的衍生化和水解反应。2、底部凹槽设计,有利于样品稳定叠放,节省你宝贵的保存空间。3、正面数字字母双坐标标识,方便样品管理,4、性价比高,样品间距设计合理,易于样品瓶取放。原价:50元/个购买5个及以上优惠价:30元/个促销时间:2012年11月1日-2013年1月31日产品编号名称规格原价促销价(购买5个及以上)VHAA-12502mL塑料蓝色样品瓶架PP,50孔/板50.0030.00上海安谱科学仪器有限公司地址:上海市斜土路2897弄50号海文商务楼5层 [200030]电话:86-21-54890099传真:86-21-54248311网址:www.anpel.com.cn联系方式:shanpel@anpel.com.cn技术支持:techservice@anpel.com.cn
  • 科学家发展“表面功夫”揭示铝离子电池失效机制
    理解电化学储能器件的工作原理及失效机制,对指导高性能器件的开发具有重要意义。近日,中国科学院大连化学物理研究所研究员傅强团队调变铝离子电池器件的工作环境和气氛,利用原位X射线光电子能谱(XPS)和拉曼光谱(Raman)等研究储能器件发现,无水气氛下,铝离子电池电极中的阴阳离子重新分布导致电极发生结构和电子态的弛豫效应,即电池自放电。而在含水气氛下,环境中的水分子会插层到石墨电极层间,并与层间离子发生水解反应,导致石墨电极电子态去耦、插层阶结构退化。相关研究成果发表在《美国化学会志》上。当前,研究界广泛使用X射线衍射、X射线吸收谱、透射电镜和核磁共振等表征技术检测电极和电解质,进而获得相关体相信息。傅强表示,这种方式获得的体相信息多聚焦电极或电解质内部,很难了解表界面的电化学行为,因此急需发展原位/工况电化学表界面表征方法。长期以来,基于XPS、扫描探针显微镜等表面科学研究方法成功用于表面化学和多相催化,而将表面化学方法学用于电池器件等电化学过程的研究面临模型电化学储能器件构建等挑战。为此,团队突破了表面表征所需的超高真空工作环境和规整开放表面的局限,构建出基于两维材料电极的模型电化学储能器件,设计并加工系列可以对模型储能器件施加电场、改变气氛、表面表征的样品台和样品池,利用XPS、原子力显微镜、Raman、光学显微镜等对铝离子电池的工作过程进行工况表征并准确阐述该电池的工作机制,同时还发现了储能器件电极的表面效应。此次,为了探究铝离子电池气氛下的失效机制,团队将含水、氧气、氮气等不同气氛分别引入铝离子电池的工作环境,通过XPS、Raman等表界面研究发现,含水气氛下,电极与水反应发生水解,使组分改变,导致电池失效。而无水气氛下,电极则表现出自发的弛豫、自放电现象。该研究准确阐明电池过程的工作机制,并揭示了不同气氛下储能器件的失效机制。与此同时,团队还将表界面电化学研究方法扩展到锂离子电池等其他储能体系。傅强表示,未来,基于气氛、温度、外场可控的原位电化学表界面表征技术和方法有望广泛应用到二次离子电池、超级电容器、金属—气体电池等体系中的表界面反应研究中,阐明这些储能器件的工作原理和失效机制。相关论文信息:https://doi.org/ 10.1021/jacs.1c09429
  • 冬季是火锅底料销售旺季,火锅底料有哪些检测标准呢?
    火锅底料是一种常见的调味料,新国标规定火锅料不能够添加石蜡和苏丹红,对于消费者争议很大的“火锅老油”问题也作了考虑。 “酸价”也是火锅底料生产过程中重点监测项目之一,酸价是油脂精炼程度和品质好坏的重要标志。油脂的酸价超标通常有两个原因:一是加工中脱酸工艺不达标,二是储藏中发生氧化或水解反应产生羧酸。反复多次使用的食用油或已酸涩的“哈喇味”油,其酸价会升高许多。,酸价超标意味着油开始腐败变质;老油如果过多地用在底料中,也会被检测出来;那底料也就不达标。除此,水分含量的控制也是火锅底料中一项常见的理化指标。 —推荐产品1一CT-1PLUS多功能全自动滴定仪仪器简介:CT-1PLUS自动电位滴定仪除了能够进行酸碱滴定、氧化还原滴定、沉淀滴定和络合滴定等,还可以进行自动颜色判断滴定;小于1ul的滴定控制精度。测试报告完全符合GLP/GMP规范,智能控制、智能计算、轻松、快速、有效的完成火锅底料中油脂酸价的检测项目。 —推荐产品2—AKF-IS2015V不溶性固体水分测定仪仪器简介:彩色触摸屏,全数字键盘,界面直观简洁,配有卡式加热炉的全自动容量法水分测定仪,检测精度高达10ppm,瓶式加热顶空进样技术,避免了加热炉膛和反应杯污染,载气消耗量少;无需穿刺,无死体积管路设计,无残留,无记忆效应,管路保温防止凝结;安全方便,平均2分钟测定一个样品。 目前市场上最常用的是卡尔费休水分测定仪和加热失重法水分仪,由于有些火锅底料会加入中药材,因此最常见的这两种方法是无法有效的检测出其含水量的。接下来,我们将继续为大家介绍火锅底料含水量检测分析方法,敬请关注!
  • 持久性有机污染物到底有多持久?怎么判定?如何测算?
    众所周知,持久性有机污染物(以下简称POPs) 具有四大特征,环境持久性、生物累积性、远距离迁移能力和高毒性。所谓环境持久性,指的是POPs难以通过生物降解、光解、化学降解等被降解,在大气、水体或土壤环境中具有较长的存留时间。化学品的环境持久性到底有何判定标准?又如何来测算呢?5月17日,在山东省青岛市举办的“第十七届持久性有机污染物论坛暨化学品环境安全大会”主旨报告环节,POPs专委会委员、大连理工大学陈景文教授分享了最新研究进展。图为陈景文教授在大会主旨发言环节作报告。环境持久性判定,把测算“搬出”实验室外是巨大挑战化学品在促进经济社会发展,提高人类生活质量方面,发挥了重要作用。然而,化学品的环境暴露以及在生物体的内暴露,也对人体健康和生态健康构成风险。化学品的环境暴露和生物内暴露,与化学品的环境持久性密切相关。防控化学品的风险,防范化学品成为新污染物,需要评价和预测化学品的环境持久性,从而做到精准治污、科学治污。然而,测算化学品的环境持久性并非易事。当化学品进入环境成为污染物后,经历多种迁移和转化过程,在大气、水体和土壤等多介质环境中赋存。在实验室模拟条件下测算化学品的环境持久性,很难真实地模拟多介质环境,测算的结果距离达到真正意义上的准确还有一定差距。陈景文表示,由于环境的多介质特性、污染物的多过程行为、环境因子对污染物行为影响的复杂性,将实验室测定的降解速率外推至实际环境系统是一项极具挑战性的工作,也是当前环境化学家们持续攻关的方向。另一方面,化学品种类众多,在其生产、贮存、运输、应用、废物处置等全生命周期中,都会向环境中释放。因此,采用传统的实验室模拟来评价化学品的环境持久性,不仅效率低、成本高,还存在耗时长等缺点。陈景文表示,当前,实验室测定已难以匹配既有及新化学品风险评价和新污染物治理的需求,研究高效的持久性预测和评价的新方法、新技术迫在眉睫。数据驱动,构建污染物预测方法和模型或成新思路此背景下,陈景文教授提出,可以应用环境计算毒理学进行化学品的风险预测与管理,基于机理引导和数据驱动的路径,实现化学品和新污染物环境持久性的筛查和预测。所谓机理引导,是从化学品的环境多介质行为入手,构建化学品在大气、水体、土壤中的降解转化动力学的预测模型,以及多介质环境模型,来实现化学品环境持久性的模拟预测。而数据驱动,则是基于已有的持久性化学品清单及数据,构建机器学习模型来筛查持久性化学品。这方面,需要注重数据库的搭建。陈景文详细介绍了团队在环境计算毒理学方面的研究进展,包括模拟预测化学品环境光化学持久性、构建水解反应模型以评价水解产物毒性与风险、采用图神经网络的机器学习构建集成模型用于持久性化学品的筛查等。研究成果为筛查持久性化学品,防控其环境风险提供技术支持,为帮助评价化学品环境持久性,助推持久性有机污染物、新污染物治理提供了新思路。图为陈景文教授作报告。
  • 蛋白质-小分子相互作用分析技术进展与应用——限制性蛋白水解-质谱分析技术
    阐明小分子(包括内源性代谢物和外源性化合物)如何发挥调控作用的关键问题之一是小分子的靶标发现和验证,即蛋白质-小分子相互作用研究。蛋白质与小分子的相互作用模式既有较稳定的共价结合,也有瞬时的弱相互作用。如何灵敏、高效地捕获并解析多种类型的蛋白质-小分子相互作用是分析难点。目前,蛋白质-小分子相互作用的分析策略大致可分为两类:一是靶向相互作用研究,以蛋白质(或小分子)为中心,发现并验证与之相互作用的小分子(或蛋白质);二是非靶向相互作用研究,全面识别多种蛋白质-小分子的相互作用轮廓。应用的具有分析技术包括:表面等离子体共振技术(surface plasmon resonance,SPR)、氢氘交换质谱分析技术(hydrogen deuterium exchange mass spectrometry,HDX MS)、限制性蛋白水解-质谱分析技术(limited proteolysis-mass spectrometry,LiP-MS)、蛋白质热迁移分析技术(cellular thermal shift assay,CESTA)和药物亲和反应靶标稳定性分析技术(Drug affinity responsive target stability,DARTS)等。本期介绍限制性蛋白水解-质谱分析技术(LiP-MS)的原理、技术流程和其在蛋白质-小分子相互作用研究中的应用。1. 原理LiP-MS技术最初由瑞士苏黎世联邦理工学院的Paola Picotti课题组建立 [1] :利用小分子结合蛋白后相较于原蛋白产生蛋白质空间构象和位阻的变化,经蛋白酶切后形成差异肽段,液质联用分析识别和鉴定差异肽段,基于差异肽段推测蛋白质与小分子的相互作用位点。2. 技术流程在非变性条件下提取蛋白,以保留蛋白活性和空间结构。先使用低浓度(1:100, w/w)蛋白酶K在较低温度(25℃)下短时间内(5 min)对蛋白-小分子复合物进行有限的蛋白酶切。蛋白与小分子结合后,相互作用位点存在空间位阻,从而避免被蛋白酶K切割,由此产生差异肽段。随后进行蛋白变性和胰酶酶切,蛋白质组分析识别和鉴定差异肽段,基于差异肽段所处位置预测蛋白质与小分子的相互作用位点(图1)。图1 限制性蛋白水解-质谱分析(LiP-MS)技术流程 [2]3. 试验试剂和分析仪器3.1 蛋白抽提:可依据实际目的和细胞类型选择不同的细胞/组织裂解液,如RIPA、N-PER、M-PER等,进行细胞/组织蛋白抽提,获得的细胞/组织全蛋白提取物可直接与目标小分子共孵育。3.2 蛋白酶切:关键的蛋白酶切试剂,例如蛋白酶K、胰酶等均有市售。3.3 分析仪器:目前多种类型的液相色谱-高分辨质谱联用仪均可用于蛋白质组学分析,已应用于LiP-MS的高分辨质谱仪包括,布鲁克、赛默飞、沃特世和SCIEX等品牌的飞行时间质谱、轨道阱质谱和傅里叶变换离子回旋共振质谱等。4. 应用实例研究人员基于LiP-MS技术在大肠杆菌中探索多种内源性代谢物和蛋白的相互作用模式 [1],先采用凝胶过滤法除去大肠杆菌全蛋白提取物中的内源性代谢物,获得大肠杆菌全蛋白;随后将大肠杆菌蛋白与20个中心碳代谢相关的关键内源性代谢物(三磷酸腺苷、二磷酸腺苷、烟酰胺腺嘌呤二核苷酸、磷酸烯醇式丙酮酸、6-磷酸葡萄糖、果糖-1,6-二磷酸、丙酮酸、谷氨酰胺、甲硫氨酸等,见图2A)分别共孵育。基于LiP-MS流程发现,上述20个内源性代谢物可与大肠杆菌中1678个蛋白发生潜在相互作用,其中1447个相互作用是首次发现的(图2B)。作者将所发现的相互作用与在线数据库BRENDA对比(主要涉及酶的功能和代谢通路等信息),证明LiP-MS技术能够准确地识别已报道的蛋白-内源性代谢物相互作用,假阳性率低于6 %。图2 20个与中心碳代谢相关的关键内源性代谢物(图A)及其在大肠杆菌中发生相互作用的蛋白数量(图B)[1]参考文献:[1] Piazza, I., Kochanowski, K., Cappelletti, V., Fuhrer, T., Noor, E., Sauer, U., Picotti, P. A map of protein-metabolite interactions reveals principles of chemical communication. Cell, 2018, 172(1-2), 358-372.[2] Pepelnjak M, Souza N D, Picotti P. Detecting Protein–Small Molecule Interactions Using Limited Proteolysis–Mass Spectrometry (LiP-MS). Trends in Biochemical Sciences, 2020, 45(10), 919-920.
  • 开年喜讯!康宁AFR又获大奖!这次是̷
    喜获殊荣喜讯传来迎新春,豪情满志创未来!在刚刚闭幕的线上直播2020年度中国石油和化工行业十大新闻暨影响力人物发布盛典上,康宁反应器技术有限公司荣登“十三五”中国石油和化工创新典范榜单!与康宁反应器技术一起上榜的还有中国石油化工集团有限公司、万华化学集团股份有限公司等单位。行业盛典,大咖现身此次颁奖盛典会议化工报首次选用线上方式进行。十届全国人大常委会副委员长顾秀莲、中国石油和化学工业联合会党委书记、会长李寿生出席盛典并致词。人民日报、人民网、新华社、新华网、中央广播电视总台、中国石油报、中国石化报等多家国家及行业主流媒体对该盛典进行了报道。多渠道统计在线观众数达88万多人次!康宁连续流技术,领跑化工技术创新创新发展是康宁集团发展的基石。在康宁170年的创新发展实践中,康宁科学家善于把一些前瞻性的科学概念通过创新发展新的技术及产品。康宁反应器技术是在康宁独有的创新思维下成长起来的一项创新型技术。康宁反应器技术的创新包括产品系列的不断完善和应用领域的不断拓展两个方面。针对精细化工及制药过程的现状,解决安全、效益及产能问题,康宁先后推出了年通量250吨、1000吨、2000吨、3500吨及10000吨的本质安全、无放大效应的创新性微通道反应器。康宁反应器技术多年来一直在推广这项新技术,致力于改变落后的传统生产模式,并以此给客户带来新的机遇和效益。2017年,康宁和浙江医药集团携手打造的年通量万吨级维生素中间体全连续微反应生产装置,7天24小时连续生产模式,已经成功实现稳定运行1000天里程碑。不仅产品质量稳定,收率提升多个百点,而且其废水生产量大幅度降低!真正实现了本质安全,清洁生产,亩均高产,经济和社会效益显著。2018年,康宁反应器事业部和山东益丰生化紧密合作,成功打造了年通量万吨级 “端到端”“无人”全自动全连续微反应硝化生产装置,与传统生产工厂相比,其亩均产出提升了10倍,运行费用减低20%以上。2019年在浙江巍华新材料股份有限公司,康宁新品单台年通量万吨级G5反应装置运用在重氮化、水解反应过程中。该公司使用康宁G5微反应装置后,不仅整个工艺流程实现了全自动、全连续,而且整个工艺收率大幅度提升,实现了更短的反应时间,更少的“三废”、人工和空间占用等。连续流技术正成为世界医药集团和CDMO的战略投资领域,辉瑞、礼来、安进等大型国际制药集团纷纷应用连续流技术进行药品的研发和生产。在国内浙江医药、天津医药、齐鲁制药、药明康德、九州制药等大型医药及CDMO企业,连续流微通道反应器已经成为平台必备研发和生产设施。 康宁反应器应用创新不仅仅局限于精细化工和医药行业,康宁反应器技术在高性能材料、生物技术、高端生命营养品等行业都在不断拓展。康宁反应器致力于新领域的应用,让客户享受连续流技术的本质安全、连续、高效、质量稳定,降低成本等众多益处。相信未来更多创新性的应用会被开发出来,更多的涉及民生的生产制造企业将加入连续流的世界。此次获奖一方面是行业专家及客户对康宁反应器创新能力的认可,同样更是一份沉甸甸的期望和不可推卸的责任。欲戴王冠必承其重,康宁反应器技术将继续高举科技创新大旗,勇担重任支持并引领行业合成技术开拓者创新行动,促进本质安全生产技术的普及和推广。
  • 刘倩团队新成果:体内酶高效降解PET,环保新突破获专利认证
    中国科学院生态环境中心环境化学与生态毒理学国家重点实验室刘倩等在天然酶诱导的塑料生物降解技术方面取得进展。相关成果以“High-efficiency degradation of PET plastics by glutathione S-transferase under mild conditions”为题,在线发表于Environmental Science & Technology(Environ. Sci. Technol. 2024, DOI: 10.1021/acs.est.4c02132)。  塑料污染问题在全球范围内对环境和生态构成了重大威胁。应对这一挑战需要创新方法,特别是在塑料生物降解领域。塑料通常被认为是化学惰性、耐生物降解。虽然之前的研究已经发现一些能够降解塑料的酶,但大多数都是微生物酶或人造工程酶。  本研究发现PET塑料可以在温和的条件下被哺乳动物体内天然存在的酶高效降解,包括II期代谢同工酶——谷胱甘肽S-转移酶(GST)、I期代谢酶——细胞色素P450和胰蛋白酶。在环境或生理条件下,PET塑料的降解率可达到98.9%,降解速率为2.6 gL-1h-1。这一发现揭示了一种生物手段解决塑料污染的潜在的新途径。  图1. GST、CYP450、胰蛋白酶等天然酶诱导的塑料降解示意图  在降解机制方面,之前报道的微生物和工程酶基本上都是基于水解反应。本研究提出了一种新的PET降解机制,即通过氮化和氧化作用的PET单体裂解和释放。这一发现丰富了对塑料降解所涉及的机制和途径的理解。此外,在人血清样本中也测试了这种方法,结果表明GST能在人血清中降解PET塑料,表明塑料在真实生物和人体中降解的可能性,有助于更好地了解塑料在生物体中的代谢和归趋。  该技术目前已经获得中国发明专利(ZL202110114200X)和美国发明专利(US 11,952,468B2)授权。  该论文的通讯作者为刘倩研究员,第一作者为中心毕业生黄秀(现为四川大学华西公共卫生学院(华西第四医院)特聘副研究员)。该工作得到了国家自然科学基金委国家杰出青年基金、面上项目、青年基金以及四川大学引进人才科研启动经费资助等项目的支持。  相关论文链接:https://doi.org/10.1021/acs.est.4c02132
  • 释放红外潜能 珀金埃尔默全新Spectrum 3红外光谱仪让分析更灵活、更高效
    从1944年发明第一台商品化的红外光谱仪开始,在过去的75年间,珀金埃尔默一直在推动红外光谱技术的革新。2020年4月,珀金埃尔默全新的傅里叶变换红外光谱仪Spectrum 3™ 正式上市,这款代表着业内尖端技术的红外光谱仪,在技术和应用上进行了哪些创新?在各大实验室对仪器功能和分析效率要求越来越高的当下,这款新品又将给用户带来哪些新的助力? Spectrum 3傅里叶变换红外光谱仪 “平台化”!现如今,科学仪器越来越多地作为一个分析系统而不是单一的仪器设备出现在我们的实验室中,承担着更复杂多样的分析工作。Spectrum 3就是这样一个平台化的分析系统,在搭配不同的智能采样附件和软件的情况下,可以对不同形态的样品(固体、液体或气体)进行检测,使得分析工作更加灵活、可靠。例如,Spectrum 3可以搭载实时显示样品压力的衰减全反射附件,用于常规的样本分析;可以与红外显微镜联用,构成红外显微化学成像系统;可以在样品仓内置TG热重分析仪,达到更出色的联用效果;同时,还可以结合云办公软件,实现更高效的跨实验室/设备实时协作和数据共享。搭载EGA4000的Spectrum 3红外光谱仪热重-红外(TG-IR)联用技术是目前材料研究领域中非常重要的分析手段,而传统的热重-红外联用技术往往是通过外接管路将一台热重分析仪及一台红外光谱仪相联。Spectrum 3的创新点在于将热重作为一个附件内置在红外光谱的样品仓中,提供全集成的热重-红外(TG-IR)联用(EGA4000)解决方案。无需传输管线,极低的二次裂解反应风险,可实现快速响应实时检测。内嵌时间动力学扫描功能的一体化软件,取代了传统需要在多个软件之间切换的模式,在操作上更智能便捷,让不同技术水平的使用者均能轻松上手。面对新型数字化实验室的新特点,Spectrum 3采用了珀金埃尔默Spectrum 10软件(包括CFR 21 Part 11 合规等功能选项),并首次将云办公软件“NetPlus”引入红外光谱检测领域,数据实现云端连接。其基于Web的应用程序,允许用户从任何设备上查看、上传、下载和管理云端数据,提供更加准确的结果、整合的工作流和团队成员之间跨实验室、设备的实时协作。 “更宽、更广”!Spectrum 3在分析范围、应用广度方面有了很大的拓展和提升。从10,000到30cm-1,Spectrum 3涵盖了近、中、远红外三个波长范围;可自动切换光源、分束器、检测器等部件,让光学部件调整更加灵活准确,无需手动调节、无需二次校准不仅提高了分析效率,也保证了在近、中、远红外各个波段范围的准确度和灵敏度;尤其是目前无机功能材料研究对远红外波段测试需求不断增加,Spectrum 3在远红外分析波长可最低达到30cm-1,可以快速得到无机物、矿物质的高质量红外光谱信号,用于无机功能材料的结构剖析。 “更快”!了解化学反应期间发生了什么是非常重要的,这可以确定反应时间和完成时间、优化化学工艺。为了了解所发生的化学过程,使用一项能够在反应期间的任意时间点鉴定和监测化学物种浓度的分析技术至关重要。Spectrum 3正是这样一种技术,它可实现高达100次/秒的扫描速度,提供通用的外部触发器接口,内嵌可实时采集信号的时间驱动软件,为制药、聚合物、材料、食品等工业行业,以及科研和化学类化工、材料等科研实验室开展高级研究、产品开发或反应监测,提供了新一代研究手段。在Spectrum 3 FT-IR光谱仪上进行的停流实验,监控氯乙酸甲酯(MCA)的酯水解反应 此外,Spectrum 3还支持智能触控屏操作,可以在设备启动时实时显示系统诊断信息,一目了然地显示仪器状态。在进行多个样品分析时,通过触控屏一键操作,无需使用电脑,大幅提高了分析效率。 更灵活多样的功能配置、更智能高效的使用体验、更广泛深入的分析范围,无论是日常的原材料鉴定、品质检测还是前沿高深的科研探索,全新Spectrum 3红外光谱仪都将为用户带来全新的体验,助力攻克更复杂的实验室分析挑战。
  • 聚丙烯酰胺水解度的测定
    一、背景介绍聚丙烯酰胺(PAM)是一种线型高分子聚合物,在常温下为坚硬的玻璃态固体,产品有胶液、胶乳和白色粉粒、半透明珠粒和薄片等。由于聚丙烯酰胺结构单元中含有酰胺基、易形成氢键、使其具有良好的水溶性和很高的化学活性,易通过接枝或交联得到支链或网状结构的多种改性物,在石油开采、水处理、纺织、造纸、选矿、医药、农业等行业中具有广泛的应用,有“百业助剂”之称。聚丙烯酰胺在国外应用最多的领域是水处理,国内在此领域的应用正在推广。聚丙烯酰胺在水处理中作为助凝剂与其它絮凝剂配合使用,可以大大降低絮凝剂的使用量,但其水解度过小会导致混凝或助凝效果较差,水解度过大又会增加制作成本,故需要对聚丙烯酰胺的水解度进行检测。 二、方法介绍● 依据标准:GB/T 17514-2008《水处理剂 聚丙烯酰胺》● 测试方法:取样约0.03g置于100mL水中溶解,用盐酸标准溶液滴定至pH为4.1时,即为终点。 三、聚丙烯酰胺水解度的测定(1)仪器及试剂● ZDJ-5B型自动滴定仪● JB-21上搅拌器(选配)● 231-01 pH玻璃电极+232-01参比电极● pH标准缓冲溶液、盐酸标准滴定溶液、基准无水碳酸钠试剂、样品 (2)测试步骤● 对pH电极进行标定,● 将100mL水倒入滴定杯中置于搅拌器上,开启搅拌器。称取约0.03g粉状试样,精确至0.2mg。加入到滴定杯中,使其完全溶解。采用预设终点模式,设置好参数后用盐酸标准溶液滴定溶液滴定至终点。 (3)测试结果图1 水解度滴定曲线 (4)注意事项由于聚丙烯酰胺水解后,随时间的延长而粘度越大,下搅拌难以维持转速,所以本次实验推荐用上搅拌进行测试,需要额外配置上搅拌装置。 四、仪器推荐ZDJ-5B型自动滴定仪● 7寸彩色触摸电容屏,导航式操作;● 支持电位滴定;● 实时显示测试方法、滴定曲线和测量结果;● 可定义计算公式,直接显示计算结果;● 支持滴定剂管理功能;● 支持pH的标定、测量功能;● 支持USB、RS232连接PC,双向通讯;● 可直接连接自动进样器实现批量样品的自动测量。
  • 可穿戴电子设备老化测试指南|Q-SUN氙灯老化测试
    可穿戴电子设备老化测试指南新兴消费电子领域市场规模不断扩大,以VR,智能手表,蓝牙耳机,健身追踪器,助听器,心脏起搏器等为代表的可穿戴电子设备发展迅猛。大多数的可穿戴电子设备都要经过质量和性能测试,包括老化测试,腐蚀测试,机械物理测试,电池测试,可用性测试,安全测试等等。大部分可穿戴电子设备生产商面临以下3个问题:我的可穿戴电子设备每个部件应该使用哪种合适的材料?我的可穿戴电子设备的使用寿命符合预期吗?我的可穿戴电子设备性能符合预期吗?可穿戴设备由不同的材料制成,如彩色热塑性塑料或橡胶材料、密封剂和接头、显示器、照相机和保护膜等。这些材料都对紫外线辐射、可见光,温度和湿度敏感。此外,随着佩戴者的行程轨迹,可穿戴电子设备有时使用在户外,有时使用在室内,但世界范围内的气候因地理位置不同,温度,湿度,太阳光辐照度等方面有很大的差异。翁开尔公司代理的美国Q-LAB研发生产了Q-SUN氙灯老化箱适用于可穿戴电子设备的老化测试。通过使用Q-SUN氙灯老化箱对可穿戴电子设备进行耐候性老化测试,用户可以了解可穿戴电子设备每个部件应该使用哪种正确的材料,以及使用寿命和外观是否达到预期等。可穿戴电子设备产品老化主要影响因素太阳光可穿戴电子设备产品主要的压力因素是太阳光,温度和水。太阳光辐射和产品温度是导致聚合物材料降解的两个主要因素,紫外光是材料光降解的关键因素,可见光的关键部分通常仅限于波长范围在380nm-420nm的富含能量的紫光和蓝光,这两种颜色会完整吸收可见光谱的各自部分,导致可穿戴电子设备褪色。热户外暴晒的产品温度很大程度受到颜色的影响,黑色产品表面在户外可以达到65℃,在车内甚至可以达到100℃以上。白色产品表面则温度相对低。此外,可穿戴电子设备也会受到通过其运行能量和佩戴者的体温而受到影响,反应速度随着温度的升高而增加,这对聚合物的光降解也产生了影响。水可穿戴电子设备的聚合物材料在吸水时会膨胀,当水蒸发时,会发生收缩,这个过程会导致机械应力,一般情况下,水的影响只有在水渗入几个小时以上才是重要的。当聚合物吸收水,玻璃转化温度会明显下降,氧气扩散率增加,光氧化和水解反应发生,聚合物基体降解,最终导致物理强度损失。可穿戴电子设备耐候性老化测试解决方案-Q-SUN氙灯老化箱Q-SUN氙灯老化试验箱可用于可穿戴电子设备耐候性测试,提供与产品在室内、户外环境条件下所接触的相同的老化因素。采用氙弧灯光源模拟全光谱太阳光,并通过不同的滤光片适当过滤,得到特定的光谱。通过水喷淋、冷凝和湿度等模拟潮湿环境。可穿戴电子设备的耐候性测试涉及材料的长期降解测试,大部分材料的降解受环境影响。加速老化测试主要检测太阳光,温度和水对可穿戴电子设备的影响,以反映它们的使用寿命。目前市场上没有针对可穿戴电子设备的具体测试标准,传统的材料,如聚合物和涂层,可以使用现有的ISO、ASTM和其他标准进行测试,但针对某些类型的产品可以根据客户的要求进行测试裁剪,以反映老化情况。举例:模拟可穿戴电子设备户外老化测试参考标准:ISO4892-2(塑料.实验室光源暴露方法.第2部分:氙弧灯)ISO 4892-2:2013指定了样品暴露在氙灯光照环境下,模拟户外综合老化效果(包括温度、湿度/潮湿环境下)的测试方法,以再现产品在实际使用过程中暴露在光照环境或者经过窗玻璃过滤的光照环境产生的老化效果。具体设置Q-SUN氙灯试验箱符合DIN EN ISO 4892-2:2013翁开尔40年专业资深代理美国Q-LAB系列产品,欢迎致电咨询。
  • 成都生物所发明判断大豆异黄酮糖苷水解的方法
    近日,中科院成都生物所发明的“一种判断大豆异黄酮糖苷是否水解或水解程度的方法”获得国家发明专利授权。  大豆异黄酮是大豆等豆科植物生长过程中形成的一类次生代谢产物,具有多种生理功能。它不仅参与调节植物的生长活动,还能对人体发挥有益的生理调节作用。天然大豆异黄酮苷类的分子结构并不是活性发挥的最佳状态,普遍认为苷元才是活性发挥的最佳状态。然而,在大豆中,大豆异黄酮主要是以染料木黄酮、大豆苷和黄豆苷糖苷形式存在的,它们对应的苷元染料木素、大豆苷元和黄豆苷元的含量很少。为了得到生物活性高的大豆异黄酮苷元,在工业上大多以大豆豆饼或豆粕为底物,采用酸水解或微生物转化的方法将糖苷转化为苷元。此前,判断大豆异黄酮糖苷是否水解及水解程度,通常是通过水解前后苷元含量的变化来判断的,此方法过程相对比较繁琐。  成都生物所发明的该种方法,通过商品豆粕经乙醇提取、提取液抽滤除杂质、减压蒸馏浓缩至无乙醇得水相、以水相为底物进行水解、用乙酸乙酯从水解液中萃取大豆异黄酮苷元、萃取液减压浓缩、浓缩相进行薄层层析、在紫外灯下观察层析结果,以此判断大豆异黄酮糖苷是否水解或水解的程度。该方法具有快速、准确等优点,具有良好的应用前景。
  • 中科院新疆理化所通过缺陷控制实现ppb级NO2高灵敏度检测
    p  随着工业的快速发展,a style="color: rgb(255, 0, 0) text-decoration: underline " title="" target="_self" href="http://www.instrument.com.cn/application/SampleFilter-S02004-T000-1-1-1.html"span style="color: rgb(255, 0, 0) "strong空气/strong/span/a污染问题日趋严重。NOsub2/sub作为最主要的大气污染物之一,其在极低浓度下(ppb级)就能对人体产生较大的危害。因此,开发可快速、灵敏地检测ppb级NOsub2/sub的气体传感器具有现实意义。以金属氧化物为敏感材料的NOsub2/sub气敏元件具有制作工艺简单、成本低廉等优点。然而,灵敏度低的问题直接限制了金属氧化物在实际检测ppb级NOsub2/sub中的应用。近年来,一系列理论及实验结果表明:金属氧化物半导体材料的表面缺陷能够提高其对NOsub2/sub分子的吸附能力,同时也能够高效地促进电子从半导体的导带转移至NOsub2/sub分子,从而有效地提高其检测灵敏度。因此,通过对材料表面缺陷的调控实现对NOsub2/sub的超灵敏检测具有重要研究价值。/pp  目前,已被广泛研究的表面缺陷类型为单电子氧空位缺陷(VO· ),然而另一种坐落于SnOsub2/sub表面的缺陷—超氧复合自由基(Snsup4+/sup-Osub2/subsup-· /sup)却未被引起足够的重视。与VO· 缺陷中心相比,电子在Snsup4+/sup-Osub2/subsup-· /sup上理论上更容易与NOsub2/sub分子发生作用从而增强灵敏度,原因在于电子坐落于吸附的Osub2/sub分子上,远离SnOsub2/sub晶格对其的束缚。然而,这种具有特殊结构的缺陷与材料灵敏度的关系还未被研究过。/pp  2015年,中国科学院新疆理化技术研究所环境科学与技术研究室窦新存团队为了在材料表面引入这种缺陷,设计并构建了热力学不稳定的制备条件,科研人员以极不稳定的SnClsub4/sub作为原料,利用冰浴控制反应温度以阻止其激烈的水解反应,再利用高温高压的水热环境瞬间打破前驱体溶液的亚稳态从而获得缺陷。基于该方法能够成功地将Snsup4+/sup-Osub2/subsup-· /sup引入材料表面,利用这种材料制备的传感器对ppb浓度量级的NOsub2/sub具有超灵敏的传感特性(对200 ppb的NOsub2/sub响应高达35350倍)。与近年来相关文献报道相比,该材料是目前世界上最灵敏的NOsub2/sub传感材料。/pp  此外,科研人员通过实验首次证明了材料表面Snsup4+/sup-Osub2/subsup-· /sup数量的微小改变就能引起材料敏感性能的巨大变化。基于这种材料的传感器具有长期稳定性,良好的重复性、选择性,以及在紫外光下迅速恢复等一系列优异的传感特性,可为传感器的工业化生产提供有力的保障。/pp  相关研究成果以Communication形式发表在Small上,并被“Materials Views中国”作为亮点报道。该工作得到了国家自然科学基金、中科院“百人计划”、西部之光、新疆维吾尔自治区杰青等项目的资助。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201601/insimg/7500e494-4fee-4d9b-a981-c5eb0e702a07.jpg" title="W020160125372253533812.jpg"//pp style="text-align: center "通过控制SnOsub2/sub表面缺陷控制NOsub2/sub传感器灵敏度示意图/p
  • 如何使用EDGE从需要进行酸水解的食品样品中提取脂肪
    简介食品制造商需要提取脂肪。 通常,必须使用酸对食品样品进行预水解,以便在提取过程中回收其总脂肪。 例如,在低于正常脂肪提取温度的情况下,发生化学变化的食物(如鸡蛋)需要此步骤。使用这个操作程序从需要预水解的食 品中,用酸水解的方式提取脂肪,对于用户而言,在他们的实验室中这个步骤是必须的。 样品类型 含有结合脂肪的食物或用户想要水解的任何食物。 但是请不要使用这种方法从肉类中提取脂肪。 样品准备 1. 研磨或均质食品样品。 注意:食物含水多吗?研磨前,请在 100 °C 的烘箱中预干燥样品 1 小时。 2.称取 3 g 或更少的食物样品放入玻璃烧杯中。记录重量。 注意:对于坚果酱等脂肪较多的食物,请使用较小的样本量(2 克或更少)。 3. 向样品中加入 45 mL 沸水。然后,向样品中添加 55 mL 的 8 M HCl。 4. 用玻璃搅拌棒搅拌混合物,用表面皿盖住混合物,并使用加热板或加热块使样品沸腾 1 小时。混合物会变 成黑色的变体。 5. 将混合物从火上移开,让它摸起来冷却。 6. 使用 Whatman 1 过滤器组装过滤装置。 注意:过滤装置可以是放置在带有真空的过滤瓶中的布氏漏斗中的过滤器,也可以是放置在带有烧瓶下方的 漏斗中的过滤器,允许样品通过重力滴入。 7. 将样品转移到过滤组件中,让过滤器收集黑色水解产物。用 100 mL 水冲洗原始样品烧杯,以转移可能留 在烧杯中的任何水解产物 8. 从过滤装置中取出过滤器。在 100 °C 下烘箱干燥过滤器 1 小时。 9. 通过将 G0 Q-Disc 插入 Q-Cup 的底部,然后在顶部放置 Q-Support 来准备 Q-Cup。 注意:EDGE方法编程时请选择G0作为EDGE方法中的Q-Disc 10. 将干燥的过滤器插入 Q-Cup 的顶部。 注意:过滤器可能会被撕裂或穿孔,而不会降低脂肪回收率。如果使用的过滤器很大,可以将它们撕开以 更好地安装在 Q-Cup 内。 11. 在折叠过滤器的顶部放置一个 Q-Screen,然后使用 Q-Screen 工具将过滤器压缩到 Q-Cup 中。 12. 将 Q-Cup 放在 EDGE 架上。将预先称重的小瓶与架子上记录的重量放在一起。 EDGE萃取 13. 通过用石油醚或所需溶剂灌注溶剂管线并在下面的 EDGE 方法中编程来准备 EDGE。 14. 使用下面的 EDGE 方法提取样品。 注意:此方法需要两个 40 mL 或 60 mL 小瓶。萃取的后续工作15. 从架子上取下萃取瓶。 注意:如果样品的脂肪含量较高,则所得提取物可能呈黄色。 16. 将样品瓶置于 60 °C 的蒸发器中,让所有溶剂蒸发。 注意:脂肪将作为油性粘稠层保留在小瓶底部。 17. 将样品瓶放入 100 °C 的烘箱中 1 小时,以去除任何残留的水分或溶剂。 18. 让小瓶冷却并称重。 其中小瓶之后是蒸发后小瓶的重量,小瓶之前是提取前小瓶的重量。方法开发技巧 以下方法是适用于大多数样品类型的保守方法。请注意,可能有针对特定样品的更优化方法。请联系 Molecular Support以获取更多信息。 文献中有许多可用的酸水解方法。任何方法都可以,只要将黑色水解产物过滤,用水彻底冲洗,并用可干燥 和提取的过滤器捕获即可。  其他提取溶剂,如乙醚和己烷,可用于提取脂肪。  如果此方法的回收率低于预期,则将每个循环的保持时间增加 1 分钟。此外,如果可能,请考虑增加总提 取量或减少样本量。
  • 从连续流技术看吉利德Remdesivir的合成
    吉利德公司的广谱抗病毒药物瑞德西韦(Remdesivir),针对2019新型冠状病毒(2019-nCoV)显示了好的疗效。这一令人振奋的结果一经报道,即刻吸引了众多制药企业的关注。康宁反应器技术作为连续流技术的倡导者,从连续流技术的角度来看看吉利德Remdesivir的合成。图1:Remdesivir分子结构化学名:(2S)-2-ethylbutyl2-(((S)-(((2R,3S,4R,5R)-5-(4-aminopyrrolo [2,1f] [1,2,4] triazin-7-yl)-5-cyano-3,4-dihydroxy tetrahydrofuran-2-yl)methoxy) (phenoxy) phosphoryl) amino) propanoateCAS号:1809249-37-3当下,国内很多药企也纷纷将目光聚焦到了Remdesivir,不少企业和研发机构已经开始立项开发此药。甚至连化学中间体商也加入了这股热潮。合成路线图:Remdesivir合成为Nature2016年报道的第二代合成方法,实验室可放大至百克级。共6步反应,收率分别为40%,85%,86%,90%,70%,69%,中间体6合成需要两步,收率分别80%,39%。化合物3的合成是低温有机强碱加成反应,该步反应收率低,放大困难。而微通道在此类反应展现了很强大的优势,有潜力来解决这类问题。图4:化合物4的合成化合物4的合成,可以用连续流的方式进行。为此,Gilead在中国也申请了专利(CN107074902)。该氰基化反应,采用连续流反应器,温度控制在-40℃,而釜式工艺中需要降温到-78℃。在化合物6的合成中,第一步反应先合成化合物9,该取代反应极易发生二取代而造成选择性降低。连续流可以精准控制反应物料摩尔比及反应温度,在一定程度上提高反应选择性。纵观Remdesivir合成,有多步反应使用了低温。而低温反应在工艺放大过程中,普遍存在着控制难,收率低等问题。康宁微通道反应器,模块化设计,相比于传统釜式反应,具有100倍传质效率,1000倍换热面积,精确控制停留时间。特别适用于非均相反应、放热量大、具有安全风险以及小试工艺无法放大的反应。参考文献:Nature, 2016, Doi:10.1038 /nature 17180 pages381–385微通道连续流技术作为化工研发和生产的一项技术创新越来越受到重视。它在很大程度上改善物料的传质和反应的放热情况,提高反应的安全性及中间体的不稳定性,从而在反应选择性和收率上与传统釜式反应相比具有明显优势。当进行有机金属类化学反应时,通常有两种过程机理如下图1所示。控制有机锂中间体的稳定性作为内温函数 (IT)和停留时间(τ)第一种机理从上图1中a)曲线可以看出在反应进程中在亲电试剂猝灭前增加芳基锂中间体的半衰期来延长停留时间(最多分钟)。在这种情况下,混合效率起次要作用。停留时间(反应)可以被很好地优化,最大化地转换芳基卤化物为相应的芳基锂中间体。这类反应通常可以在反应器中在-78°C进行放热的卤素和锂的交换,然后用亲电试剂在-78°C下偶合。第二种机理是对于极快速反应(反应时间小于1秒),如图1中b)曲线所示,相反侧重于瞬时、高效混合和停留时间较短的反应。在这种情况下,反应时间是由准绝热条件下的混合时间和相变条件来决定。这种类型的操作通常在微反应器中进行,通过快速捕获不稳定芳基锂物种避免其分解。有各种文献报道的例子显示在反应时间小于1秒尺度上化学合成,如不稳定芳基锂中间体的生成与具有功能性亲电试剂结合生成新奇,令人印象深刻的新型化学品。对于金属有机类型的反应,微通道连续流反应器可以在低温下很好地控制反应温度及有机锂试剂及底物的混合。基于微反应器高效混合及精准控制反应温度的优点,可以在药物研究的不同阶段快速提供少量或批量的产品。再如图3所示,变换不同的亲电试剂和底物,可以得到不同的偶合产物。微通道反应器可以作为一个药物开发和批量生产的强有力的工具,因为其独特的混合和换热及温度精准控制的功能,为新奇药物的开发打开了一个新的窗口。康宁研发型反应器平台开发的工艺到康宁工业化生产无放大效应,可以更快、更好地应对市场的需求。康宁公司不仅对低温有机强碱反应经验丰富,对其他类型反应也有很好的经验。比如Remdesivir合成的最后的一步(水解反应),康宁在其类似底物的反应中展现了很大的优势,收率得到了大幅度的提升。如您想了解更多成功案例,欢迎来康宁反应器技术有限公司深度交流。参考文献:Org. Lett. 2016, 18, 3630?3633康宁反应器技术康宁生产和销售系列微通道反应器;• 为客户提供研发平台整体方案,协助客户进行工艺筛选和工艺开发;• 提供连续流微反应技术培训及售后服务;• 为客户进行研发工艺论证,提供工业化可行性方案• 为客户定制工业化整体方案并加以实施;• 为教育系统提供教学设备教师培训,提供合作交流机会;• 为园区化工企业提供连续流技术培训;协助园区进行本质安全教育;康宁与世界最领先科技持续公司密切合作,打造化工、医药企业的研发和生产的前瞻性可持续创新技术。康宁反应器技术有着10年的工业化业绩,积累了大量工艺开发及工程放大经验,可有效地帮助客户实现这一革命性创新带来的价值。用心做反应既是康宁微通道反应器通道设计的写照,更是康宁反应器团队多年来坚守的职业操守。
  • 国家药监局:脑蛋白水解物注射液药品标准不完善
    据国家药监局网站消息,为确保公众用药安全,国家药监局日前通知要求各地进一步加强对脑蛋白水解物注射液的监督检查。  通知称,在全国开展注射剂类药品生产工艺和处方核查工作中,发现脑蛋白水解物注射液品种在药品标准和执行工艺处方等方面存在着较为突出的问题,主要是企业选用猪脑原料的质量标准不完善 企业之间现行生产工艺差别较大 猪脑水解所用的蛋白酶种类、酶量及水解温度、时间等不一致,甚至有补加氨基酸的行为。针对上述突出问题,部分地区已采取了控制措施。  通知指出,一、要充分认识到脑蛋白水解物注射液在产品质量方面存在的安全风险,各地应在注射剂类药品生产工艺和处方核查工作的基础上,积极组织力量认真做好监督检查工作。要建议辖区内脑蛋白水解物注射液生产企业主动停止该品种的生产,并要求脑蛋白水解物注射液生产企业按相关技术要求,组织开展改进工艺和质量控制方法的研究工作,在相关工艺改进和质量标准未经批准前,暂不宜恢复生产。  二、对于生产企业认为其脑蛋白水解物注射液生产工艺合理、质量可控,继续进行生产的,所在地省级食品药品监督管理局应对其生产全过程予以跟踪检查,并对监督生产的产品进行现场抽样,由省级药品检验所检验。  凡生产企业存在未按批准变更生产处方工艺生产,或在制成品中补加氨基酸等违法违规行为,以及现场抽样检验不合格的,应依法予以严厉查处。  三、国家局将组织有关专家开展脑蛋白水解物注射液有效性、安全性评价工作,组织对脑蛋白水解物注射液生产工艺的改进、质量控制标准的提高工作,并在此基础上提出监管措施和改进意见。
  • 岛津发布独特柱后衍生技术测定乳品中“皮革水解蛋白”
    &ldquo 三聚氰胺毒奶&rdquo 的阴影尚未从消费者的心中散去,&ldquo 皮革毒奶&rdquo 又开始威胁消费者的生命安全。在三聚氰胺成为严打对象后,又有不法企业为提高乳制品中的蛋白质含量,在乳制品中混入皮革水解蛋白,制造出&ldquo 皮革毒奶&rdquo 。 皮革水解蛋白就是利用已经废弃的皮革制品或动物毛发,水解之后制成粉状,因其氨基酸或者说蛋白含量较高,故人们称之为&ldquo 皮革水解蛋白粉&rdquo 。 &ldquo 皮革水解蛋白粉&rdquo 中含有的有毒物质被人体吸收、积累,可导致中毒,使关节疏松肿大,甚至造成儿童死亡。 为此,中国农业部2月12日下发2011年度生鲜乳制品质量安全监测计划,其中除要检测三聚氰胺外,还要检测&ldquo 皮革水解蛋白&rdquo 和碱类物质。据称,皮革水解蛋白的检测难度比三聚氰胺更大,因为它本来就是一种蛋白质。当前,国内多数参考1978年版《ISO:3496-1978肉与肉制品L(-) - 羟脯氨酸含量测定》使用分光光度法测定乳品。主要检测方法是检查牛奶中是否含有羟脯氨酸,这是动物胶原蛋白中的特有成分,在乳酪蛋白中则没有,所以一旦验出,则可认为含有皮革水解蛋白。 已经在消费者心中树立起&ldquo 食品安全卫士&rdquo 形象的岛津公司,长期关注中国的乳制品安全问题,为中国用户提供了一系列的乳制品检测解决方案。其中,岛津上海分析中心结合岛津独特的氨基酸分析系统和欧洲药典收录的氨基酸分析方法,率先开发出柱后衍生液相色谱分析乳制品中L(-) - 羟脯氨酸的检测方法。 该方法使用岛津氨基酸柱后衍生系统锂型分析柱建立了牛奶制品中24种氨基酸的高效液相色谱柱后衍生分析方法,柱后衍生及样品测定为全自动完成,消除了柱前衍生不同操作人员引入的人为误差,大大简化了样品前处理步骤,节约了时间,是一种可靠快速的检测方法。本方法可以直接用于检测牛奶中24种氨基酸。 岛津公司今后将一如既往地关注中国乳制品安全问题,继续实践&ldquo 为了人类和地球的健康&rdquo 这一公司经营理念。 有关岛津&ldquo 高效液相色谱柱后衍生方法测定乳制品中皮革水解蛋白&rdquo 的详细内容,请参见http://www.instrument.com.cn/netshow/SH100277/down_161189.htm。关于岛津 岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 另辟蹊径斗“农残”——访上海理工大学华泽钊教授
    2006年国庆节前夕,《文汇报》刊登了一则令人振奋的消息,被国内外报刊、网络广为转载:将蔬菜打成汁,把一根待测酶柱放入菜汁中1~2分钟,然后取出置入探测仪器里,与另外一支酶柱做参照,整个过程只要9分钟,就可以迅速检测出蔬菜中是否存在农药残留。日前,上海理工大学华泽钊教授等成功研究出新型的“农药残留现场快速检测技术”,此项技术的使用将使市民们以后更放心地购买蔬菜。 而在本网转载这条新闻之后不久,就有网友发表评论,希望能够了解这一技术更加详细的情况。根据新闻中的线索,本网工作人员(以下简称Instrument)在上海理工大学迎来百年华诞之际,通过电话采访了华泽钊教授(以下简称华)。 Instrument:华教授,您好!从有关资料中我们了解到,您是我国首批“低温工程”的博士生导师,特别是在人体细胞和组织的低温保存以及冷冻干燥等方面建树颇多。那么,是什么原因使您开始关注“农药残留检测”,这个与您原来的专业相距甚远的科研领域的呢? 华:说起来话长,那还是1999年8月份的一件事,我当时正在参加一个在上海召开的学术会议。一次晚餐后,在近120名与会者中,有过半人食物中毒,我本人也不幸名列其中。当时就估计是吃了含有残留农药的蔬菜。那天晚上,我可以说是上吐下泻。去医院急诊,高烧39度,不得不住院治疗一周。在医院时我就萌生了一个想法,是否有办法能快速检测果蔬中的农药残留。   出院后,我又断断续续地看了一年的国内外书籍、文献,2000年11月撰写开题报告,决心探索如何快速检测果蔬中的农药残留,防止急性中毒的发生。 Instrument:那么,果蔬中的农药残留究竟是如何形成的?是否还有其他的手段可以对它们进行检测? 华:我们知道,现在蔬菜使用的农药普遍都是有机磷化合物,这些农药经过一段时间会自然降解转为无毒。国家规定,在果蔬上市前一段时间(一般7天)内是不允许再施农药的。可是有些不法菜农为了让果蔬贩卖时看上去更好看,常常乱施农药,甚至在果蔬上市前还施加农药,而来不及降解的果蔬中的农药残留,就是造成食用者急性中毒的原因。 关于农药残留的检测方法,FAO/WHO的国际农药残留法典委员会于1993年颁布了针对183种农药残留的推荐检测方法,我国也于1996年以国家标准的形式公布了食品卫生检验分析方法标准。食品中农药残留检测的一般程序先要经过取样、提取、净化、浓缩等诸多过程,然后用气相色谱、高效(压)液相色谱等方法进行检测。另外,目前国家有关部门已经开始着手进行部分相关标准的修订,检测手段开始采用更加精密的质谱仪器。   虽然这些方法的检测精度高、能够测出农药的具体组分和含量,适合于微量的检测和长期的跟踪,但由于仪器贵重、运行费用高、检测费时长等原因,并不适合用于在现场的快速检测。 Instrument:据我们了解,目前市场上已经有不少品牌的“农药残留速测仪”在销售,与这些仪器采用的技术相比,上海理工大学所开发的“新型农药残留现场快速检测技术”有哪些独到之处? 华:在回答这个问题之前,我想首先应该弄清农药残毒导致人体中毒的毒理学原理。以有机磷农药为例,有机磷农药引起人急性中毒的途径可描述为:有机磷农药经呼吸道、胃肠道、皮肤、黏膜等均可侵入人体,吸收后经血液循环很快分布于全身,毒作用广泛,能抑制多种酶,主要为乙酰胆碱酯酶,使其发生磷酰化而失去活性,从而造成乙酰胆碱大量蓄积,以乙酰胆碱为传导介质的神经过度兴奋,最后转入抑制和衰竭,使各项功能失调,而呈中毒症状。 在明确了这一点后,课题的目标也就随之明朗了。为了达到能够在现场快速判断出果蔬中是否含有会引起急性中毒的农药残留(主要是有机磷和氨基甲酯类农药)的目的,首先就必须要寻找到一种类似于乙酰胆碱酯酶的酶,作为生物敏感元件,研制能检测出有机磷农药的生物传感器。 在研究初期,我们也想到了用乙酰胆碱酯酶来制成生物传感器,当时国内外也开始有类似的研究,但结果发现乙酰胆碱酯酶太贵,2000单位就要93.5美元,根本无法推广应用。所以课题组在另一成员徐斐老师的负责下,开始寻找可供实用的新的酶,并研究其固定化工艺和最佳运行条件。 经研究我们发现可以从小麦中提取小麦酯酶,作为传感元件,制取2000单位的小麦酯酶,只需50至100克小麦,成本只有几角钱,但它的缺点是对某些有机磷农药不够敏感。后来,利用上海大江鸡场废弃的鸡肝,我们从中提取了鸡肝酯酶,它的优势是能对七八种常用的有机磷农药产生反应,而且灵敏度都较高。 然后我们再利用自己开发的离子交换技术将小麦酯酶和鸡肝酯酶固定化,并制成一次性酶柱。目前,该技术已获得了国家发明专利,这种探测仪,每次使用时只要更换一对酶柱,成本只有几角钱,推广性很强。 此外,由于酶的反应是和温度密切相关的,为了保证反应能在确定的温度下进行,我们还研制了一种微型的半导体制冷—加热恒温器。 而在生物传感器方面,我们提出了一类新型量热式生物传感器概念。它有两个相同的酶柱,一个是待测的,另一个是作为参比的,但已被完全抑制。两个酶柱同置于一个反应腔中,由于采用了同种失活酶作为参比的方法,消除了系统的非特异性干扰,得到的温差是由酶反应柱中发生的酶水解反应产生的热量引起的。通过测量流经此两酶柱的流体出口的微小温差,来探测酶水解热反应的被抑制程度,进而得出微量的农药浓度。 此外,经过不断地摸索、补充和发展,我们又将流动注射技术引进到了这一系统当中。这种流动注射式酶传感器一方面大大提高了检测结果的重现性;另一方面使得酶反应是在仪器中完成,实现了操作过程的自动化,缩短了检测时间。 Instrument:还有一个问题也是我们很感兴趣的,对于和您一道共事的项目其他参与者而言,您是如何评价他们在这一项目中所发挥的作用的? 华:从最初的一个念头发展到一种新的产品,其间的过程是非常艰难的,要发挥众人的聪明才干才能克服,徐斐、陈儿同两位老师,许学勤、肖建军、郑艺华博士生和一些硕士生在这一项目中都做出了重要的贡献。 尤其是徐斐老师,几年前她从江南大学食品科学专业博士毕业后来上海理工大学工作时,我曾经亲自打电话给她的导师王璋教授了解情况,王教授和她的妻子许时婴教授对徐斐一致的评价是“很求上进、富有钻研精神”,而我挑选徐斐看中的也是这一点。 徐斐到校不久,我就让她研究与有机磷农药有特异反应的酶,后来又请她担任研制任务的负责人。坦率地将,这个项目是很有挑战性的,而且难度和风险都非常大,但徐斐欣然接受了这个挑战。值得欣慰的是,经过这个项目的锤炼,她的业务能力和组织能力已经有了质的提高,已经成为名副其实的学科带头人。 同时,结合此研究项目,我们还培养了3名博士、4名硕士,在国内外权威期刊发表论文20余篇,已获得发明专利2项、实用新型专利2项、公布发明专利1项。目前,已经有不少企业和我们接触,希望能够就这一项目进行合作,并最终将其推向市场。 采访后记: 最初获悉有关上海理工大学“新型农药残留现场快速检测技术”这条消息时,并没有引起笔者太多的注意,毕竟目前国内已有不少单位在进行这方面的探索,而且业内人士对于相关技术的适用性也存在着一定的争议。 网友的留言使笔者开始重新审视这一“看似平凡”的科技消息,而有关专家专为这一消息的深夜来电则使笔者最终下定决心去挖掘信息背后更深入的内容,也才有了后来对华教授的电话采访。现在本文即将脱稿,但是社会对于“农药残留速测技术”的关注,相信在很长一段时间里还会保持相当的热度,尤其是新技术在检测过程中是否存在“假阳性”以及“假阳性”的比例有多大等问题还有待于未来实践的检验。 单位地址:上海市军工路516号(200093)
  • 农业部:2010年例行监测未检出皮革水解蛋白
    近日,部分媒体和网站对皮革水解蛋白问题进行了报道。为加强食品安全监管,国家公布了《食品中可能违法添加的非食用物质和易滥用的食品添加剂品种名单》,其中三聚氰胺、皮革水解蛋白是禁用物质,也是生鲜乳质量安全监管中必须检测的指标。  近年来,农业部开展了三聚氰胺、皮革水解蛋白等违禁物质的例行监测,2010年抽检生鲜乳样品7406批次,奶站4778批次,运输车2628批次,三聚氰胺全部符合临时管理限量规定,没有检出皮革水解蛋白等违禁添加物质,生鲜乳质量安全状况总体良好。  2011年,农业部将继续实施生鲜乳质量安全监测计划,通过例行监测、飞行抽检、隐患排查等方式,进一步强化生鲜乳质量安全监管,如发现任何违法违规行为,将坚决打击,从重处罚,绝不姑息。
  • 深圳市三聚氰胺及皮革水解蛋白检测将常态化
    4月26日,记者从深圳市农业和渔业局制定的专项方案中了解到,我市生鲜乳中三聚氰胺、皮革水解蛋白检测将实现常态化,以确保合格率达到100%。  方案对各项主要工作进行了部署,其中包括,继续开展生鲜乳专项整治行动,加快推进标准化规模养殖,将打击生鲜乳中非法添加三聚氰胺、皮革水解蛋白等添加剂的检测制度做到常态化等 开展农资打假专项治理行动,对所有农资生产经营主体开展拉网式排查,加大农业投入品违法案件查处力度 严厉打击在食用农产品生产中非法添加和滥用食品添加剂的行为,追溯非法食品添加物生产和销售源头等,以保障人民群众身体健康和生命安全。
  • 密理博推出中小实验室整体纯水解决方案
    密理博中国推出针对中小型实验室的整体纯水解决方案  密理博公司——全球知名的实验室纯水器供应商于2009年9月8日在上海召开了中国Smart系列全国经销商会议暨Aquelix 新品发布会。在会上,密理博针对中国中小型实验室的纯水应用的特点推出了全新的整体解决方案。  由于中小型实验室对实验室纯水的用量相对较小,实验过程中对纯水的水质有严格的要求,密理博特别推出的中小型实验室纯水解决方案。 其中包含Smart 系列实验室纯水系统 (含 Direct-Q 3 纯水/超纯水系统, Simplicity 超纯水系统, RiOs-DI纯水系统, RiOs 3 纯水系统)及Aquelix 高纯水系统。该系列产品专为用水量不超过50升/日的中小型实验室用户设计,生产不同级别的实验室纯水和超纯水已满足实验室的各种应用需求。该整体解决方案中应用了Millipore的相关专利技术如Elix技术,集成式纯水柱, 以保证该系列产品产水水质的稳定和可靠。 另外,该系列还有设计紧凑,外形美观大方,安装简单方便,运行维护成本低等特点。  该会议还同期发布了的新型Aquelix高纯水系统。 该系统应用了Millipore 著名的Elix专利技术,生产的水质稳定的II级高纯水(电阻率高达15 MΩ∙ cm)。得益于卓越的Elix技术,该系统的维护和运行成本低。人性化的设计,一目了然的水质显示,一键式操作程序,让这款新型的高纯水系统更是吸引了各经销商及用户的眼球, 为蒸馏水或桶装纯水的实验室用户提供了一种经济实惠的选择。  从世界上第一台Milli-Q 超纯水系统面世以来,密理博公司生产的纯水/超纯水系统已经遍布了全球各大小实验室。近40年来的经验,让我们的纯水专家深谙各个不同实验室的各种用水需求,为各个不同实验室设计和生产理想的纯水系统,全面满足用户对纯水水质,用量和分配的不同需求,打消用户的纯水顾虑,让用户能够更加专注于他们的研究和工作。----------------------------------------------------------------------------------------------------------------------   关于密理博:  密理博 (Millipore) 是一家为生物科学研究和生物制药企业提供前沿技术,工具和服务的全球知名的生命科学公司。 作为用户的策略性供应商,我们与用户一起攻克世界挑战人类健康的各个难题。 从科研到产品开发及生产,我们专业的科学技术和不断创新的解决方案帮助世界各地的用户克服各个难题,实现既定目标。密理博是一家 S&P 500 公司,在全球47个国家拥有6,000 多名员工。  20世纪80年代,密理博公司进入中国市场。先后在香港、北京、上海、广州、成都及深圳设立了办事机构,并于2000年4月在上海浦东外高桥保税区建立了密理博(上海)贸易有限公司。 目前,密理博在中国拥有近150名员工,从事应用销售、市场推广、维修服务和技术支持等工作。  更多信息请联系 400-189-1988,或登陆www.millipore.com  ADVANCING LIFE SCIENCE TOGETHERTM  Research. Development. Production.  密理博中国媒体联系人:  李绿芊  市场推广经理 (生物科学部)  密理博中国有限公司  021-38529008  lu_qian_li@millipore.com  Millipore, Celliance, Chemicon, Upstate, Linco and NovAseptic are registered trademarks and the “M” logo, ADVANCING LIFE SCIENCE TOGETHER and MicroSafe are trademarks of Millipore Corporation.
  • iCMR 2017特邀报告:有机物纯度定值的定量核磁共振法新技术
    p style="TEXT-ALIGN: center"strong第一届磁共振网络会议(iCMR 2017)特邀报告/strong/pp style="TEXT-ALIGN: center"strong有机物纯度定值的定量核磁共振法新技术/strong/pp style="TEXT-ALIGN: center"strongimg title="黄挺.jpg" src="http://img1.17img.cn/17img/images/201710/insimg/7d156904-0e46-4200-8c68-a87e5c61c327.jpg"//strong/pp style="TEXT-ALIGN: center"strong黄挺 研究员/strong/pp style="TEXT-ALIGN: center"strong中国计量科学研究院/strong/pp /ppstrong  报告摘要:/strong/pp  准确测定有机化合物的纯度将从根本上提高有机化学分析的能力。定量核磁共振(qNMR)是对有机化合物纯度定值的重要手段,广泛用于化学计量学有机化合物的纯度测定。/pp  对于纯度较低或者分子量大于500的化合物,由于杂质峰可能与主要组分的峰不完全分离,因此qNMR具有较大的误差风险。我们近年来建立了五种新的方法来解决这个问题。/pp  (1)扣减杂质的直接qNMR法:应用于缬氨酸的纯度测定,结果的日内RSD=0.050%,八个月的日间RSD=0.071%,为当时文献报告中最高精度。[1]/pp  (2)氢氘交换qNMR法:应用于重要肿瘤标志物hCG蛋白质的特征肽T5肽的纯度测定。与传统的水解反应方法相比,qNMR操作简单,分析时间更短(3天降为1小时),CV小(从0.93%降为0.36%)。首次将qNMR的应用范围扩展至1800分子量的化合物。[1]/pp  (3)采用双信号抑制法的高效液相色谱-核磁共振(HPLC-qNMR):使用非氘代溶剂(CH3CN和H2O)作为HPLC流动相。测定了分子量873的阿维菌素B1a的纯度,排除了其中7个结构非常类似的杂质的干扰,与基于多种仪器的质量平衡法结果一致。偏差不超过1%。该方法具有分离效率高、定性定量能力强、成本低、操作快速、准确度高等特点。[2]/pp  (4)纯化样品的qNMR与HPLC测定法:测定了人C肽(hCP)的纯度,结果与传统方法一致,首次将qNMR的应用范围扩展至3200分子量的化合物。[3]/pp  (5)内标回收率校正-高效液相色谱-定量核磁共振(ISRC-HPLC-qNMR)方法:使用非氘代溶剂作为流动相。应用于阿维菌素B1a的纯度测定。结果表明,即使杂质的NMR峰与主成分不分离,甚至杂质的HPLC峰与主成分只是部分分离,该方法也可以简单且低成本地准确测定杂质的含量。[4]/pp  这些方法消除了杂质峰对qNMR测定结果正确度的潜在影响,将进一步推动qNMR成为国际计量体系的基准定值方法。/pp strong 致谢:/strong/pp  国家自然科学基金(21275134),国家科技支撑计划项目(2013BAK10B01)。/pp  strong参考文献:/strong/pp  1. T. Huang, W. Zhang. X. Dai, X. Zhang, C. Quan, H. Li, Y. Yang. Talanta. 125:94-101 (2014)/pp  2. T. Huang, W. Zhang. X. Dai, N. Li, L. Huang, C. Quan, H. Li, Y. Yang. Anal. Meth., 8:4482-4486 (2016)/pp  3. W. Zhang, T. Huang, H. Li, D. Song. Int. J. Pept. Res. Ther. 2017, online published [https://doi.org/10.1007/s10989-017-9620-6]/pp  4. W. Zhang. T. Huang, H. Li, X. Dai, C. Quan, Y. He. Talanta, 172:78–85 (2017)/pp /ppstrong  报告人简介:/strong/pp  黄挺,中国计量科学研究院研究员,2001年于中山大学化学院获得学士学位;2006年于北京大学化学院获得分析化学专业博士学位。同年到中国计量科学研究院化学计量与分析科学研究所工作。近年一直致力于高纯有机物纯化与准确定值、定量核磁共振法、以及有机小分子与生化大分子纯度的化学计量及标准物质研究。通过有机溶剂纯化制备技术研究实现了农残级溶剂的制备,打破了进口垄断。通过将氢氘交换法用于定量核磁共振研究,实现了多肽的定量核磁共振法纯度定值方法,支撑了生化分子的化学计量研究。通过双信号抑制法用于液相色谱-定量核磁共振联用法,实现了复杂有机分子的定量核磁法纯度定值。在2015年赴国际计量局BIPM进行6个月的定量核磁共振合作研究。负责及参与国际比对9项。获得国家奖科技进步奖二等奖1项。获得国家授权发明专利6项、软件著作权2项。发表论文57篇,其中SCI论文22篇。/pp  strong报名地址:/stronga title="" href="http://www.instrument.com.cn/webinar/meetings/iCMR2017/" target="_self"http://www.instrument.com.cn/webinar/meetings/iCMR2017//a/pp /p
  • 危化反应,除了“硝化”还有
    研究简介重氮化合物作为高能化合物具有热不稳定性和爆炸性,大部分在常温环境即可自发性分解放热放气。目前工业规模的重氮化生产多选用半间歇的加料方式和大功率的低温冷却设备来控制体系传热。高能耗给企业的发展带来阻碍。 邻氨基苯甲酸甲酯(MA)的重氮盐作为一种典型的重氮化合物被广泛应用于精细化工、制药工程等领域。现阶段工业生产中邻氨基苯甲酸甲酯(MA)重氮盐的合成多选用盐酸体系,合成路线如图 1 所示。图1. MA重氮盐合成方程式但半间歇生产工艺存在以下问题:MA 具有胺和酯的双重性质,难溶于酸且长时间在高浓度酸性体系中会发生一定程度的水解。因此需选用逆法重氮化的合成方式,将 MA 与亚硝酸钠溶液混合打浆后滴加到酸中,物料相态的非均一性使得传质困难,而且加料过程中物料配比的精准性难以被控制。间歇反应釜传质传热效率低,单位体积换热面积小,致使较大规模生产仍需要较长反应时间,重氮组分的长时间停留导致平行副反应发生,同时也增加了潜在热失控风险。多起因重氮化合物导致事故被相继报道。在这种形势下,寻找一种更稳定、高效、安全的方案来解决反应中能耗高、效率低、三废多是十分必要和迫切的。近年来,连续流化学技术发展迅速,微通道反应器作为一种新型反应器,在降低能源消耗、提高传质和传热、抑制平行副反应和提高反应体系安全性等方面具有独特优势,能够处理多种危险工艺。微通道连续流技术在重氮化合物的合成过程中有着成功的案例,并且有着巨大的经济效益。本文将为您介绍来自青岛科技大学王犇博士等发表在《化工进展》的研究成果:“微反应器内邻氨基苯甲酸甲酯的连续重氮化工艺”。小编将详细为您解读项目组如何应用康宁G1微通道反应器技术优势成功开发出连续流工艺,有效解决传统半间歇工艺的安全隐患并提高收率的。研究过程康宁微反应器成功开发邻氨基苯甲酸甲酯的连续重氮化工艺研究者选用康宁G1反应器进行工艺实验,反应装置如图2所示。图2. 微通道连续流重氮化反应的实验装置康宁反应器的模块化设计给工艺开发带来便利。根据反应的要求,可以设置预冷和预热模块,可以分步输入反应物料,可以增加淬灭模块,在整个反应过程中,还可以设置不同的温区。一、反应条件优化研究者以MA重氮盐的收率为考察指标,研究了半间歇及连续流工艺物料比、反应温度、停留时间和流速对结果的影响。1. 物料比对反应的影响1.1亚硝酸钠摩尔配比对反应的影响半间歇条件下,MA与亚硝酸钠摩尔比需要比理论值高出30 %。而且在加料过程中物料配比很难做到精准控制,亚硝酸钠过高使得副反应增加、收率降低。在微通道连续流工艺中,MA和亚硝酸钠溶液分别由计量泵泵入预混模块,对物料初始混合的强化使反应过程平稳,精准的物料配比减少副反应的发生。如图:当MA与亚硝酸钠摩尔比为1:1.1时,重氮化收率就达到了90.3 %,高于半间歇工艺的81.3%。图3. MA与亚硝酸钠摩尔配比对重氮化收率的影响1.2 盐酸摩尔配比对反应的影响理论MA与盐酸的摩尔配比应为1∶2,由于重氮反应体系需保持一定的酸度以抑制副反应和维持重氮盐组分的稳定性,故盐酸的实际用量要高于理论值。半间歇工艺中,当MA与盐酸的摩尔配比为1∶3时,重氮化收率达到峰值。需要注意的是在半间歇合成过程中反应液中有明显焦油状物质的生成,且盐酸摩尔用量越低该物质的量越多。微通道连续流工艺中,MA与盐酸的摩尔配比为1∶2.6时反应收率就到达峰值趋于平稳,而且反应液颜色正常,未观察到焦油状物质的生成。这一趋势得益于微通道反应器是平推流反应器,无反混而且反应时间短、反应持液量小的特性。生成的重氮组分能被及时的移出,进入后续反应,不需要大量的酸来抑制平行副反应。图4. MA与盐酸摩尔配比对重氮化收率的影响2. 反应温度的影响在半间歇工艺中,15 ℃时重氮化收率达到峰值80.4 %。值得注意的是,在大于25 ℃的半间歇实验中均出现了阶段性大幅超温现象,导致重氮化收率大幅下降并伴随大量焦油状物质生成。间歇反应釜的固有特性和加料方式决定了反应体系局部温度过高产生“热点”现象,反应釜内热量累积易引发重氮组分的二次分解放热导致反应失控。在微通道合成过程中,重氮化反应可以在高的反应温度、短的停留时间条件下获取较高的重氮化收率。故当反应温度为35 ℃,MA重氮盐的收率可达90.3 %。图5. 反应温度对重氮化收率的影响3. 停留时间对反应的影响康宁微通道模块“心形结构”强化了混合,停留时间为40s时重氮化收率趋于平稳,相比半间歇工艺极大缩短反应时间。图6. 停留时间对重氮化收率的影响4. 流速对反应的影响在微通道反应器中,流速是影响混合和传质效果的重要因素。保持反应停留时间不变,康宁反应器可以通过改变反应模块串联数量调节反应体系流量。作者考察了流速对重氮化收率的影响,结果如图7所示。当反应体系流量大于51g/min时,重氮化收率趋于稳定,表明此时反应体系已经达到良好混合状态图7. 流速对重氮化收率的影响综上微通道连续流工艺最佳合成条件为:n(MA)∶n(亚硝酸钠)∶n(盐酸)=1∶1.15∶2.67,反应温度为34.62 ℃,停留时间为45.07 s,此条件下MA 重氮盐收率为92.14 %。而半间歇工艺最佳合成条件为:n(MA)∶n(亚硝酸钠)∶n(盐酸)=1∶1.35∶3.11,反应温度为16.73 ℃,停留时间为16.34 min,此条件下 MA 重氮盐收率为81.35 %。二、长期运行实验及工业放大可行性探讨作者在单因素实验的基础上,采用 Box-Behnken Design(BBD)中心组合原理构建响应面模型,在优化所得的最佳工艺条件下,对 MA 连续重氮化工艺长期运行的可行性进行初步验证。在连续20小时的运行过程中,反应体系保持稳定,未出现局部沉淀、通道堵塞等异常现象。以2小时为周期进行取样分析,MA重氮盐收率均稳定在92 % ± 0.3 %,表明该工艺具有可放大性,适合于工业化生产应用。尽管国产微反应器都显示了从小试工艺到生产的放大效应。但康宁微反应器的所有工业化应用都验证了康宁微反应器的“无缝放大”。康宁反应器的无缝放大,避免了传统半间歇工艺需要通过“小试-中试-生产”逐级尺寸放大,为企业节约时间成本和原材料成本,可以快速应对市场需求。结果讨论研究者成功开发了微通道反应器内重氮化反应制备MA重氮盐的连续流工艺。与传统半间歇合成工艺相比,降低了工艺危险性、提高了产品收率和生产效率。相比于半间歇合成工艺,连续流合成工艺大幅降低了副反应的发生,使反应过程更加可控,同时减少三废。微通道连续流技术有效解决了MA半间歇重氮化工艺对温度的高敏感性以及低温的依赖性,降低能耗。该工艺可作为一种本质安全化的生产方式,具有良好的工业应用前景,有望为类似MA重氮盐的其他危险物质的合成提供一条有效的解决方案。参考文献:化工进展. 2021,40(10)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制