当前位置: 仪器信息网 > 行业主题 > >

水界面

仪器信息网水界面专题为您整合水界面相关的最新文章,在水界面专题,您不仅可以免费浏览水界面的资讯, 同时您还可以浏览水界面的相关资料、解决方案,参与社区水界面话题讨论。

水界面相关的资讯

  • 合肥研究院疏水界面表面增强拉曼光谱三维热点研究获进展
    近期,中国科学院合肥物质科学研究院智能机械研究所刘锦淮课题组研究员杨良保等人成功证实了滴于疏水界面的银溶胶在蒸发过程中能产生更多的三维热点,具有超高的表面增强拉曼散射效应。该研究成果对推动表面增强拉曼散射技术在实际检测中应用具有重要的意义。相关成果发表在英国皇家化学会Nanoscale 杂志上(Nanoscale,2015,7,6619-6626)。  近年来,SERS技术由于可以进行无损、高灵敏的指纹识别检测被广泛应用于各大基础研究领域。然而传统意义上SERS 基底的热点是以零维点状、一维线状或二维面状的空间分布构型存在的,这与SERS装置中的激光共焦量三维空间不匹配,如何解决这一矛盾以提高SERS检测的灵敏性仍然是一个很大的挑战。  针对以上问题,刘洪林等研究人员发现一滴纳米粒子溶胶随着溶剂的蒸发会形成一种独特的银纳米粒子三维结构。在这种三维结构中,粒子间距均一,且粒子间的作用以及平面上的静电吸附均会减弱,有助于产生大量的三维热点,增强SERS效应。研究人员还发现疏水界面上产生的三维热点比亲水界面拥有更高的灵敏性和更好的稳定性,并通过原位同步辐射小角X射线衍射(SR-SAXS)对这一不同检测结果的内在机理进行探索解释,有助于进一步推动表面增强拉曼散射技术成为一种实用的分析技术手段。  该研究工作得到了国家重大科学仪器设备开发专项任务、国家重大科学研究计划纳米专项和国家自然科学基金等项目的支持。  文章链接界面三维热点形成原理图
  • 上海交大:通过3D打印实现刚柔复合超疏水界面的制备
    近日,上海交大机械与动力工程学院胡松涛副教授课题组提出了刚柔微结构复合的超疏水界面设计思想,解决了冲击定位要求苛刻的难题,相关研究成果在机械装备抗液防冰等领域具有重要的应用前景。瑞士苏黎世联邦理工学院Andrew J. deMello教授课题组和英国帝国理工学院Daniele Dini教授课题组为合作单位。该成果以“Flexibility-Patterned Liquid-Repelling Surfaces”为题作为封面论文发表于ACS Applied Materials & Interfaces期刊。原文链接:https://pubs.acs.org/doi/10.1021/acsami.1c05243。刚柔复合界面设计与制备(杆径10μm的柔性网格结构及刚性支柱)面向低温冲击液滴的超疏水界面需要递进满足两个条件:1)基于微纳几何结构和低能化学修饰的抗刺穿性以反弹冲击液滴;2)极短的固液接触时间以避免液滴在界面成核结冰。现有的相关界面设计工作遵循刚性和柔性两类策略,可有效缩短固液接触时间,但受限于苛刻的固液冲击定位要求。研究团队借鉴蹦床公园,提出了刚柔微结构相结合的超疏水界面设计,通过融合刚性和柔性设计策略,期望消除界面润湿性能对固液冲击定位的依赖。研究团队采用面投影微立体光刻3D打印技术(nanoArch S140,摩方精密)高效、精准地实现了上述刚柔复合界面设计的样机制备。液滴冲击行为 研究团队利用高速相机记录液滴在冲击不同界面以及界面内不同局部区域的动力学行为,证明可以利用刚柔复合界面设计来调整液滴冲击行为。固液接触时间液滴冲击实验进一步表明,当液滴冲击柔性界面区域时,将触发结构振动来缩短固液接触时间;而当液滴冲击刚性界面区域时,将触发液滴的非对称再分布来缩短固液接触时间。官网:https://www.bmftec.cn/links/10
  • 上海交大:通过3D打印实现刚柔复合超疏水界面的制备
    近日,上海交大机械与动力工程学院胡松涛副教授课题组提出了刚柔微结构复合的超疏水界面设计思想,解决了冲击定位要求苛刻的难题,相关研究成果在机械装备抗液防冰等领域具有重要的应用前景。瑞士苏黎世联邦理工学院Andrew J. deMello教授课题组和英国帝国理工学院Daniele Dini教授课题组为合作单位。该成果以“Flexibility-Patterned Liquid-Repelling Surfaces”为题作为封面论文发表于ACS Applied Materials & Interfaces期刊。刚柔复合界面设计与制备(杆径10μm的柔性网格结构及刚性支柱)面向低温冲击液滴的超疏水界面需要递进满足两个条件:1)基于微纳几何结构和低能化学修饰的抗刺穿性以反弹冲击液滴;2)极短的固液接触时间以避免液滴在界面成核结冰。现有的相关界面设计工作遵循刚性和柔性两类策略,可有效缩短固液接触时间,但受限于苛刻的固液冲击定位要求。研究团队借鉴蹦床公园,提出了刚柔微结构相结合的超疏水界面设计,通过融合刚性和柔性设计策略,期望消除界面润湿性能对固液冲击定位的依赖。研究团队采用面投影微立体光刻3D打印技术(nanoArch S140,摩方精密)高效、精准地实现了上述刚柔复合界面设计的样机制备。液滴冲击行为 研究团队利用高速相机记录液滴在冲击不同界面以及界面内不同局部区域的动力学行为,证明可以利用刚柔复合界面设计来调整液滴冲击行为。固液接触时间液滴冲击实验进一步表明,当液滴冲击柔性界面区域时,将触发结构振动来缩短固液接触时间;而当液滴冲击刚性界面区域时,将触发液滴的非对称再分布来缩短固液接触时间。官网:https://www.bmftec.cn/links/10
  • 上海交大:通过3D打印实现刚柔复合超疏水界面的制备
    近日,上海交大机械与动力工程学院胡松涛副教授课题组提出了刚柔微结构复合的超疏水界面设计思想,解决了冲击定位要求苛刻的难题,相关研究成果在机械装备抗液防冰等领域具有重要的应用前景。瑞士苏黎世联邦理工学院Andrew J. deMello教授课题组和英国帝国理工学院Daniele Dini教授课题组为合作单位。该成果以“Flexibility-Patterned Liquid-Repelling Surfaces”为题作为封面论文发表于ACS Applied Materials & Interfaces期刊。原文链接:https://pubs.acs.org/doi/10.1021/acsami.1c05243。刚柔复合界面设计与制备(杆径10μm的柔性网格结构及刚性支柱)面向低温冲击液滴的超疏水界面需要递进满足两个条件:1)基于微纳几何结构和低能化学修饰的抗刺穿性以反弹冲击液滴;2)极短的固液接触时间以避免液滴在界面成核结冰。现有的相关界面设计工作遵循刚性和柔性两类策略,可有效缩短固液接触时间,但受限于苛刻的固液冲击定位要求。研究团队借鉴蹦床公园,提出了刚柔微结构相结合的超疏水界面设计,通过融合刚性和柔性设计策略,期望消除界面润湿性能对固液冲击定位的依赖。研究团队采用面投影微立体光刻3D打印技术(nanoArch S140,摩方精密)高效、精准地实现了上述刚柔复合界面设计的样机制备。液滴冲击行为 研究团队利用高速相机记录液滴在冲击不同界面以及界面内不同局部区域的动力学行为,证明可以利用刚柔复合界面设计来调整液滴冲击行为。固液接触时间液滴冲击实验进一步表明,当液滴冲击柔性界面区域时,将触发结构振动来缩短固液接触时间;而当液滴冲击刚性界面区域时,将触发液滴的非对称再分布来缩短固液接触时间。
  • 上海交大《ACS Applied Materials & Interfaces》:通过3D打印实现刚柔复合超疏水界面的制备
    近日,上海交大机械与动力工程学院胡松涛副教授课题组提出了刚柔微结构复合的超疏水界面设计思想,解决了冲击定位要求苛刻的难题,相关研究成果在机械装备抗液防冰等领域具有重要的应用前景。瑞士苏黎世联邦理工学院Andrew J. deMello教授课题组和英国帝国理工学院Daniele Dini教授课题组为合作单位。该成果以“Flexibility-Patterned Liquid-Repelling Surfaces”为题作为封面论文发表于ACS Applied Materials & Interfaces期刊。原文链接:https://pubs.acs.org/doi/10.1021/acsami.1c05243。刚柔复合界面设计与制备(杆径10μm的柔性网格结构及刚性支柱)面向低温冲击液滴的超疏水界面需要递进满足两个条件:1)基于微纳几何结构和低能化学修饰的抗刺穿性以反弹冲击液滴;2)极短的固液接触时间以避免液滴在界面成核结冰。现有的相关界面设计工作遵循刚性和柔性两类策略,可有效缩短固液接触时间,但受限于苛刻的固液冲击定位要求。研究团队借鉴蹦床公园,提出了刚柔微结构相结合的超疏水界面设计,通过融合刚性和柔性设计策略,期望消除界面润湿性能对固液冲击定位的依赖。研究团队采用面投影微立体光刻3D打印技术(nanoArch S140,摩方精密)高效、精准地实现了上述刚柔复合界面设计的样机制备。液滴冲击行为 研究团队利用高速相机记录液滴在冲击不同界面以及界面内不同局部区域的动力学行为,证明可以利用刚柔复合界面设计来调整液滴冲击行为。固液接触时间液滴冲击实验进一步表明,当液滴冲击柔性界面区域时,将触发结构振动来缩短固液接触时间;而当液滴冲击刚性界面区域时,将触发液滴的非对称再分布来缩短固液接触时间。
  • 界面张力测定仪的行业应用
    首先,在石油化工行业中,界面张力测定仪发挥着至关重要的作用。石油化工企业需要了解油水界面的张力,以此来判断油藏的开采难度和原油的采收率。界面张力测定仪能够快速准确地测量油水界面的张力,为石油化工企业提供重要的数据支持。其次,在医药行业中,界面张力测定仪也有着广泛的应用。医药企业需要研究药物对生物体的作用机制,其中药物的溶解性和渗透性是关键因素。界面张力测定仪可以用来研究药物溶液的表面张力,从而帮助医药企业了解药物的渗透性和生物利用度,为新药的研发提供重要的技术支持。此外,在环保行业中,界面张力测定仪也扮演着重要的角色。环保企业需要监测水体的污染情况,包括油污和有机污水的处理。界面张力测定仪可以用来监测水体的表面张力,帮助环保企业了解水体的污染程度和扩散趋势,为污染治理提供重要的参考依据。最后,在食品行业中,界面张力测定仪也有着不可忽视的作用。食品企业需要了解食品的表面张力和润湿性等性质,以此来判断食品的质量和口感。界面张力测定仪可以用来快速准确地测量食品的表面张力,为食品企业提供重要的质量检测手段。综上所述,界面张力测定仪在各个行业中都有着广泛的应用价值。通过了解界面张力测定仪的应用,我们可以更好地认识到其在各个行业中的重要作用,并为未来的科技创新和发展提供重要的参考依据。
  • 应用 | 检测方法对电气绝缘油界面张力的影响
    研究背景变压器油是变压器内部重要的绝缘材料,油品质量直接影响到变压器的电气性能和运行寿命。在运行中,变压器油在电气设备中因受湿度、光线、金属催化、水分及电场等因素的影响,会生成羧酸、醇等亲水极性物质在油-水界面的定向排列会改变界面上分子排列状况,从而降低界面张力。因此,界面张力是变压器油标准中的一项重要指标,能够反映新油在精炼时的纯净程度和在运行中油的氧化程度。实验仪器仪器:本文采用德国KRÜ SS力学法表界面张力仪K11测定界面张力。最新款表界面张力仪型号Tensíío。KRÜ SS 力学法表面张力仪Tensíío方法:不同产品标准所采用的界面张力检测方法不同,具体如表1和2所示。可以看出,各方法的测量原理相同,测定绝缘油的界面张力的方法大都采用的是圆环法,主要区别就是界面形成后即非平衡条件、接近平衡条件及平衡条件下测试的保持时间不同。表1 变压器油界面张力检测方法表2 不同界面张力检测方法试验条件对比结论与讨论由表3和图1可得,界面张力均随界面保持时间延长而降低。其中,新变压器油的酯类油比矿物油的界面张力低很多,这是由于酯类油的分子结构具有亲水性,使其界面张力相应减小。 表3 新油不同试验条件界面张力检测结果对比 图1 新油的界面张力随时间变化曲线表4和图2试验结果表明,老化后的矿物油和酯类油的界面张力也随界面保持时间延长而降低。与新油比,老化后变压器油的界面张力均比新油的界面张力低,尤其是矿物油D油的界面张力从新油46mN/m左右降至16mN/m左右。表3数据显示该样品抗老化、氧化性较差,因此容易生成醛、酮、羧酸等老化产品,而这些老化产物均为极性物质,在油水界面上做定向排列,从而使油品老化后油水间界面张力降低。E和F油为合成酯变压器油,虽然本身界面张力不高,但其氧化稳定性较好,老化前后界面张力变化不明显。表4 老化油不同试验条件界面张力检测结果对比 图2 老化油的界面张力随时间变化曲线对比图3和图4发现,老化油界面张力随着两相界面的保持时间呈较明显下降趋势,说明这一过程在老化变压器油中比在新变压器油中更为明显。图3 新矿油和老化矿油的界面张力随时间的变化曲线 图4 新酯类变压器油和老化酯类变压器油界面张力随时间变化的曲线IEC62961:2018方法介于ASTMD971方法和EN14210方法之间,在界面形成180s时测量界面张力更加符合实际,同时测量时间对测量结果影响较小。从图3和图4也可以看出,老化油的界面张力随时间变化较为明显,主要表现在界面张力曲线从30s到180s的变化斜率较大,而在界面形成的180s时测量界面张力数值与300s的测量数据很接近,可以提供一个较为真实的界面张力值,并且检测时间相对较短。新颁布的变压器油国际标准IEC60296:2020《电工流体电气设备用矿物绝缘油》,其界面张力检测规定采用ASTMD971-2020方法和IEC62961:2018两种方法,为了得到更有效的数据和满足实验室快速高效的日常检测工作,推荐采用IEC62961:2018方法为宜。结论界面张力是反映变压器油精制过程中洁净程度的指标,并与油品的老化程度密切相关。国内外检测变压器油界面张力方法的主要区别在于界面形成后的保持时间不同。实验室通过采用圆环法考察测量时间对界面张力值的影响,结果表明老化油的界面张力受时间影响较为明显,同时也说明变压器油的界面张力与油的劣化程度密切相关。通过考察不同方法测量时间对测量结果的影响,推荐采用IEC62961:2018方法对变压器油进行界面张力的检测,该方法既能减小因测试时间不同而引起的误差,又能快速进行检测。参考文献[1]张绮,张昱,周东等.不同检测方法对电气绝缘油界面张力的影响[J].润滑油,2024,39(01):43-47.DOI:10.19532/j.cnki.cn21-1265/tq.2024.01.009.
  • 东方德菲--旋转滴方法研究界面扩张流变性质
    北京东方德菲仪器有限公司SVT20N视频旋转滴张力仪使用 &ldquo 旋转滴方法研究界面扩张流变性质&rdquo 的文章 在物理化学学报上发表 我公司代理的德国Dataphysics公司生产的SVT20N视频旋转滴张力仪是使用旋转滴方法研究界面扩张流变性质的仪器,相对于普遍应用的Langmuir槽法和悬挂滴方法,它增加了转速振荡的功能,可以更精确地测量超低界面张力体系的扩张流变性质。 中国科学院理化技术研究所利用我公司SVT20N视频旋转滴张力仪,采用旋转滴方法,研究2-丙基-4,5-二庚烷基苯磺酸钠(DHPBS)在癸烷-水界面上的扩张流变性质的文章在物理化学学报上发表。有关文章的信息如下: 旋转滴方法研究界面扩张流变性质 张磊1 宫清涛1 周朝辉1 王武宁2 张路1 赵濉1 余稼镛1 (1中国科学院理化技术研究所,北京 100080;2 北京东方德菲仪器有限公司,北京 100089) 摘要:采用旋转滴方法,对2-丙基-4,5-二庚烷基苯磺酸钠(DHPBS)在癸烷-水界面上的扩张流变性质进行了研究,较为详细地介绍了SVT20N视频旋转滴张力仪的装置和实验方法,考察了油滴注入体积、基础转速及振荡振幅等试验条件对扩张模量的影响。研究结果表明,旋转滴方法是一种研究扩张流变性质的新型手段,在涉及低界面张力现象的领域具有良好的应用前景. 关键词:旋转滴方法; 烷基苯磺酸盐; 界面扩张性质; 扩张模量 Study of Interfacial Dilational Properties by the Spinning Drop Technique ZHANG Lei1 GONG Qing-Tao1 ZHOU Zhao-Hui1 WANG Wu-Ning2 ZHANG Lu1 ZHAO Sui1 YU Jia-Yong1 (1 Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing 100080, p.R.China 2 Beijing Eastern-Dataphy Instruments Co.,Ltd.,Beijing 100089, p.R.China) Abstract: The dilational viscoelastic properties of 4,5-dihepty-2-propylbenzene sulfonate (DHPBS) at the decane/water interface were investigated with a spinning drop tensiometer. The instrument of the spinning drop tensiometer SVT20N and the corrrlative experimental method were discussed in detail. The influence of oil drop volume, rotational speed, and oscillating amplitude on the interfacial dilational modulus were expounded. Experimental results show that spinning drop analysis is a novel method for probing interfacial dilational properties and has good prospects for application in the measurement of low interfacial tension phenomena. Key word: Spinning drop analysis Sodium alkyl benzene sulfonate Interfacial dilational property Dilational modilus
  • 原位拉曼研究揭示纳米材料界面新奥秘
    p  拉曼散射谱是一种具有高能量分辨率的指纹谱,特别是引入具有表面等离子体共振(SPR)特性的贵金属纳米结构形成表面增强拉曼散射(SERS)体系后,其灵敏度可提高到准单分子水平,在界面行为和过程研究方面大有可为。中国科学院生态环境研究中心环境化学与生态毒理学国家重点实验室刘景富研究组利用纳米银的SERS活性,原位研究了影响纳米材料界面效应和环境行为的若干关键过程,并取得新进展。/pp  研究组刘睿等利用SERS的高能量分辨率,结合X射线吸收谱,提出并实现了通过Ag单原子层精细调控壳层金属原子与基底金属间的结合强度,从而在单原子层尺度调控壳层原子构象的新思路。他们在超细Au纳米线表面可控地构筑了高分散Pd原子和Pd团簇,并借助拉曼探针分子2,6-二甲基苯异腈分子对结合金属原子的指认和定量统计能力,发展了原位定性表征和定量测定不同构象Pd原子的新方法。利用该方法,揭示了催化硝基酚反应活性与单分散Pd原子以及电催化氧化乙醇反应活性与团簇态Pd的直接关系,从实验上明确了这两类反应的活性中心。该研究不但提供了一类可用于探测特定催化反应活性中心的模型催化剂,更重要的是揭示了精细界面调控在催化剂设计中的重要地位,以及SERS在此类研究中的独特作用。该研究受到审稿人的高度评价,认为其解决了非常重要且技术上非常具有挑战性的难题,论文发表在材料科学期刊《先进材料》(Advanced Materials,DOI: 10.1002/adma.201604571)上。/pp  研究组也借助SERS指纹谱对反应过程中多中间体的同时识别能力,建立了利用SERS原位追踪SPR生成热电子归趋的新方法。利用该方法,研究了光照下Ag基共振催化剂生成的热电子的分配-归趋行为,发现Ag针孔是决定热电子是否能有效传递给活性中心(例如Pd原子)用于催化反应的关键。此项研究为共振催化剂的设计提供了新的视角,并对Ag-Ag基半导体共振光催化剂的稳定性给出了新的解释,同时对阐明纳米银的环境稳定性也具有一定的意义。相关论文发表在Small, 2016, 12, 6378–6387。Wiley旗下“Materials views中国”以《雁过留影——基于SERS原位监控催化反应的热电子归趋追踪方法》为题详细介绍了该工作。/pp  研究组还利用SERS技术,高灵敏、原位追踪了痕量纳米银在水?气界面的迁移过程,揭示了纳米材料的水界面微层富集现象,发现纳米银进入环境水体后迅速向水?气界面迁移,形成厚度数十微米、纳米银含量高于下层水体15-30倍的富纳米银表面微层。研究结果以封面文章发表于ACS旗下环境科学期刊《环境科学与技术快报》(Environmental Science & Technology Letters,2016, 3, 381–385)。/pp  研究得到国家重大研发计划、国家自然科学基金委和中科院先导专项的资助。/pp style="TEXT-ALIGN: center"img title="W020161213467523550467.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/8d370a3d-81f6-496c-8bbe-466d50151d3d.jpg"//pp style="TEXT-ALIGN: center"  SERS技术揭示了Ag单原子层对壳层金属与基底金属原子间界面作用的调控/ppbr//p
  • 中国农科院油料所邓乾春研究员团队顶刊综述:纯油体系缔合胶体中抗氧化剂界面活性的研究进展
    2024年2月,中国农业科学院油料作物研究所邓乾春研究员团队在国际Top期刊Advances in Colloid and Interface Science(Q1,IF: 15.6)发表题为“Recent advances in understanding the interfacial activity of antioxidants in association colloids in bulk oil”的综述论文。中国农业科学院油料作物研究所博士研究生王新天为第一作者,通讯作者为湖北大学健康科学与工程学院陈洪建特任副研究员和中国农业科学院油料作物研究所邓乾春研究员。脂质氧化是导致油脂质量和安全性下降的主要原因。近几十年,对油脂氧化的关注已从简单的化学反应(链式反应)转变为同时考虑物理化学和结构方面,如分子的相对位置和相互作用,并突破了最初的极性悖论理论的一些局限性。此外,对非均相体系中的脂质氧化也有了新的认识,如抗氧化剂在乳液中的“cut-off”效应,描述界面氧化反应的伪相动力学模型的发展,胶束参与分子交换事件的能力。这些进展有助于对纯油和乳液体系中发生的复杂脂质氧化反应有更深入的了解。本文综述了近年来对纯油体系中脂质氧化的研究进展,重点介绍了界面和胶体现象在这些系统中的作用。强调了缔合胶体形成的因素,以及在脂质氧化的各个阶段中其组成和结构的变化。本文还重点介绍了在这些体系中影响抗氧化剂效果的因素,特别是它们在油水界面上分配的影响。对纯油体系氧化过程中发生的物理化学变化以及微量化合物对抗氧化剂功效的影响有进一步了解,为更有效的控制食品中脂质氧化提供新策略。 综述亮点 本文综述了两亲性抗氧化剂/表面活性剂引起的脂质氧化过程中胶体组成和结构的变化。在脂质氧化的不同阶段,抗氧化剂与LOOH在反胶束中相互作用的能力可以加速或延迟氧化。非抗氧化表面活性剂引起的胶体结构变化可产生抗氧化作用。 综述结论 纯油体系中存在的缔合胶体可以作为有效的纳米反应器。人们普遍认为缔合胶体是脂质氧化的位点,但仍然很难预测这些胶体结构对脂质氧化的影响。通常,人们认为抗氧化剂位于氧化发生的位置是很重要的。然而,文献综述表明,界面抗氧化剂=良好抗氧化性能的假设过于简单。总的来说,界面抗氧化剂的存在似乎是非常重要的,但其他因素也很重要。在脂质氧化的不同阶段,抗氧化剂与LOOH在反胶束中相互作用的能力尤为重要。这些相互作用可能加速或延迟脂质氧化。在油脂中加入两亲性抗氧化剂或表面活性剂会改变反胶束的数量、大小、结构和组成,这也会影响脂质氧化。在某些情况下,表面活性剂引起的结构变化可以产生抗氧化作用,即使表面活性剂分子本身不表现出传统的抗氧化活性。从一个角度来看,表面活性剂可以通过增加反胶束的数量和体积来增加抗氧化剂对活性氧化位点的可用性,从而被视为新一代抗氧化剂。仍然需要更多的研究来更好地理解结构组织的复杂变化和参与脂质氧化反应的不同分子的相互作用。该领域的主要挑战之一是确定合适的分析方法来跟踪脂质氧化过程中发生的成分和结构变化。使用小角x射线散射(SAXS)和光散射方法可以获得油脂中反胶束和其他缔合胶体的大小和结构变化。油水界面的变化可以通过界面张力、石英晶体耗散微天平、核磁共振、分子对接等来研究。胶体体系的结构组织变化和分子交换事件可以通过液相透射电镜(LTEM)和流式细胞仪获得。使用荧光探针方法可以研究界面上抗氧化剂与反胶束之间的相互作用。然而,抗氧化剂究竟位于反胶束的栅栏层、疏水核还是外层,目前仍难以区分。仍然需要更复杂的分析仪器来监测抗氧化剂和其他两亲分子之间的界面相互作用。提高对脂质氧化的理解可能需要开发新的分析方法,包括可以测量系统内不同位置的成分和结构变化的方法。计算机模拟技术对于揭示在纯油体系氧化过程中发生的复杂分子事件以及抗氧化剂和表面活性剂的作用可能特别强大。提高我们对反胶束在脂质氧化中的复杂作用的认识应该有助于设计更有效的抗氧化技术。 图文赏析
  • 湖大王兆龙课题组:基于3D打印可降解水凝胶的快速可编辑人机界面
    水凝胶凭借着可拉伸的三维高分子网络结构以及可供离子传输的水性环境在可穿戴器件、瞬态电子和人机交互等领域具有广泛的应用。然而,伴随着柔性电子领域的快速发展,如何解决大量的柔性电子产品废弃物成为了挑战之一。受此启发,湖南大学王兆龙副教授、段辉高教授与上海交通大学郑平院士、南方科技大学葛锜教授、航天五院杨东升研究员合作,在《Materials Today Physics》期刊上发表了题为“Ultra-fast programmable human-machine interface enabled by 3D printed degradable conductive hydrogel”的文章。该文章利用面投影光刻技术(nanoArch P140,摩方精密)制备了高精度高拉伸可导电水凝胶样品及可编辑线路。在特定环境下,体系能被完全降解,实现柔性电子的环保无残留。图1 基于面投影微立体光刻3D打印技术的水凝胶。(a)面投影光刻技术原理图。(b)水凝胶前体溶液组成。(c)前体溶液固化前后展示图。(d)H2O-H2O、H2O-PG、PG-PG 和 PAM-H2O-PG 的氢键相互作用的密度泛函理论分析(DFT)。(e)扫描电子显微镜(SEM)图像。(f)基于面投影光刻技术制备的高精度海星和雪花样品。具体的溶液制备和加工过程如图1a-b所示,先将光引发剂 (2, 4, 6-三甲基苯甲酰基)苯基次膦酸乙酯(TPO-L)分散在1,2-丙二醇中,得到溶液A。同时,将氯化钾(KCl)、丙烯酰胺(AAm)和聚(乙二醇)二甲基丙烯酸酯(PEGDMA)加入去离子(DI)水中混合均匀得到溶液B。将溶液A、B混合均匀,超声处理得到水凝胶前体溶液(图 1c),在405nm紫外光的照射下能被完全固化。三维多孔网络的微观结构保证了高拉伸性能,图2a-c展示了不同成分含量下样品的拉伸性。研究人员通过单轴拉伸测试探究了不同成分含量对拉伸性能的影响。此外,还探究了电导率的影响因素(图2d-h),证明了基于高拉伸导电水凝胶器件的低温工作性能。图2 力学与电学性能的探究。(a)拉伸测试。不同含量(b) 丙烯酰胺,(c) 1,2-丙二醇的水凝胶样品的应力-应变曲线。不同含量(d)氯化钾,(e)丙烯酰胺和(f)1,2-丙二醇的水凝胶样品的电导率测试。(g)丙烯酰胺和去离子水质量比为3的水凝胶样品的差示扫描量热(DSC)曲线。(h)不同温度下的电导率。(i) 拉伸与导电性能的综合展示。水凝胶的可降解的性能由酰胺基和交联剂的共同水解实现,图3b展示了六边形水凝胶样品的降解过程(pH=13)。通过改变样品的形状、厚度或表面积,能够对其降解速度进行调控。除了几何参数,水凝胶前体溶液的成分含量、环境的pH值和温度都会影响降解速率。(图3c-g) 图3 降解性能探究。(a)碱性环境中的降解原理图。(b)六边形水凝胶样品在pH值为13的碱性溶液中的降解过程。不同含量(c)丙烯酰胺,(d)PEGDMA和(e)1,2-丙二醇的水凝胶样品的降解时间测试。(f)不同pH值下的降解时间。(g)不同温度下的降解时间。基于高拉伸可降解导电水凝胶的柔性电子具有优异的工作性能,研究人员将其应用在柔性传感及人机交互等应用中。如图4a-b所示,基于水凝胶的柔性传感器对于重复的机械运动具有准确灵敏的监测能力,具有广泛的传感范围,从而达成稳定传感的目的。研究人员主要对手指弯曲、不同频率的重复运动、吞咽、发音等动作进行了监测。研究结果如图4c-i所示。除此之外,研究人员还利用水凝胶器件的可降解性能对瞬态电子及可编辑人机界面应用的可行性进行了探究。图5a展示了通过降解和修复能够实现串并联电路的快速转换。人机界面由基于水凝胶电路的肌电采集系统组成(图5b),可稳定获取五个手指的肌电信号,开发的 EMG 收集系统能够对复杂的手势进行编码,实现人手控制机械手进行动作,如图5c-g展示,证明了基于3D打印可降解导电水凝胶在快速可编辑人机界面应用的可行性。值得一提的是,基于水凝胶的体系能被完全降解,为可编程和环保可穿戴设备提供了新思路。图4 基于水凝胶的柔性传感器监测性能。(a)不同应变下水凝胶应变传感器相对电阻变化曲线。(b)不同拉伸率下的灵敏度。(c) 手指弯曲,(d)手指不同频率连续弯曲,(e)肘部连续弯曲,(f)行走期间膝盖弯曲,(g)吞咽,(h)发声和(i)恒定压力下的传感曲线。 图5 可编辑电路及人机界面应用。(a)基于水凝胶电路的降解和修复。(b)采集系统工作原理示意图。(c)所开发的 EMG 采集系统捕获得到的五个手指 EMG 信号。(d)暴露于碱下的EMG 采集系统捕获得到的EMG 信号。(e)基于可降解水凝胶的可编程人机界面示意图。(f)采集得到的不同手势的信号。(g)快速可编辑人机界面工作展示。该项研究成果获得了广东省重点领域研究发展计划,湖南省自然科学基金,民用航空航天技术研究项目和中国空间技术研究院空间探索计划和钱学森实验室等实验及研究项目支持。
  • 网络讲座:二维材料界面结构与性质的原子力探针显微学研究(4)- 界面插层结构
    Interfacial Structures and Properties of 2D Materials with Atomic Force Microscopy(4)- Intercalated Structures讲座内容简介: 近年来,由于其潜在的巨大应用价值,关于二维层状材料的基础和应用研究方兴未艾,核心工作是理解和控制其多种多样的有趣性质。之前的研究工作主要集中在二维材料的面内结构,多种多样的层间相互作用在调控其力学、电学、热学以及光学等性质方面也有重要作用。虽然已有许多实验和理论研究工作来表征和理解这些界面结构,但对于界面行为是如何影响其物理与化学行为的仍然不是特别清楚。一个重要原因是,内部界面结构的直接微观成像和性质研究在实验技术上是相对比较困难的。石墨烯内部界面水分子插层的高分辨成像研究 在之前,报告人已经针对的AFM的基础知识、基本模式以及功能化AFM探测模式进行了介绍。本系列报告,将基于我们在原子力显微术的技术研究工作,利用多种先进原子力显微术针对二维材料的本征界面、异质界面以及材料/基底界面开展的研究工作。在每次报告中,我们首先将在较为详细地介绍主要使用的先进AFM模式的基本原理、技术实现及其相关应用。在此基础上,介绍我们利用该AFM模式所开展的关于二维材料界面结构与性质方面的研究工作。希望通过本系列报告有助于相关AFM使用者能够利用比较复杂的AFM功能模式开展研究工作。 本次报告是《二维材料界面结构与性质的原子力探针显微学研究》系列的第四次报告。在本次报告中,将介绍我们通过发展和利用多频原子力显微术,针对二维材料体系的内部界面插层结构等的高分辨成像表征和力学性质探测开展的一些工作。 #主讲人介绍 程志海,中国人民大学物理学系教授,博士生导师,基金委优青,中国仪器仪表学会显微仪器分会理事,中国硅酸盐学会微纳米分会理事。2007年,在中国科学院物理研究所纳米物理与器件实验室获凝聚态物理博士学位。2011年8月-2017年8月,国家纳米科学中心(中科院纳米标准与检测重点实验室),任副研究员/研究员。曾获中国科学院“引进杰出技术人才计划”(技术百人计划)和首届“卓越青年科学家”,卢嘉锡青年人才奖获得者,青年创新促进会会员并获首届“学科交叉与创新奖”等。目前,主要工作集中在先进原子力探针显微分析技术方法及其在低维材料与表界面物理等领域的应用基础研究。网络讲座时间:北京时间 2021年11月29日 上午10:00-上午11:00申请方法:请关注“Park原子力显微镜”公众号查看首页内容,即可参与。
  • 金属所在非共格界面的结构与物性研究方面取得进展
    功能材料界面由于经常表现出不同于体材料的新颖物理、化学现象与性质而备受关注。比如,人们在材料界面上发现了二维电子气、界面超导、界面发光和界面磁性等。这些有趣的界面现象与性质通常归因于界面上强烈的物理与化学交互作用,因此它们大多数出现在共格界面和半共格界面上。从共格界面到半共格界面、再到非共格界面,界面上的晶格失配不断增大,从而导致了材料界面上存在不同的晶格失配调节机制和界面结构。共格界面的晶格失配小,界面失配由两相邻晶格的弹性变形来调节,界面上形成了原子间完美匹配的界面结构;半共格界面的晶格失配适中,通过形成周期性排列的界面失配位错来补偿晶格失配。非共格界面的晶格失配非常大,界面两侧相邻晶体将保持各自原有的晶格而刚性堆叠在一起,不容易形成界面失配位错。虽然非共格界面比其他两类界面更常见,但由于它的晶格匹配度差并且界面键合强度弱,导致界面上的交互作用非常弱,因此非共格界面上很少表现出独特的界面现象与性质,这极大地限制了非共格界面的相关研究与应用。为了探索非共格界面上的新颖界面现象与物性,中国科学院金属研究所研究团队围绕非共格界面的原子与电子结构及界面交互作用开展了系统地研究工作,发现大晶格失配(~ 12 %)的AlN/Al2O3(0001)非共格界面上存在不寻常的强界面交互作用。强烈的界面交互作用显著调控了AlN/Al2O3界面的原子与电子结构及发光特性。透射电镜显微结构表征的研究结果表明,在AlN/Al2O3非共格界面上形成了界面失配位错网络和堆垛层错,这在其他非共格界面上是很少见的。原子层分辨的价电子能量损失谱表明,AlN/Al2O3非共格界面的带隙降低为~ 3.9 eV,显著小于AlN和Al2O3体材料的带隙(分别为5.4eV和8.0eV)。第一性原理计算表明,界面上带隙的减少主要由于在界面处形成了畸变的AlN3O四面体和AlN3O3八面体,从而导致了界面上存在Al-N键和Al-O键的竞争及键长的增大。阴极荧光光谱分析表明,该非共格界面具有界面发光特性,可发射波长为320 nm的紫外光,发光强度比AlN薄膜的本征发光高得多。该研究表明具有大晶格失配的非共格界面可表现出强烈的界面交互作用和独特的界面性质,深化和拓展了人们关于非共格界面的认识,可为开发基于非共格界面的先进异质结材料和器件提供借鉴与参考。相关研究工作得到国家杰出青年科学基金、中国科学院前沿研究重点项目和广东省基础与应用基础研究重大项目等的资助。相关研究成果以Interfacial interaction and intense interfacial ultraviolet light emission at an incoherent interface为题于5月15日在《自然-通讯》(Nature Communications)上在线发表。
  • 岛津原子力显微镜-从表面到界面
    人类认识真理的过程就像剥洋葱,由表及里一层层递进。 反映到对化学反应过程的认识,一开始,人们通过物质的形、色等外在表象认识化学反应。正如现代化学之父拉瓦锡重复的经典“氧化汞加热”实验一样,氧化汞由红色粉末变为液态的金属汞,这个显著的变化意味着反应的发生。即使到了近现代,仪器分析手段越来越多样,我们做常用的分析手段也是通过物质外在状态的变化进行观察,或者利用各类显微镜及X射线衍射仪观察物质的结构变化。 拉瓦锡之匙拉瓦锡对化学反应中物质的质量、颜色、状态变化的观察,犹如在重重黑暗中,找到了打卡化学之门的那把钥匙。 元素周期表 到19世纪,道尔顿和阿伏加德罗的原子、分子理论确立,门捷列夫编列了元素周期表。原子、分子、元素概念的建立令化学豁然开朗 自从用原子-分子论来研究化学,化学才真正被确立为一门科学。正是随着对不同元素的各种微粒组合变化的认识发展,化学的大门终于被打开。伴随金属键、共价键、离子键、氢键等各种“键”概念的提出,人们逐渐认识到各种反应的本质是原子或分子等微粒间的力学变化。于是,对反应的观测需要微观下的力学测量工作。 作为专门利用极近距离下极小颗粒间作用力工作的原子力显微镜,此事展现了自身巨大优势。无论是直接测试不同分子间的作用力,还是利用力的测量完成表面形貌的表征,原子力显微镜以高分辨率出色地完成了任务。 对于一些生物样品,例如脂质膜,因为其是由磷脂分子构成的单层或双层结构,极其柔软,因此其表面作用力极其微弱。从测试曲线上可以看出,脂质膜对探针的力只有约1pN,但是原子力显微镜的测试曲线上可以很清晰地捕捉到这个变化。 有趣的是,人们对真理的发掘,是由表及里的。但是利用原子力显微镜对化学反应本质的发现,却是由内而外的。 原子力显微镜基本是被作为一种表面分析工具使用的。这使其只能用来观察反应前后固相表面的结构变化,或者通过固相表面的各种属性,如机械性能、电磁学性能等侧面论证反应的发生。而要真正观察到反应的过程,是要对界面层进行观测的。因为几乎所有的反应,都是发生在两相界面处的,表面只是最终反应结果的呈现。 在界面处,反应发生时,原有的原子/分子间的作用力——也就是各种“键”,因为电子的状态变化(得失或者偏移)无法维持原有的稳定性,从而导致了原子/分子的重新排列,直到形成了新的力学稳定态——也就是新的“键”形成后,反应结束。这个过程的核心就是原子/分子间的“力的变化”。 反应的本质——微粒间力的分分合合 当化学科学的车轮推进到纳米时代,当探索的前锋触摸了两相界面,当理论的深度深入到动力学的研究。原子力显微镜是否能够当此重任呢? 能。但是需要一番蜕变。 界面处的力梯度有两个特点。一是更为集中,一般在0.3nm-1nm左右的范围内会有2-4个梯度变化;二是更为微弱,现在的原子力显微镜可以有效捕捉皮牛级的力变化,但是在表征界面时依然分辨率不足,需要的分辨率要提高1-2个数量级。 新的需求引导了新的技术蜕变。调频模式的成熟化,几乎完美应对了界面处的力梯度特点。一方面,只有几个埃的振幅可以有效对整个界面区进行表征,另一方面,检测噪音压低到20 fm/√Hz以内,保证了极高的分辨率。 岛津调频型原子力显微镜SPM-8100FM 例如对固液界面的观察。我们都知道,因为在固液界面处,因为液体分子和固体表面分子的距离不同,会形成不同的作用力,如氢键、偶极矩、色散力等。因此形成的液体分子的堆积密度会有不同。这种液体分子的分层模型,是润滑、浸润、表面张力等领域的底层原理。但是长期以来,这些理论只存在于数理模型和宏观现象解释之中,没有一个合适的直观观测工具。 界面观测之牛刀小试 岛津的SPM-8100FM的出现,将固液界面的高效表征变成了现实。上图右侧就是云母和水的界面处,水分子的分层结构,在约0.6nm的范围内,可以清楚看到3个分层。 具体到现实应用中,对表面润滑的研究很适合采用这种分析工具进行定性定量化测试。使用SPM-8100FM对润滑油中氧化铁表面上所形成的磷酸酯吸附膜进行分析。 图示为4组对照实验,分别是仅使用PAO(聚α-烯烃)和添加了不同浓度的C18AP(正磷酸油酸酯)的润滑油。 在未添加C18AP的PAO中,观察到层间距离0.66 nm的层状结构。通过这一层次可以看出,PAO分子在氧化铁膜表面上形成了平行于表面的平坦的覆层。随着C18AP浓度不断增加,从0.2 ppm到2 ppm后,层状结构开始消失,最后在20 ppm和200 ppm时完全观察不到。层状结构消失表明PAO分子定向结构被C18AP取代,在基片上形成了吸附膜。随着C18AP浓度不断增加,氧化铁基片表面逐渐被吸附膜覆盖。 对照使用摆锤式摩擦力测试仪测量获得的钢-润滑油-钢界面的摩擦系数。在添加C18AP浓度到达20 ppm后,PAO的摩擦系数大大降低。和微观界面表征的结果非常吻合。 由此可见,使用SPM-8100FM对润滑油-氧化铁界面实施滑动表面摩擦特性分析评估,可有效加快润滑油开发进度。 技术的发展推动了科学的进步,科学的发展也渴求更多的技术发展。原子力显微镜表征技术由表面向界面的延伸,一定会有力地推动对化学由表象向本质的探索。岛津将一如既往地尽其所能,提供帮助。 本文内容非商业广告,仅供专业人士参考。
  • 材料表面与界面分析技术及应用
    表面和界面的性质在材料制备、性能及应用等方面都起着重要作用,是材料科学领域研究的重要课题。2023年12月18-21日,由仪器信息网主办的第五届材料表征与分析检测技术网络会议将于线上召开,会议聚焦成分分析、微区结构与形貌分析、表面和界面分析、物相及热性能分析等内容,设置六个专场,旨在帮助广大科研工作者了解前沿表征与分析检测技术,解决材料表征与分析检测难题,开展表征与检测相关工作。其中,在表面和界面分析专场,北京师范大学教授级高工吴正龙、国家纳米科学中心研究员陈岚、暨南大学 实验中心主任/教授谢伟广、上海交通大学分析测试中心中级工程师张南南、岛津企业管理(中国)有限公司应用工程师吴金齐等多位嘉宾将为大家带来精彩报告。部分报告内容预告如下(按报告时间排序):北京师范大学教授级高工 吴正龙《X射线光电子能谱(XPS)定量分析》点击报名听会吴正龙,在北京师范大学分析测试中心长期从事电子能谱、荧光和拉曼光谱分析测试、教学及实验室管理工作。熟悉表面分析和光谱分析技术,积累了丰富实验测试经验。主要从事薄膜材料、稀土发光材料研究及石墨烯材料表征技术、表面增强拉曼光谱技术的研究,在国内外期刊发标多篇学术论文。现任全国表面化学析技术委员会副主任委员,主持和参与多项电子能谱分析方法标准。近年来,在多场国内电子能谱应用技术交流培训会上担任主讲人。报告摘要:X射线光电子能谱(XPS)作为最常用的表面分析技术,表面探测灵敏度高,可以检测表面化学态物种的表面平均含量、表面偏析;分析薄膜组成结构;评估表面覆盖、表面分散、表面损伤、表面吸附污染等。本报告在简要介绍XPS表面定量分析原理基础上,通过实际工作中的一些实例,探讨XPS定量结果解释,帮助大家正确理解XPS定量分析结果,更好地利用XPS技术分析表面。岛津企业管理(中国)有限公司应用工程师 吴金齐《岛津XPS技术在材料表面分析中的应用》点击报名听会吴金齐,岛津分析中心应用工程师,博士毕业于中山大学物理化学专业,博士毕业后加入岛津公司,主要负责XPS的应用开发、技术支持、合作研究等工作,使用XPS技术开展不同行业材料表征相关研究,具有多年XPS仪器使用经验,熟悉XPS数据处理及解析,合作发表多篇SCI论文。报告摘要:介绍相关表面分析技术及XPS在材料表面分析中的应用。国家纳米科学中心研究员 陈岚《纳米气泡气液界面的检测》点击报名听会陈岚,爱尔兰国立科克大学理学博士,剑桥大学居里学者,2014年至今,先后任国家纳米科学中心副研究员、研究员及博士研究生(合作)导师;主要从事纳米界面微观检测及纳米界面光电化学性能调控方面的研究;ISO/TC281注册专家,全国微细气泡技术标准化技术委员会(SAC/TC584)委员,中国颗粒学会微纳气泡、气溶胶专委会委员,Frontiers in Materials及Catalysts客座编辑,科技部在库专家,北京市科委项目评审专家;主持科技部发展中国家杰出青年科学家来华工作计划1项,参与国家重点研发计划“纳米科技”重点专项、“纳米前沿”重点专项各1项;共发表论文近60篇,授权专利9项,编制国家标准10部。报告摘要:体相纳米气泡具有超常的稳定性及超高的内压,高内压的纳米气泡在溶液中稳定存在的机制一直众说纷纭。因此,研究纳米气泡边界层对于解释纳米气泡的稳定性具有重要的意义。由于纳米气泡气液界面的特点,检测体相纳米气泡边界层十分困难,常规的方法和技术手段很难实现。在本工作中,首次采用低场核磁共振技术(LF-NMR)对体相纳米气泡边界层中水分子的弛豫规律进行了系统研究,提出了纳米气泡边界层测量的数学模型,并成功地测得了不同尺寸纳米气泡的边界层厚度。研究发现,纳米气泡粒径越小,边界层所占比例越高,因而也越可以对更高内压的气核进行有效保护,纳米气泡的稳定性也可以据此进行定量解释。暨南大学 实验中心主任/教授谢伟广《范德华异质结光电探测及光电存储器件》点击报名听会谢伟广,暨南大学物理与光电工程学院教授,博导。2007年博士毕业于中山大学凝聚态物理专业,导师为许宁生院士;研究方向是微纳尺度多场耦合行为及应用,半导体光电转换过程、器件及集成;在Advanced Materials, ACS Nano等期刊发表SCI论文80多篇,代表性成果包括:实现了多种二维半导体氧化物的CVD制备,首次发现了极性二维氧化物长波红外低损耗双曲声子极化激元现象;发展了钙钛矿薄膜的真空气相制备方法,实现了高效气相太阳能电池及光电探测阵列的制备。研究团队发展的多项方法已被国内外同行广泛采纳,并在Nature、Sciecne等著名期刊正面评价。主持国家基金面上项目、重点项目子课题、广东省自然科学基金杰出青年基金项目等多项项目;于2022年(排名第一)获得中国分析测试协会科学技术(CAIA)奖一等奖。报告摘要:二维钙钛矿(2DPVK)具有独特的晶体结构和突出的光电特性,设计2DPVK与其他二维材料的范德华异质结,可以实现具有优异性能的各类光电器件。本报告主要介绍下面两种异质结器件:(1)光电探测器:制备了2DPVK/MoS2范德华异质结器件,由于II型能带排列中层间电荷转移所诱导的亚带隙光吸收,器件在近红外区域表现出了单一材料均不具备的光电响应。在此基础上引入石墨烯(Gr)夹层,借助Gr的有效宽光谱吸收和异质结中光生载流子的快速分离和输运,2DPVK/Gr/MoS2器件的近红外探测性能进一步得到了大幅提升。(2)光电存储器:开发了基于MoS2/h-BN/2DPVK浮栅型光电存储器,其中2DVPK由于其高光吸收系数,能同时作为光电活性层与电荷存储层,器件展现了独特的光诱导多位存储效应以及可调谐的正/负光电导模式。上海交通大学分析测试中心中级工程师 张南南《紫外光电子能谱(UPS)样品制备、数据处理及应用分享》点击报名听会张南南,博士,2019年毕业于吉林大学无机化学系,同年入职上海交通大学分析测试中心,研究方向为材料的表界面研究,主要负责表面化学分析方向的X射线光电子能谱仪(XPS)及飞行时间二次离子质谱(ToF-SIMS)方面的测试工作。获得上海交通大学决策咨询课题资助,授权一项发明专利,并在 J. Colloid Interf. Sci., Catal. Commun.等期刊发表了相关学术论文。报告摘要:紫外光电子能谱(UPS),能够在高能量分辨率水平上探测价层电子能级的亚结构和分子振动能级的精细结构,广泛应用在表/界面的电子结构表征方面。本报告主要介绍UPS原理、样品制备、数据处理以及在钙钛矿太阳能电池、有机半导体、催化材料等领域的应用。参会指南1、进入第五届材料表征与分析检测技术网络会议官网(https://www.instrument.com.cn/webinar/meetings/icmc2023/)进行报名。扫描下方二维码,进入会议官网报名2、会议召开前统一报名审核,审核通过后将以短信形式向报名手机号发送在线听会链接。3、本次会议不收取任何注册或报名费用。4、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)5、赞助联系人:周老师(电话:010-51654077-8120 邮箱:zhouhh@instrument.com.cn)
  • 日化专题 | 如何科学表征日化中的表面和界面行为?
    研究背景日化中的很多现象都跟表界面的作用有关系,比如化妆品中的乳化、分散、增溶、发泡和清洁等等。KRÜ SS作为表面科学仪器的全球领导品牌,此次从以下几个方面为大家介绍日用化学品中的表面科学表征方法:典型应用1.清洁类产品的泡沫行为分析在日常使用洗面奶,洗发水时,我们通过揉搓等各种方式将洗面奶和空气充分接触而产生泡沫。在揉搓出丰富泡沫的过程中,很容易产生幸福感和仪式感,一整天的油腻都被洗掉了。KRÜ SS DFA100动态泡沫分析可以对泡沫的起泡性,泡沫稳定性和泡沫结构进行科学的表征。选择了市售的几个洗面奶进行了测试,通过DFA100的搅拌模块,可以非常清晰的筛选出起泡性较好和泡沫丰富的产品。如上图所示,横坐标是时间,纵坐标是泡沫高度,从图上可以清晰地看到有的产品起泡性速度很快,且短时间内起泡高度就可以达到最大。一般来讲,样品起泡性越强,产生的泡沫越多,其泡沫高度也越高;反之,起泡性差的样品,其泡沫高度也相对较低。从泡沫高度上的衰减也能分析泡沫稳定性,泡沫高度降低越快,泡沫越不稳定。由于此次样品测试时间较短,泡沫比较稳定,没有观察到泡沫高度的衰减,故而不做泡沫稳定性的对比。挑了其中2个样品,对比泡沫的结构和尺寸大小,从而分析泡沫的细腻程度。从图中可以看到,2号样品刚开始产生泡沫后,就比较细腻,泡沫尺寸比较小。随着时间的变化,泡沫大小一直比较稳定,不发生特别大的增加。而1号样品产生了较大的泡沫,随时间延长, 泡泡大小急剧增加。2.通过接触角表征彩妆类产品的防水抗汗性能消费者使用底妆的痛点主要有卡粉、脱妆和浮粉,而通过水,人工汗液和人工皮脂在彩妆上的接触角,可以评估抗汗和抗皮脂性能。接触角是气、液、固三相交点处所作的气-液界面的切线,此切线在液体一方的与固-液交界线之间的夹角θ。通过接触角的大小,可以判断固体和液体的润湿性能。如果粉底液和汗液,皮脂,水等的接触角越大,说明产品的防水抗汗性能越好。 选择市售的几款口红,通过接触角评价产品的防水,抗汗性能。将口红涂抹在手臂内侧,干燥后测试接触角。通过接触角可以明显区别不同产品的防水,抗汗,抗皮脂的差异,1号样品性能更加优越,防水抗汗都优于其他产品。彩妆中除了口红,也可以通过接触角分析底妆产品中原料和基底的润湿性。大多数化妆品都含有粉末和颜料,以着色、保护皮肤或协助清洁。以表面活性剂形式存在的分散剂确保粉末的精细分布和混合物的稳定。粉末和液体的接触角可以帮助判断润湿和分散行为。3.护肤品的乳化行为分析:常见的护肤类化妆品是水包油或者油包水的乳液或者膏霜。水油原本不相容,通过添加表面活性剂,可以吸附于液液界面,降低体系的热力学不稳定性。表面张力仪可以精准的分析油水两相的界面张力,判断乳化效果;表面张力仪还可以测试表面活性剂的临界胶束浓度,判断表面活性剂的添加量。分析表面活性剂的动态表面张力行为,监控喷雾雾化效果等;除此之外,KRUSS的各类产品还可以分析头发的接触角。正常头发具有疏水性,受损后头发油脂层被破坏或部分缺损,接触角变小其亲水性越强。该方法广泛用于头发受损及修复后的情况。 KRÜ SS的表界面分析仪器可以帮助您从原料到成品,从生产到研发,多维度解决您的难题!
  • “材料表面与界面分析”网络主题研讨会 成功召开
    p 材料科学、信息科学和生命科学是当前新技术革命中的三大前沿科学,材料的表界面在材料科学中占有重要的地位。材料的表界面对材料整体性能具有决定性的影响,材料的腐蚀、老化、硬化、破坏、印刷、涂膜、粘结、复合等等,无不与材料的表界面密切有关。因此研究材料的表界面现象具有重要的意义。/pp 如何更有效地测量材料的表界面情况,对其进行更深入地研究,成为颇具潜力的一个研究领域。2016年8月24日,仪器信息网邀请清华大学朱永法老师、国家纳米科学中心程志海老师、赛默飞孙文彬老师从不同角度分享表界面分析研究进展。/pp 本次会议报告如下:(视频近期上线,请提前收藏地址)/ppimg src="http://img1.17img.cn/17img/images/201608/insimg/905de170-4040-41d0-8f2d-2daabe1bae7e.jpg" title="QQ截图20160824152509.jpg"//pp 视频上线地址,上线时间9月2日:/ppa href="http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2091" target="_blank" title="“材料表面与界面分析”网络主题研讨会"http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2091/a/ppbr//pp 近期更多精彩会议预告:/pp“热分析技术在多领域应用及进展”网络主题研讨会 br//pp中国科学技术大学丁延伟老师和北京化工大学刘玲老师主讲。/ppa href="http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2094" target="_blank" title="“热分析技术在多领域应用及进展”网络主题研讨会"http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2094/a/ppbr//pp“动物源食品安全性评价及检测”网络主题研讨会 /pp中国水产科学研究院李晋成老师和上海出入境检验检疫局朱坚老师主讲。/ppa href="http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2119" target="_blank" title=""http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2119/a/ppbr//pp“土壤环境调查评估技术”网络主题研讨会 /pp南京环境科学研究所赵欣老师和中国科学院生态环境研究中心张莘老师主讲。/ppa href="http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2132" target="_self" title=""http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2132/a/p
  • 锂电池界面电化学过程原位研究获进展
    pspan style="font-family: 微软雅黑, Microsoft YaHei "  由于化学电源的电化学性能与电极/电解质的界面过程密切相关,涉及电荷转移、离子输运、相的生成和转化等步骤,在纳米尺度上深入理解界面过程对于器件设计和材料优化具有重要意义。然而能源体系的运行环境非常复杂,涉及无水无氧环境、有机/离子液体电解质体系、多相界面、多电子反应过程等,因此,针对性发展复杂体系下电化学界面高分辨原位成像方法,从而实现电化学反应过程的实时追踪和原位分析,也是电分析化学的挑战和难点之一。br//span/ppbr/span style="font-family: 微软雅黑, Microsoft YaHei "  中国科学院化学研究所分子纳米结构与纳米技术院重点实验室文锐课题组致力于锂电池界面电化学过程的原位研究并取得系列进展。在前期工作中,他们利用氩气环境下的原位原子力显微镜(AFM),在以[BMP]sup+/sup[FSI]sup-/sup为代表的离子液体中,捕获纳米尺度上锂离子电池中高定向热解石墨(HOPG)表面固态电解质界面膜(SEI)的初始成核、逐步生长及成膜的系列演化过程,并揭示了不同离子液体中SEI膜的界面性质及与电池性能相关性。相关成果发表在 ACS Applied Materials & Interfaces 上。br/br/  进一步,研究人员开展了具有高理论能量密度(2600 Wh/kg)锂硫电池中界面电化学反应的系列研究。利用电化学 AFM 及谱学分析表征,实现了在锂硫充放电过程中还原产物硫化锂和过硫化锂在界面形貌演变及生长/溶解过程的原位监测(图1),并提出过硫化锂在循环过程中不可逆反应产生的界面聚集是导致电极钝化及电池性能衰减的原因之一。恒电流控制下的原位成像研究表明,电流密度大小影响界面形貌及沉积物种类,直观揭示了结构-性能关联性。相关成果发表在 Angewandte Chemie International Edition 上。br/br/  近日,科研人员利用电化学 AFM 进一步探究了在高温条件下锂硫电池在LiFSI基电解液中的界面行为与反应机制(图2)。研究发现,在高温60℃时,阴极/电解质界面在放电过程中会原位形成一层由LiF纳米颗粒构成的功能性界面膜,并通过物理尺寸效应及化学吸附作用捕获电解液中的长链多硫化锂。此过程有利于抑制多硫化物穿梭效应及副反应的发生,并增强界面电化学反应的可逆性。该研究通过原位表征与分析为高温电化学行为在纳米尺度提供了直接的界面机理解释,也为锂硫电池的电解液设计及性能提升提供了思路和指导。相关成果发表在 Angewandte Chemie International Edition 上。br/br/  研究工作得到了科技部、国家自然科学基金委和中科院的支持。/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/0a9eee39-49a2-4c61-9964-34c61b6891a0.jpg" title="1.jpg"//ppspan style="font-family: 微软雅黑, Microsoft YaHei "strong图1.原位AFM电化学池示意图(左)及放电中锂硫界面反应过程的原位AFM图像(右)/strong/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/f9c7499b-e1eb-4d46-8f9d-0cdc07b1cc1b.jpg" title="2.jpg" style="width: 500px height: 252px " width="500" vspace="0" hspace="0" height="252" border="0"//ppspan style="font-family: 微软雅黑, Microsoft YaHei "strong图2.高温60℃下锂硫电池中阴极/电解质界面过程示意图/strong/span/p
  • 时间相关单光子计数器quTAG软件界面简介
    时间相关单光子计数器quTAG软件界面简介摘要在刚开始拿到设备的时候,往往不知道从哪里开始使用设备;本文主要介绍软件上常用的几个模块,并做简要说明,帮助读者快速熟悉设备。正文quTAG是一款时间-数字转换器,它测量电信号并记录相关时间标签。这种时间标签流可以用于各种各样的应用——测量范围从皮秒到几天。通用时间标记方法可用于相关测量(互相关、自相关)、寿命测量(start - stop)以及一次测量中的更多可能性。保存的时间标签流包含重建每次测量和分析所需的所有信息。1、软件安装。从附带的U盘中拷贝Daisy@QUTAG-V1.5.3.exe软件到目标目录下。正常完成软件安装。2、设备连接。将电源线与连接到设备背面110~230V交流接口。使用附带的USB 3.0线缆与PC连接。打开设备,启动Daisy.exe软件。3、切换到Detector Parameter标签下,在该界面可以使能通道,选择测试信号类型,计数器的甄别阈值,信号延时等参数;其中,如果信号输入但是计数器没有检测到信号,那么很有可能是阈值设置太大,获取信号幅值太小;每个通道的输入信号从-3.3V~+3.3V。4、在Counts界面,显示在积分时间Exposure Time下每个通道的计数率,其中Exopsure Time设置积分时间,在此界面以图、数值的方式显示每个通道的计数值,还可以以文件的形式保存数据;5、在Coincidence标签界面如下图,在此界面与Counts界面的显示类似;如果没有设置合适的Coincidence Window也不会出现计数值的;同样的,在此界面也可以保存每个符合通道的计数值。6、在Histogram标签界面如下图,在此图中可以测量start-stop模式下的时间信息、计数信息,以及start-(multi)stop模式下的时间、计数信息;所有通道还是在Integrate Time下显示的计数值;Input Channals决定了信号来源于那几个通道;Timetag Processing用于处理多个stop通道的时间差;在后面的选择框可以设置以及显示当前界面的分辨率、计数率等;其中Bin Width以1ps时间为基准。您可以通过我们的官方网站了解更多的产品信息,或直接来电咨询。
  • 超快速表面处理,秒取高质量界面【GDS微课堂-7】
    上图是瑞士摄影师马丁-奥格里利 ( Martin Oeggerli ) 通过扫描电子显微镜SEM拍摄的花粉照片,是不是很炫酷?但并非所有样品通过SEM,都能得到上图中直观惊艳的照片,更多样品需要经过预处理后方可充分展示。GDS就是对样品进行预处理,将观测的界面更好展示出来的利器。通过氩气等离子体持续轰击样品表面、溅射出样品离子后再进行分析的方法,GDS可以轻松替SEM剥蚀样品,供SEM进行观测。那与其他可用的剥蚀方法相比,GDS在样品制备与表征上有哪些优势呢?让我们一起来看看。GDS通过控制溅射时间,能精确地获得不同深度和清晰度的界面,将任意深度的包埋层完美地展现出来,供SEM分析。上图是铜表面的元素深度剖析图。铜的表面覆盖一层硫脲,硫脲分子通过硫端吸附到铜表面,C-S键垂直于金属表面。这个吸附层在深度剖面上以窄峰的形式清晰地显示在铜基体上方,包括碳、氢、氮和硫。从右图我们还可以看到,峰的位置按照吸附在铜基体上的硫脲分子的方向顺序被分离和定位。在扫描电镜中,必须精确控制溅射深度,GDS这种在原子尺度深度的分辨率,使这种精细的分析得以实现。GDS使用的是能力很低(低于50eV)但电流密度很高(~100mA cm-2)的氩气等离子体。氩离子的高电流密度能确保高速溅射,溅射速率每分钟达到1-10μm,整个样品的处理时间短,包括溅射在内往往几秒至几分钟就能搞定,相比于以往费时费力的机械抛光、化学抛光、电化学抛光、超薄切片等制备方法,不知道快了多少倍。比如为了获得高质量的表面,通常会用胶态二氧化硅悬浮液对样品进行抛光,来去除受损的表面区域。但是这种方法的抛光率非常低(仅为每分钟几纳米),因此对于延伸几百纳米的区域来说,需要数小时甚至一天的时间。而通过GDS溅射,可以在几十秒内去除大多数材料的受损表面区域。另外,GDS还有一个特点就是它是靠氩离子去撞击样品,通过溅射方法移除样品表面的材料,是对样品粒子一层层的剥蚀。此外,由于差动溅射效应,GDS能够在不同材料的分界处产生清晰的界面,这对于观测样品的表面形貌非常重要。而传统的机械抛光,靠的是细小的抛光粉的磨削、滚压,在对样品表面磨削的过程中势必会将凸起的花纹也一并磨掉,只留下光秃秃的平滑面。Show一个简单的比较图,让大家更直观的感受一下:(a)是机械抛光获得的结果,(b)是GDS剥蚀3S后获得的结果(a)图中是机械抛光获得的结果,我们看到样品表面的纹理被磨掉了;(b)图是GDS剥蚀处理后的结果,样品表面的花纹和结构保存的很好,我们可以看到表面的精细结构。我们再来看一个例子:通过超薄切片处理过的镀锌钢的横截面(a)图是通过超薄切片技术制备的整个镀锌钢样品的SEM图像;(b)图是通过超薄切片技术制备的镀锌钢样品中,锌/钢界面的SEM图,可以看到表面有严重的刮痕;(c)图是对(b)进行GDS溅射10秒后,锌/钢界面的SEM图片,可以看到而GDS制备的样品消除了刮痕,完美保留了样品的形貌。GDS除了可以为扫描电镜制备样品外,还可以联合SEM全面表征样品。下面是同一个样品:AlCrN/TiN/AlCrN/TiN/Fe使用SEM和GDS分别测试的结果。SEM提供了样品横截面的结构:根据颜色的深浅,可以了解到样品包含4个镀层,图中详细标注了不同镀层的厚度;GDS则展示了样品中各元素从表面到铁基体,不同深度处的含量分布。两个结果有交叠的信息也有截然不同的信息,更加全面立体地展示了样品的结构信息和含量分布。往期回顾【GDS微课堂-1】随Dr.JY掀起GDS神秘面纱【GDS微课堂-2】七问七答,掌握GDS常用概念【GDS微课堂-3】GDS解密:如何打造钢铁侠的战衣盔甲?【GDS微课堂-4】锂电池研发的“秘密武器”【GDS微课堂-5】“钢铁侠”背后的清洁能源之梦【GDS微课堂-6】看GDS如何助力“灯厂”奥迪独领风骚? HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,旗下的JobinYvon更有着200年的光学、光谱经验,HORIBA非常乐意与大家分享这些经验,为此特创立Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 HORIBA希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界。
  • “油品界面智能检测仪”产品通过鉴定
    2023年4月7日,中国通用机械工业协会和中国仪器仪表行业协会联合在西安组织召开了“油品界面智能检测仪(YZCKJMY)”产品鉴定会,该产品由国家石油天然气管网集团有限公司华南分公司和西安航天动力研究所联合自主研制。鉴定会由中国通用机械工业协会会长黄鹂主持。油品界面智能检测仪鉴定会会议现场中国机械工业联合会原总工程师隋永滨担任鉴定委员会专家组组长、原机械工业部仪表司副司长朱明凯担任副组长,专家组成员由来自南阳防爆电气公司、西北工业大学、国家管网北方管道公司、中石化石油工程设计公司、中科院西安光机所、国家管网东部原油储运等单位的共9位专家组成。鉴定委员会专家听取了研制单位的技术总结报告,审查了相关文件资料,现场查看了样机并见证了产品的部分性能测试试验。经质询讨论,专家委员会一致同意通过鉴定,研制的油品界面智能检测仪具有自主知识产权,性能指标达到国际同类产品先进水平,建议推广应用。油品界面智能检测仪产品实物油品界面智能检测仪为国内首台自主研发的油品界面智能检测仪,具有100%自主知识产权,已经在国家管网华南分公司、北方管道公司及国家管网华中公司等单位进行了近百台产品的配套,已经安装投用的产品经用户反馈,工作状态稳定,界面分辨明显,可完全替代进口产品,受到了广泛好评。
  • Kruss表界面科学应用技术高级研讨班
    Kruss表界面科学应用技术高级研讨班 邀 请 函 尊敬的 女士/先生,您好: 兹真诚邀请您参加瑞士华嘉公司于2011年4月12日至13日在北京中科院过程工程研究所的过程大厦,举办为期两天的&ldquo Kruss表界面科学应用技术高级研讨班&rdquo 。此次交流会邀请德国Kruss公司的资深专家Dr. Udo Ohlerich和Dr. Tobias Winkler,对新的表界面相关研究技术进行介绍,现场演示多种类型表界面仪器的操作,并对特殊功能和应用进行高级技能培训。本次交流会致力成为一个互动的平台,特邀请相关领域的专家和研究人员届时参加,通过此次培训,进一步开发仪器的功能,提升仪器使用者的能力,让表界面仪器在相关行业的科研工作中发挥更大的作用。 谢谢! 华嘉(香港)有限公司 2011年3月24日 备注: 1 费用:单人收费1200元,包括资料费和餐费,住宿统一安排但费用自理。 2 请您准备简单的自我介绍,包括您的应用。也欢迎您带来需要解决的问题。附件1: 日程安排(届时可能略有调整) 四月十二日 09:00 大昌华嘉介绍09:30 表面化学研究技术&mdash 课题待定 10:00 表面化学常用的研究技术介绍 Dr. Udo Ohlerich12:00 午餐 13:30 表界面常用的应用 I (详见附件1) Dr. Tobias Winkler15:30 各位客户依次介绍自己的工作领域,相互交流16:30 分组仪器功能培训和应用展示 (详见附件2) 17: 30 会议结束 四月十三日 09:00 表界面常用的应用 II (详见附件1) Dr. Tobias Winkler10:30 泡沫与界面流变性能介绍 Dr. Tobias Winkler12:00 会议介绍,午餐 13:30 分组仪器功能培训和应用展示 ( K100,DSA100,Pocketdyne,Mobiledrop, DFA100,)(详见附件2)15:00 问题小结和讨论17:00 会议结束。 附件2: 主要应用类型 - Everything related to adhesion, including coatings on various material like metal, wood, plastic, glass .... - Fuel cells. This should be a very interesting application all over the world and we received several inquiries from customers for this application. - Biocompatibility including surface treatment - Enhanced Oil Recovery - Antifouling coatings 附件3:培训内容:(届时可能会有适当调整) K100 : 铂金环板的测量特点和配件保养、界面张力测定技巧、单纤维和粉末样品测量技巧、固体粉末测量及技巧、CMC自动测量展示、药物单分子表面积测量和应用等 DSA100:动态接触角测量技巧和应用、固体表面能分析和粘附功评价的应用、悬滴法表面张力测量、补泡法测量无纺布样品、温湿度对接触角测量影响 Pocketdyn:软件控制的动态表面张力连续测量 DFA100:动态泡沫分析技术介绍 TVA100:利用顶视法测量凹型样品光学接触角 附件4:详细地址 北京市海淀区中关村北二条 中国科学院过程工程研究所 新楼过程大厦三层会议室 邮编:100190 (城府路文津国际酒店对面) 附: 回执单 姓名 性别 人数 单位名称 详细地址 邮政编码 电话 传真 E-mail 1.您希望通过本次交流会,能够解决您的什么问题? 2.您使用过哪款Kruss的仪器,使用情况如何? 3.对本次交流会大致的日程安排您有什么意见? 备注:请尽快E-mail 或传真(010-65610278)确认
  • 看清真相,探索固液界面微观结构
    探索固液界面微观结构 材料的物理化学性质不仅由其内部的组分、结构决定,而且与其周围的介质环境及表界面性质息息相关。而水作为最常见的介质环境,不仅与材料产生多种不同的作用力,如亲水作用力、疏水作用力,甚至会与材料发生各种物理和化学过程,从而对材料的性能产生重要影响。因此,在分子层面解析水与材料表面的相互作用与化学过程,对深入研究材料的表界面性质、形成机理具有重要的推动作用,同时有助于指导人们开发更好的材料与器件。 岛津 SPM-8100FM 图1 岛津SPM-8100FM 当前市场上扫描探针显微镜(SPM)有多个品牌,大多数都是使用调幅模式(AM),但是在原理上调频模式(FM)可以获得更高的图像分辨率。岛津SPM-8000FM就是采用调频检测方法,成为世界上首个商品化调频模式的扫描探针显微镜(注:原子力显微镜只是扫描探针显微镜的一种),并荣获2014年第57届“十大新产品奖”。而SPM-8100FM为SPM-8000FM的升级款,与之相比不仅分辨率有了进一步的提升,稳定性也得到了大幅提升。它不仅在大气及液体环境中达到了超高分辨率的观察,还实现了对固液界面的水化层作用或溶剂化作用层的观察,恰好适用于水-材料表界面性质的研究。下面小编就向大家介绍岛津SPM-8100FM(图1)在研究水与不同材料表界面作用中的应用。 采用SPM-8100FM 测试样品 图2 固定在液体池中三个样品的光学图片 小编通过三种不同的样品向大家展示:亲水的云母片、疏水的高定向热解石墨(HOPG)以及可以与水发生反应的方解石(图2)。采用SPM-8100FM的调频模式即可对样品的固液界面进行Z-X方向测试,也就是测试垂直于样品表面的水分子排布,测试示意图如图3所示。 图3 液体样品池测试示意图 测试结果 图4 测试所得三种体系的SPM图及水分子分层信息 所得结果(图4)中的下方黑色区域为固相(即方解石、云母和HOPG),紧靠其上表面的规整区域就是排布在固相表面的水分子层,图中红色虚线框标记的就是一个水分子哦。仔细对比,我们可以发现方解石和云母表面的水分子排布十分相似,但与HOPG表面的水分子排布相差很大。 对三者进行定量分析可知,第一层水分子距方解石、云母及HOPG的表面距离分别为0.15nm 、0.21nm 和0.38nm ,而第二层水分子的距离分别为0.34nm 、0.35nm 和0.92nm。有力地证实了水分子易在亲水材料表面铺展,而在疏水表面具有较大的水分子层间距,这也是水在普通纸张和荷叶表面具有不同铺展性的原因。 撰稿人:刘仁威
  • 表界面科学最新研究技术与应用交流会(上海)日程安排
    兹真诚邀请您参加瑞士华嘉公司于2007年4月24日举办的“表界面科学最新研究技术与应用交流会”。此次交流会特邀德国Kruss公司的资深专家Dr.Udo Ohlerich对Kruss公司针对表界面现象研究及开发的相关应用进行介绍,此外,本次交流致力于成为一个交流的平台,特邀请上海及周边地区的相关专家和研究人员,相互交流,以到达沟通技术,提高应用水平,并希望能相互增进了解,有进一步合作的机会。并且届时有DSA100型接触角测量仪展示和更深入的技术应用介绍,欢迎您参加此次会议。谢谢!瑞士华嘉有限公司2007年4月6日备注:德国Kruss公司:1796年成立,是研究表面和界面技术的开创者,表面张力仪的发明者,现拥有15种不同类型的产品线,在全球占有率45%以上,是当之无愧的第一品牌。瑞士华嘉公司:具有200年历史的瑞士国际贸易公司,作为Kruss产品在国内的总代理,负责其所有产品、技术的推广销售和服务。时间:2007年4月24日9:00-15:00,星期二地点: 上海市卢湾区南昌路59号上海科学会堂思南楼902室(思南路口)附:会议日程安排:(届时可能会有适当调整)09:00 华嘉公司仪器简单介绍09:30 表面化学常用的研究技术介绍 Dr. Udo Ohlerich10:30 茶歇10:50 邀请相关领域专家介绍相关应用 邀请相关专家11:30 表界面技术的广泛应用介绍 王磊12:00 午餐13:00 新产品发布、展示,及相关应用介绍 Dr.Udo Ohlerich 13:30 各位客户依次介绍自己的工作领域,相互交流 14:50 问题竞答,抽奖15:00 会议结束请有兴趣参加“表界面科学最新研究技术与应用交流会”的用户下载[color=red]参会回执[/color],发邮件或传真至:华嘉(香港)有限公司联系人: 王磊公司地址:上海市淮海中路398号世纪巴士大厦9楼D-E室 邮政编码:200020电话:021-53838811 ;传真:021-63856008手机: 13917412454电子邮箱: Frederic.wang@dksh.com
  • 表界面科学最新研究技术与应用交流会
    瑞士华嘉公司将于2007年4月24日举办“表界面科学最新研究技术与应用交流会”。此次交流会特邀德国Kruss公司的资深专家Dr.Udo Ohlerich针对表界面现象研究的开发技术以及相关应用进行介绍。本次交流会努力办成一个交流的平台,邀请上海及周边地区的相关研究人员和专家,相互交流,以到达沟通技术,提高应用水平,增加了解的作用。届时有DSA100型接触角测量仪展示和深入的技术应用讲解,热忱欢迎对表界面应用感兴趣的客户前来参加。备注:德国Kruss公司:1796年成立,是研究表面和界面技术的开创者,表面张力仪的发明者,现拥有15种不同类型的产品线,在全球占有率45%以上,是当之无愧的第一品牌。并且仍不断推出最新的技术和产品。瑞士华嘉公司:具有200年历史的瑞士国际贸易公司,公司规模在瑞士居前五名。作为Kruss产品在国内的总代理,负责其所有产品、技术的推广销售和服务。时间:2007年4月24日9:30-16:00,星期二地点: 上海市卢湾区南昌路59号上海科学会堂思南楼902室(思南路口)会议具体日程另行通知,欢迎有兴趣的客户电话咨询会议具体内容。公司地址:上海市淮海中路398号世纪巴士大厦9楼D-E室 邮政编码:200020电话:021-53838811 ;传真:021-63856008联系人: 姜丹 王磊
  • SPM系列丨润滑油固液界面特性表征
    润滑油是各种机械设备上用以减少摩擦,保护机械及加工件的液体或半固体润滑剂。润滑油如发动机机油,润滑原理是其中所含的添加剂成分会在金属表面形成吸附膜,从而减少摩擦作用,并通过防止金属与金属间的直接接触来阻止金属磨损。 但目前常用的测试方法并不能直接观察吸附膜,因此在实际的润滑油开发过程中,需要使用大型装置进行重复测试,例如采用真实车辆测试和发动机测试,以缩小改性剂候选范围和最佳浓度范围。此类开发方式需要大量的时间与物料成本,因此迫切需要一种新的方法。 原子力显微镜是一种通过检测纳米级针尖和样品间作用力获得信息的高分辨工具。但是传统原子力显微镜对力的检测分辨率不够高,因此需要使用调频模式的原子力显微镜。调频模式下探针可以检测到一个或几个分子对探针的扰动,非常适合对润滑油吸附膜这种单分子膜进行观测。 SPM-8100FM调频原子力显微镜仅需500μl润滑油样品,即能够以分子级分辨率观察润滑油-氧化铁界面。 使用SPM-8100FM对润滑油中氧化铁表面上所形成的磷酸酯吸附膜进行分析基油为PAO 4(聚α-烯烃),添加剂为C18AP(正磷酸油酸酯)。 图示为4组对照实验,分别是仅使用PAO(不添加C18AP)和添加了浓度为0.2 ppm、 2 ppm、20 ppm和200 ppm的C18AP的润滑油。 在未添加C18AP的PAO中,观察到层间距离0.66 nm的层状结构。通过这一层次可以看出,PAO分子在氧化铁膜表面上形成了平行于表面的平坦的覆层。随着C18AP浓度不断增加,从0.2 ppm到2 ppm后,层状结构开始消失,最后在20 ppm和200 ppm时完全观察不到。层状结构消失表明PAO分子定向已被C18AP破坏,即C18AP在氧化铁基片上的形成了吸附膜。氧化铁基片在浓度为2ppm时部分覆盖,在20ppm和200ppm时完全覆盖。可以推断,随着C18AP浓度不断增加,氧化铁基片表面逐渐被吸附膜覆盖。 对照使用摆锤式摩擦力测试仪测量获得的钢-润滑油-钢界面的摩擦系数。 在添加C18AP浓度到达20 ppm后,PAO的摩擦系数大大降低。 SPM-8100FM界面图像表明,PAO中C18AP的浓度高于20ppm时,C18AP吸附层完全覆盖了氧化铁基片表面。 尽管对滑动条件和静态条件下实施表面分析的动态环境存在差异,但是这些实验结果表明,使用SPM-8100FM对润滑油-氧化铁界面实施分析进而评估滑动表面摩擦特性是可行的。该技术对于润滑油开发,可有效加快润滑油开发进度,在研发的初期阶段就可以在实验室中进行测试,完成开发初始阶段筛查。
  • 中国科大实现界面化学动态过程的原位高分辨成像分析
    中国科学技术大学环境科学与工程系刘贤伟课题组在界面化学过程的原位高分辨成像方面取得进展,相关研究成果以“Dynamic imaging of interfacial electrochemistry on single Ag nanowires by azimuth-modulated plasmonic scattering interferometry”为题近日发表于Nature Communications。污染物的催化转化是水污染控制技术的重要方法,解析环境催化材料在污染物转化过程中活性位点的动态变化,对理解材料的构效关系,解析催化机理,设计并研发新的环境催化材料具有重要意义。尽管目前研究人员对分析纳米材料的活性位点有浓厚的兴趣,但在温和的水溶液环境中,对单个纳米材料界面反应的动态演绎过程研究仍然存在挑战。 图1高分辨表面等离子体散射相干成像示意图   针对上述挑战,研究团队研发了高分辨等离子体散射干涉成像技术,通过调制入射光有效消除了反射光的干扰,实现了具有高空间分辨率和高抗干扰能力的表面等离子体散射干涉成像。以银的表面化学反应为例,研究团队原位追踪了溶液中单根银纳米线的动态电化学转化过程,在空间上刻画了纳米线反应动力学分布,为建立纳米线表面缺陷、重构与反应活性的关系提供了关键证据。该免标记成像分析方法,可以与电子显微镜等技术耦合表征纳米材料的结构和化学组成,为高分辨原位成像分析污染物的催化转化动态过程和解析其构效关系提供了有效的分析方法与技术平台。 图2 单根纳米线表界面动态反应过程的成像分析   该研究工作得到了国家自然科学基金等项目的支持。
  • 物理所在对称性失配诱导的界面铁磁性研究方面取得进展
    4d钌酸盐(ARuO3)作为复杂氧化物体系中一个重要家族,表现出巡游铁磁性、磁性Weyl费米子、磁单极、非常规超导、非费米液体等一系列丰富多彩的物理性质。SrRuO3作为唯一天然具有铁磁性和强自旋轨道耦合(SOC)的钙钛矿氧化物,成为该体系研究的明星材料。 SrRuO3高达160K的铁磁居里温度和良好的金属导电性使它在自旋电子学器件研究中具有巨大潜力,而由铁磁性和强SOC共存所导致的巨大反常霍尔效应、拓扑霍尔效应甚至量子反常霍尔效应等新奇物性也备受人们关注。然而,在各种4d、5d过渡金属氧化物中,SrRuO3的巡游铁磁性似乎成为一个特例,给以此为基础的新型自旋/轨道器件设计带来局限性。 4d、5d氧化物虽然具有较强的SOC,但由于d轨道能带的扩展导致电子关联性下降,通常难以形成长程磁序。人工设计出更多集强SOC和时间反演对称性破缺(即铁磁性)于一体的新材料体系,是目前自旋电子学研究中高度关注的问题。  CaRuO3的块体材料具有与SrRuO3完全相同的GdFeO3型正交晶体结构和电子构型。但由于Ca离子半径较小,使得CaRuO3的Ru-O-Ru键角仅为148°,远低于SrRuO3的 163°。因此CaRuO3体材料或薄膜材料在整个温区中均表现为顺磁金属性。中国科学院物理研究所研究团队近年来致力于氧化物异质界面物性设计及调控方面的研究工作,希望利用异质界面晶体场、应力场、电荷重组、轨道重构等效应,诱导出完全不存在于体相材料的界面新物态。 近日,团队研究人员等成功利用结构近邻效应在CaRuO3体系中诱导出了长程铁磁序。他们利用脉冲激光沉积技术在衬底基片上交替生长抗磁SrTiO3 (a0a0a0)和顺磁CaRuO3(a-a-c+)两种对称性失配薄膜,获得了高质量的外延超晶格样品;利用界面氧八面体的耦合畸变,成功抑制了CaRuO3层中RuO6八面体的倾斜/旋转。 扫描透射电镜的结果表明,界面处约3个晶胞厚度的CaRuO3层的RuO6八面体的扭转度被大幅度地调控,其Ru-O-Ru键角从~150°增加至~165°,与SrRuO3薄膜中的Ru-O-Ru键角较为接近。这种界面结构耦合的调控必然会带来电子结构的改变。第一性原理计算表明,RuO6八面体的倾斜/旋转的抑制将大幅提高CaRuO3费米面处的态密度【N(EF)】,最终使得界面3个晶胞层CaRuO3层将满足巡游铁磁性的Stoner判据【IN(EF) 1,I为Stoner系数】,由块体的顺磁态进入铁磁有序态。 霍尔输运测量以及宏观磁测量给出了该体系出现界面铁磁相的充分证据,其最高居里温度约为120K,最大饱和磁化强度为~0.7μB/f.u.。各向异性磁电阻测量进一步表面CaRuO3界面铁磁相的磁易轴在面内方向。该工作报道了一种完全基于界面氧八面体耦合畸变设计产生界面铁磁性的示例,特别是构成异质界面的两种氧化物各自均不具备长程磁序,其部分原理也将适用于其他具有类似对称失配的氧化物体系,为探索多功能氧化物材料和器件提供了新思路。   相关成果以Symmetry-mismatch-induced ferromagnetism in the interfacial layers of CaRuO3/SrTiO3 superlattic为题发表在《先进功能材料》 (Advanced Functional Materials)上。相关研究工作得到科学技术部、国家自然科学基金委项目、中科院战略性先导科技专项和中科院重点项目的支持。
  • 我国科学家首次实现在原子尺度上研究同位素界面
    北京大学物理学院高鹏、陈基、王恩哥院士课题组等与材料科学与工程学院刘磊等课题组合作,首次实现了在原子尺度上对同位素界面的研究。该研究成果以《同位素界面上的声子转变》为题于日前在国际学术期刊《自然通讯》发表。  据介绍,原子尺度上探测同位素界面极具挑战,目前具有原子尺度分辨能力的实验技术只有扫描探针显微镜和透射电子显微镜技术,而前者只能探测表面,后者虽然可以探测包埋的界面,但所有的电镜成像和电子衍射技术都只对质子数目敏感而对中子不敏感,因此无法识别同位素。北大团队利用透射电镜的非弹性散射技术,根据同位素声子能量的差异,首次在原子尺度上实现了对同位素界面的识别和探测。由于同位素技术广泛应用于化学、生命科学领域,因此该工作展示了电镜在这些方面巨大的应用潜力。此外,由于自然界中绝大部分物质都是同位素混合物,该工作也表明同位素之间会产生新的界面效应从而改变局域的物理性质,为理解天然材料的物性提供了新视角。  在各种物质界面中,同位素界面非常特殊,它两侧物质的质子、电子结构完全一样,不同的只是中子数目。但由于技术原因,关于同位素界面及其可能存在的物性影响在以前很少被讨论。近年来,高鹏课题组基于扫描透射电子显微镜发展了“四维电子能量损失谱测量技术”,克服了传统谱学无法同时具备高动量分辨和纳米级空间分辨的缺点,将声子色散探测的空间分辨提升至纳米甚至亚纳米量级,为原子尺度上探测同位素界面物性提供了可能。  本次研究中,北大团队制备了高纯度的h-10BN和h-11BN材料,并且堆垛得到人工的同位素范德华界面。他们利用h-BN材料声子能带的特点,将电子能量损失谱的空间分辨率设置在原子分辨尺度,同时又具备区分布里渊区中心的小动量声子和布里渊区边界的大动量声子能力,从而测量同位素界面处的声子行为。他们发现界面处的面外振动的光学声子模式在界面处是逐渐过渡的,存在远高于常规界面声子的离域行为,离域度高达五至十倍的晶格常数,并且小动量声子的离域性比大动量的更显著。团队分析认为,同位素声子的不同振幅导致了振动偶极子大小的差异,从而引起界面处存在一定的电荷积累。这些电荷通过电声耦合效应使得声子离域化,并且积累的电荷密度与动量转移相关,这也解释了动量依赖的声子离域行为。  “这些发现为我们理解天然材料中的同位素效应提供了一个全新角度,并为通过同位素工程设计新功能提供了线索。这些结果也表明,具有原子级空间分辨和动量分辨能力的电镜电子能量损失谱技术,在同位素示踪、原子核量子效应探测方面的巨大潜力。”高鹏说。
  • 中国科大在界面物理化学的非线性光谱研究上取得新进展
    中国科学技术大学教授罗毅研究团队的副教授叶树集小组在界面蛋白质分子结构表征方面获新进展。该小组在国际上首次成功测出界面蛋白质的酰胺III谱带信号,解决了如何区分界面蛋白质a-螺旋结构和无规卷曲结构这一界面表征难题,研究成果发表于国际期刊J. Am. Chem. Soc. 2014, 136(4), 1206-1209上。  如何精确表征蛋白质,特别是界面蛋白质的分子结构是理解蛋白质结构演变的关键,是国内外学者共同面临的一个非常重要的难题。针对该难题,该小组发展了界面光谱多谱带协同表征方法,首次利用和频光谱技术成功测出了常规手段无法测量的界面蛋白质酰胺III信号。虽然a-螺旋与无规卷曲结构的酰胺I谱带振动峰都位于1650 cm-1左右,但在酰胺III谱带区域,它们的振动峰分别位于1260 cm-1以上和1260 cm-1以下,研究发现两种结构所对应的酰胺III谱带特征峰面积比与蛋白质中无规卷曲结构含量成线性关系。将酰胺I和酰胺III信号结合起来,解决了如何区分界面蛋白质a-螺旋与无规卷曲结构这一界面蛋白质多年的难题。审稿人给予了该工作极高的评价,其中一审稿人认为该工作解决了一个蛋白质表征上的缺口,提供了新的光谱窗口 另一审稿人说该工作是一个重要突破。  此外,在手性分子理论以及非线性光谱理论的启发下,该研究组成功发展了免标记的手性与非手性界面光谱表征技术,原位、实时地表征了胆固醇分子在生物膜上的组装与运输行为:胆固醇分子以10° 左右的倾斜取向角度插入中性生物膜中,并停留在生物膜磷脂双层膜的外层,在纯水环境下没有发生翻转行为(flip-flop),胆固醇浓度较低和较高时分别以不同方式组装。该成果发表于J. Phys. Chem. Lett.。该技术将为胆固醇在真实细胞环境下的组装与动力学行为研究提供分子水平上的表征技术与研究思想指导。  叶树集研究小组作为国际上利用非线性和频光谱技术研究界面蛋白质分子结构与动力学仅有的几个小组之一,发展了具有特色的表面与界面生物分子结构表征手段,并围绕生物界面相关物理化学问题及其新表征方法的发展开展系统研究,在JACS、Langmuir、J.Phys.Chem.C、Analyst等国际期刊上发表多篇系统性文章,研究成果被JACS、PNAS、Ann.Rev.Anal.Chem.和Chem.Rev.等介绍与引用,获得国内外同行的高度认可。由于该小组系统而有特色的研究工作,2013年Elsevier出版社邀请该小组为丛书Advances in Protein Chemistry and Structural Biology撰写综述论文,成为该丛书1944年创刊以来,第五篇以国内为第一作者单位署名发表的文章。  上述研究工作得到了科技部、国家自然科学基金委、中央高校创新团队等资金资助。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制