当前位置: 仪器信息网 > 行业主题 > >

顺式氧丹

仪器信息网顺式氧丹专题为您整合顺式氧丹相关的最新文章,在顺式氧丹专题,您不仅可以免费浏览顺式氧丹的资讯, 同时您还可以浏览顺式氧丹的相关资料、解决方案,参与社区顺式氧丹话题讨论。

顺式氧丹相关的资讯

  • 乘势而上 顺势而为 推动中医药新的更大发展
    p  近日,国家卫生计生委召开党组会议,听取国家中医药管理局党组工作汇报。会议提出,要乘势而上,顺势而为,推动中医药新的更大发展。/pp  会议认为,2015年及“十二五”期间,全国中医药系统在国家中医药管理局党组的带领下,紧紧围绕中央关于深化医药卫生体制改革的部署要求,深入贯彻落实《国务院关于扶持和促进中医药事业发展的若干意见》,围绕中心、服务大局,深化改革、开拓进取,推动中医药各项工作取得了有目共睹的成绩。屠呦呦研究员获得诺贝尔奖,中医药科技创新登上新的高峰,中医药国内外影响力进一步扩大。《中医药法(草案)》提交全国人大常委会进行了首次审议,中医药立法工作有了突破性进展。《中药材保护和发展规划(2015-2020年)》、《中医药健康服务发展规划(2015-2020年)》等相继制定出台,中医药事业发展上升为国家战略。实践证明,中医药队伍是一支善于继承、勇于创新、求真务实、敢于担当、深受人民欢迎和依赖的队伍,为提高人民群众健康水平发挥了重要作用。/pp  会议强调,2016年是“十三五”规划全面开启之年,也是全面建成小康社会决胜阶段开局之年。习近平总书记祝贺中国中医科学院成立60周年时指出“中医药振兴发展迎来天时、地利、人和的大好时机”,是对中医药发展形势的科学判断,意义深远。李克强总理对中医药在继承中创新发展、在发展中服务人民提出了殷切期望和明确要求。广大中医药工作者备受鞭策和鼓舞,要抓往难得机遇,乘势而上,顺势而为,推动中医药有新的更大发展。一是将中央领导同志重要指示精神贯彻落实好,国家中医药管理局党组已将2016年确定为“中央领导同志重要指示精神贯彻落实年”,要作为重中之重任务抓好落实。二是将“五大发展理念”坚决贯彻好,中医药改革发展要始终坚持继承创新、统筹协调、绿色生态、包容开放、共享惠民,要把中医药宝库挖掘工程作为“十三五”的重头戏。三是将中医药立法切实推进好。四是将中医药发展的各项规划制定实施好。五是将中医药在深化医改中的作用充分发挥好。六是将中医药传承创新统筹谋划好。/pp  会议指出,中医药事业是我国卫生计生事业的重要组成部分,加快推进中医药振兴发展,卫生计生部门责无旁贷。一是切实贯彻好中西医并重的方针,这是我们党和国家新时期的卫生工作方针。二是进一步加大对中医药工作的支持力度。共同推动中医药立法工作,共同研究制定中长期发展规划,共同谋划实施重大项目和工程,在基层中医药服务能力建设、发挥中医药在医改中的优势作用、完善跨部门协调机制等方面继续取得新的进展。总之,加快推进中医药振兴意义重大,任务艰巨,要全面贯彻落实党的十八大和十八届三中、四中、五中全会精神,进一步解放思想、改革创新,求真务实、扎实工作,为推动中医药振兴发展,为提高人民健康水平做出新的更大贡献。/ppbr//p
  • 科学家利用地基广角相机阵GWAC探测到伽马射线暴的瞬时光学辐射
    4月10日,《自然-天文》发表了中国科学院国家天文台中法天文小卫星SVOM科研团队完成的一项重要研究成果。该团队利用位于国家天文台兴隆基地试运行中的地基广角相机阵(GWAC),成功探测到一例伽马射线暴(GRB 201223A)的瞬时光学辐射及其向极早期余辉的转变过程。  伽马暴源于大质量恒星晚期坍缩或双中子星并合瞬间伴随着新生黑洞或磁陀星的极端相对论喷流,短时间内辐射出巨大能量,包括喷流内激波导致的暴发瞬时辐射和喷流撞击外部介质产生的余辉。典型的高能暴发仅持续豪秒到几十秒,但地面光学设备接收到高能卫星的伽马暴触发警报时,很难做到实时跟进,故目前只有几例瞬时光学辐射探测——对应高能暴发的持续时间较长(30秒),且观测数据中存在反向激波的污染成分,难以明确从瞬时光学辐射到余辉的转变。   SVOM首席科学家、国家天文台研究员魏建彦提议并带领研制的GWAC具有超大的观测视场和15秒的高时间采样分辨率,作为卫星项目的重要地基设备,探测深度达到星等16等,并计划对SVOM发现的伽马暴的瞬时光学辐射开展系统性研究。   伽马暴GRB 201223A同时被Swift卫星和Fermi卫星在伽马射线波段探测到,其时,试运行中的GWAC正对所在的上千平方度天区做实时监测,成功在光学波段完整记录下暴发的全过程(图1)。这是国际上首次将瞬时光学辐射的探测突破到暴发持续不到30秒的伽马暴,远短于之前的事例。GWAC的观测实际上在高能暴发之前便已开始,在探测极限内未发现任何前驱(precursor)信号,但在整个高能暴发阶段均探测到明显的光学辐射(图2),结合60cm望远镜的后随观测数据,清晰地记录了从瞬时光学辐射到余辉的完整的演变过程。   GRB 201223A是高能波段的中等亮度伽马暴,其瞬时光学辐射的观测亮度比从高能能谱外延到光学波段的值高4个数量级(图3)。该特性与超亮伽马暴GRB 080319B类似。更具意义的是,对多波段数据的联合分析表明,GRB 201223A前身星的暴前质量损失率远低于后者,可能是一颗不大于3.8倍太阳质量的沃尔夫-拉叶星,恒星演化模型所对应的主序阶段质量不大于20倍太阳质量。   由于伽马暴发生在时间和空间上的随机性,通过GWAC对SVOM卫星的实时监测天区开展高帧频观测,将为探索极端相对论喷流、暴周环境及前身星特性提供独特数据,并具有捕获中子星并合引力波事件电磁对应体的重要潜力。   上述工作由国家天文台、美国内华达大学拉斯维加斯分校、广西大学、南京大学、中国科技大学、法国原子能署、淮北师范大学、北京师范大学等合作完成。 图1.GWAC对GRB 201223A高能爆发前后的连续观测图像。时间分辨率是15秒。中间黄色箭头指向的是光学对应体。第一行第三列是覆盖高能警报触发时刻的图像。 图2.GRB 201223A光学、X射线、伽马射线暴联合观测光变曲线。横坐标是相对于警报触发的时间,单位是秒。纵坐标流量或者星等。红色点是GWAC和F60A的观测数据。在高能警报触发前,GWAC没有探测到任何暴前辐射成分,在爆发开始后,探测到一个明亮的光学辐射,并清晰解析出从瞬时辐射到余晖的相变过程。 图3.GRB201223A瞬时辐射能谱图。横坐标是观测频率,做坐标是流量。GWAC探测到瞬时辐射光学亮度远远高于高能最佳能谱的预期。
  • 【开谱动态】瞬时结晶技术助力冻干工艺革新
    7月9日,第五届生物医学聚合物与高分子生物材料国际会议(ICBPPB2024)在上海圆满落幕。这是国际生物医学聚合物和聚合物生物材料学会首次在中国召开年会,多国学者和企业共襄盛举,共同交流生物材料领域的相关研究与合作。开谱仪器作为国产实验室冻干机制造及冻干工艺研发的新锐力量,应邀出席本次会议,并就冻干机瞬时结晶技术研究成果和技术突破进行了汇报分享。 一直以来,冷冻干燥作为生物医药、化学工程,食品等多个领域的关键技术之一,其成核温度的控制难题一直制约了产品质量的进一步提升。成核是一个随机发生的现象,样品通常在很宽的温度范围内成核,产生不同大小的冰晶,均匀性不好,进而导致得到的产品一致性较差,给实际大规模生产带来了很大的困难。 针对国内这一行业痛点,开谱团队经过长期深入研究与反复实验,成功研发出冻干机瞬时结晶技术,该技术通过抽真空使部分溶液蒸发,形成制冷效果,在剩余溶液里面形成形核,打破溶液过冷状态,使不同溶液在同一时间成核。从而改善产品均一性与外观,提高产品的稳定性。 在ICBPPB2024的会议上,开谱冻干专家罗春博士向与会专家学者详细介绍了这一研究成果。他表示:瞬时结晶技术在国内冻干机和冻干工艺的成功应用,不仅解决了传统冻干方法中成核温度不一致的问题,提升制备样品的均匀性,还提高了冻干效率,降低了能耗,也为生物制品、药品等领域的工业化大规模生产提供了更加可靠、高效的解决方案。 对于此次的技术突破,开谱仪器的创始人兼董事长陈昌杰先生表示:开谱仪器作为国产冻干领域的新锐力量,凭借团队深厚技术底蕴,专注研发,致力于将国产冻干机的性能推向新的高度。我们深知,高质量且高性价比的冻干设备是保障国内科学研究及产品生产质量的重要支撑。因此,我们将继续不断革新技术,勇于挑战传统,只为制造出真正实用的国产好冻干机,服务好科学研究。陈总、罗博与会议主席东华大学教授莫秀梅合影
  • 关于热脱附解吸仪二级解吸“热气流瞬时解吸技术”的说明
    热脱附解吸仪是分析空气中挥发性有机物的重要前处理设备,其中二级解吸时的解吸速度和效率直接决定仪器的性能。图1 AutoTD系列自动热脱附解吸仪我公司使用了“热气流瞬时解吸技术”,在传统加热丝加热的基础上,使用了高温热气流辅助加热,在二级解吸开始的瞬间,高温热气流打开,冷阱中填料的温度瞬间达到设定值,消除了热量传递带来的影响,冷阱升温速度趋近于无穷大,样品解吸速度快,峰形好,残留少。图2 “热气流瞬时解吸技术”示意图
  • 顺势而为,大展宏图!理化(香港)公司召开2023年度总结表彰大会
    2月1日下午,理化(香港)有限公司召开2023年度工作总结表彰大会,此次大会以“顺势而为、大展宏图”为主题,公司董事长作主旨演讲,大家回顾了2023年发展历程,确定了2024年工作总方针。在新的一年,理化(香港)公司踔厉奋发,谱写新的辉煌篇章!在总结大会上,公司董事长指出,2023年国内经济下行压力和国际形势复杂变化,“不确定性”深刻影响着广大民营企业。处在时代变局之下,挑战与机遇并存。一年来,全体员工坚守岗位,各项工作稳步推进,不负客户期待,圆满完成全年目标。展望2024年,战略目标清晰。公司董事长以“一盆三角梅”的的故事,揭示了一个公司应有的坚持和韧性,生动描绘了新的发展蓝图,确立了“旋转圆盘电极专家”和“精于燃料电池测试”的核心定位。燃料电池测试系统980pro充分发挥理化(香港)公司在“旋转圆盘电极”领域16年深厚运营服务优势,构建应用技术服务体系,赋能产品营销服务。聚焦“新能源”这个时代风口,顺势而为,主动作为,不断升级完善品质服务保障,助力新质生产力!会上还进行了年终表彰仪式,颁发了理化(香港)公司2023年度“最佳优秀员工”、“最佳服务部门”等荣誉证书奖励。在新的一年,理化(香港)公司将全力以赴,不负韶华,服务用户,开创未来!
  • 新型双色发光人造分子制成,可实现瞬时颜色切换
    据3日发表在《自然材料》上的论文,以色列希伯来大学研究团队开发了一种由两个耦合的半导体纳米晶体组成的“人造分子”系统,该系统可以发出两种不同颜色的光,实现了快速和瞬时的颜色切换。这表明,在纳米尺度上如此快速和高效地切换颜色具有巨大的可能性。从照明灯、显示器到快速光纤通信网络,彩色光及其可调性是许多现代基本技术的基础。在将彩色发射半导体提升到纳米尺度时,量子限制效应开始发挥作用:改变纳米晶体的大小会改变发射光的颜色,由此可以获得覆盖整个可见光谱的明亮光源。由于纳米晶体独特的颜色可调性,以及科学家使用湿化学方法很容易制造和操作,它们已经被广泛应用于高质量的商业显示器,这赋予它们优异的颜色质量和显著的节能特性。然而,直到今天,实现每种特定的颜色仍需使用不同的纳米晶体,并且无法在不同的颜色之间进行动态切换。研究团队克服了这一限制,创造了一种具有两个发射中心的新型分子,在这种分子中,电场可以调节每个发射中心改变颜色,但不会损失亮度。人造分子可以使组成纳米晶体中的一个中心发射绿光,而另一个发射红光。这种新型的双色发光人造分子的发射对诱导电场的外部电压很敏感:一个极性的电场会诱导红色中心发光,而将电场切换到另一个极性时,颜色发射会瞬间切换为绿色,反之亦然。这种颜色转换现象是可逆和即时的,因为它不包括任何分子结构的运动。只需在设备上施加适当的电压,就能获得这两种颜色中的一种,或它们的任意组合。这一突破为开发探测和测量电场的敏感技术打开了大门,它可彻底改变先进的显示器并助力科学家创建可切换颜色的单光子源。
  • 液体中全X射线阿秒瞬时吸收光谱技术获得重大突破
    美国和德国科研团队在实验中首次拍摄了液态水中电子实时运动的“定格帧”。该研究提供了一个窗口,使科学家能在以前用X射线无法企及的时间尺度上了解液体中分子的电子结构,标志着实验物理学的重大进步。相关研究发表在《科学》上。这项研究是通过美国直线加速器相干光源(LCLS)的同步阿秒X射线脉冲对而实现的。此前,辐射化学家只能在皮秒(等于一百万阿秒)的时间尺度上解析电子运动。现在,在阿秒尺度上研究X射线击中目标的电子反应的能力使科研人员能够深入研究辐射引发的化学反应,比以前的方法快100万倍。研究中开发的技术,即液体中的全X射线阿秒瞬时吸收光谱,使他们能在原子核移动之前,在电子进入激发状态时“观察”由X射线激发的电子。这项研究建立在阿秒物理学这一新学科的基础上,揭示了物质受到X射线照射时的瞬时电子变化,不仅加深了科学家对辐射诱导化学的理解,还标志着阿秒科学新纪元的开始。
  • 成果|利用氢氘交换质谱分析糖原磷酸化酶的瞬时态的结构动力学
    大家好,本周为大家介绍一篇发表在J. Am. Chem. Soc.上的文章,Transient Structural Dynamics of Glycogen Phosphorylase from Nonequilibrium Hydrogen/Deuterium-Exchange Mass Spectrometry,文章作者是英国埃克塞特大学的Jonathan J. Phillips。  变构调节指在蛋白质的正构位点上的变化通过蛋白质内部传递,最终影响到变构位点的结构,从而调整白质功能。理解蛋白质功能转换背后的特定结构动态变化对于分子生物学和药物发现领域至关重要。尽管变构现象自从提出以来已有广泛的研究,但是关于信号如何在蛋白质内部长距离传递的具体机制仍然不甚清楚。很大程度上是由于缺乏能够在时间和空间上高分辨率测量这些信号的生物物理方法。糖原磷酸化酶(glycogen phosphorylase,GlyP)是研究变构调节常用的标准蛋白,GlyP与II型糖尿病和转移性癌症的治疗密切相关。GlyP作为一种典型的变构酶,其活性受磷酸化修饰、多种天然配体和药物的调控。本文旨在通过开发和应用非平衡毫秒级氢/氘交换质谱(neHDX-MS)技术,来精确定位GlyP在变构激活和抑制期间的动态结构变化。这项技术能够提供蛋白质在毫秒时间尺度上的局部结构动态信息,有助于揭示变构调节过程中的瞬态结构特征,从而为理解蛋白质的动态行为和设计变构调节剂提供重要的结构信息。  作者首先确定了能够完全激活或抑制GlyP的条件。25 mM 的AMP能实现GlyPb的最大激活(图1A)。32 mM咖啡因足以完全抑制GlyPa(图1B)。并且观察到50ms内AMP和咖啡因能够达到最佳激活/抑制状态(图1C和1D)。  图1.糖原磷酸化酶b的变构激活和糖原磷酸化酶a的抑制。  随后作者通过neHDX-MS捕捉由AMP引起的GlyPb变构激活过程中的局部结构扰动。通过激活过渡态与未激活和激活状态之间的HDX差异,作者将这些肽段分成了七个类群。其中重点值得关注的类群是c、d(其他类群对应区域及趋势不在此详细介绍),因为他们的HDX行为与未激活和激活时的稳定态都有明显差异,这些局部区域的结构变化是过渡态的独特体现(图2A)。其中,c类群主要涵盖了tower helix区(图2B),说明该区域在从未激活到激活状态的过渡态中,表现出相较于前后二者皆较高的动态性。d类群涵盖活性位点,说明活性稳点结构在因结合发生了结构稳定化现象。为了从原子水平理解这些瞬态结构变化,研究人员使用了一种基于Energy Calculation and Dynamics(ENCAD)的方法,Climber,来模拟从非活性状态到活性状态转变过程中的过渡态内部作用变化。结果显示,tower helix在激活过程中经历了氢键先断裂后形成的变化,这与观察到的HDX增加相一致(图4A)。  图2.GlyPB中表现不同结构动力学行为的类群。  图3.局部区域HDX动力学。  图4.GlyP在活性和非活性状态之间的结构插值。  随后作者探讨了咖啡因如何通过变构抑制影响GlyPa的结构动态。同样作者也比较了抑制过渡态与未抑制和抑制状态之间的HDX差异,分成了七个类群。在这几组类群中,仅有m表现出较未抑制和抑制状态都较明显的氘代上升趋势(图2C、图3C&D)。m区域涵盖了tower helix区(图2D),说明该区域在未抑制状态到完全抑制状态的过渡阶段内,发生了局部去结构化现象。此外,在280s loop和250′ loop区域也表现出类似的瞬时去稳定化现象。结合AMP激活实验中的现象表明,尽管咖啡因和AMP作用于GlyP的不同位点,但它们都可能通过类似的变构路径(即tower helix的去稳定化)来引起GlyP的变构调节,从而实现对该蛋白功能的调控。同样在Climber分析中,可以观察到对应区域发生了氢键重排,与neHDX-MS结果呼应(图4B)。  本文讨论了GlyP的变构调节中间态涉及的局部结构动态变化,并通过毫秒级neHDX-MS揭示了这些变化。结果表明激活和抑制过渡态都涉及到tower helix的氢键断裂和局部结构重排,这是两个途径的共同特点。本研究的亮点在于开发了一种新的neHDX-MS方法,能够在毫秒时间尺度上观察蛋白质的变构结构动态。这种方法不仅对理解GlyP的变构机制具有重要意义,而且可以广泛应用于不同蛋白质的变构研究,为理解蛋白质的变构调节提供了新的视角和工具。  撰稿:罗宇翔  编辑:李惠琳  文章引用:Transient Structural Dynamics of Glycogen Phosphorylase from Nonequilibrium Hydrogen/Deuterium-Exchange Mass Spectrometry  参考文献  Kish, M. Ivory, D. P. Phillips, J. J., Transient Structural Dynamics of Glycogen Phosphorylase from Nonequilibrium Hydrogen/Deuterium-Exchange Mass Spectrometry. J. Am. Chem. Soc. 2023, 146 (1), 298-307.
  • 蛋白生产的放大,可不仅仅是增加培养瓶
    放大蛋白生产可不仅仅是将细胞培养瓶的数量增加一倍。无论你是打算将你的基础研究提升一个档次,还是准备开展动物研究或i期临床试验,你都需要更加严肃认真地对待蛋白生产。随着项目越来越大,高效利用时间和经费就显得更加重要。选择最有效的方式来进行这一切,从细胞培养到收集和纯化终产物,绝对物有所值。那么,现在就让我们与“马马虎虎”告别,拥抱优化的蛋白生产吧。贴壁细胞fred schendel领导了明尼苏达大学生物技术资源中心(brc)的大规模蛋白纯化工作。他认为:“在研究中,一切都在变小、变小。新技术的出现,让你不再需要大量蛋白去做基础研究。”schendel表示,由于成本高,需求低,brc已经淘汰了哺乳动物细胞培养的设备。不过,对于那些需要几百毫克蛋白的实验室而言,还是有很多方法能提高产量。比如,schendel建议的外包。那么,在实验室中你该如何放大?许多实验室习惯使用多孔板、培养皿和培养瓶来培养贴壁细胞。换成更大的容器似乎很简单,或者尝试一下多层细胞培养瓶,或者将它们相互连接和堆叠有时,对蛋白的需求可能超出了实验室的能力。那么,一种选择就是购买更多的培养箱,或扩展到滚瓶或其他系统,当然这需要投入资金和人员。在sanford-burnham医学研究所,“他们大多数时间都尝试悬浮培养,因为这更容易放大,”主管darrin kuystermans谈道。有时,这也意味着他们要改造细胞系来生产感兴趣的蛋白。不得已,他们也会使用微载体,通过悬浮培养的方式来培养贴壁细胞。内还是外?另一种促进蛋白生产的方式是让蛋白分泌到培养基中,这样下游处理就没那么困难。“我们只需要从培养基中纯化它,而不需要裂解细胞,并在蛋白纯化的过程中处理其他所有蛋白,”kuystermans解释道。偶尔,细胞也没那么听话。即使有了信号肽,它也不分泌蛋白。在这种情况下,kuystermans可能改造纯化标签,以便更容易地从细胞裂解液中捕获蛋白。kuystermans建议先在小的摇瓶系统中检验,而不是一开始就采用较大规模的系统。搅拌引入了额外的氧气,会引起剪切并形成其他压力,这可能导致细胞开始结块,或不再生长。对于那些有疑问的细胞或蛋白,你可以试试瞬时转染,而不要花几个月的时间来筛选稳定的细胞株,然后才发现系统有问题。不断优化当你知道表达系统没问题时,下一步就是优化表达条件。最重要的培养参数包括温度、溶氧(do)、ph和葡萄糖,这些可利用探头和传感器来监控,通过手动或自动控制。一种优化方式是利用“微型反应器”系统,比如applikon biotechnology的micro-matrix或m2p-labs的biolector,也可以利用一组摇瓶。当然,这一切并非线性放大。例如,开发工作往往是分批培养,而生产是以更高密度的灌注模式开展的,利用中空纤维反应器。在这种情况下,一些培养的特征是不同的,意味着结果也可能不同。同样地,液体表面体积比往往也不能直接放大,这会影响do和co2,从而影响ph水平。优化下游(收集和纯化)过程同样重要。你需要筛选填料,以便实现最佳的分离效果。其他考虑因素包括填料在分离条件下的稳定性,树脂的刚性和柱尺寸。据kuystermans介绍,为了确保放大过程中目标蛋白在柱中的停留时间恒定,柱的直径可以增加,但柱床的高度应保持不变。尽情摇摆悬浮培养物的放大可以在可重复使用的生物反应器中进行,kuystermans称之为“clean and play”的系统。这主要指的是搅拌瓶或罐,能够监测和控制各种参数。
  • 品类先锋|做科学仪器单品类领头羊!
    在科学仪器行业竞争日益激烈的现状下,大而全的巨头仪器公司为数不多,不是所有公司都能轻松驾驭这种大而全的经营模式。在此环境下,更多仪器公司另辟蹊径,采取品牌差异化竞争策略,深耕细分市场,集中精力在一条最擅长的赛道上与同行竞跑,最终也能成为细分市场中的佼佼者。想要在一个细分垂直领域占据主流品牌地位,除了需产品技术过硬、拥有核心特点外,还需要通过有效的市场营销手段引爆单品类品牌,在众多竞争对手中脱颖而出,从而把品牌刻印在该品类上,成为用户采购该类仪器时的首选品牌!为帮助仪器企业快速地在广大用户心中树立单品类的行业标杆形象,让用户真正实现采购仪器降本增效。2017年,仪器信息网已顺势推出【品类先锋】服务,凭借在行业内的强大影响力,以及对用户需求的深刻理解上,全面整合优质的线上、线下宣传资源,立体打造“流量优先、商机优先、品牌优先“三大核心优势。立志长期耕耘中国科学仪器行业,愿与仪器信息网携手共赢的企业中,只有在涉及仪器单品类中市场占有率进口前3或国产前3的仪器厂商,才有资格成为仪器信息网【品类先锋】,且单品类最多推荐3家品类先锋企业。【品类先锋】服务推出以来,已有几十家优秀企业成为了仪器信息网的【品类先锋】,涉及了近70个品类。据仪器信息网站内数据统计,同品类产品中,先锋产品的平均流量约占整体品类产品总流量的15-20%,占据流量优势。95%以上的仪器用户如上海大学尤静林教授、北矿检测技术有限公司检测部主任汤淑芳等表示,对品类先锋企业和产品非常满意,后续会与先锋企业深度合作,并会推荐给同行使用。仪器行业大买家华测检测也分别与先锋企业:上海仪电、青岛普仁、青岛盛瀚等8家仪器厂商签约仪器试用协议。整体而言,品类先锋企业及仪器得到了大部分仪器用户高度的认可和支持,获得了单品类的品牌美誉度与传播度,建立了良好的用户口碑。 仪器信息网【品类先锋】服务整合站内PC+WAP+APP三端、线上线下优质资源为品类先锋企业提供以下服务:一、流量优先--覆盖用户查找仪器最主要途径,以超高性价比获得流量入口!整合用户找仪器的主要途径,将品类先锋厂商的品牌LOGO、主打产品进行突出显示。帮助厂商以超高性价比获得流量入口,迅速抢占同品类仪器中的品牌曝光率,领先竞争对手获得用户关注!二、商机优先--商机优先推荐,有效提升询盘量,为用户快速匹配优质产品!作为仪器行业最有价值的仪器导购平台,仪器信息网工作日平均每23s产生一个销售线索,全年涉及采购金额400亿元,成交金额60亿元,在海量商机中,为品类先锋打造专属商机。2020年,仪器信息网全新推出一系列采购节活动,帮助用户线上甄选高性价比产品,品类先锋可优先参加,并向用户优先推荐品类先锋产品,从而有效提升品类先锋询盘量。3、 品牌优先--强大的媒体背书效应,提升品牌辨识度!仪器信息网专注服务科学仪器行业二十余载,系业内首家上市媒体,在业内享有良好口碑。仪器信息网将为品类先锋提供专业的策划,从媒体报道、典型用户采访、优先参加线上线下相关活动、优先入围相关评奖活动、特殊标识等多重维度,增加品牌曝光率,帮助企业树立单品类的领头羊形象! 在当今产品同质化、竞争手段同质化的背景下,以品类为导向发展品牌和营销,更容易在激烈的市场竞争中制胜。随着科学仪器行业的发展,行业用户对仪器要求越来越严格,采购需求呈现多样化,需要仪器厂商在细分领域持续深耕细作,不断推陈出新,满足更多用户最新的需求。仪器信息网【品类先锋】也将不断升级优化服务内容,帮助科学仪器企业打造单品类的仪器领头羊形象,帮助用户快速选购优质的靠谱仪器,为中国科学仪器行业的发展不遗余力地贡献自己的力量!仪器信息网2020年【品类先锋】厂商名录(排名不分先后)先锋企业先锋品类安捷伦科技(中国)有限公司ICP-AES/ICP-OESICP-MS电感耦合等离子体质谱赛默飞色谱与质谱液相色谱(LC)赛默飞世尔科技分子光谱红外光谱(IR、傅立叶)赛默飞世尔环境与过程空气检测仪(CO、SO2、HCL、NOX)PM2.5/PM10/PM1/TSP大气颗粒物监测仪烟气监测(CEMS)/烟气分析仪大龙兴创实验仪器(北京)股份公司移液器、移液枪贝士德仪器科技(北京)有限公司比表面及孔径分析仪理化联科(北京)仪器科技有限公司比表面及孔径分析仪上海三信仪表厂浊度计、浊度仪北京吉天仪器有限公司原子荧光光谱仪(AFS)美谷分子仪器(上海)有限公司酶标仪高内涵细胞成像分析系统奥普乐科技集团(成都)有限公司顶空进样器北京海光仪器有限公司原子荧光光谱仪(AFS)上海禾工科学仪器有限公司自动电位滴定仪大连依利特分析仪器有限公司液相色谱(LC)日本电子株式会社(JEOL)透射电子显微镜(透射电镜、TEM)扫描电镜(SEM)上海北裕分析仪器股份有限公司气相分子吸收光谱仪(GMA)上海仪电科学仪器股份有限公司(原上海精科雷磁)PH计、酸度计仪真分析仪器有限公司二噁英采样仪/二噁英采样器固相萃取仪、固相萃取装置X荧光光谱、XRF(波长色散型X荧光光谱仪)测汞仪硫氮分析仪上海舜宇恒平科学仪器有限公司气质联用(GC-MS)上海光谱仪器有限公司原子吸收光谱(AAS)SCIEX中国液质联用(LC-MS)培安有限公司微波消解仪北京东西分析仪器有限公司原子吸收光谱(AAS)丹东百特仪器有限公司激光粒度仪HORIBA 科学仪器事业部分子荧光光谱激光拉曼光谱(RAMAN)激光粒度仪、纳米粒度仪北京宝德仪器有限公司流动分析仪/流动注射分析仪(FIA SFA CFA)连华科技BOD测定仪/BOD快速测定仪COD测定仪/COD快速测定仪水质分析仪/多参数水质分析仪总磷测定仪/总氮测定仪/总磷总氮测定仪氨氮测定仪/氨氮分析仪毕克气体仪器贸易(上海)有限公司氮气发生器艾卡(广州)仪器设备有限公司 (IKA 中国)水浴、油浴、恒温槽布鲁克(北京)科技有限公司核磁共振(NMR)艾力蒙塔贸易(上海)有限公司TOC分析仪/总有机碳分析仪中国格哈特定氮仪、凯氏定氮仪、Dumas定氮仪上海乐枫生物科技有限公司纯水器、超纯水器、纯水机、超纯水机天津语瓶仪器技术有限公司洗瓶机/清洗机四川杜伯特科技有限公司废水废气处理北京格瑞德曼仪器设备有限公司研磨机、研磨仪、粉碎机、球磨机北京精微高博科学技术有限公司比表面及孔径分析仪北京飞驰科学仪器有限公司研磨机、研磨仪、粉碎机、球磨机北京中仪宇盛科技有限公司吹扫捕集装置热解析仪、热解吸仪、热脱附仪青岛盛瀚色谱技术有限公司离子色谱(IC)凯恩孚科技(上海)有限公司真空泵Park帕克原子力显微镜扫描探针显微镜SPM(原子力显微镜AFM、扫描隧道显微镜STM)上海元析仪器有限公司紫外、紫外分光光度计、紫外可见分光光度计、UV珠海欧美克仪器有限公司激光粒度仪青岛普仁仪器有限公司离子色谱(IC)青岛明华电子仪器有限公司烟气监测(CEMS)/烟气分析仪麦克默瑞提克(上海)仪器有限公司比表面及孔径分析仪扫码查看更多品类先锋!
  • 臭氧污染来势汹汹,没有这套解决方案怎么行?!
    近年来,臭氧污染已取代PM2.5成为一些省市的首要污染物,越来越引起人们关注。尤其进入夏季以来,全国大气中臭氧浓度更是明显升高。臭氧是什么? 臭氧,是氧气的同素异形体,在常温下,臭氧是一种有特殊臭味的淡蓝色气体。臭氧到底是有益还是有害? 臭氧的好坏,取决于它的高度。在距离地面10至50千米高空的平流层中,它可以吸收紫外光线,阻挡高能量的紫外辐射到达地球,是非常重要的“保护伞”;但一旦到了近地面,它就变成了“健康杀手”,高浓度臭氧会对生物产生危害。为何夏季常见臭氧污染? 臭氧污染通常出现在天气晴朗的夏季城市,这是由于,一般认为我国城市臭氧污染是由氮氧化物和挥发性有机物排放后在空气中进行复杂的光化学反应形成,而夏季提供了高温、强太阳辐射等光化学反应的有利气象条件。国家对臭氧监测的重视2008中国环境监测总站从2008年起组织天津、上海、重庆、广东省、广州、深圳、南京、苏州、宁波等9个地区,开展了臭氧试点监测工作。20132013年起,我国已有338个城市的1436个城市评价点开展臭氧监测,另外还有16个背景站、96个区域站相继开展臭氧监测。2019今年3月底,成都召开了中国环境科学学会臭氧污染控制专业委员会成立大会暨首届学术研讨会,共同探讨了大气臭氧污染防控的方向和路径,足见臭氧污染防控已成为当前社会关注及研究的热点。 目前,国家已将臭氧污染防治纳入大气污染防治工作议事日程。 目前我国发布的臭氧监测相关标准主要有GB3095-2012《环境空气质量标准》 、HJ 590-2010《环境空气 臭氧的测定 紫外光度法》、JJG 1077-2012 《臭氧气体分析仪检定规程》等。 崂应2091型臭氧测定仪是一款可用于环境空气中臭氧瞬时测定和连续自动监测的便携式仪器,不仅符合以上三项国家及行业标准,而且产品具有体积小、重量轻、无需预热、检出限低、灵敏度高、响应速度快等特点,同时融合物联网与云平台技术,可实现数据远程实时传输监测。臭氧自动监测方案臭氧自动监测系统有两种构成方式:第一种:现场臭氧分析仪直接通过传输网络与上位机传输数据,如下图所示。臭氧监测系统构成方式1 第二种:利用传输线将现场臭氧分析仪数字输出接口连接到独立的数据采集传输设备,上位机通过传输网络与数据采集传输设备进行通讯,如下图所示。臭氧监测系统构成方式2 崂应2091型 臭氧测定仪可以采用上述两种方式组建臭氧监测系统,数据传输方式分别为:① 物联网卡无线传输:臭氧分析仪→海纳云平台→用户上位机;② 数据线传输:臭氧分析仪→数据采集传输设备→用户上位机。用户可安装手机APP实时查看监测结果。崂应2091型臭氧测定仪监测示意图仪器设备要求 根据布点要求,需要合适数量的臭氧分析仪。 根据质控需要,实验室内臭氧校准设备建议至少配有一台工作标准和一台质控标准。 工作标准日常用于校准下级传递标准或臭氧现场分析仪的臭氧传递标准。质控标准用于定期与工作标准进行质控比对,其与被比对的工作标准应为同一级别的臭氧传递标准。 实验室内应配有零气发生系统,可产生足量、合格的零气供校准使用。 实验室内应配有适合的输出多支路管。实验室内常见校准用设备见下表质量保证与控制 定期的校准和检查是质量保证与控制的关键。臭氧校准系统的连接图如下所示,通常由零气发生器、臭氧校准仪和臭氧分析仪组成。臭氧校准系统连接图环境臭氧分析仪 环境臭氧分析仪每次运行之前应检查一次零点、跨度和操作参数,在仪器连续运行期间,每两周检查一次零点和跨度。每隔6个月应运行一次多点校准。臭氧校准仪 至少每年用臭氧标准参考光度计(SRP)校准一次。零气发生器 每隔6个月更换一次零气发生装置的涤气器。更换涤气器后,应运行多点校准。(以上内容摘自HJ 590-2010《环境空气 臭氧的测定 紫外光度法》)典型案例 案例一:2018年上海合作组织青岛峰会举办期间,崂应2091型臭氧测定仪参加了峰会环境空气臭氧监测工作,表现出色。 运行时间:北京时间2018年5月7日14时至2018年6月14日15时 运行情况:崂应2091型臭氧测定仪与崂山超级监测站中进口臭氧分析仪Thermo 49i同时分析采样的环境空气,对比连续897小时统计的1小时臭氧均值,两台仪器监测结果变化趋势保持一致,超过70%的误差值集中在2ppb范围内。崂应2091型臭氧测定仪通过内置物联网卡回传实时数据,通过手机APP可远程实时查看。崂应2091型臭氧测定仪(第1代样机)现场工作图崂应2091型臭氧测定仪与进口仪器测量结果对比图案例二:2019年4月中国海军70周年青岛阅兵活动举办期间,崂应2091型臭氧测定仪在崂山超级监测站执行臭氧浓度自动连续监测任务并圆满完成。通过站内、站外同时布设的两台仪器测量情况表明,崂应2091型臭氧测定仪便携性好、操作简单、测量精度高、运行稳定、易于维护,即使在户外下雨天气仍能正常工作。实时数据可通过物联卡上传至云平台,并可通过手机APP远程查看。监测站内运行的崂应2091型臭氧测定仪监测站外运行的崂应2091型臭氧测定仪 用户使用后认为崂应2091型臭氧测定仪性能优越、稳定,相对于进口产品,便携性好,广泛适用于室内、室外自动连续监测以及瞬时测定,且物联网功能表现突出,更能满足我国用户的需求。
  • 快速单层单次扫描技术实现质子闪疗,助力肿瘤治疗
    武汉大学医学物理团队针对目前的肿瘤放射治疗手段——闪疗(FLASH),首次在国际上提出了一种应用于质子闪疗技术的快速单层单次扫描技术(基于自主设计的静态和动态的脊形滤波器),可大幅缩短质子笔型束扫描时间。该方法能够满足FLASH所要求的高剂量率的同时,提供与标准的调强质子治疗可比的剂量分布,同时大幅缩短常规笔行束扫描时间,有望推进质子闪疗的临床转发步伐。相关研究成果以“基于脊形滤波器的质子闪疗”为题,近日发表在放射治疗的权威期刊《医学物理》。论文第一作者为武汉大学医学物理专业博士生张国梁,通讯作者为武汉大学教授彭浩。该项目由武汉大学、解放军总医院第五医学中心和无锡新瑞阳光粒子医疗装备公司共同参与。目前全球质子治疗中心和治疗患者数目的年增长速度超过15%,近年来在中国也进入了一个高速的发展阶段,多家肿瘤治疗机构都在筹建质子中心。质子闪疗有望在未来肿瘤治疗中扮演重要的角色,也为国产质子治疗相关技术赶超世界领先水平提供了机遇。据彭浩介绍,闪疗是一种在超高剂量率下进行的超快速放疗手段。和传统剂量率照射相比,闪疗可以在不改变肿瘤控制效果的同时,减少辐射对正常组织和器官的损伤。闪疗效应的一种可能解释是高剂量率导致组织中的氧气耗竭,使正常组织产生辐射抵抗,其他解释包括活性氧化物质和免疫反应。质子放疗由于其先天的剂量率和布拉格峰的优势,是FLASH临床应用的首选。在国际上,质子设备厂商(如IBA,VARIAN等)和诸多质子中心都在开展相关研究,如瑞典的IBA公司给出了基于Hedgehog的解决方案,美国的Varian公司也提出了类似光子放疗中多叶光栅的动态束流调制方案,其目的均为实现快速的束流调制。针对此问题,武汉大学医学物理团队与国产质子设备商新瑞阳光合作,首次提出了一种新型用于质子FLASH的扫描方案。质子笔型束扫描时间长的原因在于,多层能量切换时间(秒级),难以满足闪疗所需的瞬时高剂量率的要求。研究团队设计了一种单能量单层束流扫描技术,通过自主开发设计的脊形滤波器,可以一次照射完成束流调制和适形实现瞬时高剂量率的质子闪疗。相比IBA和Varian两家国外厂商的方案,研究团队的方法真正做到了基于Dose而非Fluence的调强,能在保证高剂量率的同时做到治疗靶区内的剂量适形,也能大幅的缩短治疗时间。以头颈部和肺部肿瘤为例,相比于传统的质子调强治疗,扫描时间可缩短5—10倍左右。相关论文信息: https://doi.org/10.1002/mp.15717
  • 扬尘监测系统存天然缺陷
    “扬尘是一种十分复杂的尘源,目前国内外尚没有对扬尘统一的定义。”当前,扬尘的治理和监管已成为城市空气质量改善的重要工作领域。但我国扬尘监测跟不上治理需求,存在监测指标、监管系统和监控机制等方面的短板。  当前,扬尘的治理和监管已成为城市空气质量改善的重要工作领域。但据悉,目前监测设备、指标设定还跟不上治理需求 单侧点监管系统也存在不少缺陷 在监管方式上,没有安装在线扬尘监测设备的施工场地,工地施工人员与环境监管人员“躲猫猫”,依靠执法人员人工巡查,很难抓住现行。  工地与环境监管“躲猫猫”  工地多,监管人力有限不能全覆盖  在没有安装扬尘监测系统的工地,常发生施工人员与环境监管执法人员“躲猫咪”现象,严重影响了扬尘污染监管。  据介绍,上海环保局环境监察总队日前在暗访检查工地过程中,发现浦东新区原世博园区有一个施工工地,在平整道路时,露天作业 也没有设置洒水池等有效防护措施,进出渣土车辆驶过,尘土飞扬,路过工地的人们纷纷掩鼻而过,扬尘污染严重。  同日,在上海徐汇区龙华寺附近的一建筑工地,也发现在开挖地面时没有任何防护,大门有一个冲洗水池,水比较浅,起不到冲洗的作用,渣土车辆进出大门,掀起一股气浪,尘土满天飞扬。  或许是工地管理人员发现了暗访执法人员,当第二天再到工地时,工地环境发生了一些改观,虽有扬尘污染的痕迹,但并不严重。  当环境监察人员进入工地查询时,工地管理人员却矢口否认昨天有扬尘污染情况发生,工地保持宁静,停止施工,也不见车辆进出。由于没有安装监控系统,没有抓个现行,环境监察部门无法处理,工地逃过处罚。  据了解,目前上海市很多地区对扬尘的监控,主要依靠环境执法人员去工地现场巡检,因人力有限,不仅难以全覆盖,也缺乏时效性。  据上海市环保部门人士介绍,工地扬尘在时间上具有偶发性、在地点上具有不固定性,要达到控制污染源的效果,采取全面、有效的监控手段极为重要。  扬尘单测点监管系统有天然“缺陷”  监测结果不全面、真实性差、难通用  据了解,扬尘污染是上海大气污染治理的一大顽症。根据上海市大气细颗粒物来源解析最新结果,扬尘已成为仅次于移动源、工业生产和燃煤的第四大污染源。  近年来,上海开始实施工地扬尘在线监测试点工作,取得了一定成效,比如“泥头车”现象显着减少、施工企业的扬尘控制意识有所加强等。但相关人士坦言,这种监管也暴露出许多问题。  首先,现有系统难以保证监测结果的全面性。相关环保人士透露,目前所采用的扬尘监测系统在每个施工工地(不论面积多大)仅设置一个测点,由于工地面积范围较大,且城市区域风向等气象参数多变,扬尘发生的位置不可能仅仅局限在一处,因此,单点监测既无法判断扬尘产生的位置,也无法确定扬尘落点的位置。  其次,现有系统难以反映监测数据的真实性。现有系统采集的数据一般都经由自有平台进行修正后再显示在终端上,数据的准确性受修正方法的影响,导致显示数据与真实值始终存在较大误差。  另外,现有系统难以实现数据传输的通用性。不同企业生产的扬尘在线监测系统使用各自的通信协议,虽然能满足设备到各自监控平台的数据传输,但彼此之间的数据传输标准不统一,互相之间无法形成有效的信息共享,也增加了环保部门的监管难度,不利于形成标准化、规范化的扬尘监管体系。  业内人士认为,单测点监管系统有天生缺陷,不能很好地起到监管威慑作用,已不适应目前扬尘整治工作新要求,更何况只安装在试点工地。  扬尘监测跟不上治理需求  大部分是事后监测,技术不太成熟、设备不足  “扬尘是一种十分复杂的尘源,目前国内外尚没有对扬尘统一的定义。”CTI华测检测认证集团环境事业部华北区经理文唤成说。  在环保领域,《防治城市扬尘污染技术规范》(HJ/T393-2007)指出,扬尘是地表松散颗粒物质在自然力或人力作用下进入到环境空气中形成的一定粒径范围的空气颗粒物,主要分为土壤扬尘、施工扬尘、道路扬尘和堆场扬尘。  文唤成介绍说,通过对颗粒物监测,可以为大气污染防治以及污染源解析提供数据支撑。目前,国内对扬尘的手工监测结果大部分是以小时均值、日均值等形式体现,不能全面反映瞬时污染或者实时污染。特别是一些瞬时高污染,手工监测容易受采样时空的限制而未采到代表性的样品,属于事后监测。  目前反映扬尘的环境监测指标有:总悬浮颗粒物、PM10、PM2.5、降尘等,针对这些指标,其中有些监测技术不太成熟、缺乏专业设备,影响检测结果的准确性。  比如《防治城市扬尘污染技术规范》(HJ/T393-2007)中的道路积尘负荷指标,是衡量道路扬尘排放的重要指标,需要用到带收集装置的真空吸尘器、封闭的摇床等设备,生产厂家很少,市场上很难采购到,给道路扬尘监测带来困难。  文唤成说,CTI华测检测作为第三方监测机构,对扬尘监测有所涉足,但企业主动委托监测需求量不多。  他认为,应重视扬尘监测,加强立法以及标准和技术指南的制定工作,同时要加大监测技术研发力度,推动扬尘污染防治。
  • 超临界液相二氧化碳输液泵的使用注意
    导 读随着超临界液相应用的逐渐普及,使用中特别是超临界液相独有的二氧化碳输液泵的注意事项显得尤为重要,本篇就和小编一起看一下吧。01二氧化碳钢瓶气的使用注意二氧化碳钢瓶气纯度至少99.9%且带有虹吸管。除了常规液相使用的试剂,还需要乙二醇用于二氧化碳输液泵的泵头冷却。二氧化碳钢瓶气的送液原理钢瓶中的上层气态二氧化碳从上往下施加压力,使得底部液态二氧化碳能够通过虹吸管排放出正常的液态,二氧化碳输液泵维持住5摄氏度低温继续维持二氧化碳液态状态,能够正常通过输液泵输送。国标40L/40kg的二氧化碳钢瓶气通常可以使用10个工作日。在使用一瓶新的钢瓶气气体充盈的情况下,打开钢瓶气总开关,在只打开二氧化碳输液泵截止阀shutoff valve的情况下(点击如图valve按钮),一瓶新的钢瓶气的瞬时压力读数夏天为6.5MPa。冬天因为环境温度较低,热胀冷缩原因,高压充进钢瓶的液态二氧化碳汽化困难,正常为4.5MPa。若上述操作二氧化碳输液泵的瞬时压力读数低于4.5MPa,即表明钢瓶气不够,不足以维持稳定输液,需要更换钢瓶气。针对冬季环境温度较低,钢瓶内压力较低,造成二氧化碳流出不畅的问题,可以将钢瓶放置在有暖气的房间里(环境温度维持在20-30摄氏度),或者在安全使用的前提下通过钢瓶底部加热的方式(底部包裹电热毯、放置取暖器直照),达到提高钢瓶温度增加钢瓶内部压力的目的,易于二氧化碳钢瓶气的充分使用。(注意钢瓶温度不能超过50摄氏度)。02使用环境要求及废液管路处理方式若环境温度高于28摄氏度,安装环境将影响二氧化碳输液泵的冷却,导致性能下降。所以必须保持环境温度低于26摄氏度,周边远离可能产生高温的设备,远离墙壁角落,防止散热不良。由于二氧化碳输液泵泵头冷却长期默认设置为5摄氏度低温状态,在环境湿度较大时,更容易产生冷凝水附着在冷却液循环管路外壁、泵头温度传感器等位置,影响整体冷却效果,导致温度传感器误报警等情况。所以必须保持环境湿度低于60%,同时在如图位置正确连接废液管路,以便于冷凝水的正常排出。03二氧化碳钢瓶气的使用注意若乙二醇水溶液浓度过低,乙二醇接近冰点,容易低温结晶,不易于冷却液循环泵正常输送冷却循环液。若乙二醇水溶液浓度过高,乙二醇粘度过大,增加冷却液循环泵的负载,影响循环泵的运作寿命。所以冷却液要求严格配比30%乙二醇水溶液。如果还需要其它帮助的话,欢迎致电岛津客服热线中心前来咨询,咨询电话:400-650-0439。
  • 隔绝空间供氧难题破解——中物功能材料研究院推出高水平供氧设备
    p style="line-height: 1.75em " 完全与外界隔绝的空间中如何获得充分的氧气保障?高原工作生活如何得到灵便的持续供氧?11月12日记者从中物功能材料研究院获悉,该院已成功破解了上述难题。br/ 中物功能材料研究院推出的代表目前国内最高水准的系列供氧设备,包括一款地下工程智能供氧系统和两款单兵增氧机。地下工程供氧系统是专门为隔绝空间设计的一套适时化学供氧装置,技术国际领先。该系统具备人性化、智能化的特点,通过氧传感器对空间内氧气浓度进行监控,按照空间体积、人员数量、保障时间灵活配置供氧量,可瞬时释放纯氧,提升密闭空间内的含氧浓度,满足人体生理需求,主要应用于地下隔绝防护舱体、密闭空间、地下防空设施、步战车、装甲车、矿井及避难硐室等场所密闭环境集中供氧,是目前对隔绝空间弥漫式供氧最为高效、最有保障的一种方式。br/ Ⅰ型单兵增氧机采用国际领先的富氧膜技术,通过物理增氧方式,提升人体吸入氧气的浓度。它体积小、重量轻、性能优良,可在零下20度的环境中持续供氧。经反复测试,该增氧机在海拔5000米使用时输出的氧气浓度相当于海拔2800米左右的自然环境氧浓度。一位78岁的老人使用该增氧机登上海拔5000多米的珠峰大本营后反映,没有发生高原反应。由于具有持续增氧、自主吸氧、随身携带使用等特性,它能有效解放出双手,被称为高原吸氧的一次革命。br/ Ⅱ型单兵增氧机也称直升机供氧机,由I型通过提升流量、升级而成,是国内首款专为直升机设计开发的供氧装置,成功破解了高原飞行供氧的根本性难题,同时也可放在车上使用,可广泛应用于自驾游、交通运输等方面。/p
  • 大会报告:糖蛋白的最新分析技术与研究进展
    仪器信息网讯,2010年5月15日,蛋白质组数据处理暨全国生物质谱学术交流会”在云南省丽江市召开。会议为期两天,主要讨论了蛋白质组学技术和应用、数据挖掘和生物质谱等方面的现状及其进展。在所有的大会报告中,除一些关于蛋白质组学技术最新研究进展的大会特邀报告外,第一天的专家报告集中讨论了糖蛋白组的最新分析技术与研究进展,第二天的报告集中讨论了蛋白质数据处理技术,包括蛋白质组生物数据库及分析平台的构建、数据统计分析方法的研究等方面。  作为会议议题的主要内容之一,糖蛋白广泛存在于生物体内,是重要的生物活性物质,具有很多重要功能,关于其的最新研究进展已受到国内外科学家们的高度关注。在本次大会上,南京大学的梁亮博士、美国约翰霍普金斯大学李岩博士、上海交通大学系统生物医学研究院的张延研究员等多位专家学者作了关于糖蛋白最新研究进展的报告,本文对关于糖蛋白研究的部分报告主要内容进行简要报道:  报告题目:应用糖蛋白质组学和糖组学的方法筛选癌症分子标记物  报告人:美国约翰霍普金斯大学李岩博士李岩博士  李岩博士在报告中表示,目前分子标记物研究主要面临的挑战主要是,样品的复杂性与患者的个体差异性,应对其建立高准确度、高灵敏度、高通读、高重复性的分析检测方法。糖蛋白在分子标志物研究中的重要意义,大部分分泌蛋白、跨膜蛋白、和细胞表面蛋白是糖基化蛋白,他们涉及大量的生物学功能,并且,美国FDA已批准的生物标记物几乎全是糖蛋白。  在其报告中,分别通过糖蛋白质组学糖组学的方法对分子标记物进行了分析比较分析。  在糖蛋白质组学研究中,其分别采用多维色谱-质谱法(MALDI-TOF/TOF)和SRM-MS对糖蛋白进行了定量检测 在糖组学研究中,其表示,现有的糖组学方法不能用于临床样本检测,而新方法有待确立,李岩博士通过凝集素-抗体反应方法检测了糖的motif在前列腺组织中的表达水平。通过对糖蛋白质组学和糖组学方法的分析比较,其建立了适用于临床的检测方法,对于在前列腺中发现可能的分子标志物选择临床治疗方案有很大的帮助。  报告题目:用于糖蛋白富集的团队硼亲和方法研究  报告人:南京大学梁亮博士梁亮博士  梁亮博士在报告中首先提到,糖蛋白(包括糖肽)的富集是糖蛋白质组学研究中的一个关键科学问题。目前用于糖蛋白富集的主要方法有凝集素亲和法、肼化学法、亲水作用色谱法和硼亲和色谱法等。和其他些方法比较,硼亲和方法虽具有显著的优点,但也有两个明显的缺点:(1)在中性pH下的亲和能力极弱,必须在碱性pH下才能与顺式二羟基化合物结合,这造成了操作上的不便,增加了样品变性的危险 (2)在碱性pH时取代硼酸带负电,与样品及样品基体间存在静电相互作用,因而导致专一性的下降。  为了同时解决以上两个问题,其科研团队提出了“团队硼亲和”的原理以及相应的方法。该方法要求分子团队成员在分子的另一端带上氨基,通过与环氧开环形成多孔整体材料,分子团队固定到整体材料的表面。该方法只需要一步反应即可制备得到所需的整体柱,操作十分简单,对操作者和环境友好。制备得到的整体柱可以直接应用于生理样品中的核苷等生物分子的专一性富集。最近,其科研团队提出了构建团队硼亲和的另一个绿色化学路线:分子自组装法。分子团队成员在分子的另一端带为噻吩或巯基,利用在金表面的分子自组装,一步反应即可得到团队硼亲和材料。利用该方法,制备了团队硼亲和磁性纳米颗粒和团队硼亲和MALDI靶板,其优异的亲和力和专一性得到验证,成功实现了在中性pH条件下对糖蛋白的专一性富集和纯化。利用团队硼亲和磁性纳米颗粒作为微萃取探针,通过MALDI-TOF MS检测,在生理pH条件下,存在于浓度高100倍的非糖蛋白基体中的糖蛋白能被专一性地萃取。  报告题目:蛋白质的O-糖基化修饰研究  报告人:上海交通大学系统生物医学研究院张延研究员张延研究员  糖链修饰是一种重要的蛋白质翻译后修饰。细胞内50%以上的蛋白质都有糖链修饰。糖链参与了细胞识别、细胞分化、发育、信号传导、免疫应答等各种重要生命活动。按糖链与氨基酸的糖苷键结合方式的不同,真核生物中蛋白质糖基化可分为N-糖基化修饰和O-糖基化修饰,蛋白质的O-糖基化修饰中最主要的O-GalNAc修饰。  张延研究员通过对O-GalNAc糖基转移酶的糖基化修饰特性进行研究,利用UDP-GalNAc衍生物糖探针的荧光标记技术,结合质谱及多肽蛋白质芯片技术,建立了一种高通量发现蛋白质O-糖基化的新策略。
  • 标准织物裁样器/圆盘取样器 取样(使用)方法
    织物裁样器︳圆盘取样器︳方法︳型号报价︳标准集团仪器品牌:Gellowen仪器型号:G236A仪器名称:织物裁样器生产厂家:标准集团(香港)有限公司产品详情:http://www.standard-groups.cn/chanpin/zwjfz/qt/2191.html 仪器简介:标准集团(香港)有限公司专业供应的织物裁样器,又可以称之为圆盘取样器,用于各种织物、纸张和不织布等材料圆形准样品的取样,可切取各种毛纺、棉纺、化纤、针织等织物的圆形样品。应用于纺织、造纸、包装、检测和科研等行业。其裁样套具包括60×1125px裁样垫、黄色旋转切刀(带一个备用刀片和一把直刀(带备用快速切刀和一个备用刀片)。使用方法: 1,将待裁织物平铺在橡胶垫上,将圆盘取样器放在织物上,拉出取样器上的锁紧置,旋转约90度,一手扶住外罩,一手握住波纹手轮,并施加一定压力,然后顺时针旋转波纹手轮(转角大于90度),即可将圆试样裁取。 2,取样器使用后即锁紧装置,旋转至原位,使刀片不能外露,以免伤手和其他物品。结构与调整: 1,切刀刀片为双面刀片共有四片,为圆外接四等份均布,刀片可以更换,具体操作为:松开十字螺钉(每片上有四颗螺钉),取下刀片压板与取样刀片,换上新的刀片,压上刀片压板,注意使刀片口为顺时针切向,并使四片刀口处于同一平面,然后拧紧十字螺钉即可。每个刀片有四个刀口可用。 2,仪器底部有直纹刻痕,用于固定试样,便于切割,防止试样打滑。注意事项: 1,本仪器刀片刀口锋利,使用中不得将手放在底部,以免损伤。 2,仪器裁取试样应该在橡胶垫上进行,仪器不用时擦拭干净,放在仪器盒中,以免损伤。 电话:021-64208466、13671843966传真:021-64208466-810邮箱:info@standard-groups.com地址:上海市闵行区顾戴路2578号标准集团(香港)有限公司官网: http://www.standard-groups.com/
  • Nat. Methods | PROBER技术用于检测活细胞中与可编程特异性DNA序列相关的蛋白
    大家好,本周分享一篇发表在Nature Methods上的文章PROBER identifies proteins associated with programmable sequence-specific DNA in living cells,本文的通讯作者是来自斯坦福大学的Paul A. Khavari教授,他们组主要致力于干细胞分化与癌症的基因组调控方面的研究。在本文中,作者团队开发了一种通过游离基因招募的近端生物素化技术(PROBER),用于在活细胞中研究与特殊DNA序列相互作用的蛋白。时空和细胞类型特异性基因表达模式由称为顺式调控元件(CREs)的DNA序列控制,它可以通过招募一些蛋白因子来激活或抑制转录复合物的形成。目前已经确定了数千个富含转录因子结合基序的CRE,但其中仅有少数进行了生化表征,因此开发新的工具来定义这些相互作用蛋白是非常必要的。目前,用于识别与感兴趣DNA序列相关蛋白的方法,如CAPTURE、Chap等大多需要交联,这可能会导致偏差的引入。因此,在本文中,作者开发了一种通过近端生物素化定量检测活细胞中短DNA序列(≤80bp)相关蛋白复合物的方法——PROBER。在设计上,PROBER主要需要三种质粒。其中pBait包含目的DNA序列作为“诱饵”,克隆在酿酒酵母GAL4 结合上游激活序列 (UAS) 16的三个串联重复之间;pSprayer质粒表达融合Cal4的枯草芽孢杆菌BASU生物素连接酶(HA tag);pDriver表达SV40大T抗原用于通过它们的 SV40 复制起点对所有质粒进行高拷贝游离扩增。在生物素存在时,结合在UAS序列上的生物素连接酶可以生物素化结合在目标DNA序列上的蛋白复合物,裂解细胞后采用链霉亲和素捕获生物素化的蛋白质,并使用WB或质谱进行检测。为验证方法的可行性,作者检测了YY1(Yin Yang1),发现与乱序的对照组相比,实验组可以有效地富集到YY1,并且同时富集到了与YY1相互作用的 INO80 复合物中的NFRKB 和 RUVBL1 亚基。接下来,作者也将PROBER与DNA pull down法进行了对比,GO 分析表明,通过 DNA pull down鉴定到的大多数蛋白与 RNA 结合有关,而 PROBER 鉴定到的蛋白质与转录控制有关。最后,作者将PROBER技术应用于了hTERT启动子突变体相互作用蛋白的鉴定。hTERT被发现在多种癌症中会产生单个位点突变(C250T、C228A 和 A161C),作者克隆了这些突变并使用PROBER进行富集,发现了一些由于癌症相关突变而增加的启动子调节因子。总的来说,本文开发了一种近端生物素化方法PROBER,用于活细胞中与短DNA序列相关蛋白的检测。
  • 龙年,我们一起走向美好!——丹东百特龙年新春团拜会纪实
    2024年1月28日上午,百特龙年新春团拜会在丹东新安东阁酒店隆重举行,200多名百特员工及家属代表齐聚一堂,盘点收获、明确目标、表彰先进、展望未来,共同分享丰收的喜悦,展现昂扬的风采!2023年,是百特创新发展、顺势而上的一年。公司科学化规范化管理、新产品新技术开发、产品制造、市场销售、售后服务等方面取得了新成绩,达到了新高度。在热烈的掌声中,总经理董青云先生发表了题为《龙年,我们一起走向美好》的新春致辞,表达了公司将一如既往与公司员工共享企业发展成果,一如既往为用户提供优质产品和服务的坚定信念。董总从收入、休假、食堂、培训、晋升等方面细数一项项措施,夯实企业与员工一起走向美好的根基。工作和生活是人生的两个车轮。董总在讲话中,用了较长篇幅阐述从生活小事出发走向美好的途径。在家里要用对待领导的态度对待父母、要给孩子更多的自由、要给爱人安排一场烛光晚宴、要用陈述句回答问题等等,并引用苏轼“粗缯大布裹生涯,腹有诗书气自华”的诗句来激励员工通过读书提升修为,从而走向美好。他还对干部、员工和青年指出了通过学习和实干实现走向美好的途径和期望。2023年百特全体员工砥砺前行,激光粒度仪销量超过2000台,纳米粒度及Zeta电位仪销量超过200台,出口仪器销量超过300台,主要经济指标创历史新高,并涌现出了一批先进个人。有二十名员工先后获得“销售冠军”、“最美科技工作者”、“最佳服务工程师”、“生产标兵”、“先进工作者”和“先进新人奖”称号,有二十九人获得“清正廉洁奖”。公司向他们颁发了奖状和奖金,感谢他们及其家属一年来的辛勤付出,激发全体百特员工奋勇争先、向着更高的目标前进。 团拜会现场洋溢着喜庆祥和的氛围,在具有民族特色的歌舞表演中大家频频举杯,回顾过去一年的峥嵘岁月,祝愿新的一年大家同心协力走向美好。在每轮“幸运大抽奖”中,大家都停杯投箸,目光齐聚抽奖人。随着台上一份份奖品与幸运纷纷降临,台下一阵阵掌声送上祝福,全体员工欢呼声此起彼伏,洋溢在欢声笑语的海洋中。征衣未解又上马,奋楫笃行谱新篇。2024年是新中国成立75周年,百特将在“造精品仪器,创国际品牌”的道路上勇毅前行,伴随伟大的祖国走向更加美好的明天。
  • 南极雪样惊现微塑料!新污染物治理拉开序幕!
    据今日央视网报道,科研人员从南极洲最大的冰架——罗斯冰架沿线的不同地点采集了19个雪样本,在每个样本中都发现了微塑料,这可能意味着塑料污染对生态环境的破坏在加速,即便是被科研人员称为地球上“最干净”的地方——南极洲也无法幸免。科学家曾在该地区的深海沉积物、海洋和地表水中发现过微塑料,但在雪样中发现微塑料尚属首次。渐入人心的“微塑料”微塑料(Microplastics, MPs)是指粒径小于5 mm的塑料碎片,被认为是一类新污染物。微塑料这一概念早在2004年由英国普利茅斯大学的理查德汤普森(Richard Thompson)在《Science》上发表文章时提出。随后,由于其在海洋环境中的广泛存在以及对生物产生的各种确定的以及不确定的危害,得到了各界的广泛关注。近几年,随着科学家不断深入的研究,大气、土壤、陆地环境乃至生物体中相继检出微塑料,研究人员已开始尝试对微塑料样品进行更进一步的定性和定量分析。据相关媒体报道,不久前,南京医科大学夏彦恺教授团队联合中国科学院南京土壤研究所骆永明教授团队,首次在人体血栓样本中发现了一定数量和不同类型的微塑料和染料颗粒。据文献,这是第一次检测血栓中的微塑料,尽管只有一种颗粒被鉴定为LDPE(主要用于农用薄膜,医疗器械,药品和食品包装材料等)。随着微塑料的“渐入人心”,更多的新污染物逐渐走进大众视野。新污染物治理,蓄势待发9月27日,生态环境部发布了关于公开征求《重点管控新污染物清单(2022年版)(征求意见稿)》意见的通知。通知指出,按照《新污染物治理行动方案》(国办发〔2022〕15号)关于“2022年发布首批重点管控新污染物清单”的要求,生态环境部组织编制了《重点管控新污染物清单(2022年版)(征求意见稿)》,并公开征求意见。该《清单》共分为四大类,主要包括 14 种类新污染物:分类二级分类持久性有机污染物类1.全氟辛基磺酸及其盐类和全氟辛基磺酰氟(PFOS 类)2.全氟辛酸及其盐类和相关化合物1(PFOA 类)3.十溴二苯醚4.短链氯化石蜡5.六氯丁二烯6.五氯苯酚及其盐类和酯类7.三氯杀螨醇8.全氟己基磺酸及其盐类和相关化合物3(PFHxS 类)9.得克隆及其顺式异构体和反式异构体14.已淘汰类 (六溴环十二烷、氯丹、灭蚁灵、 六氯苯、滴滴涕、α六氯环己烷、β-六氯环己烷、林丹、硫丹原药及其相关异构体、多氯联苯) 有毒有害污染物类10.二氯甲烷11.三氯甲烷 环境内分泌干扰物类12.壬基酚 抗生素类13.抗生素 ACCSI同期会议——新污染物监测新技术论坛为了进一步助力我国新污染治理行动的进行,仪器信息网联合珀金埃尔默,将于ACCSI2022期间举办新污染物检测与监测新技术发展论坛,邀请了5位报告专家聚焦新污染物检测新技术,分享新污染物最新研究进展和检测技术!ACCSI2022 线下到场参会,实现与专家面对面互动交流!年会报名链接:https://www.instrument.com.cn/accsi/2022/嘉宾报告1:海洋环境中微塑料检测技术报告嘉宾:孙承君嘉宾简介:孙承君,2001年12月于美国加州大学圣芭芭拉分校获得博士学位,现任自然资源部第一海洋研究所研究员,主要从事海洋环境科学、海洋生物化学等方面的研究工作,获评山东省泰山学者海外创新人才和自然资源部科技领军人才。承担和完成包括国家重点基础研究计划973计划课题、国家自然科学基金等在内的多项国家和省部级项目,多次参与我国大洋和极地科考,近五年发表高水平学术论文60余篇,其中SCI论文50余篇,目前团队研究工作以海洋微塑料和海洋生物材料为主,在微塑料研究领域又较好的积累。嘉宾报告2:“eXXpedition环球航行”:全球海洋中的塑料污染状况研究报告嘉宾:Dr. Winnie Courtene-Jones嘉宾简介:Dr. Winnie Courtene-Jones是一位塑料污染研究方面的专家,2019年完成博士学位(深海生态系统中的微塑料),就职于普利茅斯大学国际海洋垃圾研究小组,曾以“eXXpedition环球航行” 组织科学项目领队的身份,开展全球海洋微塑料污染的研究,目前正参与“BIO PLASTIC RISK”生物塑料风险研究项目,调查研究可生物降解塑料的环境归趋,以及它们对生物和生态系统功能的相关影响。她的科学研究遍布各种陆地、海洋环境中的塑料污染情况,从海岸线到地球上一些最偏远的地方,包括深海和海洋环流。Dr Winnie Courtene-Jones在其研究领域发表了大量论文和技术报告,并在国际会议、英国和欧洲学术议会上发表演讲。嘉宾报告3:新污染物的转化与毒理报告嘉宾:曲广波嘉宾简介:研究员、博士生导师,现任职于中国科学院生态环境研究中心。主要研究方向为“新型污染物的转化与毒理”。研究成果以第一/通讯作者在Chemical Reviews、Chemical Society Reviews、Chem、Angewandte Chemie International Edition、Environmental Health Perspectives、ACS Nano、Environmental Science & Technology等期刊上。国家优秀青年基金获得者、中国科学院青年创新促进会优秀会员。2018年获第五届中国毒理学会优秀青年科技奖、2018年获“The 16th International Symposium on Persistent Toxic Substances Young Scientist Award”、 2021年获中国分析测试协会特等奖(排名第1)。中国毒理学会分析毒理专业委员会委员、中国环境诱变剂学会毒性测试与替代方法专业委员会委员、《环境化学》青年编委。嘉宾报告4:人体生物组织中PFAS的检测与研究报告嘉宾:Dr. Sabra Botch-Jones嘉宾简介:Sabra Botch-Jones是波士顿大学医学院—生物医学法医学研究生课程的法医毒理学家和助理教授,长期从事于法医毒理学和分析化学方面的研究,Sabra担任美国科学院标准委员会毒理学共识机构副主席,美国法医学会毒理学分会主席。她被州长查理贝克(Charlie Baker)任命为马萨诸塞州法医监督委员会成员。 嘉宾报告5:纳米材料检测和职业风险防护标准示例及应用研究报告嘉宾:郭玉婷嘉宾简介:郭玉婷,国家纳米科学中心中国科学院纳米标准与检测重点实验室高级工程师,全国标准化教育标准化工作组(筹)委员,从事纳米技术标准化及电感耦合等离子体质谱检测研究工作,主持制定五项国家标准,参编《纳米技术标准》书籍,发表多篇科技论文,参与两项国家重点研发计划和一项中科院战略性先导科技专项项目。报名现场,赢取珀金埃尔默定制礼品!
  • 全蛋白质组关联研究发现阿尔茨海默症发病新机制
    全球有3500万人深受阿尔茨海默症(AD)的困扰,但目前尚无临床有效的治疗手段。为了促进AD治疗手段的发展,研究者进行了大量的遗传学研究。已有研究者通过 GWAS鉴定出许多阿尔茨海默症风险基因,但这些风险基因是如何导致阿尔茨海默症的尚不十分清楚。全蛋白质组关联研究(Proteome-Wide Association Study, PWAS)通过蛋白质的功能变化将基因和表型联系起来,是一种新型的以蛋白质为中心的遗传关联研究方法,在人类遗传学研究领域具有广泛的应用前景。  2021年1月28日,国际学术期刊Nature Genetics(IF=27.603)上报道了来自埃默里大学医学院题为“Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer’s disease pathogenesis”的研究文章。该团队运用全蛋白质组关联研究(proteome-wide association study,PWAS),将阿尔茨海默症(AD)队列 GWAS结果与人脑蛋白质组进行了整合,旨在鉴定通过影响脑蛋白丰度而导致AD风险的基因,深入了解这些基因座如何影响AD的发病机制。  研究结果  1.PWAS鉴定出AD相关重要基因  在发现阶段,作者收集到375例捐献者死后大脑的背外侧前额叶皮层(dPFC)样本,使用TMT质谱策略获得人脑蛋白质组数据。整合已有的AD GWAS结果与蛋白质组学结果,通过全蛋白质组关联研究(PWAS)鉴定出13个顺式调节脑蛋白水平的基因(图1,表1)。接下来,作者使用相同的AD GWAS数据与另一组独立的152例人脑蛋白质组数据整合分析,与前面发现的13个蛋白相比较,其中10个在PWAS阶段得到验证(表1)。  图1 发现集AD PWAS曼哈顿图  表1 AD PWAS鉴定13个重要基因  2.重要风险基因COLOC和SMR分析  为了研究调控脑蛋白的重要基因与AD是否存在因果关系,作者进行了贝叶斯共定位(COLOC)和孟德尔随机化(SMR)分析。首先,使用贝叶斯共定位(COLOC)检验发现13个基因中有9个符合因果关系。然后通过孟德尔随机化(SMR)分析,结果表明顺式调控蛋白丰度介导了这13个基因的遗传变异与AD的关联。总的来说,作者发现7个基因在COLOC和SMR / HEIDI分析的因果关系上具有一致的结果(CTSH,DOC2A,ICA1L,LACTB,PLEKHA1,SNX32和STX4),另外有4个基因的因果关系在这两种分析中结果不一致( ACE,CARHSP1,RTFDC1和STX6),EPHX2和PVR的结果不具备因果关系(表2)。  表2 发现阶段AD PWAS中13个重要基因的 COLOC和 SMR分析3.确定11个AD PWAS重要基因  通过验证队列重复和因果关系测试的结果,作者在13个通过PWAS发现的重要基因中,确定了11个与AD有因果关系的风险基因(CTSH,DOC2A,ICA1L,LACTB,SNX32,ACE,CARHSP1,RTFDC1,STX6,STX4和PLEKHA1),其中9个重要基因在PWAS阶段得到验证(表3)。  表3 总结11个AD PWAS重要基因,并证明与AD中的因果作用一致  4.PWAS结果不受APOE e4影响  载脂蛋白APOE e4等位基因与阿尔茨海默症密切相关,因此作者为了探究APOE e4是否影响了PWAS结果,从蛋白质组中去除掉APOE e4的作用,使用去除后的蛋白质组图谱进行了AD PWAS。分析发现了13个与发现阶段PWAS结果一致的重要基因和6个其他基因,且所有13个基因都具有与发现阶段PWAS中相同的关联方向。此外,COLOC和SMR / HEIDI测试的结果发现了与原始发现相同的因果关系证据,这些结果均表明本实验发现不受APOE e4的影响。  5.TWAS锁定与PWAS相关基因  众所周知,分子生物学的中心法则是遗传信息从DNA转录传递给RNA,再从RNA翻译传递给蛋白质。因此,作者收集到888个欧洲个体的大脑转录组数据,将AD GWAS结果与其整合,进行了AD的全转录组关联研究(TWAS)。AD TWAS鉴定了40个基因,其FDR为p0.05时,其基因调控的mRNA表达水平与AD相关(图2)。与蛋白质水平上鉴定出的11个潜在风险基因相比,ACE,CARHSP1,SNX32,STX4和STX6这5个基因与PWAS结果相似,与AD具有关联性。(表3)。  图2 AD TWAS Q-Q图  6.单细胞测序发现细胞类型特异性  最后,作者使用背外侧前额叶皮层样本(dPFC)单细胞RNA测序数据进行分析,发现在先前确定的11个重要风险基因中,有6个基因呈现细胞类型特异性富集。DOC2A,ICA1L,PLEKHA1和SNX32富含兴奋性神经元,而CARHSP1在少突胶质细胞中富集,CTSH在星形胶质细胞和小胶质细胞中富集(图3)。  图3 单细胞类型表达总结  本文作者通过收集阿尔茨海默症(AD)患者队列,开展多中心、大样本的基因组学和蛋白质组学研究。运用全蛋白质组关联研究(PWAS)挖掘了十多个重要风险基因,这些风险基因可以通过改变大脑中蛋白质丰度进而影响阿尔茨海默症的发生,为AD的发病机制提供了新的见解,并为进一步治疗提供了潜在的靶标。
  • 奇妙的DNA折纸,Implen助力单分子水平抗原抗体相互作用研究
    作为一种天然的生物大分子,DNA不仅是生命的密码,还可作为制造纳米级构件和机器的通用元件。由于DNA的尺寸为纳米级别,具有刚性结构、编码性强的特点,于是,DNA纳米技术的研究者利用DNA分子的自组装特性,根据核酸碱基互补配对的作用,设计并在试管中构造出精确而复杂的、纳米级精度的有序结构。这一新兴的领域被称为DNA折纸技术,科学家使用比头发丝还细一千倍的DNA和RNA等核酸分子,折叠、自组装成复杂的结构。 日前,上海交通大学的樊春海教授、中科院上海应用物理研究所的李宾研究员和胡钧研究员等人联合在《NatureCommunications》发表题为“Capturingtransient antibody conformations with DNA origamiepitopes”的文章,报道了一种三角形的DNA折纸骨架,其具有特定位置的锚定和空间组织的人工表位,可在室温下捕获免疫球蛋白Gs(IgGs)的瞬时构象。其中,DNA折纸表位(DOEs)允许表位瞬间的程序化空间分布,从而可以使用原子力显微镜(AFM)对功能复合物进行直接成像。 在本文中,作者建立了IgG亲和力对单分子水平上3-20nm内表位横向距离的关键依赖性。瞬时构象的高速AFM成像进一步为在单一事件中从单价到二价的IgG亲和力提供了结构和动态证据,这为包括病毒中和、诊断检测和癌症免疫疗法在内的各种应用提供了非常创新的思路和研究方法。 图1:基于DOE的IgGs捕获 图2:HS-AFM表征DOE限制的IgG构象灵活性和Fab-Fab距离 图3:IgG与DOEs结合的动力学 图4:引起IgG亲和力的工程DOEs 综上所述,作者设计了DOEs,通过利用DNA折纸技术的空间可寻性来模拟表位在病毒颗粒上的距离分布。DOEs的定位能力和刚度使IgG能够在室温下冻住,以便在单分子水平对瞬时的功能性IgG结合构象进行高分辨率成像。通过对DOEs上抗原决定簇横向距离的可编程控制,可以精确确定抗原决定簇与抗原决定簇之间的亲和力。此外,该DOE平台还支持HS-AFM和smFRET分析,以探测DOE上单个IgG结合的动力学。研究发现IgGs可以响应从短到长的表位距离,采取从高紧密度到远距离伸展的灵活构象。重要的是,当两个表位间隔约10nm时,二价IgG的结合动力学和效率最高。总之,DOEs的可设计性和可编程性提供了一种直观的方法来模仿病毒表位的分布。因此,DOEs不仅增加了在单分子水平上理解Ab-Ag相互作用的设计空间,而且为免疫工程提供了潜在的强大平台。 DNA折纸表位(DOEs)的制备需要精密的工艺,需要进行准确的浓度确定后,方可进行抗体结合的相关表征及动力学研究。而文中DOEs的浓度确定即由德国ImplenNanophotometer超微量分光光度计完成。 我们非常荣幸能够服务于国内顶级的科研机构,助力用户完成开拓性的成果,这也是Nanophotometer的实力展现和价值体现。独特的样品压缩技术、无需校准的光程设计、以及高性能的NPOS操作系统,可以加速您的研究进程,获得可靠的、一致的结果。有关Nanophotometer的详细信息,欢迎咨询Implen中国以及各地合作伙伴。 Implen GmbH因普恩(北京)国际贸易有限公司
  • 乳粉充氮包装残氧测试:丹麦Dansensor 手持顶空分析仪CheckPoint3应用
    乳粉,作为婴幼儿和广大消费者日常营养摄入的关键来源,其品质与安全性显得尤为重要。在乳粉的生产和包装流程中,充氮包装(或称气调包装)技术因其在延长产品保质期、保持新鲜度和口感方面的显著效果而被广泛应用。然而,包装内部残留氧气的含量直接影响到充氮包装的质量,因此,进行残氧测试成为了确保乳粉品质与安全性的必要步骤。乳粉在充氮包装后,若包装内部残留氧气过多,将促使乳粉中的脂肪和蛋白质发生氧化反应,这不仅会导致乳粉风味变劣、色泽变化,还会造成营养价值的损失。更为严重的是,过多的残留氧气还可能对消费者的健康构成潜在威胁。通过残氧测试,我们可以准确了解包装内部氧气的残留量,从而评估乳粉的品质和新鲜程度。乳粉作为食品,其安全性无疑是消费者最为关心的方面。在充氮包装过程中,若包装材料存在瑕疵或包装工艺不当,都可能导致包装内部残留过多氧气。这些残留氧气不仅影响乳粉品质,还可能为微生物的滋生提供条件,导致乳粉变质和细菌污染。通过残氧测试,我们可以及时发现包装中的氧气残留问题,并采取相应措施进行改善,从而确保乳粉的安全性。在乳粉的生产过程中,残氧测试和顶空测试主要应用于以下方面:监控包装工艺:通过测试不同包装工艺下乳粉的残氧含量,我们可以评估不同工艺的优劣,进而优化包装工艺,提升乳粉的品质与安全性。评估包装材料:不同材质的包装材料对氧气的阻隔性能有所差异。通过残氧测试,我们可以了解不同包装材料对氧气的阻隔效果,从而选择更适合乳粉包装的材料。监控生产环境:生产环境的湿度、温度等因素也可能影响乳粉的残氧含量。定期进行残氧测试有助于我们监控生产环境的变化,并据此调整生产条件,确保乳粉的品质与安全性。在乳粉的生产和包装过程中,保障产品的品质与安全性一直是乳粉生产企业的首要任务。乳粉充氮包装的残氧测试作为这一环节中的关键步骤,不仅能够准确评估乳粉的品质与新鲜度,还能为乳粉的安全性提供坚实的保障。因此,选择一款高效、准确且易于操作的残氧测试仪、顶空分析仪成为了乳粉生产企业的迫切需求。丹麦MOCON膜康Dansensor原装进口的手持残氧仪CheckPoint 3,正是市场上满足这一需求的杰出代表。这款仪器凭借其良好的性能和便携性,成为了乳粉生产企业进行残氧测试的理想选择。CheckPoint 3手持残氧仪采用固态陶瓷传感器测试氧气浓度,氧气读数分辨率高达0.1%,检测精度为±0.1%。同时,它还配备红外单光束传感器测试二氧化碳浓度,二氧化碳读数分辨率为0.1%,检测精度为±2%(绝对值)。这些较高精度传感器确保了测试结果的准确性和可靠性,为乳粉生产企业提供了强有力的技术支撑。除了较高精度传感器,手持残氧仪CheckPoint 3还具备一系列出色的性能特点。首先,它的分析时间小于10秒,能够快速完成包装袋或容器内顶空气体中氧气和二氧化碳浓度的测试。这对于乳粉生产企业来说,意味着可以更加高效地监控乳粉的品质和安全性。丹麦MOCON膜康Dansensor手持残氧仪CheckPoint 3配备内置采样泵和针头穿刺取样方式,能够自动采集气体样本,无需人工操作。这不仅提高了测试效率,还减少了人为因素对测试结果的影响。丹麦MOCON膜康CheckPoint 3手持残氧仪采用不小于3.5英寸的彩色液晶触摸显示屏,界面直观易懂,操作简便。用户可轻松输入测试方案和配置,如记录操作员信息和产品批次号等。同时,该仪器还支持WiFi连接功能,用户可以通过Web界面实时监控测试结果,并进行数据分析和报表生成。这使得数据管理更加简便、可靠,为乳粉生产企业的决策提供有力支持。丹麦MOCON膜康CheckPoint 3手持残氧仪的丰富配件和轻便易携的特点也是其备受青睐的原因之一。标准配置包括主机、测试针头、过滤器和密封粘垫等,满足用户的基本需求。而仪器重量不超过1Kg,方便用户携带和使用。无论是在生产线上还是实验室中,CheckPoint 3手持残氧仪都能轻松应对各种测试场景。丹麦Dansensor手持顶空分析仪CheckPoint 3凭借其较高精度传感器、快速分析时间、自动取样、直观屏幕显示、WiFi连接和轻便易携等特点,成为了乳粉生产企业进行残氧测试的得力助手。它的应用不仅确保了乳粉的品质与安全性,还为乳粉生产企业的持续发展提供了有力保障。
  • 粒粒皆信息:什么是单颗粒物/单细胞ICP-MS质谱分析法?
    在使用电感耦合等离子质谱法(ICP-MS)进行分析之前,对含有颗粒状残留物的液体样品进行适当的酸消解仍是标准前处理步骤。采用此类或类似样品前处理后,所记录的ICP-MS数据也跟整体粒子数量以及种类连在一起,对需要分析要求更加精细的应用不完全满足需求。2003年,Degueldre首次证明了ICP-MS质谱法可以定量检测单个颗粒物,并引入了单颗粒物(single particle-sp)ICP-MS质谱分析的概念[1]。spICP-MS质谱分析法可以测量单个颗粒内含所有元素的质量以及总颗粒物数浓度,并且提供比其他分析技术好得多的检测极限(微克/千克)。如果有颗粒物的密度和形状信息,还可以根据spICP-MS记录的质量估算单个粒子的直径大小。单颗粒物产生的ICP-MS信号的持续时间非常短(几分之一毫秒)。如果使用扫描型质量分析仪(如四极杆或扇形场等),在毫秒尺度的瞬态信号时长内无法持续记录所有元素信息,通常只能提前选择颗粒物内的一个或两个元素进行数据采集,可能错失其他或关键信息,同时也需要耗时耗力多次重复实验来得到完整的原始数据库。而飞行时间(TOF)质量分析仪可以瞬时测量所有元素(及其同位素),从而能够测量粒子的完整多元素组分信息。如今,spICP-MS质谱分析法最常用于表征无机纳米粒子以及研究其与环境样品[2]和生物系统[3]的暴露影响。spICP-MS质谱并非仅仅限于上述这些领域。另一个引起业内关注的应用是使用spICP-MS质谱仪在线分析大气环境气溶胶中的单个微米/纳米颗粒物[4]。 单颗粒物ICP-MS质谱仪是如何工作的?单颗粒物ICP-MS质谱分析具有以下两个主要要求: 样品中的颗粒物数浓度非常低,以降低将多个颗粒物同时引入ICP-MS质谱仪的可能性 质谱质量分析仪以不到2毫秒的驻留/积累时间不间断运行,以观察持续的单颗粒物事件在实践中,我们可以将任何液体样品导入ICP质谱系统,当中一些液体样品在颗粒物传输和电离方面比其他相对更加高效。取决于采用ICP质谱仪的硬件配置,颗粒物悬浮液通常被稀释到10万-100万个颗粒物/毫升的浓度。当液体样品中的颗粒物数量足够少时,单位时间将只有一个颗粒物进入ICP系统。进入等离子系统,颗粒物将被气化、雾化和电离,形成元素离子。所生成的离子将通过多级差分压强接口从前端ICP系统导向下游质量分析仪,该减压接口用于调节ICP大气压进样口与低压(如10-6毫巴)质量分析仪之间的压力差。逐步减压过程中,系统内置离子光学元件将离子最大效率地传输到质量分析仪。质量分析仪利用电场和/或磁场在离子撞击检测器之前根据其质荷比(m/Q)对元素离子(同位素,或氧化物等)进行有效分离。所生成的质谱图显示在每个质荷比下记录的离子数量。质荷比可用于定性元素(或干扰物)类别,而信号强度则用来定量元素浓度。经ICP源后单颗粒物离子事件产生非常快速的瞬态信号(信号尖状突起),总持续时间一般只有几分之一毫秒。因此,质量分析仪的响应速度需要适配或者更快,从而完整的记录多种离子信号。如前所述,扫描型质量分析仪通常仅针对一种或两种元素,而TOF质量分析仪则能够瞬时记录单颗粒对应的整张质谱(所有质荷比),同时也包含了元素同位素和可能的氧化杂质信息。对于所记录的任何元素(基于质荷比),在瞬态单颗粒物事件持续时间内观察到的总离子信号与单颗粒物中该元素的质量成正比。ICP-MS质谱仪检测到的单颗粒物事件(瞬态信号尖峰)频率则与引入液体样品中的颗粒物数浓度成正比。值得注意的是,不包含信号尖峰的连续平滑信号区域(类似于信号时序图中的背景信号)则代表溶解在液体样品中的相应浓度信息。 为确保所记录的质谱数据包含,且只包含来自单个颗粒物的信号,质量分析仪必须以较快的数据采集效率运行[5]。随着数据采集所需时间的增加,包含两个或多个连续颗粒物信号的事件数量将会相应增加,这会导致后续结果的分析和解读产生偏差。此外,通过在高瞬时分辨率下采集数据,还可以提高信噪比(SNR):与粒子共同单位时间内噪声(对应无颗粒物事件)越少,谱图信噪比将越高,空间检测限则越好。使用spICP-MS质谱仪可实现的空间检测限与特定的元素和其同位素相关,通常在10纳米至数百纳米范围内。无论是将所记录的信号强度转换为元素质量,还是将颗粒物事件频率转换为粒子数浓度,均需要对仪器进行适当的校准。通常,基于参考颗粒物进行校准是最直接的方式,但由于缺乏这些标准颗粒物,这种方式并不直接适用。因此,Pace等 [6]提出了一种替代校准程序,即使用元素标准溶液,同时利用标准程序确定颗粒物传输效率和检测效率。许多分析实验室都在使用这种方法,但其他不同的校准概念在相关文献中也有报道 [7]。超纯水是与ICP-MS质谱仪最兼容的单颗粒物分析溶剂,提供最佳的检测限,但其并不适用于所有系统。此外,在适当样品稀释或颗粒物提取成后,也可以在更复杂的样品基质中进行单颗粒物分析[8],[9]。单颗粒物多元素ICP-MS质谱仪使用由四极杆或扇形场质量分析仪为主的ICP-MS系统进行单颗粒物分析仅限于信息相对简单的样品(比如单元素金属或个别氧化物粒子),因为这类质量分析仪只能在瞬时单颗粒物事件持续时长内记录一种或两种元素信号。相比之下,飞行时间质量分析仪(比如TOFWERK icpTOF系统)则可以记录每个单颗粒物内所有元素及其同位素信号。因此,除了报告元素质量和数量浓度外,基于飞行时间(TOF)的质谱仪还可以精准表征粒子的多元素组分,排除可能的杂质干扰。这种独特的功能对于快速增长的复合纳米粒子分析应用潜力巨大。此外,初始的简单粒子在暴露于复杂环境后经常会发生组分变化,这也使它们的特性和相互作用途径发生变化。单颗粒物多元素ICP-MS系统可以提供有效的方法用于研究这些过程。随着纳米颗粒物在日常产品应用范围和生产规模的持续增加,人们越来越担心其对环境和生命系统(包括人类)可能造成的潜在负面影响。与类似的天然源颗粒物相比,释放到环境中的工程纳米材料的浓度仍然非常低。有效检测出这些人造颗粒物对预测其未来对环境和生命系统的影响至关重要。可以想象,要在复杂的环境背景中准确识别出低浓度颗粒物非常具有挑战性。最近,相关研究人员提出使用多元素spICP-MS质谱分析法对单颗粒物进行指纹识别,提供了解决该问题的一种可能解决方法。举例来说,业界已成功运用该方法在含有天然铈粒子的复杂背景下追踪土壤中的二氧化铈(CeO2)工程纳米颗粒物[2]。延伸阅读1. Degueldre, C. and P.Y. Favarger, Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study. Colloids Surf., A, 2003. 217(1-3): p. 137-142.2. Praetorius, A., et al., Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils. Environ. Sci.: Nano, 2017. 4(2): p. 307-314.3. Scanlan, L.D., et al., Silver Nanowire Exposure Results in Internalization and Toxicity to Daphnia magna. ACS Nano, 2013. 7(12): p. 10681-10694.4. Suzuki, Y., et al., Real-time monitoring and determination of Pb in a single airborne nanoparticle. Journal of Analytical Atomic Spectrometry, 2010. 25(7): p. 947-949.5. Hineman, A. and C. Stephan, Effect of dwell time on single particle inductively coupled plasma mass spectrometry data acquisition quality. Journal of Analytical Atomic Spectrometry, 2014. 29(7): p. 1252-1257.6. Pace, H.E., et al., Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 2011. 83(24): p. 9361-9369.7. Gschwind, S., et al., Capabilities of inductively coupled plasma mass spectrometry for the detection of nanoparticles carried by monodisperse microdroplets. Journal of Analytical Atomic Spectrometry, 2011. 26(6): p. 1166-1174.8. Peters, R.B., et al., Development and validation of single particle ICP-MS for sizing and quantitative determination of nano-silver in chicken meat. Analytical and Bioanalytical Chemistry, 2014. 406(16): p. 3875-3885.9. Mitrano, D.M., et al., Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry. Environmental Toxicology and Chemistry, 2012. 31(1): p. 115-121.
  • 【安捷伦】心谙所需 创新有谱 | 安捷伦新一代智能集成 8697 顶空进样器上市!
    坐在家中,喝着咖啡,从容访问一个浏览界面,即可同时控制、查看顶空进样器及气相色谱?全新上市的安捷伦新一代 8697 顶空进样器,帮您实现!智能互联,简化实验室工作厌倦了不得不查看多个界面来了解仪器状态、控制仪器运行?首款集成气相色谱智能互联的安捷伦顶空进样器 —— Agilent 8697 顶空进样器,从现在起革新您的 GC 工作流程管理方式!8697 顶空进样器将从制药、环境、法医学、材料多个市场纬度提升安捷伦气相、气质所能带给客户的更大的应用空间,以行业领先水平,助力客户,赋能应用,走进先进的智能化分析仪器的新时代!8697 顶空进样器有如下突出优势:可直接与 Agilent 8890、8860 和 Intuvo 9000 气相色谱通讯。这项集成智能互联技术为 GC 分析提供了一种全新的系统管理方法,您可以直接在 GC 界面上查看顶空进样器的状态信息。如此,您便可以一站式访问所需的全部信息。集成智能互联功能还可以使您的 GC 和顶空进样器更好地协同工作,以优化序列通量。如果指定的 GC 运行需要更长时间才能完成,8697 顶空进样器将自动等待,然后再进样下一个样品。在集成智能互联功能的协助下,您仅需通过 GC 系统的浏览器界面,即可远程访问顶空进样器系统。这意味着无论您是否在实验室都可获得仪器状态更新信息。8697 顶空进样器在系统操作、软件及操作界面上,还有如下革新:1. 可靠、值得信赖的系统操作在加压过程中对每个样品瓶进行自动检漏测试,无需耗时的校准过程。所以,您可以相信每一个样品瓶都是密封好的。2. 方法开发和转换工具避免了反复试验和误差8697 顶空进样器具有三个方法开发软件向导,使您能够:无需繁琐的反复试验就可将现有的阀与定量环或压力平衡顶空方法转换为安捷伦方法基于您的具体应用创建顶空方法,一旦您创建了自己的方法,通过参数增量功能可以轻松优化样品瓶平衡时间、柱温箱温度和样品瓶振荡。图 1. Agilent OpenLab 面板为您提供每个样品瓶的一览信息:运行状态、样品类型、执行的序列操作以及柱温箱中的样品瓶3. 直观的 GC 触摸屏界面,使您能够实时获取仪器状态和信息。主界面:一目了然,提供最新系统配置与流路连接状态。仪器实时状态界面:允许您自定义并确定常用的设定值,以便快速访问。8697 顶空:首次在 GC 触摸屏上看到顶空信息。图 2. GC 触摸屏界面卓越的精度、可靠性和简单易用性Agilent 8697 顶空进样器,传承了上一代产品的优秀性能,采用精心开发的技术和功能强大的软件,可助您大幅提升实验效率。它是需要高通量和高性能的中等容量实验室的理想选择。可靠、一致的惰性8697 顶空进样器采用惰性样品流路,可获得一致、可重现、出色的 GC 结果,不会造成分析物损失或降解。久经考验的样品流路8697 顶空进样器拥有与 7697A 顶空进样器相同的独立载气流路。因此,您可以安全地进行样品瓶排气。改进的传输线安装更简单:Captive 隔垫固定螺帽和改进的进样口支架简化了安装,并提供您实验室日常所需的耐用性更稳定:当传输线未安装在 GC 上时,新端盖可巧妙地保护熔融石英简化维护:改进的传输线隔垫意味着现在可以在不更换隔垫的情况下切割熔融石英先进的样品前处理极高的通量:优化的样品叠加,最多可同时加热和振荡 12 个样品瓶出色的进样灵活性:8697 支持 10 mL、20 mL 和 22 mL 样品瓶,并且可以同时运行多种规格的样品瓶便于样品处理的设计容量扩展:两个可移动的支架最多可容纳 48 个样品瓶不间断运行:在顶空进样器运行时,可以更换可移动的样品架,以便添加样品,直到完成整个工作方便的样品前处理:可移动的样品架有助于轻松完成样品前处理,以优化工作流程简化的样品追踪:可选的条形码阅读器支持您的实验室向数字化转型方便的工具访问:顶空所需的工具现拥有一个专用的存放位置了解进度智能暂停按钮和样品盘架 LED 可显示顶空的状态。紧凑小巧,节省实验台空间8697 顶空进样器的体积比市场上传统顶空小的多,但仍能为您提供所期望的安捷伦采样器的可靠性和耐用性。关键应用所需的数据法医学:可靠地测定血液样品中的乙醇含量复杂基质(如血液和生物样品)非常适合进行顶空分析,因为无需大量样品前处理即可保持 GC 洁净。使用 8697 顶空进样器,能够可靠地将乙醇与常见干扰物质分离,并利用可选的条形码阅读器维持监管链。图 3. 安捷伦血醇校验混标(部件号 5190-9765)的 FID 色谱图,证明了所有 12 种组分的转移和分离。将 50 µL 混标与 450 µL 0.1% (v/v) 叔丁醇水溶液于 20 mL 顶空样品瓶中混合,制得样品。制药:简化残留溶剂工作流程8697 顶空进样器可使用与 7697A 相同的方法参数。因此,您可以转移残留溶剂方法,而无需进行方法开发。图 4. 遵循 USP467 的 2A 类溶剂的火焰离子化检测色谱图(1. 甲醇;2. 乙腈;3. 二氯甲烷;4. 叔丁醇;5. 反式-1,2-二氯乙烯;6. 顺式-1,2-二氯乙烯;7. 四氢呋喃;8. 环己烷;9. 甲基环己烷;10. 1,4-二氧六环;11. MIBK/CPME ;12. 甲苯;13. 氯苯;14. 乙苯;15. 间二甲苯/对二甲苯;16. 邻二甲苯)环境:准确检测挥发性有机化合物检测土壤和沉积物中的挥发性有机化合物 (VOCs) 对于满足安全标准和确保合规性至关 重要。顶空进样为土壤和沉积物检测提供了一种直接方法,并且具有残留低、重现性好和方法设置简单等分析效率优势。图 5. 20 µg/L VOC 校准标样选定离子的总离子色谱图关注安捷伦微信公众号,获取更多市场资讯
  • 蛋糕包装氧气透过率对产品质量的影响
    唇动蛋糕主要用面粉、鸡蛋、糖、油配以辅料,经成型、蒸煮、烤制而成一款小小的巧克力蛋糕派。唇动蛋糕中含有丰富的营养成分,且油脂含量高,是一款对氧气比较敏感的糕点类食品。若唇动蛋糕在存储或销售等流通环节中,接触到的氧气量较多,则易引起其中的油脂、蛋白质等成分氧化,微生物滋生,导致唇动蛋糕出现酸败、哈喇等不良的风味,表面出现霉斑,因此,严格控制唇动蛋糕所处环境中的氧气含量是降低其发生变质概率的一个重要的举措,而唇动蛋糕包装用软塑包装的氧气透过率与唇动蛋糕所处环境条件中氧气含量的高低有直接关系。故包装材料阻氧性的优劣是影响保质期内唇动蛋糕品质的重要因素。阻氧性通常用“氧气透过率"表征,氧气透过率越小,说明包装材料的阻氧性越好。 市面上常见的唇动蛋糕大多采用塑料复合膜的包装形式。唇动蛋糕包装的氧气透过率指标怎么检测呢?用什么仪器检测呢? 目前,有关氧气透过率的测试方法主要分为库仑法与压差法两种,分别可参考的标准为GB/T19789-2005《包装材料塑料薄膜和薄片氧气透过性试验库仑计检测法》、GB/T 1038-2000《塑料薄膜和薄片气体透过性试验方法压差法》。此次案例检测选用的样品是某品牌唇动蛋糕包装用塑料复合膜。试验设备就选用Paratronix山东普创公司研发生产的OTR-D3氧气透过率测试仪检测样品的氧气透过率。 OTR-D3氧气透过率测试仪OTR-D3氧气透过率测试仪的试验原理:本设备采用等压法测试原理,即在试验过程中,试样两侧的测试腔内气体压力相等。试验时,试样被装夹在两测试腔之间,测试气体氧气在试样的一侧流动,载气氮气在试样的另一侧流动。在氧气浓度差的作用下,氧气分子会穿过试样扩散到另一侧的氮气中,并被氮气携带至传感器,通过对传感器测试到的氧气浓度进行分析,即可计算出试样的氧气透过率等参数。
  • IKA 艾卡故事--氧弹量热仪之前世今生
    1770年,Josef Black (英国化学家、物理学家)首次提出“量热仪”一词,1780年,拉瓦锡(法国化学家)和拉普拉斯(法国天文学家、数学家)最早将量热仪技术用于物理和化学实验,他们将一只几内亚小鼠放到一个冰桶内,通入空气,小老鼠呼入空气中的氧气排出二氧化碳,其自身产生的热量将一部分冰融化成了水,通过测定下部烧杯中收集到的水可以推算出老鼠释放的热量。为了防止热量向外界散失,冰桶的外部包裹一层冰和水的混合物,由于冰及冰水混合物的温度均为摄氏零度,所以天然构成了一个绝热体系,现在后人也称拉瓦锡等设计的系统为冰量热仪或相变量热仪。氧弹量热仪是用于测量固体或液体样品在一个密闭的容器中(氧弹),充满氧气的环境里,燃烧所产生的热值。“氧弹量热仪”是经常使用的名称。测量的结果称燃烧值、热值、BUT值等。热值测量结果可帮助对产品相关要素进行总结,如得出品质、生理、物理、化学以及成本方面的结论。譬如说,煤炭的发热量是其定价的主要依据,饲料的能量是配方师在做配方设计时首先需要确定下来的重要指标。测定时将1g的固体或液体样品称量后放入坩锅中,将坩锅置于不锈钢的容器(氧弹)中。往燃烧容器/氧弹中充满30bar压力的氧气,氧气的纯度最好为99.95%,样品在氧弹内通过点火丝和绵线引燃,燃烧过程中坩锅的中心温度可达1200°C,同时氧弹内的压力上升。在此条件下,所有的有机物燃烧并氧化。氢生成水,碳生成二氧化碳,样品中的硫将氧化成SO2,SO3,并溶于水,释放出一定的热量(硫酸生成热),空气中的氮气在高压富氧的条件下,会有少量被氧化生产NO2,溶于水释放出一定热量(硝酸生成热)。氧弹量热仪的内筒使用的传热介质为水,氧弹浸没在水中,燃烧时产生的热量通过水扩散出去,为确保燃烧产生的热量不会从系统传到外界和外界的热量不会传进系统里,使用另一个充满水的容器(外桶OV)作为隔热的装置,依据不同的测定原理和外筒温度控制,氧弹量热仪可以分为绝热式量热仪和周边等温量热仪。绝热量热仪在实验中,外桶的温度(TOV)全程跟踪内桶温度(TIV)变化而变化。这种绝热几乎完全隔绝热传递。在保持空调环境温度恒定的条件下,测量几乎不受任何的外界影响。样品燃烧所释放出的热量都将聚集在内筒,并通过内筒的温度传感器进行测量。实验过程中没有热损失,无需像等温量热仪一样做修正计算其温升曲线的典型特征为:实验前期,实验末期可以很快达到“稳态”,即内、外筒的温度达到平衡,不会随着时间的推移而变化。 绝热模式的原理简单,测定结果可靠,但由于其结构复杂,内外桶均需要有独立的冷却加热控制系统,能实现内外桶温度的精准跟踪及控制,所需的技术难度较高,所以后人提出了一种理想化的模型,两个理想的牛顿流体在一端温度恒定时,另一端的温度发生渐进性变化时,两者间的热量交换符合牛顿冷却定律,可以通过瑞方公式、罗-李方程等公式对两者间的热量交换做出模拟计算,其结果就是我们常说的冷却校正系数。等温测量模式,实验过程中外桶的温度(TOV)需要保持恒定。保持外桶温度恒定不要求内外桶的完全绝热,内外桶有少量的热交换。在空调环境温度保持恒定的情况下,需要对内外桶间的少量热交换进行修正计算, 其温升曲线的典型特征是:实验前期,实验末期温度存在“拐点”,对温升终点的判断较为关键,为了准确判断温度变化的趋势,即严格按照瑞方公式进行测定时,所需的测试时间较长,通过“温升趋势”预断来缩短测定时间的方法中,即“快速模式”,温升趋势的预判往往成为实验成败的关键。早期的量热仪产品外筒没有独立的冷却加热系统,为了在实验的前期和末期之间尽量保持外筒水温的基本一致,外筒的水箱容量通常为内筒的的5-10倍,通常为10-20L,但由于外筒没有冷却设备,测定结束后内筒的水也循环进入外筒,所以经过数次测定后外筒温度容易出现缓慢升高的现象,影响了测定的准确性。现在的氧弹量热仪技术日新月异,从结构到功能上均发生了许多的变化,测定时间较早期的手工操作的量热仪而言已极大地缩短,测定精度对于一些进口品牌而言,其5次苯甲酸标定过程中的相对标准偏差已可以达到0.05%,如德国IKA公司,对于国产仪器而言,一些好的品牌其相对标准偏差也可以控制在0.1-0.15%之间。从结构而言,由于恒温水浴等技术的使用,量热仪已抛弃了传统的大肚子外筒,内筒的水量也控制在标准要求的下限,这样其热容量(水当量)将相应减少,温度的平衡时间也将缩短。氧弹的结构发生了明显的变化,充氧接口与放气接口合并,点火电极与氧弹弹体构成点火电路,其主要目的是尽量减少在氧弹上的开口,因为每一个开口对氧弹都意味着增加了额外安全隐患,都意味着需要额外增加密封圈等配件和更多的操作者维护,氧弹的外形设计也发生着明显的变化,氧弹一般由弹筒,弹盖和螺纹环三个部件组成,传统的氧弹其接口放在了上部,相互间用密封环密封,我们知道在点火燃烧时热量集中在中上部,并通过上部对外扩散,由于密封环的阻隔其导热速率将明显下降,德国IKA公司最新推出的C6000系列氧弹,采用了独特的倒扣式设计,接口放在了氧弹的下部,氧弹顶端是一体的圆形弧顶,实验过程中的热量将更易向内筒扩散,也更容易达到温度的平衡,而且在保证其最高330bar的耐压测试标准的同时,将氧弹重量降低了30%,这样实验末期的温度平衡时间将大大缩短,所以其绝热模式的测定时间从原来的15分钟降到了8分钟,周边等温模式的测定时间从22分钟降低到了12分钟。从功能而言,氧弹量热仪已经高度自动化,自动充水,自动排水,有独立的冷却循环水浴和加热系统构成了自动量热仪的水循环系统,自动充氧,自动排废气,可以根据不同标准的要求对氧弹数次充氧放气已完成氧弹内部空气的净化,氧弹自动识别,自动点火,像一些先进的仪器如德国IKA公司的C6000等,甚至可以每次测定点火的能量,自动扣除并自动计算热值,测定结果更为准确。如上所述,下一代的氧弹量热仪产品必将是在满足标准精密度,安全性等基础上,逐步趋向于小型化,自动化,快速测定等优化操作减少劳动量的设计,而且仪器的工作表现需要更为稳定。 关于 IKA ( www.ika.cn ) IKA 集团是实验室前处理, 量热分析, 混合分散工业技术的市场领导者. 磁力搅拌器, 顶置式搅拌器, 分散均质机, 混匀器, 恒温摇床, 研磨机, 旋转蒸发仪, 加热板,恒温循环系统, 量热仪, 实验室反应釜等相关产品构成了IKA实验室分析的产品线, 而工业技术主要包括用于规模生产的混合设备, 分散乳化设备, 捏合设备, 以及从中试到扩大生产的整套解决方案. 集团总部位于德国南部的Staufen, 在美国,中国, 印度, 马来西亚, 日本, 巴西, 韩国等国家都设有分公司. IKA成立于1910年,IKA集团现在可以自豪地回顾过去100年的历史。
  • 还在使用氧化铝?SelectCore SDR苏丹红专用柱来帮忙
    自2005年亨氏辣椒酱被检出含有“苏丹红一号”以来,多家餐饮、食品公司相继“涉红”,苏丹红事件席卷中国。苏丹红是一种化学染色剂,并非食品添加剂。该物质具有偶氮结构,这种化学结构决定了它具有致癌性,对人体的肝肾器官具有明显的毒性作用。因其鲜红的色泽,很多不法商家利用这一特性将其添加到辣椒粉、辣椒酱、辣椒油等辣椒制品中以牟取更高的利润。目前,国标GB/T19681-2005 食品中苏丹红染料的检测方法,使用的前处理柱是中性氧化铝固相萃取柱,存在着活度不易控制、回收率不稳定、净化后油脂较多等问题,严重干扰了苏丹红的检测,因此,寻找一种简便高效的检测食品中苏丹红的方法迫在眉睫。纳谱分析特别开发了苏丹红专用固相萃取小柱,可以快速、高效的提取、检测四种苏丹红,方法具有灵敏度高、重现性好、试剂用量少、油脂去除率高等优点。本实验针对三种不同来源(辣椒粉、辣椒酱、辣椒油)的苏丹红进行提取和检测。适用范围 参照国标GB/T19681-2005 食品中苏丹红染料的检测方法高效液相色谱法,适用于食品中苏丹红染料的检测。净化步骤1、待净化液的制备: 参照国标GB/T19681-2005中样品处理方法,得到待净化液,辣椒油等含油量较高的样品,需先称取2g无水硫酸钠于10 mL离心管中,再加入样品,提取后取上清液上样。2、SPE柱操作流程:(1)活化:SelectCore SDR苏丹红专用柱,规格500mg/6mL,依次使用5 mL二氯甲烷、5 mL正己烷活化SPE柱(2)上样:将待净化液上到SPE柱上(3)淋洗:使用5 mL正己烷淋洗SPE柱,弃去全部淋洗液(4)洗脱:先使用5 mL二氯甲烷洗脱,待5 mL二氯甲烷快要流干时,再加入2 mL二氯甲烷,并收集全部洗脱液,备用(5)将洗脱液在40 °C下氮吹至干,用1 mL乙腈复溶,超声2 min,涡旋10 s,过0.45 μm的有机滤膜,供液相色谱检测液相色谱条件色谱柱:ChromCore C18,4.6 ×150mm,3 μm,120?(厂商:纳谱分析)流动相:A:水;流动相B:乙腈梯度洗脱步骤如下表所示:柱温:30 ℃进样量:20 μL检测波长:500 nm实验谱图和加标回收率数据01苏丹红混标图谱02辣椒粉实验谱图辣椒粉加标回收率数据03辣椒酱实验谱图辣椒酱加标回收率数据04辣椒油实验谱图辣椒油加标回收率数据左为辣椒油提取液经过SelectCore SDR苏丹红专用柱净化后样品颜色右为中性氧化铝SPE柱净化后的颜色由上图可以看出,按照GB/T19681-2005中使用的是中性氧化铝SPE柱(右),经过净化后样品颜色较深,并且能看到明显的油脂。而采用专用柱——SelectCore SDR苏丹红专用柱(左)净化后,样品颜色澄清透明,没有明显的油脂。苏丹红专用柱结论SelectCore SDR苏丹红专用柱可以快速、高效的检测辣椒粉、辣椒酱、辣椒油等辣椒制品中的四种苏丹红,方法具有灵敏度高、重现性好、试剂用量少、油脂去除率高等优点。订货信息本应用相关产品 产品描述货号 苏丹红专用柱SelectCore SDR 500mg/6mL 30/pkgSDR100-060500-1分析柱ChromCore 120 C18 3μm,4.6 ×150mmA001-030012-04615S
  • 科新机电升级装备,引进赛恩思氧氮氢分析仪
    近日,赛恩思氧氮氢分析仪ONH-800在四川科新机电有限公司安装调试完毕。此台设备将用于检测普碳钢、不锈钢焊条等样品中的氧氮氢元素含量。四川科新机电股份有限公司地处美丽的川西明珠,是一家创立于1997年的规范化股份制上市企业,现已发展成为面向核电军工、新能源、石油化工、煤化工、天然气化工等领域的过程装备成套方案解决供应商和进出口贸易的国家高新技术企业。四川科新机电此次采购的是赛恩思ONH-800型氧氮氢分析仪。ONH-800型氧氮氢分析仪是一台功能强大的元素分析仪,可用于检测黑色金属、有色金属、超导材料、半导体材料、稀土材料、陶瓷材料、耐火材料等金属非金属固体材料中的氧、氮、氢浓度。ONH-800整机采用模块化、一体化设计,外观简洁大方;检测系统采用低漂移、高精度、大量程、高灵敏度热导检测器,具有故障率低、可靠性强、稳定性好的特点;仪器参数实时监控、高低含量自动切换、发生错误时自动报警。四川赛恩思仪器专注分析仪器研发生产30余年,现有氧氮氢分析仪、直读光谱仪、高频红外碳硫仪等元素分析仪企业。如果您对赛恩思仪器感兴趣,欢迎联系我们的销售团队,我们将竭诚为您服务。
  • 东南大学司伟博士: 纳米孔单分子测序为最具潜力DNA测序技术
    1996年,Kasianowicz等人首次发现单链DNA和RNA电泳穿过α溶血素(α-HL)纳米孔的时候会产生对应的阻塞电流信号。此后,众多科研学者在这一研究基础上开始了更为广泛的研究。经过二十余年发展,生物纳米孔技术现已开始商业化,且市面已有成型的基于生物纳米孔单分子测序技术的基因测序仪产品。纳米孔最具前景的应用之一是其可以用于第三代DNA测序技术,因其不需要复杂的酶扩增以及荧光标记,且其具有低成本高通量的特点而受到广大研究者们的青睐。纳米孔是单分子测序仪最核心部件图1 纳米孔DNA测序的基本原理图。(a)基于纳米孔的DNA测序传感器搭建示意图,图中显示一条单链DNA正在电泳穿过石墨烯纳米孔。(b)单链DNA过孔时产生的阻塞离子电流信号细节示意图,每个碱基的体积及其与纳米孔之间的相互作用强度不同导致对应的阻塞电流幅值存在差异,从而可以用来区分不同的DNA碱基。【Si Wei, et al. Chin. Sci. Bull., 2014, 59(35): 4929-4941.】纳米孔单分子DNA测序传感器基于库特计数器原理,如图1所示在固态薄膜的顺式端(cis)和反式端(trans)都注满了离子溶液,两端的溶液仅通过纳米孔进行连接,当带电的DNA分子被置入到液池的顺式端后,在纳米孔的两侧施加电压,DNA分子会在电场力的作用下电泳穿过纳米孔,由于DNA碱基自身在孔内的物理占位以及其与纳米孔间较强的相互作用使得通过纳米孔的电流会被阻塞。一条单链DNA(ssDNA)由腺嘌呤(A),鸟嘌呤(G),胸腺嘧啶(T)和胞嘧啶(C)组成。因为四种碱基的尺寸及特征各异,当单链DNA穿过跟自身尺寸相当的纳米孔时,不同的碱基会产生对应幅值的阻塞电流,通过研究这些电流之间的差异就可以实现对DNA四种碱基的辨识,如图1所示。通过分析这些阻塞电流信号(如阻塞电流幅值和过孔时间等),DNA链上所含的碱基很有可能被检测和区分开来。纳米孔作为单分子测序仪器设计与制造的核心检测部件,因此如何保证纳米孔单分子传感器的检测灵敏度、时间空间分辨率、稳定性和寿命等是影响纳米孔单分子测序仪器工作效率和稳定性的关键技术问题。三大技术突破成就了如今的纳米孔单分子测序仪自1996年纳米孔被Kasianowicz等人发现以来,众多科学家投入大量精力深入研究,在研究过程中也遇到很多难题。例如,尽管研究者们都相继报道了纳米孔离子电流可以用于四种碱基的区分,然而他们得到的结论却大相径庭,使得阻塞电流的幅值和相应碱基之间的对应关系至今仍然含糊不清。研究者们对单链DNA均聚物在过孔时产生的阻塞电流幅值跟碱基体积大小的相关性进行了研究,组成DNA四种碱基的体积大小顺序为GATC,理论上DNA碱基的尺寸对离子电流信号的影响较大,然而其与纳米孔的强相互作用在阻塞电流幅值检测方面也会起到主导作用,且在不同的纳米孔材料或者实验条件下获得的实验结果差异较大,这也制约了基于纳米孔DNA测序的发展。经历了20余年的发展,三大技术突破与革新也成就了现今的纳米孔单分子测序仪的研制。首先是纳米孔检测DNA或RNA全新技术方案的提出,其次是采用酶对DNA分子的剪切或复制用于纳米单分子测序技术中,最后是单碱基信号的测序精度精准调控。之后数年的时间,Oxford Nanopore 公司于2013年11月启动了MinION测序仪的早期试用计划,这时首款纳米孔单分子测序仪也正式开始步入人类的视野。便携、低成本和高通量 纳米孔单分子测序成为最具潜力的DNA测序技术人类基因组计划人类基因组计划在2003 年完成人体全序列的基因测定,历时12 年,耗资数十亿美元,人类基因序列图已成为全人类共同的财富。但是,第一代的 Sanger测序方法也给基因组测序贴上了数亿美元的价格标签,让人望而生畏。近两年发展迅猛的第二代测序仪让人类基因组重测序的费用降低到10 万美元以下,测序时间也缩短到6 个月。但是,这样的价格和时间,相对于个人用户仍然太高,极大地限制了其临床应用和基础理论研究。与传统Sanger测序技术相比,纳米孔单分子测序技术的核心优势在于它的便携性、低成本和高通量。强大的市场需求和探索生命科学未知领域的渴望,有力地推动着DNA 检测水平的提高。2004 年,美国国家人类基因组研究所(NHGRI)启动了“千元基因组测序研究项目”, 目的是让人类基因组的测序费用降至1000 美元以下。基于纳米孔的单分子DNA 测序方法是第三代测序技术中成本最低,最具有竞争力的技术。同年,美国国家卫生研究院(NIH)提出了“1000美元测序”的概念,而基于纳米孔的DNA测序技术是最有潜力实现这一目标的方法之一,众多实验研究也进一步验证了纳米孔DNA测序技术的可行性。该方法的优势在于它简化了对DNA 的化学修饰、扩增和表面吸附等工艺,具有结构简洁、速度快、操作简便等特点,同时省去了昂贵的荧光试剂和CCD照相机的费用。最为重要的是它的效率高,单个核苷酸分子通过纳米孔的时间仅在微秒级,如果考虑单个芯片上集成成百上千个纳米孔阵列,有望在24 小时内完成对个体的基因测序,而目前的二代基因测序仪则需要6 个月时间。 商业化进展慢 提高纳米孔稳定性迫在眉睫纳米孔单分子测序技术现有市场的典型产品是Oxford Nanopore Technologies(ONT)公司的MinION纳米孔测序仪,它具有低成本、高通量、读速快、读长长(约150kb)和高便携等特点,因此纳米孔单分子传感器目前已被广泛应用于物理学、生物学和化学等学科涉及单分子应用的科学研究,助力人类科技的发展,造福人类。基于上述纳米孔单分子测序技术的特点,相比传统测序仪器而言,它的典型应用场景之一是极端环境中病毒或细菌的高精度检测。例如,在偏远贫困地区,在疫情爆发或在没有足够的设备资源的情况下,便携的纳米孔单分子测序仪可以快速的协助病毒检测和疾病诊断。数年前西非爆发埃博拉病毒时,单分子测序仪便在病毒检测过程中起到的重要作用。再例如,存放在外太空空间站的土壤和水等是否已经出现微生物依然成谜,要将样品带至地球进行采样分析方能揭晓,而轻便的纳米孔单分子测序仪仅有u盘大小,可以方便的携带至外太空,在其他辅助条件下协助检测。虽然基于纳米孔的单分子测序仪具备很多优势,而且已经进入商业化进程,但是它的市场占有率相比传统测序技术而言依然偏低。其原因主要是目前市场已有的纳米孔测序仪采用的仍然是生物纳米孔和磷脂膜,这样的生物体系不可避免的面临着寿命短和稳定性不持久的缺陷。因此要推进纳米孔单分子测序技术的发展,这些问题必须得到解决。而固体纳米孔(例如氮化硅,二硫化钼)目前的报道也可以辨识单碱基,因此固体纳米孔有望在未来代替生物纳米孔实现稳定、可重复利用的高精度DNA测序。然而固体纳米孔在信噪比方面不如生物纳米孔,而且DNA在相同条件下通过固体纳米孔的速度偏快,因此如何提高固体纳米孔的信噪比和实现有效的DNA控速也是亟需解决的关键科学问题。作者简介:司伟,博士,东南大学硕导/讲师,2020年度东南大学“至善青年学者”,江苏省2019年度优秀博士学位论文和东南大学2019年度优秀博士学位论文获得者,入选2019年、2020年东南大学机械工程学院“优才培育计划”,担任《MaterialsInternational》(ISSN: 2668-5728)期刊助理编辑和《Bioengineering International》(ISSN 2668-7119)期刊编委,获得2019年Nanotechnology期刊杰出审稿人奖。主要研究方向:(1)机械操控及机器人技术、(2)工程流体动力学及传感器、(3)结构工艺设计及加工制造、(4)程序语言算法和三维建模与仿真。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制