当前位置: 仪器信息网 > 行业主题 > >

瞬态耦合

仪器信息网瞬态耦合专题为您整合瞬态耦合相关的最新文章,在瞬态耦合专题,您不仅可以免费浏览瞬态耦合的资讯, 同时您还可以浏览瞬态耦合的相关资料、解决方案,参与社区瞬态耦合话题讨论。

瞬态耦合相关的论坛

  • 【分享】科研级稳态瞬态荧光光谱仪综合功能

    产品技术特点说明:[B]光源[/B]垂直安装氙灯,避免水平安装的下垂、受热不稳定和短寿命。非球面反射镜能保证全部波长线形聚焦到狭缝,提高光源能量利用率,避免透镜聚焦的色差。稳态采用连续氙灯,磷光寿命采用变频闪烁氙灯的双光源自动控制灯室,给您最优化的数据。[B]狭缝[/B]软件自动控制,带宽0-30nm, 最小步进0.05nm,保证最大的分辨率和数据再现性。[B]激发单色仪[/B]经典的Czery-turner设计安装,采用非球面的反射镜,保证光栅衍射光斑适应狭缝高度。平面刻线光栅,330nm/750nm闪耀角保证紫外区到红外区(200-1100nm)的最大光能量。最高的杂散光抑制率1E-10,提供最好的固体及散光样品测量信号。双单色器耦合的双光栅单色器,专利的单驱联动控制双光栅技术,软件即可完成双光栅的波长校正。最小扫描步进0.02nm,提供最精细的扫描数据。所有光学元件来自SPEX工厂。它是哈勃望远镜的光学元件供应商。[B]光栅在轴扫描[/B]激发单色仪和发射单色仪都采用光栅在轴扫描设计,光栅表面和旋转轴处在一个平面,保证全波段准确性。[B]参比检测器[/B]一个光电二极管在激发光源到达样品前对光源强度进行监控,实时修正入射能量变化。带有NIST标准光源获取的校正文件。[B]样品仓[/B]样品仓提供几乎所有您需要的附件的安装。采用挡板隔离光学部件,避免粉尘和样品污染,延长仪器使用寿命。[B]发射单色仪[/B]所有激发单色仪的特点同样具备,500nm/1000nm闪耀波长保证可见和红外区的最大效率。采用NIST标准光源获取的校正文件,去除来自光栅和检测器的响应系数。[B]检测器[/B]采用光子计数检测器,保证极微弱信号的采集。出厂的优化设置,提供最大的计数速率,最大消除暗噪声。标准配置为R-928P光电倍增管,满足 200-850nm要求;室温使用,减少由于供电或环境造成的数据波动。红外区采用电子制冷R-10330-75P光电倍增管,满足950-1700nm(瞬态900-1700nm)的测试要求。都能够实现TCSPC荧光寿命的配置升级。[B]数据采集和处理[/B]采用FluoroEssence软件,对于主机可以进行完全的自动控制;整个控制软件耦合在最为著名的ORIGIN软件中,提供最强大的数据处理功能;[B]T型光学系统[/B]具有稳固而且双波长同时测定的特点[B]全反射聚焦光路[/B]:a)对波长无歧视,没有采用透镜造成的色差和波长损失。b)色差对固体样品测量的影响:固体属于表面荧光,由于色差,固体表面的不可移动性,不同波长入射,光斑大小及光学密度有变化,造成被测量样品不同的波长光斑覆盖范围不同,定量的光致发光量子产率会有较大的偏离。而且这种表观的荧光光谱是无法校正的。[B]荧光寿命拟合功能[/B]从2009年起,开放全部的拟合软件功能:软件来自IBH公司享誉全球多年的Datastation数据采集软件 和DAS6拟合软件。a)1-5 exponentialsb)Lifetime Distribution c)Fit to exponential series d)Anisotropy e)Froster-type Energy transfer f)Yokota-Tanimoto energy transfer g)Micellar Quenching h)Globals i)Batch Analysis

  • 【原创】JY 稳态/瞬态荧光光谱仪FluoroLog-3最新功能介绍

    【原创】JY 稳态/瞬态荧光光谱仪FluoroLog-3最新功能介绍

    [b]只要发光,您就可以用FLuoroLog检测稳态方面[/b]:为您提供激发谱、发射谱、同步谱、EEM三维谱及动态扫描;[b]测量对象[/b]:无论块体、粉体、液体或气体,无论微量还是常量,无论是在线(远程测量)还是温度控制,无论是常规还是微区空间分辨、时间分辨,无论是化学发光、生物发光或光纤导入的射线发光,简单透射荧光及角度依赖性等等,可以为您提供解决方案。瞬态方面:可以选配频域技术,提供快速的荧光寿命测量,在比较的常规配置下,满足20ps-10s范围寿命的获取。选取TCSPC的单光子计数测量技术,最新的迷你NanoLED光源,密集覆盖从250nm-1310nm的范围加之1MHz的闪烁频率和竞争力的价格,为TCSPC带来全新的形象。技术特点:[b]全反射光学系统[/b]无论灯室还是单色仪,全部采用反射式光学结构,以避免透镜带来的色差及光损失。透镜聚焦的焦距是波长的函数,在全色光经过透镜后会在轴向分布聚焦点,这种色差带来的光学强度的相关响应,是无法采用校正来消除的。对于全波段的定量,特别是光致发光绝对量子产率的测定特别重要。[b]光栅在轴扫描[/b]所有光栅采用在轴扫描,光栅扫描转动时光栅表面和旋转轴在一个平面,保证全波段的波长准确性。[b]模块化功能,模块化结构[/b]结构模块化、功能模块化,为您的需要定制打造,细节的满足您的科研要求,预留可能的升级空间,为将来的科研预留扩展。[b]多功能的样品仓[/b]样品仓提供几乎所有您需要的附件的安装。采用挡板隔离光学部件,避免粉尘和样品污染,延长仪器使用寿命。预留激光器、电缆及气氛接口,全面适合您的需求。可选的T型光学系统,用于双波长测试及更宽的波长升级需要。[b]软件部分[/b]稳态软件耦合在最为著名的数据图谱处理软件Origin中,最新版本的Fluoressence软件及升级包,彻底克服耦合中不稳定现象,让您充分享受数据轻松处理的快乐。全球公认的Datastation 和DAS6瞬态数据采集及数据拟合软件,满足您荧光寿命测试的需求[b]优异的光学元件及降噪的设计理念[/b]所有光学元件来自Horiba Jobin Yvon旗下Spex工厂,它是世界上最为著名的光学元件供应商,也是哈勃望远镜的元件供应商。采用高质量光学元件降低光学噪声,而不依赖单纯的电子增益,特别有利于采集来自固体及散光材料的真实发光信号。[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101520_175149_1609847_3.jpg[/img]

  • 求教稳态瞬态荧光光谱仪

    实验室打算买一台稳态瞬态荧光光谱仪,打算做半导体材料、催化剂的稳态光谱,及半导体的荧光寿命,不知哪家的仪器好呀。调研过EI和JY,请各位大虾指点,先谢了

  • 求教稳态瞬态荧光光谱仪

    实验室打算买一台稳态瞬态荧光光谱仪,打算做半导体材料、催化剂的稳态光谱,及半导体的荧光寿命,不知哪家的仪器好呀。调研过EI和JY,请各位大虾指点

  • 【原创】瞬态法材料热物性测量简介

    众所周知,固体材料的热导率、热扩散系数、比热等热物理性质,随着材料,材料的结构、密度、多孔性、导电性、含湿率和温度的不同而变化。有些材料还与方向有关。对应于不同的材料和不同的试验条件,测量值会有很大的差异。测量材料的热物理性质,在科学研究和工程应用上,具有至关重要的意义;热物性测量与力学测量、电学测量、光学测量等一样,是物性研究和应用的基本测量技术之一。材料热物理性质可以用稳态法或瞬态法进行测量。目前,国内、外主要使用稳态法测量材料的热导率。有仪器采用瞬态法测量材料的热扩散系数、热导率和定压比热等热物理性质。所谓瞬态测量,是指在加热升温,或停止加热后的降温过程中,实现对材料热物理性质的测量。瞬态测量不要求恒温环境,测量系统也无需达到或保持热平衡状态。瞬态法的理想模型为无限大介质中的一维非稳态导热问题,具体为无限大的热源在无限大介质中处于初始热平衡状态下受到瞬间加热脉冲而引起的热传导过程。瞬态法的测量时间极短。目前多用的方法有: 热线法; 平面热源法:1恒流法,2脉冲法; 热针法;热线法:很多仪器采用了热线法,具有代表性的是日本的一些仪器。但是热线法在后期的算法处理上损失的信息比较多,精度很低。平面热源法:平面热源法,是指加热热源为一理想平面的片状物,用于对无限大均匀材料进行加热测量的方法。对平面热源的基本要求:一是厚度可以略而不计;二是在有效加热面积范围内,单位面积发出的热量不随时间变化,即热源的热流强度保持均匀、恒定;三是加热片有效加热面积与试件的横截面积相等。用平面热源法加热测量时,只要加热片足够大,就可以认为热流只在垂直于热源平面的方向上传导。热针法:采用圆柱面热源的热针,是指将电加热元件、测温元件,集合在同一器件上,制成的针状探测器件。表面上和热线法很相似,但后期处理上相对热线法从理论上有很大的不同,精度大为提高。

  • 瞬态平面热源法热导率测试中的各种参考材料

    瞬态平面热源法热导率测试中的各种参考材料

    摘要:瞬态平面热源法是一种准确、快速的材料热物理性能测试方法,其热导率测试范围可以覆盖从绝热材料到高导热材料。为了验证和考核瞬态平面热源法的测量准确性,对美国ANTER公司提供的各种热导率数值的参考材料进行测试。本文罗列出所有这些参考材料以及相应的热导率数据以供在具体测试中的应用。1. 前言瞬态平面热源法作为一种绝对测量方法,在理论上可以达到很高的测量精度。在试样尺寸满足测试方法规定的边界条件基础上,热导率的测量范围可以没有限制。因此,对于均质材料,采用HOTDISK瞬态平面热源法不失为一种操作简便和测量精度高的有效方法,在温度不高的范围内(200℃以下),这种方法可以作为一种标准方法来使用,并与其它热导率测试方法一起形成有效的补充和相互比对,甚至可以用于校准其它测试方法。瞬态平面热源法是一种绝对测试方法,自身并不需要进行校准。但为了验证和考核瞬态平面热源法的测量准确性和测试范围,我们为瞬态平面热源法配置了各个不同热导率数值范围的参考材料,这些参考材料的直径都在50mm以上以便各种瞬态平面热源法热导率测试探头使用。本文罗列出所有这些参考材料以及相应的热导率数据以供在具体测试中的应用。2. 参考材料清单按照热导率数据从小达到的顺序,以下是各种参考材料的名称和实物照片。(1)美国NIST标准参考材料:SRM 1453(发泡聚苯乙烯板),尺寸100×100×10mm,热导率范围为0.03W/mK以下。标准参考材料实物如图1所示。http://ng1.17img.cn/bbsfiles/images/2016/01/201601311858_584006_3384_3.jpg图1 美国NIST标准参考材料SRM 1453(2)美国ANTER公司参考材料:Vespel(纯聚酰亚胺),尺寸Φ50.8×25.4mm,热导率范围为0.3W/mK以下。参考材料实物如图2所示。http://ng1.17img.cn/bbsfiles/images/2016/01/201601311904_584007_3384_3.jpg图2 美国ANTER公司参考材料 纯聚酰亚胺Vespel(3)美国ANTER公司参考材料:Pyroceram 9606(高温陶瓷),尺寸Φ50.8×25.4mm,热导率范围为4W/mK以下。参考材料实物如图3所示。http://ng1.17img.cn/bbsfiles/images/2016/01/201601311905_584008_3384_3.jpg图3 美国ANTER公司参考材料 Pyroceram 9606(高温陶瓷)(4)美国ANTER公司参考材料:304不锈钢,尺寸Φ50.8×25.4mm,热导率范围为14W/mK以下。参考材料实物如图4所示。http://ng1.17img.cn/bbsfiles/images/2016/01/201601311906_584009_3384_3.jpg图4 美国ANTER公司参考材料 304不锈钢(5)瑞典HOTDISK公司参考材料:304不锈钢,尺寸Φ50×30mm,热导率范围为14W/mK以下。参考材料实物如图5所示。http://ng1.17img.cn/bbsfiles/images/2016/01/201601311906_584011_3384_3.jpg图5 瑞典HOTDISK公司参考材料 304不锈钢(6)美国ANTER公司参考材料:氧化铝,尺寸Φ50.8×25.4mm,热导率范围为35W/mK以下。参考材料实物如图6所示。http://ng1.17img.cn/bbsfiles/images/2016/01/201601311906_584012_3384_3.jpg图6 美国ANTER公司参考材料 氧化铝(7)美国ANTER公司参考材料:电解纯铁,尺寸Φ50.8×25.4mm,热导率范围为60W/mK以下。参考材料实物如图7所示。http://ng1.17img.cn/bbsfiles/images/2016/01/201601311907_584013_3384_3.jpg图7 美国ANTER公司参考材料 电解纯铁(8)美国ANTER公司参考材料:纯镍,尺寸Φ50.8×50.8mm,热导率范围为60W/mK以下。参考材料实物如图8所示。http://ng1.17img.cn/bbsfiles/images/2016/01/201601311907_584014_3384_3.jpg图8 美国ANTER公司参考材料 纯镍(9)美国ANTER公司参考材料:AXM-5Q石墨,尺寸Φ50.8×50.8mm,热导率范围为110W/mK以下。参考材料实物如图9所示。http://ng1.17img.cn/bbsfiles/images/2016/01/201601311908_584015_3384_3.jpg图9 美国ANTER公司参考材料 AXM-5Q石墨通过以上参考材料可以看出,所配置的参考材料覆盖了0.03至110W/mK五个数量级范围的热导率,基本能满足绝大多数材料热导率性能测试的校对和验证。3. 参考材料热导率数据由于所涉及到的八种典型材料的热导率数据包含了大量拟合公式,很不方便用网页的形式表达,详细公式和图表数据可以参看附件中的研究报告。

  • 荧光稳态瞬态国外论文集

    荧光稳态瞬态国外论文 想要的可以把邮箱留给我,我发给你们 我的邮箱是kristy_li@163.com[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=30913]论文[/url]

  • 稳态/瞬态荧光光谱仪的使用与维护

    稳态/瞬态荧光光谱仪的使用与维护

    [align=center][font=黑体]稳态[/font][font='Times New Roman',serif]/[/font][font=黑体]瞬态荧光光谱仪的维护与管理[/font][/align][font=宋体]摘要:稳态[/font][font='Times New Roman',serif]/[/font][font=宋体]瞬态荧光光谱仪(型号:[/font][font='Times New Roman',serif]FLS1000[/font][font=宋体])是一款功能模块化的测试光致发光的光谱仪,专注于稳态及时间分辨光谱测试,主要应用于光物理、化学、材料科学和生命科学等方面,已成为各学科领域不可或缺的重要技术表征手段。本文系统介绍稳态[/font][font='Times New Roman',serif]/[/font][font=宋体]瞬态荧光光谱仪相关附件的维护以及光谱仪的管理,为光谱仪的开发、应用及使用管理提供借鉴。[/font][font=宋体]关键词:光谱仪[/font][font=宋体]维护[/font][font=宋体]管理[/font][font='Times New Roman',serif] [/font][font='Times New Roman',serif]一、 [/font][font=宋体]稳态[/font][font='Times New Roman',serif]/[/font][font=宋体]瞬态荧光光谱仪相关附件的维护[/font][font=宋体]光源简介及维护:稳态[/font][font='Times New Roman',serif]/[/font][font=宋体]瞬态荧光光谱仪主要由激发源(光源)、样品仓和检测器组成。其中,光源分为稳态光源和瞬态光源。稳态光源一般是光谱及能量连续输出的氙灯,主要用于稳态谱、量子产率的测试。瞬态光源为频率可调、具有特定脉宽的脉冲输出光源,主要有微秒灯、纳秒灯和皮秒脉冲激光器等,主要用于荧光寿命的测试。以本院购买的[/font][font='Times New Roman',serif]FLS1000[/font][font=宋体]光谱仪系列为例,配备三种标准光源:连续氙灯(稳态光源)、[/font][font='Times New Roman',serif]μF2[/font][font=宋体]微秒脉冲氙灯、[/font][font='Times New Roman',serif]nF920[/font][font=宋体]纳秒灯以及皮秒级脉冲激光器[/font][font='Times New Roman',serif](EPLs)[/font][font=宋体]。[/font][font=宋体]稳态光源氙灯在启亮以后会发热,长时间使用后,一定要关灯进行散热,散热结束方可关闭氙灯电源。氙灯使用寿命一般在[/font][font='Times New Roman',serif]1000[/font][font=宋体]小时,在使用寿命达到以后,要及时更换氙灯。相对而言,瞬态光源中的微秒灯和脉冲激光器维护较简单,禁止频繁开、关灯源。同时,在频率由最大切换至最小(或由最小切换至最大)过程中,建议缓慢切换。纳秒灯俗称氢灯,在使用过程中,首先观察氢压是否在[/font][font='Times New Roman',serif]0.39-0.43bar[/font][font=宋体]范围内,如果氢压过高,需要进行泄压操作。如果氢压过低,需要重新灌注氢气进行升压。方法如下:将阀门缓慢打开与大[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]通,即可进行泄压。灌注氢气加压过程需阀门一端接通油泵进行抽真空操作,一端与氢气源接通进行灌注,反复两端拧动阀门,进行抽气、充气,待氢气灌注以后,调节压力至[/font][font='Times New Roman',serif]0.39-0.43bar[/font][font=宋体]。纳秒灯长久使用以后,纳秒灯电极很容易氧化,体现出来的是,及时氢压符合要求,纳秒灯也无法启亮。此时,设备管理员需取出电极打磨,然后重新安装。方法如下:先泻氢压,拔下光纤,打开纳秒灯仓门,分别取下尖头电极和平头电极,用砂布打磨电极至光亮,然后依次安装电极(两电极相隔[/font][font='Times New Roman',serif]1 mm[/font][font=宋体]),通过观察仓可以观察到四个像(两个实像、两个虚像),安装成功的成像效果如图所示(可以通过手机拍照显示):[/font][align=center][font='Times New Roman',serif][img=,169,]file:///C:/Users/Lenovo/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png[/img][/font][/align][font=宋体]检测器简介及维护:[/font][font='Times New Roman',serif]FLS1000[/font][font=宋体]内含高增益光电倍增管[/font][font='Times New Roman',serif](PMT)[/font][font=宋体]检测器,适用于稳态谱和时间分辨过程中的光子计数收集。最常用到的是紫外[/font][font='Times New Roman',serif]-[/font][font=宋体]可见检测器,其对应光谱检测范围[/font][font='Times New Roman',serif]200-980nm[/font][font=宋体]。检测器使用前通常都需要降温,以减少黑暗计数率,提升信噪比,紫外[/font][font='Times New Roman',serif]-[/font][font=宋体]可见检测器有自带半导体制冷片,可提供[/font][font='Times New Roman',serif]-20 ℃[/font][font=宋体]的工作温度。需要注意的是检测过程中,样品实际信号不能超过检测器的最大阈值。另外,[/font][font='Times New Roman',serif]FLS1000[/font][font=宋体]还配备有近红外检测器,因近红外检测器的噪音较高,需要外加液氮制冷达到[/font][font='Times New Roman',serif]77 k[/font][font=宋体]的工作温度降低噪音信号,对应光谱检测范围[/font][font='Times New Roman',serif]300-1700nm[/font][font=宋体]。近红外检测器使用前,需要使用液氮降温[/font][font='Times New Roman',serif]2-3[/font][font=宋体]小时。[/font][font=宋体]样品仓内配备有固体支架、液体支架,根据实际实验需要,更换不同的支架来进行测试。定期清理样品仓,保证样品仓的干净、整洁。[/font][font=宋体]二、稳态[/font][font='Times New Roman',serif]/[/font][font=宋体]瞬态荧光光谱仪的管理[/font][font=宋体]由于[/font][font='Times New Roman',serif]FLS1000[/font][font=宋体]的功能较多,并且,随着科研的发展,科研需求呈现多样化,因此,如何在满足多样化需求的前提下提高仪器的使用效率,并减少设备故障,是需要思考的重要问题。[/font][font='Times New Roman',serif]FLS1000[/font][font=宋体]主要采取以下培训管理模式:[/font][font=宋体]([/font][font='Times New Roman',serif]1[/font][font=宋体])集中培训,自行测试[/font][font=宋体]集中组织学生实地参观,进行实物观摩培训学习,面对实物,分模块详细介绍光谱仪的基本构造(激发源、样品仓、检测器)、工作原理、功能、附件的操作特点等,详细讲解样品制备并进行操作流程演示,根据样品的形状(粉末、液体、薄膜)介绍三种制样和上样方法,两种样品支架的安装方法和注意事项。重点介绍如何根据测试不同项目选择不同的激发源和检测器。[/font][font=宋体]根据不同的测试项目,首先讲解荧光光谱(激发和发射光谱)的测试采集,实物演示激发源的选择和开启、上样,详细讲解参数设置、信号调节以及条件优化等。然后,讲述荧光寿命的测试,从荧光寿命的定义出发,引导学生思考寿命衰减测试与光谱测试的不同,从而更深入的理解如何设置和调节参数,如何优化测试条件。此两项测试属于基础测试,操作简单,参数优化较容易。在此基础上,针对有测试需求的学生,进一步讲解磷光光谱和长寿命测试方法,着重讲解门控法测试磷光光谱的原理。有关磷光的测试,测试效果很大程度上依赖于磷光的强弱和寿命长短,信号调节、参数设置和优化相对而言较为困难。[/font][font=宋体]关于低温、变温光谱与寿命测试,着重讲解演示如何将常温系统进行升级拓展,变装成低温、变温系统,并引导学生进行对比,透彻理解低、变温测试与常温测试的异同点。[/font][font=宋体]([/font][font='Times New Roman',serif]2[/font][font=宋体])重点培训,专人专时测样[/font][font=宋体]量子产率测试是一项极为精确的测试,所用到的附件[/font][font='Times New Roman',serif]-[/font][font=宋体]积分球是影响测试结果的关键性因素,而在测试过程中,由于静电作用或经验不足,粉尘或者样品粉末极容易附着于积分球内,造成积分球污染,一方面影响测试结果,另一方面,给仪器维护带来不便。通过前期的试运行一年,发现量子产率测试的总时长短,测试时间分散,测试人员较多。基于此,对于使用积分球测试量子产率,提出了重点培训,专人、专时测样的培训管理制度。每课题组或单位指派两名学生,重点培训量子产率测试方法,从原理、测试方法、注意事项、数据分析等方面全面培训并考核。例如:每月月初和月中分别固定两天,不做任何其他测试,专门用于测试量子产率。该课题组内所有需要测试量子产率的样品,由重点培训人带领送样人在固定的时间共同完成。重点培训,专人、专时测样的管理模式,按需求重点培训一批专业度高、熟练度高的专业人员,并将测试时间集中,减少积分球短时间多频次暴露,很大程度上减少了积分球污染的可能。同时,重点培训人带领送样人共同测试有效解决了因沟通不及时导致测试效率低等问题。[/font][font=宋体]([/font][font='Times New Roman',serif]3[/font][font=宋体])上机考核[/font][font=宋体]根据科研实际情况,模块化选择考核项目,从开机、原理、参数调节、注意事项等方面考察用户知识掌握情况和实践水平,针对关键性步骤反复强调和指导,并根据实际测试过程学生碰到的疑难问题,将实践中总结的经验传授给学生。最后经专业技术教师考核,认定学生已掌握理论知识和实践操作流程,实践操作符合规范,能规范完成各项测试并完成数据分析的学生可以获得独立上机操作的权限。作为专业技术教师,[/font][font='Times New Roman',serif]“[/font][font=宋体]授之鱼不如授之以渔[/font][font='Times New Roman',serif]”[/font][font=宋体],在培训和考核过程中,教师的作用,一方面让学生成功获得规范测试的能力,更重要的是,要让学生学会分析问题和解决问题的能力。每位学生的科研方向和需求不同,碰到的问题各异,实验测试是解决问题的一种手段,要让学生知其然更知其所以然,从根源上分析问题并解决问题。通过考核获得独立上机权限的同学帮带新同学,帮助新同学完成培训。这种[/font][font='Times New Roman',serif]“[/font][font=宋体]老带新[/font][font='Times New Roman',serif]”[/font][font=宋体]的培训模式发挥了学生的主观能动性,增强了学生的责任意识和团结合作的意识,同时,也减轻了专业技术教师的压力,更有利于仪器新功能开发和拓展工作的开展。培训完成以后,经过教师考核合格的学生可以获得独立上机操作的权限。通过这种[/font][font='Times New Roman',serif]“[/font][font=宋体]传[/font][font='Times New Roman',serif]-[/font][font=宋体]帮[/font][font='Times New Roman',serif]-[/font][font=宋体]带[/font][font='Times New Roman',serif]”[/font][font=宋体]的培训考核模式,不断培训更多的学生,让更多学生成为测试小能手。[/font][font='Times New Roman',serif]三、 [/font][font=宋体]结语[/font][font=宋体]本文介绍了稳态[/font][font='Times New Roman',serif]/[/font][font=宋体]瞬态荧光光谱仪的附件结构及维护方法,并结合研究院实际介绍了管理模式,提高仪器使用效率的同时,降低了仪器故障率,为光谱仪的开发、应用及使用管理提供借鉴。[/font]

  • 请教瞬态荧光光谱和荧光寿命成像的区别?

    瞬态荧光光谱是用来测荧光寿命,荧光衰减曲线的,但是荧光寿命成像(FLIM)的时候也能得到各个点的衰减曲线,也能得到荧光寿命。这两个一样么?能直接用FLIM来做荧光寿命的分析么?求高手指教~不胜感激

  • FLS1000瞬态稳态荧光光谱仪硬件操作培训微课

    FLS1000瞬态稳态荧光光谱仪是稳态光谱、寿命测试的科研利器,作为一台功能强大的“大光谱”,规范化的操作是测试准确、保持仪器良好状态的前提。本次参赛的作品,包含规范的硬件操作内容,可供师生反复观看,便于复

  • 采用瞬态平面热源法测量不同密度聚氨酯泡沫塑料热导率

    采用瞬态平面热源法测量不同密度聚氨酯泡沫塑料热导率

    [color=#990000]摘要:针对一系列不同密度的硬质聚氨酯泡沫塑料被测样品,采用瞬态平面热源法(HOT DISK法)导热仪,在常温常压下进行了导热系数测试,以了解导热系数随密度的变化规律。测试结果显示聚氨酯泡沫塑料导热系数随密度增大呈单调线性升高。[/color][size=18px][color=#990000]一、测试信息[/color][/size](1)目的:测试不同密度硬质聚氨酯泡沫塑料的导热系数。(2)测试方法:瞬态平面热源法(HOT DISK法)——ISO 22007-2-2008。(3)测试温度:24℃、常压大气。(4)样品密度:45、65、80、100、130、150、200和250 kg/m3。[size=18px][color=#990000]二、样品及其测试[/color][/size][align=center][img=瞬态平面热源法热导率测试,690,340]https://ng1.17img.cn/bbsfiles/images/2021/11/202111241517577586_8445_3384_3.png!w690x340.jpg[/img][/align][align=center][img=瞬态平面热源法热导率测试,400,385]https://ng1.17img.cn/bbsfiles/images/2021/11/202111241518459698_2069_3384_3.png!w400x385.jpg[/img][/align][size=18px][color=#990000]三、导热系数测量结果[/color][/size][align=center][img=瞬态平面热源法热导率测试,690,400]https://ng1.17img.cn/bbsfiles/images/2021/11/202111241519073541_6342_3384_3.png!w690x400.jpg[/img][/align]

  • 关于DLTS深能级瞬态谱仪量测的样品前处理方法

    背景:半导体行业,样品为单晶抛光硅片,量测分析硅片体内的Fe、Cr、Ni、Cu元素的浓度,即单位为atoms/cm3目前已知需要使用深能级瞬态谱仪进行量测,但是样品需制备成肖特基模型才可以进行量测问题:基于单晶抛光硅片,如何制作肖特基模型,目前知道的一个方法是在晶圆表面溅射Ti金属层,进而形成PN结,但是找不到相应的机台。除此之外,还有什么别的方法吗?最好有推荐的机型,感谢

  • 采用瞬态平面热源法测量NIST标准参考材料SRM 1453热导率随真空度的变化

    采用瞬态平面热源法测量NIST标准参考材料SRM 1453热导率随真空度的变化

    1. 测试目的 美国国家标准与技术研究院(NIST)出品的标准参考材料泡沫聚苯乙烯板SRM 1453主要用于281~313 K温度范围内各种热导率测试仪器和设备的标定和校准,是目前国内外各种低热导率测试方法(稳态保护热板法和稳态热流计法)热导率测试的计量溯源,同样此标准参考材料也可以用于瞬态平面热源法热导率测试的标定和校准,以验证测试方法和测试设备的测量准确性。为此,采用上海依阳公司出品的瞬态平面热源法热导率测试系统对NIST SRM 1453标准参考材料进行热导率测试,以期实现以下目的:(1)评测和验证上海依阳公司瞬态平面热源法热导率测试系统的测量准确性,重点验证低导热材料(热导率0.03W/mK左右)测量的准确性。(2)NIST标准参考材料SRM 1453是一种典型的泡沫聚苯乙烯板,由于低密度和具有一定气孔率,所以这种材料的热导率会随真空度增高而减小。因此希望通过在不同真空度下测试SRM 1453的热导率,评估上海依阳公司瞬态平面热源法热导率测试系统测量极低热导率(小于0.03W/mK)的能力。(3)通过真空控制和真空腔提供变真空测试环境,在1E-04~1E+03Pa覆盖七个数量级的真空度变化范围内,测试NIST标准参考材料SRM 1453在不同真空度下的热导率,得到一条热导率随真空度变化的完整曲线,以期获得热导率随真空度变化的规律。2. 低温变真空瞬态平面热源法热导率测量系统 瞬态平面热源法热导率测量系统是依阳公司低温变真空环境热物理性能测试系统的一部分,采用HOTDISK公司配套产品进行热导率测试,配套主机如图1所示。选择HOTDISK公司的这台测量装置进行配套,主要考虑了以下几方面因素:(1)在采用瞬态平面热源法测试过程中,只需要简单地将探头固定在两块被测试样之间,在试样和探头温度恒定后,测试过程迅速。这样使得与试样直接发生关系的相关装置非常简单,便于对被测试样加载各种环境条件,这非常有助于进行低温和真空环境的材料热导率测试。 (2)瞬态平面热源法的热导率测试范围宽泛,基本可以覆盖绝大多数材料的热导率测试。有此采用一台这种测试仪器就可以实现金属和非金属的热导率测试,特别是低温和深低温环境下多涉及隔热材料和金属结构材料,以往至少需要两套大型测试设备才能分别实现隔热材料和金属材料的热导率测试,现在可以通过一套设备完美的解决热导率测试问题。(3)瞬态平面热源法热导率测试核心装置比较小,所需试样尺寸也不大,这就为多试样同时测量提供了可能。低温变真空环境材料热物理性能测试系统如图2所示,这套系统除了可以进行热导率测试能力之外,主要功能是模拟空间低温高真空环境,测试空间材料的低温热辐射性能。http://ng1.17img.cn/bbsfiles/images/2016/02/201602041708_584268_3384_3.png图1 瑞典HOTDISK公司热常数分析仪http://ng1.17img.cn/bbsfiles/images/2016/02/201602041721_584269_3384_3.jpg 图2 低温变真空环境材料热物理性能测试系统低温变真空瞬态平面热源法热导率测量系统主要技术指标如下:(1)温度范围:-200℃~200℃(任一点可控)。 (2)真空度范围: 1E-06Pa~1E+05Pa(可控制范围 1E-01Pa~1E+05Pa)(3)热导率测试范围:400W/mK以下。3. 试样和测试卡具 将购置的厚度为14mm的NIST标准材料材料SRM 1453切割成100mm见方的正方形,如图3所示。http://ng1.17img.cn/bbsfiles/images/2016/02/201602041721_584270_3384_3.jpg图3 NIST标准材料材料SRM 1453测试试样和测试卡具整体放置在如图4所示的真空腔体内,如图5所示将被测的NIST标准材料材料SRM 1453放入测试卡具内,如图6所示试样和探测器压紧后关闭真空腔,即可进行真空度的控制和热导率测试。http://ng1.17img.cn/bbsfiles/images/2016/02/201602041721_584271_3384_3.jpg图4 低温高真空腔体 http://ng1.17img.cn/bbsfiles/images/2016/02/201602041721_584272_3384_3.jpg图5 测试试样和测试卡具http://ng1.17img.cn/bbsfiles/images/2016/02/201602041721_584273_3384_3.jpg图6 试样安装完毕后的待测状态4. 测试结果 在NIST标准参考材料SRM 1453不同真空度下热导率测试过程中,首先在常温常压下进行测试,然后再逐渐提高真空度并进行真空度控制,真空度控制精度达到5‰,稳定性优于1%。每个真空度至少恒定半小时后再开始热导率测量,每个真空度下进行2次重复性测量,任何2次测量间隔至少30分钟以上。由于NIST标准参考材料SRM 1453比较薄,厚度为14mm,由此在测试中采用了小尺寸的探头,编号C5501。整个测试过程中,试样温度保持在室温范围内,温度范围为22℃~23℃。为了便于测量控制及描述,真空度单位采用Torr,测试结果如下表所示。表中的试验参数表示测试过程中的探头加热功率(豪瓦)和测试时间(秒)。http://ng1.17img.cn/bbsfiles/images/2016/02/201602041722_584275_3384_3.png将以上测试结果绘制成横坐标为真空度、纵坐标为热导率的对数坐标曲线,如图7所示。 http://ng1.17img.cn/bbsfiles/images/2016/02/201602041721_584274_3384_3.jpg图7 NIST标准参考材料SRM 1453常温不同真空度下的热导率测试结果5. 分析与结论 按照NIST所提供的SRM 1453热导率标准数据,在常温22℃的常压环境下,热导率标准数据为0.03348W/mK。按照上述的测试结果,在常温22℃的常压环境下,多次热导率重复性测量测试结果范围为0.03226~0.03251 W/mK,偏差范围为2.90%~3.65%,完全处于±5%的误差范围内。另外,从图7所示的测试结果可以看出,整

  • 【原创大赛】瞬态平面热源法(HOTDISK法)测量导热脂不同温度下的导热系数

    【原创大赛】瞬态平面热源法(HOTDISK法)测量导热脂不同温度下的导热系数

    摘要:针对某种牌号导热脂这种热界面材料,采用瞬态平面热源法(HOTDISK法)测量了这种材料在25℃~150℃范围内导热系数变化,由此了解导热脂在不同温度下的导热性能,为这种材料的工程应用提供参考。1. 测试背景 导热脂作为一类典型的热界面材料(TIM—ThermalInterfaceMaterials)长期以来在各个行业中被用作传热材料,具有诸多优势,包括高低温稳定性、本身固有的低离子含量及很高的纯度。而且,由于其可与基板实现优异的表面接触和无孔隙界面,因而它们常常是各种传热材料的首选。导热脂在化学性质上为惰性,可在-45℃至+200℃的温度范围内保持较稳定的物理性能,这使其成为极少数能够承受各种恶劣运行环境的材料之一。由于模量很低,导热脂具有足够的柔性,可适应不同的热膨胀系数(CTE),传递到部件或基板的应力达到最小。导热脂有多种形式: (1)灌封剂和凝胶形式导热脂 (2)粘合剂形式导热脂 (3)填隙形式导热脂 导热脂这类热界面材料在冷却散热中应用广泛,各种厂家和型号的产品也是众多,但很少看到过厂家提供导热脂在不同温度下的导热系数数据,而不同温度下的导热系数数据是产品性能评价、冷却散热系统设计和工程应用选型的重要依据。 本测试试验针对导热脂这类材料,采用瞬态平面热源法,在不同温度下测量导热脂的导热系数,由此给出导热脂随温度变化的规律,为导热脂产品的评价和应用提供参考。2. 测试方法和测试仪器2.1. 测试方法 对于导热脂导热系数的测量,我们选择采用瞬态平面热源法。瞬态平面热源法作为一种绝对测量方法,在理论上可以达到很高的测量精度,特别适合导热脂这类热界面材料的测试。采用瞬态平面热源法测量导热脂的导热系数,主要体现出以下几方面的优势: (1)标准测试方法:瞬态平面热源法是一种标准测试方法,具有相应的测试标准方法,及ISO/DIS 22007-2.2 Plastics - Determination of thermal conductivity and thermal diffusivity - Part 2: Transient plane heat source (Hot Disk) method。具有标准方法有利于测试的准确性、可延续性和可对比性。 (2)测试精度高:在瞬态平面热源法标准测试方法中,明确把瞬态平面热源法归结到塑料材料,塑料类材料的一般特征是热导率在0.1~10 W/mK 范围并呈现各项同性,而瞬态平面热源法对塑料类材料的测试可以达到很高的精度。关键的是在这个导热系数测试范围内,有各种标准参考材料来对测量精度进行校准。 (3)试样制造的方便性:导热脂类热界面材料在工程上的应用可能会呈现出油脂状、膏脂状和固体状形式,特别是对于脂状的导热脂,可以很方便的将探测器插入导热脂试样中进行直接测量,大大降低了制样难度和测试难度。2.2. 测试仪器 导热脂导热系数变温测试采用了上海依阳公司出品的TC-4010型号瞬态平面热源法导热系数测试系统,如图 2.1所示。此系统采用冷热循环油浴增压泵流出的硅油作为加热介质流经装载有试样的腔体壁,整个腔体放置在厚实的隔热材料套中,使得被测试样可以精确的按照循环油浴温度进行恒温控制,充分利用了循环油浴±0.05℃的高精度温度控制功能保证试样温度均匀性和稳定性。通过计算机控制循环油浴的设定温度来自动实现不同温度下的试样热导率测量,一般温度变化范围为-40℃~250℃。http://ng1.17img.cn/bbsfiles/images/2015/06/201506141137_550100_3384_3.jpg图 2.1 瞬态平面热源法导热系数测试系统http://ng1.17img.cn/bbsfiles/images/2015/06/201506141133_550098_3384_3.png图 2.2 测试探头和导热脂试样的安装 在TC-4010型号瞬态平面热源法导热系数测试系统配置有专门的试样加载装置,此装置可以从加热腔体内抽取出放置在专门固定架上进行试样安装操作,如图 2.2所示。试样安装时取出独立的试样盒进行导热脂导填充,然后再插入探测器。 被测试样为某公司的导热脂,通过填充和挤压方式将导热脂试样装入试样盒内并进行测量。3. 测试结果和讨论 在25℃~150℃温度范围内对导热脂导热系数进行了测量,测试温度点分别为25、50、75、100、125和150℃六个温度点,测量过程可以分为两个步骤: (1)在某一温度恒定点上多次重复测量 由于导热脂在不同温度下的导热系数可能不同,所以测试过程中测试参数,如加热功率、加热时间,可能就需要进行调整以获得最好的测试结果。这样就需要在试样温度达到稳定后,对测试参数进行选择和试验,找到合适的测试参数,然后再进行此温度下的多次重复性测量。测试完成后,控制油浴升高温度并恒定,进行下一个温度点下的导热系数测量。 导热脂的导热系数一般比较大,加热功率选择也比较大(300mW和500mW两档),而加热时间则较小(10s和20s两档),两次测量间隔时间选择40分钟,以保证每次测量结束后试样温度恢复到稳定状态。 (2)整个温度区间内逐个温度点下导热系数全过程自动测量 因为TC-4010型号瞬态平面热源法导热系数测试系统可以进行全自动连续测量,即可以自动控制油浴的自动恒温和升温,并自动进行任意设定时间和任意温度下的导热系数测量。这样就可以自动进行整个台阶式升温过程中的导热系数连续测量,即自动控制油浴达到某一恒定温度,自动进行导热系数重复测量,然后再控制油浴恒定在另一个恒定温度上进行此温度下的导热系数自动测量。由此,通过一次试验可以完成整个温度变化过程中的导热系数测量,大大减少了人工操作,可以在几天甚至几周时间内连续进行测量,此特点尤其适合用对材料在各种老化过程中的导热系数变化进行监控。 由于在不同温度下导热系数可能不同,测试参数也需要进行调整,因此在进行这种全过程自动测量前,一定要进行初步的试验,摸清不同温度下的试验参数,然后在全过程控制程序中输入不同的试验参数再进行全过程的自动测量,这样可以有效保证测量精度。 如图 3.1所示为六个温度点下导热脂导热系数测量结果,在每个温度点至少进行了20次的重复性测量。图 3.2为导热脂导热系数测量结果随温度的变化情况。http://ng1.17img.cn/bbsfiles/images/2015/06/201506141152_550104_3384_3.png图 3.1 导热脂不同温度下多次重复性测量结果http://ng1.17img.cn/bbsfiles/images/2015/06/201506141152_550105_3384_3.png图 3.2 不同温度下导热脂的导热系数 从测试结果可以看出,随着温度的升高,导热脂的导热系数呈现出近乎线性的降低。当温度高于125℃后,导热脂导热系数有较大的突变,在150℃时的导热系数相对于常温导热系数几乎下降了三分之一。4. 结论 通过以上对导热脂在不同温度下的导热系数测量,可以发现导热脂的导热系数会随温度上升发生明显的改变,温度越高,导热系数越小。特别是在125℃以上,导热脂导热系数会发生较大的改变。 对于其他型号的导热脂也进行了相应的测试,基本都是这种规律。 这种随温度上升导热系数降低

  • MMN12AD01-SG负载瞬态与热注意事项

    [font=宋体][font=Calibri]Cyntec[/font][font=宋体]的[/font][/font][url=http://www.leadwaytk.com/article/4802.html]MMN12AD01-SG[/url][font=宋体][font=宋体]集成化补偿器件,从而实现优良的稳定性和迅速的瞬态响应。在某些应用上,在[/font][font=Calibri]Vout[/font][font=宋体]和[/font][font=Calibri]FB[/font][font=宋体]之间增加[/font][font=Calibri]100pF[/font][font=宋体]陶瓷帽能够进一步推进负载瞬态响应,所以建议用作具备大负载瞬态频移需求技术的应用。[/font][/font][font=宋体][font=Calibri]MMN12AD01-SG[/font][font=宋体]所有的热测试条件均通过[/font][font=Calibri]JEDECEIJ/JESD51[/font][font=宋体]标准规定。因此,测试夹具宽度为[/font][font=Calibri]30mm[/font][font=宋体]×[/font][font=Calibri]30mm[/font][font=宋体]×[/font][font=Calibri]1.6mm[/font][font=宋体],共[/font][font=Calibri]4[/font][font=宋体]层。然后,在[/font][font=Calibri]0LFM[/font][font=宋体]情况下,用安装于合理有效热导率测试板上的部件检测[/font][font=Calibri]Rth[/font][font=宋体]([/font][font=Calibri]jchoke-a[/font][font=宋体])。[/font][font=Calibri]MMN12AD01-SG[/font][font=宋体]模块设计用作机壳温度过低[/font][font=Calibri]110[/font][font=宋体]°[/font][font=Calibri]C[/font][font=宋体]时使用,不管输出电流、输入[/font][font=Calibri]/[/font][font=宋体]输出电压或工作温度怎么改变。[/font][/font][font=宋体]深圳市立维创展科技授权代理[/font][font=Calibri]Cyntec[/font][font=宋体]全线产品,致力为客户提供高品质、高质量、价格公正的电源[/font][font=Calibri]MMN12AD01-SG[/font][font=宋体]产品。目前,立维创展存有大批量[/font][font=Calibri]Cyntec[/font][font=宋体]电源库存,例如型号:[/font][font=Calibri]MUN12AD03-SEC[/font][font=宋体],[/font][font=Calibri]MUN3CAD03-SE[/font][font=宋体]等。产品原装原厂,质量保证,并为中国大陆市场提供技术支持,欢迎咨询。[/font][font=宋体]详情了解[/font][font=Calibri]Cyntec[/font][font=宋体]请点击:[/font][font=Calibri]http://www.leadwaytk.com/brand/16.html[/font]

  • 【原创】稳态/瞬态荧光光谱仪FLS920采购交流

    【原创】稳态/瞬态荧光光谱仪FLS920采购交流

    最近实验室装了一台稳态/瞬态荧光光谱仪FLS920,跟大家交流一下心得。 由于实验室原有的一台普通荧光仪已经不能满足实验测量的需要,因此导师决定购买一台新的荧光仪,根据课题组有关老师的使用经验和相关同行的使用情况,同时由于经费比较充足,决定购买稳态/瞬态荧光光谱仪。仪器类型确定后开始进行招标,下面列出一些招标的具体做法。 1.编制招标文件。招标文件由设备管理部门和用户共同编制完成,是投标和评标的主要依据。一份科学、合理、可行的招标文件是关系到招标工作成败的关键,其内容要求准确、完整、规范,主要包括:(1)招标公告;(2)投标人须知;(3)设备性能及配置一览表;(4)开标和评标;(5)合同的签订与执行;(6)其他。 2.发布招标信息。招标单位在招标内容确定以后通过媒体发布招标公告或投标邀请书。公布招标项目名称、招标编号、采购的数量、开标时间及地点和招标方式等。 3.开标和评标。开标在招标文件规定的时间和地点进行,设备、纪检监察、审计部门的代表、用户和专家组成员出席。评标是招标工作的重要环节,在整个招标过程中的作用至关重要,只有经过公正的评标,才能确定最优秀的中标单位。为此,学校成立招标领导组和评标专家组,专家组成员一般由5名相关专家组成。同时,我们将评标分为初评和详评两个阶段。初评:由专家组审阅投标文件是否完整、规范并符合招标文件要求;投标人所具有的主体合格性;证明文件是否齐全;投标书对招标文件作出的响应程度;确定投标人是否进入详评阶段。详评:专家组根据投标人提供的设备报价、设备性能指标、服务承诺、商家信誉、相关业绩等因素,坚持公平、公正的原则,比较性价比,进行综合打分,根据投标人得分的高低,确定中标单位。 4.签订供货合同。 我没有参加仪器的招标和谈判,对这些程序也不太了解。下面谈一些仪器的验收过程。 由于仪器比较大,到货后装在两个大木箱里,木箱上的标识很齐全,另外在木箱上有防震检验标记,如果在运输过程中发生一定程度的震动标记会发生颜色变化,要注意查看。一般仪器厂商都会派技术人员负责仪器的开箱、安装、验收与培训。在验收过程中首先将装箱单与每一个部件核对,再与合同对照有无出入。验收过程中要针对每一个部件进行样品测试,检查部件能否正常工作。如果与合同规定的部件有出入或有器件损坏,可立即要求赔偿或更换。验收完后要签订一个技术检验报告。一般仪器的安装调试过程也是一个培训过程,在这个过程要认真咨询仪器的使用,维护和售后等相关情况。另外可以举行专门的技术讲座,对这个仪器的使用人员进行一次培训。 小结:这次实验室所采购的是爱丁堡的稳态/瞬态荧光光谱仪FLS920,可以去厂商的主页查看一些相关信息(www.edinst.com).仪器的采购要量力而为,根据使用需求,经费情况选择合适的仪器。一般大型仪器的维护费用都很高,所以要考虑是否真正需要。再介绍一下稳态/瞬态荧光光谱仪FLS920仪器的特点:FLSP920 采用TCSPC(Time Correlated Single Photon Counting)技术进行荧光寿命测量,可以测量PS级的荧光寿光,测量波长范围185 -1700nm,结合附带软件可以进行如下功能测试:Measurement Modes:Signal Rates,Excitation Spectra,Emission Spectra,Anisotropy Spectra,Kinetic Measurements,Synchronous Spectra,Corrected Spectra,Temperature Resolved Spectra Map,Synchronous Spectra Map,Excitation-Emission Map,Sample Temperature Monitoring。Control Features:Wavelength selection,Grating selection,Spectral scan limits,Integration time per data point,Sample selection (3 position),Programmed excitation shutter,Programmed attenuator,Source and detector selection,On-line spectral data correction,Post acquisition spectral correction,Polariser selection and orientation,Cryostat control,Plate reader control。Data Manipulation & Display:Arithmetic ( + , - , × , / , append ),Scaling / multiplication factor,Normalise,Baseline subtraction,Crop range,Smooth,2D, 3D, Contour and text,Grid ON / OFF,Differentiation / Integration,Peak search,CorrectionAnisotropy (G factor corrected),Logarithmic / linear scales,Cursor locations,Join, split and extract frames。附件是合同样本和FLS920说明书(PDF格式)[IMG]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191651_624106_1642290_3.jpg[/IMG][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=124959]合同样本和FLS920说明书[/url]

  • 采用瞬态平面热源法测量几种典型隔热材料的热导率

    采用瞬态平面热源法测量几种典型隔热材料的热导率

    摘要:采用瞬态平面热源法热导率测试系统对硅酸钙隔热材料、纳米超级隔热材料、低密度刚性隔热瓦和纤维增强碳气凝胶隔热材料四种比较典型隔热材料在常温常压下进行了热导率测试,目的是准确确定几种典型隔热材料在常温常压下的热导率数值,同时便于与其它热导率测试方法和测试设备进行对比,对其它测试方法和测试设备测量隔热材料热导率的测试结果做出基本的评判。1. 测试目的通过采用美国国家标准与技术研究院(NIST)的标准参考材料泡沫聚苯乙烯板SRM 1453对瞬态平面热源法热导率测试设备进行校准后,验证了瞬态平面热源法热导率测试设备对于均质低导热材料(热导率0.03W/mK量级)的热导率测试具有很高的测量精度,由此选取了几种典型隔热材料采用瞬态平面热源法进行测量,主要为了达到以下目的:(1)准确确定几种典型隔热材料在常温常压下的热导率数值;(2)便于与其它热导率测试方法和测试设备进行对比,对其它测试方法和测试设备测量隔热材料热导率的测试结果做出基本的评判。2. 典型隔热材料试样所选择的四种典型隔热材料分别为硅酸钙隔热材料、纳米超级隔热材料、低密度刚性隔热瓦和纤维增强碳气凝胶隔热材料。其中每种材料有两块试样,以下是这四种典型隔热材料每块试样的尺寸和密度资料。2.1. 硅酸钙隔热材料图2-1所示为1号试样,长宽厚分别为298×297×25.30mm,重量1720g,密度0.76g/cm3。图2-2所示为2号试样,长宽厚分别为298×298×25.15mm,重量1669g,密度0.75g/cm3。http://ng1.17img.cn/bbsfiles/images/2016/02/201602141214_584375_3384_3.jpg图2-1 硅酸钙隔热材料1号试样http://ng1.17img.cn/bbsfiles/images/2016/02/201602141214_584376_3384_3.jpg图2-2 硅酸钙隔热材料2号试样2.2. 纳米超级隔热材料图2-3所示为1号试样,长宽厚分别为300×310×19.85mm,重量539g,密度0.29g/cm3。图2-4所示为2号试样,长宽厚分别为300×300×19.70mm,重量538g,密度0.30g/cm3。http://ng1.17img.cn/bbsfiles/images/2016/02/201602141214_584377_3384_3.jpg图2-3 纳米超级隔热材料1号试样http://ng1.17img.cn/bbsfiles/images/2016/02/201602141214_584378_3384_3.jpg图2-4 纳米超级隔热材料2号试样2.3. 低密度刚性隔热瓦图2-5所示为1号试样,长宽厚分别为300×300×19.71mm,重量435g,密度0.25g/cm3。图2-6所示为2号试样,长宽厚分别为300×300×16.82mm,重量445g,密度0.25g/cm3。http://ng1.17img.cn/bbsfiles/images/2016/02/201602141214_584379_3384_3.jpg图2-5 低密度刚性隔热瓦1号试样http://ng1.17img.cn/bbsfiles/images/2016/02/201602141214_584380_3384_3.jpg图2-6 低密度刚性隔热瓦2号试样2.4. 纤维增强碳气凝胶隔热材料图2-7所示为1号试样,长宽厚分别为295×290×18mm,重量405g,密度0.26g/cm3。图2-8所示为2号试样,长宽厚分别为295×290×21mm,重量449g,密度0.25g/cm3。 http://ng1.17img.cn/bbsfiles/images/2016/02/201602141214_584381_3384_3.jpg图2-7 纤维增强碳气凝胶隔热材料1号试样http://ng1.17img.cn/bbsfiles/images/2016/02/201602141214_584382_3384_3.jpg图2-8 纤维增强碳气凝胶隔热材料2号试样3. 测试结果3.1. 硅酸钙隔热材料热导率测试结果将硅酸钙隔热材料的1号和2号试样夹持住瞬态平面热源法探头并采用两个铜块压紧。采用C5501探头进行测量,功率25mW,加热时间40s,室温23℃。探头分别放置在如图3-1所示的八个位置上分别进行测量,每个位置重复测量2次,由此获得试样不同位置处的热导率,取平均后得到这两个试样的热导率平均值,测试结果如图3-1所示。 http://ng1.17img.cn/bbsfiles/images/2016/02/201602141224_584383_3384_3.png图3-1 硅酸钙隔热材料试样不同测试位置示意图和热导率测试结果3.2. 纳米超级隔热材料热导率测试结果及厂家数据对比将纳米超级隔热材料的1号和2号试样夹持住瞬态平面热源法探头并采用两个铜块压紧。采用C5501探头进行测量,功率3mW,加热时间160s,室温22℃。探头分别放置在如图3-2所示的四个位置上分别进行测量,每个位置重复测量2次,由此获得试样不同位置处的热导率,取平均后得到这两个试样的热导率平均值,测试结果如图3-2所示。http://ng1.17img.cn/bbsfiles/images/2016/02/201602141224_584384_3384_3.png图3-2 纳米超级隔热材料试样不同测试位置示意图和热导率测试结果[co

  • 【分享】点燃式发动机汽车瞬态工况法排气污染物测量设备技术要求(HJ/T 396-2007)

    点燃式发动机汽车瞬态工况法排气污染物测量设备技术要求 Equipment Specifications and Quality Control Requirements for In-use Vehicles with Ignition Engine Exhaust Emission Test in Transient Loaded Mode ( HJ/T 396-2007 2008-03-01实施) 为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,保证排放检测工作的质量,控制点燃式发动机汽车污染物排放,改善环境空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量,保障人体健康,制定本标准。本标准规定了在用点燃式发动机汽车瞬态工况法排气污染物测量的主要设备——底盘测功机、排气分析仪、流量计及取样系统的规格、功能和性能的技术要求及测试方法,计算机控制软件功能的基本要求;检测站日常设备检验、检测站现场安装设备检验和型式核准设备检验的项目要求和测试方法。本标准适用于在用点燃式发动机汽车瞬态工况法排气污染物测量设备的生产、使用和型式核准检验。本标准为首次颁布。链接地址: http://www.instrument.com.cn/download/shtml/069305.shtml

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制