当前位置: 仪器信息网 > 行业主题 > >

四种元素

仪器信息网四种元素专题为您整合四种元素相关的最新文章,在四种元素专题,您不仅可以免费浏览四种元素的资讯, 同时您还可以浏览四种元素的相关资料、解决方案,参与社区四种元素话题讨论。

四种元素相关的资讯

  • 多元素形态同时分析:一招搞定砷、铬、溴、碘4种元素11种形态
    多元素形态同时分析:一招搞定砷、铬、溴、碘4种元素11种形态原创 飞飞 赛默飞色谱与质谱中国关注我们,更多干货和惊喜好礼形态分析目前已成为元素分析的新风向,人们逐渐认识到在环境和生命体中同一元素的不同存在形态表现出不同的sheng理活性和毒性,单纯测量一个元素在生命或环境体系种的总量达不到研究元素生物功能的目的。目前对于元素形态分析大多采用单一元素形态分析方法,每种元素具有单独的元素分离分析方法,分析效率较低。思考:ICPMS具有多元素总量同时分析功能,能否也可以实现多元素形态同时分析功能?技术关键词:分离方法、多元素同时采集方案:赛默飞具有业内性能强大的离子色谱和ICPMS,可以提供高效简单的元素形态分离方法和jing准快速的元素信号采集技术。赛默飞iCAP RQ ICPMS与 IC进行联用,性能jue佳的AS19阴离子色谱柱发挥优势,采用梯度淋洗,可实现砷、铬、溴、碘4种元素11种形态同时分离,iCAP RQ ICPMS时间扫描tQuant模式具有多元素采集功能,采用氦气碰撞模式解决去除砷、铬、溴、碘元素多原子离子干扰,实现准确测试。实际应用:实际应用:水中的溴、铬、砷、碘的监测,为安全用水提供必要的ji术支持,具有广泛的检测需求。四种元素流动相、分析柱和检测方法会有所不同,分析流程耗时耗力。本实验采用同一个流动相条件,相同色谱柱在10min之内同时分析水质中As3+,As5+,DMA,MMA,AsC,AsB,BrO3-,Br-, IO3-, I-,Cr6+11种元素形态,大大提高分析效率。砷、铬、溴、碘4种元素11种形态分离图:(点击查看大图)5种市售瓶装饮用水及当地自来水检测结果:(点击查看大图)总结该方法具有简单、快速、稳定、检出限低等特点,完全满足标准限定和检测要求,为环境水质监测11种形态痕量分析提供快速高效的分析手段。如需合作转载本文,请文末留言。
  • 法提出搜寻第四种中微子方案
    据美国物理学家组织网11月30日(北京时间)报道,法国物理学家提出了一个实验方案,希望能搜寻到第四种中微子的“芳踪”。科学家们表示,如果实验证实第四种中微子确实存在,那么,不仅会给中微子科学带来巨大影响,也将改变人类对物质组成的根本理解。相关研究发表在最新一期的《物理评论快报》杂志上。 粒子物理学的标准模型认为,存在着三种类型的中微子:电子中微子、μ(缪)中微子和τ(陶)中微子。科学家们已探测到这三种中微子并观察到相互间的转化—中微子振荡。 早在上世纪90年代初期,美国洛斯阿拉莫斯国家实验室的液体闪烁中微子探测器(LSND)实验发现,一束反μ介子撞击一个目标时,反电子中微子振荡发生的速度比预期快。最近,法国原子能委员会(CEA)的物理学家们对核反应堆中反中微子的生成速度进行了重新计算,结果发现,该速度比预测值高3%,随后,他们对20多个反应堆中微子实验的结果进行了重新分析,发现了更多实验结果与预期不一致的情况。 科学家们认为,对这种偏差最简单的合理解释是存在着第四种类型的中微子,他们也推测出了其质量并认为它不会像其他中微子那样通过弱核力与物质发生反应,这使得它很难被探测到,甚至有科学家认为它可能是一种暗物质。 现在,CEA的迈克尔克瑞贝尔等人设计了一个实验,希望能准确测试第四个中微子是否存在。 科学家们的设想是,让一个活度为1.85PBq的反电子中微子同位素源朝位于大型液体闪烁探测器(LLSD)中央的一个目标开火。随后,利用位于意大利格兰萨索国家实验室的巨型BOREXINO探测仪或位于日本“神冈矿”的KamLAND探测仪进行探测。 该反电子中微子同位素源将由一个辐射源—诸如铈核组成,为了获得准确的结果,实验可能历时一年。如果轰击实验产生了一个不反应的中微子,他们将测量一个独特的振荡信号以证实第四种中微子的存在。 目前他们面临的最大技术挑战是构建出一个反中微子源并建造一个厚厚的遮蔽材料来包裹它,实验也需要千吨级的探测器。 自从今年9月“中微子超光速”的消息传出以来,各种言论就不绝于耳,11月中旬“中微子实验复核超光速现象”更是把这一论断推向了又一个风口浪尖。然而,该领域大多数科学家依然淡定地对宇宙速度极限被打破持怀疑态度。正当科学家们为此忙得焦头烂额的时候,第四种中微子或许会从某个“角落”突然跳将出来,让原本错综复杂的问题变得更加难以捉摸——该类型的中微子能不能跑过光速呢?科学家们估计又要大伤脑筋了。
  • 塑料人时代何以为家? 四种武器解构新“灭霸”
    p style="text-align:center"spanimg style="max-width: 100% max-height: 100% width: 600px height: 338px " src="https://img1.17img.cn/17img/images/201905/uepic/6fb0d832-b53f-4b69-bcdc-885592a82aa2.jpg" title="qazqz.jpg" alt="qazqz.jpg" width="600" height="338" border="0" vspace="0"//span/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"或许若干年后,能够将人类与人工智能区别开来的,将不再是大脑,而是人类体内的微塑料含量。那些我们以为大自然会免费埋单的塑料垃圾,如今又将轮回为人类自己背负的十字架。据一项最新的研究报告预测,全球约/spanspan50%/spanspan style="font-family:宋体"人口的体内都能找到塑料微粒,《复仇者联盟》中灭霸历尽万劫却枉费心机的“理想”,竟被微塑料在悄无声息中打了响指,塑料人时代已经来临。/span/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"虽然该预测仍有待证实,但是微塑料对人类社会的大范围入侵却已是不争事实。/spanspan2015/spanspan style="font-family:宋体"年联合国首次将微塑料污染列为新型环境污染的一大类型,与全球气候变化、臭氧污染、海洋酸化并列为全球重大环境问题。那么微塑料到底是何方神圣?小小的它能对自然和人类造成怎样的危害?又有哪些分析方法可以帮我们应对这个敌人,保护我们的家园呢?/span/pp style="text-indent: 28px text-align: justify "strongspan style="font-family:宋体"美丽的代价/span /strongstrongspan style="font-family:宋体"滥用的惩罚/span/strong/pp style="text-align:center"spanimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201905/uepic/f3a003d5-b641-442d-844a-f6300cb51dd3.jpg" title="timg_看图王.jpg" alt="timg_看图王.jpg"//span/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"微塑料的概念首次出现在/spanspan2004/spanspan style="font-family:宋体"年的美国《/spanspanscience/spanspan style="font-family:宋体"》期刊上,英国纽卡斯尔大学海洋污染研究团队在其关于海洋水体及沉积物塑料碎屑污染的研究论文中对之进行了描述。根据其定义,微塑料是指直径小于/spanspan5mm/spanspan style="font-family:宋体"的塑料纤维、颗粒与薄膜。海洋是微塑料的主要囤积场所,目前,海洋中微塑料垃圾大约有/spanspan 10.5 /spanspan style="font-family:宋体"万吨,甚至在北极,每立方米海冰中含有的微塑料颗粒都多达/spanspan240/spanspan style="font-family:宋体"个,因此微塑料也得到“海中/spanspanPM2.5/spanspan style="font-family:宋体"”的形象称呼。/span/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"微塑料的诞生可以毫不夸张地说基本是人类活动的产物。与神话传说的分类方式类比,微塑料也大致可以分为两类,一类是初生微塑料,一类是次生微塑料。初生微塑料的主要来源也可一分为二,一类是化妆液、防晒霜、剃须膏、牙膏等个人护理、清洁用品中的柔珠,用以加速人体皮肤角质祛除,增加人体皮肤光滑度,进而达到深度清洁的目的。这种“柔珠”就是典型的微塑料。特别是打着“深层护理、深度清洁”招牌的护理用品,基本上都是依靠微塑料来满足人类爱美、爱干净的天性。另一类初生微塑料来源于洗衣机产生的超细纤维碎屑。据统计,一个/spanspan10/spanspan style="font-family:宋体"万人口规模的小城市,每天经过洗衣机向水体中排放的细小纤维就会达到/spanspan110/spanspan style="font-family:宋体"千克,大部分属于微塑料,其污染程度相当于向自然水体中扔掉/spanspan1.5/spanspan style="font-family:宋体"万个塑料袋所造成的污染。/span/pp style="text-align: center "spanimg style="max-width: 100% max-height: 100% width: 600px height: 420px " src="https://img1.17img.cn/17img/images/201905/uepic/b375936c-59f1-499c-9565-be4af986e667.jpg" title="2wxd.jpg" alt="2wxd.jpg" width="600" height="420" border="0" vspace="0"//span/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"相当一部分的初生微塑料可以通过政策法律等措施进行有效限制,比如美国政府就在/spanspan2016/spanspan style="font-family:宋体"年/spanspan5/spanspan style="font-family:宋体"月颁布了全国首个微塑料禁用立法,明确禁止在个人护理用品、化妆品中使用微塑料,英国也紧随其后颁布了相似法律。但是次生微塑料却复杂难办得多,次生微塑料的来源主要是塑料垃圾和浮渣在水环境中破碎而产生的碎屑。塑料经过物理、化学、生物的分解作用,可以从大塑料变小,由小变微产生的碎屑,形成各种尺寸和形状的微塑料。次生微塑料具有更大的生态危险,由于塑料用品已经渗透到人类生活的方方面面,想要令行禁止,短期之内基本等于天方夜谭。/span/pp style="text-indent: 28px text-align: justify "strongspan style="font-family:宋体"“幽灵”消失之谜/span /strongstrongspan style="font-family:宋体"两大危害足以撬动地球?/span/strong/pp style="text-align:center"strongspanimg style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/201905/uepic/809db240-70ac-4ae4-a3ba-1304879c6759.jpg" title="0d0604ede9bd2365d7d45def088584d1_timg_image& quality=80& size=b9999_10000& sec=1559114114& di=d013ac74340170828cf0750f0c48ce20& imgtype=jpg& er=1& src=http%3A%2F%2Fimg7.itiexue.net%2F2884%2F28848079.jpg.jpg" alt="0d0604ede9bd2365d7d45def088584d1_timg_image& quality=80& size=b9999_10000& sec=1559114114& di=d013ac74340170828cf0750f0c48ce20& imgtype=jpg& er=1& src=http%3A%2F%2Fimg7.itiexue.net%2F2884%2F28848079.jpg.jpg" width="600" height="400" border="0" vspace="0"//span/strong/pp style="text-indent: 27px text-align: justify "span style="font-family:宋体"来无影去无声,除了纤细无声地潜入外,微塑料竟然也能像幽灵蜃景一样悠忽间消失,最近一项研究结果显示,大洋海水中测到的小于/spanspan 4.75 mm/spanspan style="font-family:宋体"的微塑料数量比预测的要少/spanspan 90% /spanspan style="font-family:宋体"左右。如此庞大的微塑料群体都去了哪里呢?一种假说是微塑料被海洋生物吞食了。细思极恐的是,这个假说已在多项研究中得到了证实,数百种海洋鱼类、藤壶、牡蛎等海洋生物的消化道内都发现了微塑料。/span/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"大鱼吃小鱼,小鱼吃虾米,随着食物链层层传递,这些微塑料最终会随着食物链进入人类体内。事实上,越来越多的研究表明,除了海洋外,越来越多的微塑料已经进入了陆地食物链,土壤里、蚯蚓体内、母鸡粪便和胃里、城市自来水系统、食盐、蔬菜、海盐、啤酒、蜂蜜等产品中都发现了微塑料的痕迹,这也是为什么微塑料最终会进入人体的重要原因。/span/pp style="text-align:center"spanimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201905/uepic/a6c7de9a-9dae-410a-8751-9c79e2c63bfd.jpg" title="fe04b5189c428128b6dbf5eea6cdfcc6_timg_image& quality=80& size=b9999_10000& sec=1558519713638& di=ae07fb089a8d8e73b4b3d50b181251d6& imgtype=0& src=http%3A%2F%2Fs1.sinaimg.cn%2Fmw690%2F006WIuVxzy7horBXd5u20%26690.jpg" alt="fe04b5189c428128b6dbf5eea6cdfcc6_timg_image& quality=80& size=b9999_10000& sec=1558519713638& di=ae07fb089a8d8e73b4b3d50b181251d6& imgtype=0& src=http%3A%2F%2Fs1.sinaimg.cn%2Fmw690%2F006WIuVxzy7horBXd5u20%26690.jpg"//span/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"微塑料主要会带来四大环境效应,上述讲到的食物链效应首当其冲。生物摄食微塑料后,首先会由于其难以消化降解在体内累积,可造成生物的肠道堵塞、消化不良、体重减轻、行为迟钝、生长生殖速率减慢等短期不良效应。最终这些随着食物链从餐桌进入人体的微塑料,也会对人体的健康带来危害,不少微塑料在生产中会加入阻燃剂、增塑剂等含有氯化烃类、邻苯二甲酸酯类等毒性物质,大量摄入可能影响生殖发育,干扰内分泌等,更恐怖的是微塑料对重金属和有机污染物具有吸附作用,这些具有显著生物毒性的物质,难以被生物降解,富集在生物体内,容易造成蛋白质的失活或者引起慢性中毒。而纳米尺度的微塑料甚至可以穿过生物细胞膜,对人体造成物理性的危害。/span/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"除了对人类的伤害外,微塑料对整个生态系统也有巨大的破坏作用,一方面,微塑料的生物吸附作用可使得水体中的微塑料作为微生物和藻类提供附着位点,形成生物膜,并提供较稳定的微生物居住环境。由于微生物的附着,可能会改变塑料颗粒的某些物理性质如密度等,影响其迁移,并影响当地生物的生存状况,一些致病性的有害微生物可给所入侵的生态系统带来巨大的危害。另外,微塑料可向周围环境中释放毒性物质,这些毒性物质经常能与周围环境发生一系列的反应,通过吸附或者其他表面相互作用结合周围环境中的污染物,产生具有更大危害毒性的复合污染物,对生物产生复合毒性效应。/span/pp style="text-indent: 28px text-align: justify "strongspan style="font-family:宋体"蛮荒之地/span /strongstrongspan style="font-family:宋体"四大分析仪器开路/span/strong/pp style="text-align:center"spanimg style="max-width: 100% max-height: 100% width: 600px height: 399px " src="https://img1.17img.cn/17img/images/201905/uepic/da0b5178-1991-4faa-b412-bc41f1ac12e9.jpg" title="xsaa.jpg" alt="xsaa.jpg" width="600" height="399" border="0" vspace="0"//span/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"微塑料的提出已经有十多年的时间,但是真正作为重大污染源进行系统研究,也就在近几年才刚刚热了起来。因此关于微塑料的分析检测还基本是一片蛮荒之地,有大量的工作亟待开展。目前在微生物的分析检测中主要用到的仪器有非破坏性分析仪器和破坏性分析仪器两种,仪器信息网编辑对之进行了不完全的整理,汇总如下,以飨读者:/span/pp style="text-indent: 28px text-align: justify "strongspan style="font-family:宋体 color:red"非破坏性分析方法/span/strong/pp style="text-indent: 28px text-align: justify "span1/spanspan style="font-family:宋体"扫描电子显微镜分析(/spanspanSEM/spanspan style="font-family:宋体")/span/pp style="text-indent: 28px text-align: justify "span style="font-family: 宋体"在微塑料的物理性质中,颗粒粒径与微塑料在环境中的迁移行为有密切关系,目前微塑料颗粒检测的常用方法为筛分法,但实际上,相当一部分微塑料的粒径范围在激光粒度仪和纳米粒度仪的射程范围之内,该市场或许将成为激光粒度仪发展的又一片黄金沃土,在此先按下不表。而对微塑料另外一种重要物理性质——腐蚀性的分析,则需要用到扫描电子显微镜。/span/pp style="text-align: center "spanimg style="max-width: 100% max-height: 100% width: 400px height: 345px " src="https://img1.17img.cn/17img/images/201905/uepic/0dfa4d59-aeec-4c1a-b66d-ff2ba533b910.jpg" title="123.jpg" alt="123.jpg" width="400" height="345" border="0" vspace="0"//span/pp style="text-align: center "strongspanSEM-EDS/span/strong/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"微塑料的腐蚀主要是由生物降解、光降解、化学风化等环境外力造成的。腐蚀作用会在塑料表面产生裂缝,导致塑料断裂成更细小的碎片,对微塑料表面形貌的表征需要再较高放大倍数下进行,因此研究中多以/spanspanSEM/spanspan style="font-family:宋体"为辅助,如扫描电镜/spanspan-/spanspan style="font-family:宋体"能量色散/spanspan X /spanspan style="font-family:宋体"射线联用分析技术/spanspan(SEM-EDS)/spanspan style="font-family:宋体",环境扫描电子显微镜/spanspan-/spanspan style="font-family:宋体"能量色散/spanspan X /spanspan style="font-family:宋体"射线联用分析技术/spanspan(ESEM-EDS)/spanspan style="font-family:宋体"等。这种方法可在进行形态表征的同时,分析微塑料的元素组成,此外还能利用元素指纹排除采样过程引入的微塑料,但该检测方法的成本较高。/span/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"事实上,目前在微塑料的物理性质表征的领域,颜色、形状等大部分参数尚需要依靠目检法完成。随着人们对分析表征结果要求的提高,立体显微镜等高分辨率仪器也开始被用来确定微塑料的形态特征。/span/pp style="text-indent: 28px text-align: justify "span2/spanspan style="font-family:宋体"、红外光谱分析/span/pp style="text-indent: 28px text-align: justify "span style="font-family: 宋体"红外光谱分析同样是一种非破坏性的检测分析手段,此外还可以用未知样品的红外谱图可与标准谱图进行比对鉴定。目前傅里叶变换/spanspan-/spanspan style="font-family: 宋体"红外光谱分析法/spanspan(FT-IR)/spanspan style="font-family: 宋体"可以说是微塑料界最常用的化学组分鉴定方法之一。/span/pp style="text-align: center "spanimg style="max-width: 100% max-height: 100% width: 400px height: 200px " src="https://img1.17img.cn/17img/images/201905/uepic/c67c7f0a-b47a-4c32-b645-eb5e9f8847de.jpg" title="timg (1).jpg" alt="timg (1).jpg" width="400" height="200" border="0" vspace="0"//span/pp style="text-align: center "strongspanFTIR/span/strong/pp style="text-indent: 28px text-align: justify "spanFTIR /spanspan style="font-family: 宋体"的衰减全反射/spanspan(ATR)/spanspan style="font-family: 宋体"、透射与反射等/spanspan3/spanspan style="font-family: 宋体"种模式在微塑料分析领域均有所应用,但应用范围有所差异。/spanspanATR/spanspan style="font-family: 宋体"模式适用于不规则微塑料的鉴定;透射模式能够提供高分辨图谱,但分析材料需足够透明、轻薄,确保能被红外线穿透;发射模式则可以完成厚、不透明材料的分析。/spanspanFTIR/spanspan style="font-family: 宋体"法仅需通过过滤等简单的预处理操作即可直接分析样品中的微塑料,但该方法的鉴定结果受被测微塑料不均匀性、材料老化、环境尘埃等严重干扰,需要进一步完善以更好地适应环境样品分析。/span/pp style="text-indent: 28px text-align: justify "span style="font-family: 宋体"随着研究的不断深入,基于焦平面阵列/spanspan(FPA)/spanspan style="font-family: 宋体"的显微/spanspan FTIR /spanspan style="font-family: 宋体"法/spanspan(Micro FTIR)/spanspan style="font-family: 宋体"也开始应用于微塑料的鉴定。/spanspanMicro FTIR/spanspan style="font-family: 宋体"法充分结合了显微镜与/spanspan FTIR/spanspan style="font-family: 宋体"的优点,即在采集视场内的景物图像的同时也能获得视场内每一个像元对应的红外谱图。/spanspanMicro FTIR /spanspan style="font-family: 宋体"法分析迅速,仅数分钟即可完成一次全面测试,再结合/spanspanFPA/spanspan style="font-family: 宋体"就能满足小粒径微塑料检测及区域范围检测的要求。/span/pp style="text-indent: 28px text-align: justify "span3/spanspan style="font-family: 宋体"、显微拉曼/span/pp style="text-align: center text-indent: 28px "spanimg style="max-width: 100% max-height: 100% width: 400px height: 194px " src="https://img1.17img.cn/17img/images/201905/uepic/5fbc80b2-a398-492d-bbd9-6f554a3d7de4.jpg" title="1231额3受委屈爱心.jpg" alt="1231额3受委屈爱心.jpg" width="400" height="194" border="0" vspace="0"//span/pp style="text-align: center text-indent: 28px "strongspanMicro Raman/span/strong/pp style="text-indent: 28px text-align: justify "span style="font-family: 宋体"拉曼光谱法被应用于微塑料的化学组分鉴定。拉曼光谱/spanspan-/spanspan style="font-family: 宋体"显微镜联用技术/spanspan(Micro Raman)/spanspan style="font-family: 宋体"不仅能够获得表面官能团的信息,还可以观测到局部的微观形貌。然而显微拉曼主要的狩猎范围为/spanspan10um/spanspan style="font-family: 宋体"以下的微塑料,而如何从环境中分离到/spanspan10um/spanspan style="font-family:宋体"以下的塑料进行实验是一大挑战,因此该分析方法,并没有得到大范围的应用。/span/pp style="text-indent: 28px text-align: justify "strongspan style="font-family:宋体"4.红外成像系统/span/strong/pp style="text-align:center"strongspan style="font-family:宋体"img style="max-width: 100% max-height: 100% width: 400px height: 400px " src="https://img1.17img.cn/17img/images/201905/uepic/e968e66e-fdba-4106-9b87-bb66628c62d4.jpg" title="41081a9fbd9f845c02d5ee0e2cc90aea_b7904802-818b-43a1-b13c-7a3b8c8da14e.jpg!w300x300.jpg" alt="41081a9fbd9f845c02d5ee0e2cc90aea_b7904802-818b-43a1-b13c-7a3b8c8da14e.jpg!w300x300.jpg" width="400" height="400" border="0" vspace="0"//span/strong/pp style="text-align: center "font face="宋体"b红外显微成像系统/b/font/pp style="text-indent: 28px text-align: justify "strongspan style="font-family:宋体"/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "红外显微成像系统将傅里叶变换红外光谱与红外显微镜及微区成像技术有机结合,已被广泛应用于微塑料的定性检测,可测量尺寸小至约 10 µ m 的微粒。目前知名仪器厂商如安捷伦、珀金埃尔默等都有丰富的微塑料红外成像解决方案。/span/pp style="text-indent: 28px text-align: justify "strongspan style="font-family:宋体 color:red"破坏性分析方法/span/strong/pp style="text-indent: 28px text-align: justify "span style="font-family: 宋体"热解吸/spanspan-/spanspan style="font-family: 宋体"气相/spanspan-/spanspan style="font-family: 宋体"质谱联用技术/spanspan(Pyr-GC-MS)& /spanspan style="font-family: 宋体"热重/spanspan-/spanspan style="font-family: 宋体"气相/spanspan-/spanspan style="font-family: 宋体"质谱联用技术(/spanspanTGA-GC-MS/spanspan style="font-family: 宋体")/span/pp style="text-align:center"spanimg style="max-width: 100% max-height: 100% width: 400px height: 150px " src="https://img1.17img.cn/17img/images/201905/uepic/f1dbcbf9-081f-42eb-8cc5-fbad673b51f0.jpg" title="9dc6020d20455eb5d76f8aa8adcca231_20150317100100.jpg" alt="9dc6020d20455eb5d76f8aa8adcca231_20150317100100.jpg" width="400" height="150" border="0" vspace="0"//span/pp style="text-align: center "strongspanTGA-GC-MS/span/strong/pp style="text-indent: 28px text-align: justify "spanPyr-GC-MS/spanspan style="font-family: 宋体"是不断升高样品池温度,使得高聚物在特定温度发生裂解,释放短链小分子单体,再进入/spanspanGC-MS /spanspan style="font-family: 宋体"测定质荷比,从而推断高聚物类型的一种方法。而/spanspanTGA-GC-MS/spanspan style="font-family: 宋体"只是热解的方法有所变化,后续分析过程与前相同。所有微塑料的热解过程均为一步热解,且所有微塑料均完全热解。如果仅通过/spanspanTGA /spanspan style="font-family: 宋体"识别聚合物,则结果容易受到其他因素的影响导致假阴性或假阳性/spanspan./spanspan style="font-family: 宋体"因此,为了准确的量化微塑料,必须对热分解产物进行/spanspanGC-MS/spanspan style="font-family: 宋体"化学结构解析。虽然该方法对实验条件要求较高,但具有样品用量小、可定性定量分析、无需额外投加试剂等优点。做微塑料吸附实验时,用这种方法比较多。/span/pp style="text-align: center "spanimg style="max-width: 100% max-height: 100% width: 600px height: 303px " src="https://img1.17img.cn/17img/images/201905/uepic/c44a6b83-bea3-48e9-afb4-1e48c5560095.jpg" title="4_看图王.png" alt="4_看图王.png" width="600" height="303" border="0" vspace="0"//span/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"在上述几种分析方法中,目前最受学界依赖的还是红外光谱分析方法。另外,根据微塑料的颗粒大小,上述四种方法也有不同的适用范围。由上图可知,/spanspanFTIR-ATR/spanspan style="font-family:宋体"适用的微塑料粒径范围大概在数百/spanspanum-5mm/spanspan style="font-family:宋体"的范围内,显微红外光谱的适用范围在/spanspan10um-/spanspan style="font-family:宋体"数百/spanspanum/spanspan style="font-family:宋体"之间,而显微拉曼的范围则在/spanspan1um-10um/spanspan style="font-family:宋体"之间。/spanspanPyr-GC-MS /spanspan style="font-family: 宋体"和/spanspanTGA-GC-MS/spanspan style="font-family: 宋体"则适用于/spanspan1um/spanspan style="font-family: 宋体"以上的全尺寸微塑料。另外,上图没有显示的扫描电镜/spanspan-/spanspan style="font-family:宋体"能量色散/spanspanX/spanspan style="font-family:宋体"射线联用分析技术/spanspan(SEM-EDS)/spanspan style="font-family:宋体"以及环境扫描电子显微镜/spanspan-/spanspan style="font-family:宋体"能量色散/spanspan X /spanspan style="font-family:宋体"射线联用分析技术/spanspan(ESEM-EDS)/spanspan style="font-family:宋体"适用的微塑料粒径范围一般需要大于/spanspan20um/spanspan style="font-family:宋体"。/span/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"微塑料的复杂性决定了其研究方法的千差万别,目前,在微塑料的分析研究中,有三大问题是研究中遇到的难点:首先横亘在研究者面前的就是分离前处理strong,/strong微塑料的环境来源千差万别,可以是垃圾场、垃圾渗出液或者污水厂等,如何在某个场景下的进行完善的分离和前处理是一个难点。其次,如前所述对小粒级的微塑料鉴定也非常棘手,因为样品很难得到,直接从矿泉水样品中过滤有可能得不到微塑料,而野外样品中如何分离出/spanspan10um/spanspan style="font-family:宋体"以下的微塑料又难以解决。除此之外,在进行红外光谱分析时,如何快速计数滤膜上的微塑料颗粒也是研究者之殇,现有的很多研究都需要一个个遴选样品颗粒并上机检测,效率较低。/span/pp style="text-align:center"spanimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201905/uepic/d8b4e8cc-3a32-407c-9fb3-8593d4bf88aa.jpg" title="w21w1.jpg" alt="w21w1.jpg"//span/pp style="text-align: justify "span style="font-size:14px font-family:宋体" 知己知彼方能百战不殆,如何解决微塑料分析研究中遇到的难点,关系着人类对微塑料的研究可以深入到什么程度,在这场人类与微塑料的战役中,我们需要更多、更有效的分析仪器和检测手段来扮演钢铁侠的角色。毕竟人类自己孕育的新“灭霸”,需要整个人类联盟共同去抵抗,而科技和智慧就是我们自我救赎最好的武器。/span/pp style="text-align: justify "span style="font-size:14px font-family:宋体" 微塑料检测典型仪器点击a href="https://www.instrument.com.cn/zc/31.html" target="_self"strongspan style="font-size: 14px font-family: 宋体 color: rgb(0, 176, 240) "绿色通道/span/strong/a获取。/span/p
  • 元素周期表将添四位新成员 2016年初将公布
    p style="text-align: center " img src="http://img1.17img.cn/17img/images/201601/insimg/6e768ed9-a6e0-4332-8f52-40a2dcef4f37.jpg" title="129967797.jpg" width="600" height="448" border="0" hspace="0" vspace="0" style="width: 600px height: 448px "//pp style="text-align: center line-height: 1.75em "新发现的四种新元素将使元素周期表的第七行被排满(图片来自网络)/pp style="line-height: 1.75em " 美国《科学新闻》双周刊网站12月31日发表了题为《四种元素在元素周期表上获得永久席位》的报道,编译如下:/pp style="line-height: 1.75em " 2015年12月30日,国际纯粹与应用化学联合会(IUPAC)宣布俄罗斯和美国的研究团队已获得充分的证据,证明其发现了115、117和 118号元素。此外,该联合会已认可日本理化学研究所的科研人员发现了113号元素。两个研究团队通过让质量较轻的核子相互撞击,并跟踪其后产生的放射性超重元素的衰变情况,合成了上述四种元素。/pp style="line-height: 1.75em " 俄罗斯杜布纳联合原子核研究所与美国加利福尼亚劳伦斯利弗莫尔国家实验室的研究人员,已被确认发现了115、117和118号元素。在2004 年和2007年展开实验后,他们还声称发现了113号元素。负责领导利弗莫尔实验核物理和放射能化学研究小组的道恩· 肖内西说,赢得IUPAC对其发现其 他三种元素的认可已令人为之一振。她说:“就个人而言,我对IUPAC的决定感到非常高兴。”/pp style="line-height: 1.75em " strong IUPAC执行理事林恩· 瑟比说,有关确认新元素的报告将于2016年初公布。官方对这些元素的认可意味着它们的发现者有权为其命名并设计符号。113号元素将成为首个由亚洲研究人员发现并命名的元素。/strong/p
  • 如何准确测定铝合金中的高浓度和低浓度添加元素?
    金属铝(Al)以其独有的特性广泛应用于众多各领域。将Al与硅(Si)、铁(Fe)、铜(Cu)和锌(Zn)等元素结合制成铝合金,通常非铝添加元素占总合金重量的15%。与纯铝相比,铝合金的物理特性得到明显增强,如具有更好的强度,更优异的导电性和焊接性等;也可添加不同的量的其它元素,得到具有特殊性质的铝合金。铝的大多数工业应用为铝合金,鉴于铝合金应用广泛和组分多样,伦敦金属交易所(LME)列出了四种铝合金组成规格,主要用于欧洲、亚洲和北美。在所列规格中,主要添加组分是Si、Cu、Zn和Fe,占组成重量的百分比通常大于1%。因此,必须以比其它元素更高的精度来测定这四种元素。珀金埃尔默Avio 系列 ICP-OES是进行铝合金检测实验室的理想选择,可根据伦敦金属交易所的高水平和低水平铝合金规格要求测量铝合金中的添加元素。使用电荷耦合检测器(CCD),可同时提供背景和分析物测量;对于铝合金中的主要成分(高浓度添加元素)通过使用较长读取时间和线性插入法校准,可以获得±2%以内的准确度;对于次要成分(低浓度添加元素)通过使用较短的读取时间和线性法校准,可以获得±5%以内的准确度。本文使用Avio 200 ICP-OES测定LME规格要求的铝合金中的添加组分。欲详细了解Avio 200 ICP-OES是如何根据LME规格要求在测定金属铝锭中的杂质元素中体现其优越性,扫描下方二维码即刻获取《按照伦敦金属交易所指南使用Avio 200 ICP-OES分析铝合金中的添加元素》和《Avio 200 电感耦合等离子体发射光谱仪》产品手册。
  • 挪威建议对铅等四种有害物质颁布禁令
    挪威气候和环境污染据希望对以下四种物质颁布禁令,这四种物质分别是:铅、中链氯化石蜡、五氯苯酚以及全氟辛酸。这四种物质常存在于蜡笔、玩具、油漆、地毯、塑料、纺织品以及其他产品中。  近日,挪威气候和环境污染局(Klif)提出一项草案,草案中建议,禁止在消费品中使用铅和其他三种有害物质。  据了解,该草案是减少部分产品对健康和危害行动的一部分。该局的官员Ellen Hambro表示,“该草案的目的在于通过对含有这些物质的产品颁布禁令或者实施更严格的生产、进口、出口以及销售等方式,保护消费者的健康和人类的生存环境。”  据报道,挪威和欧盟已对许多对人类健康有害的物质颁布了禁令,或者制定了更严厉的监管政策。但是,全球市场每天都会出现新的化学物质,因此,这些机构并未对部分物质制定法规。  目前,该局已经颁布了对这四种物质的评估报告,并且将其提交至环境部。环境部将会考虑该议案。  附:  中链氯化石蜡:主要存在于绝缘材料、塑料、接合泡沫、密封剂、窗户和室外门中。该物质对水生生物有极高毒性,可对环境带来永久性影响。  铅:主要存在于汽车电池、油漆、捕鱼设备、弹药、焊剂、蜡烛芯、窗帘、建筑配件中。胎儿的大脑和婴儿特别容易被铅损害。对水生生物有极高毒性,而且会导致环境产生一些不期望看到的永久性的影响。  五氯苯酚:主要用于处理、浸渍木材和纺织品。主要存在于进口产品中,数量尚不清楚。新规定将有助于减少该物质的毒性,防止其与其他物质合成一些有害物质。  全氟辛酸:主要存在于浸渍体、纺织品(休闲装、地毯、油漆清漆、盆和平底锅中使用的特氟隆涂料以及灭火泡沫中。该物质可能对胎儿的健康带来影响,极有可能致癌。
  • 看SUPEC 7000系列如何应对食品中碘元素测定新国标
    自20世纪中后期以来,我国各地区均有不同程度的碘缺乏病流行,1994年《全面防治碘缺乏条例》颁布后,食盐加碘的措施使我国逐渐消除了缺碘危害。但随着人民生活水平日益提高,对含碘量高的海产品摄入显著提升,部分地区却出现碘过量危害,2009年世界卫生组织发出警告,中国已属于碘导致的甲状腺功能亢进风险地区。而人体中碘主要来源于食品,准确测定食品中碘对于食品安全和人体健康具有十分重要的意义。碘元素测定方法电感耦合等离子体质谱仪(ICP-MS)因灵敏度高、动态线性范围宽、可多元素同时分析和稳定性好等特点,逐渐成为食品实验室元素分析的首选仪器。在最新的食品中碘的测定国标方法GB 5009.267-2020中电感耦合等离子体质谱法被推荐为第一法,ICP-MS法仅需简单的提取、过滤,就可上机分析,且适合所有类型食品中碘的分析,是四种推荐方法中简单且高效的分析方法。应用难点① 记忆效应碘容易在管路、雾化室等进样系统中残留,具有很强记忆效应,需耗费大量的时间进行清洗,导致实验效率低下。② 碱性高基体ICP-MS检测一般都采用酸性进样体系,而碘在酸性体系下易被氧化结晶,导致分析不准确,新国标采用0.5%四甲基氢氧化铵(TMAH)碱性进样体系避免了该状况,但高碱基体会导致等离子体不稳定,内标信号漂移。搜索:如何解决ICP-MS法应用难点?点此谱育科技为您解答!智能快速进样系统:加快进样与冲洗速率,自动切换进样与冲洗模式,降低记忆效应影响,提高分析效率。氩气在线稀释系统:可在炬管之前把样品基体稀释到0.2%以内,保证接口区域与质谱区域不受高基体污染,消除高基体造成的信号抑制效果,直接进样不用担心内标漂移。ICP源:专利式的双路射频电源,可以在复杂基体下毫秒级快速变频匹配等离子体负载变化,稳定性优异,不易熄火。应用案例采用谱育科技自主研发的 SUPEC 7000系列 电感耦合等离子质谱仪(ICP-MS)按照GB 5009.267-2020中的方法进行验证。① 仪器参数② 样品测试结果(单位mg/kg)③ 标准曲线详细分析方法请识别下方二维码领取!您在碘元素测定过程中面临过哪些问题呢?欢迎在文章评论区留言,或者直接拨打400-700-2658与我们联系,我们将在第一时间为您解答。
  • 【安捷伦】食品中碘元素测定新国标:ICP-MS 方法为何站稳 C 位?
    电感耦合等离子体质谱仪(ICP-MS)结合了等离子体光源的稳定性和质谱的高灵敏度,诞生即自带光环,商品化后更成为微量和痕量元素分析的不二之选。值得一提的是,安捷伦在 1987 年制造了世界上第一台电脑控制的 ICP-MS,成为 ICP-MS 自动化控制的开端。2016 年,食品国标 GB 5009.268-2016 将 ICP-MS 推到多元素分析的聚光灯下,成为食品实验室多元素分析的首选仪器。经过食品行业分析专家四年的探索、优化,食品中碘的测定国标方法 GB 5009.267-2020 发布( 2021 年 3 月实施), ICP-MS 站上 C 位,成为食品中碘元素通用分析的第一法。不以提高实验室工作效率的方法改进只能叫“炫技”,表 1 总结了GB 5009.267-2020 中四种推荐方法分别用到的试剂和设备,从使用的试剂种类上,便可以推想其它方法的复杂程度。而 ICP-MS 方法只需恒温提取-离心-过滤-上机测量,行云流水般的样品处理过程极大地提高了实验室工作效率,妥妥证明了 ICP-MS 方法的简单高效。“简单高效”只是 ICP-MS 方法通往 C 位路上的鲜花,真正成为新国标碘元素测定第一法还是要靠过硬本领。对比四种方法的检测能力,ICP-MS 方法以 0.5 g 的较低取样量实现了 0.03 mg/kg 的方法定量限,即使在应对更低碘含量的分析时,仍然保持过量的检测能力。表 1. 新国标碘元素测定推荐方法比较最简单的样品处理过程,最广泛的使用范围,最低的定量限,使得 ICP-MS 方法成为食品碘元素分析的第一法。真正想站稳 C 位,作为硬件的 ICP-MS 仪器还需要证明一件事——连续分析 0.5% 四甲基氢氧化铵(TMAH)的稳定性。这个不难,安捷伦的 UHMI 专利技术可以帮你做到!只需将等离子体条件设置为 UHMI-4 或者按照国标参考条件中将稀释气设到 0.3 - 0.4 L/min,就可以长时间分析0.5% 四甲基氢氧化铵而不用担心内标漂移。2020 年,安捷伦全新发布 7850 ICP-MS, 全线升级配备UHMI,复杂食品样品基体耐受性大幅提升。ICP-MS 超高基质进样系统 (UHMI) 附件(上图右)您在碘元素测定过程中面临过哪些问题?欢迎在文章下方留言交流。接下来,安捷伦还将介绍乳品中碘元素测定方案,敬请关注!参考文献及标准:1. GB 5009.267-2020 食品安全国家标准 食品中碘的测定2. 安捷伦 ICP-MS 技术简介:高基质进样技术(5994-1170ZHCN)关注安捷伦微信公众号,获取更多市场资讯
  • 德国元素助力碳材料转型-石油焦中碳、氢、氮、硫测定方案
    什么是石油焦石油焦是原油经过蒸馏分离出重质油,重质油再经热裂转化而成的产品,是一种在石油加工过程中产生的副产品。石油焦的质量与性能指标是评价其使用价值的重要标准,如硫含量、氮含量、水分等。石油焦主要的元素组成是碳,占80%以上, 含氢1.5%-8%,其余的为氧、氮、硫和金属元素碳。石油焦可分为四种:针状焦(针状结构和纤维纹理,用于石墨电极、负极材料)、海绵焦(杂质含量低,用于炼铝工业)、弹丸焦(由高硫、高沥青质杂油生产,只能用于发电和水泥使用)和粉焦(挥发分高)。为什么要测石油焦中的CHNS元素根据NB/SH/T 0527-2019 石油焦(生焦)的要求,其中硫是石油焦出厂必检项目,所以准确测定石油焦中的硫含量至关重要。石油焦的硫具有高低不同含量,所以对分析仪器也提出了高要求。氮作为石油焦中的检测项目,其的准确测定也是非常重要。德国元素Elementar作为具有120多年元素分析经验的厂家,在CHNS元素分析方面具有多款产品,满足客户的不同测试需求。德国元素Elementar助力碳材料转型石油焦中碳、氢、氮、硫测定方案德国元素 vario MACRO cube 大进样量有机元素分析仪,是市面上唯一一款实现CHNS同时测定的大进样量元素分析仪。vario MACRO cube 大进样量有机元素分析仪且可以通过TCD检测器+IR红外检测器联合使用,实现石油焦中高低含量硫的高精度、高准确性测定。德国元素 rapid CS cube 红外碳硫仪,配置高碳、低硫红外检测器,可精确测定石油焦中碳、硫含量,其检出限低至2 ppm。案例分享—石油焦样品检测案例仪器型号:德国元素 vario MACRO cube 元素分析仪模式:CHNS模式仪器型号:德国元素 rapid CS cube 红外碳硫仪结论石油焦作为高单质碳、低氮、低硫样品,对燃烧条件与检测器的要求很高。德国元素 vario MACRO cube 有机元素分析仪 和 rapid CS cube 红外碳硫仪 的高性能燃烧炉与快速加氧方式,可确保此类样品的充分燃烧氧化,再结合IR红外检测器,实现高碳、低硫的精准测定。
  • 您的实验室应该具备的四种有机前处理设备
    凡是做过有机检测的实验人员,一提起前处理,无不对其“记忆深刻”—耗时、繁琐、无聊… … 工作时间的80%耗费在了前处理上,“我好难!”成了他们调侃的常用语。更有不少实验室管理者吐槽:“好不容易招到各方面都满意的人,却因为受不了前处理的繁琐和枯燥离职了,想留住人才太难!”其实,实验室只需具备莱伯泰科有机前处理整体解决方案中的这四种仪器,便能轻松应对有机前处理全流程,将实验人员从繁琐的前处理中解脱出来,实验效率高了,心情自然好了,还有更多时间去提升业务水平,实验室管理者再也不用担心人才流失了。莱伯泰科有机前处理整体解决方案囊括了:样品提取、浓缩、净化后再富集的全过程,解决方案可以自动化的对复杂样品进行提取,也可以对含量稀少的样品进行富集,优点如下:✿ 可自动化连续运行,无人值守,解放实验人员双手✿ 大幅节省样品前处理时间✿ 所有样品瓶通用,无需转移,确保实验的回收率✿ 避免人为操作的误差,易于得到稳定重现的结果这四种仪器分别是:双通道高效萃取:Flex-HPSE全自动高效快速溶剂萃取仪在填充好两个样品之后,即可萃取与填充同时进行,所有样品填充好后,无需实验人员值守,48个样品只需一夜,且收集瓶与平行浓缩仪通用,不用转移样品,只需将整架收集瓶转移至平行浓缩仪即可。高通量大体积快速浓缩:MultiVap-10定量平行浓缩仪、M64全自动高通量平行浓缩仪、MVP真空平行浓缩仪莱伯泰科的这三款浓缩仪,可以满足日常检测的绝大部分浓缩需求,可结合实验需求选择配置一台或者多台。 全自动上样、分离和收集样品:GPC1000全自动凝胶净化系统最多可同时运行8通道:SPE1000全自动固相萃取系统如果您的实验室还没有配齐上述四种有机前处理设备,或者您对我们的产品有任何疑问,请马上致电400-070-8778,我们将竭诚为您服务!关于莱伯泰科北京莱伯泰科仪器股份有限公司(股票代码:688056.SH)成立于2002年,公司自成立之初便专注于科学仪器设备的研发,立志为环境检测、食品安全、医疗卫生、疾病控制、材料研究等众多基础科学及行业应用提供实用可靠的实验室设备和整体解决方案。公司发展至今已拥有各类专利及软件著作权100余项,持续通过高新技术企业认证,连续多年被业内媒体评为中国仪器仪表行业“最具影响力企业”。产品服务涵盖实验室分析仪器、样品前处理仪器、实验室设备、医疗设备、实验室耗材和实验室工程建设等。目前,公司产品已销往全球90多个国家,共计服务客户近3万家。如需了解莱伯泰科的详细信息,请访问莱伯泰科官方网站。
  • 实验室中首次“撞”出构建生命的四种基本碱基
    大约40亿年前,地球上开始出现早期生命。目前较为流行的一种理论认为,是陨石或小行星等地外天体的撞击触发了关键的化学反应,从而产生了一些与生命有关的物质。现在,捷克科学院的研究人员在实验室中重演了这一过程:他们利用激光轰击黏土和化学物质汤,模拟一颗高速小行星撞击地球时的能量,最终生成了构建生命的至关重要的基本组件&mdash &mdash 形成RNA必需的4种碱基。  研究人员在发表于美国《国家科学院学报》上的论文中称:&ldquo 这些发现表明,地球生命的出现并非意外,而是原始地球及其周围环境条件的直接结果。&rdquo   实验并未证明地球生命就是由此诞生的,因为从这四种碱基到生命的出现,中间还有很多必不可少的神秘步骤,但这可能是这一过程的一个起点。  论文领导作者、捷克科学院海依罗夫斯基物理化学研究所的斯瓦托普卢克· 思维斯说,科学家们此前已经能够用其他方法制造这些RNA碱基,比如使用化学混合物和高压,但这是首次通过实验来检验&ldquo 撞击产生的能量可触发关键化学反应&rdquo 的理论。  据物理学家组织网12月9日(北京时间)报道,研究人员用一个长约152米的激光器产生的无形激光束,轰击名为甲酰胺的化学物质汤,这种液体据认为存在于我们的原始星球上。该激光的功率非常高,在不到十亿分之一秒时间内的输出相当于几个核电站,产生的能量高达十亿千瓦,甲酰胺样本的温度瞬间升高至4200摄氏度以上,从而发生了一系列化学反应。研究人员在最终产品中,发现了RNA的四种碱基&mdash &mdash A(腺嘌呤)、G(鸟嘌呤)、C(胞嘧啶)和U(尿嘧啶),其中前三种也是DNA的碱基。  专家对这项实验的重要性看法不一。美国佛罗里达州应用分子进化基金会的杰出生物化学家史蒂夫· 本纳说,这项研究意义重大,因为它生成了早期地球上可能存在的原始材料。但英国医学研究委员会分子生物实验室的约翰· 萨瑟兰认为,产生的碱基量太少了,没有什么价值。  总编辑圈点  科学家们一般相信,生命起源可以追溯到天外来客,如宇宙射线和小行星。虽然已有很多办法在实验室里制造出了生命的&ldquo 零件&rdquo ,但我们对于生命的发生史只能猜想,不能实证。除非我们找到一颗适合的行星,制造高能量的撞击,再等上几亿年,看看有没有生命诞生。假如有那本事,地球人早就移民过去了。研究生命的诞生史好像没什么用,但自己的身世来历,人类哪能不关心呢!
  • 赛默飞发布同时测定水体中的四种酰胺的解决方案
    2014年9月16 日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布了HPLC 法同时测定水体中四种酰胺:甲酰胺、N,N- 二甲基甲酰胺、N,N- 二甲基乙酰胺和丙烯酰胺的解决方案。N,N-二甲基甲酰胺和N,N- 二甲基乙酰胺,毒性相对较小,但是因其作为重要的化工原料和性能优良的溶剂,广泛应用于医药、电子、燃料等行业,其废水排放量大,不容忽视;丙烯酰胺, 又称丙毒, 是一种水溶性的神经性毒物,国际癌症研究机构(IARC)将其列为二类致癌物;而对于水体中的甲酰胺的检测目前尚不完善。因此,建立一种快速、准确地测定水体中四种酰胺的方法,对保护环境,保障人们的身体健康具有重要的现实意义。 赛默飞使用Thermo ScientificTM DionexTM UltiMateTM 3000RS 四元系统,以乙腈和水作为流动相,在5 min 内即可完成环境水体中甲酰胺、丙烯酰胺等四种典型的酰胺类化合物的测定,是一种快速、灵敏、简便、准确测定水体中酰胺类化合物的方法。下载应用文章请点击:http://www.instrument.com.cn/netshow/SH100650/down_477105.htm 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站www.thermofisher.cn
  • 解决方案|ARL easySpark 1160在铝合金Sc元素检测中的应用
    上个世纪70年代以来,人们把信息、材料和能源作为社会文明的支柱。80年代又把新材料、信息技术和生物技术并列为新技术的重要标志。随着科学技术的高速发展,新技术、新产品及新工艺对新材料的要求越来越强烈,也促进了当代材料科学技术的飞速发展。Al-Li合金是一种低密度、高性能的新型结构材料,它比常规铝合金的密度低10%,而弹性却提高了10%,比强度和比刚度高,低温性能好,还具有良好的耐腐蚀性能和非常好的超塑性。铝锂合金主要为飞机和航空航天设备的减重而研制的,因此也主要应用与航空航天领域,还应用于军械和核反应堆用材,坦克穿甲弹,鱼雷和其它兵器结构件方面,此外在汽车、机器人等领域也有充分运用。但是Al-Li合金韧性、塑性较常规铝合金低,热稳定性差等。为此,科学家在Al-Li合金成分优化及微量元素优化方面进行了大量工作。科学家发现铝台金中加入微量Sc元素后合添加Sc、Zr元素,能全面改善合金的组织和性能。Sc元素在铝合金凝固过程中形成Al-Sc粒子,Al-Sc粒子本身细小均匀,可以细化铸态组织,从而改善铝合金的焊接性能,提升铝合金强度。在过渡族元素中,对铝合金组织细化效果好的是 Sc,其次才是 Ti、Zr、V。图1 铝的晶粒大小与晶粒细化剂反应参数 Ω 的关系 图2是四种铝合金在添加不同含量Sc元素后,在光学显微镜下的铸态显微组织。由图a可见,不含Sc的S-00合金晶间分布着连续的黑色第二相和少量晶內第二相。有图b、c、d可以看到,添加Sc后,合金组织中的Al晶粒得到不同程度的细化。可以看出当加入Sc质量分数在0.15%时合金的晶粒细化效果最佳。目前传统的直读光谱仪还不能检测Sc元素,为了客户对新材料,新技术的检测需求,全新技术的ARL easySpark 1160 全谱直读光谱仪可选配钪(Sc)元素曲线,可以快速检测钢铁及合金中0.01 ~ 0.27%的钪(Sc)元素量,满足客户对新型铝合金材料检测。在检测钪(Sc)元素的同时,检测其他合金元素。一台设备,多种功能,满足客户需求,降低客户购买设备的成本,提高客户检测效率,可谓一机多用。全新的ARL easySpark 1160 使用定制镀膜CCD,提升透光率,总像素高达26000,而传统CCD只有2000~4000像素。除此之外,它还采用独特的半导体制冷,CCD的工作温度<10℃,相对于传统CCD工作温度30~40℃,极大的降低仪器的暗电流,提升仪器的检测下限。
  • 最高法明确环评、监测机构“弄虚作假”四种追责情形
    最高人民法院6月1日发布的司法解释显示,&ldquo 环境影响评价机构与委托人恶意串通或者明知委托人提供的材料虚假而出具严重失实的评价文件&rdquo 等四种情形,除依照有关法律法规规定予以处罚外,还应当与造成环境污染和生态破坏的其他责任者承担连带责任。  6月1日,最高人民法院发布《最高人民法院关于审理环境侵权责任纠纷案件适用法律若干问题的解释》(以下简称《解释》)。《解释》共十九条,主要从八个方面对环境侵权责任纠纷案件的法律适用问题进行了解释。  这是2015年1月1日新环境保护法生效以来,最高法在《关于审理环境民事公益诉讼案件适用法律若干问题的解释》之后,相继颁布的第二个审理环境责任纠纷案件的司法解释。  今年1月施行的新环境保护法中明确规定,环境影响评价机构、环境监测机构以及从事环境监测设备和防治污染设施维护、运营的机构,在有关环境服务活动中弄虚作假,对造成的环境污染和生态破坏负有责任的,除依照有关法律法规规定予以处罚外,还应当与造成环境污染和生态破坏的其他责任者承担连带责任。  但是,什么行为属于这里的&ldquo 弄虚作假&rdquo ,环保法中并未明确指出。为了增强本条的实际操作性,统一法律适用标准,此次出台的司法解释就此问题详细列出了四种认定情况。  这则司法解释明确,有下列情形之一的,应当认定为环境保护法第六十五条规定的弄虚作假:  一是环境影响评价机构与委托人恶意串通或者明知委托人提供的材料虚假而出具严重失实的评价文件的;  二是环境监测机构或者从事环境监测设备维护、运营的机构与委托人恶意串通,隐瞒委托人超过污染物排放标准或者超过重点污染物排放总量控制指标的事实的;  三是从事防治污染设施维护、运营的机构与委托人恶意串通导致设施不能正常运行的;  四是有关机构在环境服务活动中因其他弄虚作假造成环境污染的情形。  记者获悉,最高法今日发布的这则司法解释,将于2015年6月3日起施行。
  • 欧盟委员会批准在特定产品中使用四种农药
    2011年9月23日消息,近日,欧盟委员会经过活性物质审核项目,在官方公报(OJ)上发布了同意在某些产品中使用四种农药的消息。  这四种允许作为杀生剂成分在特定产品中使用的物质列在杀生剂产品指令附件I中,分别为:  苏云金杆菌杀虫剂(Bacillus thuringiensis)  氟虫腈(fipronil)  三氟氯氰菊酯(lambda-cyhalothrin)  溴氰菊酯(deltamethrin)
  • 【瑞士步琦】通过SFC-UV分离纯化贝达喹啉的四种异构体
    分离纯化贝达喹啉的四种异构体结核病(TB)是导致残疾和死亡的全球性流行病。据估计,世界上多达三分之一的人口感染了结核病,主要由结核分枝杆菌(Mycobacterium tuberculosis, M. tuberculosis)感染引起。由于患者停药或不正确的药物处方导致病原体突变,结核分枝杆菌对一线结核病治疗产生了多药耐药。2005 年,Andries 及其同事报告了第一种耐多药抗结核药物 TMC 207,现在被称为富马酸贝达喹啉(BDQ),成为40年来首个抗结核特异性药物。Andries 等人进行了实验测试四种立体异构体对耐多药结核分枝杆菌菌株的活性。他们报告了每种异构体以及两种异构体的混合物对细菌生长产生 90% 抑制的浓度(IC90)。如图1所示,(R,S)和(S,R)的值分别为 0.03 和8.8μg/mL,组合后的值为 1.8μg/mL。(R,R)和(S,S)同分异构体的IC90值分别为 4.4 和 8.8μg/mL,而混合物的 IC90 值为 4.4μg/mL。这些结果表明,需要对(R,S)异构体进行优化分离,以专门治疗结核分枝杆菌。▲图1:贝达喹啉的四种异构体,及其抗结核分枝杆菌活性(IC90)本文介绍了一种利用 BUCHI Sepiatec SFC-50 仪器分离纯化 BDQ (R,S)异构体的方法。SFC 仪器与蒸发光散射检测器(ELSD)相连。为了提高生产效率,采用了堆叠注入模式。▲图2:BUCHI Sepiatec SFC-501实验条件设备 BUCHI Sepiatec SFC-50色谱柱 Chiralpak IA (4 x 100mm)流动相条件 93.7%二氧化碳、6%(50/50甲醇: 异丙醇)和 0.3%异丙胺,等度洗脱流速 5ml/min背压 150 bar柱温 40℃样品 (RS, SR)对映体BDQ进样量 285mg 叠层进样,每次 100uL检测波长 220nm2结果与讨论通过图3我们可以观察到 BDQ 的两种异构体(RS,SR)在 Sepiatec SFC-50 上能呈现有效的基线分离,并且分离时长控制在 10 分钟以内。▲图3:通过Sepiatec SFC-50以叠层进样的方式获取BDQ (R,S)异构体由于本次实验使用的色谱柱规格较小(4x100mm),不适用于大量样品(285mg)的纯化分离,因此我们采用叠层进样的方式,通过多次进样来高效获取大量目标化合物。
  • 水质总磷、总氮(新标准)在线监测仪等四种仪器检测工作启动
    为有力支撑环境管理需求,规范相关仪器性能质量,指导相关产品研发生产,引领相关设备技术进步,中国环境监测总站仪器质检室围绕《“十四五”生态环境监测规划》,在调研国内外“水质总磷、总氮在线监测仪”、“水质智能采样器”、“环境空气臭氧(化学发光法)连续自动监测系统”四种仪器技术发展现状和市场应用需求的基础上,结合验证测试结果,编制了《水质总磷在线监测仪检测作业指导书》(HJC-ZY97-2022)、《水质总氮在线监测仪检测作业指导书》(HJC-ZY98-2022)、《水质智能采样器检测作业指导书》(HJC-ZY99-2022)、《环境空气臭氧(化学发光法)连续自动监测系统检测作业指导书》(HJC-ZY100-2022)(以下简称作业指导书)四项检测技术文件。9月,四项作业指导书通过专家评审会审议,可以作为开展相关仪器适用性检测的技术依据;现正式启动上述四种仪器的检测工作。具体检测要求、检测方式、申报通道、注意事项等详细信息,可登录中国环境监测总站,在“环境监测仪器适用性检测申报系统”通知公告栏查询。
  • “十二五”氨氮等四种污染物将强制减排
    本报北京1月14日电(记者李禾)国家已确定将化学需氧量(COD)、二氧化硫、氨氮、氮氧化物纳入“十二五”约束性指标 2011年减排任务是,上述四种主要污染物排放量与2010年相比,均下降1.5%。这是环境保护部部长周生贤在今天结束的“2011年全国环境保护工作会议”上透露的。  周生贤说,“十二五”时期环保主要目标是:到2015年,单位国内生产总值二氧化碳排放大幅下降,主要污染物排放总量显著减少,生态环境质量明显改善,环境保护体系逐步完善。全国化学需氧量、二氧化硫、氨氮、氮氧化物排放总量比2010年分别削减一定比例。  周生贤强调,今年是“十二五”的开局之年,环保工作依然面临严峻挑战。工业化、城镇化快速发展,经济总量仍将保持高速增长,能源资源消耗还在增加,环境容量有限的基本国情不会改变,治污减排压力巨大 常规环境污染因子恶化势头有所遏制,重金属、持久性有机污染物、土壤污染、危险废物和化学品污染问题日益凸显 环境违法行为时有发生,突发环境事件呈高发势头等。  “因此,需提高并严格执行造纸、纺织、皮革、化工等行业的主要污染物排放标准、产业政策和国家下达的落后产能关停计划 全面启动县建设污水处理厂工程,开展农业源污染减排工程建设 加强燃煤电厂脱硫、脱硝 以京津冀、长三角和珠三角区域为重点,加强城市空气质量达标和分级管理工作,推进颗粒物、挥发性有机物污染防治,严格控制机动车尾气污染等。”周生贤说。  据初步测算,2010年全国化学需氧量排放量较2005年下降12%左右,二氧化硫下降14%左右。“十一五”国家化学需氧量减排目标提前半年实现,二氧化硫减排目标提前一年实现。
  • 四种毒素残留检测技术落地开花
    天津检验检疫局主持的“食品及中药中有毒有害物质的环保、快速、多残留检测技术体系的研究”,在人性化、安全化、低耗环保化设计以及批次检测等方面具有丰富的应用潜力和良好的推广前景。 实验室人员进行食品药品中农兽药通量化测试   自制前处理萃取设备  科研人员进行中草药中生物毒素检测  食品、药品直接关系着民众的生命健康,然而在食品、药品源头物的种养植、生产加工、存储运输过程中,或多或少会被施加上或接触到有毒有害物质。  为了准确掌握食品、药品中有毒有害物质的残留情况,为下一步对食品、药品具体处理提供依据,技术人员会事先对食品、药品中的有毒有害物质残留样品进行最大限度的提取,再经过分析、净化、浓缩等步骤,对样品的残留情况准确掌握。这个过程,就是食品、药品中有毒有害物质的样品前处理,是确保食品、药品食用安全的第一关。  样品前处理最难  样品前处理是针对食品、药品有毒有害物质残留检测过程中耗时最长、最容易出现误差的步骤。作为残留检测的关键环节,样品前处理过程直接影响检测工作的效率和准确度。  我国传统采用的食品、药品有毒有害物质的残留前处理工作中,提取和净化环节需要使用大量类似乙腈、二氯甲烷等有毒试剂,会给实验室检测人员身体健康造成危害,同时使用后残余溶液的废弃还容易对环境造成污染。此外,传统技术还存在过程冗长、有机试剂消耗量大、检测项目分散等不足。  技术上的落后导致我国食药领域进出口贸易屡屡遭遇欧、美、日等发达国家和地区的技术性贸易措施,一定程度影响了我国相关产品的顺利出口及相关产业的健康发展。  为了解决传统技术方法中存在的问题与不足,天津检验检疫局科研人员以建立快速、高效、环保、误差小、回收率高的前处理技术方法为重点方向,通过深入研究、刻苦攻关,终于在技术方法上取得突破,研究成果对于提高食品、药品有毒有害物质残留样品前处理工作效率、降低工作有毒试剂后续污染隐患都有积极作用。  构建综合技术平台  课题组选择了食品、药品中常被施用的激素、生物毒素、农药和兽药作为典型的有毒有害物质,通过优化提取、合并检测,最终构建了由4种新型技术方法为主要支撑的食品及中药中有毒有害物质残留样品前处理综合技术平台。  双柱净化/自动固相萃取法。方法主要针对动物源性食品中激素类、聚醚类及镇静类药物多残留检测。采用有机溶剂和缓冲溶液两步提取的方式,将原本按类别分别检测的十余种激素归并为一个多残留检测过程。此方法较传统方法检测效率提高超过1倍,降低成本50%,并填补了国内激素残留检测领域的技术空白。  亚临界水萃取-填料吸附净化法。方法主要针对常见农兽药的通量化分析。通过用无毒无害的亚临界水取代有机溶剂进行提取,减少了有机溶剂对人员和环境的危害,将提取和吸附过程有效结合,提高了有毒有害物质检测的速度。  可再生在线免疫亲和净化法。方法主要针对中草药及中成药中生物毒素多残留检测。建立了中草药及中成药中十余种生物毒素的快速检测方法。该方法将前处理和仪器检测两个环节合为一体,提高了检测速度,每根亲和柱的在线重复使用寿命可达40次,保证了自动净化过程的可操作性,降低了免疫亲和净化的成本。  分子印迹整体柱净化法。方法主要针对动物源性食品中喹诺酮类药物的检测。本方法选择特定有机聚合材料,制备出可用于该类药物残留分析的分子印迹整体柱,建立了动物源性食品中8种该类药物的特异性识别检测的方法,重现性好,简便快速。  应用前景广阔  目前,该课题成果已经被广泛应用于食品、中药材产品有毒有害物质残留检测领域。经天津市农产品质量监督检验测试中心、天津市农业科学院中心实验室、天狮集团有限公司,吉林、珠海检验检疫部门实践应用,一线检测人员一致认为:研究形成的方法实用,操作方便,具备较好的通用性。应用结果显示,该课题形成的技术方法能够有效提高检测效率、检测质量和产品合格率。2011年,天津检验检疫局检测人员利用该技术检测进出口食品、药品12000项目次,检测效率明显提升,有毒试剂使用量下降20%,应用效果良好。  课题部分成果已转化为2个国家标准,即《河豚鱼和鳗鱼中玉米赤霉醇、玉米赤霉酮、己烯雌酚、己烷雌酚、双烯雌酚残留量的测定方法——液相色谱-串联质谱法》和《牛奶和奶粉中玉米赤霉醇、玉米赤霉酮、己烯雌酚、己烷雌酚、双烯雌酚残留量的测定方法——液相色谱-串联质谱法》。标准的形成对于打破国际贸易措施、提升我国在食品及中药检测方面的国际影响力有重要意义。  课题成果有利于为社会创造潜在的环境效益、生态效益,营造更好的自然和社会环境,在人性化、安全化、低耗环保化设计以及批次检测等方面具有丰富的应用潜力和良好的推广前景。  链 接  为了促进我国食药领域中有毒有害物质残留检测工作水平的整体提高,改善现有前处理技术工作,天津检验检疫局申请并主持了《食品及中药中有毒有害物质的环保、快速、多残留检测技术体系的研究》课题。目前,课题已经完成。课题组在研究过程中,摸索出了一套符合我国食品、药品检测工作实际,具有高效、灵敏、准确、可靠等特点的检测方法,整体技术达到了国际先进水平。在2012年天津滨海新区科技进步奖评审中,该课题获得三等奖。
  • 多元素检测原子荧光光度计, 了解一下
    我们都知道吸烟有害健康,为此有人建议用电子烟代替传统的香烟。但近日,一项由国家卫健委支持的调查项目指出电子烟存在重金属,这让人们对于电子烟的安全产生了疑虑。电子烟含有的重金属会不会对人体产生危害呢,这需要具体的检测数据。一般说检测重金属的仪器有原子吸收光谱仪、ICP-MS、ICP-AES/OES、原子荧光光度计(AFS),如果需要进行形态分析可能还需要HPLC-ICP-MS或液相色谱原子荧光联用仪(LC-AFS)等。也许您还漏掉一种仪器氢化法-火焰法联用原子荧光光度计。调查项目的结果显示,被调查的所有电子烟都存在重金属铬(Cr),半数检出了重金属镍,20%含有重金属铅;约有10%左右含有砷。其中,铬、镍、铅和砷都具有致癌性。检测时可以用原子吸收光度计和氢化法原子荧光光度计配合使用,用原子吸收光谱法检测铬、镍以及铅,用氢化法原子荧光法检测样品中的砷。实际上,金索坤还提供了另一种方案,应用SK-2002B氢化法-火焰法联用原子荧光光度计,一台仪器可以检测铬、镍、铅和砷四种元素。氢化法-火焰法联用原子荧光光度计是金索坤研发团队为扩大原子荧光光度计可检测元素范围研发出的产品。在此基础上不断的改进升级,到目前为止SK-2002B氢化法-火焰法联用原子荧光光度计可以检测砷、锑、铋、铅、锡、碲、硒、锌、锗、镉、铬、银、铜、金、汞、铁、镍、钴、锰、铟等20种元素。将原子荧光光度计只可以有效的检测11元素变成了历史。为原子荧光技术的发展带来新的方向。电子烟健康与否尚需要通过检测。无论是原子吸收光度计和氢化法原子荧光光度计配合,还是SK-2002B氢化法-火焰法联用原子荧光光度计独揽,总之经口的东西都需要经过严格的检测。但依小编来看,无论是传统的香烟还是颇具争议的电子烟,既然都可能损害,为了身体着想,还是少接触为好。金索坤SK-乐析 原子荧光光度计/光谱仪
  • 恭贺柳鹏飞教授团队发表四种鸟类代谢产热研究成果
    陇东学院柳鹏飞教授团队于2023年在Avian Research发表“Comparisons of thermogenic features in four coexisting songbirds: Is the northward colonized White-browed Laughingthrush different?”一文,介绍了四种鸣禽(白颊噪鹛、山噪鹛、橙翅噪鹃、绿金翅)的代谢产热表型,以及它们向北扩张栖息地的生理适应机制。该研究采用易科泰生态技术公司提供的高性价比Foxbox呼吸代谢测定仪测量0至40℃下动物代谢产热相关参数。 北京易科泰生态技术有限公司与美国Sable等国际知名能量代谢测量技术公司合作,为国内生物学、生物医学、运动医学、环境医学研究提供全面能量代谢研究技术方案和能量代谢实验室方案:1) 大鼠、小鼠、鸟类等实验动物能量代谢测量技术2) 灵长类能量代谢测量技术3) 果蝇能量代谢测量技术4) 斑马鱼能量代谢测量技术5) 人体能量代谢测量技术6) 动物活动与生理指标(体温、心率等)监测技术7) 测量参数包括:氧气消耗量(VO2)、二氧化碳产量(VCO2)、呼吸交换速率(RER)、能耗(EE,包括REE、AEE、TEE等)、热传导速率(Ct)、日代谢率(DEE)、最大代谢率(MRmax)、呼吸水分丧失(EWL)、能耗效率、EWL/RMR(表示肺的氧气摄取能力)等。
  • PerkinElmer成功举办“玩具迁移元素检测”网络讲座
    PerkinElmer成功举办“玩具迁移元素检测”网络讲座,本次活动吸引了超过130位用户的积极参与。讲座由PerkinElmer资深应用专家许权辉老师主讲,获得了参与活动的用户的一致好评。点击观看本次讲座的视频内容 许老师此次讲座主要介绍了EN71-3:2013法规中所规定的玩具中铬(Cr)元素的分析检测方法。根据法规要求,对于三个种类的玩具中铬元素的限量标准如下:类别玩具材料描述铬Cr(III)限值铬Cr(VI)限值第一类干燥、易碎、粉末状或柔韧的玩具材料37.5 mg/kg0.02 mg/kg第二类液态和粘性玩具材料9.4 mg/kg0.005 mg/kg第三类可以刮去的玩具材料460 mg/kg0.2 mg/kg许老师首选就EN71-3:2013附录方法LC-ICP-MS联用技术进行了讲解,并就其操作步骤繁琐、易受基体干扰等问题进行了详细的解答,从而引出了PerkinElmer针对性改进的Only Water Kit + LC-ICP-MS方法的介绍。PerkinElmer 推出的Only Water Kit + LC-ICP-MS方法极大的减少了样品前处理的步骤,提高了方法的稳定性和准确度。许老师通过对四种不同实际样品检测的分析测试,验证了Only Water Kit + LC-ICP-MS方法对三类样品的方法检测限均能够满足EN71-3:2013的限值要求,特别是对一些基质复杂的样品,取得了良好的效果。许老师最后介绍了最新的LC-ICP-OES联用技术针对玩具中六价铬和三价铬形态分析的具体方法,并着重讲解了HPLC和ICP-OES联用技术中数据处理的问题。通过对实际样品的检测以及和LC-ICP-MS方法的相互验证,证明了LC-ICP-OES联用技术可以满足第一类\第三类玩具中铬元素的分析要求,检出限低于0.01mg/kg.在一个半小时的讲座中,许老师深入浅出的讲解和PerkinElmer极具特色的应用方法取得了众多的用户的认可与赞许,此次网络讲座获得了圆满的成功。您可以点击以下链接下载相关应用文章,或者与我们联系获取更详细的技术资料。 《LC-ICPMS测定玩具中的痕量可迁移六价铬》应用文章 敬请关注PerkinElmer后续市场活动,我们将在下半年再次举办一次关于EN71-3:2013玩具金属元素检测的网络讲座,期待您的参与。
  • 元素周期表喜添新成员:4种新元素获提名
    p style="text-align: center "img src="http://img1.17img.cn/17img/images/201606/insimg/6ad50889-8ac2-4e11-bf4c-a9d2ea60289e.jpg" title="catchpic-c-ca-ca89266a8a16b76a4976f81c482bacda.jpg"//pp style="text-align: center "4个获提名的新元素(元素周期表的右下角)/pp 化学管理机构、总部位于瑞士苏黎世的国际纯粹与应用化学联合会(IUPAC)于6月8日在一份提案中宣布,113号元素将被命名为nihonium(Nh) 115号元素将被命名为moscovium(Mc) 117号元素将被命名为tennessine(Ts) 118号元素将被命名为oganesson(Og)。/pp  该联合会去年年底宣布,确认上述4种新元素的存在。这些元素由俄罗斯、美国和日本的科研团队发现,他们也获得了对这些元素的正式命名权。/pp  根据IUPAC的规定,发现方对新化学元素拥有命名权,而新修改的命名原则是可根据神话概念及人物、矿物和其他相似物质、地名与地理区域、元素性质或科学家姓名来命名新元素。/pp  IUPAC下属无机化学部门主席Jan Reedijk在一份媒体声明中表示:“尽管这些元素的名称看起来多少有些任性,但它们完全与IUPAC的规则相一致。”或许这其中最引人注目的命名要数第118号元素oganesson。该元素以俄罗斯杜布纳市核研究联合学院(JINR)83岁研究人员Yuri Oganessian命名。Yuri曾帮助发现了大量的超重元素。第118号元素是人类目前合成的最重元素。/pp  这是有史以来第二次用一个健在的科学家为新元素命名。而之前的一次曾引发了巨大的争议——1993年,美国加利福尼亚州劳伦斯· 伯克利国家实验室的研究人员提议用该国核化学先驱Glenn Seaborg的名字为第106号元素seaborgium命名。起初,IUPAC通过了一项决议,表示元素不能以健在的科学家命名,从而拒绝了美国科学家提议,但最终IUPAC还是妥协了。/pp  IUPAC表示,以莫斯科地区命名的第115号元素Moscovium向“JINR所在地、古老的俄罗斯土地表达了敬意” 而第117号元素tennessine则“赞扬了美国田纳西地区——包括橡树岭国家实验室、范德堡大学和诺克斯维尔的田纳西大学——在超重元素研究中作出的贡献”。/pp  JINR的研究人员与加利福尼亚州劳伦斯· 利物莫尔国家实验室、橡树岭国家实验室合作,共同发现了上述两种元素。/pp  第113号元素nihonium则是第一个以东亚国家命名的人造元素。日本在2004年就宣布合成了第113号元素,这也是亚洲科学家首次合成的新元素。日本理化学研究所仁科加速器研究中心的科研人员将第113号元素以日本国名(Nihon)命名为nihonium。IUPAC表示:“这个元素的名称与发现它的国家直接联系起来。”/pp  在此之前,最近添加到元素周期表上的是flerovium(Fl,第114号元素)和livermorium(Lv,第116号元素)。所有这些人造元素——包括最新的4个元素——都是在实验室中通过粉碎更轻的原子核创造的微量元素,并且它们在分裂成更小、更稳定的片段之前仅存在了几分之一秒的时间。/pp  自从19世纪门捷列夫首创现在通行的化学元素周期表以来,人类已发现了118种元素。它们在元素周期表上按原子序数排列,每一列称作一个族,每一行称作一个周期。/pp  研究人员表示,这4种新元素将完成元素周期表中第七周期元素的排列,并为寻找元素“稳定岛”提供证据。现在的元素周期表只有七行,其中第七行中原子序数在93号及以上的元素都在自然界中不稳定,是人工合成的。然而核物理学家早就预言说,可能存在一个超重“稳定岛”,岛内元素原子的质子和中子数量超越元素周期表内的元素,但十分稳定。/pp  这4种新元素将接受为期5个月的公众评议。除非有公众抗议,否则,按计划IUPAC理事会将在今年11月初正式批准4种新元素加入化学元素周期表大家庭。/p
  • 【安捷伦】ICP-MS 期刊 | 单细胞纳米多元素分析,附送解决方案
    不同元素在细胞中的作用,是目前细胞生物学中前沿的研究领域之一。在相关的研究当中,如果能在一次分析中得到单个细胞中的多个元素的信息,将会在提高实验效率的同时,也为研究人员提供更多的研究空间。本期向您介绍高灵敏度、多元素的单细胞分析方案,为帮助您检测单个细胞中的阿克 (ag, 1.0 × 10-18g) 级的多种元素。本期推荐阅读 使用 Agilent 7900 ICP-MS 在 scICP-MS 模式下进行单细胞分析仅使用 100 μL 样品测量单细胞中的四种元素许多元素对细胞健康至关重要,元素不平衡、缺乏或过量都可能会破坏自然细胞过程。传统细胞中金属元素的分析方法需要进行样品溶解、提取或消解,然后利用原子光谱进行分析。这些样品前处理步骤会破坏细胞结构,使得报告中的金属浓度结果为数千个细胞的平均值。在单细胞 ICP-MS (scICP-MS) 中,样品溶液中包含的完整细胞被雾化,各个细胞悬浮在气溶胶液滴中。之后,使用成熟的单纳米颗粒 ICP-MS (spICP-MS) 分析方法将各个细胞引入等离子体中,即可对单细胞中的金属元素进行有效分析。实验部分本实验使用水溶液配制酵母细胞样品,采用配备可选的集成样品引入系统 (ISIS 3) 的 Agilent 7900 ICP-MS 进行分析,利用 Agilent ICP-MS MassHunter 软件的单纳米颗粒应用模块的快速多元素纳米颗粒分析模式进行方法设置、采集和数据处理。结果与讨论- 细胞雾化和传输效率为确定细胞传输效率,将 ICP-MS 计算得出的细胞数量除以通过显微镜计数得出的细胞数量。使用此方法,得出细胞传输效率为 25%。确保大量细胞得到雾化和分析,可提高数据的准确度。- 信号分布使用 scICP-MS 在多元素模式下分析单细胞。31P+、34S+、56Fe+ 和 66Zn+ 的信号分布如图 1 所示。通过在样品前处理程序的离心和缓冲液置换步骤中充分清洗细胞,可以明确区分单细胞中各种元素的信号与背景信号。图 1. 单细胞中四种分析物的信号分布- 平均质量表 1 所示的 P、S、Fe 和 Zn 的平均质量数据由 ICP-MS MassHunter 软件自动计算得出。除核酸和蛋白质的主要成分 P 和 S 以外,还测量了各个细胞中亚飞克 (fg, 1.0 × 10-15g) 级的 Fe 和 Zn。表 1. 单细胞中各种分析物的平均质量(阿克)和精密度 (n = 3)结论安捷伦多元素 scICP-MS 方法能够用于详细测量和研究多种金属在细胞生物学中的作用。该技术提供了有关单个细胞中固有金属含量和金属缔合物的有价值的信息。scICP-MS 还可用于研究细胞对金属和含金属纳米颗粒的吸收、累积和释放。访问 www.agilent.com/zh-cn/products/icp-ms/icp-ms-systems,详细了解安捷伦 ICP-MS 系统。关注“安捷伦视界”公众号,获取更多资讯。
  • 元素周期表再添新成员-3种重元素
    据美国趣味科学网站11月6日报道,国际纯粹及应用化学联合会(IUPAP)近日在伦敦召开年度大会时,宣布将新发现的3种重元素分别命名为:鐽(Darmstadtium,Ds)、錀(Roentgenium,Rg)、鎶(Copernicium,Cn)。  这3种新元素各有110、111和112个质子,由位于德国达姆施塔特的德国重离子研究中心(GSI)的科学家以其他原子束撞击重原子核而产生。  Ds以发现的地名达姆施塔特(Darmstadt)命名;Rg是为了纪念X光的发现者、德国物理学家伦琴(Wilhelm Rontgen)命名;Cn是为了纪念天文学家、现代天文学创始人尼古拉哥白尼(Nicolaus Copernicus)命名。  这些元素都非常重且极端不稳定,自然界中并不存在,只能在实验室中制造出来,而且它们会很快衰变为其他元素,因此,人们现在还未能完全揭开其“神秘面纱”。它们都被称为“超重元素”或“超铀元素”。  1994年9月,德国重离子研究中心的西格德霍夫曼领导的团队首次合成出110号元素鐽。他们用镍-62撞击金属铅的一个重同位素得到了四个鐽原子,随后又用镍-64重复进行了该实验,制造出了另外9个鐽原子。  111号元素錀元素的三个原子由霍夫曼团队于1994年12月8日首次制造出来;在2002年的重复实验中,他们又制造出了另外三个錀原子。  112号元素鎶的一个原子则是科学家们历经10多年的探索和多次重复实验才首次成功合成的。1996年2月9日,霍夫曼的团队利用一个120米长的粒子加速器,向铅原子发射一束带电锌原子(或者锌离子),这两种元素的核子结合在一起成为新元素的核子。至今,科学家们已制造和探测出了约75个鎶原子。霍夫曼表示:“鎶是为了纪念天文学家、现代天文学的创始人尼古拉哥白尼而命名,他改变了我们对世界的看法。”  国际纯粹及应用化学联合会秘书长罗伯特卡比-哈瑞斯表示:“全球物理学家对这些元素的命名达成了一致意见,现在,我们很高兴将其添加入元素周期表这个大家族中。”
  • 还在为元素杂质担心吗?微波消解系统助力药品质量控制
    微波消解系统助力药品质量控制由于药品中的元素杂质不仅构成患者的毒理学风险,而且可能影响药物产品的质量和功效。因此,元素杂质分析在药物开发和质量控制中起着重要作用。与药品质量控制相关的法规有哪些? 国际人用药品注册技术协调会(ICH) 在ICH 指导手册中 Q3D生效以前,重金属分析采用的是硫化物沉淀法,是根据 USP231, Ph.Eur.2.4.8 规定中的限制测试。这项超过100 年的旧版操作规程是不明确的,而且不能确定具体的量化结果。终于经过这么久的发展后,在相关的法律法规中,过时的湿法化学分析已逐步被现代仪器分析取代。由于 ICP-OES 和 ICP-MS 的使用,随之相关的样品前处理技术,例如微波辅助消解,目前已成为定量元素分析的主流前处理方式。自 2014 年 12 月起,ICH 指导手册中 Q3D 步骤 4 生效,并且市场中的所有产品都必须遵循遵循该步骤(从 2018 年 1 月开始,新的提案已提交并且已获批准)。指导手册中根据元素杂质的毒性和它们在药物中产生毒性的可能性,将其分为四类 – 1, 2A, 2B 和 3,并且详细说明了元素的种类,剂型(口服,注射以及吸入)以及允许日常接触量(PDE)。值得注意的是,等级1中的Cd、Pb、As、Hg 和等级2中的Co、V、Ni 是人体致毒物,所含 PDE 较低。对于这些元素,即使这些金属没有人为添加,也必须进行风险分析,以防超过其 PDE。根据评估结果,定义一个合理的控制策略,从没有任何分析到定期研究,再到最终成品的理性测试。 美国药典-USP2015年12月,USP 232章节中元素杂质—限制和233章节元素杂质—规程正式生效,并在 2018年1月,取代了所有对旧版USP的引用。232章节中所规定的限制完全符合ICH Q3D的要求。对于膳食补充剂而言,USP章节2232从2013年8月开始正式生效,它参考了 USP233关于全元素污染物的分析规程,自 2018 年1月起开始执行。欧洲药典-Ph.Eur.欧洲药典委员会决定重新逐字修订Ph. Eur. chapter5.20中的ICH Q3D指导方针,自 2018年1月开始,欧盟市场上的所有现有产品都需考虑此问题。2020版中国药典2020版中国药典,9102药品杂质分析指导原则,无机杂质参照ICH Q3D进行研究,并确定检查项目。为什么以上法规都对元素杂质含量进行了限定?元素杂质可能会存在于原料药、辅料、制剂中的催化剂或环境污染物中。这些杂质可能是自然生成的,也可能是人为加入或不可逆引入的(例如与生产设备的相互反应)。当我们知道元素杂质有产生的可能性时,就必须保证杂质符合指定的限度。要注意的是,砷、镉、铅和汞在自然中普遍存在,所以我们在采用基于风险的控制策略时必须包括对这四种元素的考虑。不论采用何种方式,由于元素杂质并不给患者提供任何治疗益处,在药品中的水平应被控制在可接受限度以内。 微波消解技术成为元素杂质定量的技术 由于2020版中国药典、美国药典(USP 232和233),欧洲药典(Ph。Eur。5.20)和国际协调会议(ICH Q3D)的新规定,使用ICP—OES或ICP—MS与可靠的样品制备技术(例如基于加压消解腔(PDC)的超级微波消解仪)已成为元素杂质定量的技术。例如易挥发元素铂元素Os,已知Os在某些活性药物成分(API)的生产链中被用作催化剂。样品基质的消化主要是通过氧化无机酸(例如HNO3)来完成的,这将在确定Os痕迹时引起问题。原因是在这种条件下,Os元素形成了不同种类的挥发性氧化物,导致了Os的失控。四氧化锇不仅具有高度挥发性,还可通过吸入、食入和皮肤接触从而产生剧毒。 安东帕Multiwave 7000可一次性消解所有类型的样品。针对不同元素的特性,您可以根据待测的元素选择压力密封样品管或密闭石英管,同时也可以根据所需样品的处理量、样品量、样品体积和反应混合物等进行支架选择。如上图所示,不仅可选择石英管用来应对Os元素易挥发的状况,同时使用压力样品密封管对其他样品进行消解。满足所有药典,完美助力药品质量控制!
  • 四种方法九类仪器 国家监测网水质氨氮检测情况揭晓
    近日,中国环境监测总站通报了2015年第一轮国家环境监测网实验室水中氨氮能力考核结果。结果显示,364家单位使用的方法共四种,仪器共九种,分别为流动注射分析仪、便携式可见分光光度计、多参数水质分析仪、可见分光光度计、连续流动注射分析仪、气相分子吸收光谱仪、实验室氨氮自动分析仪、台式氨氮水质分析仪和紫外可见分光光度计。其中使用频率最高的为可见分光光度计,比例为65.7%。  原文如下:关于2015年第一轮国家环境监测网实验室水中氨氮能力考核结果的通报(总站质管字[2015]154号)  各省、自治区、直辖市环境监测中心(站)、新疆生产建设兵团环境监测中心站:  为掌握国家网环境监测和质量管理水平,持续监督成员单位质量体系的有效性,保证监测数据质量,根据《关于印发2015年国家环境监测网环境监测质量管理工作要点的通知》(总站质管字[2015]51号),中国环境监测总站开展了2015年第一轮国家环境监测网实验室水中氨氮能力考核工作,现将此次能力考核的结果通报如下:  一、基本概况  本次考核对象为各省(自治区、直辖市)地级城市(含)以上监测站,考核项目为水中氨氮。实际共有360家监测站报名,占全部考核对象的比例为97.6%。另有总站质检室、新疆生产建设兵团第一师等10家非考核范围内的单位报名参加。  考核共发放水中氨氮样品370份,收回结果367份,有3家单位(江西宜春市环境监测站、宁夏吴忠市环境监测站、宁夏中卫市环境监测站)未能在规定时间内提交考核结果。  未报名参加考核以及提交《盲样未能检测情况说明》的单位详见附件6。  二、考核结果  1、结果统计与能力评价  本次考核参照《能力验证结果的统计处理和能力评价指南》(CNAS-GL02),采用四分位数稳健统计方法,对盲样测定结果进行统计。  考核所用的盲样为氨氮样品,每个单位收到1支考核样。样品分为五种浓度水平,各浓度水平的样品编号由国家环境监测网能力考核系统平台自动随机生成,详见附件1。各参加考核单位的结果评价汇总表见附件2。各浓度水平样品的主要稳健统计参数汇总见附件3,Z比分数图见附件4。表1 2015年第一轮水中氨氮能力考核总体情况   本次考核总体情况见表1,考核结果分布图见图1。在收回的364份有效结果中,考核结果为“满意”的单位为321家,占88.2%。  图1 2015年第一轮水中氨氮能力考核结果分布图  2、基本信息统计  (1)检测方法统计  本次考核各参加单位使用的检测方法分布情况见表2。由表2可见,使用《水质 氨氮的测定 纳氏试剂分光光度法》(HJ 535-2009)的单位最多,比例为97.3%。  表2检测方法分布情况  (2)仪器设备及其类型统计  本次考核各参加单位使用的仪器设备有:流动注射分析仪、便携式可见分光光度计、多参数水质分析仪、可见分光光度计、连续流动注射分析仪、气相分子吸收光谱仪、实验室氨氮自动分析仪、台式氨氮水质分析仪和紫外可见分光光度计等共9种。其中使用可见分光光度计和紫外可见分光光度计的单位最多,分别占65.7%和29.7%,其次是连续流动注射分析仪,所占比例为2.2%。仪器设备分布情况见表3。  表3 仪器设备分布情况  (3)标样来源统计  本次考核的统计结果表明,各参加单位使用的氨氮标样来源主要是环保部标准样品研究所,所占的比例为98.9%。另外还有个别单位的氨氮标样来源于中国计量科学研究院、国家有色金属及电子材料分析测试中心和中国测试技术研究院等。  3、质量体系问题统计  从本次考核的结果报告单中,发现了9类主要质量体系问题,包括测定值有效位数保留不对,数据无效不参与统计、系统填报与盖章版结果报告单填写不一致、相对误差计算错误、质控措施中测定值有效位数保留不对、三级审核信息填写不完整或日期有误、结果报告单未盖章、结果报告单修改不规范、样品基本信息(如检测方法名称、标样厂商、样品编号等)填写错误、方法检测限填写错误等。  其中,相对误差计算错误一类问题出现的最为普遍,占的比例为26.4%。其次表现为三级审核信息填写不完整或日期有误、方法检测限填写错误、样品基本信息(如检测方法名称、标样厂商、样品编号等)填写错误,各均占3.5%左右。详见表4。  表4 质量体系问题分布情况表  4、各省结果统计  本次考核中所涉及的全国省、自治区、直辖市的考核结果汇总情况见表5。各省辖区内单位的考核结果情况见附件5中的分省报告。  表5 各省(自治区、直辖市)级站考核结果汇总表  三、结论与建议  1、本次水中氨氮能力考核结果满意率为88.2%,与以往的能力考核相比,结果满意率有了一定幅度的提高,表明国家环境监测网各成员单位水中氨氮的检测能力和技术水平整体较好。  2、从不同浓度水平样品的考核结果来看,低浓度样品较高浓度样品的结果满意率偏低。需要进一步加强对低浓度样品的检测能力,提高低浓度样品的检测水平。  3、建议国家环境监测网各成员单位进一步加强实验室的质量管理,规范三级审核等各项管理制度,保障监测数据质量,不断提高实验室质量管理水平,促进质量管理体系有效运行与持续改进。
  • 应对新国标——ICP-MS 助力生活饮用水多元素含量测定
    安全的饮用水是人类健康的基本保障,是关系国计民生的重要公共健康资源。GB 5749-2022《生活饮用水卫生标准》已于2023年4月1日正式实施,GB/T 5750-2023《生活饮用水标准检验方法》作为GB 5749配套的检验方法,也于2023年10月1日正式实施。新标准将原标准中的“非常规指标”调整为“扩展指标”,以反映地区生活饮用水水质特征及在一定时间内或特殊情况的水质特征。指标数量由原标准的106项调整为97项,包括常规指标43项和扩展指标54项。与原标准相比,新标准的变化主要有以下几个方面:①更加关注感官指标;②更加关注消毒副产物;③更加关注风险变化;④提高部分指标限值。在标准检验方法中也大幅增加了高通量的分析方法和质谱技术的应用范畴。仪器信息网特别建立“《生活饮用水标准检验方法》——质谱篇”话题,聚焦质谱技术在生活饮用水检测工作相关的最新应用解决方案,以增强业界质谱专家和技术人员、疾控中心相关机构工作者之间的信息交流,同时向仪器用户提供饮用水检测领域更丰富的质谱产品、技术解决方案。本文邀请到赛默飞分享生活饮用水检测中ICP-MS相关的技术及解决方案。表1总结了GB 5749-2022中涉及到的元素和限量以及GB/T 5750-2023的检测方法,可以看出,主要包含的仪器方法有分光光度计、AFS、AAS、ICPOES、ICPMS、LC-ICPMS法等,而ICP-MS作为无机元素检测分析的主要方法之一,因其灵敏度高、动态线性范围宽、检出限低而越来越多的被使用,同时,GB/T 5750-2023还新增了砷、硒、汞、铬四种元素形态分析检验方法,均涉及到LC-ICP-MS联用。表1 GB/T 5750-2023中无机元素推荐检测方法案例分析——ICPMS对地表水和饮用水进行可靠性分析01 仪器参数氩气稀释功能(AGD):AGD 所使用的氩气由仪器直接供应,并使用质量流量计进行精确调节。采用低、中、高三档预设的智能化在线氩气稀释模式,确保仪器性能的可靠性,实现卓越的长期稳定性分析。iSC-65 自动进样器:通过 LED 面板实现仪器状态可视化,具备独特的“Step ahead”功能,使两个相邻样品的分析时间重叠,最终缩短每个样品的周转时间。单位样品分析时间(对共 46个元素进行3次重复分析,包括提升和清洗时间 )为2分38秒。ICPMS参数:自动进样器参数:样品和有证标准物质:与水样分析相关的一个主要挑战是高度可变的基质负荷。尽管饮用水中主要分析物(如碱性和碱土元素)的浓度可能大有不同,但河水、湖水或井水等地表水也可能含有大量的过渡金属,特别是铁。此外,溶解有机物和微生物可能影响分析,导致基质效应增加,进而导致信号抑制和漂移。为了覆盖广泛的潜在样品基质,共采集并分析了七份水样(包括一份有证标准物质CRM)。标准溶液及其浓度:根据不同水质样品中元素的预期浓度,对这些元素进行分组,分析范围很广(从 0.001 mg L -1到500 mg L-1),只需一次分析即可获得有毒元素和营养元素含量。(浓度单位为mgL-1)02实验结果检出限:通过测量试剂空白溶液(与样品并行制备),确定溶液检出限 (DL)。对于所有元素,达到的检出限显著低于法规通常要求的限值。准确度和稳定性:分析有证标准物质(CRM) 样品SLRS-5(天然河水),CRM的结果与参考值非常一致。每天在 12 小时内连续采集 300 份饮用水和地表水样品,并在10个工作日内重复该操作,共分析约 3000份样品,10个工作日内的质量控制(QC)标准品重复140 次的平均回收率在90%-120%的范围内,证明系统具有稳健且可靠的分析性能。03元素形态分析不同元素形态分析的流动相和分析柱都会有所不同,所以分析流程耗时耗力。赛默飞可以提供采用同一个流动相条件,相同色谱柱在10min之内同时分析溴、碘、铬、砷不同形态,提高了分析效率。色谱条件:采用高效能AG19和AS19阴离子色谱柱、梯度洗脱的方式ICPMS仪器参数:iCAP RQplus ICPMS时间扫描tQuant模式具有多元素采集功能,采用氦气碰撞模式解决砷、铬、溴、碘元素多原子离子干扰问题砷、铬、溴、碘4种元素11种形态分离图:5种市售瓶装饮用水及当地自来水检测的加标回收率在85.6%到121.6%之间,完全满足分析需求。饮用水元素分析特点1. 测试高低含量的元素---要求仪器线性范围宽、准确度高2. 多样品多元素分析---要求仪器稳定性好、效率高3. 元素形态分析---要求仪器联机方便、色谱柱性能强使用 iCAP RQplus ICP-MS 结合 iSC-65 自动进样器就可轻而易举地对水质元素进行快速、准确且稳定的常规监测,也可以与LC/IC联用进行多元素形态的分析。更多关于GB/T 5750-2023《生活饮用水标准检验方法》的质谱检测技术与解决方案请点击》》》
  • 一站式3D打印用原材料表征方案:从粒度分析到元素分析
    增材制造常被称作3D打印,是一种从无到有逐层构建三维结构或组件的制造工艺。其原理是以计算机三维设计模型为蓝本,通过软件分层离散和数控成形系统,将三维实体变为若干个二维平面,利用激光束、热熔喷嘴等方式将粉末、塑料等特殊材料进行逐层堆积黏结,最终叠加成形,制造出实体产品。目前增材制造应用行业日益增多,包括航空航天,汽车制造,消费电子,生物医疗,工业设备等。增材制造工艺包括:粉床熔融成型,立体光刻工艺,熔融沉积成型,喷胶粘粉工艺等。相比于传统的减材制造方式,增材制造工艺具有低成本、高效益等优势,越来越受到各行业的青睐。但要成功地进行增材制造,前提是必须对组件的原材料(如金属粉末和聚合物粉末)进行表征筛选。为什么材料表征很重要?使用增材制造工艺生产的组件在性能上高度依赖于其基本的微结构,而微结构又取决于原材料(金属、聚合物)的性能和所使用的工艺条件。在工艺条件固定的情况下,最大的不确定性就来自于材料;材料性能不一致会导致组件成品的性能不一致。因此,要生产出质量一致的增材制造组件,制造商必须了解并优化材料的特性,例如金属粉末、聚合物粉末或其他材料(如陶瓷和聚合物树脂)。材料的哪些特性很重要?这取决于所采用的增材制造工艺和使用的材料类型。例如,在喷胶粘粉工艺和粉床熔融成型等金属粉床工艺中,材料的粒度和粒形是其关键特性,因为它们会影响粉末的流动和填充度。而在这些工艺中,材料的化学成分同样重要,尤其是金属粉末;粉末材料需满足指定的合金成分,这会直接影响成品的性能。晶体结构是金属粉末的另一个重要特性。因为在某些增材制造过程中,快速加热 - 冷却循环会引起物相变化并产生残余应力,进而影响组件的疲劳寿命等机械性能。另外,对于增材制造使用的聚合物材料,聚合结构(支化度、结晶度)可能会影响材料的液态和固态性能,包括粘度、模量以及热性能等。增材制造原材料表征方案在粉床熔融过程中,金属粉末层分布于制造平台上,被激光或电子束等选择性地熔化或熔融。熔化后平台将被降低,此过程将持续重复,直到制造完成。未熔融粉末将被去除,根据其状态重复使用或回收。因此,粉末层增材制造工艺的效率和成品组件的质量在很大程度上取决于粉末的流动行为和堆积密度。从新合金或聚合物开发到粉末回收,制造商必须在供应链的各个阶段对粉末性能进行表征。其中,激光衍射、自动图像分析、X 射线荧光和 X 射线衍射是用于表征增材制造粉末的四种常用关键分析技术。粒度分布及大小在粉床式增材制造工艺中,粒度分布会影响粉床的填充度和流动性,进而影响生产质量和最终组件的性能。为了测定增材制造使用的金属、陶瓷和聚合体粉末的粒度分布,全球粉末生产商、组件制造商以及机器制造商通常使用激光衍射技术来鉴定和优化粉末性能。使用激光粒度衍射仪Mastersizer 3000 系统或在生产线上使用在线Insitec 粒度测量系统,可在实验室环境中提供完整的高分辨率粒度分布结果。激光粒度仪Mastersizer 3000颗粒形状粒度和粒形直接影响粉床的致密度和粉末流动性。形状平滑规则的颗粒比表面粗糙、形状不规则的颗粒更容易流动和填充。增材制造商为保证所用颗粒具有规则形状,可使用 Morphologi 4 自动成像系统对金属、陶瓷和聚合物粉末的粒度和粒形进行分类和鉴定。该系统可将颗粒的长度、宽度等大小测量结果与圆度、凸曲度(粗糙度)等形状特征评估结果相结合,帮助制造商完成上述工作。Morphologi 4快速自动化粒度和粒形分析仪元素组成元素组成对于合金材料尤其重要,合金元素含量的微小变化都会影响其化学和物理性能,包括强度、硬度、疲劳寿命和耐化学性。为了检测这些变化以及污染物或夹杂物,并确定这些金属合金和陶瓷的元素成分,可使用 X 射线荧光 (XRF) 系统,比如 Zetium 和 Epsilon 等系统。而且,与其他技术相比,XRF 还能显著节省时间和成本。X射线荧光光谱仪Zetium台式能谱仪一体机Epsilon1微结构诸如物相成分、残余应力、晶粒大小和晶粒取向分布(织构)等微结构特性,也会影响成品组件的化学和机械性能。 为了分析这些微结构特性并控制成品组件的性能,制造商通常使用台式 X 射线衍射 (XRD) 系统分析金属的物相,比如 Aeris 系统。 如需获取有关材料在各种条件下的织构、晶粒尺寸和残余应力的更多信息,则可以使用多用途衍射仪,比如 Empyrean 衍射仪。 XRD 还广泛用于研究聚合物和陶瓷的结构和结晶度。 如要确定聚合物粉末的分子量和分子结构,则大多会使用凝胶渗透色谱 (GPC) 系统,比如 Omnisec 系统。台式X射线衍射仪Aeris马尔文帕纳科增材制造表征解决方案可用于: 确保始终如一的粉末供应防止产品质量波动 为采用不同撒布器或耙式设计的机器确定合适粉末 优化雾化条件以实现所需的粉末特性 预测并优化粉末堆积密度和流动特性 确保粉末具有正确的元素组成和相结构 确定制造组件的残余应力、应变和织构作者:马尔文帕纳科
  • 科学家新发现超重元素的六种同位素
    美国能源部劳伦斯伯克利国家实验室10月26日宣布,该实验室的科研小组发现了部分超重元素的6种同位素。据悉,科学家此次在获得了还未命名的第114号元素的新同位素后,通过观察阿尔法粒子连续性辐射,又发现了第112号元素(copernicium)、第110号元素(darmstadtium)、第108号元素(hassium)、第106号元素(seaborgium)和第104号元素(rutherfordium)的5种同位素。此项研究成果将发表在10月29日出版的《物理评论快报》上。  从新的同位素中获取的信息将有助于科学家更好地认识原子核壳体结构理论,该理论是“稳定岛理论”预测的基础。20世纪60年代,理论物理学家预言,位于质子数为114和中子数为184的双“幻数”球形核附近,存在一个“超重稳定岛”,岛内的元素具有超常寿命。  发现超重元素同位素科研小组的负责人为劳伦斯伯克利国家实验室核科学部重元素原子核与辐射化学组组长海诺尼奇,他同时还是加州大学伯克利分校化学教授。研究文章第一作者为伯克利分校化学系研究生保罗埃里森,他负责对具体实验提出建议并进行管理。尼奇表示,借助实验室的88英寸(约2.2米)回旋加速器,他们对钙48进行加速并撞击充气分离器中的钚242,从而获得了新的超重元素的同位素。这与他们去年证实第114号元素存在时的实验布置类同。  科研小组共有20名成员,他们来自美国劳伦斯伯克利国家实验室、加州大学伯克利分校、劳伦斯利弗莫尔国家实验室、俄勒冈州立大学、德国GSI亥姆霍兹重离子研究中心以及挪威能源技术研究所。他们中的许多人曾参与了2009年9月第114号元素的确认研究。第114号元素于10年前由俄罗斯杜布纳联合原子核研究所的科学家分离出来,但直到去年才被确认。  《科技日报》总编辑圈点  看中一件商品后,无论你与卖家如何讨价还价,最终都会在一个相对确定的区间成交,通常不会过于离谱(买房子是例外)。稳定岛理论在生活中的普适性毋庸质疑,但却困扰了核物理领域近半个世纪,至今不得证实。科学家们之所以不离不弃,是因为合成和鉴别双幻核并研究其衰变性质,对于检验超重元素的核结构理论具有特别重要的意义。新近发现这六种同位素让人们再次听到了遥远而真切的呼唤,但愿那依稀可辨的“岛子”不是海市蜃楼。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制