当前位置: 仪器信息网 > 行业主题 > >

速度场测量

仪器信息网速度场测量专题为您整合速度场测量相关的最新文章,在速度场测量专题,您不仅可以免费浏览速度场测量的资讯, 同时您还可以浏览速度场测量的相关资料、解决方案,参与社区速度场测量话题讨论。

速度场测量相关的论坛

  • 新技术可直接测量电子速度

    据美国物理学家组织网3月1日(北京时间)报道,美国物理学家表示,他们探索出了一种探测电流的新方法。这一方法基于二次谐波产生的过程,就像一个能远程监控电子速度的“雷达测速仪”一样,能直接“看”到电子的运动并测出电子的速度。相关研究论文发表在《物理评论快报》杂志上。美国堪萨斯大学的物理学助教赵辉(音译)和教授朱迪·吴等人在超快激光实验室进行了这项实验。他们发现,高能激光器发出的光照射在一种包含有移动电子的材料上时,会产生不同颜色的光。在实验中,他们仔细研究了纤薄的砷化镓晶体材料,该材料广泛应用于高速电子学和高速光子学。通过朝整块晶体施加电压,他们让电子以特定的速度在晶体内流动。用人眼看不见的红外激光脉冲照射该晶体,会产生人眼可见的红光,这正是二次谐波产生过程出现的信号。他们还发现,红光的亮度与电子的速度成比例,也就是说电子运动速度越快,红光越亮;而当电子没有直接运动时,没有红光出现。赵辉表示:“通过探测红光,我们能精确测量电子的速度,电子不需要同其他样本接触;我们也不会干扰电子的活动。在此项研究之前,现有探测实验技术都基于电流有三个效应:它能为系统充电、改变系统的温度并产生磁场。而科学家最新发现,电流还具有光子效应,这种使用激光研究电流的新方法完全基于这一最新效应。”研究人员表示,新方法有望改善现今的很多可再生能源技术,诸如太阳能电池、人工光合作用以及水分解等,因为这些技术都依靠对电流进行探测。而且,能更好“阅读”电子运动的传感器可能会成为下一代手机和计算机的基础。

  • 【分享】数字式MEMS加速度传感器在倾角测量的应用

    数字式MEMS加速度传感器在倾角测量的应用  物体在运动中的倾角是描述物体运动状态、特征的重要参数,在交通、航天、军事领域中都有着重要的意义,对目标的定位、追踪起到非常重要的作用。所以开发价格适中、精度高,测量范围大的角度测量模块具有很强的实用价值。  本文根据对实际运动的分析,研究建立了相应的数学模型,利用数字式MEMS加速度传感器并配合适当的硬件电路和软件算法实现了一种性价比高,高精度,测量范围大的角度测量模块并通过实际运行,取得良好的效果。  1 对象研究和建模  本文研究的对象是物体运动时,其整体平台的倾斜角,例如普通车辆机车,军用车辆机车和海上装备等,在运动过程中由于路面、坡度等影响会使整个平台架产生一定的倾角,而这些参数对于精确导航、列车行程控制等系统都具有重要的意义。  根据经典力学可以知道,当对象与基准平面有一个角度的夹角时,其运动方向的加速度与重力加速度的比值和没有夹角时其加速度与重力加速度的夹角α 是不同的。根据力的分解,重力加速度就会有分量作用在Ax方向,且Ax=gsinα,于是倾斜角α=sin-1(Ax/g)。见图1-(a)所示。但是,当对象在基准面方向上做变加速的运动时,其Ax同样是一个变化值,这样将由于无法区别对象的静态加速度和动态加速度而做出正确的判断。也可以考虑采用图 1-(b)中所示方法测量,将Ax设定为始终与运动面垂直的方向,这样Ax=gcosα,则倾斜角α= cos-1(Ax/g)。这个方法在普通的道路坡度只能在Ax方向产生一个很小的加速度变化,而这对于该传感器的精度是很难达到的。  故考虑采用如图1- (c)所示方法进行测量,利用双轴的加速度传感器,其两个夹角之间相差90°,两个角分别为45°和135°角,当车辆静止在平面上时,加速度传感器的两个轴向测得加速度:Ax=Ay=0.707g。  当车辆在平面上加速时,加速度倾角传感器的两个轴向就会测得两个大小相等,极性相反的加速度变化,而(Ax+ Ay)保持不变,例如:车辆向前加速时,Ax增大而Ay减小。  当车辆倾斜时,倾斜角α=cos-1。但是在实际情况中,由于测量、安装等原因,几乎不可能做到加速度传感器与车辆的径向正好成45°,所以需要在系统初始化时,首先测量出加速度传感器与车辆的径向的夹角β,可根据公式β=arctan(Ay/Ax)计算得到。  由此可得最后的倾斜角为:α=cos-1。根据这个数学模型,可以很好的测得角度的变化。所以在实际使用就利用软、硬件根据该模型进行设计从而实现了微小角度的测量。   2 系统设计  根据上面的对象研究和建模分析,并结合实际需求开始进行系统设计。在设计的过程中,根据算法设计选取了相应的硬件,按照硬件的选取经过分析,最后确定所需硬件电路,然后编制了相应的软件完成整个设计。  2.1硬件设计  设计中使用的是ADXL213芯片,其采用先进的MEMS 技术,在同一硅片中刻蚀了一个多晶硅表面微机械传感器,并集成了一套精密的信号处理电路。信号处理电路能将表面微机械传感器产生的模拟信号转换为占空比调制(DCM) 数字信号输出。

  • 非接触测量物体振动的速度,加速度,位移,运动轨迹,频率-激光测振仪

    激光测振仪(进口)位移分辨率高达0.008纳米。非接触测量物体振动的速度,加速度,位移,运动轨迹,频率.全场激光测振实现整面物体的XY轴的振动测量可以彩色动画输出。三维激光测振可以实现三轴振动测量。多点激光测振可以同时实现16个振动点振动并可以测量物体瞬间振动和实时的振动模拟.激光测振可以实现对振动幅值、频率测量。使用激光进行非接触式测量,记录被测体在振动过程中的运动轨迹,并用最大值减去最小值得到振幅。当振幅超过界定值时,可通过软件设置输出报警信号。采样频率高,能精确还原被测体运动轨迹并通过图像显示出来。传统振动测量仪都会对机械振动带来的影响,而激光测振动测量系统使用各种滤波器,使测量结果更加稳定准确。还可以测量高频振动加速度峰值和平均值,测量低频振动速度有效值。应用于如磁盘振动,压电陶瓷振动,汽车玻璃振动,桥梁振动,油罐车振动,机床精密加工振动等等微小振动的测量。非接触高精密测量精密机械加工微小振动 如压电陶瓷,硬盘振动,山体滑坡,桥梁振动,汽车发动机输油管振动,汽车玻璃振动,高压器振动,水面振动激光多普勒测振仪最大测量速度可达20m/s,最大频率范围可达2.5MHZ,可以检测到纳米级别的振动.激光多普勒测振仪采用非接触式的测量方式,可以应用在许多其他测振方式无法测量的任务中。频率和相位响应都十分出色,足以满足高精度、高速测量的应用。使用非接触测量方式,无需耗时安装调节传感器、无质量负载,且不受被测物体的尺寸、温度、位置、振动频率等的限制。还可以检测液体表面或者非常小物体的振动,同时,还可以弥补接触式测量方式无法测量大幅度振动的缺陷。 应用:如磁盘振动,压电陶瓷振动,汽车玻璃振动,桥梁振动,油罐车振动,机床精密加工振动等等微小振动的测量。 非接触高精密测量 精密机械加工微小振动如压电陶瓷,硬盘振动,山体滑坡,桥梁振动,汽车发动机输油管振动,汽车玻璃振动,高压器振动,水面振动 整片不规则金属大型结构、高温、柔软物体等接触式测量无法满足的振动测量领域的振动情况

  • 求电子的侧位移、速度及OP的长

    如图所示,水平放置的两块平行金属板长l =5cm,两板间 距d=1cm,两板间电压为U=90V,且上板带正电,一个电子沿水平方向以速度v0=2.0×107m/s,从两板中央射入。已知电子质量m=9.1×10-31电荷量e=1.6×10-19,求:1、电子偏离金属板的侧位移y0是多少?2、电子飞出电场时的速度是多少?3、电子离开电场后,打在屏上的P点,若s=10cm,求OP的长。

  • 【讨论】匀场的速度

    老师说调节Z2和Z1的速度一定要连续和快速,但我看到有人慢慢地点两下就好了。这个对速度有要求么?

  • 【分享】加速度传感器的特征及应用前景

    加速度传感器是一种能够测量加速力的电子设备,是利用了其内部的由于加速度造成的晶体变形这个特性来测量加速力的。近年来由于广泛应用集成电路,使电子线路紧靠传感器的极板,使寄生电容,非线性等缺点不断得到克服。加速度传感器是用来将加速度这一物理信号转变成便于测量的电信号的测试仪器。 但是差容式力平衡加速度传感器则把被测的加速度转换为电容器的电容量变化。实现这种功能的方法有变间隙、变面积、变介电常量三种,差容式力平衡加速度传感器利用变间隙,且用差动式的结构,它优点是结构简单、动态响应好、能实现无接触式测量、灵敏度好、分辨率强,能测量0.01um甚至更微小的位移,但是由于加速度传感器的电容量一般很小,仅几pF至几百pF,其容抗可高达几MΩ至几百MΩ,所以对绝缘电阻的要求较高,并且寄生电容不可忽视。 加速度传感器可应用在控制、手柄振动和摇晃、仪器仪表、汽车制动启动检测、地震检测、报警系统、玩具、环境监视、工程测振、地质勘探、铁路、桥梁、大坝的振动测试与分析;鼠标,高层建筑结构动态特性和安全保卫振动侦察上。全球的传感器市场在不断变化的创新之中呈现出快速增长的趋势。有关专家指出,传感器领域的主要技术将在现有基础上予以延伸和提高,各国将竞相加速新一代传感器的开发和产业化,竞争也将日益激烈。

  • HZD-A振动速度传感器

    HZD-A振动速度传感器也称磁电式振动速度传感器主要安装在各种旋转机械装置的轴承盖上(如汽轮机、压缩机、电机、风机和泵等),可测量振动速度或者振动幅度。它是由运动线圈切割磁力线产生的信号,因此工作时无需电源,安装、维护容易等特点。已广范用于热电厂、水泥厂、水泵厂、磨机设备、造纸厂、机械厂、风机厂、煤矿机械等。 HZD-A系列主要用来提前诊断旋转机械的故障或实验室完善产品提供改善依据,为企业预先做好维护的准备,减少事故隐患的发生,提高工作效率!2、HZD-A振动速度传感器主要技术指标 * 灵 敏 度: 50mv/mm/s±5% * 频率响应: 5~1000Hz * 自振频率: 10Hz ±1Hz * 可测振幅: ≤2000μm(PP) * 最大加速度:10g * 质 量:约350g * 安装方式:垂直或水平安装于被测振动源上 * 安装螺纹:M5/M10×1.5螺纹或磁吸座 * 使用环境:温度 -40℃~95℃ 、相对湿度≤90%

  • 长弧形电极测量法在电磁流量计上的应用

    为了实现测量非Furupaipu,提高传感器的需要,在传统的电磁流量计的应用领域是满管流的量度。为了同时检测的流通面积流量乘以由水平传感器的两种类型之一,以测量流速由流量传感器电磁和面积法速度传统的能力(或对电极的流量传感器的电磁制根据其结构),配备了一个特殊的转换器通过流量。的电位的电极的横截面从电磁流量计检测器的原理的视图,感应的信号电极电压的观点考虑,是所有的点的集合。是否超过如何改变颗粒的热水总是有一个潜在的流体流检测,满管传感器,它必须是的电极电位,这些集合的范围。它没有明确不能以下方式获得,从流体中分离出来的电极,或电极诱导的流量信号。 在这之后,根据上述原理,总结了实验和长期的以往的经验的基础上改进的电极长弯曲着放置在原始电极的电磁流量计。电极的弯曲的长,向上延伸的管道横截面的液体表面,流体的电极相对应的纯电阻性的等效阻抗值对应于不同的液体水平的高度的10%,90%的液体水平长弧之间的电导值进行偏压从电磁流量计长管弧电极原始程序对得到的磁性部件的有效电压激励电平信息差距。通过使用技术双激发来消除干扰偏振,平行泵送模块,它相当于只传感器两端的电极的电弧长的管道,以这种方式,它们是低频率区域的低电压纯电阻Rx可以忽略的电容的,简化的电路图部分压力测量值的影响。此外,可以考虑水的电导率的等效阻抗之间的关系中的液面非Furupaipu不同的实验测量。由于不同的导电液体水,基本上相匹配,通过实验发现,和数据相对阻抗比的不同高度。此外,时的液面Furupaipu或更多的非-90%,高度不接触的小的变化相对电极圆弧状的长从流体组的测量数据被发现从仔细分析多个的液面非Furupaipu相对阻抗比,为约10%,因为流体的高度是在与电极相对阻抗比的变化只是长弧接触。 为了能够以对应于以下条件的情况下,相对应的纯电阻,我们,如果管道是筒管充满的状态,长加上的电弧管中的流体的流体的电极之间被证明的等效阻抗的电阻并联连接,被假定为相当于纯的3。电极板的电压的信号高于或低于10%的90%,比管平行的液体表面的原因,因为集管部电位点全部的电极板的横截面中诱导它是像一个三个电阻,被绑定到无接触的等效阻抗的电极板之间的差异是与流体和在中间的电极板接触。通过计算流体的等效阻抗,电极之间的,在实际应用中,是基于上述模型计算出的液体相的相应高度的比率测量的电压值的圆弧长是一个复杂的,但它的计算量也是相当大的。执行许多的导电性比较的实验不同,因此,孔板流量计数据的阻抗比相对数据的每个的相同的液体,液体与不同的拟合曲线的相对高度的高度的液面几乎发现的基础上是相同的阻抗比的数据,作为一个表单创建。与表中的数据相比,电极除以因子,后调零后的电压值,并过滤,很长一段时间来测量电弧可以快速,简单和有效的液体水平的速率。当然,通过除以不同的导热系数,I是不同的。检测方法电磁流量计满管双鼓励非知识产权的基础上,增加激励源电压,简单的改变一些电磁流量计的事情是完全独立的下来,为了实现了非Furupaipu的测量的电磁流量计测量液体通过一个多参数测量,的长弧电极,水平的管道。

  • 【原创大赛】线速度和柱流量的概念解释

    线速度和柱流量的概念解释 在气相色谱的日常工作中,我们经常能够接触到柱流量和线速度的提法。这两个参数都是描述载气在色谱柱中运行速度的。 但是两个参数的单位不同,柱流量一般用ml/min表示,这个比较好理解(每分钟气体流过多少毫升),气体流量的表示一般都是体积流速单位。 但是气体不像液体(一般压力下),是容易被压缩的。那么在色谱柱内每个点,几乎每个点的体积流量都不相同。柱流速指的是哪个点的流量呢? 柱流量,就是柱后流量。在色谱柱的出口测量到的体积流速(还要校准到常温常压下)。 填充柱进样口一般使用恒流量的控制方式,当柱温箱温度升高,载气黏度增大,即色谱柱的阻力变大。系统为了适应这个变化,会自动提高柱压力,以保持色谱柱出口的流量不变。 我们可以设计一下测量柱流量。设法将气体流量计连接到色谱柱的出口(使用双TCD的出口是比较方便的),改变柱温,流量基本不变。 线速度,单位cm/s,这个表示方法好像不太容易理解。 可以设想一下,有一个载气分子,从色谱柱的入口流动到色谱柱出口,平均速度多少。 举个例子,假如火车从北京开出到达上海,到达上海时的速度为100km/h,这就是柱流量的表示方法。 从北京到上海1200km,火车运行10小时,速度为100km/h,这个表示方法就是线速度的方法。 线速度的表示方法,广泛的应用于毛细管柱上。经典的范德蒙特方程的横坐标就是线速度。 拿到新色谱柱,设定流量时,用线速度比较用流量更加合适。 小结 线速度和柱流量没有简单的对应关系,不像我们想当然的结论。

  • 【原创大赛】GB 6675-2003燃烧速度测试结果不确定度评定报告

    请斑竹帮忙把附件帖一下,我自己弄的格式老是错的。谢谢了。玩具燃烧标准的不确定度评估,希望大家一起探讨。1 概述1.1 测量依据:GB 6675《国家玩具安全技术规范》标准附录B1.2 测量环境条件: 温度:23℃,相对湿度64%。1.3 测量仪器:恒温恒湿仪 燃烧测试仪钢直尺1.4 被测对象及其主要性能: 白布片1.5 检测项目与检测方法:检测项目:检测白布片的燃烧速度。检测方法:1) 用钢直尺量取10条长700mm、宽140mm的布片,布片的纵向即为其经向。2) 将10条布片试样放入恒温恒湿仪中在温度为(20±5)℃、相对湿度为(65±5)%的条件下预处理7小时以上。3) 将布片试样从预处理环境中取出并在2分钟内放进燃烧测试仪中测试燃烧速度。2 数学模型V=L/t其中: V――燃烧速度(mm/s) L――燃烧距离(mm) t――燃烧时间(s)3 不确定度的传播4 测量不确定度的来源Ø 燃烧距离示值误测试仪差带来的不确定度Ø 燃烧测试仪计时测量示值误差带来的不确定度Ø 计时测量重复性引起的不确定度5标准不确定度分量5.1 计时测量重复性引起的不确定度分量计时测量重复测10次,测量结果分别为:54.5s,56.1s,54.9s,55.2s,55.7s,56.0s,56.5s,54.3s,56.8s,55.5s。[/color

  • 岛津线速度指的是什么速度

    各位老师,刚刚接触色谱,1.岛津色谱仪,有个线速度指的是什么速度?2.公司买的微量进样针针头比岛津原装针头长了10mm多,对于测量会影响峰出的时间吗?[img]https://ng1.17img.cn/bbsfiles/images/2020/10/202010031644582864_9522_5016570_3.png[/img]

  • 低频电磁场测量系统的问题

    [b]低频电磁场测量系统NBM550+EHP50F+EF0391 大家有用过这个仪器吗? 是不是一个主机加两个探头,用来测工频电磁场密度还有工频密度的啊? 可是我看详细配置怎么是 [/b][list=1][list=1][*][b]电磁辐射分析仪主机,[/b]2.[b]射频电场探头, 3[/b].[b]工频辐射测量仪(可同时测量电场和磁场合;工频辐射测量仪与显示主机连接光纤不小于5m,以避免人员对测量的影响;工频辐射测量仪能够独立测量并存储数据,不需要使用额外的专用主机,可使用普通电脑作为显示单元,独立工作时间不小于24小时。) 这个工频辐射测量仪不是探头吗? 怎么回事?为什么还是可单独使用并且还能同时测电场和磁场呢?[b][/b][/b][list=1][/list][list=1][list=1][/list][/list][list=1][list=1][list=1][/list][/list][/list][list=1][list=1][list=1][/list][/list][/list][list=1][list=1][list=1][/list][/list][/list][/list][/list][list=1][/list][list=1][/list][list=1][/list]

  • 梯度磁场购买,测量。

    大家好,小弟需要弄一个梯度磁场,控制铁颗粒的运动,但是关于梯度磁场了解比较少,希望大家帮忙。我需要的是Z轴的单梯度磁场,不知道磁场梯度是否可以控制,以及如何测量磁场梯度。另外,我们实验室购买的匀强直流电磁铁,它是在Z轴方向是梯度磁场吗?

  • 蠕动泵的速度

    大家有留意过蠕动泵的速度吗?--------蠕动泵的速度是由计算机控制的,可以根据样品的类型来设置不同的进样速度,从而减弱溶液粘度不同所带来的问题。增加进样速度通常可以提高信号强度,因为到达等离子体中心通道的样品量所有增加,而且由于中心通道的温度也有所下降,背景通常也会有所下降。但在得到这些益处之外,噪声水平也可能会所有提高,干扰可能会增强,当然样品的消耗量也增大。在测量过程中通常样品的进样速度设为 1 mL/min ,泵的速度在 10-20rpm 之间。如果需要更低的速度(比如对于有机样品)则必须选用内径更小的蠕动泵管,而不是将泵速设的更慢。非常慢的泵速将导致进样的脉动性增大,降低稳定性。大家测试样品的蠕动泵速度都是如何设置的?[b][/b]

  • 【原创】5 设定扫描速度或扫描步进

    步进小,会测量慢些,好处是图谱细腻些;步进大,测量速度快;但是步进设置最好小于需要测量最小半峰宽的1/5. 就是步进会和分辨率相关的。(小于3倍的狭缝宽度)

  • 振动速度传感器安装注意事项

    1.测量点位置前后须一致 一般设备的轴承在不同的位置振动有较大的差别,因此凡是采用手扶、橡皮泥粘接和振动速度传感器,都应标出测量点的位置,避免因前后测量点位置不同而发生误差。这一点对于振动故障诊断和转子平衡中的振动测量尤为重要。 2.振动速度传感器的互换性 为了减轻测试的劳动强度,目前在机组振动测试中采用几个至十几个传感器测量点振动。对同一点振动来说,当采用不同的振动速度传感器测量时,各个传感器灵敏度和相位特性应统一,只有经过严格试验的在测试中才能互换,否则会引起较大的测量误差。为了避免因传感器互换性不好而引起的测量误差,传感器应对号入座(测点)。但其测量结果只能作纵向(前后)比较,为了横向比较,最好采用同一个传感器测量各点振动。 3.振动速度传感器安装方向与要求测量方向应一致 轴承振动往往在某一方向上特别明显,当传感器方向稍偏离测量方向时,仪表指示值就会发生较大的变化,特别是采用手扶传感器时,由于轴承温度升高时橡皮泥软化,也会使传感器产生倾斜而偏离测量方向。所以在测振时应随时注意传感器的安装方向。 4.工作温度 在一般的情况下安装振动速度传感器要求温度均在120度以下,温度过高会使振动速度传感器绝缘损坏和退磁,使其灵敏度降低。对于高中压转子的轴承,当轴封漏气严重时,传感器不能长时间装在轴承上。 5.振动速度传感器固定不稳和发生共振 不论是采用哪一种方式与轴承连接,传感器都必须紧密的固定在被测物体上,不能有松动,否则会引起传感器的撞击,使测量结果失准。传感器采用单个螺栓固定,有时会引起传感器的共振,是传感器产生较明显的横向振动。引起测量误差。为了避免传感器的共振,其连接螺栓不能小于M8,而且传感器与被测物体之间的接触面一定要平整,接触面的直径不能小于20mm。如果采用外加的冶具让传感器固定在轴承上,冶具高度应尽量降低,否则会将被测振动放大。

  • 2016国产磁测量好仪器系列之五:磁场测量扫描成像系统F-30

    2016国产磁测量好仪器系列之五:磁场测量扫描成像系统F-30

    2016国产磁测量好仪器系列之五:磁场测量扫描成像系统F-30原创:李响、杨文振、薜立强、冀石磊、郑文京 工程师,北京翠海佳诚磁电科技有限责任公司推荐:陆俊 工程师,中科院物理所磁学室2016年10月28日一句话推荐理由:国产半导体器件的骄傲之作应用在中强磁场测量上的好仪器。一、引言 磁场无形,但又无处不在,无时无刻不在直接或间接的影响着我们的生活,比如地磁、磁卡、电机、变压充电器、电磁炉、微波炉、手机、磁盘、钞票、耳麦、磁悬浮列车、核磁共振成像仪这些让我们每天都在和各种各样的磁场打交道,然而对于磁场如何衡量,如何产生如何测量恐怕较少有人去关注,简单概括几点:一是磁场的单位,常用的单位是奥斯特,国际单位安每米比较小(1 Oe ~ 79.6 A/m),注意严格来讲不要将单位表达成高斯或特斯拉这两个磁感应强度单位,因为磁场强度和磁感应强度概念上完全不同,尽管二者可根据(经常以空气或真空的)磁导率相互变换,即1奥斯特磁场在真空或空气中诱导的磁感应强度为1高斯或万分之一特斯拉。二是磁场的产生,首先地球是跟我们关系最密切的磁场源,地表磁场大约为0.5奥斯特,随纬度升高有缓慢增强趋势;其次是为了产生变化磁场,可以通过永磁体机械组装的方式,也可以使用线圈中通过电流的方式,根据线圈材料或结构的不同可以形成不同类型的通电线圈磁场源,比如超导线圈在不消耗能量情况下维持100kOe以上的磁场,高强度导电材料及结构制成的1MOe以上的脉冲强磁场;还有一种和磁场产生相反,要尽可能减少磁场,以防止地球磁场或其他干扰磁场对精密传感器造成不利影响,破坏极端条件探索、精密标定测量等任务,这时要用到消磁措施,可以使用主动电流对消与被动屏蔽两种方法,综合利用消磁技术,我们可以获得比地磁场弱10个数量级的洁净磁场环境。三是磁场的测量,相比产生技术方法,磁场测量要复杂得多,其类型有电磁感应、霍尔、磁阻、磁电、磁光、磁致伸缩、磁共振及非线性磁效应等基本原理,其中值得一提的几个包括最通用且测量范围最广的感应线圈磁探测器、前沿科学探索中常用的超导量子干涉仪(SQUID)、地磁或空间磁场探测中常用的磁通门或原子光泵磁力仪、智能手机里植入的各向异性磁阻AMR芯片、磁场计量常用的核磁共振磁力仪以及跟电磁相关的生产及科研任务中常见的中等强度磁场(地磁场上下四个数量级之间)测量上最常见最常用的霍尔磁场计。以上关于磁场的量级、产生与测量方法比较汇总于图1,在中等磁场强度测量应用最广泛的为霍尔传感器,虽然它没有核磁共振磁力仪ppm级的高精度,但它同时具备足够的精密度(通常约千分之一)、高空间分辨、高线性度、单一传感器宽测量范围、成本又相对较低等明显优势,因而市面上高斯计、特斯拉计等中等强度磁场测量仪绝大多数基于霍尔传感器,本文介绍的磁测量产品也基于霍尔磁场计,在前述磁相关的器件及应用产品的质量控制、监护与升级过程中扮演着不可缺少的角色。http://ng1.17img.cn/bbsfiles/images/2016/11/201611101944_616260_0_3.png图1 磁场的量级、不同产生与测量方法比较概览图二、背景中科院半导体所从20世纪80年代始研究高迁移率砷化镓(GaAs)霍尔器件,后来经过两代人的薪火传承克服半导体材料制备、内置温度补偿器件设计与测量数字化采样及软件优化上的技术难题逐渐发展成熟,最终落地北京翠海公司,形成CH-1800,CH3600等被用户认可的高斯计产品。近些年为了配合电磁制造业质量提升的业界需求,为电机磁体、核磁共振磁体空间均匀性、多级磁体分布提供系统的测量方案,翠海公司在高斯计的基础上增加无磁运动机构和软件集成,开发出F-30磁场测量扫描成像仪,照片如图2所示。http://ng1.17img.cn/bbsfiles/images/2016/11/201611101944_616259_0_3.jpg图2 F-30 型磁场测量扫描成像设备照片三、简介F-30由上位机(装有控制软件)、高精度高斯计(一维或者三维)、与高斯计搭配的探头、多维电控位移台以及位移台的控制器组成,如图3所示。简单来说可以分为两个部分,一部分只是用来采集数据,另一部分只是位移,两个部分搭配起来就组成了这个位移采集系统。位移模块由多维电控位移台和位移台控制器组成,通过操作上位机软件给控制器下命令,控制器就根据命令带动电控位移台各个轴运动,这个电控位移台的参数(台面大小、运动轴长度、运动方式、多少维度)用户可定制,即实现在允许范围内的各个角度、各种形状的扫描。 数据采集模块由高精度高斯计和与高斯计配套的探头组成,电控位移台的轴上有固定的探头夹持位置,采集数据时将探头放在夹持位置上,探头测量的数据实时上传到高斯计上,而高斯计与上位机软件通信连接,上位机则根据需要选择是否记录当前位置的数据。通过上位机软件控制位移台控制器和高斯计,可以将位移台上某个位置与高斯计读到的数据值相关联,一维高斯计读到的就是运动到的点对应的某个方向的数据值,三维高斯计则是一个点上 X 方向的值、Y 方向的值、Z 方向的值、此点上的温度(根据需要探头和高斯计中可有温度补偿功能)及三轴中两两矢量和、总矢量和的数值大小和方向夹角,扫描的数据可以导出保存在 EXCEl 中,根据位置和数据值可由软件绘制出各种需要的示意图:二维标准图、二维颠倒图、二维雷达图、三维曲线图、三维网状图、三维立体图、矢量图、圆柱展开图及多条曲线或多个立体图放在同一张图中进行对照比较。软件中还对常见的几种形状(空间磁场分布、矩形图、磁环、同心圆等)的扫描进行了集成化,只需设置几个参数便可以自动进行扫描,自由度高,精准度高,无需看管。http://ng1.17img.cn/bbsfiles/images/2016/11/201611101944_616261_0_3.png图3 F-30型磁场测量扫描成像仪组成框图F-30根据不同的测量件需求可以定制,磁场测量部件的主要技术指标如表1,传感器照片如图4,其测量方向、维度以及尺寸都可以根据需要定制。 关于磁场扫描成像时间,(1)常规扫描:每点扫描时间可设置,一般为保证数据的稳定性,在每点的停留时间为1~2s,总时间由测试工件尺寸和扫描步长决定;(2)快速扫描模式:在位移台运动过程中不做停留,通过高速数据采集获得每点磁场值每点测量可小于0.1s。表1: F-30磁场测量部件主要指标http://ng1.17img.cn/bbsfiles/images/2016/11/201611101944_616269_0_3.jpg运动部件有三个平移与两个旋转自由度,大致示意图如图5,典型测试场景及系统软件照片如图6所示,运动部件指标表2。表2 F-30运动学指标列表http://ng1.17img.cn/bbsfiles/images

  • 【资料】电磁流量计-流量测量方法和仪表的选用

    电磁流量计-流量测量方法和仪表的选用电磁流量计基于法拉第电磁感应原理研制出的一种测量导电液体体积流量的仪表,根据法拉第电磁感应定律,导电体在磁场中作切割磁力线运动时,导体中产生感应电压,该电动势的大小与导体在磁场中做垂直于磁场运动的速度成正比,由此再根据管径,介质的不同,转换成流量。 电磁流量计与选型原则: 1 )、被测量液体必须是导电的液体或浆液; 2 )、口径与量程,最好是正常量程超过满量程的一半,流速在 2 -4 米 之间; 3 )、使用压力必须小于流量计耐压; 4 )、不同温度及腐蚀性介质选用不同内衬材料和电极材料。 电磁流量计的测量精度建立在液体充满管道的情形下,管道中有空气的测量问题目前尚未得到很好解决。电磁流量计的优点:无节流部件,因此压力损失小,减少能耗,只与被测流体的平均速度有关,测量范围宽;只需经水标定后即可测量其他介质,无须修正,最适合作为结算用计量设备使用。由于技术及工艺材料的不断改进,稳定性、线性度、精度和寿命的不断提高和管径的不断扩大,对于固液两相的介质的测量采用了可更换电极以及刮刀电极的方式,解决了高压( 32MPA )、耐腐蚀(防强酸、碱衬里)介质的测量问题,以及口径的不断扩大(最大作到 3200MM 口径),寿命的不断增长(一般大于 10 年),电磁流量计得到越来越广泛的应用,其成本也得到了降低,但整体价格特别是大管径的价格仍较高,因此在流量仪表的采购中有重要的地位。

  • 【原创大赛】多功能磁电测量设备控场故障维修

    【原创大赛】多功能磁电测量设备控场故障维修

    多功能磁电测量设备控场故障维修原创:李扬 博士(南京航空航天大学)推荐:陆俊 工程师(中科院物理所)一句话推荐理由:带博士维修就是轻松,动下嘴皮子谈笑间即将仪器功能恢复,而且下次碰到故障可能嘴皮子都不用动了:-)。一、背景介绍南京航空航天大学的多功能磁电测量设备是2010年陆俊工程师基于自主的弱信号测量技术研制安装的一套集磁阻抗测量、磁电耦合测量、磁交流IV测量与磁致伸缩测量的多功能磁电测量设备,设备照片如图1所示。自2011年开始投入使用5年多以来一度运行平稳,帮助课题组筛选新型磁性材料和磁性器件性能优化做出了贡献,并发表了Appl. Phys. Lett.等期刊论文约20篇。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_668642_1611921_3.jpg图1 设备照片二、故障现象涉及到变场测量时,手动模式工作正常,但切换到程序控制的自动测量后,磁场的直流电源工作电压、电流不变化,无法控制磁场。三、原因分析磁电设备对磁场的控制系统有3级组成:(1)第一级为电脑,即软件部分,用以设定需要的磁场参数,整个自动测量控制系统都是由这里来控制的;(2)第二级为控制箱,这是连接电脑与电磁铁的枢纽,包括3个数模板,用以将控制信号转换为直流电源能接受的信号;(3)第三级为直流电源,这是接受控制信号、并将其转化为相应磁场的部分。一般各部分硬件寿命较长,因此,工作电压、电流出问题,需检测是否为各级联通部分出故障。四、维修过程由直流电源到电脑逐级检查。1.直流电源。这里要检测的是控制信号输入端,如图2所示,其中1-2口控制磁场的正负,3-4口控制磁场的大小。检测时,万用表调至直流电压档,电脑端分别输入任意一正向扫场场强和一负向扫场场强。当正向场强检测时,1-2口显示应为0V;当负向场强检测时,1-2口显示应为5V。3-4口的示数应随着设定磁场的增大而增大,但无具体数值供参考。若满足该情况,则可能直流电源出现故障;若不满足,则向上一级——控制箱——检测。http://ng1.17img.cn/bbsfiles/images/2017/10/2016072120061771_01_1611921_3.png图2 控制信号输入端及接口示意图2.控制箱。首先检测控制箱与直流电源的接线处有无故障。其接口分布如图2(a)所示。其中1-2口控制磁场的正负,3-4口控制磁场的大小。检测时,万用表调至直流电压档,电脑端分别输入任意一正向扫场场强和一负向扫场场强。当正向场强检测时,1-2口显示应为0V;当负向场强检测时,1-2口显示应为5V。3-4口的示数应随着设定磁场的增大而增大,但无具体数值供参考。若结果满足该情况,则是控制箱与直流电源间的导线出问题;若仍不满足,则可能存在两个问题:(1)电脑数模板损坏(2)可能存在短路。3.对于问题(2)。将控制箱与电脑断开连接,万用表调至蜂鸣档,分别检测1-2口和3-4口内部连线,若无短路,应无蜂鸣声。以1-2口为例,如图2(c)所示,将万用表笔分别放在1-2连线所经过两红圈上,本次检测未发出蜂鸣声,表明1-2口不存在短路。http://ng1.17img.cn/bbsfiles/images/2017/10/2016072120062193_01_1611921_3.png图3 控制箱接线口及示意图4.本次检测至步骤3时,无蜂鸣声,因此判断电脑中数模板损坏,将其更换,型号为DA6632。更换过程如图4所示,先将主机箱侧盖打开,再将数模板的固定块取下,旧板拔出后(有一个小插曲是,感叹5年IT硬件发展的变迁,旧板与新板的PCI固定板上卡槽与安装孔之间的尺寸稍微有些差异,无法整体更换,但仔细一看发现二者之间可以交换固定板,于是将卡槽螺丝拆下来装到原来的固定板上),将新板各开关掰下来,然后插入原位置,更换完成,并依次复原。随后对磁场进行了校正,设定为-4V~+4V,200个点,该过程中直流电源工作电压、电流明显随着磁场的线性变化逐渐改变,其中最高电压为88~89V,最高电流在40-50A,正常校准结束后进行自动控制扫场测量未发现问题,至此故障排除。http://ng1.17img.cn/bbsfiles/images/2017/10/2016072120062536_01_1611921_3.png图4 数模板更换过程示意图五、原因与建议分析数模板的损坏原因,很可能来自于电网的尖脉冲或浪涌的冲击;或者由于磁场电源在强磁场工作时遭遇意外断电导致较大的电磁冲击。为了保障设备的稳定运行,要尽可能避免因为供电系统的问题对测量系统的影响,因而建议加装不间断电源系统UPS,有效降低电网干扰对测量系统影响,延长断电情况下的用户处置时间。

  • 世界首台!AIMS望远镜突破太阳磁场测量难题

    记者从青海冷湖天文观测基地获悉,世界首台“用于太阳磁场精确测量的中红外观测系统”(简称AIMS望远镜)已实现核心科学目标——将矢量磁场测量精度提高一个量级,实现了太阳磁场从“间接测量”到“直接测量”的跨越。AIMS望远镜是国家自然科学基金委员会支持的重大仪器专项(部委推荐)项目,落户于平均海拔约4000米的青海省海西蒙古族藏族自治州茫崖市冷湖镇赛什腾山D平台。据了解,经过5个多月的前期调试观测,目前望远镜技术指标已满足任务书要求,进入验收准备阶段。中国科学院国家天文台怀柔太阳观测基地总工程师王东光介绍,科学数据分析表明,AIMS望远镜首次以优于10高斯量级的精度开展太阳矢量磁场精确测量。“这意味着AIMS望远镜利用超窄带傅立叶光谱仪,在中红外波段实现了直接测量塞曼裂距得到太阳磁场强度的预期目标,突破了太阳磁场测量百年历史中的瓶颈问题,实现了太阳磁场从‘间接测量’到‘直接测量’的跨越。”王东光说,“塞曼裂距与波长的平方成正比,在AIMS望远镜之前,太阳磁场多在可见光或近红外波段观测,由于裂距很小,观测仪器很难分辨。AIMS望远镜的工作波长为12.3微米,在同等磁场强度下,塞曼裂距增加几百倍,使得‘直接测量’成为可能。”[img]https://img1.17img.cn/17img/images/202401/uepic/ba3f6eca-6915-4961-859c-22afd01ca552.jpg[/img]??[font=楷体][size=18px][color=#000080]这是2023年4月8日拍摄的AIMS主体结构。新华社记者顾玲 摄[/color][/size][/font]AIMS望远镜是国际上第一台专用于中红外太阳磁场观测的设备,将揭开太阳在中红外波段的神秘面纱。“通过消除杂散光的光学设计和真空制冷等技术,我们解决了该波段红外太阳观测面临的环境背景噪声高、探测器性能下降等难题。”中科院国家天文台高级工程师冯志伟介绍,红外成像终端由红外光学、焦平面阵列探测器和真空制冷三个系统组成,包括探测器芯片在内的所有部件均为国产。该终端系统主要用于8至10微米波段太阳单色成像观测,从而研究太阳剧烈爆发过程中的物质和能量转移机制。此外,AIMS望远镜也实现了中红外太阳磁场测量相关技术和方法的突破,在国内首次实现中红外太阳望远镜系统级偏振性能补偿与定标,“望远系统在中国天文观测中首次采用离轴光学系统设计,焦面科学仪器除8至10微米的红外单色像外,还配备了国际领先的高光谱分辨率红外成像光谱仪和偏振测量系统。”王东光介绍,AIMS望远镜的研制,除了在太阳磁场精确测量方面起到引领作用外,也可在中红外这一目前所知不多的波段上寻找新的科学机遇。[img]https://img1.17img.cn/17img/images/202401/uepic/08c61536-40b2-4642-a56f-75b8f1f4e198.jpg[/img][font=楷体][size=18px][color=#000080]  AIMS望远镜科研团队成员正在观看电脑屏幕显示出分裂的光谱。(受访者供图)[/color][/size][/font]据介绍,AIMS望远镜旨在通过提供更精确的太阳磁场和中红外成像、光谱观测数据,研究太阳磁场活动中磁能的产生、积累、触发和能量释放机制,研究耀斑等剧烈爆发过程中物质和能量的转移过程,有望取得突破性的太阳物理研究成果。[来源:新华社][align=right][/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制