当前位置: 仪器信息网 > 行业主题 > >

塑料内饰

仪器信息网塑料内饰专题为您整合塑料内饰相关的最新文章,在塑料内饰专题,您不仅可以免费浏览塑料内饰的资讯, 同时您还可以浏览塑料内饰的相关资料、解决方案,参与社区塑料内饰话题讨论。

塑料内饰相关的资讯

  • 微塑料正在进入你的体内|前沿应用
    塑料吸管=隐形杀手?今年,包括星巴克在内的不少餐饮企业正在尝试停用塑料吸管,转而使用直饮杯盖及纸质吸管。尽管新杯盖和纸质吸管因使用不便遭到一些网友的吐槽,作为专注前沿研究领域的科学仪器公司编辑,我们还是非常肯定这些企业的做法,也号召更多的企业和个人加入减少塑料使用的行动当中来。因为,正是这一看似不起眼的小小塑料吸管,正在破坏地球生态系统,甚至成为威胁人类健康的“隐形杀手”。据《福布斯》杂志统计,2017年, 全球每分钟卖出约100万个塑料水瓶,然而,仅有9%被回收利用。其中塑料吸管这类制品,因体积很小,通常可以躲过自动化回收而不被填埋,且有相当一部分被冲入河流湖泊和海洋,被动物尤其是海洋生物摄入,终进入人类体内。世界经济论坛警告说,到 2050年, 海洋中的塑料将比鱼还要多。这些小小的塑料吸管如何能够威胁我们的生命呢?事实上,这些未被回收利用的大小塑料在阳光、空气和海洋的共同作用下,终都会碎裂或降解为较小的碎片,当其尺寸小于5毫米时,就称为“微塑料”。与“白色污染”的可见塑料相比,这些微塑料肉眼难以分辨,更加危险的是,它可以通过层层食物链进入人体。无处不在的“微塑料”很多人会问:“如果我不吃鱼,不吃任何海鲜,是不是微塑料就影响不到我?”答案依然是否定的。事实上,目前研究发现,微塑料已经渗透到人类生存环境的各个食物链条当中。根据《国家地理》2018年的一份报告,研究人员对全世界多个品牌的食盐进行了抽样检测,其中90%都发现了微塑料,亚洲食盐中的微塑料密度尤为高,因此亚洲被该杂志列为塑料污染的重点地区。不仅是食盐等食物,在人们看不见甚至难以想象的地方,微塑料也存在。据《时代》杂志报道,有研究人员对9个国家购买的11个品牌的259例瓶装水进行了测试,其中90%以上的水中都含有微塑料。因为微塑料体积很小,粒径范围在几微米到几毫米,甚至有一些只能在显微镜下才能看到,因此可以轻松通过饮用水的杂质过滤器。“微塑料”危害有多少事实上很多塑料本身都具有毒性,而一些环保材料在高温高压等条件下还会释放出有害物质,给人类带来二次伤害。此外,塑料作为一种高分子聚合物,都会在不同程度上聚集污染物、细菌、病毒、化学物质和有害藻类等,成为有害物质的“载体”。阿肖克• 德什潘德博士是美国东北渔业科学中心的化学家,对微塑料在海洋等领域的影响有深入研究,他对微塑料的影响表示忧虑,“塑料就是藻类和细菌殖民的运输管道,我们每个人都无法逃脱微塑料的影响“。显然,潜在的健康隐患令人胆战心惊,我们已经很难忽视微塑料带来的影响,它正在通过各种看得见看不见的方式进入人体内。阿肖克德什潘德博士拉曼光谱助力,防治已见成效无处不在的微塑料已经给我们的生存敲响警钟,防治工作迫在眉睫。庆幸的是,目前微塑料已经成为日益受关注的话题,专项研究也已经在全球各地的大学和研究机构开启。要对付这些看不见的微塑料,首先是确定其类型,进而确定环境污染物的来源,在此基础上,就可以有针对性的对污染源进行监测和控制。目前已有多种技术手段被用于帮助科学家表征微塑料进而确认其污染源。德什潘德博士通过研究发现,鱼体内的微塑料可以用气相色谱 (GC) 热解、质谱、红外光谱或拉曼光谱等多种技术来表征。其中,显微拉曼光谱仪由于集成了拉曼光谱和光学显微镜, 既能获得待测样品的显微形貌,又能得到样品具体位置的拉曼光谱,因此成为识别聚合物高效、有效的技术手段之一。利用显微拉曼光谱仪能够进行微区分析、表征亚微米级别材料这一优势,德什潘德博士团队将采集到的微塑料拉曼光谱与已知聚合物拉曼光谱库进行比对,从而轻松识别出微塑料的种类,为确认其来源提供了可靠的依据。制备好的含微塑料的沙粒样品等待进行分析而加拿大多伦多大学生态与进化生物学系切尔西• 罗奇曼博士及其所在团队,则将研究重点放在利用拉曼光谱仪获取微塑料类型、尺寸及数量等信息上。她们利用XploRA™ PLUS拉曼光谱仪进行研究,尝试开发出一套快速简便且准确的微塑料样品表征方法,从而提高表征效率。她指出“因为有太多不同类型的塑料,为了表征这些材料,进而衡量它们对动物的影响,像拉曼显微镜这样的分析工具是必不可少的。”毫无疑问,这些科学家的研究为确定环境污染物的来源,进而监测控制污染源找到了科学高效的方法。HORIBA XploRA™ PLUS智能型全自动拉曼光谱仪注:如需了解该研究中HORIBA 拉曼光谱仪的详细介绍及使用问题,欢迎点击左下角“阅读原文”留言,我们的技术专家会尽快联系您进行答疑解惑。微塑料“循环”中的生命研究目前,庆幸的是科学家已经能够表征部分微塑料。德什潘德博士表示,接下来的挑战是识别出贝类和其他小生物中的小纤维,从而了解微塑料是如何通过食物链层层富集进入人体的。因为食物链是层层递进的,贝类摄入微塑料,鱼再吃下贝类等浮游生物,体型较大的海洋生物又会吃掉较小的鱼,这一过程中微塑料在一层层富集。可以想象,有多少条鱼摄入微塑料,处于食物链顶端的我们遭受的微塑料污染就有多严重。减少塑料,从我做起对微塑料追本溯源是科学家们在做的事,作为普通人的我们能做些什么呢?近进行的如火如荼的垃圾分类就是重要方式,通过回收利用散落在各地的大小塑料,避免其流入湖泊海洋进入人体;抑或是多用环保袋代替塑料袋;少点外卖也是个不错的方法,毕竟外卖盒用多了也对健康无益。其实我们能做的事情还挺多。点击观看视频, 了解更多微塑料研究今日话题环境问题一直是人类生存的大问题,你所在实验室目前关于环保和环境方面的研究有哪些呢?不妨留言说出你的想法或正在进行的研究,我们将在下期前沿应用中介绍给更多科研小伙伴。 点击查看更多往期精彩文章 严峻环境下的自救——探寻端气候下的生命存续 | 前沿应用【上篇】JGR-Atmospheres: 中国典型燃煤城市的大气颗粒物中发色团的粒径分布特征发现生命的轨迹——化石中的碳元素分析 | 前沿应用复旦巧用增强拉曼“识”雾霾 | 前沿用户报道“钢铁侠”背后的清洁能源之梦【GDS微课堂-5】 HORIBA科学仪器事业部 HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。 如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。 点击下方“阅读原文”,咨询相关技术服务。 阅读原文
  • 复旦大学陈建民/方明亮等合作揭示可降解塑料微粒在体内的健康风险
    暴露于人为来源的“生态友好型”可生物降解塑料的健康风险及其对胃肠道的影响在很大程度上是未知的。  2023年3月2日,复旦大学方明亮、陈建民及安徽医科大学黄以超共同通讯在Nature Nanotechnology(IF=40)在线发表题为“Oligomer nanoparticle release from polylactic acid plastics catalysed by gut enzymes triggers acute inflammation”的研究论文,该研究表明肠道酶催化的聚乳酸塑料释放低聚物纳米颗粒引发急性炎症。该研究证明了聚乳酸微塑料在胃肠道过程中通过争夺甘油三酯降解脂肪酶而酶解生成纳米塑料颗粒。纳米颗粒低聚物通过疏水驱动的自聚集形成。  在小鼠模型中,聚乳酸寡聚物及其纳米颗粒在肝脏、肠道和大脑中生物积累。水解低聚物引起肠道损伤和急性炎症。大规模药效团模型显示,低聚物与金属氧化物酶12相互作用。在机制上,低聚物对锌离子指区具有较高的结合亲和力,导致金属氧化物酶12失活,这可能介导了聚乳酸低聚物暴露后的不良肠道炎症反应。生物降解塑料被认为是解决环境塑料污染的解决方案。因此,了解生物塑料的胃肠道命运和毒性将为潜在的健康风险提供见解。  微塑料(MPs)在水生和陆地环境中无处不在,是世界上最紧迫的环境问题,因为它们对环境和人类健康有潜在风险。MPs在环境中转移,并通过食物链和直接吸入或摄入进入人体进行生物积累。尽管人类MP暴露的确切数量存在很大的不确定性,但研究初步估计,每周口服MP颗粒的摄入量在0.1至5.0克之间。因此,MPs已在人类粪便中检测到。对小鼠、牡蛎和贻贝的研究表明,接触与环境相关的MPs会导致生殖受损、DNA损伤和神经毒性。导致这些影响的机制主要是未知的,尽管许多研究调查了MPs物理损伤的原因,喂入量减少或有毒化学物质的浸出。为了减轻塑料污染,人们引入了可生物降解塑料作为传统塑料的环保替代品。例如,聚乳酸(PLA)是最常见的生物塑料,被用于制造食品包装、一次性餐具和生物医学输送载体。PLA产量稳步增长,预计到2024年将超过30万吨。包装是PLA塑料的主要用途,2014年占收入份额的36%以上。采用人类和小鼠模型的研究表明,基于PLA的植入会引发炎症。此外,PLA MPs对斑马鱼具有显著的不良影响风险,尽管其确切机制尚不清楚。  胃脂肪酶消化PLA MPs(图源自Nature Nanotechnology )PLA塑料可能比“持久性”聚合物产生更多的MPs,因此,PLA MPs越来越多地出现在土壤、沉积物和室内灰尘中。尽管摄入PLA MPs的毒理学作用值得进一步深入研究,但对其在肠道中存在的生物转化如何影响人类健康的知识尚缺乏。在低pH和酶的生理条件下,人们对PLA MPs的化学结构如何被体内的相互作用所改变的理解是不够的。因此,必须对增加PLA MPs生物反应活性的机制进行详细分析,这些机制增强了它们与蛋白质和细胞表面的相互作用。该研究探讨了PLA作为人体肠道中可生物降解塑料模型的转化和毒性。PLA MPs被胃肠道中的脂肪酶消化,形成数百万个纳米塑料。此外,生物物理和计算方法表明,所得的低聚物水解产物可以形成纳米塑料。总之,该研究表明,肠道酶会产生意想不到的降解产物,包括来自PLA塑料的低聚物和纳米塑料,这些具有潜在的健康风险,需要继续研究和潜在的监管。原文链接:https://www.nature.com/articles/s41565-023-01329-y
  • Environ. Sci. Technol新成果!mIRage助力复杂道路灰尘内微塑料检测
    微塑料在我们的空气、水和土壤中无处不在,存在于生态系统的各个层面。其主要来源于城市灰尘、船舶涂料、个人护理产品、塑料产品、道路标志、合成纺织品和轮胎等,并以不同的形态如:纤维、微粒、颗粒和碎片存在。 近年来,已有研究表明微塑料对人类、动物、植物和环境的健康影响取决于塑料颗粒的大小、浓度、化学性质和相互作用的方式。但由于微塑料尺寸过小和其混合存在的复杂性,传统方法针对这些颗粒的检测往往勉为其难。尤其是降解后的次级微塑料,其尺寸往往小于5μm,传统分子仪器分析方法如傅里叶红外光谱难以有效的对其化学成分进行表征。 非接触亚微米分辨红外拉曼同步测量系统-mIRage的出现有效解决了上述受限问题。设备基于光学光热诱导共振(O-PTIR)技术,突破了传统红外光谱衍射极限,空间分辨率可达500 nm,有效解决了基本全尺寸微米和纳米塑料(MNPs)样品的化学成分信息、大小和形态表征问题。 图1 非接触亚微米分辨红外拉曼同步测量系统-mIRage原理图 近期,来自美国圣母大学的Kyle Doudrick等人[1]使用非接触亚微米分辨红外拉曼同步测量系统-mIRage对我们日常生活中时时接触的道路粉尘中的微塑料进行了表征。 道路灰尘含有由轮胎退化产生的微纳米塑料(MNPs),它们由天然橡胶、合成橡胶和尼龙组成合成橡胶用于增强轮胎缓冲和弹性,而尼龙用于轮胎内层。道路灰尘还含有来自燃料添加剂的含氮硝基化合物。作者首先通过传统FTIR光谱来表征大块道路粉尘(图2a黑色谱线),在1100 cm&minus 1和1750cm&minus 1之间存在广泛的未解跃迁,表明粉尘中存在复杂的混合物质。而粉尘内混杂的微塑料颗粒却因为尺寸问题无法分析。 随后,作者使用采用基于OPTIR技术的mIRage系统,对粒径仅1μm的两个颗粒——颗粒1和颗粒2(图2d和图2e)进行成像分析,可以看到密集的道路尘埃聚集体和单个颗粒,并在1450cm-1和1650cm-1波数处出现强红外光谱吸收峰(图2f)。 图2表明,颗粒1主要由合成橡胶组成,在1451±4 cm&minus 1和1493±4 cm&minus 1处具有主要特征峰,并存在特征吸收在1500 cm&minus 1和1550 cm&minus 1之间的硝基化合物。颗粒2具有尼龙中常见的酰胺I和酰胺II过渡指示峰。同时具有与含硝基化合物如硝基甲烷(1383 m&minus 1和1573cm&minus 1)一致的振动(图2a)。 图2 粉尘内混杂的微塑料颗粒红外成像表征图 最后,作者对图2a中突出显示的单个颗粒1和2进行了分析。图2d、e分别为1450 cm&minus 1和1650cm&minus 1光谱特征的5×5 μm2 OPTIR显微图像。在1450 cm&minus 1和在1650 cm&minus 1处,颗粒1的化学性质与颗粒2不同。综上所示,作者推断出粒子1和粒子2可能分别由橡胶和尼龙组成,体现了OPTIR量化MNPs的能力,有效监测降解过程中发生的化学变化,并表征复杂样品(即道路粉尘)中单个和聚集MNPs的化学特性。这款创新设备有效克服了目前许多产品对MNP表征的限制,即同时量化颗粒丰度和形态的能力,致使mIRage系统成为分析复杂环境中MNPs的有效工具。非接触亚微米分辨红外拉曼同步测量系统-mIRage优势:☛ 可达500 nm左右的空间分辨率☛ 基本无需样品前处理,样品即放即测☛ 光源“探针”对样品无损伤☛ 同时、同位置进行红外和拉曼光谱测试,提供相互佐证的分析结果☛ 同时获得样品成分、形貌、大小等信息 样机体验: 为满足国内日益增长的新型红外表征需求,更好的为国内科研工作者提供专业技术支持和服务,Quantum Design中国北京样机实验室引进了非接触亚微米分辨红外拉曼同步测量系统——mIRage,为您提供样品测试、样机体验等机会,欢迎各位老师垂询!参考文献:[1]. Kirill Kniazev, Ilia M. Pavlovetc, Shuang Zhang, Junyeol Kim, Robert L. Stevenson, Kyle Doudrick,and Masaru Kuno.Using Infrared Photothermal Heterodyne Imaging to Characterize Micro- and Nanoplastics in Complex Environmental Matrices: Environ. Sci. Technol. 2021, 55, 15891&minus 15899
  • 欧盟镉禁令扩至塑料物品及首饰
    欧盟《官方公报》于2011年5月21日刊登欧洲委员会第494/2011号规例,扩大含镉产品禁令至塑料物品、首饰及铜焊杆。  自1992年起,欧盟已禁止大部分塑料使用镉,禁令于2004年更扩展至电池及电子产品。根据1992年的禁令,由于难以找到合适替代品,若干类硬质塑料如聚氯乙烯仍可使用镉。  不过,欧洲委员会确定市场上已有合适的替代产品,因此把禁令扩展至所有塑料物品。  根据最新禁令,由塑料制造的物品及混合物,若镉含量以重量计相等或多于0.01%,不得投放到市场。  不过,欧委会将继续推广回收及重用低镉含量的聚氯乙烯废料,但只供有限范围的产品使用,如建筑产品。  回收的低镉聚氯乙烯须附有特定标志,让使用者得悉其镉含量,才可以投放到市场。第494/2011号规例将会重新审视这项特定标志。  此外,由于市场内若干种类的首饰如人造首饰,被验出镉含量已达危险水平,因此欧委会决定有需要实施禁令,规管首饰内的镉含量。镉是一种致癌物质,可透过接触皮肤进入血液。所以,欧委会认为,必须完全禁止在首饰内使用镉。  第494/2011号规例制订相关条款,禁止镉含量0.01%的产品投放到市场,这些产品包括:  用于制造首饰的金属珠子及其他金属部件   以下首饰、人造饰物及头饰的金属零件:  手镯、项炼及指环   穿孔首饰   手表和手带   胸针及袖扣  最后,欧委会将扩大禁令的规管范围至铜焊杆。铜焊杆用于高温(温度高于传统焊锡)焊接金属。消费者只在数种特定情况下才使用铜焊杆,用途并不广泛,如制作模型火车及汽车。含镉的铜焊杆在加热后会释出烟雾,吸入体内十分危险。  在国防及航空航天工业上,含镉的铜焊杆仍可使用。  第494/2011号规例将于2012年1月10日生效,之后受禁令规管的产品不得投放到欧盟市场。  上述3项禁令将加入第1907/2006号规例(即REACH规例)的附件XVII内。  欧委会第494/2011号规例载于以下网址:http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:134:0002:0005:EN:PDF
  • 微塑料检测技术,解决微塑料难题!
    微塑料指的是直径小于5毫米的塑料微粒,常见化学成分有聚乙烯、聚氯乙烯、聚苯乙烯、聚丙烯等。相关研究表明,微塑料在鱼类、贝类等水生生物体内普遍存在,可通过食物链不断向上一级传递,位于食物链顶端的人类将不可避免成为微塑料的摄入和蓄积体。随着各方对微塑料的关注日益增多,微塑料的相关科学研究正如火如荼地开展着,如何精准快速的识别微塑料,对微塑料领域的研究至关重要。多年来,研究人员通过对水陆空环境与生物体等各类样品中的塑料微粒含量、大小、成分等进行科学分析,开展各类型的科研课题研究、环境本底调查,为我国环境微塑料污染防控与监控和常规产品检测等提供技术依据。为了了解当前微塑料检测分析技术和应用进展,加强沟通交流,7月27日-28日,仪器信息网将举办第四届环境新污染物检测网络会议,在28日的下午,以“微塑料的检验检测”为主题的会议专场,将邀请相关领域专家与大家分享当前针对该领域的技术研究与应用进展等。“微塑料的检验检测”专场日程如下:07月28日微塑料的检验检测14:00--14:30“流域-近海-大洋”微塑料观测研究进展与趋势分析蔡明刚厦门大学 教授14:30--15:00岛津GCMS在环境新型污染物检测中的应用王子君岛津企业管理(中国)有限公司 产品专员15:00--15:30污水处理厂微塑料的去除行为解析与探讨安立会中国环境科学研究院 研究员15:30--16:00传感器在渔业环境中新污染物检测应用吴立冬中国水产科学研究院 研究员嘉宾介绍:蔡明刚 教授厦门大学蔡明刚,教授,博士生导师。现任厦门大学海洋与地球学院教授,海洋与海岸带发展研究院兼职教授,福建省高校重点实验室副主任。主要研究方向:基于海洋学视角的开阔海域污染物传输动力学过程研究,及其作为新型示踪剂在海洋科学上的应用。研究海域涉及我国南海等边缘海、全球大洋及两极海区,课题组近10次参加中国南、北极科学考察。个人系中国第3、5次北极科学考察队队员,先后入选福建闽江科学传播学者、福建省杰出青年基金计划、新世纪优秀人才计划、CSC中德合作团队项目等人才计划。主持国家及省部级项目10余项,在Environmental Science & Technology、Environmental Pollution、Deep Sea ResearchⅠ、Marine Chemistry等环境、海洋期刊发表论文70余篇,获得专利授权12项,获得多项省部级奖项。 主要科研与应用成果如下:1)开展我国主要边缘海和极区持久性有机污染物的时间序列变化和储量估算,提出全球变化背景下边缘海POPs海/气交换与垂直传输的海洋生物泵调控机制。2)较早开展大洋海水中细颗粒微塑料研究,发现南海存在数量可观的微塑料。3)利用氟利昂等污染物开展海洋学过程的示踪与人为碳估算,取得创新性成果,组装了国内第1套海水超痕量氟利昂/六氟化硫的吹扫捕集-气相色谱分析系统,获批多项发明专利,分析精度达到国际同类水平。4)构建和应用海湾陆源污染物排海总量估算技术及其系统,提出基于长时间序列观测的沿海社会、经济和环境生态协调发展的计量统计学方法。5)建立基于工业化生产的雨生红球藻培养技术和配方,搭建了微藻多级培养系统并研发新型LED藻类培养设备,拥有多项专利,服务于企业生产并产生实际效益。王子君 产品专员岛津企业管理(中国)有限公司毕业于天津大学应用化学专业,具有丰富的分析仪器产品经验,擅长环境应用解决方案。安立会 研究员中国环境科学研究院安立会(1975 -),博士,中国环境科学研究院研究员,博士生导师。主要从事天然与合成环境污染物的水生态毒理效应、环境质量基准与标准及生态风险评价研究,近年重点关注环境塑料垃圾与微塑料对生态系统安全和人体健康的影响,并致力于塑料污染来源及其控制对策,为开展我国环境微塑料的管控措施和治理提供科学依据。吴立冬 研究员中国水产科学研究院吴立冬,博士、研究员、博士生导师,入选中国水产科学研究院“百人计划”,国家市场监督管理总局食品补充检验方法和快检方法等国标方法审评专家。受邀成为“Biosensor and Bioelectronics”杂志编委(IF 12.545),Agriculture Communications 和Journal of Analysis and Testing杂志青年编委,Micromachines杂志(IF 3.523)专题主编。主持国家自然科学基金、国家重点研发计划、国家标准等国家级及省部级项目10余项。2022年获得了中国农学会青年科技奖、中国仪器仪表学会青年创新奖(朱良漪青年创新奖)和中国分析测试协会一等奖(排名第一)。主要从事水产品危害物快速检测方法及渔业环境智能化监测器件研发。迄今,吴立冬博士在Informat(IF 24.7)、Chemical Engineering Journal(16.7)、ACS nano、Food Chemistry、Biosensor and Bioelectronics、Anal. Chem等杂志发表80多篇论文,申请专利22项(其中美国专利1项,国际专利2项),授权7项(已转让2项)。免费报名点击:第四届环境新污染物检测网络会议:https://www.instrument.com.cn/webinar/meetings/newpollutant2023/诚邀您的参与!
  • 高速氟素塑料光纤技术联合实验室成立
    4月15日讯 AGC(旭硝子株式会社)日前在北京举办了世界上最快的塑料光纤“FONTEX”的技术论坛。AGC宣布,将从今年7月起,开始在中国地区销售“FONTEX”。“FONTEX”是世界首创的可以进行10千兆比特每秒(Gbps)大容量数据通信的塑料光纤,与现有的石英光纤相比,具有能在弯折、卷曲状态下保持通信的特点。未来有望在“全高清电视”、“3D电视”等民用信息家电布线等领域得到进一步的推广和应用。  AGC与北京邮电大学还宣布,成立旨在进行“FONTEX”应用研究的“BUPT-AGC超高速氟素塑料光纤技术联合实验室”。该实验室将在“FONTEX”涉及中国市场的电视线路、电视机内布线、室内网络线路、通信线路、电力行业等领域,从事标准规格的应用开发和调查研究等工作。  此外,日本庆应大学小池康博教授的“世界上最快的塑料光纤”研究课题,在今年3月被日本政府最尖端研究开发援助项目列为扶持对象。作为这项研究课题的核心企业,AGC公司为了实现“以来自日本的光纤技术开创新市场”的目标,正在积极进行着40Gbps以上超高速产品以及缆线、接头等各类应用产品批量生产的技术开发工作。  “全高清电视”、“3D电视”最近受到了社会的广泛关注,预计不久的将来,这些产品的新一代显示屏布线、个人电脑周边机器的接续等都将促使大容量数据的高速传输成为市场需求的热点。另外,数据中心和医疗领域为了实现高速度、低耗电的数据通信,也已经开始在服务器、存储器等机器间使用光纤布线。今后,民用光纤布线市场也将迅速扩大,预计2015年,将在全球范围内开创超过1500亿日元(约合人民币115亿元)的新市场。
  • 欧盟实施塑料、首饰和焊杆的含镉禁令
    2012年1月10日,欧盟对若干类产品实施的镉禁令正式生效,涵盖范围包括塑料、首饰和焊杆。  在欧盟销售的首饰含有高浓度镉,尤以从亚洲进口的人造首饰为然,欧洲委员会对此十分关注,故予以立法管制。有证据显示,镉可透过皮肤或口腔接触而严重影响人体健康,并可诱发多种癌症、肺部疾病及肝病。  因此,欧盟禁止镉含量以重量计超过0.01%的首饰投放到市场,这些首饰包括金属珠子、手镯、项炼、戒指、穿孔首饰、手表、手带、胸针及袖扣等。古董首饰不受禁令影响。  此外,禁令的适用范围已扩展至所有塑料制品。自1992年起,欧盟已禁止大部分塑料制品含有镉。不过,由于当时缺乏其他代替物料,聚氯乙烯内可以含有镉。其后,聚氯乙烯生产商已找到代替品,并自愿放弃使用镉。  自2012年1月10日起,所有投放到欧盟市场的首饰及所有塑料制品,镉含量以重量计不得等于或超过0.01%。  虽然如此,回收及重用低镉含量的聚氯乙烯废料可获得豁免,但只供有限范围的产品使用,如建筑产品。产品投放到市场前,必须贴上专用标志或附上“含有回收聚氯乙烯”字句,让使用者得知这些回收的聚氯乙烯含有镉。  最后,新禁令亦适用于焊杆。焊杆是用于高温金属焊接的软金属棒。消费者通常用于制作模型火车及汽车。研究发现,含镉的焊杆在加热后会释出烟雾,吸入体内可引致危险。若干供国防及航空航天工业等使用的专业用途焊杆则不受禁令限制。  这项禁令于去年出台,载于第494/2011号法规内,而相关的3项限制已纳入REACH法规附件XVII内。第494/2011号法规详情参见:http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:134:0002:0005:EN:PDF。
  • 海洋微塑料危害不容忽视
    p  塑料的发明,为人类生产生活带来极大便利。自20世纪50年代起,全球塑料年均增长率保持在8.5%。到2016年,全球塑料产量达3.35亿吨。我国是世界塑料生产和使用大国,且进一步增长的潜力十分巨大。/pp  然而,塑料在使用后,一部分由于收集处理不及时而进入环境,发生破碎、降解,给地表水、土壤和海洋等带来严重环境污染。近年来,我国开展的多次大洋和极地科考中,均在海洋中检测出微塑料。/pp  海洋微塑料究竟是什么?其危害何在?该如何防范、治理?/pp  国家海洋环境监测中心副主任王菊英长期从事海洋垃圾和微塑料方面研究。她介绍,学术界和管理者普遍认同,微塑料是小于5毫米的塑料颗粒,在各种海洋介质中均有存在,包括生物体。/pp  据自然资源部报道,我国载人潜水器“蛟龙号”去年从大洋深处带回了海洋生物样品。令人意想不到的是,在4500米水深下生活的海洋生物体内,竟检出了微塑料。今年初,自然资源部第一海洋研究所研究员孙承君等人在南极鲍威尔海盆开展科学考察。他们通过船载泵取得500升表层海水样本,用显微镜观察时,也发现有小于0.3毫米的微塑料。这是中国科学家首次在南极海域发现微塑料。/pp  根据全球科研人员的实地调查发现,从近海到大洋,从赤道到极地,从海洋表层到大洋深处,海洋微塑料无处不在。/pp  “不管是水体还是沉积物,从海表到海底,以及海洋沉积物中,都发现微塑料的存在。”王菊英表示,2017年他们实验室开展过相关研究,结果显示,约76%的鱼类肠道、消化道都检出有微塑料。/pp  不过王菊英指出,微塑料是一个新型环境问题,当前研究仍存在进一步拓展的空间,包括监测方法的标准化。目前,微塑料分析方法尚不统一,不同研究之间的可比性并不强。对此,学术界正在努力推出相应的标准化分析方法。目前,在大部分微塑料对生物体影响的实验室研究中,其浓度都高于实际环境浓度。而从非常高的实验室加标浓度外推实际的生物效应,仍存在一定不确定性。/pp  与大型塑料一样,海洋微塑料对地球生态环境也有负面影响。但据联合国粮农组织报道,目前尚无直接证据表明,通过食用海产品可以对人类健康产生影响。王菊英认为,关于微塑料对生态系统和人体健康的影响,目前仍在研究中,但其潜在影响不容小视。因为小于5毫米的微塑料颗粒,还能继续分解为更细的颗粒,对人体健康的影响需要格外关注。/pp  “它们本身含有增塑剂,并能从环境中吸附有毒有害物质。当被海鸟、鱼类、底栖动物等海洋生物摄食后,会损害海洋生物的消化道,或刺激其胃肠组织产生饱胀感而停止进食 其所携带的有毒有害物质也会对海洋生物产生不利影响。”王菊英介绍。/pp  微塑料是近年来国际社会高度关注的环境问题。2016年,联合国环境大会将海洋塑料垃圾和微塑料问题等同于全球气候变化等全球性重大环境问题,相关国家和环境组织还出台了行动措施和法规。/pp  中国是最早颁布限塑令的国家之一——禁止生产、销售和使用厚度小于0.025毫米的塑料袋。此外,国内相关海洋环保法律法规、条例、水污染防治行动计划等,也要求加强塑料陆源入海污染防控,严控塑料垃圾入海。/pp  王菊英表示,国内实施的生活垃圾分类制度方案有效减少了陆源和海源垃圾输入,固废特别是塑料废弃物的回收利用也从源头上防止陆源垃圾入海。/pp  就塑料回收利用率排名而言,欧盟30%,位居第一 中国25%,位居第二。而世界平均回收利用率是9%。“因此,中国在固废回收利用的相关措施上还是较为有力的。”王菊英说。/pp  近期实施发布的农业农村污染治理攻坚行动计划,明确提出了地膜回收要求,旨在进一步从源头上防止陆源塑料垃圾入海的输入。科技部则启动了重点研发专项,专门针对海洋微塑料的来源、分布和防治技术开展研究。相关部门也从2007年起实施业务化海洋垃圾监测,并于2016年开始监测海洋微塑料。此外,我国还积极提升公众意识,转变公众消费方式,降低一次性消费制品使用率。/pp  王菊英表示,今后将从研究方案、加强监测、科学评估、社会参与、宣传教育以及国际合作等6方面开展海洋微塑料污染防治 并应加强海洋垃圾监测,掌握海洋垃圾和微塑料分布规律,开展相关领域科学研究,更加科学地评估海洋垃圾的环境影响,特别是微塑料对海洋生态和人体健康的影响。“另外,还要加大社会参与垃圾分类的支持力度,加强塑料垃圾的回收和资源化利用 推动公众参与,转变消费方式 参与应对海洋垃圾和塑料污染的国际进程,积极推进全球海洋垃圾治理。”王菊英说。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/ea627375-85ce-4938-91db-0ff6719e1d10.jpg" title="绿· 仪社.jpg" alt="绿· 仪社.jpg"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "扫二维码加“绿· 仪社”为好友 了解更多对科学仪器市场的分析评论!/span/p
  • 用塑料桶腌酸菜不用带颜色的可再生塑料 少吃腌菜食品亚硝酸盐含量高
    每年一到这个时候家里人都开始储备冬菜了,腌酸菜成了每年的惯例,也是老一辈留下的习俗。但是腌酸菜的桶可不能对付,有的人为了方便选择塑料桶,不像以前家里腌菜都是坛子或大缸,现在人吃的少用塑料桶腌点就够用了。可是用塑料桶腌菜安全吗,这塑料桶应该选择什么材质的好呢?带颜色的可再生塑料少用用塑料桶或塑料布来腌酸菜,会有有害物质释放的,但是如果选择像聚乙烯材质的应该没问题,像可再生材质的塑料用品就尽量不要用了,“如黑色、红色、绿色等带颜色的塑料用品,基本都是可再生的,有害物质会多一些,在酸菜腌制过程中,会有有害物质释放出来,如果选择了质量不过关的容器,由于酸菜的PH值很低,酸性腐蚀较强,再加上腌制酸菜需要的时间较长,所以很有可能对塑料产生腐蚀作用,使塑化剂进入到腌制好的酸菜中,对人体不利。”腌菜中含亚硝酸盐一般情况下,温度高盐浓度低的时候,腌菜中亚硝酸盐含量峰值出现就比较早;温度低而盐量大的时候,峰值出现就比较晚。一般来说,到20天之后,亚硝酸盐含量已经明显下降,一个月后是很安全的。亚硝酸盐的毒性食品加工业被添加在香肠和腊肉中作为保色剂,以维持良好外观;可以防止肉毒梭状芽孢杆菌的产生,提高食用肉制品的安全性。但是,人体吸收过量亚硝酸盐,会影响红细胞的运作,令到血液不能运送氧气,口唇、指尖会变成蓝色,即俗称的“蓝血病”,严重会令脑部缺氧,甚至死亡。亚硝酸盐本身并不致癌,但在烹调或其他条件下,肉品内的亚硝酸盐可与氨基酸降解反应,生成有强致癌性的亚硝胺。如果食用硝酸盐或亚硝酸盐含量较高的腌制肉制品、泡菜及变质的蔬菜可引起中毒,或者误将工业用亚硝酸钠作为食盐食用而引起,也可见于饮用含有硝酸盐或亚硝酸盐苦井水、蒸锅水后,亚硝酸盐能使血液中正常携氧的低铁血红蛋白氧化成高铁血红蛋白,因而失去携氧能力而引起组织缺氧。亚硝酸盐中毒特点亚硝酸盐中毒发病急速,一般潜伏期1一3小时,中毒的主要特点是由于组织缺氧引起的紫绀现象,如口唇、舌尖、指尖青紫,重者眼结膜、面部及全身皮肤青紫。头晕、头疼、乏力、心跳加速嗜睡或烦躁、呼吸困难、恶心、呕吐、腹痛、腹泻,严重者昏迷、惊厥、大小便失禁,可因呼吸衰竭而死亡。亚硝酸盐的检测食品中的亚硝酸盐含量检测可以采用分光光度计法和比色法,但是这两种方法在测定食品中的亚硝酸盐含量时测定步骤繁琐而且对操作人员和试剂要求较高。北京智云达科技有限公司作为您身边的食品安全检测专家,为保障消费者“舌尖上的安全”提供了多款快速检测食品安全的产品和方案,其自主研发、生产的亚硝酸盐速测管操作简便、易于携带,能准确测定食品中的亚硝酸盐含量是否符合国家标准,适合家庭、个人使用。亚硝酸盐的预防措施蔬菜应妥善保存,防止腐烂,不吃腐烂的蔬菜。食剩的熟菜不可在高温下存放长时间后再食用。勿食大量刚腌的菜,腌菜时盐应多放,至少腌至15天以上再食用;但现腌的菜,最好马上就吃,不能存放过久,腌菜时选用新鲜菜。肉制品中硝酸盐和亚硝酸盐用量要严格按国家卫生标准规定,不可多加。总之在用塑料桶腌酸菜是要慎重选择,不用带颜色的可再生塑料的,而且生活中我们还是要少吃腌菜食品,亚硝酸盐含量高对身体健康有潜在危害,吃菜还是要吃新鲜的好。
  • 微塑料研究最前沿丨微塑料监测遇难题,我们该何去何从?
    近年来,塑料污染在水环境(海洋和淡水)中的问题日益严重,得到广泛报道和关注。据《Science》杂志研究报告,2010 年全球192 个沿海和地区共制造2.75 亿吨塑料垃圾,其中约有800 万吨排入海洋,并且塑料垃圾数量不断增多,到2015 年已有超过900 万吨塑料垃圾排入海洋。如果不加以控制,科学家预计到2050年海洋中的塑料垃圾排放量将会是2010年的两倍。这些污染物正在持续威胁海洋生物和人类自身的安全与健康。近期,科学家再次发现塑料会在机械作用、生物降解、光降解、光氧化降解等过程的共同作用下逐渐被分解成碎片,形成微塑料,被海洋生物吞食,在生物体内不断积累,随着生物链,造成更广泛的危害。这一发现引起科学家的广泛关注,同时,也引起了各国政府的高度重视。近期,生态环境部发布的《生态环境监测规划纲要(2020-2035年)》也着重强调应加强海洋微塑料监测,加快形成相关领域监测支撑能力,为国际履约谈判和全球新兴环境问题治理提供支撑。在微塑料监测中,由于微塑料的物理特性(大小、形状、密度、颜色)以及化学组分等差异,不同类型微塑料在不同环境中流动过程(输入、输出和存留)的时间均不相同,使微塑料监测变成一大难题。目前,对微塑料的分析方法主要有目视分析法、光谱法 (如傅立叶变换红外光谱法和拉曼光谱法)、热分析法以及其他分析方法等 (如质谱法以及扫描电子显微镜-能谱仪联用法)。其中,红外光谱及Raman光谱分析,由于具有无破坏性、低样品量测试、高通量筛选以及所获取的结构信息互补等特点,成为检测和鉴别微塑料的主要分析技术;而在实际操作中上述技术仅可对几微米颗粒物进行检测(FT-IR为10~20μm、Raman 低仅为1 μm),使微塑料的研究仍处于起步阶段。作为先进仪器平台,Quantum Design中国时刻关注重大科研发展方向,并致力于引进先进表征技术及设备,为我国科研搭建先进科技平台。聚焦于微塑料监测难题,Quantum Design中国表面光谱部门认为需要考虑三个关键因素:尺寸、微观形貌以及聚合物类型。理论上可用于测量两者的方法均适用于微塑料分析,但是由于疑似微塑料样品的干扰,使得仅用一种分析方法难以准确的识别微塑料,为了提高准确度以及检测效率,需要采用多组合分析测试方法对其进行监测。目前,我司主要有Neaspec纳米傅里叶红外光谱仪(nano-FTIR)、IRsweep微秒时间分辨超灵敏红外光谱仪和PSC非接触式亚微米分辨触红外拉曼同步测量系统mIRage三款先进光谱表征设备。其中,非接触式亚微米分辨触红外拉曼同步测量系统mIRage采用的光学光热红外技术(O-PTIR),将光学显微与微区红外结合,一举突破了传统傅里叶红外光谱(FT-IR)及衰减全反射红外光谱(ATR-IR)的分辨局限,实现了500 nm的空间分辨率。不仅如此,该设备将显微成像、红外及Raman测试集成于一体,多测试方法同步测量有效提高检测效率及准确度。同时,它具有更简单,更快速的测量模式,无需复杂的样品制备过程等优势,让更快、更准确地进行微塑料追踪、监测和研究成为可能,正成为下一代标准的方法。为更好的服务国内科研用户,Quantum Design中国北京样机实验室引进了非接触式亚微米分辨触红外拉曼同步测量系统mIRage,为国内科研用户开放,以期为微塑料监测技术的发展做出一定的贡献。 Quantum Design中国非接触亚微米红外光谱系统mIRage样机操作过程示意 精选案例:目前,mIRage在塑料领域的研究中大放异彩,助力美国特拉华大学Isao Noda教授课题组对PLA和PHA的复合薄片塑料结合方式及内在机理的研究,向我们展示了mIRage在微塑料领域研究中的潜力。该工作中,作者先对PHA和PLA的结合面进行了固定波数下的红外成像(图1)。通过对比发现,在约330 nm的范围内(空气/PHA界面)1725 cm-1处的红外信号出现了急剧的下降,而在PHA/PLA界面处几微米范围内1760 cm-1处的变化较为平缓,且无清晰的边界,表明PHA和PLA可能有某种程度的分子混合。由于使用光学光热红外技术,不存在困扰传统红外成像设备的米氏散射效应,因此能够确定这一模糊的边界是来自于两种材料间的相互渗透而非光学伪影。图1. PLA和PHA在固定波数下的红外成像。(A)红外成像图(红色1725 cm-1为PHA;绿色1760 cm-1 为PLA);(B)A图中黑色线性区域PHA/PLA红外吸收强度分布对比 为了进一步研究PHA/PLA界面处的化学成分变化,作者对这大概2 μm左右交界面的红外图谱进行了间隔200 nm的线性红外扫描分析(图2)。从羰基(C=O)伸缩振动区和指纹区(图2 A和B)的线性扫描红外谱图可以清晰的区分PHA(1720和1740 cm-1)和PLA分子(1750-1760 cm-1)。区别于理想的简单二元系统(不互溶或无分子相互作用),PHA/PLA薄片羰基伸缩振动红外叠加图谱(图2C)并不存在一个明显的等吸收点,反映了在界面区域存在着复杂的组分变化及两种以上不同物种的分布。图2. PHA/PLA界面区域每200 nm间隔的羰基伸缩振动区域(A)和指纹图谱区域 (B) 以及羰基区域伸缩振动的叠合图谱(C) 为获取更详细的界面处PHA/PLA组分的空间分布规律,采用同步和异步二维相关光谱(2D-COS,two-dimensional correlation spectroscopy)来分析羰基拉伸区域采集到的红外谱图(图3A和3B),并以等高线的图形式展现,详细的分析方法可以参考相关信息(Combined Use of KnowItAll and 2D-COS, https://www.youtube.com/watch?v=0UCcD3irVtE)。结果显示,在主要为PHA的混合界面区域同时观测到来源于PLA的1760 cm-1红峰外,表明部分PLA渗透到PHA层,且与PHA层的其余部分相比,界面附近的PHA结晶度明显降低。在对指纹图谱区域进行2D PHA/PLA相关光谱同步和异步对比时,也得到了同样的结果(可参照发表文章,在此不再显示), 即PLA向PHA渗透,且PHA的晶型有所改变。另外,作者还通过非接触式亚微米分辨触红外拉曼同步测量系统对该区域进行了同步红外和拉曼分析(图3C),两者选择性和灵敏度不同却可以很好的互补,进一步验证了这一发现的可靠性。结果证实,即使是表面上不混相的PHA和PLA聚合物对,也存在一定程度的分子混合,这种混合可能发生在界面只有几百纳米的空间水平上,很好的解释了这两种生物塑料之间的高度相容性。 图3. PHA/PLA羰基伸缩振动区域二维同步(A)和异步(B)相关光谱(2D-COS)分析以及交界区域红外和拉曼光谱分析(左为红外,右为拉曼)。 参考文献:[1] Two-dimensional correlation analysis of highly spatially resolved simultaneous IR and Raman spectral imaging of bioplastics composite using optical photothermal Infrared and Raman spectroscopy,Journal of Molecular Structure,DOI: 10.1016/j.molstruc.2020.128045.
  • “禁塑令”进入倒计 时!塑料污染严重!显微拉曼竟能高效检测?
    30多地“禁塑令”枪响,在全国实施了12年的“限塑令”将于本月底升级为“禁塑令”。一次性塑料袋从“有偿使用”变成“禁止使用”。各大商场、超市、药店、书店将不再提供一次性塑料购物袋。此外,一次性塑料餐具也将禁止使用,餐饮行业也不能再提供不可降解一次性塑料吸管、餐具,花钱买也不行。 塑料是人类的一项伟大发明,小到食品包装、大到建筑材料,甚至包含交通工具、医疗器械等诸多人类必需品都离不开它,给人们带来便利的同时,也对自然环境造成了极大的破坏。 在自然环境中,塑料受到紫外辐射和机械磨损等物理破碎、化学分解及生物降解作用,由大尺寸逐渐变为小尺寸的塑料颗粒,当其粒径5mm 时,则被称为微塑料。欧洲联合胃肠病学周发布了一项新研究,首次确认:在人体内发现了多达9种不同种类的微塑料。海洋里,多达114种水生物种的体内发现了微塑料。研究表明,它们和塑料的遭遇结果往往是致命的。微塑料能进入动物血液,淋巴系统,甚至肝脏,造成肠道甚至生殖系统的损害。 目前,关于环境中微塑料的检测方法大多是在预处理后,人工挑选出疑似微塑料的颗粒,再使用红外光谱、拉曼光谱、热分析等方法进行化学组分鉴定。人工挑选法虽然简单,但由于手工操作的局限性,只能挑选较大尺寸的颗粒,准确率不高,挑选效率低。基于这个问题,采用用原位检测的方法,将载有预处理后样品的滤膜直接放在仪器下进行化学组分鉴定,奥谱天成拉曼光谱仪具有更高的空间分辨率,可以准确识别尺寸极小的微塑料颗粒。在使用光谱鉴定时 , 采用显微拉曼光谱仪面扫(ATR8800/8500mapping)模式可以在样品区域上自动逐点采集信号,大大提高了检测的效率和准确率。 使用拉曼光谱仪面扫在检测小尺寸微塑料应用中有以下 3 个优点:1、略去人工挑选的繁琐环节,减少目视和操作误差;2、可以识别粒径很小的微塑料颗粒;3、仪器自动采集所选区域内每一点的信号,提高了准确率。
  • 人类血液中首次发现微塑料,监控微塑料污染刻不容缓
    近日,发表在环境科学领域权威期刊《环境国际》(Environment International)上的一项研究中,来自荷兰阿姆斯特丹自由大学领导的研究团队,首次在人体血液中检测到了微塑料,研究中发现在近80%的实验受试者样本中存在微塑料颗粒,这也进一步证实微塑料已进入人类体内,成为人类健康的又一大隐患。监控微塑料污染刻不容缓目前,微塑料已经被列入国际上广泛关注的环境中新污染物四大类之一(四大类分别是持久性有机污染物、内分泌干扰物、抗生素和微塑料)。 2022年3月30日,生态环境部召开新闻发布会,生态环境部固体废物与化学品司司长任勇介绍了新污染物治理,并表示生态环境部会同发展改革委等13个部门正在研究行动方案,制定行动方案加大新污染物治理。2020年1月,国家发改委与生态环境部发布关于《进一步加强塑料污染治理的意见》,要求强化与微塑料污染防治相关的科技支撑,开展不同类型塑料制品全生命周期环境风险研究评价,加强江河湖海塑料垃圾及微塑料污染机理、监测、防治技术和政策等研究,开展生态环境影响与人体健康风险评估。在生态环境部通过的《生态环境监测规划纲要( 2020-2035 年)》中,海洋微塑料专项监测的任务内容也列在其中。全球现在每年制造300万吨塑料,大量塑料最终会进入并污染海洋,除了在海洋表面清除较大体积塑料外,海水中含有的塑料微颗粒越来越受到人们的重视。Pyroprobe-GC-MS:快速有效的微塑料检测技术全球现在每年制造300万吨塑料,大量塑料最终会进入并污染海洋,除了在海洋表面清除较大体积塑料外,海水中含有的塑料微颗粒越来越受到人们的重视。目前海洋中微塑料的检测主要利用FT-IR和拉曼技术,光学方法可提高检测能力,但只是针对微塑料的类型和大小等方面,不能准确测量结构构成。而Pyroprobe-GC-MS热裂解-气质联用技术分析时间较短,在快速判断微塑料类型、评估微塑料污染程度等方面有较大优势,可为微塑料的定性和定量提供良好的解决方案,是研究分析微塑料环境污染的有效工具。使用Pyroprobe-GC-MS技术在鉴定微塑料颗粒的材料成分以及所使用的添加剂时,首先通过热裂解使高聚物在特定温度发生裂解,再利用气质联用仪鉴别裂解后短链小分子单体,就可以同时鉴定聚合物及添加剂。对于不易溶解或水解的聚合物颗粒,Pyroprobe-GC-MS联用是一个非常实用的技术,可根据聚合物在受热分解过程中形成的聚合物单体提供有关大分子聚合物的结构信息。热裂解分析流程图CDS Pyroprobe热裂解的优势CDS成立于1969年,距今已有53年历史,是一家专注于GC进样技术的公司,2015年正式加入莱伯泰科,更加及时有效的为中国客户提供支持和服务。CDS产品历经多年研发与改进,已推出多款迭代产品,于2017年推出的第6代6000系列热裂解产品,对热裂解核心部件做出了重要创新,设计出“DISC模块”,在原有的经典的电阻加热线圈的基础上,改进了加热腔并更有利于配合自动进样器自动上样。CDS 公司在丝式裂解方面具有强大的实力,其合理的的温控技术和设计理念,其科学的的高压裂解、有氧裂解、催化裂解、多步裂解(可达10步)等技术,使得CDS一直跻身全球高端裂解器之列。CDS热裂解6200CDS Pyroprobe特点:❇ 数据重现性好:RSD1.5% (聚苯乙烯)❇ 温度范围:室温到1300℃,温度精度达到±0.1℃,升降温速率快。❇ 加热速率:加热速率可控10-20000℃/s (脉冲裂解)或0.01-999.9℃/s❇ 具有标配自动捡漏功能和选配自动流量调节控制功能❇ 不影响GC的其他进样口使用,具有更方便的加热的样品传输线与GC连接。❇ 支持载气切换及反应气模式❇ 具有三种操作模式:运行、干燥、清洗❇ 裂解调节容易调节,还可以模拟一些反应条件,应用领域广泛。
  • 国家级塑料光纤工程实验室在四川崇州建成
    崇州市工业集中开发区内,国内唯一一家国家级塑料光纤工程实验室正式挂牌。据悉,这是由四川汇源塑料光纤有限公司创立的“塑料光纤制备与应用技术”国家地方联合工程实验室。该实验室的创立,标志着中国塑料光纤科研力量正式迈进国际最高端的塑料光纤应用领域,为中国塑料光纤产业技术升级,广泛应用于汽车、飞机、工业设备、传感器、消费电子设备与国防等高端应用领域打下了坚实的研究与产业化基础。  打破高端应用领域技术空白  随着近几年中国通信事业的飞速发展,塑料光纤在装饰照明、消费电子产品、交通工具、工业设备以及国防建设中得到大量应用,并推动着塑料光纤通信系统逐渐成为短距离通信的主流技术。宝马公司已在其最新产品中使用塑料光纤作为车载多媒体通信网络和控制系统的通信媒介。  在国外,塑料光纤的应用开发已取得了重大的成果,且不断在加大新的应用研究投入,但是目前在国内的发展还存在着诸多的技术瓶颈。据中国工程院院士、教授李乐民分析,“经过近10年的努力,国内塑料光纤研发生产单位,特别是四川汇源塑料光纤公司,在低损耗塑料光纤产品的产业化方面,已经取得技术突破,并且赶上了国际先进水平。但是技术研究与国际相比,差距非常巨大。国际上在汽车、飞机、工业设备上应用已经非常广泛,而中国在高端应用领域的产品技术基本为零。研究应用于各种专业领域的塑料光纤通信系统及其配套器件产品,对中国整个科研界与工业界来说,具有非常重要的意义与紧迫性。”  两三年追赶世界先进水平  此次国家级塑料光纤工程实验室的创立,正是为了解决这些具体的应用技术问题。据汇源塑料光纤公司技术总监储九荣介绍,依托四川汇源塑料光纤有限公司自身的塑料光纤产业优势,结合工程实验室数十位权威专家学者的知识力量,我国的塑料光纤产业就像插上了一双隐形的翅膀,在2-3年内就会取得新的技术突破,很快就可以追赶上世界先进水平。  据透露,为下一步的发展,汇源塑料光纤公司将投资3000万元兴建国家工程实验室研发大楼、建设产业化基地。在完成制订通信用塑料光纤和塑料光缆两项国家通信行业标准的基础上,工程实验室正在规划制订应用于汽车、飞机、火车、工业设备、消费电子等各个领域的塑料光纤通信系统相关的国家标准,打造、规范中国塑料光纤短距离通信产业。  同时,四川汇源计划在2013年投资基于塑料光纤的汽车多媒体系统技术与产品,初期目标产能10万套,年销售额可达5亿元。中远期目标实现销售50亿元。
  • 一周的微塑料检测量?一小时搞定!
    在买奶茶可能都要排两个小时队的如今,1 小时似乎做不了什么正经事,但是如果说1小时就能完成一周的微塑料检测工作呢?对,说的就是微塑料检测。点击以下链接下载安捷伦微塑料检测解决方案:1、微塑料:利用可移动 FTIR 及红外成像光谱仪完成微塑料从现场到实验室研究的整体测量方案2、使用 FTIR 成像分析微塑料 — 鉴定与定量分析废水、沉积物和动物群中的微塑料“快”就一个字我们都知道,微塑料,也就是“水中的PM2.5”,可能给海洋生物乃至整个海洋生态系统带来严重危害。海洋环境领域的科学家对微塑料进行了10多年的研究。但其微小的尺寸、庞大的颗粒样本量、不同类型颗粒的快速区分等等,一直严重影响着实验进度,让科学家头痛不已。但是,安捷伦“焦平面”红外成像技术就是这么优秀,能将传统方法需要一周才能完成的检测量压缩至一小时,极大提升实验效率。微塑料颗粒的定性,通常需要将样品进行前处理后过滤到滤膜上,再用红外显微镜来检测。这个过程看起来简单,但是实际上却是一个“力气活”,费时又费力。使用单点红外显微镜,分辨率为10um时,若逐点扫描1cm*1cm的区域,需要数百小时;使用线阵列红外显微镜,分辨率为10um时,若逐行扫描1cm*1cm的区域,需要数十小时;使用安捷伦焦平面红外成像系统,128*128焦平面,分辨率为5.5um时,若扫描1cm*1cm的区域,只需要数十分钟。一小时内便可完成传统检测手段一周的工作。 全自动分析进行到底以往的微塑料检测多集中于定性,定量相对困难。复杂繁杂的手工分类、统计常常令人崩溃。不要怕,安捷伦已经为您准备好了解决之策,微塑料全自动定量分析进行到底。安捷伦与丹麦奥尔堡大学Jes Vollertsen团队合作成果:微塑料统计分析“神器”——MPhunter软件,不仅能帮您区分微塑料和其它物质,并将它们以不同颜色进行分类,还能对所有颗粒计数统计,甚至告诉您每个颗粒的面积、质量、所占比例。更重要的是,所有工作全!部!自!动!完!成!图为:MPHunter软件采用不同颜色将微塑料颗粒分类显示图为:MPHunter软件计算得到每种塑料颗粒所占比例结果图为:MPHunter软件得到每个颗粒物尺度、体积,及重量等信息 想了解安捷伦焦平面检测微塑料的更多细节?那就请在7月26日,锁定仪器信息网,安捷伦焦平面红外成像技术微塑料解决方案及海洋污染检测整体解决方案。我们邀请了安捷伦资深红外成像专家,为您详细讲述安捷伦微塑料检测解决方案。安捷伦经过多年经验积累,推出的《安捷伦海洋环境保护解决方案》,届时也会向您进行介绍。除了焦平面红外成像,安捷伦还有哪些微塑料检测利器?关注安捷伦公众号“安捷伦视界”(agilentchem),阅读《一周的微塑料检测量,一小时搞定!》文章,获取更多微塑料检测相关资料,先睹为快。
  • 美研究:13国水管及食盐和啤酒中存在“微塑料”
    p核心提示:美国研究小组截至9月2日发现,除在世界13个国家的水管中,欧美及亚洲产食盐还有美国产啤酒当中都广泛存在“微塑料”。据日本雅虎新闻网报道,这种微塑料已经成为全球性污染问题,它在水管中的检出率高达81%,呈纤维状,疑似由纤维制品而来。目前,日本水管还未接受调查。br//pp style="text-align: center "img title="10-05-23-18-940446.jpg" alt="10-05-23-18-940446.jpg" src="https://img1.17img.cn/17img/images/201809/uepic/fb957f54-8247-40af-922b-e1223da128f6.jpg"//pp style="text-align: center "  水管中存在颗粒状及纤维状微塑料/pp  美国研究小组截至9月2日发现,除在世界13个国家的水管中,欧美及亚洲产食盐还有美国产啤酒当中都广泛存在“微塑料”。据日本雅虎新闻网报道,这种微塑料已经成为全球性污染问题,它在水管中的检出率高达81%,呈纤维状,疑似由纤维制品而来。目前,日本水管还未接受调查。/pp  这种微塑料对人类健康带来的影响暂且未知,研究小组警告称“这种日常生活不可避免的水污染遍布全球,材料令人无比担忧”。已有研究显示,微塑料可以吸附含毒化合物,并在动物体内释放。/pp  研究还称,目前这种污染究竟扩散到多大范围还不清楚。不过纤维状成分可通过衣服洗涤等在空中飞散。微塑料指直径在5毫米以下的塑料垃圾,已经成为海洋污染的严重课题。/pp/p
  • 达成合作:中美两国决心终结塑料污染,全球塑料污染防治条约将迈向何方?
    11月15日,中美两国发表《中美关于加强合作应对气候危机的阳光之乡声明》,其中表示,将在循环经济和资源利用效率方面达成合作:中美两国决心终结塑料污染,并将与各方一道制订一项具有法律约束力的塑料污染(包括海洋环境塑料污染)国际文书。这份声明在塑料污染的第三次国际谈判过程中发出,为当前全球协同应对塑料污染释放出了积极信号。11月13日—19日,“塑料条约”第三届政府间谈判会议(INC-3)在位于肯尼亚内罗毕的联合国环境规划署总部举行。会议谈判进程如何?全球塑料污染防治条约又将迈向何方? 记者联系到作为观察员机构的深圳零废弃政策顾问刘华进一步分享。INC-3大会现场全球塑料污染防治:存在共识基础却艰难启动目前,INC-3 如期于 11月19日晚间落幕。深圳零废弃政策顾问刘华坦言:“INC-3的‘显著进展’是确定了INC-4和INC-5的会议时间、地点等安排。但在实质性内容,特别是关于生命周期边界、定义等关键性文本方面的进展仍然有限” 。塑料污染是当前最显著也是关注度颇高的全球环境问题之一,也有多项多边环境协议涉及塑料污染,例如《控制危险废物越境转移及其处置巴塞尔公约》《关于持久性有机污染物的斯德哥尔摩公约》以及国际海事组织(MO)负责船舶运输相关的塑料垃圾管理。但三者各自侧重于危废、持久性有机污染物(POPs)和海洋污染。塑料污染自身一直缺乏系统性、直接性的国际协定来推动相关污染防治工作。2022年3月,第五届联合国环境大会续会在肯尼亚首都内罗毕召开。来自175个国家的政府首脑、环境部长和其他部门代表通过了一项历史性决议,即《终止塑料污染决议(草案)》(以下简称塑料条约)。决议指出,建立一个政府间谈判委员会(INC),到2024年年底前,达成一项具有国际法律约束力的协议,涉及塑料制品的整个生命周期,包括其生产、设计、回收和处理等。联合国环境署执行主任英格安德森表示:“这是自《巴黎协定》以来最重要的环境多边协议” 。“可以说自此之后,塑料污染正式从一个国家或地区的局部问题上升至全球化、国际化的环境问题。”在绿色创新发展研究院日前举办的全球塑料条约背景下中国塑料污染治理进程与展望论坛中,刘华评价道。分歧仍在:零草案讨论仍延续前次会议本次INC-3会议之前,2022年11月,在乌拉圭埃斯特角城召开了INC-1,主要讨论文书框架并选举了INC主席;2023年5月,在法国巴黎召开了INC-2,此次会议授权INC主席在秘书处的支持下,在INC-3召开之前准备一份“零草案”协议(Zero Draft)。“我们过去参与的两次会议中,会发现不同国家的代表看待塑料污染的出发点并不一样。例如,有些岛国更关注海洋污染问题,内陆国家更多从固废的角度考虑,而另一些则更关注生态。不同国家和地区基于其产业结构、对于塑料的使用情况及其在不同的发展阶段形成了对塑料污染的不同观点,这也解释了为什么各国在对塑料污染治理存在共识却仍然艰难地启动了几次会议。”刘华说。本次INC-3会议主要是基于“零草案”进行进一步商讨,而“零草案”的第二部分——塑料及塑料产品的全生命周期,仍然保留了INC-2中较为焦灼的讨论内容。“例如,塑料聚合物是否需要纳入塑料污染管控的生命周期范畴内仍然存在较大争议。一些国家坚持认为其作为原生塑料的重要生产要素应该限制和减少,另一些国家则持反对态度,认为塑料文书应聚焦管控塑料污染,而不是消灭塑料。这也是会议期间较有争议的热点话题。”刘华举例。记者注意到,此前包括欧盟、日本、加拿大和肯尼亚在内的数十个国家曾呼吁塑料污染防治条约其中应包含“具有约束力的条款”,以减少生产和使用从石化产品中提炼出来的原始塑料聚合物,并消除或限制问题塑料,如聚氯乙烯(PVC)和其他含有有毒成分的塑料。但这一立场遭到了塑料行业以及沙特阿拉伯等石油和石化出口国的反对。他们认为,该条约应着重关注塑料的回收和再利用——即塑料供应的“可循环性”。国际化学协会理事会发言人Matthew Kastner也曾在一份声明中称,“塑料协议应该专注于结束塑料污染,而不是塑料生产”。刘华认为,“零草案”第二部分第三项“有问题和可避免的塑料产品,包括短寿命和一次性塑料产品,以及有意添加的微塑料”也值得关注,这一项主要是对 “有问题和可避免的塑料产品”进行定义厘清。“但是什么是有问题,什么是可避免,这一定义难以达成一致。”刘华说。他介绍,因为团队长期关注化学品的问题,实际检测中会发现一些塑料制品添加了并没有必要、并不合适的化学物质,这种情形会为塑料制品的循环利用设置极大障碍,这就属于有问题的产品类型。但定义价值体现在,一旦塑料产品以附件形式被列为有问题和可避免的产品或产品类别的标准、确定有问题和可避免的特定产品或产品类别,就会对其明确其削减或淘汰的时间范围。刘华介绍:“上述争议几乎持续了整个会议阶段,但由于各方的观点分歧显著,直至闭幕仍然无法形成统一意见,各方代表通过接触组会议等方式表达了不同的观点,很多条款被打上方括号需要进一步讨论。本次全球塑料大会依然最终未能在实质性内容上突破,在这是令人遗憾的,也意味着明年内是否能达成最终共识仍然面临挑战”。中美两国决心终结塑料污染,成会议期间热点话题全球塑料公约被寄予终结塑料污染的厚望同时,一些大国也被寄予厚望。本次全球塑料公约大会期间,中美两国联合发表了《中美关于加强合作应对气候危机的阳光之乡声明》。声明在第15条明确提出,“中美两国决心终结塑料污染并将与各方一道制订一项具有法律约束力的塑料污染(包括海洋环境塑料污染)国际文书。”,以及第14条提及,“认识到循环经济发展和资源利用效率对于应对气候危机的重要作用,两国相关政府部门计划尽快就这些议题开展一次政策对话,并支持双方企业、高校、研究机构开展交流讨论和合作项目”。刘华介绍,这对塑料公约谈判期间带来积极信号,也迅速成为会议期间的热点话题。中国作为塑料生产和消费大国,在塑料污染的治理发挥着举足轻重的角色。刘华表示:“从会场的反馈来看,无论是国际NGO组织还是科学家联盟包括我们接触到的一些不同利益相关方,我能感受到他们对于中国在塑料污染治理议题上的期待还是很高的。因为他们会认为,中国宣布禁止进口‘洋垃圾’后,不仅对中国国内产生了极大效益,也推动了国际的废弃物的贸易变革”。在历次INC会议中,中国代表团在多轮讨论中积极陈述,坚持问题导向,聚焦易向环境泄露的塑料制品,针对不同种类的塑料制品采取分类管控措施,加强回收利用和安全处置。在国内层面,我国政府对塑料污染治理高度重视,2022年10月21日,中国已全面禁止“洋垃圾”入境,实现固体废物零进口目标。在国内层面,2007年,中国限制生产销售使用塑料购物袋。2020年年初,中国进一步加强塑料污染治理,在餐饮行业禁止了一次性塑料袋和吸管的使用。目前,国家发展改革委联合多部门发布的《关于进一步加强塑料污染治理的意见》《“十四五”塑料污染治理行动方案》《商务领域经营者使用、报告一次性塑料制品管理办法》等政策文件正持续保障塑料污染治理从全链条、重点领域开展。
  • 治理塑料污染,碳酸钙如何乘借“可降解塑料”的东风?
    近日,国家发展改革委、生态环境部、工业和信息化部、住房城乡建设部、农业农村部、商务部、文化和旅游部、市场监管总局、供销合作总社等9部门联合印发《关于扎实推进塑料污染治理工作的通知》,明确禁限不可降解塑料袋、一次性塑料餐具、一次性塑料吸管等一次性塑料制品的政策边界和执行要求,对疫情防控等突发事件期间用于应急保障的一次性塑料制品予以豁免。相比2008年“限塑令”主要是针对于流通使用环节,这次的“禁塑令”不仅聚焦于使用环节,也关注到了生产、流通、使用、回收、处置的全过程。在政策方面,“禁塑令”没有不顾实际情况搞“一刀切”,指出用于盛装散装生鲜食品、熟食、面食等商品的塑料预包装袋、连卷袋、保鲜袋等,不在禁止之列 “禁塑令”扩大到“餐饮打包外卖服务以及各类展会活动”。从技术角度看,环保替代塑料吸管有多种选择,而可降解塑料抗摔性、耐热性、防腐性等方面的提升空间是另一个问题。这也意味着我国可降解塑料将迎来发展机遇。到2030年,预计我国可降解塑料需求量可到428万吨,市场规模可达855亿元。2020年底“禁塑令”工作目标从材料与环保协调发展角度看, 使用源于自然并可回归于自然的无机矿物作为填料部分取代高分子材料生产塑料制品是目前的可行方案之一。近年研究表明,碳酸钙等无机粉体材料在制造环境友好塑料材料方面发挥了重要作用。实现了提高塑料制品尺寸的稳定性、提高塑料制品的硬度和刚性、改善塑料加工性能、提高塑料制品的耐热性、改进塑料的散光性、降低塑料制品成本等多重优势。碳酸钙有利于塑料材料的降解,聚乙烯(PE)薄膜中有碳酸钙粉末时,在填埋后碳酸钙有可能与CO2和H2O反应,生成溶于水的Ca(HCO3)2而离开薄膜。留下的微孔,将增大聚乙烯塑料接触周围空气和微生物的面积,从而有利于进一步降解。同时,填加碳酸钙有利于PE焚烧。燃烧时,塑料溶化容易形成黏壁现象,无机粉体加入能够使得这一问题得到极大改善。在PE塑料材料中添加了大量碳酸钙,其效果不仅体现在塑料材料的减量上,且焚烧时可减少对大气污染,减少尾气中有害气体的排放量, 特别是与焚烧热氧降解剂配合使用,对遏止二恶英产生有十分重要意义。近几年日本等国开发了可焚烧PE塑料薄膜袋用来作为盛放焚烧垃圾发电专用袋。随着中国禁塑行动的进行,超细重质碳酸钙、轻质碳酸钙和纳米碳酸钙由于价格相对低廉,又可促进塑料降解,环境友好,在可降解塑料中的添加比例会越来越大,市场前景会越来越广阔。广西贺州是全国的重钙粉体生产基地和人造岗石生产基地,被授予中国“重钙之都”和“岗石之都”称号。目前,贺州市年产重质碳酸钙粉体达800万吨,产品市场占有量达到60%以上。广西贺州也是珠海欧美克仪器用户最集中的区域之一,在深耕非矿行业二十余载的岁月里,欧美克的仪器质量和品牌口碑不断得到贺州“钙帮”老板们一致认可。Topsizer 激光粒度分析仪碳酸钙根据品种不同有多种不同的粒径和不同的表面涂层特性。欧美克Topsizer激光粒度仪应用于测试碳酸钙微粉,在短短几分钟的时间内就可以完成覆盖从纳米到毫米级别范围的测量。可以实现生产过程中以及最终产品的质量中对碳酸钙的粒度的监测和控制。其次,通过优化的产品设计,Topsizer可以为客户提供高准确性、高重复性和高重现性的数据。图3和表2显示了同一GCC(立磨)样品分成三等份样品的重复性结果,由同一台Topsizer仪器测量。图4和表3显示了三台不同的Topsizer仪器所测量的同一批次的重复性粒度分布。图3:方法重复性:同一台Topsizer仪器测量同一批GCC中三种不同样品的粒度分布表2:同一台Topziser仪器测量同一批GCC的三等份试样的粒度分布图4:系统重现性:用三台不同的Topsizer仪器测量同一批GCC的粒度分布表3:用三台不同的Topsizer仪器测量同一批GCC的粒径分布最重要的是,激光粒度仪测试过程比较简单,很容易掌握测试方法,对测试人员的要求不高,从样品制备到测试可以在几分钟内完成质控把关。随着后疫情时期的经济反弹,广大碳酸钙企业在这一难得机遇面前,可以通过增加碳酸钙与塑料的亲合性的活化处理及采用粒度仪进行良好的粒径控制,开发出可降解塑料用高填充比例高制品性能的碳酸钙专用产品,提高碳酸钙产品附加值,促进碳酸钙产业的发展。欧美克仪器也在仪器性能和日常维护上为广大碳酸钙企业提供及时全面的技术支持,例如针对行业集中区域客户的免费上门回访维护等系列售后增值服务活动(点击文字了解相关活动),以及多场碳酸钙行业专场直播课程等。扫描二维码报名专题直播课始终坚持“以客户为中心”的服务宗旨,欧美克作为国内最著名的颗粒测量仪器制造商、高新技术企业及广东省工程技术研究中心,始终致力于粉体行业粒度检测与控制技术的不断提高,为客户提供先进的物超所值的粒度测量仪器,服务及整体解决方案,为粉体行业创新发展提供强有力的支撑!参考资料:1. 欧美克仪器.《碳酸钙的激光衍射粒度分析报告》2. 腾讯新闻.《从“纸上谈兵”到“落地有声” “禁塑令”要突破两大难点》;3. 矿材网.《后疫情下,中国禁塑行动为碳酸钙行业带来大机遇!》
  • 欧盟发布与食品接触的塑料材料和制品法规草案
    欧盟发布了与食品接触的塑料材料和制品法规草案,该拟定法规是一项第(EC)1935/2004号法规框架内的专项措施,它规定了适用于食品接触材料的主要原则和程序。该专项法规将欧盟塑料制品协调框架合并为一个法规。当前这些法规分列在6条指令和8个修改案内,包括塑料基本法规、批准物质名单及塑料迁移测试法规。  此外,它将明确源自(EC)1935/2004号法规有关纳米材料只有经事先批准后才可使用的解释。本法规还批准使用21中新物质。  附件:欧盟“与食品接触的塑料材料和制品法规草案”详细内容
  • 吃顿外卖=千亿个塑料颗粒下肚!每人每周摄入的5g「微塑料」
    每人每周吃下5g微塑料相当于一张银行卡 微塑料(Microplastic),是指直径小于5毫米的塑料碎片和颗粒,在塑料制品使用过程中释放,特别是食物用途的塑料制品。纳米塑料(Nanoplastics)则是目前已知最小的微塑料,尺寸在1μm以下,体积小到可以穿过细胞膜。虽然不会有人直接吃塑料,但食物的包装——塑料袋、塑料瓶、塑料盒等,则会将大量的微塑料直接送入人们的口中。微塑料对人的影响往往是温水煮青蛙式的,容易被忽视,但对健康的危害却是积年累月的。 去年4月20日,来自美国国家标准与技术研究院(NIST)的化学家Christopher Zangmeister团队开展的一项新研究,以食品级尼龙袋和低密度聚乙烯(LDPE)成分的产品作为样本,探究微塑料的来源及释放情况。事实上,以这两种成分为主的塑料用品在日常生活中很普遍,比如烘焙衬垫和一次性外带咖啡杯的内衬塑料薄膜。 结果显示,在普通的外带咖啡杯中放一杯100℃的水,静置20min后,研究者在每升水中能检测到万亿个塑料纳米颗粒。也就是说,当你享用喝一杯500ml的热咖啡或热奶茶时,将有5千亿个塑料纳米颗粒进入你的身体内! DOI: 10.1021/acs.est.1c06768 不仅如此,其实早在婴儿时期,人们就已经开始摄入微塑料。据Nature Food上刊登的研究Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation估计,在使用聚丙烯塑料瓶制备的每升婴儿配方奶粉中,婴儿可能摄入多达1600万个微塑料颗粒。 该研究中,研究人员按照世界卫生组织制备婴儿配方奶粉的标准,将聚丙烯婴儿奶瓶消毒、风干,然后倒入加热到70℃的水。在摇晃瓶子一分钟后,他们过滤了液体并在显微镜下进行分析,发现了数以百万计的微塑料颗粒。仅装瓶1分钟就能检测到,证实了微塑料产生的即时性。 此外,研究者还发现,冲奶粉使用的水温会极大地影响释放的污染颗粒的数量。当水温从25℃上升到95℃,每升释放的微塑料颗粒从60万增加到5500万个。也就是说,水温越高,释放的量就会越多。 https://doi.org/10.1038/s43016-020-00171-y 由于人们不断地吃外卖、喝咖啡、吨瓶装饮料,微塑料自然也不停地被摄入进人体内。 加拿大的Kieran D. Cox教授和他的团队以美国人饮食为基础,根据食物消费种类以及不同种类食物所含有的微塑料数量,估算出每人每年会吃掉5万个微塑料颗粒,如果算上漂浮在空气中、被呼吸吸入的微塑料,那么每人每年吃掉的微塑料颗粒数量在7.4万-12.1万之间。按照重量计算的话,每人每周大约吃掉5g微塑料,相当于一张银行卡的重量。 还真是活到老,吃塑料到老呢。以每周5g塑料颗粒计算,人这一辈子估计要吃下一个乐高玩具,想想还有点小刺激(bushi)。 人类血液中首次发现微塑料的存在! 2019年,《Annals of Internal Medicine》在线发表的一项研究显示,健康志愿者的粪便样本中检测到了微塑料。研究人员发现,所有粪便样本都检测出微塑料呈阳性,每10克人类粪便中平均有20个微塑料颗粒。 如果光是“吃下去,拉出来”的简单关系,微塑料倒不值得担心。然而,实际并非如此。随着大量研究的开展,科学家们陆续在人类切除的结肠标本,甚至胎盘组织中发现微塑料的存在。 更令人担忧的是,来自荷兰阿姆斯特丹自由大学的科学家首次在人类血液中发现了微塑料的存在。这表明微塑料可能随着血液流经全身,对各器官造成影响! DOI: 10.1016/j.envint.2022.107199 研究者在22名健康志愿者的静脉血中检测到了5种最常见的塑料成分,分别是PET、PS、PE、PMMA和PP。 5种最常见的塑料成分及其来源 在严格控制了采样、样品准备及分析过程中的可能存在的塑料污染后,研究者在近8成志愿者的血液里检测到了微塑料的存在(77%,17/22),平均下来,每个志愿者每毫升血样里有1.6ug的微塑料。 测出比例最高的为PET,在50%的志愿者血液中都检测到这种物质的存在,血液浓度最高为2.4ug/ml,提示大部分人体内都含有瓶装水释放的微塑料。 其次为:PS(36%)、PE(23%),最高血液浓度分别为4.8ug/ml及7.1ug/ml,这两类塑料主要应用在保鲜膜、一次性泡沫饭盒、塑料杯等,表明来自食物包装的微塑料也会进入人体血液循环中,并且进入的量不容小觑。 最后是PMMA,仅在5%的志愿者血液中发现,在所有志愿者血液中均未检测到PP的存在。 这项研究首次在人体血液中发现微塑料的存在,考虑到血液循环在体内四通八达,为各器官供给氧气和营养物质,带走代谢废物,不难想象微塑料也随着血流流经全身。“在血液样本中发现微塑料存在”的事实,也说明了人体清除微塑料的速度是低于从外界摄入的速度。 进入血液的微塑料可能通过肾脏过滤或胆汁排泄的方式排出体外,也可能通过有孔的毛细血管沉积在肝脏、脾脏等器官。换句话说,微塑料早已无孔不入,甚至遍布全身。 肠道疾病患者粪便中含有的微塑料颗粒是健康的1.5倍 微塑料究竟会对健康造成什么样的危害呢?这才是人们更为关心的话题。 此前,已有动物实验证明,微塑料可以扰乱内分泌系统,导致出生缺陷,减少精子的产生,引发胰岛素抵抗,并损害学习和记忆。此外,科学家们还观察到了由于微粒刺破和摩擦器官壁而引起的物理损伤迹象,例如炎症。 DOI: 10.1098/rstb.2008.0281 为了进一步探究微塑料对人类的影响,来自美国哈佛大学和罗格斯大学的科学家们还构建了模拟消化道的体外系统,探究微塑料颗粒是否会干扰营养物质的消化和吸收。 结果显示,微塑料的存在会对脂肪吸收带来健康上的负面影响,即当脂肪与微塑料颗粒一起摄入时,脂肪的生物利用度会随之增加,导致更多的脂肪进入血液(这可能就是外卖越吃越胖的原因之一)。此外,该研究中还显示微塑料会影响微量营养素吸收、增加小肠渗透性,以及促进某些细菌繁殖等。 现阶段,有关微塑料对人体健康影响的试验有限,但已初见端倪。2021年12月,发表在《Environmental Science & Technology Letters》期刊上的一项学术研究显示,炎症性肠病(IBD)(包括克罗恩病和溃疡性结肠炎)患者的粪便中的微塑料比健康对照组多,表明这些微塑料可能与疾病的发展过程存在相关性。 研究团队从不同地区的50名健康人和52名IBD患者中获取了粪便样本。分析结果表明,IBD 患者的粪便中含有的微塑料颗粒是健康受试者粪便的1.5倍。患者体内的微塑料含量越高,疾病相关的腹泻、直肠出血和腹部绞痛症状就越明显。 具体结果为: ①IBD患者和健康人粪便中微塑料的浓度分别为41.8和28.0个/g dm,IBD患者的粪便中每克的微塑料颗粒比健康人的多1.5倍左右。 ②该研究共检测到15种微塑料,以PET(用于瓶子和食品容器)和PA(聚酰胺;用于食品包装和纺织品)为主,主要形态分别为片状和纤维状。 ③通过问卷调查,研究人员发现,喝瓶装水、吃外卖食品、并且经常暴露在灰尘中的患者,其粪便中含有更多的微塑料。 该研究首次表明 IBD 患者粪便中微塑料(MPs)的浓度与健康人存在显著差异,且IBD患者粪便中微塑料水平显著高于健康人。这一结果提醒人们,微塑料对人体健康的损害可能不容小觑。 然而,“微塑料”是否对人类健康构成重大风险仍存在巨大未知,亟需更多相关学术领域的探究,以应对其未知风险。 众所周知,塑料降解速度很慢,通常会持续数百年甚至数千年,这也增加了微塑料被摄入并累积在许多生物体和组织中的可能性。为了避免人类的五脏六腑变成“塑料制品”,最简单的办法就是——尽量在生活中减少塑料制品的使用并及时治理塑料污染,别让地球被塑料“攻陷”之后再追悔莫及。
  • 微塑料改变海鸟肠道微生物群
    意大利科学家在最新一期《自然生态与进化》杂志发表的一项研究指出,与摄入较少微塑料的海鸟相比,摄入高水平微塑料的野生海鸟肠道内的微生物总体上更丰富多样,但目前尚不清楚这种多样性的增加对海鸟意味着什么。微塑料是宽度小于5毫米的塑料碎片。本月发表的一项研究指出,海洋上漂浮着大约230万吨微塑料。海鸟寿命长,迁徙路线远,往往在海洋中觅食,经常接触并食用这种塑料。在最新研究中,特伦托大学的格洛丽亚法克曼及其同事检查了取自北大西洋两种海鸥的肠道微生物组样本,其中包括58只科里猛鹱和27只暴风鹱。肠道微生物包括细菌、真菌、病毒和其他微生物。研究团队也对每只死鸟的胃部残留物进行了分类,并仔细筛选出了塑料颗粒。分析表明,塑料颗粒数量越多,微生物组也越多样。摄入微塑料碎片最多的海鸟肠道内拥有更多具有抗生素耐药性的微生物。而在消耗微塑料最多的鸟类的肠道内,一些可在人和动物之间传播病原体的人畜共患病原体也更丰富。而且,这些鸟类肠道内与健康有关的微生物的数量也有所减少。另外,当微塑料在海鸟的肠道中大量存在时,干燥棒杆菌这样的有害细菌似乎会茁壮成长。对人类来说,干燥棒杆菌可致人罹患心脏炎症、脑脓肿和感染。
  • 科学家研发出新型塑料降解酶 展示工业规模酶塑料回收的可行路径
    塑料垃圾为生态环境带来了严峻挑战,酶降解技术是实现塑料垃圾回收利用的一条潜在绿色途径。近期,美国科学家结合机器学习,成功研发出一种新型塑料降解酶,且该酶可用于塑料的闭环回收。研究成果发表在《Nature》期刊,标题为“Machine learning-aided engineering of hydrolases for PET depolymerization”。PET(聚对苯二甲酸乙二酯)是一种应用广泛的塑料,其产生的垃圾占全球固体垃圾的12%。以往报道的PET水解酶对pH和温度范围缺乏稳定性、反应速度慢,不能直接降解未经处理的消费塑料废品,极大地限制了其应用。科研人员开发了一个机器学习系统,该系统能预测可能提高PET降解酶热稳定性和活性的突变。通过对突变体进行蛋白质工程改造和测试,科研人员确定了一种相比野生型PET酶(PETases)含有五个氨基酸突变的酶,将其命名为FAST-PETases。FAST-PETases在30~50℃和一系列pH水平范围内显示出优异的水解活性。研究发现,FAST-PETases几乎能在1周内完全降解51种不同的未经处理的PET塑料废品。同时,FAST-PETases对晶态和非晶态的PET均能高效降解。研究人员进一步进行了概念验证,利用FAST-PETases分解PET,并利用回收的单体重新合成PET,从而展示了PET闭环回收的过程。这项研究展示了一条在工业规模上进行酶塑料回收的可行路径。论文链接:https://www.nature.com/articles/s41586-022-04599-z
  • 孕妇胎盘中首次发现微塑料
    p  据最新一期《环境国际》杂志报道,意大利科学家首次在孕妇胎盘中发现了微塑料颗粒。研究小组在妇女生完孩子后捐赠的6个胎盘中的4个发现了12个微塑料碎片。有3种被确定为被污染的热塑性聚合物聚丙烯,而其他9种被鉴别出的颜料,则来自于人造涂料、油漆、粘合剂、手指画颜料、化妆品和个人护理用品等。/pp  据报道,国外科学家们尚不清楚人体中的微塑料对健康有何具体影响。但是,微塑料中可能含有某些化学物质,这对胎儿可能造成长期的身体损害,甚至使胎儿的免疫系统崩溃。/pp  据称,胎儿体内的微塑料颗粒很可能是母亲吸入,或通过饮食带入体内的。/pp  据报道,研究者们对四名怀孕和分娩过程都正常的健康妇女进行了检查。结果,科学家们在胎盘的胎儿和母体两侧,以及胎儿发育的薄膜中都检测到了微塑料。据悉,十几个微塑料颗粒被检测出来。然而事实上,科学家们仅分析了每个胎盘约4%的部分,这表明微塑料的总数要多得多。/pp  微塑料颗粒大多为10微米(0.01毫米)左右,这意味着它们足够小,可以进入血液中。这些微塑料颗粒可能已经进入了婴儿的体内,但研究人员目前无法进行分析。br//pp  罗马圣乔瓦尼· 卡利比塔医院的妇产科主任安东尼奥· 拉古萨(Antonio Ragusa)表示:“他们就像半机械婴儿似的,不再单纯由人类细胞组成,而是掺杂着无机物。”/pp  研究人员称:“我们仍需进行进一步研究,以评估微塑料的存在是否会触发胎儿的免疫反应,或导致有毒污染物在体内的释放,从而对人体造成危害。”br//pp  不过,参与该研究的另外两名女性的胎盘中并未查出微塑料颗粒,这可能是由于不同的生理状况、饮食或生活方式造成的。/pp  从珠穆朗玛峰的山顶到漆黑无边的深海,微塑料污染已遍及地球的每个角落。/pp  本网相关报道:/pp  a href="https://www.instrument.com.cn/news/20200824/557449.shtml" target="_blank"警惕!人体47处被检出微塑料,或成健康研究下一个热点/a/pp  a href="https://www.instrument.com.cn/news/20200522/539229.shtml" target="_blank"除了海洋里,空气中也有浮游微塑料 你呼吸了吗?/a/pp  a href="https://www.instrument.com.cn/news/20190829/492232.shtml" target="_blank"洗涤衣物可能是未被充分认识的微塑料污染源/a/pp  a href="https://www.instrument.com.cn/news/20190820/491533.shtml" target="_blank"北极微塑料从哪儿来?科学家又发现新证据/a/pp  a href="https://www.instrument.com.cn/news/20180904/470662.shtml" target="_blank"美研究:13国水管及食盐和啤酒中存在“微塑料”/a/pp  今年十月,科学家们发现婴儿使用塑料瓶饮用配方奶粉时,每天要吞咽数百万个微塑料颗粒。2019年,研究人员在胎盘一侧发现空气颗粒污染物,这表明未出生的婴儿也暴露于交通和化石燃料燃烧产生的污染物中。/pp  显然,如何避免这些微型颗粒对人体造成潜在的危害,将在未来成为一项重要的课题。/p
  • 欧盟正式出台微塑料限制要求,10月17日起实施
    在《零污染行动计划》中,欧盟委员会设定了到2030年将微塑料污染减少30%的目标。为了解决微塑料污染问题,同时防止单一市场碎片化的风险,欧盟委员会要求欧洲化学品管理局(ECHA)评估有意添加到产品中的微塑料所带来的风险,以及是否需要在欧盟层面采取进一步的监管行动。ECHA 的结论是,故意添加到某些产品中的微塑料会以不受控制的方式释放到环境中,因此建议对其进行限制。2023年9月25日,欧盟正式通过了微塑料限制案,该案在多年的讨论后在布鲁塞尔得到表决通过。其核心是对REACH法规附件十七的修改,旨在限制微塑料及其相关产品在欧盟范围内的投放,以减少其对环境的污染。9月27日,欧盟官方公报发布(EU) 2023/2055,欧盟REACH法规附录十七新增第78项管控限制措施,该条款将在欧盟官方公报公布后的第20天生效。法规对“合成聚合物微粒”给出了明确的定义,即直径在5mm以下或长度不大于15mm、长径比大于3的难以降解且溶解度2g/L的非天然合成碳基聚合物颗粒或纤维,占总颗粒质量1%及以上的物质。相关的限制内容包括限制合成聚合物微粒作为物质本身或故意添加到混合物中(添加浓度20.01%(按重量计))投放市场的行为。在新的微塑料法规中,涉及多种常见产品的限制,以及一个详细的时间表,旨在逐步减少微塑料在不同产品中的使用。以下列出了一些关键的产品类别及相关的实施时间表:(a)化妆品和个人护理产品2029年10月17日之后,用于香水封装的合成聚合物微粒将被禁止。2027年10月17日之后,禁止在冲洗产品中使用合成聚合物微粒,除非此类产品属于(a)点。如冲洗产品包含用作研磨剂的合成聚合物微粒 (即“微珠”),则该限制将于2023年10月17日开始生效。2035年10月17日之后,禁止在唇部产品、指甲产品以及化妆品中使用合成聚合物微粒,除非此类产品属于(a)或(b)点。如这些产品含有微珠,则该限制将于2023年10月17日开始生效2029年10月17日之后,免洗类产品中的合成聚合物微粒将被禁止,除非此类产品属于(a)或(c)点。(b)洗涤剂和相关产品2028年10月17日之后,洗涤剂、蜡、抛光剂以及空气护理产品中的合成聚合物微粒将被禁止,除非这些产品属于(a)点。如这些产品含有微珠,则该限制将于2023年10月17日开始生效。(c)医疗器械2029年10月17日之后,禁止在医疗器械中使用合成聚合物微粒。如医疗器械含有微珠,则该限制将于2023年10月17日开始生效。(d)农业和园艺产品2028年10月17日之后,不在法规(EU)2019/1009范围内的肥料产品中的合成聚合物微粒将被禁止。2031年10月17日之后,植物保护产品以及生物杀灭产品中的合成聚合物微粒将被禁止。2028年10月17日之后,第(g)或(h)点未涵盖的农业和园艺产品中的合成聚合物微粒将被禁止。(e)人工运动场地2028年10月17日之后,用于人工运动场地表面的颗粒填充物中的合成聚合物微粒将被禁止。此外,值得注意的是,在欧盟发布的微塑料限制中,确实为某些特定情况和特殊用途的产品设立了一些豁免情况。a.工业用途的合成聚合物微粒这一类微粒包括作为物质本身或在混合物中的合成聚合物微粒,通常在严格控制的工业环境中使用,以减小对环境的潜在风,险。b.环境风险较小的情况技术保护的合成聚合物微粒: 如果通过特定的技术手段保护,使得合成聚合物微粒在预期的使用过程中难以释放到环境中,那么这类微粒可能被豁免。物理性质发生永久改变的合成聚合物微粒: 若合成聚合物微粒的物理性质在预期的使用期间永久改变,以至于不再符合微塑料的定义,则它们可能被排除在限制之外。永久结合到固体基质中的合成聚合物微粒: 这通常涉及到微粒与其他材料的紧密结合,以避免其在使用过程中释放出来。c.避免二次监管的情况为了避免与已有的法规和指令重叠,以下几类产品被豁免医药产品: 指令2001/83/EC范围内的医药产品以及法规 (EU) 2019/6范围内的兽药产品被排除在限制之外。欧盟肥料产品: 法规 (EU) 2019/1009范围内的欧盟肥料产品也被豁免。食品添加剂: 法规(EC) No 1333/2008法规 (EC) 范围内的食品添加剂被排除。体外诊断设备: 包括法规(EU) 2017/746范围内的设备在内的体外诊断设备亦被豁免。其他食品和饲料: 本段第(c)点未涵盖到的,(EC) No 178/2002法规条款2定义的食品,以及该法规条款3(4)定义的饲料也被豁免。
  • 全国首个热塑性塑料餐具标准实施
    由广州市质量监督检测研究院制定的全国首个热塑性塑料餐具标准———《热塑性塑料餐具地方技术规范》已于8月1日起实施,其总体水平与日本标准相当,基本涵盖了市场上所有热塑性塑料餐具。  消费者选购塑料餐具时,首先要看标识是否完整,其次看产品。产品的表面应平滑,没有污点、杂质、划痕、裂纹等,没有脱色、褪色现象,还可闻一闻看有没有刺激性味道等异味。  “最重要的还是要看产品标识。”国家包装产品质量监督检验中心(广州)包装检验部部长孙世彧表示,此次标准规定,产品须标明厂家名称或商标、材质、使用温度等说明,若产品有不耐热水、不适用于微波炉、不能接触油质等要求,也应标明。
  • 最严限塑令下,慧眼识别各种塑料制品
    细心的你可能已经注意到,超市的塑料袋变成了柔软的可降解塑料袋,外卖的吸管变成了厚实的纸吸管。这是由于塑料已经成为当今社会严重的污染问题。2020年1月,国家发改委、生态环境部发布《关于进一步加强塑料污染治理的意见》,各地都积极出台塑料污染治理方案。如今我国“限塑令”升级,上海、海南等地已经全面实施“禁塑”,监管监督齐发力,未来还将在全国范围内普及。塑料已经造成了环境的严重污染:不可降解的塑料袋,如焚烧会产生二噁英等持久性有机污染物,如填埋则会加速土壤板结,也会让其他垃圾的降解速度变慢。全球每年塑料总消费量为4亿吨,中国消费6000万吨以上。塑料垃圾中9%会被回收利用,12%被焚烧,剩下的79%将进入垃圾填埋场或自然环境中,需要200年到500年才会被分解。在积极寻找适合替代品减少塑料污染的同时,应该同步推广循环回收的理念,摒弃一次性消费文化。日本是世界上塑料循环利用最成功的国家之一,2010年,77%废塑料被回收利用,超过英国的两倍,美国目前达到20%。为了成功地循环再利用,需要准确的鉴定并分类塑料样品。PerkinElmer的Spectrum Two红外光谱仪、DSC 4000差示扫描量热仪与TGA 4000热重分析仪,可为塑料回收利用领域提供快速可靠的鉴定结果。表1 聚合物识别代码(PIC)配有金刚石ATR附件的Spectrum Two红外光谱仪不同PIC类型塑料的ATR红外光谱图DSC 4000差示扫描量热仪红外光谱基本相同的高密度聚乙烯(HDPE)和低密度聚乙烯(LDPE),DSC 4000可测试出明显的差异TGA 4000热重分析仪TGA 4000可用于分析塑料内部填充物,如玻璃纤维、碳酸钙、滑石粉等。了解更多详情,请扫描二维码下载完整技术资料。
  • 长春市2023年塑料购物袋及可降解塑料制品产品质量监督抽查实施细则
    附件1长春市2023年可降解塑料制品产品质量监督抽查实施细则 1 抽样方法以随机抽样的方式在被抽样生产者、销售者的待销产品中抽取。随机数一般可使用随机数表等方法产生。抽样数量、检样数量、备样数量见下表: 序号产品类型抽样数量检样数量备样数量1可降解塑料袋600g400g200g2可降解塑料餐具3可降解塑料吸管 2 检验依据序号产品类型检验项目检验方法1可降解塑料袋厚度及偏差GB/T 6672-2001提吊试验GB/T 38082-2019中6.6.1跌落试验GB/T 38082-2019中6.6.2漏水性GB/T 38082-2019中6.6.3封合强度QB/T 2358-1998落镖冲击GB/T 9639.1-2008生物降解性能GB/T 19277.1-20112可降解塑料餐具降解性能GB/T 19277.1-20113可降解塑料吸管生物降解率GB/T 19277.1-2011感官要求GB 4806.7-2016中4.2总迁移量GB 31604.8-2021高锰酸钾消耗量GB 31604.2-2016重金属(以Pb计)GB 31604.9-2016脱色试验GB 31604.7-2016执行企业标准、团体标准、地方标准及其他符合相关法律法规及国家有关规定的标准,检验项目参照上述内容执行。凡是注日期的文件,其随后所有的修改单(不包括勘误的内容)或修订版不适用于本细则。凡是不注日期的文件,其最新版本适用于本细则。3 判定规则3.1依据标准GB/T 18006.3-2020 一次性可降解餐饮具通用技术要求GB/T 38082-2019 生物降解塑料购物袋GB/T 41008-2021 生物降解饮用吸管GB/T 41010-2021 生物降解塑料与制品降解性能及标识要求GB 4806.7-2016 食品安全国家标准 食品接触用塑料材料及制品《国家发展改革委 生态环境部关于进一步加强塑料污染治理的意见》发改环资〔2020〕80号《关于扎实推进塑料污染治理工作的通知》发改环资〔2020〕1146号《吉林省禁止生产销售和提供一次性不可降解塑料购物袋、塑料餐具规定》(吉林省人民政府令 第244号)相关的法律法规、部门规章和规范。现行有效的企业标准、团体标准、地方标准及产品明示质量要求。对于产品上无任何材质标识的,或者产品明示标准中未规定生物分解性能要求的,生物分解性能按照GB/T 41010-2021《生物降解塑料与制品降解性能及标识要求》进行判定。3.2判定原则经检验,检验项目全部合格,判定为未发现不合格;检验项目中任一项或一项以上不合格,判定为不合格。若被检产品明示的质量要求高于本细则中检验项目依据的标准要求时,应按被检产品明示的质量要求判定。若被检产品明示的质量要求低于本细则中检验项目依据的强制性标准要求时,应按照强制性标准要求判定。若被检产品明示的质量要求低于或包含本细则中检验项目依据的推荐性标准要求时,应以被检产品明示的质量要求判定(生物分解性能项目除外)。若被检产品明示的质量要求缺少本细则中检验项目依据的强制性标准要求时,应按照强制性标准要求判定。若被检产品明示的质量要求缺少本细则中检验项目依据的推荐性标准要求时,该项目不参与判定(生物分解性能项目除外)。附件2长春市2023年塑料购物袋产品质量监督抽查实施细则 1抽样方法以随机抽样的方式在被抽样生产者、销售者的待销产品中抽取。随机数一般可使用随机数表等方法产生。每批次产品抽取样品15个,其中10个作为检验样品,5个作为备用样品。 2检验依据 序号检验项目检测方法1厚度及偏差GB/T 6672-2001 执行企业标准、团体标准、地方标准及其他符合相关法律法规及国家有关规定的标准,检验项目参照上述内容执行。凡是注日期的文件,其随后所有的修改单(不包括勘误的内容)或修订版不适用于本细则。凡是不注日期的文件,其最新版本适用于本细则。3判定规则3.1依据标准GB/T 21661-2020《塑料购物袋》《国家发展改革委 生态环境部关于进一步加强塑料污染治理的意见》发改环资〔2020〕80号《关于扎实推进塑料污染治理工作的通知》发改环资〔2020〕1146号现行有效的企业标准、团体标准、地方标准及其他符合相关法律法规及国家有关规定的标准产品明示质量要求。3.2判定原则经检验,检验项目全部合格,判定为被抽查产品所检项目未发现不合格:检验项目中任意一项或一项以上不合格,判定为被抽查产品不合格。若被检产品明示的质量要求高于本细则中检验项目依据的标准要求时,应按被检产品明示的质量要求判定。若被检产品明示的质量要求低于本细则中检验项目依据的强制性标准要求时,应按照强制性标准要求判定。若被检产品明示的质量要求低于或包含本细则中检验项目依据的推荐性标准要求时,应以被检产品明示的质量要求判定。若被检产品明示的质量要求缺少本细则中检验项目依据的强制性标准要求时,应按照强制性标准要求判定。若被检产品明示的质量要求缺少本细则中检验项目依据的推荐性标准要求时,该项目不参与判定。
  • 微塑料:一场不知不觉的污染
    p  人类和塑料的关系可能比你想象得还要“亲密”。除了生活中接触到的各种塑料制品,塑料还会降解成直径从0.1到5000微米不等的塑料微粒。这些微粒在陆地上随处可见,也被发现存在于河流、海洋甚至北极。/pp  本世纪初,人们首次在海洋中发现微塑料的存在,至今已有不少研究聚焦于这些小小颗粒的降解和迁移过程。/pp  如今人们发现,它们不仅会走水路,还会“借东风”。/pp  《自然—地球科学》本月发表了一项研究,法国国家科学研究中心的研究团队跑到人迹罕至的偏远山地,收集大气中的沉积物样本,发现其中含有大量塑料微粒。模拟实验表明,这些塑料微粒通过大气旅行,最初动身之地距离落脚处可达100公里。/pp  strong微塑料的前世今生/strong/pp  粒径5毫米以下的塑料颗粒被称为微塑料,通常以碎片、纤维等形式存在。/pp  中国科学院水生生物研究所助理研究员熊雄告诉《中国科学报》,微塑料的来源主要分为两种。一种是生产时体积就很小的原生微塑料,常见于带有磨砂成分的个人护理品,在人类使用过程中进入水体。另一种是原本体积较大的塑料,经过光照、氧化、机械磨损等作用,逐步降解为微塑料。/pp  在此过程中,有些微塑料可进一步降解至微米甚至纳米级别,因而有更高风险进入到细胞或生物体内,甚至对整个食物链产生影响。/pp  先前对微塑料的研究较多集中于水体环境。从马里亚纳海沟到南极圈冰冻层,都已发现微塑料的存在。在中国,一些较为偏远的水体如西藏、青海等地的湖泊,也已检测到不同浓度的微塑料。/pp  有研究指出,河流是海洋中微塑料的重要输送来源。熊雄等人调查长江中下游水体的微塑料污染情况后发现,内陆水体不仅是微塑料从陆地到海洋的传输渠道,其本身也聚集了数量可观的微塑料。/pp  研究结果显示,长江中下游的微塑料浓度均值约为每平方千米50万个微塑料颗粒。这一结果在采用相似方法的河流中处于中等偏高水平。/pp  熊雄告诉《中国科学报》,继这一研究后,其课题组仍在继续进行内陆淡水水体的调查。/pp  在课题组近期发表的一项研究中,他们对一年四季湖水中微塑料的表面生物膜生长情况进行了调查,发现微塑料在水体内的沉降不仅受生物膜生长影响,也受水中悬浮颗粒物影响。/pp  虽然没有确凿证据可以追溯这些微塑料从何而来,“但可以推测人们日常生活生产中使用的塑料制品是微塑料污染的主要来源”。熊雄表示。/pp  strong乘风而来/strong/pp  如果说前述研究探讨的是微塑料如何在水体中停留和沉积,那么接下来的研究则发现,一旦微塑料体积足够小,它们的旅程就可以走得足够远。这意味着除了潜入水底,微塑料占据的领土达到了前所未有的广度。/pp  之前有科学家曾对城市周边的大气微塑料含量进行研究,确认了大气沉降是表层土壤微塑料污染的源头之一,但当时并没有观点认为微塑料会迁移到非常远的地方。/pp  《自然—地球科学》此次发表的文章指出,微塑料可能会通过大气“长途旅行”。/pp  为了搞清微塑料可以走多远,Deonie Allen等研究人员在法国西南部的比利牛斯山脉进行了长达5个月的追踪研究。离他们选取的研究点最近的城市在近百公里外。/pp  科学家从灰尘、雨水和雪中提取沉积物,对从中获得的微塑料类型和大小进行区分,并计算了相应的个数和含量。科学家发现,单位平方米中存在不同比例、不同形态的微塑料,如碎片、薄膜和纤维。测量区域的微塑料日沉积率约为365个颗粒/平方米。/pp  建立大气模型进行模拟后,科学家推测这些微塑料在到达偏远山区之前,最可能产生于周边的城市。塑料微粒在大气中游荡,最终降落在几十公里外的山区土壤中。/pp  文章指出,微塑料的体积和重量足够小后便能在大气中漂浮。这也意味着,它们不可能被绝对清理干净。因此Allen等人建议,目前唯一可行的办法就是从源头控制塑料的使用。/pp  “目前对于微塑料在大气中迁移和沉降的研究很少,特别是在人迹罕至的偏远地区。这项研究会为同领域的研究者带来更多启发。不同区域微塑料在大气中的污染状况及其影响因素、微塑料在大气中的迁移规律及机理、大气中微塑料对人体的健康风险,都是值得继续探讨的问题。”北京市农林科学院副研究员徐笠这样评价道。/pp  “随大气迁移并沉降到地表是土壤中微塑料的一种来源途径。在一些自然保护区或未开发利用地区,这可能是主要途径。”浙江农林大学环境与资源学院教授章海波告诉《中国科学报》,“但在农田土壤中,微塑料的主要来源还是有机肥、污泥农用、灌溉等。”/pp  strong研究瓶颈/strong/pp  从难以察觉的细小微粒到海洋中体量庞大的“怪物”,人们研究塑料垃圾造成的污染由来已久,相对应的研究手段也各不相同。/pp  熊雄等人在长江中下游进行调查时,将333微米孔径的拖网放置在水体中拖曳,进行样品收集。/pp  英国海洋生物协会近日发表的一项针对塑料垃圾数量的调查,也采用在水体中拖曳的方式,利用一种名为浮游生物连续记录仪的采集器,拖曳距离累计超过1200万公里。/pp  徐笠告诉《中国科学报》,采集水体样本后,在实验室中往往还需要经过一系列处理。过滤就是一种常见手段。研究者根据微塑料的体积大小选择有适合孔隙的过滤膜。硝酸纤维、醋酸纤维、尼龙等是常见的滤膜材质。/pp  徐笠指出,“膜的选择应根据具体实验要求,其孔隙大小和材质是需要重点考虑的问题。样品过滤后,通常含有有机质、藻类等各种干扰杂质,这些干扰因素可以用双氧水等进行消解,再用消解液过滤一遍,留在滤膜上的就是微塑料了。”/pp  如果想测定土壤中的微塑料,在过滤之前还要经历一道浮选的过程。浮选的溶液有氯化钠、碘化钠、氯化锌等。利用不同浮选液密度,可将不同类型的微塑料从土壤中浮选出来。/pp  “这也是为什么调查土壤中的微塑料更为困难,因为微塑料沉积在土壤中,较难浮选出来。目前通用的解决办法是多次浮选,增加微塑料的回收率。”徐笠说。/pp  这之后,研究者会在显微镜下观察样品大小、形状、颜色等特征,并用红外光谱或拉曼光谱对所选样本的具体种类进行鉴定。/pp  章海波表示,受技术条件影响,目前研究主要还是以野外调查与室内模拟相结合,标记示踪也是一种方法。“但技术上目前对土壤中微塑料的分离分析方法还不够完善,受土壤复杂介质的影响较大。”/pp  “目前微塑料相关研究还没有一个统一的标准方法,未来还应制定统一的采样和样品处理方法,让微塑料研究更规范、环境浓度数据可比性更强。”熊雄表示。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/4882a329-5b7b-49ce-accd-ca3aadad5ca8.jpg" title="绿· 仪社.jpg" alt="绿· 仪社.jpg"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "扫二维码加“绿· 仪社”为好友 了解更多对科学仪器市场的分析评论!/spanbr//p
  • 又一顶刊!微塑料快速检测新成果!
    研究证实,人体中微塑料的主要来源,除了生活中的塑料制品,还包括我们平时吃的海产品等。那么,生物体内的微塑料从何而来?根据有关报告,海产品似乎是目前了解最多的人类摄入微塑料的来源。正因为如此,近几年,微塑料污染对养殖水产品的影响引起了广泛关注。而渔业环境中的微塑料主要来源于陆地上大型塑料垃圾的降解及养殖过程中塑料的使用,长期暴露于高浓度微塑料环境中,养殖水生物的质量安全和生殖发育都将受到较大影响。顶刊新技术:淡水及海水养殖环境中微塑料快速检测及去除技术近日,中国水产科学研究院质量与标准研究中心吴立冬副研究员与东海水产研究所渔业生态环境实验室合作研发出一种可快速富集渔业环境(淡水及海水养殖环境)中微塑料的磁性纳米材料(mANM)。此项成果发表在环境科学顶级期刊《Journal of Hazardous Materials》。该复合材料对水体中不同粒径、多种典型微塑料均有作用,并且可通过调节pH控制磁性纳米颗粒聚团大小,实现在强磁场中30秒快速分离微塑料。为了更好地促进微塑料检测技术发展,网络讲堂邀请到论文通讯作者——中国水产科学研究院吴立冬副研究员,在8月25日做精彩的技术分享。(点击图片,立即报名)同时,本次会议特邀嘉宾——中科院烟台海岸带研究所陈令新研究员,将分享课题组在近海环境中分析新污染物样品前处理技术的最新研究进展。陈令新研究员作为海洋环境分析监测领域的资深权威专家,科技成果丰富,并著有海洋监测领域的宝典书籍——《海洋环境分析监测技术》,报名并观看本次直播,有机会免费领取哦!免费报名:https://www.instrument.com.cn/webinar/meetings/ocean20220825/(京东售价:161.90元)
  • 光谱在环境领域的应用 聚焦固废、微塑料等
    由仪器信息网主办,江苏省分析测试协会、中国仪器仪表学会近红外光谱分会和中国生物物理学会太赫兹生物物理分会协办的为期四天的“第十一届光谱网络会议(简称iCS2022)”正在召开,2022年7月21日下午会议主题为:光谱在环境领域的应用,内容涉及光谱在固废重金属、微塑料、纳米微塑料、大气污染、生活饮用水和土壤等环境领域内的应用,共有7位专家带来精彩分享。近几年,国家也在环境细分领域大气、水质、土壤、固废和新污染物等方面陆续布局新任务,大力推进环境治理进程,这也对环境监测提出了更高的要求。在固废重金属检测方面,江苏省地质调查研究院主任工程师张培新在报告中总结了现行固废重金属检测的标准和方法,提出单波长激发能量色散X射线荧光检测固废重金属检测方法,该方法检出限、准确度、精密度都能满足固废重金属检测要求,具操作简单、可现场分析和无损、快速、经济的特点。在新污染物检测方面,最近国务院出台的《新污染物治理行动方案》再次强调了微塑料、抗生素、农药、新化学品的识别、检测及监管,以及提出开展新污染物环境调查监测试点工作。在本次会议中,中国地质调查局南京地质调查中心高级工程师沈小明介绍了目前沉积物中微塑料主要的采样、提取、仪器测定技术及存在的主要问题,并以长江口海岸带沉积物为主要研究对象,优化并建立了样品中微塑料的激光共聚焦显微拉曼光谱分析方法,同时对研究区域内海岸带沉积物中的微塑料污染状况进行了评述。中国科学院烟台海岸带研究所研究员王运庆则是聚焦纳米塑料,介绍了研究团队在SERS标记纳米塑料上所取得的成果,其研究发展了表面增强拉曼散射(SERS)探针标记的纳米塑料模型粒子,具有信号灵敏度高、专属性强、具备多元标记能力等优点。借助拉曼光谱检测和成像技术,实时动态研究了纳米塑料在小鼠、斑马鱼、菲律宾蛤仔、白菜等多种模式生物体内的分布、蓄积和代谢行为。在大气污染监测方面,十四五期间强调从PM2.5治理转为PM2.5和O3协同控制,强调凸显VOCs 组分、温室气体等的监测。陕西科技大学教授陈庆彩在报告中介绍了三维荧光光谱法在大气污染形成机制和来源鉴定中的应用案例和理论技术、关键技术,以及应用范围,以及从检测设备的设计和搭建,到数据处理和实际应用整个过程,该项技术可以更好的服务于我国大气污染治理。在水质检测方面,安捷伦科技(中国)有限公司应用工程师付睿峰详细介绍了可以满足GB/T 5750无机元素测定的ICP-MS和HPLC-ICP-MS在生活饮用水元素分析中的解决方案,包括进样、水质污染应急处置等方面。在土壤环境检测方面,由于今年土壤三普的启动,土壤检测再次成为热点。在本次报告中,江苏省环境监测中心高级工程师王骏飞对土壤重金属污染、国家网土壤重金属分析方法进行了概述,重点对光谱分析法在土壤环境监测领域的应用进行了介绍。德国耶拿分析仪器有限公司产品经理吴奋国从提高ICP-OES光学分辨率的角度阐述在土壤、水质等环境样品实际分析中,如何改善分析的检出限、灵敏度、稳定性,如何更加简单、灵活、经济的完善相应标准中规定的分析工作。7月22日为第十一届光谱网络会议最后一天,上午和下午会议主题分别为:光谱新技术与新方法和光谱在材料领域的应用,将有12位专家带来精彩报告,欢迎大家报名参会》》》
  • 微塑料的“全球化”亟需解决方案
    p  strong仪器信息网讯/strong 微塑料这一概念是在2004发表的一篇Science的文章(Lost at Sea:where is all the plastic?)中首次提出。微塑料是一种会污染环境的微小颗粒,任何长度小于5毫米的塑料碎片都可以称为微塑料。由于微塑料在海洋环境中的广泛存在以及对生物产生的各种确定的以及不确定的危害,得到了各界的广泛关注。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 400px height: 406px " src="https://img1.17img.cn/17img/images/201908/uepic/6fb1f603-9c71-47a6-a648-684eb72ef8ac.jpg" title="微塑料.jpg" alt="微塑料.jpg" width="400" height="406" border="0" vspace="0"//pp  目前微塑料可以分为大致两种,一种是进入环境前就已经小于5毫米的塑料碎片,一般来自清洗衣服后的废水。悉尼大学沿海城市生态影响研究中心发现,每洗一件衣服,就会冲洗掉1900多根纤维。其次是一些大型塑料的碎片污染,包括我们熟知的饮料瓶、渔网、塑料袋等。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/5dd58359-6b4c-4fca-9868-9dc21fc1b8af.jpg" title="微塑料的种类.jpg" alt="微塑料的种类.jpg"//pp  在我们的印象中,塑料污染多是大型的塑料物品漂浮于海中,然后给海洋生物造成困扰。然而根据媒体VOX给出的数据示意图,大块塑料的数量远没法和微塑料相比。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 295px " src="https://img1.17img.cn/17img/images/201908/uepic/c6183cda-eb6b-4d10-8890-e93bc402a317.jpg" title="VOX.jpg" alt="VOX.jpg" width="500" height="295" border="0" vspace="0"//pp  微塑料污染似乎已经在不知不觉中完成了 “全球化”。/pp  美国科罗拉多州这几天下起了‘塑料雨’。经过科学家调查发现,90% 的雨水样品中都含有塑料,大部分是纤维形式的,而且有各种颜色,其中以蓝色最为常见。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 214px " src="https://img1.17img.cn/17img/images/201908/uepic/b2349eda-688a-4144-aadb-6594854f4616.jpg" title="塑料雨.jpg" alt="塑料雨.jpg" width="500" height="214" border="0" vspace="0"//pp  高山上也有微塑料的痕迹。今年4月,同样人迹罕至的比利牛斯山脉偏远地区也发现了塑料微粒。甚至相关研究小组认为这些微塑料是至少从100公里以外的地方飘过来的。/pp  国家海洋环境监测中心王菊英副主任表示,不管是在海水中,以及海底和海底沉积物当中,都发现有微塑料的存在。去年二月,一项研究发现,在实验过程中从大西洋西北部捕获的中层鱼类里,73%的鱼胃里存在微塑料。今年6月左右,海洋生物学家Anela Choy在加利福尼亚海岸蒙特雷湾进行了一次调查发现,一些以过滤水中微小生物为食的生命会误吞微塑料。而在食物链中更大一些的海洋生物的胃里,同样会发现某种塑料存在。/pp  探险家Victor Vescovo在5月探索了马里亚纳海沟,这里也是地球最深的地方,而在达到10928米时发现了来自地面的垃圾。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 350px " src="https://img1.17img.cn/17img/images/201908/uepic/ed910959-4f6d-4756-b585-6949555bb798.jpg" title="马里亚纳海沟.jpg" alt="马里亚纳海沟.jpg" width="500" height="350" border="0" vspace="0"//pp  近期在北极的研究同样发现了大量微塑料。一项发表在《科学进展》的研究指出,研究人员在北极的积雪中发现了大量微小的塑料颗粒。同时这项研究表明,北极雪中的微塑料可能是通过空气传播到极地的。/pp  据研究显示,一块来自弗拉姆海峡的积雪样本中,污染浓度达到了每升大约14000个微塑料颗粒,同时一份欧洲积雪样本中,每升含有超过15万颗微塑料,另外发现的塑料颗粒大小在0.011到0.475毫米之间。主要研究人员之一的Melanie Bergmann表示,尽管对比欧洲的样本,北极受到的污染还算是较少的,但这个结果也出乎他们的预料。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/2727d0b8-fbbc-4f9e-a2af-faa4faecaee6.jpg" title="积雪样本.jpg" alt="积雪样本.jpg"//pp style="text-align: center "(粉色点是北极取样滴点,来自弗拉姆海峡)/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/1b9f217a-e94a-4a17-af01-fe0d776f7c85.jpg" title="糟蹋.png" alt="糟蹋.png"//pp  微塑料对人类的威胁可能更为直接。目前已经有研究发现,部分人类粪便中存在塑料成分。去年10月,在维也纳举行的欧洲胃肠病学会议上,有研究人员公布了一项关于人类粪便中含有微塑料成分的实验结果。在最近举行的欧洲肠胃病学会上,研究人员报告称,首次在人体粪便中检测到多达9种微塑料,它们的直径在50到500微米之间。根据参与这项研究的8位不同国家的被试提供的日志,他们都吃了塑料包装的食物,饮用了瓶装水,其中六位还吃过海鲜。每10克粪便样品中含有20颗微粒,最常见的微粒是聚丙烯(PP)和聚对苯二甲酸乙二酯(PET),它们是塑料瓶和瓶盖的主要成分。/pp  微塑料污染已经侵入到人类体内,全球人均每周摄入将近5克的微塑料,这等同于一张信用卡所用的微塑料。人类摄入微塑料的最大来源是饮用水,世界范围内的瓶装水、自来水、地表和地下水中都含有微塑料。在食物中,甲壳类海鲜、啤酒和盐的微塑料颗粒含量最高。/pp  人类也能吸入从空中掉落的微纤维。已知空气微粒可以寄居在肺部深处,从而导致癌症在内的各种疾病。已有证据表明,与尼龙和聚酯纤维打交道的工人,其接触有害纤维的程度远高于普通人群,他们的肺部会受到刺激,肺容量也会降低。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/2cd6fae7-7ac6-48ba-b3e9-e0226c63e4a1.jpg" title="呼吸塑料.png" alt="呼吸塑料.png"//pp  微塑料会对器官产生物理伤害,其过滤出的有毒化学物质,如内分泌干扰素BPA和农药,也能破坏免疫功能,并危害生物的生长和繁殖。微塑料和有毒物质还可能积累到食物链中,对整个生态系统带来潜在影响,例如种植土壤的健康状况。此外,空气和水中的微塑料也可以直接影响到人类。/pp  在2008年以前,很多研究人员认为,动物可以排泄掉摄入的任何微塑料。然而,生态毒理学家马克· 布朗(Mark Browne)对此并不完全确信。他做了一个实验:先把蓝蚌放进水槽,再放入涂有发光材料、比人类血细胞更小的微塑料,在蓝蚌摄入这些微塑料之后,再把它们放进干净的水中。6周之后,他把这些蓝蚌打捞起来,发现微粒仍然在它们体内。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/d5d1efbe-898a-4217-89c1-9442a17e6935.jpg" title="蓝蚌体内的微塑料.jpg" alt="蓝蚌体内的微塑料.jpg"//pp style="text-align: center "蓝蚌体内的微塑料 图片来源:Mark Anthony Browne/pp  鱼类、蚯蚓和其他动物的体内出现微塑料,这种现象足够让人不安了,但如果这些微粒一直留在体内,尤其是从内脏转移到血液循环系统和其他器官,就会造成真正的伤害。科学家已经观察到身体伤害的迹象,比如由微粒撞击和摩擦器官壁引发的炎症。/pp  研究人员还发现,微塑料能过滤出有毒化学物质,这些物质来自塑料生产过程中添加的聚合物和环境污染物(如吸附在塑料表面的农药),它们都能伤害肝脏等器官。/pp  湖水和土壤中的微塑料的总量,堪比漂浮在海洋表面的微塑料的总量——它们可能超过15万亿吨。然而,微塑料颗粒如此之小,如何对其进行检测?/pp  目前赛默飞、安捷伦、珀金埃尔默、岛津、雷尼绍等均针对微塑料检测提供了仪器测试方法和解决方案。/pp  a href="https://www.instrument.com.cn/netshow/SH100650/" target="_self"strong1.赛默飞/strong/a/pp  对于微塑料的粒径大小、形状、腐蚀程度、颜色等物理形貌分析常用的方法主要是strongspan style="color: rgb(255, 0, 0) "显微法/span/strong和strongspan style="color: rgb(255, 0, 0) "目检法/span/strong。对于化学成分分析,目前常用的方法主要是strongspan style="color: rgb(255, 0, 0) "显微红外法/span/strong和strongspan style="color: rgb(255, 0, 0) "SEM-EDX法/span/strong。a href="https://www.instrument.com.cn/netshow/C47493.htm" target="_self"strongspan style="color: rgb(255, 0, 0) "赛默飞显微红外光谱仪/span/strong/a可以高效快捷的实现水体中微塑料的定性,给出区域微塑料成分含量的参考结果;SEM-EDX可对样品表明进行直接观测和分析;而a href="https://www.instrument.com.cn/netshow/C47634.htm" target="_self"strongspan style="color: rgb(255, 0, 0) "拉曼光谱/span/strong/a作为另一种重要的分子光谱技术,具有非接触、无惧水等特点,在微塑料的成分定性和颗粒统计中同样发挥着一定作用。与显微红外相比,显微拉曼在微小的塑料粒子或纤维片段分析中具有更高的空间分辨,且无需挑出样品,不受水分干扰。/pp  a href="https://www.instrument.com.cn/netshow/SH100320/" target="_self"strong2.安捷伦/strong/a/pp  微塑料分析通常仅报告其颗粒数量。然而,塑料的易碎性使其在后续过程中很容易分解为许多尺寸更小的颗粒,因而这种方法在本质上存在缺陷且不准确。因此,报告中也应该包含颗粒的尺寸,在评估微塑料毒理学影响时,尺寸和丰度都应考虑在内。应该注意的是,微塑料对环境和健康的潜在影响随着颗粒尺寸的减小而增加。尺寸测量通常仅报告颗粒的最长尺寸而忽略了其形状,使长颗粒往往被认为与球形或其他形状的颗粒相同。为了实现更全面的了解,塑料的定量分析应该作为一个三维问题考虑:尺寸 × 形状 × 材料。/pp  span style="color: rgb(0, 0, 0) "安捷伦/spana href="https://www.instrument.com.cn/netshow/C306278.htm" target="_self"strongspan style="color: rgb(255, 0, 0) "激光红外成像系统/span/strong/a、a href="https://www.instrument.com.cn/netshow/C142612.htm" target="_self"strongspan style="color: rgb(255, 0, 0) "傅里叶变换红外光谱仪/span/strong/a均可对微塑料进行检测。其中,激光红外成像系统可测试5cm*5cm区域超过1000个微塑料颗粒,测试完成仅需2个小时,扫描结束后即得到测试结果,包括每个颗粒定性结果,尺寸、面积、重量等信息,并同时自动获得海量统计结果,包括不同尺寸、不同种类的塑料颗粒的个数、粒径分布,以及含量%等信息。/pp  a href="https://www.instrument.com.cn/netshow/SH100168/" target="_self"strong3.珀金埃尔默/strong/a/pp  要对海洋中的微塑料进行管控,第一步是要对这些微塑料的成分和含量进行检测,从而对污染的严重性和主要来源进行评判,对下一步的治理提供依据。span style="color: rgb(0, 0, 0) "PerkinElmer/spana href="https://www.instrument.com.cn/zc/31.html?AgentSortId=11283&SampleId=&IMShowBigMode=&IMCityID=&IMShowBCharacter=&SidStr=" target="_self"span style="color: rgb(255, 0, 0) "strong红外光谱及红外显微成像系统/strong/span/a可为检测过程提供有力的支持。/pp  红外光谱仪已经广泛用于鉴别大尺寸的高分子材料,对于较大的塑料样品可以选择不怕潮可电池供电的珀金埃尔默红外光谱仪放到船上做快速塑料的鉴别 而对于肉眼无法识别的微小的塑料颗粒,就需要选择红外显微镜成像系统用于这些微塑料的检测和鉴别。/pp  珀金埃尔默常规红外ATR方法可直接快速测试肉眼可见的大尺寸微塑料,对于肉眼不可见的小尺寸微塑料可采用a href="https://www.instrument.com.cn/netshow/C73048.htm" target="_self"珀金埃尔默Spotlight+ATR成像附件/a进行测试。珀金埃尔默实现了微塑料的原位测试,测试最小尺寸可达1.56um。原位ATR成像技术分析的微塑料尺寸更小、速度更快、操作更简单而且还不会丢失微塑料样品。/pp  除此以外,傅里叶化学成像/显微技术可分析微塑料化学成分及空间分布等信息 /pp  功率补偿型DSC的HyperDSC技术可辅助红外显微/成像进行塑料单微粒结构定性,可对复合微塑料半定量研究 /pp  逸出气体联用技术全模块均可用于研究微塑料的成分定性/半定量及降解机理等信息 /pp  LCMSMS串级质谱技术不仅可以用于定量塑料含量,还可以测定微塑料内部增塑剂等环境激素的含量,便于开展环境毒理学工作 /pp  ICPMS单细胞直接进样技术,可用于研究微塑料负载重金属对于单个细胞毒理学的研究工作 /pp  TGA-ICP联用技术可评价焚化过程产品微塑料/重金属的结合过程研究 /pp  TGA-GCMS联用技术可以用研究微塑料对持久性有机污染物环境迁移的输运机理等。/pp  a href="https://www.instrument.com.cn/netshow/SH100277/" target="_self"strong4.岛津/strong/a/pp  (1)a href="https://www.instrument.com.cn/netshow/C260864.htm" target="_self"strongspan style="color: rgb(255, 0, 0) "红外显微镜/span/strong/a/pp  傅里叶变换-红外光谱分析法(FTIR)是目前最常用的化学组分鉴定方法。岛津红外显微镜可实现对微塑料的观察、定义测量位置、测量、鉴别结果,全部操作都能自动执行,并提供高灵敏度结果。/pp  (2)a href="https://www.instrument.com.cn/netshow/C132513.htm" target="_self"span style="color: rgb(255, 0, 0) "strong热分析-红外联用系统(TG-FTIR)/strong/span/a/pp  岛津热分析-红外联用仪,可以将TGA过程产生的气体通过可加热管线引入到红外光谱仪中,分析聚合物等材料热裂解过程产生的气体成分,从而得到聚合物的组成,更好的对热重结果进行分析;和红外联用,实现材料的定性及定量分析。/pp  (3)a href="https://www.instrument.com.cn/netshow/C242324.htm" target="_self"strongspan style="color: rgb(255, 0, 0) "能量色散型X射线荧光光谱仪/span/strong/a/pp  岛津能量色散型X射线荧光分析仪,采用新型硅漂移检测器(SDD),具有高灵敏度、高分辨率的优点,能够进行快速无损定性-定量分析,方便快捷,无须化学前处理。/pp  通过EDX能量色散型X射线荧光光谱仪对微塑料的定性和定量分析,就可初步知道该微塑料可能的材质塑料(也可进一步使用PY-GCMS有机化合物快速筛查系统进行塑胶材质的确认),同时可以确认该微塑料中的有害元素。/pp  (4)span style="color: rgb(255, 0, 0) "strong热裂解-气相色谱质谱联用系统(PY-GCMS)/strong/span/pp  热裂解-气相色谱质谱联用技术(PY-GCMS)可以用来鉴定微塑料类型。PY-GCMS是通过不断升高样品池温度,使得高聚物在特定温度发生裂解,释放短链小分子单体,再进入GCMS检测,从而推断高聚物类型的一种方法,同时可鉴定聚合物及添加剂。/pp  POPs、全氟类化合物、多环芳烃、农药等有机污染物易富集在微塑料表面,岛津全面的色谱质谱分析手段,亦可提供全面的毒理效应研究方案。/pp  (5)a href="https://www.instrument.com.cn/netshow/C11887.htm" target="_self"span style="color: rgb(255, 0, 0) "strong电子探针/strong/span/a/pp  岛津电子探针可实现微塑料表面的元素及形貌分析研究。通过电子探针分析微塑料表面,在检测出K、Na、Ca、Mg、Al的同时,还可检测Cl、S、Cr和Fe等元素。/pp  stronga href="https://www.instrument.com.cn/netshow/SH100480/" target="_self"5.雷尼绍/a/strong/pp  传统的实验室技术,如气相色谱/质谱(GC-MS),可以量化塑料量,但不提供有关颗粒大小或数量的信息,这两种方法预计同等重要。红外显微镜可以做到这两点,但不适合分析非常小的颗粒,也受到颗粒形态的挑战。雷尼绍针对微塑料提供了其a href="https://www.instrument.com.cn/netshow/C150767.htm" target="_self"span style="color: rgb(255, 0, 0) "strong共焦拉曼显微镜/strong/span/a作为检测手段。雷尼绍共焦拉曼显微镜可自动定位粒子并确定它们的大小和统计,然后产生颗粒的拉曼图,使用高度跟踪保持良好的焦点,并使用高级光谱分析来识别塑料和无机物,其结果是关于颗粒的数量、大小、形状和化学组成的全面数据。/pp  在英国广播公司(BBC)《食物:真相还是恐惧》节目中,雷尼绍共焦拉曼光谱仪被格拉斯哥大学(University of Glasgow) 用于鱼类中的微塑料研究。/ppstrong  /stronga href="https://www.instrument.com.cn/netshow/SH100194/" target="_self"strong6.布鲁克/strong/a/pp  分析微塑料颗粒(MPP)有许多方法,如采用不同的光谱技术以达到不同的分析要求。/pp  红外显微镜是MPP分析的主要技术。它可以对微颗粒进行化学鉴定,并且非常易于使用。在MPP分析中,拉曼显微镜虽然不如红外显微镜常用,但它具有的独特优势,如可通过透明材料测量,比红外显微镜更高的空间分辨率等,使得拉曼显微镜适用于分析非常小的颗粒。/pp  Alfred Wegener 研究所(AWI)作为亥姆霍兹极地和海洋研究中心,选择了具有焦平面阵列(FPA)检测器的布鲁克a href="https://www.instrument.com.cn/netshow/C235440.htm" target="_self"strongspan style="color: rgb(255, 0, 0) "红外显微镜/span/strong/a作为MPP表征的解决方案。他们近期发表在《科学进展》的研究中采用了具有FPA检测器的红外显微镜,在北极积雪中检测出大量的微塑料颗粒。FPA检测器实现了在单次扫描中以最佳光谱分辨率收集大量的光谱数据。这项技术具有自动化分析,高精确度,极其快速,将人为错误降至最低等优点。/pp  布鲁克提供红外,FPA和拉曼的全套解决方案,实现了对微塑料的观察、测量和鉴别。/pp  (文中图片素材均来源自网络)/pp  参考资料:/pp  https://advances.sciencemag.org/content/5/8/eaax1157/pp  https://en.wikipedia.org/wiki/Fram_Strait/pp  https://www.cell.com/matter/fulltext/S2590-2385(19)30056-6/pp  https://www.youtube.com/watch?v=mbBNR0PRD9Y/pp  https://www.euronews.com/2019/08/14/plastic-microbeads-found-in-ice-floes-in-remote-corner-of-arctic/pp  https://www.sciencedaily.com/releases/2018/02/180216110513.htm/pp  https://www.ft.com/content/ecf5bf52-bd21-11e9-b350-db00d509634e/pp  https://pubs.usgs.gov/of/2019/1048/ofr20191048.pdf/pp  https://www.livescience.com/63893-microplastics-poop.html/pp  https://en.wikipedia.org/wiki/Microplastics#China/pp  https://www.npr.org/sections/thesalt/2019/06/06/729419975/microplastics-have-invaded-the-deep-ocean-and-the-food-chain/pp  https://www.npr.org/sections/thesalt/2019/06/06/729419975/microplastics-have-invaded-the-deep-ocean-and-the-food-chain/pp  https://www.euronews.com/2019/08/14/plastic-microbeads-found-in-ice-floes-in-remote-corner-of-arctic/pp  https://www.youtube.com/watch?v=qVoFeELi_vQ& t=68s/ppbr//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制