当前位置: 仪器信息网 > 行业主题 > >

塑料软管

仪器信息网塑料软管专题为您整合塑料软管相关的最新文章,在塑料软管专题,您不仅可以免费浏览塑料软管的资讯, 同时您还可以浏览塑料软管的相关资料、解决方案,参与社区塑料软管话题讨论。

塑料软管相关的资讯

  • 兰光发布C610H智能包装拉力机 塑料拉力机新品
    C610H智能包装拉力机 塑料拉力机C610H智能电子拉力试验机,专业适用于塑料薄膜、复合材料、软质包装材料、塑料软管、胶粘剂、胶粘带、不干胶、医用贴剂、离型纸、保护膜、组合盖、金属箔、隔膜、背板材料、无纺布、橡胶、纸张等产品的拉伸、剥离、变形、撕裂、热封、粘合、穿刺力、开启力、低速解卷力、拔开力等性能测试。产品特点:1、专业程序,满足多样化需求:仪器集成拉伸、剥离、撕裂、热封、定伸抗拉、下压等专业独立的测试程序,为用户提供了多种试验项目支持拉压双向试验模式,试验速度可自由设定限位保护、过载保护、自动回位等智能设计,保证操作安全2、卓越的测试机构,精度全面升级:配置全球知名品牌的力值测试系统,提供优于0.5级的力值精度,重复性更佳,多量程选择,测试更灵活配置全球知名品牌的伺服运行系统,搭配精密滚珠丝杠多轴定位技术,提供优于0.5级的位移精度,无极调速,使用便利,运行更平稳配置全球知名品牌的气动夹持系统,防止试样打滑,保证测试数据的准确性3、高端嵌入式计算机系统平台,安全易用:大尺寸触控平板,视图清晰, 触控灵敏,易于操作全新软件系统,流程精练,操控流畅,简单易学支持成组试验数据比对分析,具有多单位转换功能内嵌USB接口和网口,方便系统的外部接入和数据传输兰光独有的数据安全性设计,测试数据与电脑分离,避免由计算机病毒等引起的系统故障造成数据丢失符合中国GMP对数据可追溯性的要求,满足医药行业需要(可选)兰光独有的DataShieldTM数据盾系统,方便数据集中管理和对接信息系统(可选) 参照标准:GB 8808、GB/T 1040.1-2006、GB/T 1040.2-2006、GB/T 1040.3-2006、GB/T 1040. 4-2006、GB/T 1040.5-2008、GB/T 4850-2002、GB/T 12914-2008、GB/T 17200、GB/T 16578.1-2008、GB/T 7122、GB/T 2790、 GB/T 2791、GB/T 2792、GB/T 17590、ISO 37、ASTM E4、ASTM D882、ASTM D1938、ASTM D3330、ASTM F88、ASTM F904、JIS P8113、QB/T 2358, QB/T 1130测试应用:C610H拥有丰富的应用,配置了100种以上不同的试样夹具供用户选择,可满足超过1000种材料的测试要求;针对用户材料的不同,Labthink还提供定制服务,满足不同用户的测试需求。部分应用举例:基础应用——抗拉强度与变形率、拉断力、热封强度性能、抗撕裂性能、180度剥离、90度剥离、定伸抗拉测试、下压试验扩展应用(需特殊附件或改制)——安瓿折断力、薄膜穿刺力、带袋输液袋盖穿刺力、软橡胶瓶塞穿刺/拔拉力、组合盖开启力、ZD型瓶盖撕开力、口服液盖撕开力、口服液盖穿刺/拔拉力、 倾斜90度输液袋盖拉拔力 带袋输液袋盖拉拔力、倾斜23度瓶盖拉拔力、带瓶瓶盖和胶塞穿刺/拉拔力、胶带90度剥离力、胶订书页撕开力、90度水性膏药剥离力、胶粘物撕开力、黏附强度测试(软)、黏附强度测试(硬)、软管盖剥开力、导管和导管接头脱离力、化妆刷刷毛拉拔力、牙刷刷毛拉拔力、绳类拉断力、果冻杯和酸奶杯开启力、奶杯杯膜剥离力、胶塞拔出力、瓶膜45度剥离力、自封袋袋口拉力、磁卡磁心剥离力、磁卡90度剥离力、热封膜撕开力、保护膜分离力、离型纸分离力、裤型撕裂力、胶带解卷力、塑料瓶抗压力、20度斜面剥离力、135度插销剥离力、浮辊剥离夹具、偏心夹具、宽试样夹具、日式夹具、英式夹具、隐形眼镜拉断力、果冻杯耐压力测试 容器抗压缩力、海绵抗压缩力、模拟皮肤抗穿刺力技术参数:传感器规格:500 N(标配);50 N 、100 N 、 250 N 、1000 N(可选)力值精度:示值±0.5%(传感器规格的2%-100%);±0.01%FS(传感器规格的0%-2%)显示分辨率:0.001N试验速度:0.05~500mm/min 速度精度:示值±0.5%(最大速度的 1% 到 100%)试样数量:1件试样宽度:30 mm(标配夹具);50 mm(可选夹具)试样夹持:气动气源:空气(气源用户自备)气源压力:0.5 MPa~0.7 MPa (72.5psi~101.5psi)行程:1000 mm外形尺寸:365mm(L) × 472mm(W) × 1740mm(H)电源:220VAC±10% 50Hz / 120VAC±10% 60Hz二选一净重:约110kg产品配置:标准配置:主机、专业软件、平板电脑、薄膜气动夹具选购:标准压辊、试验板、取样刀、打印机(激光)、空压机GMP计算机系统要求、DataShieldTM数据盾备注:本机气源接口系Ф4mm聚氨酯管;气源用户自备创新点:C610H智能电子拉力试验机是Labthink兰光公司2019年7月上市的一款新型号拉力试验机,专业适用于塑料薄膜、复合材料、软质包装材料、塑料软管、胶粘剂、胶粘带、不干胶、医用贴剂、离型纸、保护膜、组合盖、金属箔、隔膜、背板材料、无纺布、橡胶、纸张等产品的拉伸、剥离、变形、撕裂、热封、粘合、穿刺力、开启力、低速解卷力、拔开力等性能测试。(1)卓越的测试机构,精度全面升级——配置全球知名品牌的力值测试系统、伺服运行系统、气动夹持系统,确保测试的精度、稳定性和数据的准确性;(2)一体机多功能化设计——仪器集成拉伸、剥离、撕裂、热封、定伸抗拉、下压等专业独立的测试程序,为用户提供了多种试验项目;(3)高端嵌入式计算机系统平台,安全易用——大尺寸触控平板,视图清晰, 触控灵敏,易于操作;全新软件系统,流程精练,操控流畅,简单易学;C610H智能包装拉力机 塑料拉力机
  • 专家称年份酒普遍含有塑化剂
    成都糖酒会刚刚落幕,白酒质量安全再次成为各方关注的焦点。我国著名白酒评委张志刚日前向记者透露,截至目前年份在两年以上的白酒,无论品牌,凡是送检的几乎都存在塑化剂问题。  传导过程产生白酒塑化剂  2012年11月,国家质检总局通报了湖南省产商品质量监督检验院对50度酒鬼酒样品的检测结果,其中DBP(邻苯二甲酸酯类物质,俗称塑化剂)最高检出值为1.04mg/kg,超出标准2.6倍。  对此,中国酒业协会发表声明称,我国白酒产品塑化剂含量限定标准正在研究之中,目前只有容器、包装方面有塑化剂标准,因此不存在白酒本身塑化剂&ldquo 超标&rdquo 一说。而且,我国规模以上企业的白酒产品中,塑化剂含量远远低于国外相关食品标准中对塑化剂含量指标的规定。  但是,在很多消费者看来,这种辩解毫无责任,有业内人士在接受记者采访时就指出,拿标准&ldquo 说事&rdquo 有为酒企开脱之嫌,白酒本来就是中国的民族饮品,国际上对白酒塑化剂含量根本就没有具体标准,更谈不上&ldquo 低于&rdquo 国际标准。  我国著名白酒评委张志刚在接受记者采访时表示,白酒中塑化剂的产生主要是在传导过程中,白酒在生产时使用大量塑料软管、塑料桶,由于塑料软管、塑料桶与白酒长期接触,可能导致塑化剂溶出,另外,也不排除有的白酒酿造使用的原料酒、添加的香精香料可能含有塑化剂,进而引入到白酒最终产品中。  据食品安全网站放心365总裁高建明的介绍,作为一种环境内分泌干扰物,塑化剂对动物雌激素具有显著的干扰效应。长期摄入过量塑化剂,会损害男性生殖能力,促使女性性早熟以及对免疫系统和消化系统造成伤害。  高建明表示,白酒的包装材料也可能成为塑化剂问题的帮凶,比如塑料内塞,白酒灌装后,在整个贮存、运输、流通环节均有可能与添加塑化剂的内塞&ldquo 亲密&rdquo 接触,导致塑化剂的溶出,所以合格白酒出厂后,也有可能在流通环节抽检时发现含有塑化剂。  &ldquo 年份酒&rdquo 被测普遍含有塑化剂  张志刚日前在接受记者采访时表示,截至目前,年份在两年以上的白酒,无论品牌,凡是送检的几乎都存在含有塑化剂的问题。  张志刚表示,这是因为酒鬼酒被曝出塑化剂事件是在一年半以前,引起各方重视之后,各酒企才开始严格生产和流通监管,甚至淘汰原有含塑料软管和塑料桶的设备,但是现在市场上流通的白酒产品往往都是在两三年以前生产的,这是由于白酒这种产品的特殊性&mdash &mdash &mdash 生产后一般要储存一段时间后才面向市场,因此可以说,现在市面上流通的白酒,无论品牌,几乎都有塑化剂问题。  而且,当时大部分地区白酒出厂检验项目中不包括塑化剂的检测,所以这些产品都是直接流入了市场,消费者一般也无法判定塑化剂的存在。  据有关专家介绍,自从酒鬼酒塑化剂事件曝出后,很多酒企迅速采取补救措施全面&ldquo 禁塑&rdquo ,并已取得一定成果。如原材料环节,原来有些厂家使用的是塑料编织袋运输高粱小麦,现在改为麻包带,并在除杂环节避免塑料物质进入 在制酒生产环节,将蒸馏接酒管道、接酒桶、瓢盆容器全面更换为不锈钢材质 在存储勾兑环节,输酒管道更换为不锈钢软管,储酒陶坛的封口都加了皮纸,并且将封口薄膜全部更换为不含塑化剂的材质等。  对此,张志刚表示,即便现在很多酒企全面升级设备和监管措施,但已进入流通环节的产品确实存在塑化剂问题,因为这些产品几乎都是酒企&ldquo 升级&rdquo 前出产的&ldquo 酒企也很难办,过去的产品会被人质疑有塑化剂问题,如果将这些正流通的产品换为新生产的产品,又会被质疑年份不够,可谓是两头为难。酒企仍需要时间来渡过这个特殊时期,目前要想一下子祛除所有隐患是不可能的。&rdquo   &ldquo 国标&rdquo 千呼万唤难出台  虽然此前引发广泛关注,但中国酒业协会所称的白酒产品塑化剂含量的&ldquo 国标&rdquo 确实到目前为止仍未出台。中国酒业协会之前曾建议卫生部门进行白酒塑化剂残留量安全风险评估,待评估后,制定出白酒产品塑化剂安全标准。  去年年底,国家食药监局发布通知,要求按照国家卫生计生委通报的风险评估结果,加强对白酒产品中塑化剂的抽样检验,发现白酒中塑化剂高于风险评估值的,立即责令企业停产整顿。该通知并未明确给出卫生计生委通报的塑化剂风险评估值的具体数值。  对此,有业内人士表示,若一个行业无标准可循,那么企业产品的合格性无法确定,消费者的信心也就无从谈起。当前确实面临着全球尚无塑化剂限量标准可参考的问题,但是国内相关部门可以在研究基础之上根据国人体质制定出符合自身的塑化剂标准。此外,政府部门如标准制定部门、质检部门的公信力也有待恢复,否则标准和检测结果不被消费者认可,白酒行业的塑化剂问题也就不能得到良好解决。同时,政府也可规范和促进第三方检测机构的发展,使其为国内食品安全筑起另一道安全保障。
  • 2024年2月份有116项标准将实施 以化工塑料为主
    2024年2月份有116项标准将实施我们通过国家标准信息平台查询到,在2024年2月份将有116项与仪器及检测行业的国家标准、行业标准和地方标准将实施,具体数量明细如下:在2月份新实施的标准中,与化工塑料相关的标准有49个,占据了42%,紧随其后的领域为农林牧渔食品和冶金矿产类标准。与化工塑料相关的49个标准中,主要是以工业化学试剂为主。食品相关标准21个,主要涉及各类加工技术规程、生产、种植技术规程等。具体2024年2月份主要新实施的标准如下:需要相关标准的,点击链接即可下载收藏↓仪器仪表与计量标准(3个)HG/T 2068-2023 橡胶快速塑性计 HG/T 2041-2023 橡胶厚度计 HG/T 6138-2023 比表面积及孔径分析仪 农林牧渔食品标准(21个)DB36/T 1818-2023 绿芦笋产地加工技术规程 DB36/T 1814-2023 富硒盐皮蛋加工技术规程 DB36/T 1812-2023 赣菜莲花血鸭烹饪技艺规范 DB36/T 1811-2023 赣菜宁都三杯鸡烹饪技艺规范 DB36/T 1809-2023 山岳型雪 凇 观赏指数等级 DB36/T 478-2023 金边瑞香盆花生产技术规程 DB36/T 1825-2023 “ 杉木 - 铁皮石斛 - 草珊瑚 - 灵芝 ” 林药复合种植技术规程 DB36/T 1824-2023 湿地松采穗圃营建技术规程 DB36/T 1823-2023 戏水池式种鸭舍建设规范 DB36/T 1822-2023 豆薯生产技术规程 DB36/T 1821-2023 山药扦插繁种技术规程 DB36/T 1820-2023 黑木耳代料栽培技术规程 DB36/T 929-2023 大鲵仿生态繁育技术规程 DB36/T 908-2023 平菇生产技术规程 DB36/T 907-2023 金福菇生产技术规程 DB36/T 861-2023 脐橙高温低湿灾害等级 DB36/T 860-2023 脐橙冻害预警等级 DB36/T 856-2023 水稻机械化插秧技术规程 DB36/T 855-2023 水稻机械化育秧技术规程 DB36/T 824-2023 秀珍菇生产技术规程 DB36/T 823-2023 金针 菇 生产技术规程 环境环保标准(13个)DB14/ 2801—2023 工业涂装工序大气污染物排放标准 DB14/ 2800—2023 耐火材料工业大气污染物排放标准 DB36/T 649-2023 危险化学品铁道罐车金属常压罐体定期检验规则 DB36/T 1819.4-2023 受污染耕地安全利用与风险管控规程 第 4 部分:效果评价 DB36/T 1819.3-2023 受污染耕地安全利用与风险管控规程 第 3 部分: 镉 污染稻田安全利用技术措施 DB36/T 1819.2-2023 受污染耕地安全利用与风险管控规程 第 2 部分:风险评价 DB36/T 1819.1-2023 受污染耕地安全利用与风险管控规程 第 1 部分:总则 DB36/T 918-2023 广播电视通信铁塔安全检测技术规程 DB36/T 933-2023 数据中心雷电防护装置检测技术规范 DB36/T 900-2023 建筑物雷电防护装置设计技术评价规范 HG/T 3519-2023 工业循环冷却水中苯并三氮 唑 的测定 HG/T 3777-2023 水处理剂 二亚乙基 三 胺五亚甲基膦 酸 HG/T 2841-2023 水处理剂 氨基三亚甲基 膦 酸 医药卫生标准(11个)WS/T 433—2023 静脉治疗护理技术操作标准 WS/T 431—2023 护理分级标准 WS/T 827—2023 核与放射卫生应急准备与响应通用标准 WS/T 826—2023 碳青霉烯类耐药肠杆菌预防与控制标准 WS/T 312—2023 医院感染监测标准 WS/T 311—2023 医院隔离技术标准 WS/T 306—2023 卫生健康信息数据集分类与编码规则 WS/T 305—2023卫生健康信息数据集元数据标准WS/T 304—2023 卫生健康信息数据模式描述指南 WS/T 303—2023 卫生健康信息数据元标准化规则 DB36/T 806-2023 医院消防 安全管理规范 冶金矿产标准(19个)YB/T 4193-2023 抗结皮耐火浇注料 YB/T 4129-2023 塑性相复合刚玉砖 YB/T 4126-2023 高炉出铁沟浇注料 YB/T 116-2023 炉辊用耐火浇注料 YB/T 6113-2023 电加热炉碳化硅导热体 YB/T 6112-2023 流体输送用不锈钢波纹管及管件 YB/T 6111-2023 电解金属铬 YB/T 6110-2023 铬 - 锰 - 镍 - 氮系奥氏体不锈钢 热轧钢板和钢带 YB/T 6109-2023 铬 - 锰 - 镍 - 氮系奥氏体不锈钢 冷轧钢板和钢带 YB/T 5183-2023 汽车附件、内燃机、软轴用异型钢丝 YB/T 6104-2023 线材用砂带除锈机技术规范 YB/T 6103-2023 汽车胀断连杆用非调质结构钢棒 YB/T 4370-2023 城镇燃气输送用不锈钢焊接钢管 YB/T 4330-2023 大直径奥氏体不锈钢无缝钢管 YB/T 6105-2023 金刚石线母线钢丝 YB/T 6107-2023 装饰用不锈钢冷轧钢板及钢带 YB/T 6108-2023 不锈钢彩色涂层钢板及钢带 YB/T 6106-2023 汽车紧固件用冷镦钢盘条 DB36/T 789-2023 钢制压力管道超声导波检测方法 化工塑料标准(49个)HG/T 2070-2023 橡胶压缩屈挠试验机 HG/T 6137-2023 摆锤式轿车轮胎撞击试验机 HG/T 3731-2023 非金属化工设备 玻璃纤维增强聚氯乙烯复合管和管件 HG/T 2643-2023 非金属化工设备 丙烯腈 - 丁二烯 - 苯乙烯、聚氯乙烯、 均聚聚丙烯 、聚偏氟乙烯和玻璃纤维增强聚丙烯隔膜阀 HG/T 2737-2023 非金属化工设备 丙烯腈 - 丁二烯 - 苯乙烯、聚氯乙 烯、 均聚聚丙烯 、聚偏氟乙烯和玻璃纤维增强聚丙烯球阀 HG/T 2590-20203 C.I. 荧光增白剂 199 (荧光增白剂 ER-I ) HG/T 2556-2023 C.I. 荧光增白剂 135 HG/T 4158-2023 C.I. 酸性红 249 (酸性艳红 P-5B ) HG/T 4157-2023 C.I. 酸性黄 117 (酸性艳黄 P-3R ) HG/T 6186-2023 C.I. 分散黄 82 (分散荧光黄 8GFF ) HG/T 6185-2023 C.I. 分散黄 184:1 (分散荧光黄 10GN ) HG/T 6184-2023 C.I. 分散红 277 (分散荧光红 G ) HG/T 3585-2023 工业硼氢化钠 HG/T 3584-2023 工业硼氢化钾 HG/T 3591—2023 工业焦磷酸钾 HG/T 4520—2023 工业碳酸钴 HG/T 4315—2023 工业速溶粉状硅酸钠 HG/T 4506—2023 工业氢氧化钴 HG/T 4501—2023 工业氯化锶 HG/T 2774—2023 工业改性超细沉淀硫酸钡 HG/T 4823-2023 电池用硫酸锰 HG/T 2821.1-2023 V 带和多楔带用浸胶聚酯线绳 第 1 部分:硬线绳 HG/T 4616-2023 增塑剂 乙酰柠檬酸三丁酯( ATBC ) HG/T 4615-2023 增塑剂 柠檬酸三丁酯( TBC ) HG/T 6163-2023 橡胶助剂 预分散母料试验方法 HG/T 6162-2023 复配抗氧剂试验方法 HG/T 6161-2023 硫化促进剂 N- 环己基 - 双( 2- 苯并噻唑)次 磺 酰亚胺( CBBS ) HG/T 6159-2023 橡胶防老剂 2- 巯基 -4 (或 5 ) - 甲基苯并咪唑锌( ZMMBI ) HG/T 6158-2023 硫化促进剂 二异丁基二硫代氨基甲酸锌( ZDIBC ) HG/T 3084-2023 注塑鞋 HG/T 3611-2023 鞋类模拟行走(寿命)试验方法 HG/T 2878-2023 胶鞋试穿试验规则 HG/T 2875-2023 橡塑鞋微孔材料交联密度特征值试验方法 HG/T 2949-2023 电绝缘橡胶板 HG/T 2793-2023 工业用导电和抗静电橡胶板 HG/T 6160-2023 橡胶配合剂 硅橡胶用气相二氧化硅 HG/T 3062-2023 橡胶配合剂 沉淀水合二氧化硅 二氧化硅含量的测定 HG/T 4666-2023 胶乳海绵 HG/T 4786-2023 胶乳色浆 HG/T 6166-2023 织物浸渍聚氨酯胶乳手套 HG/T 2888-2023 橡胶家用手套 HG/T 4116-2023 滚筒洗衣机观察窗橡胶密封垫 HG/T 6183-2023 球墨铸铁管接口 防滑止脱橡胶 密封圈 HG/T 6181-2023 发动机油底壳橡胶密封垫 HG/T 6164.1-2023 流体传输用大 口径扁置橡胶 软管规范 第 1 部分:输水软管 HG/T 3041-2023 油槽车输送燃油用橡胶软管和软管组合件 HG/T 3038-2023 吸油和排油用橡胶软管及软管组合件 规范 HG/T 2490-2023 疏浚用钢丝或织物增强的橡胶软管和软管组合件 规范 HG/T 6165-2023 汽车发动机点火线圈橡胶护套 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓ 扫码到APP免费下载 目前仪器信息网资料库 有80万+篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有20多万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 兰光发布C630H薄膜热封仪 实验室热封仪新品
    热封材料的熔点、热稳定性、流动性及厚度不同,会表现出不同的热封性能,其封口工艺参数可能差别很大。C630H薄膜热封仪 实验室热封仪,可准确高效的测定塑料薄膜基材、软包装复合膜、涂布纸及其它热封复合膜的热封时间、热封压力,热封温度合适的性能参数。产品特点:1、创新的机构改良,精度全面升级:上下十个封头均为金属表面,可获取更真实的热封参数数字P.I.D控温技术可快速达到设定温度,有效避免温度波动自动恒压技术,无需手动调节,热封压力更稳定封头自动调平技术,保证各封头热封效果一致宽范围温度、压力和时间控制,满足用户的各种试验条件2、卓越的细节设计,高效安全:设备可一次完成五组热封试验,准确、高效的获得试样热封性能参数上下热封头均可独立控温,为用户提供了更多的试验条件组合分体式热封头,方便快速更换热封面手动和脚踏两种试验启动模式以及防烫伤安全设计,保证使用方便和安全3、高端嵌入式计算机系统平台,安全易用:大尺寸触控平板,视图清晰、 触控灵敏、易于操作全新软件系统,流程精练,操控流畅,简单易学支持成组试验数据比对分析,具有多单位转换功能内嵌USB接口和网口,方便系统的外部接入和数据传输符合中国GMP对数据可追溯性的要求,满足医药行业需要(可选)兰光独有的数据安全性设计,测试数据与电脑分离,避免由计算机病毒等引起的系统故障造成数据丢失兰光独有的DataShieldTM数据盾系统,方便数据集中管理和对接信息系统(可选)参照标准:ASTM F2029、QB/T 2358、YBB 00122003测试应用:基础应用:薄膜材料光滑平面——适用于各种塑料薄膜、塑料复合薄膜、纸塑复合膜、共挤膜、镀铝膜、铝箔、铝箔复合膜等膜状材料的热封试验,热封面为光滑平面,可以同时进行五种温度的热封,热封宽度可以根据用户的需求进行设计。薄膜材料花纹平面——适用于各种塑料薄膜、塑料复合薄膜、纸塑复合膜、共挤膜、镀铝膜、铝箔、铝箔复合膜等膜状材料的热封试验,可以同时进行五种温度的热封,热封面可以根据用户的需求进行设计。扩展应用:塑料软管——把塑料软管的管尾放在上下封头之间,对管尾进行热封,使塑料软管成为一个包装容器。C630H薄膜热封仪 实验室热封仪技术参数:热封温度:室温~300℃热封压力:0.05MPa~0.7 MPa 压力分辨率:0.001 MPa 热封时间:0.1~999.99s时间分辨率:0.01s温度分辨率:0.1℃温度波动:±0.2℃温度准确度:±0.5℃(单点校准)温度梯度:≤20℃气源:空气(气源用户自备)气源压力:0.7 MPa 气源接口:Ф8 mm聚氨酯管热封面:40 mm × 10 mm封头数量:5组(上下共10个均可独立控温)外形尺寸:375mm(L) × 360mm(W) × 518mm(H)电源:220VAC±10% 50Hz / 120VAC±10% 60Hz二选一净重:55kg 产品配置:标准配置:主机、平板电脑、脚踏开关、高温焊布、取样刀、Ф8mm聚氨酯管(2m)选购:高温焊布、空压机、GMP计算机系统要求、DataShieldTM数据盾备注:本机气源接口系Ф8mm聚氨酯管;气源用户自备创新点:1、创新的机构改良,精度全面升级;2、卓越的细节设计,高效安全;3、高端嵌入式计算机系统平台,安全易用;C630H薄膜热封仪 实验室热封仪
  • 江苏省市场监管局关于橡胶软管等88种产品质量监督抽查实施细则
    江苏省市场监管局定于2023年7-12月实施2023年省级产品质量监督抽查,现将橡胶软管等88种产品质量监督抽查实施细则予以公开。附件: 橡胶软管等88种产品质量监督抽查实施细则1橡胶软管省级监督抽查实施细则(2023年版).doc2橡胶软管及组合件省级监督抽查实施细则(2023年版).doc3橡胶密封制品省级监督抽查实施细则(2023年版).doc4金属软管省级监督抽查实施细则(2023年版).doc5燃气灶具省级监督抽查实施细则(2023年版).doc6调压阀省级监督抽查实施细则(2023年版).doc7家用燃气热水器省级监督抽查实施细则(2023年版).doc8电动自行车省级监督抽查实施细则(2023年版).docx9电动自行车充电器省级监督抽查实施细则(2023年版).doc10电动自行车锂电池省级监督抽查实施细则(2023年版).doc11热轧带肋钢筋省级监督抽查实施细则(2023年版).doc12热轧光圆钢筋省级监督抽查实施细则(2023年版).doc13冷轧带肋钢筋省级监督抽查实施细则(2023年版).doc14水泥省级监督抽查实施细则(2023年版).doc15砖、砌块省级监督抽查实施细则(2023年版).doc16建筑用钢化玻璃省级监督抽查实施细则(2023年版).doc17建筑用外墙涂料省级监督抽查实施细则(2023年版).doc18建筑防水涂料省级监督抽查实施细则(2023年版).doc19建筑保温材料省级监督抽查实施细则(2023年版).doc20建筑防水卷材省级监督抽查实施细则(2023年版).doc21塑料管材(PE,PE-RT)省级监督抽查实施细则(2023年版).docx22塑料管材(PP-R、PVC-U)省级监督抽查实施细则(2023年版).doc23合成树脂乳液内墙涂料省级监督抽查实施细则(2023年版).doc24木器涂料省级监督抽查实施细则(2023年版).doc25铝合金建筑型材省级监督抽查实施细则(2023年版).docx26热加工合金钢材省级监督抽查实施细则(2023年版).docx27钢丝绳省级监督抽查实施细则(2023年版).docx28钢筋混凝土排水管省级监督抽查实施细则(2023年版).doc29混凝土外加剂省级监督抽查实施细则(2023年版).doc30防盗安全门省级监督抽查实施细则(2023年版).doc31壁纸省级监督抽查实施细则(2023年版).docx32胶合板(含阻燃胶合板)省级监督抽查实施细则(2023年版).doc33胶粘剂省级监督抽查实施细则(2023年版).doc34浸渍胶膜纸饰面人造板省级监督抽查实施细则(2023年版).doc35浸渍纸层压木质地板省级监督抽查实施细则(2023年版).doc36实木复合地板省级监督抽查实施细则(2023年版).doc37泵省级监督抽查实施细则(2023年版).doc38农用地膜省级监督抽查实施细则(2023年版).docx39车用柴油省级监督抽查实施细则(2023年版).doc40车用汽油省级监督抽查实施细则(2023年版).doc41车用尿素省级监督抽查实施细则(2023年版).doc42液化石油气省级监督抽查实施细则(2023年版).doc43水溶肥料省级监督抽查实施细则(2023年版).doc44船用燃料油省级监督抽查实施细则(2023年版).doc45机动车发动机冷却液省级监督抽查实施细则(2023年版).doc46机动车辆制动液省级监督抽查实施细则(2023年版).doc47商品煤省级监督抽查实施细则(2023年版).doc48汽车遮阳膜省级监督抽查实施細则(2023年版).doc49汽车轮胎省级监督抽查实施细则(2023年版).doc50汽车线束省级监督抽查实施细则(2023年版).doc51汽车灯具省级监督抽查实施细则(2023年版).doc52摩擦材料省级监督抽查实施细则(2023年版).doc53发动机润滑油省级监督抽查实施细则(2023年版).doc54安全带省级监督抽查实施细则(2023年版).doc55安全帽省级监督抽查实施细则(2023年版).doc56安全网省级监督抽查实施细则(2023年版).doc57防护手套省级监督抽查实施细则(2023年版).doc58安全鞋省级监督抽查实施细则(2023年版).doc59阻燃服省级监督抽查实施细则(2023年版).doc60防静电服省级监督抽查实施细则(2023年版).doc61消防应急灯具省级监督抽查实施细则(2023年版).doc62防火阀省级监督抽查实施细则(2023年版).doc63消防接口省级监督抽查实施细则(2023年版).doc64消防水枪省级监督抽查实施细则(2023年版).doc65防火涂料(钢结构、饰面型)省级监督抽查实施细则(2023年版).doc66消防软管卷盘省级监督抽查实施细则(2023年版).doc67消防水带省级监督抽查实施细则(2023年版).doc68防火门省级监督抽查实施细则(2023年版).doc69可燃气体报警仪省级监督抽查实施细则(2023年版).doc70五金刀具省级监督抽查实施细则(2023年版).doc71防爆电气省级监督抽查实施细则(2023年版).doc 72危险化学品包装及容器省级监督抽查实施细则(2023年版).doc 73危险化学品(含醇基燃料)省级监督抽查实施细则(2023年版).doc74电动工具省级监督抽查实施细则(2023年版).doc75小功率电机省级监督抽查实施细则(2023年版).doc76电线电缆省级监督抽查实施细则(2023年版).doc77家用和类似用途剩余电流动作断路器省级监督抽查实施细则(2023年版).doc78家用及类似场所用过电流保护断路器省级监督抽查实施细则(2023年版).doc 79食品接触用纸包装及容器等制品省级监督抽查实施细则(2023年版).doc 80食品接触用塑料包装容器、工具等制品省级监督抽查实施细则(2023年版).doc 81餐具洗涤剂省级监督抽查实施细则(2023年版).doc 82密胺餐具省级监督抽查实施细则(2023年版).doc 83一次性可降解塑料制品省级监督抽查实施细则(2023年版).doc 84食品接触用竹木制品省级监督抽查实施细则(2023年版).doc 85烘焙用纸制品省级监督抽查实施细则(2023年版).doc 86手提式灭火器省级监督抽查实施细则(2023版).doc 87茶叶包装产品质量省级监督抽查(2023版).doc 88复混肥料省级监督抽查实施细则(2023版).doc
  • 来亨公司 质优价廉 Tygon系列软管
    北京来亨公司强力推出实验室高品质耗材--Tygon系列软管详情请登陆我公司网站:www.laiheng.com 联系方式:010-63847795/ 63843373/ 63815585法国圣戈班高功能塑料公司生产的,Tygon系列软管,广泛适用于制药、医疗、实验室、食品及饮料等行业。能够满足各种对软管在工作温度、耐磨性、抗化学腐蚀性、气密性等多方面的要求。只要用户需要购买软管,就一定能从品种齐全的Tygon系列软管中选择出最符合用户需要的产品。 产品分类简介(每种均有各种不同直径): 理化分析仪器用软管:Tygon R-363 可耐几乎所有的实验室中常用的无机化学品;柔软、透明、不易老化及脆裂,气密性比橡胶管好;耐低温性出色,在-43℃使用仍可保持柔韧。可作为冷凝器、培养箱、气管、排水管等实验室用软管,以及蠕动泵管。 真空泵管:Tygon R-363 Vacuum 具有质密超厚管壁,真空度可达759mm Hg/23℃至686 mm Hg/60℃;可耐真空泵油及大部分无机化合物,不易老化。其蒸汽压低,允许最小真空度为3×10-2 mm Hg/74℃,适用于气体、蒸汽的分析测试。 耐强腐蚀用软管:Fluran F-5500-A 可耐绝大部分强酸、强碱、燃油,有机溶剂等;可在最高204℃环境下长期使用;具有很强的耐臭氧几耐侯性;弹性、柔韧性出色,是输送强腐蚀介质用的理想的蠕动泵管。 特氟隆软管:Chemfluor PTFE/PFA/FEP 是专为半导体、实验室、化工等行业提供的;纯度高、内表面光滑、抗各类强腐蚀性化学品尤其出众、可耐高温、无毒无味;有PTFE、FEP、PFA可供选择。 卫生级硅胶管:Tygon 3350 白金硫化的卫生级硅胶管;疏水性内表面,提高流动性;内壁极其光滑、吸附性低,析出物极低,生物相容性可达ISO10993标准符合美国USP Class VI,FDA及NSF相关标准。 卫生级耐压硅胶管:Tygon 3370 I.B. 白金硫化的卫生级耐压硅胶管;生物相容性极好、内表面极其光滑,专为压力下输送敏感性介质而设计;符合USP Class VI,FDA及NSF相关标准;与TygopureTM卫生级接头配合使用,广泛应用于CIP、SIP系统及制药、生物技术、化妆品制造等行业。 生物配料、细胞研究用蠕动泵管:PharMed 可在蠕动泵上长时间使用,寿命比硅胶管长30倍。可重复高温高压灭菌消毒;符合美国USP Class VI,FDA及NSF相关标准;起生物相溶性可达ISO10993标准;气密性比硅胶管强60倍。 长寿命、透明蠕动泵管:Tygon LFL 耐磨性是所有Tygon透明软管中最好的,寿命最长的蠕动泵管。符合美国USP Class VI及FDA相关标准;极低的颗粒离度,耐老化、耐腐蚀、安全、无毒,可广泛用于制药、化妆品、食品及饮料制造行业。 食品、饮料、乳制品用软管:Tygon B-4-4X 符合美国FDA,3-A及NSF相关标准,透明无味,光滑内表面,清洗容易,可抑制细菌生长;可耐强碱性清洗剂和消毒液;亦适用于输送含油量高的食品;最大内径可达6”(152mm)。 食品级耐压管:Tygon B-4-4X I.B. 耐压能力是同类非增强型软管的4倍,内表面光滑、无孔、容易清洗,可抑制细菌生长;可耐碱性清洗液;无毒、无味,符合美国FDA,3-A及NSF相关标准。 食品极耐高温软管:Norprene A-60-F 可耐温-51℃至135℃;可重复高温高压消毒;耐大部分通用型清洗剂和消毒剂。比普通橡胶管耐老化,不易脆裂,可用蒸汽消毒;无毒、无味,符合美国FDA,3-A及NSF相关标准;耐磨性出众,亦适用于蠕动泵管。 食品极耐高温、耐压软管:Norprene A-60-F I.B. 耐压、耐高温(-51℃至135℃),耐臭氧及紫外线,使用寿命长;无毒、无味,符合美国FDA,3-A及NSF相关标准;适用于CIP和SIP等清洗、消毒系统。 燃油、润滑油用软管:Tygon F-4040-A 可耐绝大多数石油化工品,不脆裂、不溶胀;抗臭氧及紫外线,不易老化;适用于输送汽油、柴油、加热油,切屑复合油及乙二醇类制冷剂。 绿色环保型软管:Tygon 2275 无增塑剂,纯净度高,符合USP Class VI、FDA及NSF标准及ISO10993生物相溶性标准,焚烧后对环境无污染。 绿色环保型软管:Tygon 2075 能耐腐蚀性强的酸、碱、酮、盐、醇类化学品;无增塑剂,符合USP Class VI标准。
  • 10月1日有208个与我们相关的国家标准将实施
    10月1日有208个与我们相关的国家标准将实施我们每期整理的即将实施标准都受到用户的热烈欢迎。10月份将要实施的国家标准比较多,超过400多个标准将要实施,而与我们息息相关的科学仪器及检测的标准有208个。10月1日将要实施的标准涉及化妆品、食品农业、环境、冶金、机械、石油化工塑料、矿业、纺织、医疗、电力、建材等多个行业领域。其中石油化工、机械、冶金、环境四大领域实施的国家标准较多。10月份即将实施的标准如下,需要的可以收藏。化妆品标准GB/T 39946-2021 唇用化妆品中禁用物质对位红的测定 高效液相色谱法 GB/T 39927-2021 化妆品中禁用物质藜芦碱的测定 高效液相色谱法 食品农业标准GB/T 39947-2021 食品包装选择及设计 GB/T 19420-2021 制盐工业术语 GB/T 20695-2021 高效氯氟氰菊酯原药 GB/T 20696-2021 高效氯氟氰菊酯乳油 环境标准GB/T 24031-2021 环境管理 环境绩效评价 指南 GB/T 28125.2-2020 气体分析 空分工艺中危险物质的测定 第2部分:矿物油的测定 GB/T 39298-2020 再生水水质 苯系物的测定 气相色谱法 GB/T 39299-2020 液晶面板制造稀释废液回收再利用方法 GB/T 39300-2020 含铬电镀污泥处理处置方法 GB/T 39301-2020 电镀污泥减量化处置方法 GB/T 39302-2020 再生水水质 阴离子表面活性剂的测定 亚甲蓝分光光度法 GB/T 39303-2020 废水处理系统微生物样品前处理通用技术规范 GB/T 39304-2020 再生水生物毒性检测的样品前处理通用技术规范 GB/T 39305-2020 再生水水质 氟、氯、亚硝酸根、硝酸根、硫酸根的测定 离子色谱法 GB/T 39306-2020 再生水水质 总砷的测定 原子荧光光谱法 GB/T 39308-2020 难降解有机废水深度处理技术规范 GB/T 39598-2021 基于极限甲醛释放量的人造板室内承载限量指南 GB/T 39600-2021 人造板及其制品甲醛释放量分级 GB/T 39763-2021 家具中挥发性有机化合物现场快速采集设备技术要求 GB/T 39764-2021 软体家具中挥发性有机化合物 现场快速检测方法 GB/T 39765-2021 文具中苯、甲苯、乙苯及二甲苯的测定方法 气相色谱法 GB/T 39804-2021 墙体材料中可浸出有害物质的测定方法 GB/T 39808-2021 生活饮用水外置式膜过滤系统设计规范 GB/T 39835-2021 大生活用海水水质 GB/T 39897-2021 车内非金属部件挥发性有机物和醛酮类物质检测方法 GB/T 39931-2021 木家具中挥发性有机化合物 现场快速检测方法 GB/T 39934-2021 家具中挥发性有机化合物的筛查检测方法 气相色谱-质谱法 GB/T 39939-2021 家具部件中挥发性有机化合物 现场快速检测方法 GB/T 39966-2021 废弃资源综合利用业环境绩效评价导则 GB/T 5832.4-2020 气体分析 微量水分的测定 第4部分:石英晶体振荡法 冶金标准GB/T 14352.19-2021 钨矿石、钼矿石化学分析方法 第19部分:铋、镉、钴、铜、铁、锂、镍、磷、铅、锶、钒和锌量的测定 电感耦合等离子体原子发射光谱法 GB/T 14352.20-2021 钨矿石、钼矿石化学分析方法 第20部分:铌、钽、锆、铪及15个稀土元素量的测定 电感耦合等离子体质谱法 GB/T 14352.21-2021 钨矿石、钼矿石化学分析方法 第21部分:砷量的测定 氢化物发生-原子荧光光谱法 GB/T 14352.22-2021 钨矿石、钼矿石化学分析方法 第22部分:锑量的测定 氢化物发生-原子荧光光谱法 GB/T 14635-2020 稀土金属及其化合物化学分析方法 稀土总量的测定 GB/T 15159-2020 贵金属及其合金复合带材 GB/T 18115.1-2020 稀土金属及其氧化物中稀土杂质化学分析方法 第1部分:镧中铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥和钇量的测定 GB/T 18115.2-2020 稀土金属及其氧化物中稀土杂质化学分析方法 第2部分:铈中镧、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥和钇量的测定 GB/T 24980-2020 稀土长余辉荧光粉 GB/T 24981.1-2020 稀土长余辉荧光粉试验方法 第1部分:发射主峰和色品坐标的测定 GB/T 24981.2-2020 稀土长余辉荧光粉试验方法 第2部分:余辉亮度的测定 GB/T 39231-2020 无水氯化铈 GB/T 16479-2020 碳酸轻稀土 GB/T 20892-2020 镨钕金属 GB/T 20975.13-2020 铝及铝合金化学分析方法 第13部分:钒含量的测定 GB/T 20975.15-2020 铝及铝合金化学分析方法 第15部分:硼含量的测定 GB/T 20975.19-2020 铝及铝合金化学分析方法 第19部分:锆含量的测定 GB/T 20975.20-2020 铝及铝合金化学分析方法 第20部分:镓含量的测定 丁基罗丹明B分光光度法 GB/T 20975.32-2020 铝及铝合金化学分析方法 第32部分:铋含量的测定 GB/T 20975.33-2020 铝及铝合金化学分析方法 第33部分:钾含量的测定 火焰原子吸收光谱法 GB/T 20975.34-2020 铝及铝合金化学分析方法 第34部分:钠含量的测定 火焰原子吸收光谱法 GB/T 20975.8-2020 铝及铝合金化学分析方法 第8部分:锌含量的测定 GB/T 23514-2020 核级银-铟-镉合金化学分析方法 GB/T 2526-2020 氧化钆 GB/T 2968-2020 金属钐 GB/T 3488.3-2021 硬质合金 显微组织的金相测定 第3部分:Ti(C,N)和WC立方碳化物基硬质合金显微组织的金相测定 GB/T 39158-2020 平面显示用高纯铜旋转管靶 GB/T 39232-2020 氧化锆日用陶瓷刀 GB/T 39233-2020 镧铜合金 GB/T 39285-2020 钯化合物分析方法 氯含量的测定 离子色谱法 GB/T 39292-2020 废钯炭分析用取样和制样方法 GB/T 39495-2020 金属及其他无机覆盖层 铝及铝合金无铬化学转化膜 GB/T 39789-2021 焊缝无损检测 金属复合材料焊缝涡流视频集成检测方法 GB/T 39794.1-2021 金属屋面抗风掀性能检测方法 第1部分:静态压力法 GB/T 39810-2021 高纯银锭 GB/T 39816-2021 钛及钛合金铸造母合金电极 GB/T 39856-2021 热轧钛及钛合金无缝管材 GB/T 39859-2021 镓基液态金属 GB/T 39867-2021 正电子发射断层扫描仪用锗酸铋闪烁晶体 GB/T 39157-2020 靶材技术成熟度等级划分及定义 GB/T 39163-2020 靶材与背板结合强度测试方法 GB/T 5162-2021 金属粉末 振实密度的测定 机械标准GB/T 12241-2021 安全阀 一般要求 GB/T 12242-2021 压力释放装置 性能试验方法 GB/T 14231-2021 齿轮装置效率测定方法 GB/T 1454-2021 夹层结构侧压性能试验方法 GB/T 39807-2021 无铅电镀锡及锡合金工艺规范 GB/T 18329.3-2021 滑动轴承 多层金属滑动轴承 第3部分:无损渗透检验 GB/T 18400.10-2021 加工中心检验条件 第10部分:热变形的评定 GB/T 2585-2021 铁路用热轧钢轨 GB/T 2889.5-2021 滑动轴承 术语、定义、分类和符号 第5部分:符号的应用 GB/T 35465.4-2020 聚合物基复合材料疲劳性能测试方法 第4部分:拉-压和压-压疲劳 GB/T 35465.5-2020 聚合物基复合材料疲劳性能测试方法 第5部分:弯曲疲劳 GB/T 35465.6-2020 聚合物基复合材料疲劳性能测试方法 第6部分:胶粘剂拉伸剪切疲劳 GB/T 36805.2-2020 塑料 高应变速率下的拉伸性能测定 第2部分:直接测试法 GB/T 37363.3-2020 涂料中生物杀伤剂含量的测定 第3部分:三氯生含量的测定 GB/T 37363.4-2020 涂料中生物杀伤剂含量的测定 第4部分:多菌灵含量的测定 GB/T 3780.27-2020 炭黑 第27部分:用圆盘式离心光学沉积测量法测定聚集体尺寸分布 GB/T 39286-2020 吸收式换热器 GB/T 39289-2020 胶粘剂粘接强度的测定 金属与塑料 GB/T 39291-2020 鞋钉冲击磨损性能试验方法 GB/T 39296-2020 循环冷却水处理运行效果评价 监测换热器法 GB/T 39485-2020 燃气燃烧器和燃烧器具用安全和控制装置 特殊要求 手动燃气阀 GB/T 39741.1-2021 滑动轴承 公差 第1部分:配合 GB/T 39741.2-2021 滑动轴承 公差 第2部分:轴和止推轴肩的几何公差及表面粗糙度 GB/T 39742-2021 滑动轴承 单层滑动轴承用铝基铸造合金 GB/T 39795-2021 普通用途输送带 导电性和可燃性安全要求 GB/T 39796-2021 动车组玻璃隔声性能试验方法 GB/T 39797-2021 玻璃熔体表面张力试验方法 座滴法 GB/T 39798-2021 动车组玻璃光学性能试验方法 GB/T 39799-2021 钛及钛合金棒材和丝材尺寸、外形、重量及允许偏差 GB/T 12237-2021 石油、石化及相关工业用的钢制球阀 GB/T 7308.1-2021 滑动轴承 有法兰或无法兰薄壁轴瓦 第1部分:公差、结构要素和检验方法 GB/T 7308.2-2021 滑动轴承 有法兰或无法兰薄壁轴瓦 第2部分:轴瓦壁厚和法兰厚度测量 GB/T 7308.3-2021 滑动轴承 有法兰或无法兰薄壁轴瓦 第3部分:周长测量 石油、化工塑料标准GB/T 10006-2021 塑料 薄膜和薄片 摩擦系数的测定 GB/T 12585-2020 硫化橡胶或热塑性橡胶 橡胶片材和橡胶涂覆织物 挥发性液体透过速率的测定(质量法) GB/T 13174-2021 衣料用洗涤剂去污力及循环洗涤性能的测定 GB/T 12688.10-2020 工业用苯乙烯试验方法 第10部分:含氧化合物的测定 气相色谱法 GB/T 14905-2020 橡胶和塑料软管 各层间粘合强度的测定 GB/T 15330-2020 压敏胶粘带水渗透率试验方法 GB/T 15331-2020 压敏胶粘带水蒸气透过率试验方法 GB/T 1646-2020 2-萘酚 GB/T 1728-2020 漆膜、腻子膜干燥时间测定法 GB/T 1731-2020 漆膜、腻子膜柔韧性测定法 GB/T 1732-2020 漆膜耐冲击测定法 GB/T 1741-2020 漆膜耐霉菌性测定法 GB/T 22053-2020 戊烷发泡剂 GB/T 23937-2020 工业硫氢化钠 GB/T 23978-2020 水溶性染料产品中氯化物的测定 GB/T 24164-2020 染料产品中氯化苯的测定 GB/T 24165-2020 染料产品中多氯联苯的测定 GB/T 25791-2020 C.I.反应红194(反应红M-2BE) GB/T 25795-2020 C.I.反应蓝250(反应蓝KN-RGB) GB/T 25801-2020 C.I.分散橙30(分散橙S-4RL ) GB/T 25807-2020 间脲基苯胺盐酸盐 GB/T 31334.6-2020 浸胶帆布试验方法 第6部分:尺寸、克重等基本项目测量 GB/T 3780.28-2020 炭黑 第28部分:多环芳烃含量的测定 GB/T 39246-2020 高密度聚乙烯无缝外护管预制直埋保温管件 GB/T 39248-2020 输送液化石油气和液化天然气用热塑性塑料多层(非硫化)软管及软管组合件 规范 GB/T 39249-2020 橡胶和塑料软管及非增强软管 织物增强型 低温压扁试验 GB/T 39284-2020 硫酸镁生产滤泥的处理处置方法 GB/T 39290-2020 胶粘剂中芳香胺含量的测定 GB/T 39294-2020 胶粘剂变色(黄变)性能的测定 GB/T 39295-2020 水性胶粘剂触粘性的测定 GB/T 39297-2020 二硝酰胺铵水溶液 GB/T 39307-2020 荧光增白剂 色光和增白强度的测定 塑料着色法 GB/T 39309-2020 橡胶软管和软管组合件 液压用钢丝或织物增强单一压力型 规范 GB/T 39311-2020 热塑性软管和软管组合件 液压用钢丝或合成纱线增强单一压力型 规范 GB/T 39313-2020 橡胶软管及软管组合件 输送石油基或水基流体用致密钢丝编织增强液压型 规范 GB/T 39327-2020 船用发动机湿式排气系统用橡胶和塑料软管 规范 GB/T 39482.3-2020 涂漆和未涂漆金属试样的电化学阻抗谱(EIS) 第3部分:从模拟电解池获得数据的处理和分析 GB/T 39484-2020 纤维增强塑料复合材料 用校准端载荷分裂试验(C-ELS)和有效裂纹长度法测定单向增强材料的Ⅱ型断裂韧性 GB/T 39486-2020 化学试剂 电感耦合等离子体质谱分析方法通则 GB/T 39487-2020 发泡结构胶粘剂管剪强度试验方法 GB/T 39490-2020 纤维增强塑料液体冲击抗侵蚀性试验方法 旋转装置法 GB/T 39491-2020 汽车用碳纤维复合材料覆盖部件通用技术要求 GB/T 39693.3-2021 硫化橡胶或热塑性橡胶 硬度的测定 第3部分:用超低橡胶硬度(VLRH)标尺 测定定试验力硬度 GB/T 39769-2021 焦炭中各种形态硫的测定方法 GB/T 39801-2021 海水或苦咸水淡化用膜蒸馏装置通用技术规范 GB/T 39812-2021 塑料 试样的机加工制备 GB/T 39814-2021 超薄玻璃抗冲击强度试验方法 落球冲击法 GB/T 39815-2021 超薄玻璃抗划伤性能试验方法 GB/T 39818-2021 塑料 热固性模塑材料 收缩率的测定 GB/T 39820-2021 溴化铈闪烁体 GB/T 39821-2021 塑料 不能从规定漏斗流出的模塑材料表观密度的测定 GB/T 39822-2021 塑料 黄色指数及其变化值的测定 GB/T 39827.1-2021 塑料 用过的聚对苯二甲酸乙二醇酯(PET)瓶回收物 第1部分:命名系统和分类基础GB/T 39827.2-2021 塑料 用过的聚对苯二甲酸乙二醇酯(PET)瓶回收物 第2部分:试样制备和性能测定GB/T 39828-2021 陶瓷厚涂层的高温弹性模量试验方法 GB/T 39860-2021 胶乳制品表面残余矿物粉末的快速鉴别 X-射线衍射法 GB/T 39861-2021 锰酸锂电化学性能测试 放电平台容量比率及循环寿命测试方法 GB/T 39864-2021 锰酸锂电化学性能测试 首次放电比容量及首次充放电效率测试方法 GB/T 39873-2021 消毒剂中季铵盐的测定 液相色谱-串联质谱法 GB/T 39935-2021 塑料制品 薄膜和片材 抗粘连性的测定 GB/T 39937-2021 塑料制品 聚丙烯(PP)挤塑板材 要求和试验方法 GB/T 40553-2021 塑料 适合家庭堆肥塑料技术规范 GB/T 40612-2021 塑料 海水沙质沉积物界面非漂浮塑料材料最终需氧生物分解能力的测定 通过测定释放二氧化碳的方法 GB/T 5211.3-2020 颜料和体质颜料通用试验方法 第3部分:105℃挥发物的测定 GB/T 5211.6-2020 颜料和体质颜料通用试验方法 第6部分:水悬浮液pH值的测定 GB/T 8184-2020 硫酸铑 GB/T 8185-2020 二氯化钯 GB/T 9263-2020 防滑涂料防滑性的测定 矿业标准GB/T 39833-2021 煤的燃烧特性测定方法 一维炉法 GB/T 39836-2021 煤的燃烧结渣指数测定方法 纺织标准GB/T 20385.1-2021 纺织品 有机锡化合物的测定 第1部分:衍生化气相色谱-质谱法 医疗标准GB/T 15593-2020 输血(液)器具用聚氯乙烯塑料 GB/T 18638-2021 流行性乙型脑炎诊断技术 GB/T 39111-2020 牙颌模型三维扫描仪技术要求 生物标准GB/T 39766-2021 人类生物样本库管理规范 GB/T 39767-2021 人类生物样本管理规范 GB/T 39768-2021 人类生物样本分类与编码 电力标准GB/T 18802.31-2021 低压电涌保护器 第31部分:用于光伏系统的电涌保护器 性能要求和试验方法 GB/T 20833.1-2021 旋转电机 绕组绝缘 第1部分:离线局部放电测量 GB/T 24982-2020 白光LED用石榴石结构铝酸盐系列荧光粉 GB/T 39159-2020 集成电路用高纯铜合金靶材 GB/T 39160-2020 薄膜太阳能电池用碲锌镉靶材 GB/T 39492-2020 白光LED用荧光粉量子效率测试方法 GB/T 39494-2020 新能源汽车驱动电机用稀土永磁材料表面涂镀层结合力的测定 GB/T 39771.2-2021 半导体发光二极管光辐射安全 第2部分:测试方法 GB/T 39777-2021 节能量测量和验证技术要求 工业锅炉系统 GB/T 39779-2021 分布式冷热电能源系统设计导则 GB/T 5095.2303-2021 电子设备用机电元件 基本试验规程及测量方法 第23-3部分:屏蔽和滤波试验 试验23c:连接器和附件的屏蔽效果 线注入法 GB/T 5095.2307-2021 电子设备用机电元件 基本试验规程及测量方法 第23-7部分:屏蔽和滤波试验 试验23g:连接器的有效转移阻抗 GB/T 5095.2501-2021 电子设备用机电元件 基本试验规程及测量方法 第25-1部分:试验25a:串扰比 GB/T 5095.2503-2021 电子设备用机电元件 基本试验规程及测量方法 第25-3部分:试验25c:上升时间衰减 建材标准GB/T 39865-2021 单轴晶光学晶体折射率测量方法 GB/T 39776-2021 砖瓦工业隧道窑热平衡、热效率测定与计算方法 GB/T 3296-2021 日用瓷器透光度测定方法 GB/T 39156-2020 大规格陶瓷板技术要求及试验方法 GB/T 39862-2021 高热导率陶瓷导热系数的检测 其他标准GB/T 32224-2020 热量表 GB/T 39901-2021 乘用车自动紧急制动系统(AEBS)性能要求及试验方法 GB/T 39902-2021 城市轨道交通中低速磁浮车辆悬浮控制系统技术条件 GB/T 39941-2021 木家具生产过程质量安全状态监测与评价方法 GB/T 39964-2021 造纸行业能源管理体系实施指南 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓扫码到APP免费下载目前仪器信息网资料库 有近70万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有近20万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 新能源汽车的外内颜色测量方案—高精度色差仪
    随着新能源汽车市场的快速增长,消费者对这些汽车的期望越来越高,特别是在汽车的颜色质量和一致性方面。车辆的外漆颜色和内饰颜色不仅影响车辆的整体美观度,也是体现制造商对质量控制能力的一个重要指标。为了满足消费者对汽车颜色的高要求,生产商们使用高精度的色差仪进行颜色测量。首先是外观方面,颜色是消费者在选车时首先关注的因素之一,它可以引发消费者的情感反应,从而影响他们的购车选择。其次,汽车颜色也是汽车设计的重要组成部分,它在构建汽车的整体美感和设计风格中起到关键作用。为了确保汽车外观颜色的精度和一致性,汽车制造商采用了高精度的色差仪来进行颜色测量和控制。其中,MA-5QC五角度色差仪因其精确度高、操作简便等优点,在行业中被广泛采用。MA-5QC五角度色差仪是一款专为精确测量色差而设计的便携式设备。MA-5QC五角度色差仪能在制造过程的早期阶段即时检测并识别出色彩瑕疵,极大地减少了返工的可能性和无谓的生产损耗。此设备相较于市场上其他同类产品具有显著的优势。其优势主要体现在独特的光学元件配置上,这些元件巧妙地布置在仪器的顶部,使得MA-5QC在性能和效率上大大超越其竞品。这种设计使得测量速度提高了60%,同时,它还成功将设备的重量和体积减轻和缩小,分别达到了50%和40%的显著改善。MA-5QC的使用方法非常简单,只需要将仪器置于待测颜色的表面,然后按下测量键即可。它可以测量出颜色的三个基本参数:色度、亮度和饱和度,为工程师提供了快速、准确的反馈,以便他们对色彩进行微调,确保每一辆汽车的外漆颜色都达到预定的标准。然后就是内饰方面,汽车内饰颜色对于汽车的总体感觉和舒适度具有决定性影响。颜色不仅能影响乘客的情绪和舒适感,还能反映出汽车品牌的独特性和风格。良好的内饰颜色设计能提升驾驶者和乘客的驾驶体验,让人们感到舒适和放松。此外,内饰颜色也是汽车个性化的一部分,消费者通常会根据自己的个人喜好和生活方式来选择内饰颜色。因此,汽车内饰颜色的选择和一致性对于满足消费者的需求和提升消费者满意度至关重要。为了确保汽车内饰颜色的准确性和一致性,Ci64手持式色差仪被广泛用于汽车内饰颜色的测量和控制。该设备能精确地测量内饰材料的颜色,及时发现和修正颜色差异,确保汽车内饰颜色的一致性和质量。Ci64手持式色差仪是一种高端的精密色彩测量设备,它在塑料软管外包装色彩的测量和控制上有着卓越的应用性能。这款仪器可选多种配置,包括同步SPIN/SPEX输出、相对光泽度分析以及UV选项,这意味着它能够准确测量各种不同表面特性的产品和包装类型,无论是平滑还是不平整的表面。因此,无论塑料软管的包装表面是什么样的质地或者光泽度,Ci64都能够提供准确、可靠的色彩测量结果。此外,Ci64手持式色差仪还具有操作简单、易于集成的特点。其易用的用户界面使得操作人员可以快速地进行色彩测量和分析。而其强大的数据管理功能则可以帮助企业实现色彩的全程控制,大大提高生产效率和产品质量。新能源汽车的颜色测量是一个复杂而精细的工作。通过使用MA-5QC便携式色差仪和Ci64手持式色差仪,工程师可以更准确地控制汽车的外漆颜色和内饰颜色,以满足消费者对颜色精度和一致性的高要求。这两款设备的精准测量和强大功能,都是实现高质量颜色管理的重要工具。“爱色丽彩通”是丹纳赫公司旗下的品牌,总部位于美国密歇根州,成立于1958年。作为全球领先的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
  • SHK-A101万能拉力试验机试验系统正式推出
    SHK-A101智能拉力机 SHK-A101电子式万能材料试验机采用触屏闭环控制系统,试验过程实时采集、处理分析、执行数据命令,有效保证准确的加载速度和测力范围,对载荷位移的测量和控制有较高的精度和灵敏度。安装公司最新研发高性能控制主板可实现材料定负荷试验定位移形变试验,定时间周期往复的自动控制试验。 功能适用于各种材料、半成品、成品等进行拉伸、剥离(90°和180°)、撕裂、穿刺、压缩、三点弯曲、四点弯曲,剪切、等物理力学性能的测试。适用行业专业适用于塑料薄膜、复合材料、软质包装材料、塑料软管、胶粘剂、胶粘带、不干胶、医用贴剂、离型纸、保护膜、组合盖、金属箔、隔膜、背板材料、无纺布、橡胶、纸张等产品的拉伸、剥离、变形、撕裂、热封、粘合、穿刺力、开启力、低速解卷力、拔开力等性能测试。恒克此批次量产的拉力机产品市场优势:规避掉目前拉力机在市场上存在的问题:1:全部为原装美国世铨传感器。精度高,重复性好,不会产生零点漂移,经久耐用。2:五柱式结构,四根导柱,稳固性好。(目前市场上都为2根导柱)3:速度达到0-1000mm/min,可选,标准机械配0.0020500mm/min4:闭环电机,控制精度高,高精度制动5:对称轴结构皮带,受力同轴性好6:10寸触屏控制系统7: 专业测试夹具根据试样匹配
  • 大同市市场监督管理局127.00万元采购气体报警器
    详细信息 2023年大同市市场监督管理局产品质量监督抽查项目竞争性磋商采购公告 山西省-大同市-平城区 状态:公告 更新时间: 2023-07-15 招标文件: 附件1 项目概况2023年大同市市场监督管理局产品质量监督抽查项目的潜在供应商应在山西省政府采购平台线上获取采购文件,并于2023年07月27日09时00分(北京时间)前提交响应文件。一、项目基本情况项目编号:1402992023CCS00198招标编号:RSMYC-2023FW032项目名称:2023年大同市市场监督管理局产品质量监督抽查项目采购方式:竞争性磋商预算金额(元):127万元(第一包:20万元;第二包:19万元;第三包:13.5万元;第四包:22万元;第五包:15万元;第六包:12万元;第七包:13万元;第八包:12.5万元)最高限价(元):127万元(第一包:20万元;第二包:19万元;第三包:13.5万元;第四包:22万元;第五包:15万元;第六包:12万元;第七包:13万元;第八包:12.5万元)采购需求:2023年大同市市场监督管理局产品质量监督抽查项目服务,本次采购共8个包,供应商可以对多包进行投标,但在只允许按照包号由小到大评审顺序中标一个包,后面所参加其它包将只对其进行评审,不再参加排序,以此类推,可以兼投不可兼中。供应商报价不得超过该包预算金额和最高限价,否则投标无效。参与磋商的供应商提交的响应文件必须实质上响应本磋商文件的要求。详见磋商文件“第四部分 采购需求”。 包号 标项名称 服务内容 批次 1 2023年第一批环保相关产品夏季专项质量监督抽查计划 交通工具及相关产品(车用汽油、车用柴油、车用尿素)、轻工产品(胶粘剂、洗手液、次氯酸钠、醇类消毒剂) 100 2 2023年第二批环保相关产品秋冬季专项质量监督抽查计划 交通工具及相关产品(车用汽油、车用柴油、车用尿素)、工业生产资料(天然气、车用压缩天然气、液化石油气) 100 3 2023年塑料制品、危化品、特种劳动防护、电动自行车农资(2024)等产品质量监督抽查计划 农业生产资料(大量元素水溶肥、有机无机复混肥料、控释肥料、有机肥料、复合肥料、掺混肥料(BB肥)、缓释肥料、钙镁磷肥、全生物降解农用地面覆盖薄膜、聚乙烯吹塑农用地面覆盖薄膜)、塑料制品(生物降解塑料购物袋、日用塑料袋(撕拉袋)、商品零售包装袋、塑料购物袋)、危化品(氢氧化钠、硫磺、甲醇、溶解乙炔)、电动自行车相关产品(电动自行车、电动自行车充电器、电动自行车控制器、电动自行车电机、电动自行车蓄电池)、特种劳动防护用品(安全帽、坠落防护安全绳、劳动防护服、劳动安全鞋) 105 4 2023年儿童学生用品、日用及纺织品、汽车相关产品等产品质量监督抽查计划 日用及纺织品(儿童及婴幼儿服装、毛巾、衬衫、针织T恤、针织休闲服装、休闲鞋、旅游鞋、口罩、儿童旅游鞋)、儿童学生用品(学生书包、电动玩具、儿童玩具、童车、油画棒、水彩画颜料、笔类(蜡笔、记号笔、白板笔、铅笔等)、橡皮擦、学生用品的印刷部分、液体胶、固体胶、浆糊、修正产品、课业簿册、本册、纸尿裤、婴幼儿安抚奶嘴)、轻工产品(墨粉)、汽车相关产品(刹车片、轮胎、制动液、制动用软管、输水橡胶软管、雨刮器、车轮平衡块、蓄电池) 140 5 2023年食品相关产品、消防产品等质量监督抽查计划 食品相关产品(果蔬清洗剂、手洗餐具用洗涤剂、纸杯、纸碗、纸餐盒、塑料一次性餐饮具、一次性可降解餐饮具、聚丙烯饮用吸管、食品用塑料自粘保鲜膜、复合膜袋、一次性筷子竹筷、一次性筷子木筷、日用瓷器、电热水壶、铝及铝合金不粘锅)、工业生产资料(手提式灭火器、消防水枪、消防水带、消防应急照明灯、室内消火栓、室外消火栓、汽车用涂料、喷漆) 100 6 2023年建材产品质量监督抽查计划 建筑和装饰装修材料(细木工板、中密度纤维板、刨花板、普通胶合板、浸渍胶膜纸饰面胶合板和细木工板、陶瓷砖、弹性体改性沥青防水卷材、给水用硬聚氯乙烯(PVC-U)管材、建筑排水用硬聚氯乙烯(PVC-U)管材、通用硅酸盐水泥、砌筑水泥、合成树脂乳液内墙涂料、合成树脂乳液外墙涂料、建筑外墙用腻子、建筑室内用腻子、密封胶、坐便器、蹲便器、壁纸、型钢、钢管) 90 7 2023年电子电器类产品质量监督抽查计划 电子电器(皮肤及毛发护理器具(带电加热元件)、移动电源、灯具灯座、电饼铛、电水壶、电饭锅、饮水机、料理机、榨汁机、豆浆机、延长线插座、固定式插座、固定式开关) 80 8 2023年轻工、电工等产品质量监督抽查、风险监测计划 轻工产品(家用燃气灶具、燃气用具连接用不锈钢波纹软管、家用燃气用橡胶和塑料软管及软管组合件、家用可燃气体探测器、餐具洗涤剂、卫生纸、洗衣粉、洗衣液、作业本)、电工、电器类产品(电线电缆、电热水器-储水式、电热水器-快热式、断路器(含RCCB、RCBO、MCB)、电磁炉、榨汁机、打蛋机、切碎机等厨房机械类电子产品、剃须刀、电推剪及类似器具、卷发棒、毛发定型期、干手器等皮肤及毛发护理器具) 90 合同履行期限:第一包2023年9月15日前完成,第二包2023年11月15日前完成,第三包农业生产资料(化肥地膜80批次)2024年4月前完成,其他内容2023年11月15日前完成,第四包至第八包2023年11月15日前监督抽查检验检测相关工作全部完成。服务标准:合格,符合国家及行业有关标准规定,满足采购单位要求。本项目接受联合体投标。注:未特别标注为“进口产品”字样的,均必须采购国产产品。所采购的货物、服务必须符合国家的强制性标准。二、申请人的资格要求1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:无;3.本项目的特定资格要求:供应商须提供合法有效的检验检测机构资质认定证书(CMA)。4.单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。三、获取采购文件时间:2023年07月17日至2023年07月21日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外);地点:政采云平台线上获取;方式:在线获取;售价(元):0凡有意参加磋商的供应商,请按照以下步骤获取文件:(1)在中国政府采购网山西分网完成注册,已完成注册的请跳过此步骤;(2)请于磋商文件获取截止时间前(北京时间,下同),进入山西政府采购平台(https://login.sxzfcg.zcygov.cn/user-login/#/login)使用企业数字证书(CA)在网上获取磋商文件。四、响应文件提交截止时间:2023年07月27日09:00(北京时间)地点:请登录政采云投标客户端投标五、响应文件开启开启时间:2023年07月27日09:00(北京时间)地点:山西政府采购网平台。自本公告发布之日起5个工作日。七、其他补充事宜针对本项目的质疑需线上一次性提出,多次提出将不予受理。八、凡对本次采购提出询问,请按以下方式联系1.采购人信息名 称:大同市市场监督管理局地 址:大同市平城区御河西路33号联 系 人:冯先生联系方式:0352-28310542.采购代理机构信息名 称:山西荣盛美誉招标代理有限公司地 址:大同市平城区迎宾街道东方罗马城东门北商铺6号联系方式:0352-5163056/186362663513.项目联系方式项目联系人:黄玉宝电 话:0352-5163056/18636266351附件信息: (7.14)2023年度大同市市场监督管理局产品质量监督抽查磋商文件.pdf564.2K × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:气体报警器 开标时间:null 预算金额:127.00万元 采购单位:大同市市场监督管理局 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:山西荣盛美誉招标代理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 2023年大同市市场监督管理局产品质量监督抽查项目竞争性磋商采购公告 山西省-大同市-平城区 状态:公告 更新时间: 2023-07-15 招标文件: 附件1 项目概况2023年大同市市场监督管理局产品质量监督抽查项目的潜在供应商应在山西省政府采购平台线上获取采购文件,并于2023年07月27日09时00分(北京时间)前提交响应文件。一、项目基本情况项目编号:1402992023CCS00198招标编号:RSMYC-2023FW032项目名称:2023年大同市市场监督管理局产品质量监督抽查项目采购方式:竞争性磋商预算金额(元):127万元(第一包:20万元;第二包:19万元;第三包:13.5万元;第四包:22万元;第五包:15万元;第六包:12万元;第七包:13万元;第八包:12.5万元)最高限价(元):127万元(第一包:20万元;第二包:19万元;第三包:13.5万元;第四包:22万元;第五包:15万元;第六包:12万元;第七包:13万元;第八包:12.5万元)采购需求:2023年大同市市场监督管理局产品质量监督抽查项目服务,本次采购共8个包,供应商可以对多包进行投标,但在只允许按照包号由小到大评审顺序中标一个包,后面所参加其它包将只对其进行评审,不再参加排序,以此类推,可以兼投不可兼中。供应商报价不得超过该包预算金额和最高限价,否则投标无效。参与磋商的供应商提交的响应文件必须实质上响应本磋商文件的要求。详见磋商文件“第四部分 采购需求”。 包号 标项名称 服务内容 批次 1 2023年第一批环保相关产品夏季专项质量监督抽查计划 交通工具及相关产品(车用汽油、车用柴油、车用尿素)、轻工产品(胶粘剂、洗手液、次氯酸钠、醇类消毒剂) 100 2 2023年第二批环保相关产品秋冬季专项质量监督抽查计划 交通工具及相关产品(车用汽油、车用柴油、车用尿素)、工业生产资料(天然气、车用压缩天然气、液化石油气) 100 3 2023年塑料制品、危化品、特种劳动防护、电动自行车农资(2024)等产品质量监督抽查计划 农业生产资料(大量元素水溶肥、有机无机复混肥料、控释肥料、有机肥料、复合肥料、掺混肥料(BB肥)、缓释肥料、钙镁磷肥、全生物降解农用地面覆盖薄膜、聚乙烯吹塑农用地面覆盖薄膜)、塑料制品(生物降解塑料购物袋、日用塑料袋(撕拉袋)、商品零售包装袋、塑料购物袋)、危化品(氢氧化钠、硫磺、甲醇、溶解乙炔)、电动自行车相关产品(电动自行车、电动自行车充电器、电动自行车控制器、电动自行车电机、电动自行车蓄电池)、特种劳动防护用品(安全帽、坠落防护安全绳、劳动防护服、劳动安全鞋) 105 4 2023年儿童学生用品、日用及纺织品、汽车相关产品等产品质量监督抽查计划 日用及纺织品(儿童及婴幼儿服装、毛巾、衬衫、针织T恤、针织休闲服装、休闲鞋、旅游鞋、口罩、儿童旅游鞋)、儿童学生用品(学生书包、电动玩具、儿童玩具、童车、油画棒、水彩画颜料、笔类(蜡笔、记号笔、白板笔、铅笔等)、橡皮擦、学生用品的印刷部分、液体胶、固体胶、浆糊、修正产品、课业簿册、本册、纸尿裤、婴幼儿安抚奶嘴)、轻工产品(墨粉)、汽车相关产品(刹车片、轮胎、制动液、制动用软管、输水橡胶软管、雨刮器、车轮平衡块、蓄电池) 140 5 2023年食品相关产品、消防产品等质量监督抽查计划 食品相关产品(果蔬清洗剂、手洗餐具用洗涤剂、纸杯、纸碗、纸餐盒、塑料一次性餐饮具、一次性可降解餐饮具、聚丙烯饮用吸管、食品用塑料自粘保鲜膜、复合膜袋、一次性筷子竹筷、一次性筷子木筷、日用瓷器、电热水壶、铝及铝合金不粘锅)、工业生产资料(手提式灭火器、消防水枪、消防水带、消防应急照明灯、室内消火栓、室外消火栓、汽车用涂料、喷漆) 100 6 2023年建材产品质量监督抽查计划 建筑和装饰装修材料(细木工板、中密度纤维板、刨花板、普通胶合板、浸渍胶膜纸饰面胶合板和细木工板、陶瓷砖、弹性体改性沥青防水卷材、给水用硬聚氯乙烯(PVC-U)管材、建筑排水用硬聚氯乙烯(PVC-U)管材、通用硅酸盐水泥、砌筑水泥、合成树脂乳液内墙涂料、合成树脂乳液外墙涂料、建筑外墙用腻子、建筑室内用腻子、密封胶、坐便器、蹲便器、壁纸、型钢、钢管) 90 7 2023年电子电器类产品质量监督抽查计划 电子电器(皮肤及毛发护理器具(带电加热元件)、移动电源、灯具灯座、电饼铛、电水壶、电饭锅、饮水机、料理机、榨汁机、豆浆机、延长线插座、固定式插座、固定式开关) 80 8 2023年轻工、电工等产品质量监督抽查、风险监测计划 轻工产品(家用燃气灶具、燃气用具连接用不锈钢波纹软管、家用燃气用橡胶和塑料软管及软管组合件、家用可燃气体探测器、餐具洗涤剂、卫生纸、洗衣粉、洗衣液、作业本)、电工、电器类产品(电线电缆、电热水器-储水式、电热水器-快热式、断路器(含RCCB、RCBO、MCB)、电磁炉、榨汁机、打蛋机、切碎机等厨房机械类电子产品、剃须刀、电推剪及类似器具、卷发棒、毛发定型期、干手器等皮肤及毛发护理器具) 90 合同履行期限:第一包2023年9月15日前完成,第二包2023年11月15日前完成,第三包农业生产资料(化肥地膜80批次)2024年4月前完成,其他内容2023年11月15日前完成,第四包至第八包2023年11月15日前监督抽查检验检测相关工作全部完成。服务标准:合格,符合国家及行业有关标准规定,满足采购单位要求。本项目接受联合体投标。注:未特别标注为“进口产品”字样的,均必须采购国产产品。所采购的货物、服务必须符合国家的强制性标准。二、申请人的资格要求1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:无;3.本项目的特定资格要求:供应商须提供合法有效的检验检测机构资质认定证书(CMA)。4.单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。三、获取采购文件时间:2023年07月17日至2023年07月21日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外);地点:政采云平台线上获取;方式:在线获取;售价(元):0凡有意参加磋商的供应商,请按照以下步骤获取文件:(1)在中国政府采购网山西分网完成注册,已完成注册的请跳过此步骤;(2)请于磋商文件获取截止时间前(北京时间,下同),进入山西政府采购平台(https://login.sxzfcg.zcygov.cn/user-login/#/login)使用企业数字证书(CA)在网上获取磋商文件。四、响应文件提交截止时间:2023年07月27日09:00(北京时间)地点:请登录政采云投标客户端投标五、响应文件开启开启时间:2023年07月27日09:00(北京时间)地点:山西政府采购网平台。自本公告发布之日起5个工作日。七、其他补充事宜针对本项目的质疑需线上一次性提出,多次提出将不予受理。八、凡对本次采购提出询问,请按以下方式联系1.采购人信息名 称:大同市市场监督管理局地 址:大同市平城区御河西路33号联 系 人:冯先生联系方式:0352-28310542.采购代理机构信息名 称:山西荣盛美誉招标代理有限公司地 址:大同市平城区迎宾街道东方罗马城东门北商铺6号联系方式:0352-5163056/186362663513.项目联系方式项目联系人:黄玉宝电 话:0352-5163056/18636266351附件信息: (7.14)2023年度大同市市场监督管理局产品质量监督抽查磋商文件.pdf564.2K
  • 质检总局、国标委联合发布186项国家标准
    关于批准发布《民用建筑燃气安全技术条件》等186项国家标准的公告  国家质量监督检验检疫总局、国家标准化管理委员会批准《民用建筑燃气安全技术条件》等186项国家标准,现予以公布。  国家质检总局 国家标准委  2013年7月19日序号标准号标准名称代替标准号实施日期 1 GB 29550-2013 民用建筑燃气安全技术条件 2014-05-01 2 GB 1523-2013 绵羊毛 GB 1523-1993 2014-05-06 3 GB/T 1653-2013 邻、对硝基氯苯 GB/T 1653-2006 2013-12-01 4 GB/T 1655-2013 硫化黑3B、4B、3BR、2RB(硫化黑BN、BRN、B2RN、RN) GB/T 1655-2006 2013-12-01 5 GB/T 2375-2013 直接染料 染色色光和强度的测定 GB/T 2375-2003 2013-12-01 6 GB/T 2380-2013 媒介染料 染色色光和强度的测定 GB/T 2380-2003 2013-12-01 7 GB/T 2381-2013 染料及染料中间体 不溶物质含量的测定 GB/T 2381-2006 2013-12-01 8 GB/T 2390-2013 染料 pH值的测定 GB/T 2390-2003 2013-12-01 9 GB/T 2394-2013 分散染料 色光和强度的测定 GB/T 2394-2006 2013-12-01 10 GB/T 2405-2013 蒽醌 GB/T 2405-2006 2013-12-01 11 GB/T 2794-2013 胶粘剂粘度的测定 单圆筒旋转粘度计法 GB/T 2794-1995 2013-12-01 12 GB/T 2893.1-2013 图形符号 安全色和安全标志 第1部分:安全标志和安全标记的设计原则 GB/T 2893.1-2004 2013-11-30 13 GB/T 2893.4-2013 图形符号 安全色和安全标志 第4部分:安全标志材料的色度属性和光度属性 2013-11-30 14 GB/T 3217-2013 永磁(硬磁)材料 磁性试验方法 GB/T 3217-1992 2013-12-02 15 GB/T 3859.1-2013 半导体变流器 通用要求和电网换相变流器 第1-1部分:基本要求规范 GB/T 3859.1-1993 2013-12-02 16 GB/T 3859.2-2013 半导体变流器 通用要求和电网换相变流器 第1-2部分:应用导则 GB/T 3859.2-1993 2013-12-02 17 GB/T 3859.3-2013 半导体变流器 通用要求和电网换相变流器 第1-3部分:变压器和电抗器 GB/T 3859.3-1993 2013-12-02 18 GB/T 4011-2013 1.2/4.4mm 同轴综合通信电缆 GB/T 4011-1983 2013-12-02 19 GB/T 4012-2013 2.6/9.5mm 同轴综合通信电缆 GB/T 4012-1983 2013-12-02 20 GB/T 4497.2-2013 橡胶 全硫含量的测定 第2部分:过氧化钠熔融法 GB/T 13250-1991 2013-12-01 21 GB/T 5013.8-2013 额定电压450/750V及以下橡皮绝缘电缆 第8部分:特软电线 GB/T 5013.8-2006 2013-12-02 22 GB/T 7404.1-2013 轨道交通车辆用铅酸蓄电池 第1部分:电力机车、地铁车辆用阀控式铅酸蓄电池 GB/T 7404.1-2000 2013-12-02 23 GB/T 7404.2-2013 轨道交通车辆用铅酸蓄电池 第2部分:内燃机车用阀控式铅酸蓄电池 GB/T 7404.2-2000 2013-12-02 24 GB/T 8923.4-2013 涂覆涂料前钢材表面处理 表面清洁度的目视评定 第4部分:与高压水喷射处理有关的初始表面状态、处理等级和闪锈等级 2013-12-01 25 GB/T 9573-2013 橡胶和塑料软管及软管组合件 软管尺寸和软管组合件长度测量方法 GB/T 9573-2003 2013-12-01 26 GB/T 9575-2013 橡胶和塑料软管 软管规格和最大最小内径及切割长度公差 GB/T 9575-2003 2013-12-01 27 GB/T 9576-2013 橡胶和塑料软管及软管组合件 选择、贮存、使用和维护指南 GB/T 9576-2001 2013-12-01 28 GB/T 9746-2013 航空轮胎系列 GB/T 9746-2004 2014-03-01 29 GB/T 9833.1-2013 紧压茶 第1部分:花砖茶 GB/T 9833.1-2002 2013-12-06 30 GB/T 9833.2-2013 紧压茶 第2部分:黑砖茶 GB/T 9833.2-2002 2013-12-06 31 GB/T 9833.3-2013 紧压茶 第3部分:茯砖茶 GB/T 9833.3-2002 2013-12-06 32 GB/T 9833.4-2013 紧压茶 第4部分:康砖茶 GB/T 9833.4-2002 2013-12-06 33 GB/T 9833.5-2013 紧压茶 第5部分:沱茶 GB/T 9833.5-2002 2013-12-06 34 GB/T 9833.6-2013 紧压茶 第6部分:紧茶 GB/T 9833.6-2002 2013-12-06 35 GB/T 9833.7-2013 紧压茶 第7部分:金尖茶 GB/T 9833.7-2002 2013-12-06 36 GB/T 9833.8-2013 紧压茶 第8部分:米砖茶 GB/T 9833.8-2002 2013-12-06 37 GB/T 9833.9-2013 紧压茶 第9部分:青砖茶 GB/T 9833.9-2002 2013-12-06 38 GB/T 10067.31-2013 电热装置基本技术条件 第31部分:中频无心感应炉 2013-12-02 39 GB/T 10067.32-2013 电热装置基本技术条件 第32部分:电压型变频多台中频无心感应炉戔塗装置 2013-12-02 40 GB/T 10067.41-2013 电热装置基本技术条件 第41部分:网带式电阻加热机组 2013-12-02 41 GB/T 10067.42-2013 电热装置基本技术条件 第42部分:推送式电阻加热机组 2013-12-02 42 GB/T 10546-2013 在 2.5MPa及以下压力下输送液态或气态液化石油气(LPG)和天然气的橡胶软管及软管组合件 规范 GB/T 10546-2003 2013-12-01 43 GB/T 11407-2013 硫化促进剂2 巯基苯骈噻唑(MBT) GB/T 11407-2003 2013-12-01 44 GB/T 11408-2013 硫化促进剂 二硫化二苯骈噻唑(MBTS) GB/T 11408-2003 2013-12-01 45 GB 11946-2013 船用钢化安全玻璃 GB 11946-2001 2014-05-01 46 GB/T 13288.4-2013 涂覆涂料前钢材表面处理 喷射清理后的钢材表面粗糙度特性 第4部分:ISO表面粗糙度比较样块的校准和表面粗糙度的测定方法 触针法 2013-12-01 47 GB/T 13422-2013 半导体变流器 电气试验方法 GB/T 13422-1992 2013-12-02 48 GB/T 13646-2013 橡胶 结合苯乙烯含量的测定 分光光度法 GB/T 13646-1992 2013-12-01 49 GB/T 13849.1-2013 聚烯烃绝缘聚烯烃护套市内通信电缆 第1部分:总则 GB/T 13849.1-1993 2013-12-02 50 GB/T 14598.127-2013 量度继电器和保护装置 第127部分:过/欠电压保护功能要求 2013-12-02 51 GB 14711-2013 中小型旋转电机通用安全要求 GB 14711-2006 2013-12-02 52 GB/T 15244-2013 微束分析 硅酸盐玻璃的定量分析 波谱法及能谱法 GB/T 15244-2002 2014-03-01 53 GB/T 15336-2013 邻苯二甲酸酐 GB/T 15336-2006 2013-12-01 54 GB/T 16472-2013 乘客及货物类型、包装类型和包装材料类型代码 GB/T 16472-1996 2013-11-30 55 GB/T 16591-2013 输送无水氨用橡胶软管及软管组合件 规范 GB/T 16591-1996 2013-12-01 56 GB/T 16902.3-2013 设备用图形符号表示规则 第3部分:应用导则 2013-11-30 57 GB/T 16903.2-2013 标志用图形符号表示规则 第2部分:理解度测试方法 GB/T 16903.2-2008 2013-11-30 58 GB/T 16903.3-2013 标志用图形符号表示规则 第3部分:感知性测试方法 2013-11-30 59 GB/T 17320-2013 小麦品种品质分类 GB/T 17320-1998 2013-12-06 60 GB/T 17361-2013 微束分析 沉积岩中自生粘土矿物鉴定 扫描电子显微镜及能谱仪方法 GB/T 17361-1998 2014-03-01 61 GB/T 17625.7-2013 电磁兼容 限值 对额定电流≤75A且有条件接入的设备在公用低压供电系统中产生的电压变化、电压波动和闪烁的限制 2013-12-02 62 GB 18267-2013 山羊绒 GB 18267-2000 2014-05-09 63 GB/T 18287-2013 移动电话用锂离子蓄电池及蓄电池组总规范 GB/T 18287-2000 2013-09-15 64 GB/T 18403.2-2013 气体分析器性能表示 第2部分:气体中氧(采用高温电化学传感器) 2013-12-15 65 GB/T 18403.6-2013 气体分析器性能表示 第6部分:光度分析器 2013-12-15 66 GB/T 18423-2013 橡胶和塑料软管及非增强软管 液体壁透性测定 GB/T 18423-2001 2013-12-01 67 GB/T 18907-2013 微束分析 分析电子显微术 透射电镜选区电子衍射分析方法 GB/T 18907-2002 2014-03-01 68 GB/T 19264.2-2013 电气用压纸板和薄纸板 第2部分:试验方法 2013-12-02 69 GB/T 19264.3-2013 电气用压纸板和薄纸板 第3部分:压纸板 GB/T 19264.3-2003 2013-12-02 70 GB/T 19501-2013 微束分析 电子背散射衍射分析方法通则 GB/T 19501-2004 2014-03-01 71 GB/T 20245.2-2013 电化学分析器性能表示 第2部分:pH值 2013-12-15 72 GB/T 20245.3-2013 电化学分析器性能表示 第3部分:电解质电导率 2013-12-15 73 GB/T 20245.4-2013 电化学分析器性能表示 第4部分:采用覆膜电流式传感器测量水中溶解氧 2013-12-15 74 GB/T 20245.5-2013 电化学分析器性能表示 第5部分:氧化还原电位 2013-12-15 75 GB/T 20501.1-2013 公共信息导向系统 导向要素的设计原则与要求 第1部分:总则 2013-11-30 76 GB/T 20501.2-2013 公共信息导向系统 导向要素的设计原则与要求 第2部分:位置标志 部分代替: GB/T 20501.2-2006 GB/T 20501.1-2006, 2013-11-30 77 GB/T 20501.6-2013 公共信息导向系统 导向要素的设计原则与要求 第6部分:导向标志 部分代替: GB/T 20501.2-2006 GB/T 20501.1-2006, 2013-11-30 78 GB/T 20629.2-2013 电气用非纤维素纸 第2部分:试验方法 2013-12-02 79 GB/T 20965-2013 控制网络HBES技术规范 住宅和楼宇控制系统 GB/Z 20965-2007 2013-12-15 80 GB/T 21419-2013 变压器、电抗器、电源装置及其组合的安全 电磁兼容(EMC)要求 GB/T 21419-2008 2013-12-02 81 GB/Z 23751.3-2013 微型燃料电池发电系统 第3部分:燃料容器互换性 2013-12-02 82 GB/T 29493.6-2013 纺织染整助剂中有害物质的测定 第6部分:聚氨酯预聚物中异氰酸酯基含量的测定 2013-12-01 83 GB/T 29493.7-2013 纺织染整助剂中有害物质的测定 第7部分:聚氨酯涂层整理剂中二异氰酸酯单体的测定 2013-12-01 84 GB/T 29493.8-2013 纺织染整助剂中有害物质的测定 第8部分:聚丙烯酸酯类产品中残留单体的测定 2013-12-01 85 GB/Z 29496.1-2013 控制与通信网络CC-Link Safety 规范 第1部分:概述/协议 2013-12-15 86 GB/Z 29496.2-2013 控制与通信网络CC-Link Safety 规范 第2部分:行规 2013-12-15 87 GB/Z 29496.3-2013 控制与通信网络CC-Link Safety 规范 第3部分:实现 2013-12-15 88 GB/T 29530-2013 平开门和旋转门 抗静扭曲性能的测定 2014-03-01 89 GB 29551-2013 建筑用太阳能光伏夹层玻璃 2014-05-01 90 GB/T 29552-2013 纤维增强复合材料桥板 2014-03-01 91 GB/T 29553-2013 风力发电复合材料整流罩 2014-03-01 92 GB/T 29554-2013 超高分子量聚乙烯纤维 2014-03-01 93 GB/T 29555-2013 门的启闭力试验方法 2014-03-01 94 GB/T 29556-2013 表面化学分析 俄歇电子能谱和X射线光电子能谱 横向分辨率、分析面积和分析器所能检测到的样品面积的测定 2014-03-01 95 GB/T 29557-2013 表面化学分析 深度剖析 溅射深度测量 2014-03-01 96 GB/T 29558-2013 表面化学分析 俄歇电子能谱 强度标的重复性和一致性 2014-03-01 97 GB/T 29559-2013 表面化学分析 辉光放电原子发射光谱 锌和/或铝基合金镀层的分析 2014-03-01 98 GB/T 29560-2013 门座起重机 2014-01-01 99 GB/T 29561-2013 港口固定式起重机 2014-01-01 100 GB/T 29562.1-2013 起重机械用电动机能效测试方法 第1部分:YZP系列变频调速三相异步电动机 2014-01-01 101 GB/T 29562.2-2013 起重机械用电动机能效测试方法 第2部分:YZR/YZ系列三相异步电动机 2014-01-01 102 GB/T 29562.3-2013 起重机械用电动机能效测试方法 第3部分:锥形转子三相异步电动机 2014-01-01 103 GB/T 29563-2013 木材保护管理规范 2013-07-01 104 GB/T 29564-2013 苔干 2013-12-06 105 GB/T 29565-2013 瓜蒌籽 2013-12-06 106 GB/T 29566-2013 蚊类对杀虫剂抗药性的生物学测定方法 2013-12-06 107 GB/T 29567-2013 蝇类对杀虫剂抗药性的生物学测定方法 微量点滴法 2013-12-06 108 GB/T 29568-2013 农产品追溯要求 水产品 2013-12-06 109 GB/T 29569-2013 桑蚕原种产地环境要求 2013-12-06 110 GB/T 29570-2013 橡胶树叶片营养诊断技术规程 2013-12-06 111 GB/T 29571-2013 桑蚕天然彩色茧 2013-12-06 112 GB/T 29572-2013 桑椹(桑果) 2013-12-06 113 GB/T 29573-2013 热带亚热带桑树栽培管理技术规程 2013-12-06 114 GB/T 29574-2013 大阿米芹检疫鉴定方法 2013-12-06 115 GB/T 29575-2013 法国野燕麦检疫鉴定方法 2013-12-06 116 GB/T 29576-2013 非洲大蜗牛检疫鉴定方法 2013-12-06 117 GB/T 29577-2013 腐烂茎线虫检疫鉴定方法 2013-12-06 118 GB/T 29578-2013 甘蔗白色条纹病菌的检疫鉴定方法 2013-12-06 119 GB/T 29579-2013 红棕象甲检疫鉴定方法 2013-12-06 120 GB/T 29580-2013 时间法集中空调分户计量装置 2014-03-01 121 GB/T 29581-2013 胡椒叶斑病菌检疫鉴定方法 2013-12-06 122 GB/T 29582-2013 花生矮化病毒检疫鉴定方法 2013-12-06 123 GB/T 29583-2013 黄顶菊检疫鉴定方法 2013-12-06 124 GB/T 29584-2013 黄瓜黑星病菌检疫鉴定方法 2013-12-06 125 GB/T 29585-2013 剪股颖粒线虫检疫鉴定方法 2013-12-06 126 GB/T 29586-2013 苹果绵蚜检疫鉴定方法 2013-12-06 127 GB/T 29587-2013 松疱锈病菌检疫鉴定方法 2013-12-06 128 GB/T 29588-2013 松针褐斑病菌检疫鉴定方法 2013-12-06 129 GB/T 29589-2013 香菜腐烂病菌检疫鉴定方法 2013-12-06 130 GB/T 29591-2013 湿地松松香 2013-12-09 131 GB/T 29592-2013 建筑胶粘剂挥发性有机化合物(VOC)及醛类化合物释放量的测定方法 2013-12-01 132 GB/T 29593-2013 表面保护用牛皮纸胶粘带 2013-12-01 133 GB/T 29594-2013 可再分散性乳胶粉 2013-12-01 134 GB/T 29595-2013 地面用光伏组件密封材料 硅橡胶密封剂 2013-12-01 135 GB/T 29596-2013 压敏胶粘制品分类 2013-12-01 136 GB/T 29597-2013 反应染料 耐碱稳定性的测定 2013-12-01 137 GB/T 29598-2013 荧光增白剂中三嗪类杂质的限量与测定 2013-12-01 138 GB/T 29599-2013 纺织染整助剂 化学需氧量(COD)的测定 2013-12-01 139 GB/T 29601-2013 不锈钢器皿 2014-02-01 140 GB/T 29602-2013 固体饮料 2014-02-01 141 GB/T 29603-2013 镀锡或镀铬薄钢板全开式易开盖 2014-02-01 142 GB/T 29604-2013 感官分析 建立感官特性参比样的一般导则 2013-12-31 143 GB/T 29605-2013 感官分析 食品感官质量控制导则 2013-12-01 144 GB/T 29606-2013 不锈钢真空杯 2014-02-01 145 GB/T 29607-2013 橡胶制品 镉含量的测定 原子吸收光谱法 2013-12-01 146 GB/T 29608-2013 橡胶制品 邻苯二甲酸酯类的测定 2013-12-01 147 GB/T 29609-2013 橡胶 苯酚和双酚A的测定 2013-12-01 148 GB/T 29610-2013 橡胶制品 多溴联苯和多溴二苯醚的测定 气相色谱-质谱法 2013-12-01 149 GB/T 29611-2013 生橡胶 玻璃化转变温度的测定 差示扫描量热法(DSC) 2013-12-01 150 GB/T 29612-2013 炭黑中镉、铅、汞含量的测定 2013-12-01 151 GB/T 29613.1-2013 橡胶 裂解气相色谱分析法 第1部分:聚合物(单一及并用)的鉴定 2013-12-01 152 GB/T 29614-2013 硫化橡胶中多环芳烃含量的测定 2013-12-01 153 GB/T 29615-2013 汽车液压制动系统用橡胶护罩 2013-12-01 154 GB/T 29616-2013 热塑性弹性体 多环芳烃的测定 气相色谱-质谱法 2013-12-01 155 GB/T 29617-2013 数字密度计测定液体密度、相对密度和API比重的试验方法 2013-12-15 156 GB/T 29618.1-2013 现场设备工具(FDT)接口规范 第1部分:概述和导则 2013-12-15 157 GB/T 29618.2-2013 现场设备工具(FDT)接口规范 第2部分:概念和详细描述 2013-12-15 158 GB/T 29618.41-2013 现场设备工具(FDT)接口规范 第41部分:对象模型行规集成-通用对象模型 2013-12-15 159 GB/T 29618.315-2013 现场设备工具(FDT)接口规范 第315部分:通信行规集成 MODBUS现场总线规范 2013-12-15 160 GB/Z 29619.1-2013 测量和控制数字数据通信 工业控制系统用现场总线 类型8:INTERBUS规范 第1部分:概述 2013-12-15 161 GB/Z 29619.2-2013 测量和控制数字数据通信 工业控制系统用现场总线 类型8: INTERBUS规范 第2部分:物理层规范和服务定义 2013-12-15 162 GB/Z 29619.3-2013 测量和控制数字数据通信 工业控制系统用现场总线 类型8:INTERBUS规范 第3部分:数据链路服务定义 2013-12-15 163 GB/Z 29619.4-2013 测量和控制数字数据通信 工业控制系统用现场总线 类型8:INTERBUS规范 第4部分:数据链路协议规范 2013-12-15 164 GB/Z 29619.5-2013 测量和控制数字数据通信 工业控制系统用现场总线 类型8:INTERBUS规范 第5部分:应用层服务的定义 2013-12-15 165 GB/Z 29619.6-2013 测量和控制数字数据通信 工业控制系统用现场总线 类型8::INTERBUS规范 第6部分:应用层协议规范 2013-12-15 166 GB/T 29621-2013 危险货物国际运输单证规范 2013-11-30 167 GB/T 29622-2013 电子商务信用 卖方交易信用信息披露规范 2013-11-30 168 GB/T 29623-2013 贸易与运输状态代码 2013-11-30 169 GB/T 29624-2013 国际贸易托运单样式 2013-11-30 170 GB/T 29625-2013 标志用公共信息图形符号 动物符号 2013-11-30 171 GB/Z 29626-2013 汽轮发电机状态在线监测系统应用导则 2013-12-02 172 GB/T 29627.1-2013 电气用聚芳酰胺纤维纸板 第1部分:定义、名称及一般要求 2013-12-02 173 GB/T 29627.2-2013 电气用聚芳酰胺纤维纸板 第2部分:试验方法 2013-12-02 174 GB/T 29628-2013 永磁(硬磁)脉冲测量方法指南 2013-12-02 175 GB/T 29629-2013 静止无功补偿装置水冷却设备 2013-12-02 176 GB/Z 29630-2013 静止无功补偿装置 系统设计和应用导则 2013-12-02 177 GB/T 29631-2013 额定电压1.8/3 kV及以下风力发电用耐扭曲软电缆 2013-12-02 178 GB/T 29632-2013 家用汽车产品三包主要零件种类范围与三包凭证 2013-10-01 179 GB/T 29633.1-2013 南极地名 第1部分:通名 2013-11-01 180 GB/T 29633.2-2013 南极地名 第2部分:分类与代码 2013-11-01 181 GB/T 29634-2013 电动轮椅车用永磁直流齿轮减速电动机构通用技术条件 2013-11-01 182 GB/T 29635-2013 疑似毒品中海洛因的气相色谱、气相色谱-质谱检验方法 2013-11-01 183 GB/T 29636-2013 疑似毒品中甲基苯丙胺的气相色谱、高效液相色谱和气相色谱-质谱检验方法 2013-11-01 184 GB/T 29637-2013 疑似毒品中氯胺酮的气相色谱、气相色谱-质谱检验方法 2013-11-01 185 GB/Z 29638-2013 电气/电子/可编程电子安全相关系统的功能安全 功能安全概念及GB/T 20438系列概况 2013-12-15 186 GB/T 29639-2013 生产经营单位生产安全事故应急预案编制导则 2013-10-01  备注: GB/T 20501.1-2006、GB/T 20501.2-2006已全部被代替完。
  • 微塑料检测技术,解决微塑料难题!
    微塑料指的是直径小于5毫米的塑料微粒,常见化学成分有聚乙烯、聚氯乙烯、聚苯乙烯、聚丙烯等。相关研究表明,微塑料在鱼类、贝类等水生生物体内普遍存在,可通过食物链不断向上一级传递,位于食物链顶端的人类将不可避免成为微塑料的摄入和蓄积体。随着各方对微塑料的关注日益增多,微塑料的相关科学研究正如火如荼地开展着,如何精准快速的识别微塑料,对微塑料领域的研究至关重要。多年来,研究人员通过对水陆空环境与生物体等各类样品中的塑料微粒含量、大小、成分等进行科学分析,开展各类型的科研课题研究、环境本底调查,为我国环境微塑料污染防控与监控和常规产品检测等提供技术依据。为了了解当前微塑料检测分析技术和应用进展,加强沟通交流,7月27日-28日,仪器信息网将举办第四届环境新污染物检测网络会议,在28日的下午,以“微塑料的检验检测”为主题的会议专场,将邀请相关领域专家与大家分享当前针对该领域的技术研究与应用进展等。“微塑料的检验检测”专场日程如下:07月28日微塑料的检验检测14:00--14:30“流域-近海-大洋”微塑料观测研究进展与趋势分析蔡明刚厦门大学 教授14:30--15:00岛津GCMS在环境新型污染物检测中的应用王子君岛津企业管理(中国)有限公司 产品专员15:00--15:30污水处理厂微塑料的去除行为解析与探讨安立会中国环境科学研究院 研究员15:30--16:00传感器在渔业环境中新污染物检测应用吴立冬中国水产科学研究院 研究员嘉宾介绍:蔡明刚 教授厦门大学蔡明刚,教授,博士生导师。现任厦门大学海洋与地球学院教授,海洋与海岸带发展研究院兼职教授,福建省高校重点实验室副主任。主要研究方向:基于海洋学视角的开阔海域污染物传输动力学过程研究,及其作为新型示踪剂在海洋科学上的应用。研究海域涉及我国南海等边缘海、全球大洋及两极海区,课题组近10次参加中国南、北极科学考察。个人系中国第3、5次北极科学考察队队员,先后入选福建闽江科学传播学者、福建省杰出青年基金计划、新世纪优秀人才计划、CSC中德合作团队项目等人才计划。主持国家及省部级项目10余项,在Environmental Science & Technology、Environmental Pollution、Deep Sea ResearchⅠ、Marine Chemistry等环境、海洋期刊发表论文70余篇,获得专利授权12项,获得多项省部级奖项。 主要科研与应用成果如下:1)开展我国主要边缘海和极区持久性有机污染物的时间序列变化和储量估算,提出全球变化背景下边缘海POPs海/气交换与垂直传输的海洋生物泵调控机制。2)较早开展大洋海水中细颗粒微塑料研究,发现南海存在数量可观的微塑料。3)利用氟利昂等污染物开展海洋学过程的示踪与人为碳估算,取得创新性成果,组装了国内第1套海水超痕量氟利昂/六氟化硫的吹扫捕集-气相色谱分析系统,获批多项发明专利,分析精度达到国际同类水平。4)构建和应用海湾陆源污染物排海总量估算技术及其系统,提出基于长时间序列观测的沿海社会、经济和环境生态协调发展的计量统计学方法。5)建立基于工业化生产的雨生红球藻培养技术和配方,搭建了微藻多级培养系统并研发新型LED藻类培养设备,拥有多项专利,服务于企业生产并产生实际效益。王子君 产品专员岛津企业管理(中国)有限公司毕业于天津大学应用化学专业,具有丰富的分析仪器产品经验,擅长环境应用解决方案。安立会 研究员中国环境科学研究院安立会(1975 -),博士,中国环境科学研究院研究员,博士生导师。主要从事天然与合成环境污染物的水生态毒理效应、环境质量基准与标准及生态风险评价研究,近年重点关注环境塑料垃圾与微塑料对生态系统安全和人体健康的影响,并致力于塑料污染来源及其控制对策,为开展我国环境微塑料的管控措施和治理提供科学依据。吴立冬 研究员中国水产科学研究院吴立冬,博士、研究员、博士生导师,入选中国水产科学研究院“百人计划”,国家市场监督管理总局食品补充检验方法和快检方法等国标方法审评专家。受邀成为“Biosensor and Bioelectronics”杂志编委(IF 12.545),Agriculture Communications 和Journal of Analysis and Testing杂志青年编委,Micromachines杂志(IF 3.523)专题主编。主持国家自然科学基金、国家重点研发计划、国家标准等国家级及省部级项目10余项。2022年获得了中国农学会青年科技奖、中国仪器仪表学会青年创新奖(朱良漪青年创新奖)和中国分析测试协会一等奖(排名第一)。主要从事水产品危害物快速检测方法及渔业环境智能化监测器件研发。迄今,吴立冬博士在Informat(IF 24.7)、Chemical Engineering Journal(16.7)、ACS nano、Food Chemistry、Biosensor and Bioelectronics、Anal. Chem等杂志发表80多篇论文,申请专利22项(其中美国专利1项,国际专利2项),授权7项(已转让2项)。免费报名点击:第四届环境新污染物检测网络会议:https://www.instrument.com.cn/webinar/meetings/newpollutant2023/诚邀您的参与!
  • 薄膜拉力试验机常见的几种试验方法
    薄膜拉力试验机是一种专门用于测试薄膜材料拉伸性能的设备。它能够模拟实际生产和使用过程中的拉伸条件,以评估薄膜的力学性能和封口强度。这种试验机广泛应用于塑料薄膜、复合材料、软质包装材料、塑料软管、胶粘剂、胶粘带、不干胶、医用贴剂、保护膜、组合盖、隔膜、无纺布、橡胶等材料的力学性能检测。一、单轴拉伸试验单轴拉伸试验是评估薄膜材料拉伸性能最基本且最常用的方法。在试验过程中,薄膜样品被固定在拉力试验机的两个夹具之间,并通过施加拉力使其沿一个方向均匀伸长。通过测量拉伸过程中的应力和应变数据,可以计算出薄膜的弹性模量、抗拉强度、断裂伸长率等关键力学参数。二、双轴拉伸试验双轴拉伸试验是在两个相互垂直的方向上同时对薄膜样品施加拉力的测试方法。这种试验方法更接近于薄膜在实际应用中的受力状态,因此能更准确地反映其力学性能。双轴拉伸试验常用于评估薄膜材料在复杂应力状态下的性能,如抗皱性、抗撕裂性和尺寸稳定性等。三、循环拉伸试验循环拉伸试验是一种模拟薄膜在实际使用过程中经受反复拉伸和松弛的测试方法。在试验过程中,薄膜样品会被周期性地拉伸到一定的应变水平,然后松弛到初始状态。通过多次循环拉伸,可以评估薄膜材料的疲劳性能、弹性恢复能力和耐久性。四、撕裂试验撕裂试验是评估薄膜材料抗撕裂性能的重要方法。在试验过程中,薄膜样品会被固定在特定的夹具上,并在其一端施加撕裂力。通过测量撕裂过程中的力和位移数据,可以计算出薄膜的撕裂强度和撕裂扩展速度等参数。撕裂试验有助于了解薄膜在受到外力作用时的破坏机制和失效模式。五、剥离试验剥离试验主要用于评估薄膜与基材之间的粘附性能。在试验过程中,薄膜被粘贴在基材上,并在一定角度下施加剥离力。通过测量剥离过程中的力和位移数据,可以计算出薄膜与基材之间的粘附强度和剥离速率等参数。剥离试验有助于了解薄膜在不同基材上的粘附性能和适用范围。六、蠕变试验蠕变试验是一种评估薄膜材料在长时间恒定应力下变形行为的测试方法。在试验过程中,薄膜样品会被施加一定的拉伸应力,并保持一段时间以观察其变形情况。通过测量蠕变过程中的应变和时间数据,可以了解薄膜材料的蠕变行为和长期稳定性。蠕变试验对于评估薄膜材料在高温、高湿等恶劣环境下的性能具有重要意义。七、应力松弛试验应力松弛试验是一种评估薄膜材料在恒定应变下应力随时间变化的测试方法。在试验过程中,薄膜样品会被拉伸到一定的应变水平,并保持该应变不变以观察应力的变化情况。通过测量应力松弛过程中的应力和时间数据,可以了解薄膜材料的应力松弛行为和应力稳定性。应力松弛试验有助于了解薄膜材料在受到外力作用后的恢复能力和长期稳定性。
  • 仪器采购潜伏大户:江苏省质监局
    以往,我们把注意力过多地放在数千万的仪器采购大单上,如质检总局2.73亿144套仪器(120万以上)大单、药监局1.06亿元238套仪器大单、四川质监局1.16亿元仪器大标等,其实,还有更多的仪器采购大户&ldquo 隐于世&rdquo 而未被发觉!  例如,江苏质监局。据仪器信息网小编统计,自2013年1月至今,江苏质监局半年来已在中国政府采购网,就其检测设备及相关服务项目发布了30多次招标公告,采购内容包括气质联用仪、高效液相色谱、气相色谱、光电直读光谱、原子吸收光谱等近百套仪器设备,目前已公布的中标金额合计约有7500万元人民币,可谓是一个&ldquo 潜伏&rdquo 的仪器采购大户!  不同于质检总局、药监局、中科院等大佬们的一次几千万元,甚至于上亿元的&ldquo 大手笔&rdquo ,江苏质监局这种&ldquo 少量而多次&rdquo 的仪器采购量也不容小觑!而像这种潜伏着的仪器采购大户更是难以计数,如2012年河南省医药采购服务中心的1.75亿元仪器耗材大单、广东省环境监测中心2012年出资1.16亿元采购监测仪器、中国中医科学院2011年则耗资1.07亿元购买科研装备&hellip &hellip (数据来源于仪器信息网资讯中心)  具体中标情况参见下表:  招标项目名称及标书编号:0660-13400597  评标日期:2013年6月25日  招标项目名称及标书编号:0660-13580629/1/2/3  评标日期:2013年7月2日  招标项目名称及标书编号:0660-13330601  评标日期:2013年6月25日  招标项目名称及标书编号:0660-13400598/1/2/3/4  评标日期:2013年6月20日  招标项目名称及标书编号:0660-13330579  评标日期:2013年6月17日  招标项目名称及标书编号:0660-13400557 、0660-13400558 、0660-13400365/1/2  评标日期:2013年6月14日  招标项目名称及标书编号:0660-13400455  评标日期:2013年5月24日  招标项目名称及标书编号:0660-13400329、0660-13400442/1/2  评标日期:2013年5月16日  0660-13400329  货物名称:恒温恒湿实验室系统 1套   中标商:江苏泰盛冷气工程技术有限公司 中标金额:259.899万元人民币  0660-13400442/1  货物名称:万能工具显微镜 1套   中标商:常州时代计量仪器有限公司 中标金额:14.7万元人民币  0660-13400442/2 货物名称:检衡车 1套   中标商:江苏富力达工程机械有限公司 中标金额:23万元人员币  招标项目名称及标书编号:0660-13400429/1/2/3/4/5/6/7/8/9/10  评标日期:2013年5月21日  包1:煤岩分析仪系统 1套   中标商:南京皓海仪器仪表有限公司 中标金额:79万元人民币  包2:自动测硫仪 1台(套)   中标商:南京瑞兰达仪器有限公司 中标金额:41.5万元人民币  包3:元素分析仪 1台(套)   中标商:南京舜空联科技有限公司 中标金额:68万元人民币  包4:自动量热仪 1台(套)   中标商:南京舜空联科技有限公司 中标金额:27万元人民币  包5:分光光度计 1台(套)   中标商:南京瑞兰达仪器有限公司 中标金额:13万元人民币  包6:火焰-石墨炉原子吸收光谱仪 1台(套)   中标商:江苏苏美达仪器设备有限公司 中标金额:48.5万元人民币  包7:联合制样机 1台(套)   中标商:长沙开元仪器股份有限公司 中标金额:12万元人民币  包8:焦炭反应性及反应后强度测定仪 1台(套)   中标商:南京皓海仪器仪表有限公司 中标金额:11.8万元人民币  包9:全自动消解仪 1台(套)   中标商:江苏万科科教仪器有限公司 中标金额:24.6万元人民币  包10:原子荧光光度计 1台(套)。  本包废标  招标项目名称及标书编号:0660-13400292/1/2、0660-13400301  评标日期:2013年4月24日  0660-13400292/1/2 包1:三相电能表检定装置 13 套  中标商:深圳市科陆电子科技股份有限公司 中标金额:141.96 万元人民币  包2:单相电能表检定装置 13 套  中标商:南京电力自动化设备三厂有限公司 中标金额:141.7 万元人民币  0660-13400301 AGPS OTA测试设备 1套  中标商:无锡市邦达仪器仪表设备有限公司 中标金额:348万元人民币  招标项目名称及标书编号:0660-13400271/1/2/3/4/5  评标日期:2013年4月18日  包1:电器部件火花点燃装置(电热毯火花点燃装置) 1台(套)   电器部件热冲击栅格(电热毯热冲击栅格) 1台(套)   电器部件滚筒跌落试验机(电热毯滚筒跌落试验机) 1台(套)   电器部件成品耐电压试验在线检测试验装置(电热毯成品耐电压试验在线检测试验装置) 1台(套)   电器柔性织物渗漏试验机(电热毯柔性织物渗漏试验机)1台(套)   柔性物件发热元件燃烧性能试验机(柔性物件发热元件燃烧性能试验机)  1台(套)   电器部件机械强度试验机(电热褥垫机械强度试验机) 1台(套)   电热垫机械强度试验机(电热垫机械强度试验机) 1台(套)   中标商:东莞市越铧电子科技有限公司 中标金额:18.2万元人民币  包2:针焰试验仪 1台(套)   漏电起痕仪 1台(套)   卤酸气体释出测定装置 1台(套)   单根电线电缆垂直燃烧试验机 1台(套)   成束线缆燃烧试验机 1台(套)   电线电缆烟密度试验机 1台(套)   空气弹/氧弹老化试验机 1台(套)   中标商:东莞市中诺质检仪器设备有限公司 中标金额:34.85万元人民币  包3:微机控制电液伺服万能试验机(600KN) 1台(套)   微机控制电液伺服万能试验机(1000KN) 1台(套)   微机控制电液伺服万能试验机(3000KN) 1台(套)   以上试验机相应配套的:弯曲用各种弯芯&Phi 6~&Phi 200  以上试验机相应配套的:螺栓试验夹具M10-M48  以上试验机相应配套的:楔负载装置  摆锤式冲击试验机(低温自动送样装置)(750J) 1台(套)   冲击试样低温试验箱(与冲击试验机相配套) 1台(套)   微机控制(塑料)管材耐压爆破试验机 1台(套)   中标商:美特斯工业系统(中国)有限公司 中标金额:168万元人民币  包4:高强螺栓扭矩系数试验机 1台(套)   研究级倒置万能材料显微镜及图像分析系统 1台(套)   自动研磨金相抛光机 1台(套)   电磁辐射分析仪 1台(套)   工业内窥镜 1台(套)   平面光带检测仪 1台(套)   金属电导率仪 1台(套)   激光测平仪 1台(套)   中标商:南京艾蒙飞电子科技有限公司 中标金额:153.5万元人民币  包5:橡胶低温脆性测试仪 1台(套)   耐液体试验机(恒温油槽) 1台(套)   硫化橡胶压缩耐寒系数试验机 1台(套)   橡胶压缩应力松弛仪 1台(套)   气压式自动切试片机 1台(套)   中标商:高特威尔检测仪器(青岛)有限公司 中标金额:36.8万元人民币  招标项目名称及标书编号:0660-13400269  评标日期:2013年4月16日  包1:X射线衍射光谱仪 数量:1台(套)  中标商:南京菲奇工贸有限公司 中标金额:27.95万元人民币  包2:全自动凯式定氮仪 数量:1台(套)  中标商:南京嘉顺多科学仪器有限公司 中标金额:19.29万元人民币  包3:塑料管材试验用恒温水浴箱及配套设施 数量:1台(套)  中标商:承德市金建检测仪器有限公司 中标金额:138万元人民币  招标项目名称及标书编号:0660-13400231/1/2/3  评标日期:2013年4月9日  包1:出租车计价器检定装置 1 套   中标商:无锡市瑞丰精密机电技术有限公司 中标金额:17.5万元人民币  包2:温湿度计检定装置 1 套   中标商:南京英格玛仪器技术有限公司 中标金额:44万元人民币  包3:三相电能表检定装置 1 套   本包废标  招标项目名称及标书编号:0660-13400151  评标日期:2013年3月19日  包1:步入式恒温恒湿室(含冷却水塔) 1套   中标商:上海汉测试验设备有限公司 中标金额:170万元人民币  包2:冲击试验台 1套   跌落试验台 1套   碰撞试验台 1套   中标商:北京航天希尔测试技术有限公司 中标金额:59.8万元人民币  包3:三综合试验箱 1套   振动试验系统 1套   中标商:重庆银河试验仪器有限公司 中标金额:168万元人民币  招标项目名称及标书编号:0660-13400137  评标日期:2013年3月13日  招标项目名称及标书编号:0660-13400107/1/2、0660-13400112  评标日期:2013年2月26日  0660-13400107/1  便携式光谱仪 1台(套)  本包废标  0660-13400107/2 气相色谱仪 1台(套)  中标商:南京舜空联科技有限公司 中标金额:41.8万元人民币  0660-13400112  声发射检测系统 1台(套)  中标商:南京瑞兰达仪器有限公司 中标金额:128.5万元人民币  招标项目名称及标书编号:0660-13400072/7/8/9/10/11/12/13  评标日期:2013年2月22日  包7:电器部件火花点燃装置(电热毯火花点燃装置) 1台(套)   电器部件热冲击栅格(电热毯热冲击栅格) 1台(套)   电器部件滚筒跌落试验机(电热毯滚筒跌落试验机) 1台(套)   电器部件成品耐电压试验在线检测试验装置(电热毯成品耐电压试验在线检测试验装置) 1台(套)   电器柔性织物渗漏试验机(电热毯柔性织物渗漏试验机)1台(套)   柔性物件发热元件燃烧性能试验机(柔性物件发热元件燃烧性能试验机)  1台(套)   电器部件机械强度试验机(电热褥垫机械强度试验机) 1台(套)   电热垫机械强度试验机(电热垫机械强度试验机) 1台(套)   本包废标  包8:针焰试验仪 1台(套)   漏电起痕仪 1台(套)   卤酸气体释出测定装置 1台(套)   单根电线电缆垂直燃烧试验机 1台(套)   成束线缆燃烧试验机 1台(套)   电线电缆烟密度试验机 1台(套)   空气弹/氧弹老化试验机 1台(套)   本包废标  包9:微机控制电液伺服万能试验机(600KN) 1台(套)   微机控制电液伺服万能试验机(1000KN) 1台(套)   微机控制电液伺服万能试验机(3000KN) 1台(套)   以上试验机相应配套的:弯曲用各种弯芯&Phi 6~&Phi 200  以上试验机相应配套的:螺栓试验夹具M10-M48  以上试验机相应配套的:楔负载装置  摆锤式冲击试验机(低温自动送样装置)(600J) 1台(套)   冲击试样低温试验箱(与冲击试验机相配套) 1台(套)   微机控制(塑料)管材耐压爆破试验机 1台(套)   本包废标  包10:高强螺栓扭矩系数试验机 1台(套)   金相显微镜 1台(套)   自动研磨金相抛光机 1台(套)   电磁辐射分析仪 1台(套)   工业内窥镜 1台(套)   平面光带检测仪 1台(套)   金属电导率仪 1台(套)   激光测平仪 1台(套)   本包废标  包11:固定式光电直读光谱仪 1台(套)   手持式光电直读光谱仪 1台(套)   中标商:南京舜空联科技有限公司 中标金额:145万元人民币  包12:维氏硬度计 1台(套)   洛氏硬度计 1台(套)   布氏硬度计 1台(套)   中标商:泉州市丰泽东海仪器硬度块厂 中标金额:48.2万元人民币  包13:气相色谱仪 1台(套)   中标商:江苏汇鸿同源进出口有限公司 中标金额:24.6万元人民币  招标项目名称及标书编号:0660-13400072/1/2/3/4/5/6  评标日期:2013年2月21日  包1:高低温湿热步入试验箱 1台(套)   高低温冷热冲击试验箱 1台(套)   中标商:重庆国耀科技有限公司 中标金额:156.8万元人民币  包2:高低温湿热试验箱(高低温湿热交变试验箱) 1台(套)   沙尘试验箱 1台(套)   浸泡试验箱(沉浸试验箱) 1台(套)   光老化试验箱(光照耐候老化试验箱) 1台(套)   紫外老化试验箱 1台(套)   中标商:上海汉测试验设备有限公司 中标金额:48.5万元人民币  包3:盐雾试验箱(盐雾二氧化硫腐蚀箱) 1台(套)   循环腐蚀试验箱 1台(套)   中标商:常州瑞比国际贸易有限公司 中标金额:45万元人民币  包4:挠曲疲劳试验台 1台(套)   最大膨胀量试验台 1台(套)   制动液相溶性试验台 1台(套)   长度变化率和气密性试验台 1台(套)   耐负压试验台 1台(套)   软管扣压机 1台(套)   软管剥胶机 1台(套)   橡胶和塑料软管动态弯曲疲劳强度试验机 1台(套)   DIN磨耗机 1台(套)   制动软管高温脉冲试验台 1台(套)   制动软管变形试验用量规 1台(套)   制动软管缩颈通过量探针 1台(套)   中标商:天津格特斯检测设备技术开发有限公司 中标金额:57.5万元人民币  包5:计算机控制轮胎强度、脱圈阻力试验机 1台(套)   车轮径向疲劳试验机(双工位) 1台(套)   13° 轮胎冲击试验机 1台(套)   轮胎动平衡机 1台(套)   轮胎装卸机 1台(套)   标准轮辋按轮胎规格 20台(套)   中标商:昆山市创新科技检测仪器有限公司 中标金额:187万元人民币  包6:橡胶低温脆性测试仪 1台(套)   耐液体试验机(恒温油槽) 1台(套)   硫化橡胶压缩耐寒系数试验机 1台(套)   橡胶压缩应力松弛仪 1台(套)   气压式自动切试片机 1台(套)   本包废标  招标项目名称及标书编号:0660-13400036/1/2  评标日期:2013年2月1日  招标项目名称及标书编号:0660-12401166  评标日期:2013年1月18日  0660-12401166/1/2/3 连云港市产品质量监督检验所  包1:金相显微镜 1台(套)  中标商:江苏旭王科技发展有限公司 中标金额:45.7万元人民币  包2:100kN拉伸试验机 1台(套)  本包废标  包3: 2000KN材料试验机 1台(套)  中标商:深圳三思纵横科技股份有限公司 中标金额:26.6万元人民币  0660-12401166/4/5/6/ 江阴市产品质量监督检验所  包4:铝合金型材高温负荷持久试验机 2台(套)  中标商:南京奎林特电气科技有限公司 中标金额:33.2万元人民币  包5: 气相色谱仪 1台(套)  中标商:南京舜空联科技有限公司 中标金额:38.5万元人民币  包6:气相色谱-质谱联用仪 1台(套)  中标商:南京舜空联科技有限公司 中标金额:68.5万元人民币  招标项目名称及标书编号:0660-12401167  评标日期:2013年1月17日  0660-12401167/1/2/3/4/5 江苏省特种设备安全监督检验研究院  包1:高温蠕变试验机 12台(套)  中标商:长春科新试验仪器有限公司 中标金额:130.52万元人民币  包2:紫外可见分光光度计 1台(套)  中标商:江苏苏美达仪器设备有限公司 中标金额:9.4万元人民币  包3:Toc仪 1台(套)  中标商:南京国思源商贸有限公司 中标金额:29.6万元人民币  包4:电解抛光腐蚀仪 1台(套)  本包废标  包5: 体式显微镜(含摄像头、图像分析软件、电脑) 1台(套)  中标商:矩阵科工检测技术(北京)有限公司 中标金额:26.8万元人民币  0660-12401167/6 江苏省特种设备安全监督检验研究院无锡分院货物名称:氧氮氢联合测定仪 1台(套)  中标商:南京舜空联科技有限公司 中标金额:94.6万元人民币  招标项目名称及标书编号:0660-12401108/1~3  评标日期:2013年1月5日  包1:冲击试验台 1台(套)  中标商:苏州苏试试验仪器股份有限公司 中标金额:22万元人民币  包2:动态衡检定装置 1台(套)  中标商:北京环达汽车装配有限公司 中标金额:89.9万元人民币  包3:出租车计价器整车检定装置 1台(套)  中标商:无锡市瑞丰精密机电技术有限公司 中标金额:17.5万元人民币  招标项目名称及标书编号:0660-12401082/12/13/14/15/16/17/18/19  评标日期:2012年12月26日  包12:红外发射率测定仪 1台(套)  中标商:江苏省生产力促进中心 中标金额:19.4万元人民币  包13:组织破碎仪 1台(套)  中标商:上海嘉合生物科技有限公司 中标金额:20万元人民币  包14:快速溶剂萃取仪 1台(套)  中标商:江苏苏美达技术设备贸易有限公司 中标金额:46.8万元人民币  包15:气相自动顶空进样器 1台(套)  中标商:江苏苏美达技术设备贸易有限公司 中标金额:20.8万元人民币  包16:氮气发生器 1台(套)  中标商:易安科仪(北京)国际贸易有限公司 中标金额:13.7万元人民币  包17:高温导热系数仪 1台(套)  中标商:上海瑞起实业发展有限公司 中标金额:42.5万元人民币  包18:全自动固相萃取仪 1台(套)  中标商:北京普立泰科仪器有限公司 中标金额:24万元人民币  包19:燃气采暖炉耐久性能测试装置 1台(套)  燃气采暖锅炉测试台 1台(套)  灶具耐久性能试验台 1台(套)  中标商:南京德律科技有限公司 中标金额:44万元人民币
  • 达成合作:中美两国决心终结塑料污染,全球塑料污染防治条约将迈向何方?
    11月15日,中美两国发表《中美关于加强合作应对气候危机的阳光之乡声明》,其中表示,将在循环经济和资源利用效率方面达成合作:中美两国决心终结塑料污染,并将与各方一道制订一项具有法律约束力的塑料污染(包括海洋环境塑料污染)国际文书。这份声明在塑料污染的第三次国际谈判过程中发出,为当前全球协同应对塑料污染释放出了积极信号。11月13日—19日,“塑料条约”第三届政府间谈判会议(INC-3)在位于肯尼亚内罗毕的联合国环境规划署总部举行。会议谈判进程如何?全球塑料污染防治条约又将迈向何方? 记者联系到作为观察员机构的深圳零废弃政策顾问刘华进一步分享。INC-3大会现场全球塑料污染防治:存在共识基础却艰难启动目前,INC-3 如期于 11月19日晚间落幕。深圳零废弃政策顾问刘华坦言:“INC-3的‘显著进展’是确定了INC-4和INC-5的会议时间、地点等安排。但在实质性内容,特别是关于生命周期边界、定义等关键性文本方面的进展仍然有限” 。塑料污染是当前最显著也是关注度颇高的全球环境问题之一,也有多项多边环境协议涉及塑料污染,例如《控制危险废物越境转移及其处置巴塞尔公约》《关于持久性有机污染物的斯德哥尔摩公约》以及国际海事组织(MO)负责船舶运输相关的塑料垃圾管理。但三者各自侧重于危废、持久性有机污染物(POPs)和海洋污染。塑料污染自身一直缺乏系统性、直接性的国际协定来推动相关污染防治工作。2022年3月,第五届联合国环境大会续会在肯尼亚首都内罗毕召开。来自175个国家的政府首脑、环境部长和其他部门代表通过了一项历史性决议,即《终止塑料污染决议(草案)》(以下简称塑料条约)。决议指出,建立一个政府间谈判委员会(INC),到2024年年底前,达成一项具有国际法律约束力的协议,涉及塑料制品的整个生命周期,包括其生产、设计、回收和处理等。联合国环境署执行主任英格安德森表示:“这是自《巴黎协定》以来最重要的环境多边协议” 。“可以说自此之后,塑料污染正式从一个国家或地区的局部问题上升至全球化、国际化的环境问题。”在绿色创新发展研究院日前举办的全球塑料条约背景下中国塑料污染治理进程与展望论坛中,刘华评价道。分歧仍在:零草案讨论仍延续前次会议本次INC-3会议之前,2022年11月,在乌拉圭埃斯特角城召开了INC-1,主要讨论文书框架并选举了INC主席;2023年5月,在法国巴黎召开了INC-2,此次会议授权INC主席在秘书处的支持下,在INC-3召开之前准备一份“零草案”协议(Zero Draft)。“我们过去参与的两次会议中,会发现不同国家的代表看待塑料污染的出发点并不一样。例如,有些岛国更关注海洋污染问题,内陆国家更多从固废的角度考虑,而另一些则更关注生态。不同国家和地区基于其产业结构、对于塑料的使用情况及其在不同的发展阶段形成了对塑料污染的不同观点,这也解释了为什么各国在对塑料污染治理存在共识却仍然艰难地启动了几次会议。”刘华说。本次INC-3会议主要是基于“零草案”进行进一步商讨,而“零草案”的第二部分——塑料及塑料产品的全生命周期,仍然保留了INC-2中较为焦灼的讨论内容。“例如,塑料聚合物是否需要纳入塑料污染管控的生命周期范畴内仍然存在较大争议。一些国家坚持认为其作为原生塑料的重要生产要素应该限制和减少,另一些国家则持反对态度,认为塑料文书应聚焦管控塑料污染,而不是消灭塑料。这也是会议期间较有争议的热点话题。”刘华举例。记者注意到,此前包括欧盟、日本、加拿大和肯尼亚在内的数十个国家曾呼吁塑料污染防治条约其中应包含“具有约束力的条款”,以减少生产和使用从石化产品中提炼出来的原始塑料聚合物,并消除或限制问题塑料,如聚氯乙烯(PVC)和其他含有有毒成分的塑料。但这一立场遭到了塑料行业以及沙特阿拉伯等石油和石化出口国的反对。他们认为,该条约应着重关注塑料的回收和再利用——即塑料供应的“可循环性”。国际化学协会理事会发言人Matthew Kastner也曾在一份声明中称,“塑料协议应该专注于结束塑料污染,而不是塑料生产”。刘华认为,“零草案”第二部分第三项“有问题和可避免的塑料产品,包括短寿命和一次性塑料产品,以及有意添加的微塑料”也值得关注,这一项主要是对 “有问题和可避免的塑料产品”进行定义厘清。“但是什么是有问题,什么是可避免,这一定义难以达成一致。”刘华说。他介绍,因为团队长期关注化学品的问题,实际检测中会发现一些塑料制品添加了并没有必要、并不合适的化学物质,这种情形会为塑料制品的循环利用设置极大障碍,这就属于有问题的产品类型。但定义价值体现在,一旦塑料产品以附件形式被列为有问题和可避免的产品或产品类别的标准、确定有问题和可避免的特定产品或产品类别,就会对其明确其削减或淘汰的时间范围。刘华介绍:“上述争议几乎持续了整个会议阶段,但由于各方的观点分歧显著,直至闭幕仍然无法形成统一意见,各方代表通过接触组会议等方式表达了不同的观点,很多条款被打上方括号需要进一步讨论。本次全球塑料大会依然最终未能在实质性内容上突破,在这是令人遗憾的,也意味着明年内是否能达成最终共识仍然面临挑战”。中美两国决心终结塑料污染,成会议期间热点话题全球塑料公约被寄予终结塑料污染的厚望同时,一些大国也被寄予厚望。本次全球塑料公约大会期间,中美两国联合发表了《中美关于加强合作应对气候危机的阳光之乡声明》。声明在第15条明确提出,“中美两国决心终结塑料污染并将与各方一道制订一项具有法律约束力的塑料污染(包括海洋环境塑料污染)国际文书。”,以及第14条提及,“认识到循环经济发展和资源利用效率对于应对气候危机的重要作用,两国相关政府部门计划尽快就这些议题开展一次政策对话,并支持双方企业、高校、研究机构开展交流讨论和合作项目”。刘华介绍,这对塑料公约谈判期间带来积极信号,也迅速成为会议期间的热点话题。中国作为塑料生产和消费大国,在塑料污染的治理发挥着举足轻重的角色。刘华表示:“从会场的反馈来看,无论是国际NGO组织还是科学家联盟包括我们接触到的一些不同利益相关方,我能感受到他们对于中国在塑料污染治理议题上的期待还是很高的。因为他们会认为,中国宣布禁止进口‘洋垃圾’后,不仅对中国国内产生了极大效益,也推动了国际的废弃物的贸易变革”。在历次INC会议中,中国代表团在多轮讨论中积极陈述,坚持问题导向,聚焦易向环境泄露的塑料制品,针对不同种类的塑料制品采取分类管控措施,加强回收利用和安全处置。在国内层面,我国政府对塑料污染治理高度重视,2022年10月21日,中国已全面禁止“洋垃圾”入境,实现固体废物零进口目标。在国内层面,2007年,中国限制生产销售使用塑料购物袋。2020年年初,中国进一步加强塑料污染治理,在餐饮行业禁止了一次性塑料袋和吸管的使用。目前,国家发展改革委联合多部门发布的《关于进一步加强塑料污染治理的意见》《“十四五”塑料污染治理行动方案》《商务领域经营者使用、报告一次性塑料制品管理办法》等政策文件正持续保障塑料污染治理从全链条、重点领域开展。
  • 海洋、土壤微塑料专场今日顺利召开!大气微塑料监测专场明早继续
    新兴污染物微塑料广泛分布于水体、陆地和大气环境中。4月27日上午9:00,仪器信息网、上海市海洋湖沼学会、华东师范大学塑料循环与创新研究院联合主办的“ 微塑料检测与分析网络研讨会”于线上顺利开幕!共计700余名听众参会,现场互动氛围热烈。上午的海洋微塑料监测方法的标准化及风险评估专场,南京大学张彦旭教授分享报告题为《全球海洋微塑料的源与汇:三维传输模型视角》;生态环境部国家海洋环境监测中心张微微副研究员分享报告题为《海洋微塑料标准化监测技术方法研究进展》;安捷伦科技(中国)有限公司张晓丹工程师分享报告题为《安捷伦 8700 LDIR 激光红外成像水中微塑料测试分析整体解决方案》;珀金埃尔默企业管理(上海)有限公司查珊珊工程师分享报告题为《Perkinelmer微塑料检测分析方案》;中国科学院烟台海岸带研究所王清研究员分享报告题为《黄渤海微塑料污染及其生态效应》;中科院南海海洋研究所徐向荣研究员分享报告题为《海洋微塑料的生态效应研究进展及展望》。在下午的陆地土壤环境微-纳塑料的分析方法及有害添加物的检测专场,华东师范大学何德富教授分享报告题为《农田土壤微塑料污染及其环境风险研究进展》;浙江工业大学潘响亮教授分享报告题为《微纳塑料检测分析中的那些“坑”》;QUANTUM量子科学仪器贸易(北京)有限公司赵经鹏经理分享报告题为《亚微米分辨红外-拉曼同步测量系统在微塑料中的应用研究》;中国科学院南京土壤研究所涂晨副研究员分享报告题为《微塑料表面生物膜的结构与功能研究方法》;复旦大学张立武教授分享报告题为《基于表面增强拉曼光谱的纳米塑料检测》。微塑料在淡水、海洋和土壤介质中的迁移转化研究等备受科研界关注,各项优秀成果层出不穷,与之相对的是,对大气中微塑料的研究相对较少。大气中的微塑料研究起步较晚,但其潜在生态环境影响的范围更广,鉴于空气对人类生存的重要性,今后该领域的研究必然会逐渐增多。有研究表明,大气微塑料已分布于全球大气中,其分布特征与室内外环境、下垫面类型和污染扩散等环境因素相关。大气环境中微塑料主要来源于塑料制品的生产、使用和回收过程,少量来源于陆地和海洋中积累的微塑料。值得关注的是,新冠疫情中口罩的使用可能加重了大气中的微塑料污染。微塑料在大气环境中可发生悬浮、沉降和扩散等迁移,这种迁移同时受到微塑料形态、风力、风向和降水等因素的影响。2023年4月28日上午9:30,由仪器信息网、上海市海洋湖沼学会、华东师范大学塑料循环与创新研究院联合主办的微塑料检测与分析网络研讨会大气微塑料的监测及健康风险专场将于线上召开!报名速戳》》》https://www.instrument.com.cn/webinar/meetings/microplastic230427/专家阵容如下:李道季 华东师范大学 教授《海洋大气微塑料入海通量:问题与挑战》李道季,博士,华东师范大学二级教授,博士生导师,华东师范大学塑料循环与创新研究院院长(海洋塑料研究中心主任),享受国务院特殊津贴专家。他目前还担任上海市海洋湖沼学会理事长、教育部科学技术委员会委员、联合国教科文组织海洋科学委员会(UNESCO-IOC)海洋塑料垃圾和微塑料区域培训和研究中心主任、联合国环境署(UNEP)海洋垃圾和微塑料科学咨询委员会委员、联合国海洋环境科学问题联合专家组(GESAMP)WG38和WG40成员等职务。龙鑫 中科院重庆绿色智能技术研究院 副研究员《东亚陆地-海洋微塑料大气传输的数值模拟研究》龙鑫,中国科学院大学环境科学理学博士,现任中国科学院重庆绿色智能研究院作副研究员。主要从事大气环境数值模拟研究,发表研究论文30余篇,先后主持国家自然科学基金青年基金、深圳市科创委面上项目、全球变化与中国绿色发展协同中心青年人才交叉项目等竞争性项目。2019年被认定为深圳市高层次专业人才(后备级)。胡辉 应用工程师 岛津企业管理(中国)有限公司《PY-TD-GCMS技术应用于微塑料中典型污染物分析》胡辉,应用工程师,从事色谱质谱工作10余年,擅长于环境、食品安全和电子电气等领域。刘凯 华东师范大学 博士后《城市冠层及海气边界层大气微塑料赋存观测》刘凯,华东师范大学河口海岸国家重点实验室在站博士后/助理研究员,主要从事微塑料陆海传输过程机制及其生态环境效应方面研究。近年来,在国家自然科学基金青年基金、上海市科技创新行动计划启明星培育“扬帆专项”、博士后面上项目和上海市博士后日常经费资助下,开展了陆海界面及海气边界层大气微塑料观测及大洋微塑料沉降模式方面的研究。报名速戳》》》https://www.instrument.com.cn/webinar/meetings/microplastic230427/
  • 微塑料登上世界最高峰|上海净信冷冻研磨仪解决塑料难题
    珠峰是一个遥远、纯净的地方,在世界之巅却发现了微塑料的痕迹!    据英国《新科学家》周刊网站11月20日报道,首次在珠峰上发现直径不足5毫米的塑料微粒。英国普利茅斯大学的伊莫金纳珀及其同事从珠穆朗玛峰多个地点采集了8个900毫升的溪水样本和11个300毫升的积雪样本。该研究小组发现,在所有积雪样本和3个溪水样本中都发现了微塑料。       报道称,“污染最严重的样本来自位于尼泊尔境内的珠峰大本营,那里是珠峰上人类活动最集中的地方。每公升积雪含有79个微粒。最高取样地点位于海拔8440米处,即位于珠峰峰顶下方408米处,该样本中每公升积雪含有12个塑料微粒。在珠穆朗玛峰上发现的微塑料大都源自合成纤维,包括聚酯纤维和丙烯酸纤维,系制作登山者衣服和装备所用的材料。“    在过去的几年里,我们在全球各地收集的样本中都发现了微塑料,足迹遍布从北极到河流、深海。那么,什么是微塑料?    微塑料是指粒径很小的塑料颗粒以及纺织纤维。由于学术界对于微塑料的尺寸还没有普遍的共识,通常认为粒径小于5mm的塑料颗粒为微塑料。相比于“白色污染”塑料,因微塑料体积小,意味着就有更大的比表面积(比表面积是指多孔固体物质单位质量所具有的表面积)。而比表面积越大,吸附污染物的能力越强,这就是其与一般的不可降解塑料相比,对于环境的危害程度更深的原因。    它的污染分布如何呢?这些从几微米到几毫米不等的污染物,能从大块塑料制品上脱落下来,轻易排入外界环境中,污染水体、土壤和植被。    大气中:纺织产品生产使用过程中产生的超细合成纤维、工业上材料切碎和磨削等加工产生;质轻,可作为污染物载体,通过呼吸道进入人体。    水域中:塑料污染主要来源,海洋、地表河流、湖泊、水库、居民饮用水中均已发现;市政污水排放、大气微塑料干湿沉降、工业产生塑料废弃物、纺织行业废水排放、个人日用护理品及其包装等。    土壤中:市政污泥的土地利用、有机肥的长期施用、农用地膜的残留分解、大气微塑料的沉降、地表径流和农用灌溉水的带入等;通过食物链传递并富集。    上至世界之巅,下至世界最深的海沟,微塑料可谓无处不在。有研究指出,每年每人平均会摄入70000颗微塑料。目前微塑料对人体的危害如何还需要深入的研究,但这类无孔不入的物质无疑为我们人类敲响了警钟!我们必须加强对微塑料的研究,尽早提出可行的塑料减排和处理方案。    提到塑料研究,不得不提塑料的前处理。由于塑料制品对温度极其敏感,且加热后会变形、变性,只有在超低温环境下,才能保证样品的完整性。所以,在样品前处理这块着实让科研工作者头疼,因为常规的仪器根本搞不定它。    上海净信浸入式液氮冷冻研磨仪(JXFSTPRP-MiniCL),却完全可以做到!    这款仪器体积小方便携带,拥有三项专利,真正的液氮冷冻,全程-196度低温下研磨粉碎。保持了生物物质活性,确保易挥发物质的保留;防止热不稳定化合物的受热降解,对热和机械压力敏感的代谢物、异构体和复杂化合物保持原有的敏感特性物质。传统需要五分钟的粉碎研磨,而本设备只需要三十秒,称得上是研磨界的终极手段!
  • 人类血液中首次发现微塑料,监控微塑料污染刻不容缓
    近日,发表在环境科学领域权威期刊《环境国际》(Environment International)上的一项研究中,来自荷兰阿姆斯特丹自由大学领导的研究团队,首次在人体血液中检测到了微塑料,研究中发现在近80%的实验受试者样本中存在微塑料颗粒,这也进一步证实微塑料已进入人类体内,成为人类健康的又一大隐患。监控微塑料污染刻不容缓目前,微塑料已经被列入国际上广泛关注的环境中新污染物四大类之一(四大类分别是持久性有机污染物、内分泌干扰物、抗生素和微塑料)。 2022年3月30日,生态环境部召开新闻发布会,生态环境部固体废物与化学品司司长任勇介绍了新污染物治理,并表示生态环境部会同发展改革委等13个部门正在研究行动方案,制定行动方案加大新污染物治理。2020年1月,国家发改委与生态环境部发布关于《进一步加强塑料污染治理的意见》,要求强化与微塑料污染防治相关的科技支撑,开展不同类型塑料制品全生命周期环境风险研究评价,加强江河湖海塑料垃圾及微塑料污染机理、监测、防治技术和政策等研究,开展生态环境影响与人体健康风险评估。在生态环境部通过的《生态环境监测规划纲要( 2020-2035 年)》中,海洋微塑料专项监测的任务内容也列在其中。全球现在每年制造300万吨塑料,大量塑料最终会进入并污染海洋,除了在海洋表面清除较大体积塑料外,海水中含有的塑料微颗粒越来越受到人们的重视。Pyroprobe-GC-MS:快速有效的微塑料检测技术全球现在每年制造300万吨塑料,大量塑料最终会进入并污染海洋,除了在海洋表面清除较大体积塑料外,海水中含有的塑料微颗粒越来越受到人们的重视。目前海洋中微塑料的检测主要利用FT-IR和拉曼技术,光学方法可提高检测能力,但只是针对微塑料的类型和大小等方面,不能准确测量结构构成。而Pyroprobe-GC-MS热裂解-气质联用技术分析时间较短,在快速判断微塑料类型、评估微塑料污染程度等方面有较大优势,可为微塑料的定性和定量提供良好的解决方案,是研究分析微塑料环境污染的有效工具。使用Pyroprobe-GC-MS技术在鉴定微塑料颗粒的材料成分以及所使用的添加剂时,首先通过热裂解使高聚物在特定温度发生裂解,再利用气质联用仪鉴别裂解后短链小分子单体,就可以同时鉴定聚合物及添加剂。对于不易溶解或水解的聚合物颗粒,Pyroprobe-GC-MS联用是一个非常实用的技术,可根据聚合物在受热分解过程中形成的聚合物单体提供有关大分子聚合物的结构信息。热裂解分析流程图CDS Pyroprobe热裂解的优势CDS成立于1969年,距今已有53年历史,是一家专注于GC进样技术的公司,2015年正式加入莱伯泰科,更加及时有效的为中国客户提供支持和服务。CDS产品历经多年研发与改进,已推出多款迭代产品,于2017年推出的第6代6000系列热裂解产品,对热裂解核心部件做出了重要创新,设计出“DISC模块”,在原有的经典的电阻加热线圈的基础上,改进了加热腔并更有利于配合自动进样器自动上样。CDS 公司在丝式裂解方面具有强大的实力,其合理的的温控技术和设计理念,其科学的的高压裂解、有氧裂解、催化裂解、多步裂解(可达10步)等技术,使得CDS一直跻身全球高端裂解器之列。CDS热裂解6200CDS Pyroprobe特点:❇ 数据重现性好:RSD1.5% (聚苯乙烯)❇ 温度范围:室温到1300℃,温度精度达到±0.1℃,升降温速率快。❇ 加热速率:加热速率可控10-20000℃/s (脉冲裂解)或0.01-999.9℃/s❇ 具有标配自动捡漏功能和选配自动流量调节控制功能❇ 不影响GC的其他进样口使用,具有更方便的加热的样品传输线与GC连接。❇ 支持载气切换及反应气模式❇ 具有三种操作模式:运行、干燥、清洗❇ 裂解调节容易调节,还可以模拟一些反应条件,应用领域广泛。
  • 微塑料污染之忧将解 中大规模产可在海水中“消失”的塑料
    p  新华社北京9月5日电(记者喻菲)为解决日益严峻的海洋塑料污染问题,保护海洋生态环境,中国科学家最近研制出一种可在海水中降解的聚酯复合材料,有望在诸多领域替代现有难以降解的通用塑料。/pp  中国科学院理化技术研究所高级工程师王格侠介绍,其团队研制出的这种结合了水溶性与降解性的材料具有一定的环境耐受性,废弃后能在数天到数百天内在海水中降解消失,最终分解为不会对环境造成污染的小分子。/pp  王格侠说,长期以来人们聚焦于陆地上的白色污染及其治理。直至近年,大量塑料污染致使海洋生物遇害的现象被频繁报道才引起广泛关注。/pp  据保守估计,人类每年向海洋投放的塑料垃圾为480万吨到1270万吨,占海洋固体污染物总量的60%至80%。目前,人类活动和洋流导致这些塑料垃圾集中分布于北太平洋、南太平洋、北大西洋、南大西洋及印度洋中部。/pp  世界经济论坛也发出警告,2050年全球海洋塑料总重量将超过鱼类的总重量。/pp  专家介绍,目前几乎所有类型的塑料都已经在海洋中找到。这些塑料微粒或者漂浮在海水中,或者沉入海底,几十年甚至几百年不会分解,对整个海洋环境造成了严重的污染。塑料在使用后被直接丢弃或从陆地经过河流、风吹进入海洋,在海水中受到光、海水风化,以及洋流和生物群的作用,导致塑料最终形成小于5毫米的微塑料。/pp  一些海洋生物,如信天翁、海龟等,误食塑料袋会产生一系列的胃肠问题,以至于无法再进食,最终被饿死。最令人震惊的一项科学数据显示:有90%的海鸟是因为误食了塑料袋而死于非命。/pp  王格侠指出,尽管海洋中塑料污染问题已经非常严峻,但目前人们对于这些塑料污染仍然没有有效的应对措施。海洋特殊水域环境使得人们不能像在陆地上一样对这样大量分散的垃圾进行集中收集和处理。最根本有效的办法就是让材料废弃进入海水后能自行降解消失。/pp  据介绍,中国科学院理化技术研究所降解塑料和工程塑料研究组是中国率先开展生物可降解塑料研究的单位。生物降解塑料大都是含酯键的高分子材料,分子链相对脆弱,因而可以被自然界许多微生物分解、消化,最终形成二氧化碳和水。/pp  目前,该团队的生物降解塑料生产及应用技术已经向4家中国企业完成了技术授权,其中3家已经顺利投产,总产能达到每年7.5万吨,占全球总量的一半。/pp  在认识到海洋塑料污染的严重性后,科研人员希望研发出在海水中可降解的材料。然而他们发现,在陆地上能够快速降解的生物降解材料在海水中却难以降解,甚至长时间都不降解,不能用来解决海洋中的塑料污染问题。/pp  经过多次反复实验,理化技术研究所的科研团队将非酶水解过程和水溶过程与生物降解过程结合起来,实现了材料在海水中快速降解。科研人员通过对材料的设计、合成、改性和加工使得其降解性能可根据不同的应用需求进行调控。/pp  在近期于深圳举行的旨在提升中国自主创新能力、加大先进科技成果转化的第一届“率先杯”未来技术创新大赛上,这一技术位列30个优胜项目之一。/pp  中国已将生态环境保护提高到前所有未有的层面,在解决本国生态问题的同时也为解决全球环境污染问题贡献中国智慧。/ppbr//p
  • 焦塑料——经过火焚烧转变而来的一种新型塑料污染
    p style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/1400f8bf-32a9-4176-aba4-1392bd6a7d02.jpg" title="塑料垃圾.jpg" alt="塑料垃圾.jpg"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "人们在康沃尔海滩上收集的塑料垃圾 图片来源:ROB ARNOLD/span/pp  在环绕英国西南部海岸线的沙湾上,人们可以找到各种各样的石头,从小鹅卵石到厚重的镇纸石,散落在漂浮物中。它们的颜色是深浅不一的灰色,表面平滑、没有棱角,看起来很不起眼。/pp  但如果你拿起它们看时,很快就会发现,这些看起来毫不起眼的“石块”其实根本不是岩石。/pp  这是焦塑料——经过火焚烧转变而来的一种新型塑料污染。地质学家甚至也对它们的外表感到困惑。英国普利茅斯大学环境科学家Andrew Turner最近在《全环境科学》上发表的一篇论文中对这种物质进行了描述。他认为,这种污染可能隐藏在世界各地。/pp  “因为它们看起来像地质变化形成的,这让很多人经过时都不会留意到它们。”Turner说。/pp  几年前,康沃尔塑料污染联盟志愿者联系到Turner时,他第一次听说了这种奇怪的新垃圾。/pp  海滩拾荒者发现了一些奇怪的鹅卵石和石块的塑料仿制品,它们非常轻,可以漂浮在水面上。Turner说,一些志愿者已经收集了数千块。环境艺术家Rob Arnold甚至为当地一家博物馆设计了一个展览,让游客在塑料中找真正的石块。很少有人能够分辨出来。/pp  “这个活动非常成功,但也令人震惊。”Arnold说,“人们很惊讶他们居然完全没有注意到这些污染。”/pp  一年前,Turner决定更系统地研究这一现象。在社交媒体上发出呼吁后,他收到了从苏格兰到英属哥伦比亚等地的垃圾样本,他的分析最终集中在从惠特桑德湾附近收集的垃圾上。这是一个受保护的大海湾,其中包括康沃尔郡一部分最好的海滩。在进行大小和密度测量后,该团队用X射线和红外光谱检测了塑料的化学成分。/pp  他们了解到,这些“石头”是由聚乙烯和聚丙烯构成的,这是两种最常见的塑料。它们还含有大量的化学添加剂,但最让研究人员吃惊的是它经常和铅、铬一起出现。/pp  Turner认为,这些是铬酸铅的痕迹。几十年前,制造商将这种化合物添加到塑料中,使其呈现出鲜艳的黄色或红色。而这些颜色可能由于燃烧而变暗。该团队在实验室里熔化了一些颜色鲜艳的塑料,验证了这个想法。果然,它们变成了深灰色。/pp  与此同时,多年的风和水的侵蚀可以让这些经过高温的塑料形成光滑的边缘和风化的外观。/pp  “想象一下,如果一块卵石在地质学上发生这样的变化,它会需要几十万年的时间。”Turner说,“我们在这些塑料上看到了同样的情况,但它发生的速度要快得多。”/pp  康沃尔热塑性塑料的确切起源仍然是个谜。Turner认为可能有很多来源,从篝火到旧的垃圾填埋场,篝火与夏威夷塑料—岩石混合物“塑小球”的形成就存在关联。他认为,其中一些塑料垃圾可能是从萨克岛漂到英吉利海峡对岸,因为最近的报告显示,萨克岛的垃圾在焚烧后被倾倒在海里 另一种可能是从加勒比海岸一路漂到英吉利海峡对岸。/pp  无论如何,高温塑料已经在世界上出现了,Turner想知道它们会对环境造成什么样的危害。他发现几个蠕虫样本中似乎富含铅,这表明这些生物可以摄取塑料,并将重金属引入食物链。/pp  Turner与美国的一位合作者分享了一些样本。这位合作者正在做进一步分析,以确定这些样本中是否也含有有害的有机化合物。“在不受控制的环境下燃烧塑料,会产生各种有害物质。”他说。/pp  除了直接的生态效应,热塑性塑料的出现还表明环境中的塑料无处不在。英国莱斯特大学古生物学教授Jan Zalasiewicz想知道,这些东西最终是否会在岩石记录中留下痕迹。/pp  无论高温塑料的最终命运如何,Zalasiewicz说,很清楚的是,塑料正在“成为地质循环的一部分”。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/60eaff85-f756-497e-837e-d605b32afed6.jpg" title="绿· 仪社.jpg" alt="绿· 仪社.jpg"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "扫二维码加“绿· 仪社”为好友 了解更多对科学仪器市场的分析评论!/spanbr//p
  • 治理塑料污染,碳酸钙如何乘借“可降解塑料”的东风?
    近日,国家发展改革委、生态环境部、工业和信息化部、住房城乡建设部、农业农村部、商务部、文化和旅游部、市场监管总局、供销合作总社等9部门联合印发《关于扎实推进塑料污染治理工作的通知》,明确禁限不可降解塑料袋、一次性塑料餐具、一次性塑料吸管等一次性塑料制品的政策边界和执行要求,对疫情防控等突发事件期间用于应急保障的一次性塑料制品予以豁免。相比2008年“限塑令”主要是针对于流通使用环节,这次的“禁塑令”不仅聚焦于使用环节,也关注到了生产、流通、使用、回收、处置的全过程。在政策方面,“禁塑令”没有不顾实际情况搞“一刀切”,指出用于盛装散装生鲜食品、熟食、面食等商品的塑料预包装袋、连卷袋、保鲜袋等,不在禁止之列 “禁塑令”扩大到“餐饮打包外卖服务以及各类展会活动”。从技术角度看,环保替代塑料吸管有多种选择,而可降解塑料抗摔性、耐热性、防腐性等方面的提升空间是另一个问题。这也意味着我国可降解塑料将迎来发展机遇。到2030年,预计我国可降解塑料需求量可到428万吨,市场规模可达855亿元。2020年底“禁塑令”工作目标从材料与环保协调发展角度看, 使用源于自然并可回归于自然的无机矿物作为填料部分取代高分子材料生产塑料制品是目前的可行方案之一。近年研究表明,碳酸钙等无机粉体材料在制造环境友好塑料材料方面发挥了重要作用。实现了提高塑料制品尺寸的稳定性、提高塑料制品的硬度和刚性、改善塑料加工性能、提高塑料制品的耐热性、改进塑料的散光性、降低塑料制品成本等多重优势。碳酸钙有利于塑料材料的降解,聚乙烯(PE)薄膜中有碳酸钙粉末时,在填埋后碳酸钙有可能与CO2和H2O反应,生成溶于水的Ca(HCO3)2而离开薄膜。留下的微孔,将增大聚乙烯塑料接触周围空气和微生物的面积,从而有利于进一步降解。同时,填加碳酸钙有利于PE焚烧。燃烧时,塑料溶化容易形成黏壁现象,无机粉体加入能够使得这一问题得到极大改善。在PE塑料材料中添加了大量碳酸钙,其效果不仅体现在塑料材料的减量上,且焚烧时可减少对大气污染,减少尾气中有害气体的排放量, 特别是与焚烧热氧降解剂配合使用,对遏止二恶英产生有十分重要意义。近几年日本等国开发了可焚烧PE塑料薄膜袋用来作为盛放焚烧垃圾发电专用袋。随着中国禁塑行动的进行,超细重质碳酸钙、轻质碳酸钙和纳米碳酸钙由于价格相对低廉,又可促进塑料降解,环境友好,在可降解塑料中的添加比例会越来越大,市场前景会越来越广阔。广西贺州是全国的重钙粉体生产基地和人造岗石生产基地,被授予中国“重钙之都”和“岗石之都”称号。目前,贺州市年产重质碳酸钙粉体达800万吨,产品市场占有量达到60%以上。广西贺州也是珠海欧美克仪器用户最集中的区域之一,在深耕非矿行业二十余载的岁月里,欧美克的仪器质量和品牌口碑不断得到贺州“钙帮”老板们一致认可。Topsizer 激光粒度分析仪碳酸钙根据品种不同有多种不同的粒径和不同的表面涂层特性。欧美克Topsizer激光粒度仪应用于测试碳酸钙微粉,在短短几分钟的时间内就可以完成覆盖从纳米到毫米级别范围的测量。可以实现生产过程中以及最终产品的质量中对碳酸钙的粒度的监测和控制。其次,通过优化的产品设计,Topsizer可以为客户提供高准确性、高重复性和高重现性的数据。图3和表2显示了同一GCC(立磨)样品分成三等份样品的重复性结果,由同一台Topsizer仪器测量。图4和表3显示了三台不同的Topsizer仪器所测量的同一批次的重复性粒度分布。图3:方法重复性:同一台Topsizer仪器测量同一批GCC中三种不同样品的粒度分布表2:同一台Topziser仪器测量同一批GCC的三等份试样的粒度分布图4:系统重现性:用三台不同的Topsizer仪器测量同一批GCC的粒度分布表3:用三台不同的Topsizer仪器测量同一批GCC的粒径分布最重要的是,激光粒度仪测试过程比较简单,很容易掌握测试方法,对测试人员的要求不高,从样品制备到测试可以在几分钟内完成质控把关。随着后疫情时期的经济反弹,广大碳酸钙企业在这一难得机遇面前,可以通过增加碳酸钙与塑料的亲合性的活化处理及采用粒度仪进行良好的粒径控制,开发出可降解塑料用高填充比例高制品性能的碳酸钙专用产品,提高碳酸钙产品附加值,促进碳酸钙产业的发展。欧美克仪器也在仪器性能和日常维护上为广大碳酸钙企业提供及时全面的技术支持,例如针对行业集中区域客户的免费上门回访维护等系列售后增值服务活动(点击文字了解相关活动),以及多场碳酸钙行业专场直播课程等。扫描二维码报名专题直播课始终坚持“以客户为中心”的服务宗旨,欧美克作为国内最著名的颗粒测量仪器制造商、高新技术企业及广东省工程技术研究中心,始终致力于粉体行业粒度检测与控制技术的不断提高,为客户提供先进的物超所值的粒度测量仪器,服务及整体解决方案,为粉体行业创新发展提供强有力的支撑!参考资料:1. 欧美克仪器.《碳酸钙的激光衍射粒度分析报告》2. 腾讯新闻.《从“纸上谈兵”到“落地有声” “禁塑令”要突破两大难点》;3. 矿材网.《后疫情下,中国禁塑行动为碳酸钙行业带来大机遇!》
  • 微塑料研究最前沿丨微塑料监测遇难题,我们该何去何从?
    近年来,塑料污染在水环境(海洋和淡水)中的问题日益严重,得到广泛报道和关注。据《Science》杂志研究报告,2010 年全球192 个沿海和地区共制造2.75 亿吨塑料垃圾,其中约有800 万吨排入海洋,并且塑料垃圾数量不断增多,到2015 年已有超过900 万吨塑料垃圾排入海洋。如果不加以控制,科学家预计到2050年海洋中的塑料垃圾排放量将会是2010年的两倍。这些污染物正在持续威胁海洋生物和人类自身的安全与健康。近期,科学家再次发现塑料会在机械作用、生物降解、光降解、光氧化降解等过程的共同作用下逐渐被分解成碎片,形成微塑料,被海洋生物吞食,在生物体内不断积累,随着生物链,造成更广泛的危害。这一发现引起科学家的广泛关注,同时,也引起了各国政府的高度重视。近期,生态环境部发布的《生态环境监测规划纲要(2020-2035年)》也着重强调应加强海洋微塑料监测,加快形成相关领域监测支撑能力,为国际履约谈判和全球新兴环境问题治理提供支撑。在微塑料监测中,由于微塑料的物理特性(大小、形状、密度、颜色)以及化学组分等差异,不同类型微塑料在不同环境中流动过程(输入、输出和存留)的时间均不相同,使微塑料监测变成一大难题。目前,对微塑料的分析方法主要有目视分析法、光谱法 (如傅立叶变换红外光谱法和拉曼光谱法)、热分析法以及其他分析方法等 (如质谱法以及扫描电子显微镜-能谱仪联用法)。其中,红外光谱及Raman光谱分析,由于具有无破坏性、低样品量测试、高通量筛选以及所获取的结构信息互补等特点,成为检测和鉴别微塑料的主要分析技术;而在实际操作中上述技术仅可对几微米颗粒物进行检测(FT-IR为10~20μm、Raman 低仅为1 μm),使微塑料的研究仍处于起步阶段。作为先进仪器平台,Quantum Design中国时刻关注重大科研发展方向,并致力于引进先进表征技术及设备,为我国科研搭建先进科技平台。聚焦于微塑料监测难题,Quantum Design中国表面光谱部门认为需要考虑三个关键因素:尺寸、微观形貌以及聚合物类型。理论上可用于测量两者的方法均适用于微塑料分析,但是由于疑似微塑料样品的干扰,使得仅用一种分析方法难以准确的识别微塑料,为了提高准确度以及检测效率,需要采用多组合分析测试方法对其进行监测。目前,我司主要有Neaspec纳米傅里叶红外光谱仪(nano-FTIR)、IRsweep微秒时间分辨超灵敏红外光谱仪和PSC非接触式亚微米分辨触红外拉曼同步测量系统mIRage三款先进光谱表征设备。其中,非接触式亚微米分辨触红外拉曼同步测量系统mIRage采用的光学光热红外技术(O-PTIR),将光学显微与微区红外结合,一举突破了传统傅里叶红外光谱(FT-IR)及衰减全反射红外光谱(ATR-IR)的分辨局限,实现了500 nm的空间分辨率。不仅如此,该设备将显微成像、红外及Raman测试集成于一体,多测试方法同步测量有效提高检测效率及准确度。同时,它具有更简单,更快速的测量模式,无需复杂的样品制备过程等优势,让更快、更准确地进行微塑料追踪、监测和研究成为可能,正成为下一代标准的方法。为更好的服务国内科研用户,Quantum Design中国北京样机实验室引进了非接触式亚微米分辨触红外拉曼同步测量系统mIRage,为国内科研用户开放,以期为微塑料监测技术的发展做出一定的贡献。 Quantum Design中国非接触亚微米红外光谱系统mIRage样机操作过程示意 精选案例:目前,mIRage在塑料领域的研究中大放异彩,助力美国特拉华大学Isao Noda教授课题组对PLA和PHA的复合薄片塑料结合方式及内在机理的研究,向我们展示了mIRage在微塑料领域研究中的潜力。该工作中,作者先对PHA和PLA的结合面进行了固定波数下的红外成像(图1)。通过对比发现,在约330 nm的范围内(空气/PHA界面)1725 cm-1处的红外信号出现了急剧的下降,而在PHA/PLA界面处几微米范围内1760 cm-1处的变化较为平缓,且无清晰的边界,表明PHA和PLA可能有某种程度的分子混合。由于使用光学光热红外技术,不存在困扰传统红外成像设备的米氏散射效应,因此能够确定这一模糊的边界是来自于两种材料间的相互渗透而非光学伪影。图1. PLA和PHA在固定波数下的红外成像。(A)红外成像图(红色1725 cm-1为PHA;绿色1760 cm-1 为PLA);(B)A图中黑色线性区域PHA/PLA红外吸收强度分布对比 为了进一步研究PHA/PLA界面处的化学成分变化,作者对这大概2 μm左右交界面的红外图谱进行了间隔200 nm的线性红外扫描分析(图2)。从羰基(C=O)伸缩振动区和指纹区(图2 A和B)的线性扫描红外谱图可以清晰的区分PHA(1720和1740 cm-1)和PLA分子(1750-1760 cm-1)。区别于理想的简单二元系统(不互溶或无分子相互作用),PHA/PLA薄片羰基伸缩振动红外叠加图谱(图2C)并不存在一个明显的等吸收点,反映了在界面区域存在着复杂的组分变化及两种以上不同物种的分布。图2. PHA/PLA界面区域每200 nm间隔的羰基伸缩振动区域(A)和指纹图谱区域 (B) 以及羰基区域伸缩振动的叠合图谱(C) 为获取更详细的界面处PHA/PLA组分的空间分布规律,采用同步和异步二维相关光谱(2D-COS,two-dimensional correlation spectroscopy)来分析羰基拉伸区域采集到的红外谱图(图3A和3B),并以等高线的图形式展现,详细的分析方法可以参考相关信息(Combined Use of KnowItAll and 2D-COS, https://www.youtube.com/watch?v=0UCcD3irVtE)。结果显示,在主要为PHA的混合界面区域同时观测到来源于PLA的1760 cm-1红峰外,表明部分PLA渗透到PHA层,且与PHA层的其余部分相比,界面附近的PHA结晶度明显降低。在对指纹图谱区域进行2D PHA/PLA相关光谱同步和异步对比时,也得到了同样的结果(可参照发表文章,在此不再显示), 即PLA向PHA渗透,且PHA的晶型有所改变。另外,作者还通过非接触式亚微米分辨触红外拉曼同步测量系统对该区域进行了同步红外和拉曼分析(图3C),两者选择性和灵敏度不同却可以很好的互补,进一步验证了这一发现的可靠性。结果证实,即使是表面上不混相的PHA和PLA聚合物对,也存在一定程度的分子混合,这种混合可能发生在界面只有几百纳米的空间水平上,很好的解释了这两种生物塑料之间的高度相容性。 图3. PHA/PLA羰基伸缩振动区域二维同步(A)和异步(B)相关光谱(2D-COS)分析以及交界区域红外和拉曼光谱分析(左为红外,右为拉曼)。 参考文献:[1] Two-dimensional correlation analysis of highly spatially resolved simultaneous IR and Raman spectral imaging of bioplastics composite using optical photothermal Infrared and Raman spectroscopy,Journal of Molecular Structure,DOI: 10.1016/j.molstruc.2020.128045.
  • 蠕动泵软管:揭秘细节,掌握蠕动泵的重要组成部分
    蠕动泵是一种以软管为核心的泵商品,具有显著的流体输送效果。软管做为蠕动泵的重要组成部分,其质量和性能直接影响全部泵的运行效果。本文将从软管的材料、构造与应用细节等方面进行深入探讨,给您表述蠕动泵软管的奥秘。  软管材料是软管特征的基本,也是决定软管使用寿命的关键因素。市场上常见的软管材料有:塑胶、塑胶、PVC、氯丁胶等。其中,橡胶管具有强度高、耐磨等特点,主要适用于腐蚀性介质的运输 聚乙烯软管具备抗压、抗氧化等优点,适用一般物质运送。挑选软管材料时,应根据实际需要进行系统合理的选择。  软管结构是软管特征的重要,也是保证软管正常运行的重要因素。常见的软管构造包含:里胆、提高层和外皮。里胆是软管的内衬,与物质接触,其耐腐蚀性和耐磨性直接关系软管的使用期 提高层是软管的支撑层,其材料和结构在于软管的抗压性和抗拉性 外皮是软管的保护层,能保护软管免遭外力和环境腐蚀的伤害。  除开软管的材料和结构外,还应特别注意软管的使用细节。最先,软管应保持直线运行,不要过分弯折,以免导致泵的正常运行。同时,务必维护保养软管连接部分是否牢固或泄露,以确保系统的密闭性。此外,软管还应注意介质温度、浓度等因素,避免高温、高浓度或其他原因造成软管衰老、腐蚀等难题。  一般来说,软管做为蠕动泵的重要组成部分,其质量和性能对整个泵的运行效果是至关重要的。选择合适的软管材料,把握软管构造,留意软管运用细节是保证蠕动泵正常运行的重要因素。我希望本文能为您解决蠕动泵软管细节的疑团,使您更聪明地选择与使用软管。
  • 隐秘的“神器”,造假的环境监测数据!
    污染源自动监测设施是加强生态环境监管、提升非现场执法能力、落实排污单位治污主体责任的重要抓手,环境监测数据不准确、不真实,直接影响环境质量状况和污染治理成效。近段时间,环境监测机构弄虚作假时间层出不穷,引发社会强烈反响。自动监测工作专业性很强,非专业人士很难搞懂。随着技术的发展,监测数据弄虚作假方法多、路径广、形式五花八门,无论是从采样、预处理、仪器分析、数据传输,还是绕过自动监测设备逃避监等环节都可以做手脚,新的违法行为手段不断升级、方式更加隐蔽,非专业人士很难发现破绽。对于高污染企业,他们本来应该加大对环保的投入,使得自己能够达标排放,但是,有的企业却动起了歪脑筋,在监测设备上动起了手脚。最近,焦点访谈节目报道并揭露了环保公司的这样一种“神器”,可以帮助高污染企业减少成本的同时还能让环保数据达标。为了实时监测企业的排污情况,生态环境部门一般在企业的烟气排放口进行烟气采样,采样的烟气通过采样管线传输到在线监测站里进行污染物数据分析,分析结果会直接在生态环境部门的监测平台显示。2019年,山东滕州一家生产多孔砖的新型建材厂由于深受排放超标惩罚的困扰,接受了一个自称环保科技公司的人推销的一种特殊的环保设备并进行了安装。这家新型建材厂新安装的设备投入使用后,烟气污染物浓度和排放量确实实现了稳定达标,但是由于数据不正常的稳定,这个情况很快引起了滕州市生态环境部门的注意。2019年7月,枣庄市生态环境局滕州分局对其进行突击检查。经过多方寻找,在采样口通往在线监测站的线路上,检查人员发现了一根多余的管线。跟随这根神秘的管线,生态环境局的检查人员一直走到了几十米外的办公室,发现这根管线在进入办公室后,通过墙顶的小孔通入了另一个房间。房间里,他们把氮气接入采样管线,稀释采样气体,从而达到干扰在线监测数据的目的。塑料软管、三通管件、氮气瓶,就是环保科技公司的人来给砖厂安装的所谓环保设备。并且安装的管线都非常隐蔽,不会立刻查到在哪个地方,包括管路都包装成电线,有的直接藏到二氧化硫取样管里。同时,在另一家新型建材厂,检查人员找了几个小时毫无线索后,在监测站房的顶棚里发现了接入氮气的三通管件,而为了找到氮气瓶,更是一路把埋藏氮气软管的水泥地挖开,才最终找到藏匿地点。对砖瓦企业来说,与其花大价钱升级环保设备,加大环保耗材投入,不如安装这些环保科技公司推荐的氮气干扰设备来得划算。而监测数据被干扰的背后,是企业往大气里排放的超标气体对环境造成的巨大伤害。最终,滕州市的这四家砖厂因篡改伪造监测数据被处以15万元的罚款,企业负责人被行政拘留。通过调查,索某贝、王某令、孙某、李某飞进入了公安部门的视线。这四个人中,王某令和孙某的名下有着正规的环保科技公司,服务对象主要就是砖瓦企业。平时他们就是打着环保科技公司的幌子,在干着推销干扰在线监测设备的业务。像这样的顺手推销并不是这个团伙仅有的手段,通过给中间人好处费,让他们牵线搭桥是这个团伙发展业务的另一个手段。找老客户或者通过中间人介绍毕竟客源有限,这个团伙还经常在自媒体平台发布监测数据调试的广告,招揽更多的生意。一旦有需要,砖瓦企业就会自动找上门。通过王某令等人的多渠道操作,他们贩卖安装的干扰设备遍及浙江、河北、湖南等多省市。安装的价格也从2019年的几千块一路飙升到2022年的几万块。从2021年底到2022年6月,半年的时间里,王某令、索某贝团伙贩卖安装的在线监测干扰设备共涉及全国6省12地市。2023年,索某贝、孙某、王某令、李某飞因犯破坏计算机信息系统罪分别被判处五年零三个月到五年十个月不等的有期徒刑。此外,警方还查处涉案企业12家,抓获犯罪嫌疑人26名。涉事企业负责人将另案处理。自动监测数据造假,越来越隐蔽,趋于专业化、产业化,是生态环境领域的毒瘤,隐蔽而且性质非常恶劣,危害非常大。高污染企业对环保的投入,肯定会增加成本,但企业经营不能竭泽而渔,要算长久账,更要算法律账,算环境账,否则就会得不偿失。就像节目里提及的砖瓦企业和所谓环保科技公司有关人员,最终都受到了法律的惩处。据了解,下一步,相关部门还将继续严厉打击类似违法行为。
  • 热分析如何让塑料变得更加环保
    前言塑料如今名声狼藉。每年生产的塑料超过3.8亿吨,其中近60%作为废物丢弃。实际上,把废弃塑料收集在垃圾填埋场和海洋中,这往往会导致灾难性的后果。然而,在减少排放对防止失控的气候灾难至关重要的时期,塑料可通过减轻运输重量、提高车辆的燃油效率和保持食物新鲜的方式帮助降低有害温室气体排放。事实上,加拿大最近发布的文件证实,因塑料产生的问题是源于对塑料废物管理不善,而塑料作为一种材料,对环境有诸多积极的影响。1. 回收塑料的挑战目前,仅“16%的塑料废物得到回收,用于制造新塑料”。其余的塑料被焚烧、送往垃圾填埋场,或最终排入大海。由于原油价格波动以及回收过程依赖于人工对废物进行分类,回收问题往往非常复杂。有时,制造新塑料比回收旧塑料成本更低。许多塑料产品包含塑料或添加剂的混合物,使得塑料成分过于复杂而无法回收,即使确定塑料成分,也无法确定回收塑料是否与原始材料完全相同。与原始塑料相比,回收物品因暴露于雨水、紫外线辐射和高温,其材料特征可能会改变。好消息是塑料回收率正在逐渐增加。但我们的全球塑料使用量也在以惊人的速度增长,这意味着尽管回收率变高了,但每年丢弃塑料废物变多了。针对这一全球性问题的解决方案非常复杂,但可以快速准确地确定回收材料成分和潜在性能的简单技术将有助于生产设备使用更多可用的回收材料。这就是热分析发挥作用的地方。热分析在塑料回收中的作用在塑料的生命周期中,热分析有三种主要用途:原材料测试:热分析可向您提供正在处理的聚合物类型,如PET或HDPE,纯度以及混合塑料中每种成分的百分比浓度。最终产品检查:在经过生产过程后,您可使用热分析检查塑料产品是否符合经认可的规范。您可能已验证原材料,但如果您在其中添加元素或将材料置于高温下,那么您需要在过程结束时验证实际特征。新产品研发:当您正在开发具有特定特征的新型聚合物时,热分析可帮助您全面了解新型聚合物的表征,而无需对成品进行寿命测试。热分析可帮助您选择正确的添加剂,从而确保不产生任何不利影响,如不必要的颜色变化。因此,如果您使用回收塑料,热分析可帮助解决关于使用回收塑料相关的问题。您可准确确定塑料类型和数量,并根据指定产品或新型聚合物开发来检查其性能特征。现在,我们来看看热分析在塑料生命周期中的具体示例。示例1Example 1 用于原材料识别的DSC此示例可以让您检查回收原材料的聚合物类型。使用差示扫描量热仪,通过测定玻璃化转变温度和熔点以便识别材料。您可将熔融温度和/或玻璃化转变温度值与已知值进行比较,以验证聚合物类型。在此示例中,我们使用了DSC200仪器。示例2Example 2 用于检查杂质的DSC现在,我们来看看稍微复杂的示例。回收聚合物中的任何杂质均会影响其特性,因此DSC可用于检测微量有害物质。在此示例中,我们测试了含0.5% PP的HDPE,以说明如何在测量过程中检测少量PP。在此案例中,我们使用了DSC600,这款仪器的灵敏度更高,为0.1µW。在测量杂质含量非常低的材料时,需要高灵敏度的仪器。两种聚合物的熔点差异显著,这种灵敏度水平可使您更容易看到PP的峰值。示例3Example 3 用于检查回收塑料稳定性的TGA您可能需要检查回收聚合物的另一个特征,即稳定性。如果材料用于高温环境,这可能适用于最终产品用途,但您也可检查材料是否可承受您自身的生产过程。这时,我们使用了同步热重分析仪STA200RV的TGA功能。我们分析了三种PET:90%回收、60%回收和0%回收。图表显示,与原始材料相比,回收材料具有较低的稳定性,并在较低的温度下开始分解。材料的百分比越高,开始分解的温度越低。然后,您可将温度与生产过程中达到的温度进行比较,以确定回收材料的适用性。示例4Example 4 您是否可在生产中使用重新研磨的部件?这种情况有助于减少浪费和节约生产成本。问题在于,您能否将生产过程中产生的废物回收到生产中。我们寻找的关键点是聚合物有机成分和无机成分之间的组成是否有任何变化。STA/TGA能帮助让您了解任何成分变化。通过图表,您可看到实线(原始材料)和虚线之间的差异。500℃和550℃之间的差异表明,在再利用样品中,无机材料(玻璃纤维)的浓度较低。然而,为确定这是否是最终产品应用中的问题,我们使用了我们特有的RealView系统,该系统允许您在扫描过程中查看样品的情况。 原始材料 重新研磨的材料这些图片可为您提供额外信息。例如,您可以看到重新研磨的材料具有较少的玻璃纤维,或者即使有,其纤维含量也比原始样品的纤维含量低。这只是一个示例,说明RealView技术能够为您提供比单纯的图形输出更全面的信息。如需更多与日立系列热分析仪如何帮助您在生产中使用更多回收塑料有关的信息,您可进入日立分析官网查看我们关于热分析如何为塑料和地球带来更美好未来的网络研讨会,或联系我们就您的具体应用进行讨论。
  • 微塑料分析新技术及其应用
    TED-GC-MS“热萃取热脱附 - 气相色谱 - 质谱”法是GERSTEL与德国联邦材料研究所(BAM)共同研发并且申请专利的微塑料检测新技术,可以对微塑料做到全面定性、准确定量、快速检测。TED-GC-MS 分析分两步:样品首先在热重分析仪 (TGA) 中进行热萃取,然后气态分解产物被捕获在固相吸附层上。随后,用热脱附气相色谱质谱法(TDU-GC-MS)分析固相吸附剂。这个技术的优势在于:1. 热萃取和热脱附分开,降低了GCMS被污染的风险,提高了仪器稳定性并最大限度地减少了维护工作2. TGA样品量大,可达100mg,提高了样品的重现性和检测准确性。3. 检测时间快,仅需几小时,可用于对环境样品做快速筛查4. 通过GC-MS可以实现定量分析TED-GC-MS: 热重分析(TGA)耦合热脱附-气质联用(TDU-GC-MS)TGA的样品制备简单,并且样品容量大自2014年以来,德国联邦材料研究所的Braun博士带领的团队,已经发表了数篇文章,下面是最新文献的总汇:01Determination of tire wear markers in soil samples and their distribution in a roadside soil(2022)“土壤样品中轮胎磨损标记物的测定及其在路边土壤中的分布”轮胎磨损是陆地生态系统中微塑料的重要来源。众所周知,道路排放的颗粒物对邻近区域的影响可达100米。这里首次应用热萃取热脱附气相色谱-质谱法 (TED-GC-MS) 通过检测丁苯橡胶 (SBR) 的热分解产物来测定土壤样品中的轮胎磨损,无需额外富集。TED-GC-MS测定丁苯橡胶的标准偏差均小于 10%, 是一种合适的分析工具,无需使用有毒化学品、富集或特殊样品制备即可确定土壤样品中的轮胎磨损。02Development of a Routine Screening Method for the Microplastic Mass Content in a Wastewater Treatment Plant Effluent (2022)“污水处理厂出水中微塑料质量含量常规筛查方法的开发”对经过三级处理的市政污水处理厂 (WWTP) 出水中的微塑料 (MP) 进行了调查。通过应用分级过滤方法(500、100 和 50 μm 网孔尺寸)采集1立方米的代表性样品体积。首次通过热萃取热脱附-气相色谱-质谱 (TED-GC-MS) 检测微塑料质量分数,而无需进行先前需要的额外样品预处理。测试了用于评估 TED-GC/MS 数据的不同类型的量化方法,其准确性和可行性已在实际样品中得到验证。在出水样品中鉴定出聚乙烯、聚苯乙烯和聚丙烯。聚合物质量含量在5到50mg/m3 之间变化很大。TED-GC/MS测定1 mg滤渣中检出聚合物的峰面积;50、100 和 500 表示分馏过滤后以 µ m 为单位的分数粒径截止值。03Smart filters for the analysis of microplastic in beverages filled in plastic bottles (2021)水样中微塑料的高效收集与检测食品中微塑料 (MP)的出现,如塑料瓶装饮料,引起了公众的高度关注。现有的分析方法侧重于确定粒子数量,需要复杂的采样工具、实验室基础设施和通常耗时的成像检测方法。在目前的工作中,我们展示了智能过滤坩埚作为采样和检测工具的开发。过滤并干燥滤出的固体后,可以通过热萃取热脱附-气相色谱-质谱 (TED-GC-MS) 来直接测定样品中微塑料的质量含量。新的过滤坩埚允许过滤粒径小至5 μm的微塑料。 结果显示,所测塑料瓶装饮料中微塑料含量低于0.01 μg/L到 2 μg/L,具体取决于饮料瓶类型。几种塑料瓶类型中的饮用水,可乐以及苹果汽水样品中测到的微塑料含量04Evaluation of thermoanalytical methods equipped with evolved gas analysis for the detection of microplastic in environmental samples(2020)“评估几种逸出气体分析的热分析方法,用于检测环境样品中的微塑料”在这项工作中,比较了四种热分析方法,并讨论了它们的优点和局限性。 其中之一是热萃取热脱附气相色谱质谱法 (TED-GC-MS),这是近年来建立起来的一种微塑料检测分析方法。 此外,还应用了热重分析与傅里叶变换红外光谱 (TGA-FTIR) 和热重分析与质谱 (TGA-MS) 相结合的方法,这两种方法在该领域不太常见,但仍在其他研究领域使用。 最后,应用了微型燃烧量热仪 (MCC),这是一种尚未用于微塑料检测的方法。结果发现,TED-GC-MS 是最适合基质未知、微塑料种类和含量未知的样品的方法。 TGA-FTIR 是一种可靠的方法,适用于具有已知基质和定义种类的微塑料的样品。TGA-MS 可能会在未来为检测 PVC 颗粒提供解决方案。MCC 可用作一种非常快速和简单的筛选方法,用于识别未知样品中标准聚合物的潜在微塑料负载。用于通过 TED-GC/MS 检测 PE、PP、PS 和 PET 的定性和定量物质列表。使用三种 TGA 方法的实验室间测试样品的目标值和结果, TED-GC-MS的结果最好。05Development and testing of a fractionated filtration for sampling of microplastics in water(2019)“开发和测试用于水中微塑料采样的分馏过滤技术”采样、样品制备和检测的协调是获得环境中微塑料 (MP) 可比数据的关键。本文开发并提出了一种适用于水体的采样技术,该技术考虑了环境中不同的塑料特性和影响因素。给定微塑料质量浓度的人工水和废水处理厂的处理过的废水都用于验证衍生的采样程序、样品制备。使用热萃取热脱附-气相色谱-质谱法 (TED-GC-MS) 对微塑料进行分析。在给定微塑料质量浓度的人工水中,回收率范围为80%至110%,具体取决于不同的微塑料类型和大小等级。在处理过的废水中,我们发现了不同尺寸等级和数量的聚乙烯和聚苯乙烯。06Automated thermal extraction-desorption gas chromatography massspectrometry: A multifunctional tool for comprehensivecharacterization of polymers and their degradation products(2019)“自动热萃取热脱附气相色谱质谱法:一种用于全面表征聚合物及其降解产物的多功能技术”自动化TED-GC-MS代表了一种用于综合分析聚合物的新型灵活多功能方法,类似的聚合物表征以前只能通过多种独立分析方法的组合来实现。三个例子证明了这一点:第一个是木塑复合材料的分析,其中聚合物和生物聚合物(木材)的分解过程可以通过使用顺序分馏收集清楚地区分吸附剂。其次,通过与参考材料比较确定未知聚烯烃共混物的重量浓度,展示了定量的应用。第三是环境样品中微塑料浓度的测定正成为越来越重要的分析必需品。结果表明,TED-GC-MS校准曲线对最重要的微塑料前体显示出良好的线性,甚至可以成功分析复杂的基质材料(悬浮颗粒物)。六个选定降解产物峰的样品质量归一化的重复性积分结果。平均值显示为一条直线。四种化合物的RSD约为 6%,两种化合物的RSD约为 12%。纯 PE 的 TED 色谱图 (m/z = 55),放大了三萜(C31H62;MW = 434.8)保留时间附近的区域,叠加了 m/z = 434 的质量碎片离子。PE/PP 混合物参考样品的 TED 色谱图(上)和未知样品的色谱图(下);标记了 PE 和 PP 的特定峰,用于确定重量比。悬浮物基质 (SPM) 中 PE(左上)、PP(右上)和 PS(下)的特定降解化合物的线性回归。07Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method (2015) “使用热分解法分析环境样品中的聚乙烯微塑料”直径小于5毫米的小聚合物颗粒称为微塑料,通过聚合物碎片和工业生产进入环境。需要一种方法来识别和量化各种环境样品中的微塑料,以生成可靠的浓度值,这对于评估环境介质中的微塑料是必要的。通过热萃取热脱附-气相色谱-质谱 (TED-GC-MS) 来直接测定样品中微塑料的质量含量。与热解气相色谱质谱 (Py-GC-MS) 等其他色谱方法相比,TGA中可以使用相对较高的样品质量(比Py-GC-MS 中使用的样品质量高约200倍)。聚乙烯 (PE) 是微塑料最重要的代表之一,被选作识别和量化的示例。土壤中PE的校准曲线的线性达到了约 0.99 ,该方法的相对误差从约为10%。土壤中 PE 的校准曲线达到了约 0.99 的 R2 因子,该方法的相对误差从约为 10%
  • 印度创建塑料大学!塑机企业的机遇来了!
    p style="text-indent: 2em "印度塑料基金会贸易协会和美国马萨诸塞州大学洛维尔分校签订合作备忘录,由美方提供课程、基础设施、工业和技术学位授予等方面的咨询意见,双方共同建立印度塑料行业国际大学。该大学旨在促进印度塑料行业的教育和培训,提高印度塑料行业的技术水平。除工程类课程外,印度塑料行业国家大学还将设置现代化的研发实验室,增加塑料工程类的课程设置。目前该校已经接受来自塑料、化工和机械工程师的入学申请。br/ 作为世界第二大人口大国,印度一直备受国际关注。随着本届印度政府一系列改革措施的推进,不少媒体和分析人士认为,印度会取代中国,成为新的“世界工厂”。资料显示,2017年印度经济增速为7.2%,成为世界第七大经济体。经济的快速增长,伴随着政府改革的深入,印度制造定会在不久的将来登上国际舞台。而塑料工业是印度重点发展的工业之一,从建立塑料行业国际大学可见一斑。我国塑机企业应该抓住当前机遇进入印度市场。br/ 和中国相比,印度在诸多领域有着一定的优势。中国的人口红利逐渐消失,劳动力价格持续上涨,劳动力成本优势不再。反观印度,不仅有着不逊于中国的人口基数,还拥有着全世界最多的人口结构和优越的劳动力结构。据世界银行2016年统计,印度人口为13.24亿,仅与中国的13.79亿相差5500万人。印度人口年龄中位数为27.6岁,而中国是37.1岁。良性的人口结构、充沛的劳动力资源,使印度在承接产业转移过程中不用考虑劳动力成本问题。br/ 除劳动力优势外,印度政府的改革措施也是吸引国际社会目光的原因之一。自2014年以来,印度政府进行了一系列大刀阔斧的改革。无论是加强基建,还是解决财政赤字,亦或是改革税制等措施都推动了印度经济进一步快速发展。尤其是建立全国统一的税收体系、合并税种等措施,不仅打破了印度国内各邦之间的贸易壁垒、建立了统一的印度市场,还减轻了企业的税收成本,改善了投资环境促进了商品的流通,为外部资本进入印度投资创造了良好的条件。br/ 相关媒体报道,世界其他地区的塑机企业,如赫斯基、威猛巴顿菲尔、索尔维和科思创等国外知名塑机企业已经开始在印度设厂或者扩大厂区。印度塑料市场正以蓬勃的生机吸引着世界各地的优秀企业投资生产,我国也有塑机企业跟随国外塑机企业的步伐进入印度。br/ 在积极抓住机遇进入印度市场,享受优惠的同时,我国塑机企业也要直面印度市场存在的一些弊端。尽管印度有着充沛的劳动力资源,但是其劳动力素质较为低下,大量的劳动力资源能否与市场发展,尤其是塑机行业相匹配还是一个问题。贫富差距过于悬殊,印度农村有着近10亿的人口,但是农村普遍较为贫穷,购买力低下。印度农村能为印度发展贡献多大力量还有待进一步观察。大国关系较为微妙,尤其是与中国因众所周知的原因,关系较为紧张,中国企业在印度能否得到与其他国家相同的待遇考验着印度政府。br/ 印度正以开放的姿态吸引国际投资的到来,尽管印度市场存在着种种问题,但是在其政府的努力下,印度市场发展的前景是乐观的。我国塑料行业有关企业要清楚认识印度市场动态,应积极参与印度塑料产业发展建设,努力形成互利共赢局面。/ppbr//p
  • 吃顿外卖=千亿个塑料颗粒下肚!每人每周摄入的5g「微塑料」
    每人每周吃下5g微塑料相当于一张银行卡 微塑料(Microplastic),是指直径小于5毫米的塑料碎片和颗粒,在塑料制品使用过程中释放,特别是食物用途的塑料制品。纳米塑料(Nanoplastics)则是目前已知最小的微塑料,尺寸在1μm以下,体积小到可以穿过细胞膜。虽然不会有人直接吃塑料,但食物的包装——塑料袋、塑料瓶、塑料盒等,则会将大量的微塑料直接送入人们的口中。微塑料对人的影响往往是温水煮青蛙式的,容易被忽视,但对健康的危害却是积年累月的。 去年4月20日,来自美国国家标准与技术研究院(NIST)的化学家Christopher Zangmeister团队开展的一项新研究,以食品级尼龙袋和低密度聚乙烯(LDPE)成分的产品作为样本,探究微塑料的来源及释放情况。事实上,以这两种成分为主的塑料用品在日常生活中很普遍,比如烘焙衬垫和一次性外带咖啡杯的内衬塑料薄膜。 结果显示,在普通的外带咖啡杯中放一杯100℃的水,静置20min后,研究者在每升水中能检测到万亿个塑料纳米颗粒。也就是说,当你享用喝一杯500ml的热咖啡或热奶茶时,将有5千亿个塑料纳米颗粒进入你的身体内! DOI: 10.1021/acs.est.1c06768 不仅如此,其实早在婴儿时期,人们就已经开始摄入微塑料。据Nature Food上刊登的研究Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation估计,在使用聚丙烯塑料瓶制备的每升婴儿配方奶粉中,婴儿可能摄入多达1600万个微塑料颗粒。 该研究中,研究人员按照世界卫生组织制备婴儿配方奶粉的标准,将聚丙烯婴儿奶瓶消毒、风干,然后倒入加热到70℃的水。在摇晃瓶子一分钟后,他们过滤了液体并在显微镜下进行分析,发现了数以百万计的微塑料颗粒。仅装瓶1分钟就能检测到,证实了微塑料产生的即时性。 此外,研究者还发现,冲奶粉使用的水温会极大地影响释放的污染颗粒的数量。当水温从25℃上升到95℃,每升释放的微塑料颗粒从60万增加到5500万个。也就是说,水温越高,释放的量就会越多。 https://doi.org/10.1038/s43016-020-00171-y 由于人们不断地吃外卖、喝咖啡、吨瓶装饮料,微塑料自然也不停地被摄入进人体内。 加拿大的Kieran D. Cox教授和他的团队以美国人饮食为基础,根据食物消费种类以及不同种类食物所含有的微塑料数量,估算出每人每年会吃掉5万个微塑料颗粒,如果算上漂浮在空气中、被呼吸吸入的微塑料,那么每人每年吃掉的微塑料颗粒数量在7.4万-12.1万之间。按照重量计算的话,每人每周大约吃掉5g微塑料,相当于一张银行卡的重量。 还真是活到老,吃塑料到老呢。以每周5g塑料颗粒计算,人这一辈子估计要吃下一个乐高玩具,想想还有点小刺激(bushi)。 人类血液中首次发现微塑料的存在! 2019年,《Annals of Internal Medicine》在线发表的一项研究显示,健康志愿者的粪便样本中检测到了微塑料。研究人员发现,所有粪便样本都检测出微塑料呈阳性,每10克人类粪便中平均有20个微塑料颗粒。 如果光是“吃下去,拉出来”的简单关系,微塑料倒不值得担心。然而,实际并非如此。随着大量研究的开展,科学家们陆续在人类切除的结肠标本,甚至胎盘组织中发现微塑料的存在。 更令人担忧的是,来自荷兰阿姆斯特丹自由大学的科学家首次在人类血液中发现了微塑料的存在。这表明微塑料可能随着血液流经全身,对各器官造成影响! DOI: 10.1016/j.envint.2022.107199 研究者在22名健康志愿者的静脉血中检测到了5种最常见的塑料成分,分别是PET、PS、PE、PMMA和PP。 5种最常见的塑料成分及其来源 在严格控制了采样、样品准备及分析过程中的可能存在的塑料污染后,研究者在近8成志愿者的血液里检测到了微塑料的存在(77%,17/22),平均下来,每个志愿者每毫升血样里有1.6ug的微塑料。 测出比例最高的为PET,在50%的志愿者血液中都检测到这种物质的存在,血液浓度最高为2.4ug/ml,提示大部分人体内都含有瓶装水释放的微塑料。 其次为:PS(36%)、PE(23%),最高血液浓度分别为4.8ug/ml及7.1ug/ml,这两类塑料主要应用在保鲜膜、一次性泡沫饭盒、塑料杯等,表明来自食物包装的微塑料也会进入人体血液循环中,并且进入的量不容小觑。 最后是PMMA,仅在5%的志愿者血液中发现,在所有志愿者血液中均未检测到PP的存在。 这项研究首次在人体血液中发现微塑料的存在,考虑到血液循环在体内四通八达,为各器官供给氧气和营养物质,带走代谢废物,不难想象微塑料也随着血流流经全身。“在血液样本中发现微塑料存在”的事实,也说明了人体清除微塑料的速度是低于从外界摄入的速度。 进入血液的微塑料可能通过肾脏过滤或胆汁排泄的方式排出体外,也可能通过有孔的毛细血管沉积在肝脏、脾脏等器官。换句话说,微塑料早已无孔不入,甚至遍布全身。 肠道疾病患者粪便中含有的微塑料颗粒是健康的1.5倍 微塑料究竟会对健康造成什么样的危害呢?这才是人们更为关心的话题。 此前,已有动物实验证明,微塑料可以扰乱内分泌系统,导致出生缺陷,减少精子的产生,引发胰岛素抵抗,并损害学习和记忆。此外,科学家们还观察到了由于微粒刺破和摩擦器官壁而引起的物理损伤迹象,例如炎症。 DOI: 10.1098/rstb.2008.0281 为了进一步探究微塑料对人类的影响,来自美国哈佛大学和罗格斯大学的科学家们还构建了模拟消化道的体外系统,探究微塑料颗粒是否会干扰营养物质的消化和吸收。 结果显示,微塑料的存在会对脂肪吸收带来健康上的负面影响,即当脂肪与微塑料颗粒一起摄入时,脂肪的生物利用度会随之增加,导致更多的脂肪进入血液(这可能就是外卖越吃越胖的原因之一)。此外,该研究中还显示微塑料会影响微量营养素吸收、增加小肠渗透性,以及促进某些细菌繁殖等。 现阶段,有关微塑料对人体健康影响的试验有限,但已初见端倪。2021年12月,发表在《Environmental Science & Technology Letters》期刊上的一项学术研究显示,炎症性肠病(IBD)(包括克罗恩病和溃疡性结肠炎)患者的粪便中的微塑料比健康对照组多,表明这些微塑料可能与疾病的发展过程存在相关性。 研究团队从不同地区的50名健康人和52名IBD患者中获取了粪便样本。分析结果表明,IBD 患者的粪便中含有的微塑料颗粒是健康受试者粪便的1.5倍。患者体内的微塑料含量越高,疾病相关的腹泻、直肠出血和腹部绞痛症状就越明显。 具体结果为: ①IBD患者和健康人粪便中微塑料的浓度分别为41.8和28.0个/g dm,IBD患者的粪便中每克的微塑料颗粒比健康人的多1.5倍左右。 ②该研究共检测到15种微塑料,以PET(用于瓶子和食品容器)和PA(聚酰胺;用于食品包装和纺织品)为主,主要形态分别为片状和纤维状。 ③通过问卷调查,研究人员发现,喝瓶装水、吃外卖食品、并且经常暴露在灰尘中的患者,其粪便中含有更多的微塑料。 该研究首次表明 IBD 患者粪便中微塑料(MPs)的浓度与健康人存在显著差异,且IBD患者粪便中微塑料水平显著高于健康人。这一结果提醒人们,微塑料对人体健康的损害可能不容小觑。 然而,“微塑料”是否对人类健康构成重大风险仍存在巨大未知,亟需更多相关学术领域的探究,以应对其未知风险。 众所周知,塑料降解速度很慢,通常会持续数百年甚至数千年,这也增加了微塑料被摄入并累积在许多生物体和组织中的可能性。为了避免人类的五脏六腑变成“塑料制品”,最简单的办法就是——尽量在生活中减少塑料制品的使用并及时治理塑料污染,别让地球被塑料“攻陷”之后再追悔莫及。
  • 全国首个热塑性塑料餐具标准实施
    由广州市质量监督检测研究院制定的全国首个热塑性塑料餐具标准———《热塑性塑料餐具地方技术规范》已于8月1日起实施,其总体水平与日本标准相当,基本涵盖了市场上所有热塑性塑料餐具。  消费者选购塑料餐具时,首先要看标识是否完整,其次看产品。产品的表面应平滑,没有污点、杂质、划痕、裂纹等,没有脱色、褪色现象,还可闻一闻看有没有刺激性味道等异味。  “最重要的还是要看产品标识。”国家包装产品质量监督检验中心(广州)包装检验部部长孙世彧表示,此次标准规定,产品须标明厂家名称或商标、材质、使用温度等说明,若产品有不耐热水、不适用于微波炉、不能接触油质等要求,也应标明。
  • 塑料回收或迎新突破!新催化剂可混合分解塑料,不产生温室气体
    塑料垃圾是我们这个时代最紧迫的环境问题之一,对不同类型的塑料垃圾进行分类使回收变得棘手。而现在,麻省理工学院(MIT)的工程师们已经开发出一种有效的新催化剂,它可以将混合塑料分解成丙烷,然后丙烷可以作为燃料燃烧或用于制造新的塑料。塑料在我们的现代世界中无处不在,这意味着大量的塑料最终会进入环境,而且令人担忧的是,似乎很少有地方不受影响。现在,从南极到北极,从海底到珠穆朗玛峰顶,都可以发现塑料,而且正在沿着食物链向上移动,以至于现在我们的身体里也能找到塑料。塑料有非常强的碳键,这使它们在使用过程中具有弹性和可靠性,但回收起来却非常麻烦。更糟糕的是,不同类型的塑料需要不同的回收方法,使其难以分类和大规模回收。但MIT的研究小组现在提出了一种新技术,可以处理混合在一起的多种塑料,并将它们转化为丙烷,而丙烷本身有很多用途。解决问题的关键是一种催化剂,它由一种叫做沸石的多孔晶体组成,里面塞满了钴纳米颗粒。研究人员指出,其他催化剂会在不可预测的地方打破碳键,产生不同的最终产品时,而新的催化剂只会在一个特定的、可重复的位置打破碳键。这个位置意味着它基本上切断了丙烷分子,留下剩下的碳氢化合物链,准备反复进行这个过程。这适用于多种类型的塑料,包括最常用的塑料,如聚乙烯(PET)和聚丙烯(PP)。在对现实世界的混合塑料样品进行的测试中,研究小组发现,该工艺可以将大约80%的塑料转化为丙烷,而不产生甲烷作为副产品。甲烷是仅次于二氧化碳(CO2)的第二大人为制造温室气体。由此产生的丙烷可以直接作为一种相对低影响的燃料,或者作为原料在一个部分封闭的循环系统中制造新的塑料。而最重要的是,催化剂的成分(沸石、钴和氢气)相对便宜且容易获得。这项研究成果已于近期发表在了《JACS Au》杂志上。尽管这项研究很吸引人,但研究人员表示,未来的工作将需要关注该技术如何在现实世界的塑料回收流中应用,以及胶水和标签等污染物如何影响该技术。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制