当前位置: 仪器信息网 > 行业主题 > >

塑性变形定位

仪器信息网塑性变形定位专题为您整合塑性变形定位相关的最新文章,在塑性变形定位专题,您不仅可以免费浏览塑性变形定位的资讯, 同时您还可以浏览塑性变形定位的相关资料、解决方案,参与社区塑性变形定位话题讨论。

塑性变形定位相关的资讯

  • 薄膜拉伸强度测试仪如何区分弹性变形和塑性变形
    在薄膜拉伸强度测试中,准确区分弹性变形和塑性变形对于材料工程师、物理学家以及产品开发者而言,是至关重要的一环。这两种变形类型不仅决定了材料的基本性能,还直接关系到产品的使用寿命和安全性。本文旨在深入探讨薄膜拉伸强度测试中弹性变形与塑性变形的区分方法,以及它们在材料科学领域的应用。一、弹性变形与塑性变形的基本概念弹性变形,指的是材料在外力作用下产生变形,当外力消失时能够恢复到原始形状和尺寸的现象。这种变形是可逆的,不涉及材料的内部结构变化。而塑性变形则是指材料在外力作用下产生变形后,即使外力消失也不能完全恢复到原始形状和尺寸的现象。塑性变形是不可逆的,通常伴随着材料内部结构的改变。二、薄膜拉伸强度测试中的变形观察在薄膜拉伸强度测试中,我们可以通过观察材料的应力-应变曲线来区分弹性变形和塑性变形。在弹性变形阶段,应力与应变之间呈线性关系,即应力增加时,应变也按一定比例增加。当应力达到弹性极限时,材料开始进入塑性变形阶段,此时应力-应变曲线呈非线性关系,应变继续增加但应力增长缓慢或不再增长。三、区分弹性变形与塑性变形的具体方法应力-应变曲线分析:如前所述,通过分析应力-应变曲线的形状和变化,可以判断材料是否进入塑性变形阶段。在弹性变形阶段,曲线呈直线状;而在塑性变形阶段,曲线则呈现弯曲或平坦的趋势。卸载试验:在拉伸测试过程中,当材料达到一定的应力水平时,可以突然卸载并观察材料的恢复情况。如果材料能够迅速恢复到原始长度,则说明之前的变形主要是弹性变形;如果材料不能完全恢复,则说明存在塑性变形。残余应变测量:在拉伸测试结束后,通过测量材料的残余应变可以判断塑性变形的程度。残余应变越大,说明塑性变形越显著。四、弹性变形与塑性变形在材料科学中的应用材料选择:了解材料的弹性变形和塑性变形特性有助于选择合适的材料以满足特定需求。例如,在需要高弹性的场合(如橡胶制品),应选择弹性变形能力强的材料;而在需要承受大变形而不破裂的场合(如金属薄板),则应选择塑性变形能力强的材料。产品设计:在产品设计过程中,考虑到材料的弹性变形和塑性变形特性,可以优化产品结构以提高其性能和安全性。例如,在设计弹性元件时,需要充分利用材料的弹性变形能力;而在设计承力结构时,则需要考虑材料的塑性变形特性以确保结构的稳定性和安全性。质量控制:通过测量材料的弹性模量、屈服强度等力学性能指标,可以评估材料的性能是否满足要求。同时,通过观察材料的变形行为(如弹性变形和塑性变形)可以判断材料是否存在缺陷或质量问题。五、结论在薄膜拉伸强度测试中准确区分弹性变形和塑性变形对于材料科学领域具有重要意义。通过分析应力-应变曲线、进行卸载试验和测量残余应变等方法可以判断材料的变形类型。了解材料的弹性变形和塑性变形特性有助于选择合适的材料、优化产品设计和提高产品质量。未来随着材料科学的发展和技术的进步相信我们将能够更加深入地理解材料的变形行为并开发出更多高性能的材料。
  • 单智伟团队:在金属镁塑性变形行为和内在机制领域取得新进展
    镁是最轻的金属结构材料,在航空航天、交通运输,电子产品和医疗等领域具有广阔的应用前景。然而,相比于传统金属材料,如钢铁和铝合金,镁的塑性变形加工较困难,工艺成本高,制约了其广泛应用。微观机制是决定宏观性能的内在因素,因此,研发高塑性镁合金需要精准认知其微观塑性变形机制,相关研究也一直是镁合金领域关注的重点和热点。众所周知,金属材料在塑性变形时一般会发生加工硬化现象,即随着变形量的增加,材料内部缺陷和损伤逐步累积,流变应力不断增加。当硬化到一定程度时,材料将不具备继续塑性变形的能力,最终发生断裂。对于金属镁而言,其沿晶体学轴压缩时加工硬化十分明显,塑性变形量一般仅在5%-10%左右。针对镁的塑性变形行为和内在机制,西安交通大学单智伟教授团队近年来开展了系统深入研究。研究发现,对于亚微米尺寸的镁单晶,当沿轴压缩时,首先发生由锥面位错滑移主导的塑性变形(详见Liu et al. Science, 365 (6448), 73-75, 2019)。令人意想不到的是,随着加工硬化的不断加剧,原本认为塑性已消耗殆尽的样品并没有断裂失效。当流变应力升高到1 GPa水平时,样品突然被压为扁平状,且没有裂纹产生。此外,被压扁的样品已不再是单晶,而是由多个具有共轴取向关系的小晶粒组成,小晶粒内部有大量的基面和非基面位错。图1 亚微米镁单晶柱在轴压缩下的变形过程。(a)初始样品;(b) 位错的形成和运动;(c) 在样品右下角形成的新晶粒(白色箭头);(d) 新晶粒中产生位错(白色箭头);(e)样品被压为扁平状;(f) 在扁平样品上采集的电子衍射。(g)应力-应变曲线显示出变形的三个阶段:弹性变形、塑性变形-加工硬化阶段、塑性变形-应变突跳阶段。通过系统的晶体学分析、显微学分析、原子尺度表征,并结合分子动力学模拟,该团队提出新晶粒是通过锥面-基面转变形成的。在新晶粒形成后,原本已消耗殆尽的塑性得到了再生,继续加载时样品仍可持续发生很大的塑性变形。该研究将这种由变形诱导的在基体晶粒中形成新晶粒的过程称为“deformation graining(形变转晶)”。该过程不必依赖扩散,可在室温下快速发生,所形成的新晶粒与基体晶粒具有特定的晶体学取向对应关系。在新形成的晶粒中,可以继续发生由位错和孪生协调的塑性变形,使得样品重新具有了塑性变形能力(可比拟为“返老还童”)。该研究丰富了对塑性变形机制的认识,为镁的变形加工提供了新的启发:在高应力或高应变速率下加工,可由高应力引发新的变形机制,进而提高镁的变形加工能力。图2 新晶粒在加载时长大,卸载时缩小,二次加载时再次长大,反映了晶界的高可动性图3 新晶粒及其晶界结构该成果以"金属镁塑性变形能力再生新机制"(Rejuvenation of plasticity via deformation graining in magnesium)为题发表于《自然通讯》(Nature Communications),西安交通大学刘博宇教授为本论文的第一作者,西安交通大学单智伟教授为第一通讯作者,合肥工业大学张真教授为共同第一作者和通讯作者,西安交通大学马恩教授和美国麻省理工学院李巨教授为共同通讯作者。参与该工作的还包括西安交通大学博士研究生刘飞和杨楠、内华达大学李斌教授、吉林大学陈鹏教授、中国科学技术大学王宇教授和江苏科技大学彭金华博士。西安交通大学金属强度国家重点实验室为第一通讯单位。该研究得到了国家自然科学基金委、111计划2.0、西安交大青年拔尖人才计划等项目的资助。近年来,单智伟研究团队依托西安交通大学材料学院、金属材料强度国家重点实验室、西安交通大学微纳中心和陕西省镁基新材料工程研究中心,开展了一系列富有成效的基础研究、技术攻关和成果转化。2014年,发现了镁中不同于位错和孪晶的室温变形新机制,成果发表于《自然通讯》,并荣获美国TMS学会镁分会年度最佳基础研究论文奖;系统研究了镁合金中析出相形貌对孪晶行为的影响,并进而发展了一种判断镁合金强塑性的简单判据,成果发表于《材料科学技术》(封面推荐,2018);发现通过活化二氧化碳,可以在室温下将镁表面的氧化层或腐蚀产物转变成一种致密的保护膜层,不仅可显著提升镁及其合金的抗腐蚀性和强韧性,而且大幅提高镁的抗氧化能力,从而发明了一种绿色、低成本镁合金涂层新技术,成果发表于《自然通讯》(2018),并获得国家发明专利授权;应用基于原位电镜的先进测试与表征技术,结合原子尺度成像和三维图像重构技术,揭示了镁中锥面位错的结构特征和滑移行为,首次实验证明其是镁中有效的塑性载体,指出通过促进锥面位错滑移(可通过提高应力和减小晶粒尺寸来实现)可以有效提高镁的塑性,成果发表于《科学》(2019)。针对原镁冶炼工艺落后、自动化程度低和环境污染严重的现状,提出并验证了原本需要在真空条件下进行的原镁冶炼可以在常压进行,并与华西能源公司联合攻关,开展了原镁常压生产的工业化装置的开发。针对原镁杂质元素种类多、含量高、波动大的痼疾,从原子机理出发,开发出全新的工艺流程,可在不显著增加成本的情况下,从料球直接生产出99.99%以上纯度的高纯镁,革新了此前领域内普遍认为皮江法(硅热还原法)不能直接生产高纯原镁的认知。上述成果的推广和应用,有望从整体上提升镁基产品的质量和性能。论文链接:https://www.nature.com/articles/s41467-022-28688-9
  • OPTON的微观世界|第10期 从合金的断口看材料的塑性性能
    ——不同断口在SEM下的微观分析 前期回顾上期我们探索了蚂蚁在扫描电子显微镜下的形貌。从整体形貌到细节上的形貌,详细的描述了蚂蚁身体上的各个结构的形貌以及功能。本期我们继续借助扫描电子显微镜研究不同加工条件下合金的断口,以表征其塑性性能。序 言合金通常要经过铸造、压力加工(如轧制、挤压、锻造、拉丝以及冲压等)和热处理等过程,以获得优良的组织,制成合适的型材和工件,应用在国民经济等各种领域。在产品批量生产前,通常利用一系列的拉伸试验以检验材料的一些力学性能。从拉伸试验过程中,可以得出一系列的拉伸曲线,以表征材料的本征弹性、塑性、韧性等。在拉伸曲线的最后阶段,试样在外力作用下丧失连续变形,就会断成两段。试样的断裂过程包括裂纹的萌生和裂纹的扩展两个基本过程。金属材料的断裂过程在工程上有很大的实际意义。桥梁、轮船、汽车、宇航器的断裂行为给国民经济带来了巨大的危害。金属材料的抗断裂行为主要取决于两大因素。一是外因。如应力状态、温度、湿度等。二是内因。如显微组织和化学成分等。人们可以通过调整合金的化学成分,改善加工参数以及热处理方案,以提高材料的性能指标。人们在追求合金的高强度的同时,越来越关注材料的塑性和韧性等。本文主要通过一些合金的断口的微观形貌来分析材料的塑性指标。材料的断裂主要分为两大类:塑性断裂和脆性断裂。塑性断裂又叫延性断裂,断裂前发生大量的宏观塑性变形;脆性断裂过程中,几乎没有宏观塑性变形,但是在局部区域内存在一定的微观塑性变形。本文选取了四种不同变形量的铝合金的断口,观察其形貌组织,以表征其塑性指标。 20%变形量下的合金断口——形貌分析从图1可以看出,20%变形量下样品的断口主要是韧窝解理型断口,在解理断口的周围有一些韧窝。一般来说,韧窝越大,分布越多,材料的塑性性能越好。在较低的倍数下,有解理台阶和微裂纹的形成。解理裂纹继续扩展过程中,解理台阶相互汇合,形成“河流花样”。在较高的放大倍数下,可以从这些解理断口看出试样的晶粒呈长条状分布,这些长条状晶粒的尺寸多为15um左右,主要是由于加工变形造成的。在这些长条状晶粒的周围分布着少量的小晶粒,这些小尺寸晶粒的尺寸多为5um左右,主要是由于局部再结晶造成的。此外,在有的解理断口中还含有少量的第二相颗粒或孔洞。这些孔洞可能是由于在断裂过程中,晶体内部的第二相颗粒的脱落留下的位置造成的。图1 20%变形量下合金的断口形貌图 30%变形量下的合金断口——形貌分析图2 30%变形量下合金的断口形貌图从图2可以看出,30%变形量下样品的断口主要是韧窝解理型断口。与20%变形量下样品相比,30%变形量下样品的韧窝增多,表征在较大的变形量下,材料的塑性增强。主要表现在两个方面,一是韧窝的体积增大,二是韧窝的数量增多。在较高的放大倍数下,从这些解理断口看出呈长条状分布的变形晶粒,这些长条状晶粒的尺寸多为10um左右。在这些长条状晶粒的周围分布着少量再结晶晶粒,这些小尺寸晶粒的尺寸多为3um-5um左右。此外,在这些解理断口分布区域还有一些撕裂棱和第二相颗粒的分布。 50%变形量下的合金断口——形貌分析从图3可以看出,50%变形量下样品的断口主要是韧窝解理断口。有明显的解理台阶以及“河流花样”。在较高的放大倍数下,从解理断口的形貌可以看出长条状晶粒的周围分布着大量的近乎等轴的再结晶晶粒。这些长条状晶粒较少,且其尺寸多在7um-10um范围内,这些小尺寸晶粒的尺寸多为5um左右。表明材料发生了明显的再结晶。在这些解理断口中有第二相颗粒的分布,且这些颗粒尺寸较20%变形量下的颗粒尺寸要小一些。表明第二相颗粒的固溶强化作用增强,材料的力学性能以及塑性会有一定的改善。在这些几乎等轴的晶粒边缘含有一定的韧窝。这些韧窝的体积较小,可能是由于大变形量下颗粒尺寸较小,形成的韧窝也比较小。图3 50%变形量下合金的断口形貌图 60%变形量下的合金断口——形貌分析从图4可以看出,60%变形量下样品的断口主要是韧窝解理断口,在解理断口的周围有一些韧窝。从解理断口可以看出晶粒都呈近乎等轴分布,且这些晶粒的尺寸较50%变形量下的晶粒尺寸较大。这表明再结晶过程已经较充分进行,并且发生了一定程度的再结晶晶粒长大的行为,这不利于材料的塑性性能。在部分几乎等轴的解理断口中含有细小的第二相颗粒。这些第二相颗粒起到了很好的固溶强化的作用,对材料的塑性性能也有一定的益处。图4 60%变形量下合金的断口形貌图后记通过扫描电子显微镜下不同变形条件下的合金的断口形貌观察,可以看出随着变形量的增加,合金的再结晶程度增加,晶粒的尺寸逐渐减小,第二相的颗粒也会发生一定的碎化。材料的塑性会有一定的提高。但是,当变形量到达一定数值时,部分再结晶晶粒会发生一定的长大,可能对合金的塑性性能有一定的损害。当然,材料的力学性能与多种外因和内因有关。我们在选择合适的加工工艺同时,可以通过调节合金的成分、改善合金的热处理工艺等,获得优良的塑性性能。
  • 哈工大(深圳): 基于可调塑性的凝固态液态金属的3D柔性电子
    镓基液态金属(LM)由于其优异的金属导电性以及室温流动性特点,被认为在柔性电子领域具有广泛的应用前景。基于镓基LM材料,目前已成功开发出各类柔性电子器件,如可穿戴传感器、柔性电容器、柔性电感器以及柔性变阻器等。LM柔性器件的集成性和可靠性一直以来是该领域的研究热点,其中3D柔性电子被普遍认为是提高集成性的有效解决方案之一。然而,液态金属的流动性是一把双刃剑,虽然它为LM柔性器件提供了优异的可变形性,但同时给3D结构柔性电路的制备带来了巨大挑战。目前报道的3D打印、冷冻打印、通道填充等方法在复杂3D结构电路的制备、工艺成本以及功能性芯片的集成等方面仍存在不足。近期,哈尔滨工业大学(深圳)马星教授联合中科院深圳先进技术研究院刘志远研究员,提出了一种通过将镓基液态金属转变为固态并通过塑性变形制备复杂3D结构柔性导体的方法。作者基于金属材料的合金化及相关理论,着重考量材料的相变温度、机械强度和塑性加工性能,筛选出Ga-10In作为3D柔性电子制备的基础材料。固体Ga-10In的高塑性特点允许通过机械弯曲、缠绕等方式制备复杂3D结构导体,在熔点以下温度将3D导体与功能芯片连接并使用硅胶封装后,熔点以上温度加热(22.7 °C)便可使Ga-10In熔化并恢复其流动性。此外由于过冷效应,Ga-10In导体可以在低于熔点的一定的温度范围内保持液态,保证了柔性电子器件的服役温度区间。为证明该方案的实用性,作者设计了具有超高灵敏度的3D应变传感器、由3D跳线导体构成的二极管 (LED) 阵列以及由3D螺旋结构的可穿戴传感器和多层柔性电路板组成的手指动作监测装置。相关工作以“Three-dimensional flexible electronics using solidified liquid metal with regulated plasticity”为题发表于电子领域权威期刊《Nature Electronics》,2019级博士生李国强同学为该论文第一作者。在本项研究中,由摩方精密25 μm精度的nanoArch P150设备3D打印的高精度模具,为制备2D应变传感电路和3D拱形跳线提供了精密支持。图1:基于可调塑性的凝固态液态金属的3D柔性电子简介说明。(a) 液态的Ga-10In转变为固态的片状和棒状示意图;(b) 塑性变形能力对比;(c) Ga-10In低温拉伸性能;(d) Ga-10In相变性能测试;(e) 基于该方案制备的3D柔性电子。图2:Ga-In合金材料表征及性能测试。(a) 凝固态Ga-10In显微组织;(b) Ga-In合金中A6相体积分数于In元素含量的关系;(c) Ga-10In和Ga-15In显微组织表征;(d) Ga-10In拉伸样断口附近显微组织表征;(e) Ga-In合金力学性能测试;(f) 图(e)对应的屈服强度和延伸率;(g) Ga-In合金相变测试;(h) Ga-In合金熔点与In元素含量的关系。图3:2D应变传感器的电力性能测试及3D高灵敏度应变传感器设计。(a) 2D应变传感器电阻-应变关系;(b) 2D应变传感器平均GF值与应变的关系;(c) 2D应变传感器横向及纵向拉伸性能测试;(d) 3D应变传感器照片及其性能;(e) 3D应变传感器挤压位置的CT微观表征;(f) 与已报道LM应变传感器的灵敏度对比。 图4:Ga-10In 3D拱形导体及其LED柔性阵列应用。(a) 熔化前后拱形Ga-10In导体图像;(b) LED阵列示意图;(c) LED阵列电流-电压性能测试;(d) 控制装置和LED阵列电路图;(e) 控制系统和LED柔性阵列照片;(f) LED阵列动态弯曲图像。图5:3D结构的可穿戴手指动作监测柔性装置。(a) 装置示意图;(b) 3D柔性传感器及其变形性能;(c) 3D柔性传感器的手指动作传感测试;(d) 3D传感器疲劳性能测试;(e) 3D柔性电路板俯视图像;(f, g) 3D垂直电路图像;(h) 该柔性装置的手指动作测试。通过凝固态Ga-10In液态金属的塑性变形制备复杂结构3D柔性导体具有显著优势,但作者表示,该3D柔性电子制备方案目前在导电线径、柔性器件制备效率、以及自动化制造设备等方面仍存在限制。原文链接:https://doi.org/10.1038/s41928-022-00914-8
  • 河北工大郑士建团队在金属材料强塑性研究方面取得新进展
    近日,河北工业大学原子尺度研究团队在国际顶级学术期刊Science Advances上发表了题为“Enhancing strength and ductility via crystalline-amorphousnanoarchitectures in TiZr-based alloys”的研究论文,揭示了纳米尺度晶体-非晶三维双联续结构有助于改善材料强度和塑性的固有矛盾,实现材料强度和塑性的同时提升。论文发表页面展示强度和塑性是金属结构材料的两个重要力学性能。但是,强度的提高往往伴随着其塑性的降低,即强度和塑性呈倒置关系。例如,细晶强化和第二相强化会降低应变硬化能力,从而降低塑性。金属非晶材料(又称金属玻璃)通常要比对应的晶体材料具有更高的强度,但是其在2%塑性应变下就会出现灾难性的脆性断裂。由连续的非晶基体和微米尺度晶体枝晶组成的金属玻璃基复合材料(MGMC,如图1a-b所示)能够在一定程度上协调强度和塑性,但是MGMC在拉伸下没有应变硬化能力,所以MGMC的抗拉强度无法得到有效提升。与晶体材料不同,随着特征尺寸减小到纳米级,金属玻璃的变形能力显著增强。因此,由纳米非晶相和晶体相组成的晶体-非晶复合材料有望同时获得高强度和高塑性。作者设计了一种独特的TiZr基纳米晶-非晶复合材料,该合金由等轴的微米晶组成,且每个晶粒内部由三维双连续晶体-非晶纳米双相结构(3Dbicontinuous crystalline-amorphous nanoarchitectures,3D-BCAN) 组成(图1)。图1.三维双连续晶体-非晶纳米双相结构亚稳的晶体相通过位错滑移和马氏体相变产生塑性变形,而纳米非晶相由于界面约束表现出均匀的塑性变形。如图2a-c原位拉伸测试表明,与单一晶体和非晶相材料相比,3D-BCAN 表现出更加优异的塑性和应变硬化能力,使TiZr 基合金具有超高屈服强度(~1.80 GPa)、抗拉强度(~2.3 GPa)和高塑性(均匀延伸率~7.0%)。结合透射电子显微镜观察(图2d)和有限元模拟(图2e),作者揭示了晶体-非晶纳米双相结构协同变形机制,即非晶相对晶体相施加额外的应变硬化,而晶体相阻止了非晶相中的过早剪切局部化。这些独特的机制赋予TiZr 基合金优异的强度、塑性和应变硬化能力。该研究提供了一种通过三维双连续纳米双相结构设计来制备高强韧晶体-非晶纳米复合材料的新策略。图2.TiZr基纳米晶非晶复合材料拉伸前后分析:(A)TiZr基纳米晶非晶复合材料的拉伸真应力应变曲线;(B-C)原位拉伸前后样品的SEM图片;(D)TEM分析和(E)有限元模拟表明塑性变形首先均匀发生在晶体区域,然后在非晶区域形成大量均匀分布的微小剪切变形区。本研究提出的通过三维双连续纳米双相结构设计来制备高强韧复合材料的新策略,可以广泛应用于钛合金、铝合金、超级钢等金属结构设计制备。文章链接:https://www.science.org/doi/full/10.1126/sciadv.abm2884?af="R作者简介郑士建,河北工业大学教授,博士生导师,2014年入选中科院“百人计划”,2016年入选国家“海外高层次人才引进计划”青年项目。长期致力于金属结构材料与能源材料的原子尺度研究,研究成果揭示了高温、高应力、强辐照等极端使役环境下原子尺度界面结构对高温合金、钛合金、层状金属材料力学性能、抗核辐照损伤性能的影响规律,以及能源电池材料服役过程中原子尺度衰变机制。在Nature Communications、Advanced Materials、Acta Materialia、Scripta Materialia 等高水平期刊发表SCI论文130余篇,引用近5000次,并受邀在(国际塑性、损伤与断裂会议等)高水平国际会议上做邀请报告,主持或参与国家重点研发计划、国家自然科学基金等项目11项。获河北省政府特殊津贴(2019)、天津市创新类领军人才(2019)等荣誉,并任中国电子显微镜学会(2016-至今)等学会理事。明开胜,副教授,博士生导师,河北工业大学“元光学者”启航A岗,于2020年1月毕业于北京航空航天大学,并于同年4月加入河北工业大学。于2017.09-2019.09在美国内布拉斯加大学林肯分校公派留学。于2021年任Coatings 期刊客座编辑。研究方向为新型高强韧金属材料(包括高熵合金、晶体-非晶纳米复合材料)设计、强韧化机理以及多尺度形变机制。先后主持国家自然科学基金青年项目、河北省高层次留学人才回国资助项目、河北省自然科学基金青年项目等;以第一作者或者通讯作者在Science Advances、Acta Materialia、International Journal of Plasticity、Scripta Materialia 等高水平期刊发表论文15篇,其中2篇入选ESI高被引论文。获得荣誉包括北京航空航天大学优秀毕业生、北京航空航天大学优秀博士论文、博士研究生国家奖学金、宝钢优秀学生奖、河北工业大学材料科学与工程学院“突出贡献奖”等。
  • 哈工大(深圳)马星团队和中科院刘志远研究员《Nature Electronics》: 基于可调塑性的
    镓基液态金属(LM)由于其优异的金属导电性以及室温流动性特点,被认为在柔性电子领域具有广泛的应用前景。基于镓基LM材料,目前已成功开发出各类柔性电子器件,如可穿戴传感器、柔性电容器、柔性电感器以及柔性变阻器等。LM柔性器件的集成性和可靠性一直以来是该领域的研究热点,其中3D柔性电子被普遍认为是提高集成性的有效解决方案之一。然而,液态金属的流动性是一把双刃剑,虽然它为LM柔性器件提供了优异的可变形性,但同时给3D结构柔性电路的制备带来了巨大挑战。目前报道的3D打印、冷冻打印、通道填充等方法在复杂3D结构电路的制备、工艺成本以及功能性芯片的集成等方面仍存在不足。近期,哈尔滨工业大学(深圳)马星教授联合中科院深圳先进技术研究院刘志远研究员,提出了一种通过将镓基液态金属转变为固态并通过塑性变形制备复杂3D结构柔性导体的方法。作者基于金属材料的合金化及相关理论,着重考量材料的相变温度、机械强度和塑性加工性能,筛选出Ga-10In作为3D柔性电子制备的基础材料。固体Ga-10In的高塑性特点允许通过机械弯曲、缠绕等方式制备复杂3D结构导体,在熔点以下温度将3D导体与功能芯片连接并使用硅胶封装后,熔点以上温度加热(22.7 °C)便可使Ga-10In熔化并恢复其流动性。此外由于过冷效应,Ga-10In导体可以在低于熔点的一定的温度范围内保持液态,保证了柔性电子器件的服役温度区间。为证明该方案的实用性,作者设计了具有超高灵敏度的3D应变传感器、由3D跳线导体构成的二极管 (LED) 阵列以及由3D螺旋结构的可穿戴传感器和多层柔性电路板组成的手指动作监测装置。相关工作以“Three-dimensional flexible electronics using solidified liquid metal with regulated plasticity”为题发表于电子领域权威期刊《Nature Electronics》,2019级博士生李国强同学为该论文第一作者。在本项研究中,由摩方精密25 μm精度的nanoArch P150设备3D打印的高精度模具,为制备2D应变传感电路和3D拱形跳线提供了精密支持。图1:基于可调塑性的凝固态液态金属的3D柔性电子简介说明。(a) 液态的Ga-10In转变为固态的片状和棒状示意图;(b) 塑性变形能力对比;(c) Ga-10In低温拉伸性能;(d) Ga-10In相变性能测试;(e) 基于该方案制备的3D柔性电子。图2:Ga-In合金材料表征及性能测试。(a) 凝固态Ga-10In显微组织;(b) Ga-In合金中A6相体积分数于In元素含量的关系;(c) Ga-10In和Ga-15In显微组织表征;(d) Ga-10In拉伸样断口附近显微组织表征;(e) Ga-In合金力学性能测试;(f) 图(e)对应的屈服强度和延伸率;(g) Ga-In合金相变测试;(h) Ga-In合金熔点与In元素含量的关系。图3:2D应变传感器的电力性能测试及3D高灵敏度应变传感器设计。(a) 2D应变传感器电阻-应变关系;(b) 2D应变传感器平均GF值与应变的关系;(c) 2D应变传感器横向及纵向拉伸性能测试;(d) 3D应变传感器照片及其性能;(e) 3D应变传感器挤压位置的CT微观表征;(f) 与已报道LM应变传感器的灵敏度对比。 图4:Ga-10In 3D拱形导体及其LED柔性阵列应用。(a) 熔化前后拱形Ga-10In导体图像;(b) LED阵列示意图;(c) LED阵列电流-电压性能测试;(d) 控制装置和LED阵列电路图;(e) 控制系统和LED柔性阵列照片;(f) LED阵列动态弯曲图像。图5:3D结构的可穿戴手指动作监测柔性装置。(a) 装置示意图;(b) 3D柔性传感器及其变形性能;(c) 3D柔性传感器的手指动作传感测试;(d) 3D传感器疲劳性能测试;(e) 3D柔性电路板俯视图像;(f, g) 3D垂直电路图像;(h) 该柔性装置的手指动作测试。通过凝固态Ga-10In液态金属的塑性变形制备复杂结构3D柔性导体具有显著优势,但作者表示,该3D柔性电子制备方案目前在导电线径、柔性器件制备效率、以及自动化制造设备等方面仍存在限制。
  • Science|张泽院士团队/韩晓东教授等在晶界塑性原子机制研究上取得突破
    近日,浙江大学张泽院士团队与北京工业大学固体所韩晓东教授课题组和美国佐治亚理工学院朱廷教授团队等合作在《Science》发表题为“Tracking the sliding of grain boundaries at the atomic scale”的研究成果。他们利用原创的原子分辨原位力学实验研究装置(实现专利转化百实创Bestron INSTEM),首次实现了晶界滑移过程的原子层次动态观察,揭示了常温下晶界滑移的原子机制。《Science》期刊用5页详细报道了该突破性发现。北京工业大学为第一单位,北京工业大学王立华与佐治亚理工学院张寅为共同第一作者;通讯作者为北京工业大学韩晓东教授,美国佐治亚理工学院朱廷教授以及浙江大学张泽院士。该成果获北京高校卓越青年科学家计划、国家自然金委基础科学中心、北京市基金重点研究专题等项目支持。多晶材料是应用最广泛的材料体系,它由无数结构相同而取向不同的晶粒组成。 这些结构相同而取向不同的晶粒与晶粒之间的接触界面叫做晶界。晶界是多晶材料中最重要的基本结构单元之一。晶界滑动塑性是多晶材料中基础的变形机制,直接影响着多晶材料的强度、韧性等关键力学性能。正因为晶界滑移的重要性,几十年来,研究者为揭示晶界的变形机制付出了巨大的努力。然而,人们对于晶界滑移的原子尺度机制仍然知之甚少,主要是由于缺乏有效的实验方法和科学仪器,使得跟踪变形过程中晶界处的原子运动极其困难。理论模型和模拟针对一些特殊的重合位置点阵晶界(高对称晶界)进行研究,为理解晶界塑性变形的原子机制提供了重要参考。研究者普遍认为晶界塑性变形总是通过阶错(Disconnection)主导的晶界迁移,这个过程中没有扩散,晶界的结构不会发生变化,然而实际的实验中是否如此尚无直接实验证据。由于缺乏直接的实验方法和实验证据,晶界滑动塑性的原子机制存在很多不确定性,甚至矛盾之处。晶界滑动的原子机制是长期困扰该领域的重要科学难题。团队利用原创自制实验装置实现了晶界滑移过程的原子层次动态观察,揭示出常温下晶界滑移是通过晶界处的原子之间的直接滑动与原子短程扩散相互协调实现。这种原子之间的直接滑动提供滑移方向上的位移,而原子短程扩散协调滑动导致的应力集中。发现晶界滑移过程中,晶界原子阵列合并消失、分裂出新原子阵列、原子迁移并插入晶体内部等多种新型的扩散机制,这些机制在之前的理论中尚未被预测。该突破发现展示了原子分辨的原位TEM技术研究晶界变形原子机制的巨大潜力,并为实验和理论模型提供了新的机遇。图1 A-H.系列Cs-TEM图像展示了非对称110倾斜晶界的滑动,左侧和右侧颗粒分别标记为GL和GR;I, J. 图 (A)中绿色方框区域的放大像,可看出晶界的一侧是{111}面(红色虚线标记),另一侧由一系列原子级台阶组成(绿色虚线标记)。这些晶界处有一些五边形的特征结构。图2 展示了不对称的110倾斜晶界滑动过程中,分别在0、2.5、6.0和9.0秒时拍摄的Cs-TEM图像,显示沿晶界原子直接滑动与扩散耦合导致原子柱扩散穿过晶界平面。晶粒GL面上的原子列用绿色小写字母标记,晶粒GR面上的原子列用红色大写字母标记。图3 A-C.利用原子追踪技术,原位观察揭示出原子柱h从晶粒GL的表面转移到晶粒GR的密排面,并伴随着产生新原子柱h′;D.从原子追踪软件中分析出原子柱的位移图;E.平面应变分布图。图4 原位观察到五元环的产生,消失,晶界原子扩散最容易在五元环附近发生。A-C. 滑移过程中,形成空位、扩散、晶界位错攀移导致五元环产生、消失、运动;D,E. 从应变分布可以看出在压应变区域,原子密度大,容易通过原子扩散导致原子消失。作者介绍:通讯作者:张泽教授,中国科学院院士张泽,中国科学院院士。张泽院士长期从事先进材料的电子显微结构研究,曾获中国青年科学家奖、求是杰出青年奖、何梁何利奖等10余项奖项,获1986年国家自然科学一等奖。 近20年,针对国家重大需求的结构材料,引领团队系统并原创发展了电子显微学原位实验力学技术,跨亚埃(原子分辨)至宏观(厘米以上尺寸)尺度,跨温区(室温)至1250度,部分性能指标居国际领先水平,引领相关领域发展;进一步创新发展原子分辨环境电子显微学技术;发展高空间分辨螺旋电子束显微学技术。在材料的原位结构演变和使役性能关联的领域取得了系列重要创新性成果,率领团队获国家自然科学二等奖(2021)。通讯作者:韩晓东教授,博士研究生导师韩晓东,国家杰出青年科学基金获得者,长江学者特聘教授。韩晓东长期从事材料力学行为及原子层次机理等本领域的基础科学问题研究及相关方法学和实验技术攻关。团队原创发展了系列材料力学行为的原子层次原位动态表征方法,系统地将材料力学行为表征技术的空间分辨率由纳米提高至皮米尺度。团队开发了具有自主知识产权和国际领先的力热(电)耦合MEMS芯片、透射电子显微镜力学实验仪、多通道电学信号传输电路板等核心部件及配套应用分析软件。团队取得系列重要研究成果,关键技术获国内外授权专利33项,其中美国专利3项,国际PCT专利1项,中国发明专利27项。团队获国家自然科学二等奖(2021),2016年北京市科学技术奖一等奖,北京市创新创业特别贡献奖等。发表论文Science,Nature Mater.,Nature Comm.,Nano Lett,Phys Rev Lett,Acta Mater等高水平论文230余篇;承担国家重点研发计划项目,国家重大科研仪器设备研制专项课题、国家自然科学基金委航空发动机重大研究计划重点项目、科学仪器基础研究专项等。培养2名全国百篇优秀博士学位论文奖及提名奖,北京市优秀博士学位论文奖4项。第一作者:王立华研究员,博士研究生导师王立华,国家优秀青年科学基金获得者。2012年获得北京工业大学博士学位。2015−2017年,获得澳大利亚政府资助(Discovery Early Career Researcher Award),在昆士兰大学(全球排名前50)从事博士后研究工作。入选北京市卓越青年科学家计划、北京市科技新星、霍英东青年教师基金等人才计划。长期从事“原子尺度下材料力学行为的原位实验研究”,在该领域突破多项实验瓶颈,形成特色。发表论文70余篇,包括Science 1篇,Nat. Commun. 5篇,Phys. Rev. Lett. 2篇,Nano Lett. 4篇,Acta Mater. 4篇,ACS Nano 4篇,Scripta Mater. 6篇等,获批专利4项。获2020年度国家自然科学二等奖(排名第三),2016年北京市科学技术奖一等奖(排名第五),北京市卓越青年科学家计划,郭可信优秀青年学子奖等。承担国家重点研发计划子课题、国家自然科学基金优秀青年基金、国家自然科学基金面上等10多项国家及省部级项目。
  • 基于可调塑性的凝固态液态金属的3D柔性电子,摩方精密为科研探索提供精密技术支持
    哈尔滨工业大学(深圳)马星教授联合中科院深圳先进技术研究院刘志远研究员,提出了一种通过将镓基液态金属转变为固态并通过塑性变形制备复杂3D结构柔性导体的方法。在本项研究中,由摩方精密25 μm精度的nanoArch P150设备3D打印的高精度模具,为制备2D应变传感电路和3D拱形跳线提供了精密支持。
  • 客户成果 | 上海交通大学王俊教授:预制孪晶同时提高高熵合金强度和塑性!
    本文转自《材料学网》高熵合金是近年来发展起来的一种新型金属材料,由于其优异的性能引发了人们的关注。特别是,面心立方结构CoCrFeNi/CoCrFeNiMn HEAs具有优异的力学性能。然而,较低的屈服强度限制了其潜在的应用,通过阻碍位错运动(如细化晶粒或引入纳米析出相)来强化HEAs通常会牺牲其延性。因此,强度-塑性之间的trade-off关系不能仅通过位错主导的变形机制来克服。近年来,多种变形机制协同效应被证明其可有效解决这一问题。据报道,CoCrFeNiMn HEAs在低温(77 K)下由于塑性初始阶段存在平面位错滑移以及高应变下的纳米级变形孪晶等多种变形机制,使其强度和塑性同时提高。近日,上海交通大学王俊教授团队提出了一个有效策略,通过低温变形和退火来预制高密度孪晶以增加CoCrFeNi HEA的流变应力。在拉伸试验中,位错和孪晶的交互作用所产生的高流变应力激活了多种变形机制,实现了强度和延性的同时提高,这为设计高性能高熵合金提供了新的途径。相关成果以“Multiple deformation mechanisms induced by pre-twinning in CoCrFeNi high entropy alloy”为题发表在材料领域权威期刊Scripta Materialia上。(https://doi.org/10.1016/j.scriptamat.2021.114266)该工作提供了一种通过激活多种变形机制同时提高CoCrFeNi HEAs强度和延性的新方法,即引入高密度孪晶。孪晶使流变应力超过临界孪晶应力,在室温拉伸变形过程中,即使只有5%的低应变,也会产生变形孪晶。此外,高流变应力激活了交滑移并形成微带。因此,CoCrFeNi HEA中位错滑移、微带和孪晶的多重变形机制有助于提高其强度、塑性和加工硬化能力,导致YS、UTS和εu分别提高到728 MPa、1015 MPa和23.2%。。图1. FeCoCrNi引入孪晶之后的微观结构(PTH)图2. 引入孪晶(PTH)和未引入孪晶(NTH)样品的拉伸曲线和加工硬化曲线图3. PTH样品在不同变形阶段的TEM图像,出现大量的变形孪晶。图4. PTH和NTH试样随应变增加的显微组织演化示意图。
  • 《Science》重塑成人大脑的可塑性
    星形胶质细胞是大脑中的细胞,长期以来被认为仅仅是神经元的支持细胞。近年来,对星形胶质细胞的研究日益增多,逐渐揭示了星形胶质细胞在脑功能中的重要性。Inserm、CNRS和法国生物跨学科研究中心学院的研究人员现在已经发现了它们在结束出生后大脑可塑性阶段中的关键作用,发现它们是感官和认知能力发展的关键。从长远来看,这些发现将使我们有可能设想出新的策略,在成人中重新引入大脑可塑性,从而促进脑损伤或神经发育障碍后的康复。这项研究已发表在《Science》杂志上。大脑可塑性是出生后的一个短暂的关键时期,在这一时期,大脑根据所接受的外部刺激(环境、相互作用等)重塑神经元的“线路”。这个时期的结束或“结束”标志着神经回路的稳定,与有效的信息处理和正常的认知发展有关。可塑性在未来仍然是可能的,尽管比生命开始时的水平要低得多。20世纪80年代的开创性研究表明,将不成熟的星形胶质细胞移植到成年动物的大脑中,会重新引入一段主要的可塑性时期。Inserm研究员团队和生物学跨学科研究中心从这一过程中获得灵感,揭示了迄今未知的导致可塑性闭合的细胞过程。大脑可塑期出现的问题可能会产生重大的长期后果。例如,如果一个人的眼睛状况使他不能正确地看东西,比如斜视(交叉眼),如果不及时治疗,相应的大脑线路就会永久性地改变。为了弥补这一点,研究人员试图通过确定一种治疗方法来重塑这种连接,这种治疗方法可以重新引入大脑的可塑性,即使大脑已经关闭。为了实现这一点,他们还试图更好地描述这种封闭背后的生物学机制。移植未成熟星形胶质细胞重建脑可塑性通过对小鼠视觉皮层的实验,研究人员表明,不成熟星形胶质细胞的存在是大脑可塑性的关键。随后,星形胶质细胞在可塑期参与中间神经元的发育成熟,最终导致其关闭。这种成熟过程是通过一种涉及连接蛋白30的新机制发生的,研究人员发现在成熟的星形胶质细胞中,连接蛋白30在闭合过程中水平很高。将星形胶质细胞移植到成年小鼠体内能重新引入大脑可塑性吗?为了找到答案,研究人员从幼鼠(1到3天大)的视皮层培养了不成熟的星形胶质细胞。这些不成熟的星形胶质细胞被移植到成年小鼠的初级视皮层,然后在单眼蒙蔽四天后评估视皮层的活动——这是一种用于评估大脑可塑性的标准技术。他们发现,与未接受移植的对照组小鼠不同,移植了未成熟星形胶质细胞的小鼠表现出高度的可塑性。这项研究提醒我们,在神经科学领域,我们不能只关注神经元。胶质细胞是星形胶质细胞的一个亚型,它调节着大脑的大部分功能。我们意识到这些细胞有积极的作用。神经胶质细胞比神经元不那么脆弱,因此是一种更容易作用于大脑的手段。胶质细胞占大脑细胞的一半以上。它们与神经元的细胞谱系不同,功能也有很大的不同。直到最近,它们还被认为是大脑的“清洁剂”,但研究人员意识到它们在释放分子方面也起着积极的作用。与神经元相比,它们发生在大脑发育的后期,不以同样的方式进行交流,并且占主导地位。
  • 全国首个热塑性塑料餐具标准实施
    由广州市质量监督检测研究院制定的全国首个热塑性塑料餐具标准———《热塑性塑料餐具地方技术规范》已于8月1日起实施,其总体水平与日本标准相当,基本涵盖了市场上所有热塑性塑料餐具。  消费者选购塑料餐具时,首先要看标识是否完整,其次看产品。产品的表面应平滑,没有污点、杂质、划痕、裂纹等,没有脱色、褪色现象,还可闻一闻看有没有刺激性味道等异味。  “最重要的还是要看产品标识。”国家包装产品质量监督检验中心(广州)包装检验部部长孙世彧表示,此次标准规定,产品须标明厂家名称或商标、材质、使用温度等说明,若产品有不耐热水、不适用于微波炉、不能接触油质等要求,也应标明。
  • 文献分享 | Echo Revolve在海马体突触传递和突触可塑性调节研究的应用
    经过20世纪生命科学的快速发展,我们对疾病、遗传生命本质等方面的认识都有了长足的进步,但还有一个领域仍有太多的未解之谜困扰着我们,那就是神经科学,我们仍未了解意识是如何产生的?大脑是如何进行认知的?记忆产生的具体机制是什么?当然也包括神经系统相关疾病的发病机制,如阿尔兹海默症的发病机理等等,这些问题的解决对整个人类发展都具有重要意义,科学家也在不断探索,以期获得真相。意识是如何产生的?这是作者最好奇的问题,在作者的观点中意识很大程度上是和记忆相关,记忆已经证实是源于突触的微小改变,脑内电活动的改变引发第二信使分子传递信号,产生突触蛋白的修饰,这些暂时性变化最终转化为突触结构的永久变化后,长时程记忆就产生了。在对记忆的研究过程中人们在海马中发现了记忆产生相关的LTP(长时程增强)和LTD(长时程抑制),因为海马细胞构筑和组成体系简单,且海马可以从大脑中移出切成脑片,在体外可以存活数小时,可以进行电流刺激并记录突触反应,因此成为研究突触传递的理想部位。▲ 图1:海马微环路我们的身体是一个整体,激素、外界刺激、大脑活动等都会影响我们的记忆产生,在《The FASEB Journal》期刊杂志上发表的一篇题为《Rapid actions of anti‐Müllerian hormone in regulating synaptic transmission and long‐term synaptic plasticity in the hippocampus》的文章就将激素与大脑认知发育和功能联系了起来,分析了抗缪勒氏管激素(Amh)与突触传递及突触可塑性的关系。研究人员通过PCR、Western Blot检测Amh基因及其受体在雄性和雌性小鼠海马中的表达情况,同时采用ECHO正倒置一体荧光显微镜对免疫荧光染色材料观察其真实表达情况(如下图)。图中可以看出,CA1神经元的胞体和树突均为Amh阳性(图2A,C),而仅在CA3神经元胞体出现Amh阳性染色(图2E,G)。Amhr2在CA1(图2B,C)和CA3(图2F,G)的表达模式与Amh相似。表明Amhr2与Amh在神经元胞体和树突共定位(图2D,H)。▲ 图2:anti-Müllerian激素(Amh)和配体特异性II型受体(Amhr2)在小鼠海马中的蛋白定位。冠状切片使用荧光标记,Amh(红色 A、E) Amhr2(绿色 B,F)和DAPI(核染色 蓝色 C、G)。在每个面板的左上角插入框中显示了框区域的高倍图像。A和E显示阿蒙氏角(cornu Ammonis, CA) 1和CA3 对Amh染色阳性。B、F显示CA1、CA3对Amhr2染色阳性。D和H显示 Amh-和amhr2阳性染色共定位于细胞体和树突(箭头)。进一步分析发现,外源Amh蛋白增加了突触传递和长期突触可塑性。Amh暴露也增加了CA1突触的兴奋性突触后电位。这些结果表明,Amh可能在学习和记忆方面发挥作用,并可能是认知发育和功能的性别差异的原因。Echo Revolve正倒置一体显微镜Echo Revolve展现了其非凡的灵活性,可以轻松地实现正置和倒置显微镜转换,创新性地把正倒置显微镜合二为一,开启了显微镜Hybrid时代。▲ Echo Revolve正倒置一体显微镜☑ 视网膜屏显示技术:比拟目镜人眼观察效果。☑ 全视野观察: 更清晰,更方便。☑ 多通道荧光:多达4个EPI荧光通道,无须暗室,就可以轻松快速地完成多色荧光显微分析。☑ 自动化操作:通过iPad Pro点触操控相机及荧光通道之间的切换,实现了完全自动化操作。☑ App应用软件:基于IOS的Echo App是与Apple团队合作研发的专业显微镜软件。☑ 精湛的工艺尽显高端品质:实现非凡的性能。|申请试用|我们的仪器可以申请试用哦!扫描下方二维码关注“深蓝云生物科技”公众号,点击“云活动”→“试用中心”即可。
  • 《热塑性塑料及其复合材料热封面热粘性能测定》国家标准通过专家审查
    5月10日,《热塑性塑料及其复合材料热封面热粘性能测定》国家标准正式通过专家审查,向全面实施迈出了重要的一步。   该标准详细规定了热塑性材料及其复合材料的热封面,在热封刚结束尚未冷却时的热粘力(即热粘强度)的测试方法,填补了国内相关国家标准和行业标准的空白。审查会中,来自全国塑料制品标准化技术委员会、国家包装产品质量监督检验中心、山东省医疗器械产品质量检验中心等国家检验、学术机构的专家对标准文本、试验验证报告等文件资料进行了认真的讨论并提出修改意见,认定该标准草案已具有与国际标准等同的技术水平。   热粘力,是材料热封部分在热封后未冷却测得的剥离力。在实际生产中,包装材料的热粘力的合适与否直接影响到生产线的灌装效率和破袋率。目前,国际上已经拥有了成熟的热粘性能检测的测试标准—ASTM F1921,但国内标准仍处于空白,标准需求极为迫切。   ——由北京市海淀区产品质量监督检验所、济南兰光机电技术有限公司等多家机构企业的技术人员共同组建了标准起草小组,经过大量的行业调研和国外标准研读,同时辅以兰光热粘拉力机的试验验证,历时3年最终形成了本版标准草案。接下来,本草案将会进一步完善,正式实施后必将对包装材料合理选择和使用提供强有力的量化支持。附:设备介绍HTT-L1热粘拉力试验仪专业适用于塑料薄膜、复合膜等包装材料的热粘、热封性能的测试。同时也适用于胶粘剂、胶粘带、不干胶、胶黏复合品、复合膜、塑料薄膜、纸张等软质材料进行剥离、拉断等项目的试验。
  • 欧盟食品安全局发起非塑性食品接触材料合作计划
    2010年2月22日,欧盟食品安全局发布消息称,已经成立科技协作工作组(ESCO),专门收集和分析那些能够接触到食品的非塑性材料的安全性信息。  最近几年的研究发现许多非塑性食品接触材料(例如墨水和粘合剂)能够迁移到食品中。虽然欧盟法规中规定所有能够接触到食品的材料必须是安全的,然而和塑性材料不同,许多非塑性食品接触材料不受欧盟层面法规的限制。  科技协作工作组是依据欧盟食品安全局咨询论坛的讨论成立的,集合了各国食品安全机构的代表。工作组由欧盟各成员国中从事食品接触材料的立法和安全性评估的专家以及欧盟食品安全局相关专家组中致力于这方面研究工作的成员组成。2010年2月17日,科技协作工作组在欧盟食品安全局总部帕尔马召开了第一次会议。  科技协作工作组将收集欧盟各成员国中关于应用于非塑性食品接触材料的物质评估的信息和专家意见。同时,工作组还将研究进行风险评估的不同方法之间的优势和劣势,为以后的安全性评估制定标准,并提出一些后续的行动建议。
  • 欧盟环保法规更严格 热塑性橡胶大有可为
    欧盟对石化产品的环保要求越来越严苛。1月16日,在对邻苯二甲酸酯/盐及其替代品积累的科学数据进行分析后,欧盟可能出台更为严格的法规,这给以PVC为原料的石化企业带来巨大压力,寻找可替代PVC的材料势在必行。  2009年10月底,我国一款出口德国的笔壳为PVC(聚氯乙烯)材质的圆珠笔自愿召回,因为该产品的PVC材料中含有39.6%百分比浓度的DEHP(邻苯二甲酸二己酯),不符合欧盟REACH法规中对玩具产品中邻苯二甲酸酯/盐的要求。与此同时,西班牙海关拒绝了原产于中国的“医生器械玩具套装”产品入关,因为产品材料中含有0.43%重量百分比浓度的DEHP和2%重量百分比浓度的邻苯二甲酸二异壬酯。  2007年1月16日,欧盟委员会出台了第2005/84/EC号指令,规定邻苯二甲酸酯/盐的含量不得超过0.1%。指令要求在执行3年之后,位于芬兰赫尔辛基的欧洲化学品管理局针对邻苯二甲酸酯/盐及其替代品累计的科学数据进行分析,重新评估,将于今年1月16日做出新的决定。  环保法规形成绿色壁垒  上世纪90年代,欧盟委员会针对邻苯二甲酸酯/盐的临时禁令早已出台并不断延长禁令时间,直至以下其中一种情况发生为止:1.欧盟采纳一致认可的测试方法,以测量邻苯二甲酸酯/盐的含量,确保不超出欧盟国家的限制。2.反对禁令的业者及科学家能够向欧盟证明邻苯二甲酸酯/盐对人体无害。3.欧盟实施指引,永久全面禁用邻苯二甲酸酯/盐。  由于我国目前对石化产品中的邻苯二甲酸酯/盐含量没有明确规定,该物质用作增塑剂在PVC等塑料产品中普遍使用,因此欧盟针对邻苯二甲酸酯/盐的新法规将直接影响PVC产品的出口。这令国内PVC生产企业和下游PVC塑料玩具、制品生产厂家以及相关行业人员心急如焚。  新法规的实施将大大增加我国企业的出口成本。替代邻苯二甲酸酯/盐的新物质要进行严格的检测,高昂的检测费用全部由企业承担。据欧盟估算,每一种化学物质的基本检测费用约需8.5万欧元,每一种新物质的检测费用约需57万欧元。同时欧盟对化工产品检测试验水平要求相当高,企业需要花大量的精力收集相关数据信息,出口企业的应对难度和成本将逐级加大。由此增加的费用将使我国对欧盟石油化工产品的出口成本普遍提高5%以上,导致我化工品对欧盟出口受阻,甚至退出欧盟市场。这不仅影响中国塑料工业的发展,而且将导致我国相关的下游产品成本增加,效益下降,严重影响我国轻工、电子、汽车等相关产业的发展。  新法规的实施将打破目前国际化学品贸易平衡的局面,迫使中国企业重新开拓欧盟以外的市场,建立新的贸易渠道。新市场的开拓需要一定的时间和投入,市场的转移将会严重影响我国化工产业的发展,削弱我国出口产品在国际贸易中的竞争能力。同时,欧盟化工企业也将失去获得中国廉价化工原料的机会。  新法规实施后,包括世界500强企业中石化、中石油在内的中国石化企业必须进一步调整产品构架,以更好应对这一绿色壁垒。  绿色壁垒催熟SEBS  在塑料行业中,PVC是我国第一、世界第二大通用型合成树脂材料,已被广泛应用于食品包装、玩具、医疗用品、化妆品、鞋、塑料门窗等产业。在PVC增塑剂中,邻苯二甲酸酯/盐的使用又占主要地位,它可使PVC这种天然硬、脆的材料变得柔软而富有弹性。由于增塑剂不能永久地与PVC聚合物键合,因此在塑料产品的使用过程中邻苯二甲酸酯/盐会释放出来,对人体造成危害。PVC及其常用的增塑剂邻苯二甲酸酯/盐于2001年被国际癌症研究中心列为有致癌作用的物质,PVC的使用安全引起公众的关注。随着全世界对环保要求的越来越高,研发能够替代PVC的环保材料势在必行。  热塑性弹性体(TPE)兼具塑料和橡胶的特性,被誉为“第三代合成橡胶”。在TPE中, SBS苯乙烯嵌段共聚物占有重要的地位,是目前世界上产量最大、发展最快的一种可替代PVC、软硫化橡胶的环保热塑性弹性体材料。目前,国内共有5家SBS生产企业,其中巴陵石化(产能20万吨/年)、燕山石化(9万~10万吨/年)、茂名石化(8万~8.5万吨/年)、独山子石化(8万吨/年)。  SBS最大的缺点是抗老化性能较差,其氢化产物SEBS克服了这一缺点。热塑性橡胶SEBS是壳牌公司于上世纪70年代最早研究开发的,是一种使用性能优、应用领域广的新型环境友好高分子材料,通过了美国FDA的安全认证。由于性能卓越,在业界有着“橡胶黄金”之称。  中国石化巴陵石化公司是国内最早建立SEBS生产装置的企业,目前巴陵石化SEBS年产能达2万吨。  2009年全球SEBS的年消费量约18万吨,其中美国为8万吨,欧盟为3万吨,日本为2.4万吨。国内SEBS消费量比2008年有较大提高,预计全年超过2.6万吨。  南京海旗环保科技有限公司是国内专业从事SEBS产品市场推广的公司。公司SEBS业务主管谈秋说:“SEBS完全符合欧盟REACH法规、美国FDA相关标准。2009年我们针对SEBS的特点开拓了三四个新的应用领域,客户生产的产品大多用于替代PVC产品出口美国、欧盟,SEBS销售量比2008年增加了90%。”  “橡胶黄金”大有可为  在欧盟1月16日公布新指令前,SEBS已率先成为攻破国外绿色壁垒的产品。随着欧盟相关法规日益严格,“橡胶黄金”未来大有可为,将广泛应用于医疗器械和玩具以及日常用品。  淄博康圣弹性体橡胶科技有限公司是国内知名的医用弹性体材料生产企业。公司总经理侯秋生表示:“我们已经将SEBS应用于医用管材制品中,目前国外订单全部使用了SEBS材质。由于这种产品的售价高出普通PVC产品好几倍,国内只有一线城市的大医院开始部分使用。如果有国家相关政策扶持,我们可用SEBS新产品替换PVC产品,年使用SEBS将达到2000吨以上。”  2007年起,义乌的玩具生产企业使用巴陵石化的SEBS生产了2亿多个毛毛球玩具,出口创汇3000多万美元。当地一家毛毛球生产企业负责人说:“巴陵石化的SEBS做了相关检测,不含DEHP等REACH法规高度关注的15种有害物质,不用担心出口欧盟国家时因为材质问题而被召回。”  江苏扬州的牙刷生产企业较为集中,以前牙刷手柄上的包覆材料大多以PVC为主。随着环保标准的要求越来越高,越来越多的牙刷厂家选择SEBS/PP材料来包覆牙刷手柄。江苏奥尔玛新材料有限公司总经理王强表示:“我们生产的SEBS/PP越来越受到下游牙刷厂家、牙刷使用者的欢迎,包覆在牙刷手柄上的那一点软胶,会带给使用者更多的舒适感。”  SEBS给人们生活带来的不仅是安全、环保,而且是高品质的生活享受。
  • 聊一聊国内材料力学性能检测技术的发展、现状与问题
    当前,材料力学性能检测试验机被广泛应用于钢铁、造船、电气、机械制造、钢构、航空航天、港口机械、建筑、大学科研院所、质量监督检验第三方检测机构等。在我国各种类型的材料试验室里,试验机数量庞大,种类齐全、高中低档皆有。乐金涛老师,自1983年开始从事金属材料力学性能检测工作,从普通的试验员开始,到试验组长、试验室主任、试验设备管理,到参与试验室项目建设、试验室项目招标评审工作、试验方法标准的审修订等,近40年来一直没有脱离过试验室工作和技术。基于长期从事金属材料的力学性能测试工作,熟悉各类金属材料的试样加工和力学性能试验标准,发表过许多有关金属材料力学测试方面的专业性文章。日前,仪器信息网特别采访了乐金涛老师,请他聊一聊国内材料力学性能检测技术的发展、现状与问题,以供业内同行深度了解与分享。仪器信息网:请您介绍一下材料常规力学性能检验项目和所涉及的试验设备主要有哪些?乐金涛老师:力学性能检测,是对钢铁等材料的各种力学性能指标进行测定的一项必不可少的工作。试验所获得的强度、韧性和变形等性能参数,对于工程设计应用和材料研究都具有很重要的参考价值,较多场合是直接以试验结果为使用依据的。材料的常规力学性能检验涉及的材料试验机主要有两类:一是材料性能试验机,用于金属材料的拉伸、冲击、硬度、落锤试验机等;二是工艺性能试验机,包括弯曲试验机、顶锻试验机、杯突试验机、扩孔试验机等。材料的常规力学性能检验项目及所涉及试验设备检验项目评价特性检验设备拉伸(屈服强度、抗拉强度、断裂延伸率、断面缩率等)提供材料在常温、高温条件下的强度和塑性判据的力学性能试验。(上屈服强度、下屈服强度;规定塑性延伸强度、总延伸强度、抗拉强度;屈服点延伸率、最大力塑性延伸率;非比例试样断后伸长率、断后伸长率;应变硬化指数、 塑性应变比等)拉伸试验机时效指数时效指数值是指将同一根试样首先拉伸到规定变形量后,进行规定时间和温度的时效处理后再拉伸,从而评判其屈服应力的增加程度。烘烤强化值用于评价BH钢烘烤强化的效果,烘烤后屈服强度提高,通过二次拉伸试验进行测定。冷弯评价金属材料承受弯曲塑性变形的能力,是一种工艺试验。弯曲试验机顶锻试验沿试样的轴线方向施加力,将试样按规定的锻压比压缩,经塑性变形后显示试样表面缺陷以判断产品表面质量,是一种工艺试验。顶锻试验机夏比冲击(冲击吸收能、剪切断面率、侧膨胀)用以评定材料的缺口敏感性和冷脆倾向,是对材料抵抗冲击载荷的能力的评价。评价指标主要为试样在冲击试验力作用下折断时吸收的能量。摆锤冲击试验机时效冲击用于评价钢经应变时效后,韧性下降的程度。落锤DWTT其特点是从断口形貌形式转变温度出发,对材料的韧脆转变行为进行评估。落锤试验机硬度(布氏硬度、洛氏硬度、维氏硬度)衡量材料软硬程度的一种力学性能指标。布氏硬度计洛氏硬度计维氏硬度计仪器信息网:您之前讲过拉伸试验的发展状况(详情链接),请您再谈谈其它常用试验技术(冲击试验、顶锻试验、硬度试验等)的发展现状?乐金涛老师:1)夏比冲击试验1912年泰坦尼克号沉没于冰海,成了20世纪令人难以忘怀的悲惨海难。20世纪80年代后,材料科学家通过对打捞上来的泰坦尼克号船板进行研究,回答了持续80年的未解之谜。由于泰坦尼克号采用了含硫高的钢板,韧性很差,特別是在低温下呈脆性。当船在冰水中撞击冰山时,脆性船板使船体产生很长的裂纹,海水大量涌入使船迅速沉没。夏比冲击试验是鉴别温度对金属材料强韧性能影响最直接的评价方法。传统冲击试验2)全自动冲击试验技术在2005年左右,国内部分钢铁企业试验室从国外引进了推杆式全自动冲击试验机,之后国内的试验机厂家也纷纷仿制这种类型的全自动冲击试验机。基于结构上的因素,归纳下来,此类全自动冲击试验机在使用过程中经常会发生以下五个缺陷或故障:①冲击试样制冷装置经常会产生结霜现象,特别是制冷温度越低,或和环境温差越大,结霜现象就越严重,容易因结霜对推杆系统造成阻力,推送机构经常发生卡死等状况;②送样过程中,冲击试样在试验机砧座40毫米的跨距间容易掉样;③试验过程中,冲击试样机砧座上粘接的毛刺无法自动清除,影响试样的定位精度;④在GB/T 229-2007 《金属材料 夏比摆锤冲击试验方法》标准中规定:当使用液体介质冷却试样时,试样应在此温度上保持至少5min。当使用气体介质冷却试样时,试样应在规定温度下保持至少20min。但此类全自动冲击试验机由于结构的原因,其冷却方式是属于气体冷却还是液体冷却方式不明确,经常造成不同方在保温时间设定的分歧。已经颁布实施的GB/T 229-2020新版标准,将此类的冷却方式明确为气体冷却,且新版标准规定试样在规定温度下保温时间至少由20min提高到30min;⑤此类全自动冲击试验机在试验过程中由于采用端面定位方式,冲击试样的缺口对称面-端部距离27.5mm的长度尺寸公差的加工要求由±0.42上升到±0.165,为了这个加工尺寸公差的提高,就需要将原来的加工工艺发生较大的改变,花费更长的加工时间。以上五个弊端或缺陷,大大影响了企业在生产检验中的冲击试样加工和试验的工作效率,所以这种类型的全自动冲击试验机至今尚未实现普及应用,或制冷送样装置等被弃之不用。目前新开发的多关节六轴机器人全自动冲击试验机,完全克服了上述推杆式全自动冲击试验机的弊端或缺陷。试验时,试验人员根据自动接收到的试验顺序、试验温度等试验要求,将冲击试样通过机械手放置到可以按照指令自动制冷控制的低温槽→达到规定温度的保温时间→冲击试验机自动取摆→机械手自动快速抓取转移经过冷却后的试样,通过对中系统送到指定位置→冲击试验机自动放摆冲击→试验机自动分拣合格与不合格试样→试验数据自动保存并发送给上位机。多关节六轴机器人全自动冲击试验机的应用完全符合GB/T 229-2020新版标准的各项要求,如试样从冷却装置中移出至打断的时间掌控、转移装置与试样接触部分应与试样一起冷却等功能,目前已经成为全自动冲击试验机的主流配置。多关节六轴机器人全自动冲击试验机3)顶锻试验顶锻试验是沿试样的轴线方向施加力,将试样按规定的锻压比压缩,经塑性变形后显示试样表面缺陷以判断产品表面质量的一种工艺试验方法。顶锻试验通常顶锻试验机、万能试验机、压力机等设备来实现。顶锻试验钢铁厂生产的线材棒材产量大、检测频次高、检测周期块。传统的顶锻试验机对每一规格都要相应的配置一套模具,不同的锻压比又需配置不同的模具。试样直径的加大必然使试验机的力值规格加大,顶锻模具的重量也增加,热顶锻模具的重量会更加大。现在根据试验标准要求和各大钢厂、标准件厂用户的实际需求,运用现代电液伺服技术,采用与棒线材深加工速度相似的控制速度,集校直、剪切、顶锻压扁三位一体的全自动快速顶锻试验机的开发应用,从根本上保证了顶锻试验的准确性、可比性,完全符合金属材料顶锻试验方法标准的要求。三工位快速顶锻试验机关于带机械手全自动快速顶锻试验机技术。试验时试验人员根据接收到的试验要求,将线材棒材样坯放入试样架或通过AGV小车送达指定的位置→机械手根据预先在程序上设置好的位置抓取样坯→送校直工位进行样坯校直→送剪切工位进行样坯剪切→机械手将剪切后符合高度要求的试样放置到顶锻试验机试验位置,在确保上下两端面平行的情况下自动调用预定设置好的试验方法进行试验→试验结束后机械手自动取下试样放置到评定工位→通过人工评定后将试验数据输入、保存并发送给上位机。如果前道工序已经将样坯校直并加工成合格的试样,那全自动顶锻试验机就越过矫直和剪切工位,直接进入到试验工位。自动化技术在顶锻试验上的运用,成功地解决了多工位顶锻试样上下料的问题,尤其是解决了在热顶锻试验中的送取样难题。带机械手全自动快速顶锻试验机3)硬度试验硬度试验是用一定形状的刚性压入物在一定载荷作用下与试样表面作用,试验的结果是材料的永久塑性变形信息。它是金属材料力学性能检测中比较简便的一种方法,与其他试验方法相比,具有快速、相对无损、可现场测试等优点。硬度计一般可分为静态和动态二大类:①静态硬度计。一般是都固定存放在试验室里,包括布氏、洛氏、维氏、努氏、韦氏等硬度计。此类硬度计由于受外来干扰的影响因素比较少,其测试结果相对比较准确。布氏硬度计、洛氏硬度计、维氏硬度计②动态硬度计。包括肖氏、里氏、超声波、锤击等硬度计。这类硬度计一般都在现场使用,在测试过程中容易受到外来因素的干扰,不同工况条件下测得的试验结果离散性相对较大。③全自动硬度计技术。试验人员根据自动接收到的试验要求,将硬度试样通过人工或机械手放置到指定位置→经过高速铣或磨削等设备自动完成硬度试样的表面加工→试样号自动识别→机械手按指令将加工后的试样放置到硬度计自动载物台→根据试验指令硬度计自动完成压头更换、试样力的切换等试验参数配置→通过硬度计自动载物台移动配合自动完成单点或多点的加载、保载、卸载、压痕测量等试验过程→试验数据自动保存并发送给上位机→机械手可以按照试验结果是否合格将残料分别放到不同的残样收集装置等。全自动硬度计系统另外,再讲讲通过硬度试验结果估算出材料的抗拉强度和不同硬度试验值之间的换算这个技术问题。1)相关研究表明,通过硬度试验结果可以估算出材料的抗拉强度,布氏硬度、洛氏硬度、维氏硬度和与强度呈现较好的相关性,是正相关关系。由硬度值推算抗拉强度,目前可以依据的国内标准主要有GB/T 33362—2016《金属材料 硬度值的换算》和GB/T 1172—1999 《黑色金属硬度及强度换算值》这两个标准。2)归纳国内部分试验室的验证试验结果看:布氏硬度换算抗拉强度的相对偏差要明显低于洛氏硬度和维氏硬度。3)体会及建议标准是基于试验得到了布氏、洛氏、维氏硬度与强度的换算公式。但上面提到的两个标准都没有给出,由于材料的特性、均匀性等不一样,也不可能给出换算值的不确定度数据,对于换算结果的偏差范围无从得知。标准所列换算值,是只有当试样组织均匀一致时,才能得到较准确的结果。鉴于目前还没有普遍适用的方法将某种硬度值准确地换算成其他硬度或抗拉强度,所以应尽量避免这种换算。针对不同的试验对象,还是建议按照标准或协议要求直接进行相关的拉伸或硬度试验。仪器信息网:除了拉伸试验机中配套的引伸计和力传感器,您认为当前试验机行业急需解决的关键技术有哪些?乐金涛老师:除了拉伸试验机配套的的引伸计和力传感器,试验机行业急需解决的关键技术还有:1)特种环境下的(超高温、超低温、耐腐蚀等)模拟试验箱及变形测量装置等技术;2)仪器化冲击试验机、动态试验机、双轴静态拉伸试验机等技术;3)全量程的通用或万能硬度计、全自动硬度计、高低温硬度计、现场在线硬度计等;目前国内制造的硬度计,如布氏、洛氏、维氏分开,如维氏硬度计中的显微、小负荷、大负荷分开,其技术和精度都没有问题。但如果要变成全量程的通用或万能硬度计,把布氏、洛氏、维氏功能都集合在一台设备上就不行,其根本原因就是我们传感器的量程范围和精度指标不行。 4)全自动弯曲试验和弯曲试验结果的自动判断技术;5)在冲击和落锤试验中,目前已经实现了冲击或打击等过程的全自动,但对试样断口的判定目前还只能依靠人工进行,评定过程还存在许多人为因素,国内虽然已经有配套的图像分析仪开发,但由于种种原因推广困难。综观以上几大难题,感觉都与视觉识别技术有关。仪器信息网:请您谈一谈当前我国试验机行业存在的问题或弊端?乐金涛老师:现阶段,国内高端拉伸试验机还是被欧美等国际著名品牌或公司所垄断和制约。这些品牌或公司进入中国的试验机市场,不但垄断高档试验机产品的市场份额,而且在和国内试验机企业争夺中档产品的市场份额。中低端试验机市场规模大、风险低。国内试验机企业长期在中低端市场打价格战,没有能力、也没有动力去研发高端的试验设备。日常大生产检验中试验数据的好坏,其实到工厂质检部门判定的时候,说穿了就是合格与不合格的关系。部分国内大生产企业试验机用户的需求定位不合理,不分用途,认为最好所有的试验机都要进口的,都要高精度。试验机1级精度就可以满足的非要0.5级,0.5级精度就可以满足的非要0.3级。其结果就是造成设备功能和资金浪费,运行维保困难,同时也阻碍了国产试验机技术的发展。由于体制上的原因,目前国内同时存在着以试验机生产为主导的试验机标准化技术委员会、以计量单位为主导的全国力值硬度重力计量技术委员会,和以试验机用户为主导的试验方法标准化技术委员会,这与国际上将试验方法标准、试验设备标准与标准物质校准标准归属一个技术委员会,同列一个大标准的通用做法有比较大的差异。由于相互之间缺乏协调经常造成在标准制订上各行其事。我们国家现在有关材料检测试验方法国家标准的制定,都是按照国际标准照搬翻译过来的,我们自己对关键的技术参数或指标等的验证或分析还是不够的。标准是技术规范,同样也是技术壁垒。国外知名试验机企业已经做到了利用技术上的优势在国际标准制定上占据主导权,通过设置技术壁垒来遏制其它试验机企业发展。建议我们国家在制定标准的工程中,不要轻易否定过去已经证明是成熟的标准内容,根据中国国情编制符合中国实际的国家标准。仪器信息网:最后,您能否对智慧试验室建设工作提一点建议?乐金涛老师:我们国家原来靠国家扶植的相关试验设备研究院所都转制成了自负盈亏的经营性公司,且技术、观念落后。国内相关试验设备制造单位合作少,缺乏对共性问题的验证分析、关键技术的合作开发,现在都是靠自己来摸索或仿造,不利于我国检测行业整体技术水平的快速提升和发展,期望相关的行业协会可以起到组织引导作用。目前智慧试验室的建设工作处于初级阶段,许多相关技术还不成熟,各个试验室要根据自己拟突破的关键工序、现有场地和资金等情况,结合技术的发展来综合考虑规划。对于项目实施可能三年不见效、项目中新技术含量超过三分之一的,建议要慎重考虑,切忌盲目跟风。在国内钢铁行业的检测系统中原料检验和炉前快分检验的自动化已经发展得很快,但力学性能检测整个流程自动化、智能化还是处在刚起步阶段,相关单体试样加工和试验设备的自动化程度和稳定性不够等状况,困扰整个自动化线长期持续稳定运转,业内同行深感顾虑。智慧试验室的建设工作,任重而道远,需要试验室和相关设备制造单位等各方脚踏实地的努力。小结:感谢以上乐金涛老师的分享,同时也希望国内的试验机制造厂家要重视市场需求和技术研发,以自动化、智能化为发展方向,在高档或专用试验设备的研发制造等方面争取再获突破,以促进我国试验设备在自动化技术方面水平的提升。
  • 包装膜袋拉力机的抗拉强度与伸长率、弹性模量之间的关系
    在包装行业中,包装膜袋的抗拉强度、伸长率及弹性模量作为衡量材料性能的重要指标,一直是研发与生产过程中的关键关注点。包装膜袋拉力机作为检测这些性能的重要工具,其准确性与可靠性对于评估材料质量至关重要。本文将从抗拉强度、伸长率与弹性模量之间的关系入手,深入探讨包装膜袋拉力机的工作原理及其在包装行业中的应用价值。1. 抗拉强度:抗拉强度是指材料在拉伸过程中能够承受的最大应力,通常以单位面积上的力(如N/mm² )来表示。它是衡量材料抵抗拉伸破坏能力的重要指标。2. 伸长率:伸长率是指材料在断裂前能够拉伸的百分比,用来衡量材料的延展性。伸长率越高,说明材料的延展性越好,能够承受更大的变形而不破裂。3. 弹性模量:弹性模量是材料在弹性变形阶段应力与应变的比值,反映了材料抵抗形变的能力。弹性模量越高,材料的刚性越大,形变越小。它们之间的关系:抗拉强度与伸长率:一般来说,抗拉强度高的材料,其伸长率可能较低,因为高强度的材料往往具有较强的内部结构,不容易发生形变。相反,伸长率高的材料,其抗拉强度可能较低,因为它们能够承受更大的形变。抗拉强度与弹性模量:抗拉强度高的材料通常具有较大的弹性模量,因为它们能够抵抗更大的应力而不发生塑性变形。弹性模量高的材料也往往具有较大的抗拉强度。伸长率与弹性模量:伸长率高的材料通常具有较低的弹性模量,因为它们能够承受更大的形变。弹性模量高的材料通常具有较低的伸长率,因为它们不容易发生形变。综上所述,包装膜袋拉力机的抗拉强度、伸长率和弹性模量之间存在着一定的相互关系。了解这些关系有助于更好地评估和选择适合特定应用的包装材料。例如,对于需要较高抗拉强度的应用,可以选择抗拉强度高、弹性模量大的材料;而对于需要较好延展性的应用,可以选择伸长率高的材料。
  • 新发现对进行微纳加工等具有重要指导意义
    近日,西安交通大学金属材料强度国家重点实验室微纳尺度材料行为研究中心研究生余倩在导师孙军、肖林等指导下,与美国宾夕法尼亚大学李巨教授、丹麦瑞瑟国家实验室黄晓旭博士合作,对微小尺度金属单晶材料中的孪晶变形行为及其对材料力学性能的影响进行了深入研究,发现单晶体外观尺寸对其孪晶变形行为的强烈影响,以及相应材料力学性能的显著变化。该研究结果发表在1月21日出版的《自然》杂志上。  孙军等通过实验设计,基于六方晶体结构金属孪晶、位错滑移变形的特异性,选取钛—5%铝合金单晶中以孪晶变形为主导塑性变形方式的晶体取向,有针对性地研究了孪晶变形在微小尺度材料中的行为规律和机理。结果发现,当外观几何尺度减小到微米量级时,与相应宏观块体材料相同,材料的塑性变形仍以孪晶切变为主,但材料的屈服强度及其塑性变形中能够承受的最大流变应力均有显著的提高。但当晶体的外部几何尺度进一步减小到亚微米量级时,其塑性变形方式将发生根本性转变:孪晶变形被位错滑移变形所取代。而发生这一转变的临界特征晶体尺寸为1微米左右,远大于多晶纳米材料强度极值对应的20纳米。文中提到,由于仅有1%左右的位错可作为极轴,而晶体尺寸愈小,就愈难于利用螺型位错的极轴作用将两个相邻的滑移面有效耦合在一起形成孪晶,从而解释了孪晶变形具有强烈的晶体尺寸效应和“尺寸愈小、强度愈高”的内在原因。  该研究结果对于系统认识微小尺度材料的力学行为有着十分重要的作用。对于微电子元器件与微机电系统所用材料的性能表征评价与设计,特别是利用其强度的强烈晶体尺度效应进行微纳加工等具有重要指导意义。
  • 我国科学家发现纳米金属材料新特质
    人民网科技2月2日讯 据中国科学院金属研究所消息,1月30日,《科学》报道了中科院金属研究所沈阳材料科学国家(联合)实验室卢磊研究员领导的研究小组与卢柯研究员、丹麦Risφ国家实验室的黄晓旭博士合作研究的成果,他们利用共格孪晶界独特的稳定界面结构获得了具有超细特征尺寸的纳米结构金属,并发现减小孪晶片层厚度将增加材料的强度。这一发现表明当纯金属的特征尺寸降低至纳米量级时,由于塑性变形机制的变化会导致极值强度的出现,同时表现出一般金属材料所不具备的超高加工硬化效应。评审人认为作者在利用纳米孪晶强化材料本质方面获得了具有重大意义的发现,不但丰富和拓宽了人们对纳米尺度材料塑性变形的本质的认识,同时也为进一步发展高性能纳米结构材料及其应用提供了重要线索。  普通多晶体金属材料的强度通常随晶粒尺寸的减小而升高。这种晶粒细化强化源于更多晶界阻碍了位错运动,从而使塑性变形困难。但是,当晶粒尺寸小至纳米量级时,晶格位错运动将受到抑制,塑性变形的控制机制由晶格位错运动逐步转化为晶界行为,从而使材料强度下降。因此,理论分析和分子动力学模拟均预测当金属材料的晶粒尺寸小至纳米量级时其强度将出现一极大值,随晶粒尺寸进一步减小会导致材料软化。然而迄今为止这种极值强度在纯金属力学性能实验中尚未观察到。其主要原因是制备超细晶粒尺寸(通常小于10纳米)的纳米材料非常困难:由于纯金属材料中晶粒具有很高的长大驱动力。通常晶粒愈小,长大驱动力愈大,晶粒很容易在室温状态或更低的温度下就发生长大。因此如何制备出稳定的超细特征尺寸的纳米结构材料并探索其本征变形机理长期以来是纳米金属材料领域一大难题。  卢磊研究员及其合作者采用脉冲沉积技术通过细致的工艺探索在纯铜样品中成功地将孪晶片层平均厚度(λ)减小到约4 nm,并发现减小孪晶片层厚度材料的强度增加。当孪晶片层厚度为15nm时,材料强度达到最大值。进一步减小孪晶片层,强度反而减小、出现软化现象。随孪晶片层减小,样品的塑性和加工硬化能力单调增加。当孪晶片层小于10纳米时,其加工硬化系数超过了粗晶纯铜的加工硬化系数,即铜及铜合金的加工硬化系数上限,表现出超高加工硬化能力。分析表明纳米孪晶铜中极值强度的出现是由于随孪晶片层尺寸减小塑性变形机制从位错孪晶界相互作用主导转变为由孪晶片层结构中预存位错运动主导所致。而超高加工硬化效应则来源于纳米孪晶片层中大量孪晶界可有效吸纳高密度位错,其位错密度较一般多晶体中的饱和位错密度高1-2个数量级。  塑性变形过程中共格孪晶界可有效阻碍位错,具有和普通晶界相似的强化作用。同时,共格孪晶界又可作为位错的滑移面吸纳大量位错,与普通晶界相比孪晶界结构更加稳定,其晶界过剩能仅为普通晶界的十分之一。因此,纳米孪晶结构从能量上要比相同化学成分的纳米晶体结构稳定很多。这种稳定的超细纳米孪晶结构的获得不仅是传统材料制备技术的突破,同时也为深入研究金属材料力学行为的纳米尺寸效应提供了可能。
  • Labthink起草的GB/T 34445-2017《热塑性塑料及其复合材料热封面热粘性能测定》正式颁布
    2017年9月29日,国家质量监督检验检疫总局、国家标准化管理委员会发布公告,正式颁布GB/T 34445-2017《 热塑性塑料及其复合材料热封面热粘性能测定》,实施日期为2018年4月1日。  这是软塑材料行业首个热粘性能相关测试方法国家标准,规定了热塑性材料及其复合材料的热封面在热封刚结束,尚未冷却时的热粘力的测试方法。包材热粘性测试,不但能很好地解决生产线灌装破袋的问题,同时也会为包材的合理选择和使用提供了有力的数据支持。  该标准是根据国家标准化管理委员会2012年第二批国家标准计划,由全国塑料制品标准化技术委员会归口,北京市海淀区产品质量监督检验所、济南兰光机电技术有限公司、厦门顺峰包装材料有限公司、厦门金德威包装有限公司、广东德冠包装材料有限公司共同负责起草。  起草小组对行业情况和国际标准进行了充分的调查研究,在利用Labthink热粘性能测试仪器进行的相关试验验证基础上,历时三年完成了标准的起草、征求意见、修改完善和审查等各阶段工作,按规定程序上报中国国家标准化管理委员会做最终审核。  Labthink兰光,致力于通过包装检测技术提升和尖端检测仪器研发帮助客户应对包装难题,助力包装相关产业的品质安全。
  • 院士领衔 线上线下互动|2022年全国电子显微学学术年会大会报告(下)
    仪器信息网、中国电子显微镜学会(对外名义)联合报道:2022年11月26日,由电镜学会电子显微学报编辑部主办、南方科技大学承办的“2022年全国电子显微学学术年会”在东莞市会展国际大酒店龙泉厅顺利召开。大会为期三天,受全球持续的新冠疫情影响,大会主会场和12个专题分会场采用线下交流+线上直播方式进行,吸引来自高校院所、企事业单位等电子显微学领域专家学者3.5万余人次线上线下参会。大会线下会场大会线上会场2022年是中国电子显微镜学会(对外名义)成立四十二周年,《电子显微学报》创刊四十周年。在老一辈科学家引领下,中国电子显微学事业蓬勃发展至今;中青年学者赓续中国电子显微学的优良传统,瞄准国际前沿科学问题和国家重大战略需求,不断为我国卡脖子难题的攻克贡献中国电子显微学者不可或缺的重要力量。本届年会的主题是“‘动’析显微新世界”。本次大会主要由大会报告和12个分会场报告组成,11月26日上午和11月27日上午,大会报告特邀十二位著名电子显微学科学家、相关仪器设备厂商专家代表依次为大家呈现精彩报告。以下为11月27日上午大会报告内容摘要,以飨读者。大会报告主持人:中国电子显微镜学会(对外名义)理事长、北京工业大学教授 韩晓东报告人: 中国科学院院士、南方科技大学校长 薛其坤教授报告题目: 高温超导机理研究的新进展薛其坤院士首先介绍了高温超导的概念与技术发展历史,自1986年Bednortz和Müller发现铜氧化物高温超导以来,三十多年已经过去了,但作为凝聚态物理学最重要科学难题之一的高温超导机理至今仍然没有得到解决,甚至在最基本的科学问题比如配对对称性上也尚未达成共识。针对配对对称性这一核心科学问题,团队通过制备具有原子级平整界面的高质量Josephson结成了关键相敏实验,发现铜氧化物中s-波配对占主导地位。该结果颠覆了铜基高温超导是d-波配对的主流认识。结果表明,原子尺度控制材料和器件得到的结果似乎支持高温超导是常规超导;通过奇妙的想法和确定性实验解决高温超导机理难题似乎很有希望。报告人:中国科学院院士、广州生物岛实验室教授 徐涛(线上分享)报告题目:光镜电镜关联成像技术在亚细胞成像前沿的应用徐涛院士首先介绍了光电联用技术对于生物细胞结构研究的重要意义,光电关联成像可以将荧光显微镜对分子特异性定位以及电子显微镜观察细胞超微结构的特点结合起来,实现对目标分子的精确观测,实现1+12的作用。接着分享了围绕光电联用技术开展的系列工作,包括在常规EPON包埋样品上开发系列光转换荧光蛋白;发展了新的单分子成像及定位方法,重复光学选择性曝光(ROSE)等技术;冷冻光电联用技术在原位亚细胞结构中的研究等。作为时下方兴未艾的热点技术,原位结构解析或将成为下一代重要技术。报告人:捷欧路(北京)科贸有限公司 张滢(线上分享)报告题目:日本电子冷冻电镜在生命科学领域的应用张滢首先介绍了日本电子冷冻电镜技术近三十年的技术积累与发展历程,接着分享了日本电子最新一代CRO ARM 300的性能特点,包括科勒照明系统、无彗差合轴、新型冷场枪、新型Omega能量过滤器、无孔相位板、操作简便等。最后详细介绍了日本电子冷冻电镜客户在单颗粒分析技术、冷冻电子断层扫描技术、微晶电子衍射等方面取得的系列成果案例。报告人: 日立科学仪器(北京)有限公司 曾超斌(线上分享)报告题目: 日立原位环境球差校正电镜最新进展结合日立球差校正透射电子显微镜HF5000,曾超斌介绍了日立原位环境球差校正电镜最新进展。包括原位杆和原位芯片技术的最新进展、客户在原子级原位技术方面取得的系列成果案例等。相关优势包括,HF5000开放设计为原位表征提供了更多的可能性、在原位模式下可同时捕获内部结构和表面形貌信息、原子能谱(EDS)和电子能谱(EELS)分析可以在原位模式下实现等。报告人:中国科学院院士、西安交通大学教授 孙军(线上分享)报告题目:层级纳米马氏体合金的构筑与强韧化孙军院士报告从研究背景、解决思路、合金设计制备、结果讨论等方面详细介绍了团队关于层级纳米马氏体合金的构筑与强韧化的研究进展。作为关键结构材料,合金强韧化是共性关键问题,钛合金高成本限制其工程应用,低成本元素替代贵金属实现高强韧钛合金设计需求急迫。经过合金设计制备研究,提出基于元素扩散失配调控化学界面的新策略,构筑层级纳米马氏体结构;Ti-AI-Cr-Zr系纳米马氏体合金具有低成本高强塑性以及良好热稳定的组合;化学界面工程策略可应用于其它具有马氏体相变特性的亚稳态合金的强韧化等。报告人:北京工业大学研究员 王立华(线上分享)报告题目:晶界塑性变形机制的原位原子尺度研究王立华表示,基于晶界塑性变形机制的原位原子尺度研究,团队原创性发展了一些可以在透射电镜中进行原子尺度原位观察的实验技术系统并在百实创(北京)科技有限公司商业转化。借助该原位系统产品,在原子尺度观察到了晶粒滑移,同时揭示了以往模型没有预测到的一些变形行为,如倾斜GB通过GB位错活动旋转,无明显迁移;通过刚性原子滑动的GB伴随出现/消失和原 GB的运动与子间的相互转化;通过晶界位错沿晶界滑动实现晶界原子的刚性运动,形成Lomer-Lock结构,促进原子的出现/消失和相互转化等。报告人:南方科技大学讲习教授 廖茂富报告题目:生物电镜的革命与未来展望廖茂富结合自己的经历,分享了对生物电镜发展的看法。某种意义上讲,生物电镜是材料电镜的衍生分支,由于生物样品水化、对电子辐照敏感等特点,生物电镜达到0.4nm和达到0.1nm分辨率的时间大概都相比材料电镜晚了约二十年。近十年来,数据处理技术和电子探测器技术的发展成为生物电镜分辨率革命的两个主要因素,这不仅推翻了晶体学占主导的结构生物学,改变了结构生物学的许多内涵,同时,也助推结构生物学整合深入到制药医疗等工业界。关于未来,廖茂富认为生物电镜将促进下一代的结构生物学,而下一代的结构生物学则包括高分辨、高通量、原位和动态等趋势特点。11月26日下午-11月28日下午,12个分会场精彩内容也将悉数呈现,分会场依次为:1)显微学理论、技术与仪器发展;2)原位电子显微学表征;3)功能材料的微结构表征;4)结构材料及缺陷、界面、表面,相变与扩散;5)先进显微分析技术在工业材料中的应用;6)扫描探针显微学(STM/AFM等);7)扫描电子显微学(含EBSD);8)聚焦离子束(FIB)在材料科学中的应用;9)低温电子显微学表征;10)生物显微学研究;11)生物医学和生物电镜技术;12)中国电子显微镜运行管理开放共享实验平台经验交流。同时,大会还将颁发优秀青年学者奖、评选优秀学生论文奖与优秀Poster奖、为第十三届中国电子显微摄影大赛获奖者颁奖等,相关信息,请关注后续报道。微信扫码进入大会官方网站,查看大会详细日程及会议现场照片集锦:线下参会代表合影留念
  • 全球每年1人!卢柯院士荣获富兰克林梅尔奖
    2022年2月27日至3月3日,美国矿物、金属和材料学会(The Minerals, Metals & Materials Society,简称TMS)第151次年会在美国加利福尼亚州安纳海姆市举行。金属所卢柯院士荣获2022年度金属学院讲座奖/罗伯特富兰克林梅尔奖(Institute of Metals/Robert Franklin Mehl Award,简称富兰克林梅尔奖)。富兰克林梅尔奖设立于1921年,以纪念著名冶金学家罗伯特富兰克林梅尔教授。该奖项由国际材料领域专家提名,经TMS学会学术奖励委员会评审和董事会审定后,颁发给在国际材料科学与工程领域做出突出贡献并具有杰出学术领导力的科学家。该奖项每年在全世界范围内评选一人,是国际材料领域最具影响力的国际学术奖励之一,享有很高的国际盛誉。过去一百年来,共有100名材料科学与工程领域的国际著名专家获奖。历届获奖者包括W. M. Pierce、Egon Orowan、William Shockley、Morris Cohen、A. H. Cottrell、John W. Cahn、Michael F. Ashby、Sir Charles Frank、Frank R.N. Nabarro等人,均是材料科学领域的著名专家,其中不乏多位诺贝尔奖获得者。我国著名材料物理学家葛庭燧院士曾于1999年荣获此奖项,以表彰他在金属材料滞弹性内耗研究方面的杰出贡献,是之前我国唯一获此奖项的科学家。卢柯院士因在纳米金属材料研究方面的杰出成就成为该奖项第101位获奖者。他的主要学术贡献包括:发现了金属中纳米孪晶结构、梯度纳米结构和受限晶体结构,推动了金属材料科学的发展。提高金属材料的强度一直是材料物理领域中最传统、最核心的科学问题之一。通常的强化手段在提高强度的同时会降低其塑性和导电性等其他性能,即材料领域著名的强度—塑性倒置关系。为解决困扰国际材料领域的这一重大科学问题,卢柯院士潜心研究三十余年,通过发展新的材料制备技术,在纳米尺度调控金属的微观组织获得新结构,拓展金属的结构性能的关系,从而提升材料的综合性能。卢柯院士及其研究团队开拓性地发展了电沉积及动态塑性变形技术,在金属材料中引入高密度的纳米孪晶界面,提出纳米孪晶强化机制,在大幅度提高材料强度的同时保持良好的拉伸塑性和很高的电导率,开辟了纳米金属材料新的研究方向。纳米孪晶强化原理已在多种金属、合金、化合物、半导体、陶瓷中验证和应用,成为具有普适性的材料强化原理。卢柯院士团队自主研发了多种表面塑性变形制备技术,发现了金属的梯度纳米结构及其强化机制。梯度纳米结构具有独特的变形机制和力学响应,使材料兼具高强度和高塑性,大幅度提高摩擦磨损性能和疲劳性能,为提升工程材料的性能和使役行为开辟了新途径,部分成果已经在工业界应用。近年来,卢柯院士团队在国际上首次提出通过塑性变形制备出极小晶粒金属,在其中发现强度接近材料理论强度且具有超高稳定性的受限晶体。该发现不仅为探索材料结构开辟了新的空间,一经发表后受到学术界的广泛关注,同时为发展高温高强材料提供了机遇。基于该研究提出的材料素化原理,为节约贵金属等元素资源和材料可持续发展提供了发展路径。迄今为止,卢柯院士已在国内外学术刊物发表论文400余篇,获得发明专利40余项,在国际学术会议上做特邀报告60余次。2005年,卢柯院士当选德国国家科学院院士。2006年起受聘为美国《Science》周刊材料领域的评审编辑。2017年被授予TMS Fellow奖,成为目前TMS会士中唯一一位中国大陆科学家,颁奖委员会一致认为“他在金属和纳米材料力学性能研究方面功勋卓著,同时还具备在材料研究领域中的世界级领导才能”。2018年当选美国工程院外籍院士,以表彰他在纳米孪晶材料以及纳米结构材料领域做出的杰出贡献。2019年作为国内首位获奖者被授予“Acta Materialia金质奖章”,以表彰他在材料科学与工程领域长期作出的杰出贡献。
  • INNOVATEST轶诺仪器与固体力学会议携手推动力学性能测试
    由中国力学学会固体力学专业委员会主办,中国工程物理研究院总体工程研究所,西南交通大学力学与工程学院,四川大学破坏力学与工程防灾减灾省重点实验室,顶峰多尺度科学研究所,成都大学承办的“2014年全国固体力学学术会议”于金秋十月在四川隆重举办。此次会议共设2个主会场,27个分会场,会议规模宏大,会场组织有序。作为赞助商之一,轶诺仪器(上海)有限公司亦亲自派出市场与技术团队,全心助力此次大会。 现场与会专家多达1200余人,在为期2天的会议中,来自中国科学院力学所的白以龙教授、王自强教授,自然科学基金委的杨卫教授,美国西北大学的黄永刚教授,哈尔滨工业大学的杜善义教授,中国工程物理研究院的孙承伟教授,西南交通大学的翟婉明教授,香港科技大学的余同希教以及美国普渡大学的陈为农教授分别作了特邀报告,会场气氛轻松热烈,不时传来听众的阵阵掌声。 所谓固体力学,就是研究可变形固体在外界因素作用下所产生的应力、应变、位移和破坏等的力学分支。一般包括材料力学、弹性力学、塑性力学等方向。其中,材料力学是固体力学中发展最早的一个分支,它研究材料在外力作用下的力学性能、变形状态和破坏规律,为工程设计中选用材料和选择构件尺寸提供依据。之后发展起来的弹性力学是研究弹性物体在外力作用下的应力场、应变场以及有关的规律;塑性力学则是研究固体受力后处于塑性变形状态时,塑性变形与外力的关系,以及物体中的应力场、应变场以及有关规律。 众所周知,金属材料的主要力学性能包括硬度、弹性、塑性、刚性、冲击韧性、疲劳强度、断裂韧性等;而硬度作为一项综合的力学性能指标,与材料的其他性能之间存在一定的联系,比如,金属的抗拉强度便可由硬度经过换算得到。另外,金属的硬度与冷成型性、切削性、焊接性等工艺性能也有密切关系;硬度实验能敏感地反映出材料的化学成分、金相组织和结构的差异,因此被广泛用来进行原材料的质量检验,以及检验零件的热处理质量。硬度试验具有设备简单、操作方便快捷、压痕小以及便于现场操作等特点,是产品研发和生产中最常用的力学性能试验方法,在测试金属材料机械性能上得到了广泛应用。 INNOVATEST轶诺仪器,全球领先的硬度计制造商,位于欧洲荷兰,集设计,研发,生产于一身,深谙力学,视质量为第一生命,致力于提供高端、精密、可靠、稳定的硬度检测设备。为此,INNOVATEST轶诺仪器不断契合广大用户的需要,为其量身定做最合适的硬度测试解决方案。 INNOVATEST轶诺仪器在其荷兰总部和上海子公司均设有展厅,随时恭候您莅临体验!
  • 高性能金属基润滑耐磨损材料制备有了新思路
    7月30日,科技日报记者从中国科学院兰州化学物理研究所了解到,该所固体润滑国家重点实验室高温摩擦学课题组在新型润滑耐磨损高熵/中熵合金设计制备和性能调控等方面进行了系统研究,取得了系列进展。给出一种构筑多级纳米异质结构和成分波动特征来实现合金低磨损的新方法,相关研究成果近日发表于综合性学术期刊《研究》。新型高熵/中熵合金具有诸多新奇特性,为设计制备高性能金属基润滑耐磨损材料提供了新启发,是目前材料学和摩擦学研究的热点和前沿。在解决高温润滑与磨损方面具有重要应用价值传统合金往往是由一种或两种主要金属元素构成,其他合金化元素的比例相对很低。高熵/中熵合金是近年来发展起来的有别于传统合金的新型合金。高熵合金和中熵合金是由多种主要金属元素构成的合金,二者只是在主要金属元素的种类和数量上有差异。一般而言,高熵合金包含5个或5个以上等原子比的金属元素,而中熵合金则包含3个金属元素。高熵/中熵合金展现出许多优异的力学和物理性能。“高熵/中熵合金有几个明显的特点,主要包括组织结构表现出复杂异质性、成分表现出多组元特征,具有‘质剂不分’的浓缩固溶体结构、晶体结构表现出连续畸变性。”中国科学院兰州化学物理研究所研究员程军介绍,基于其独特的异质结构、成分波动、多级纳米析出相等微观组织结构和多组元特征,高熵/中熵合金展现出卓越的强度—塑性组合、高温结构稳定性、摩擦界面自保护、高温抗氧化等新奇特性。与传统合金相比,高熵/中熵合金具有非常广阔的成分调控空间,通过对高熵/中熵合金中的元素进行替换或增减,能获得一些具有特殊性能的微观组织结构和异质相,为设计制备高性能金属基润滑耐磨损材料提供了新思路。程军告诉记者,针对高熵/中熵合金体系开展润滑耐磨损成分设计,采用熔炼、粉末冶金或喷涂等工艺即可制备出具有润滑与耐磨损性能的高熵/中熵合金材料。“这类新型材料在解决航空航天、轨道交通、核能等领域高端装备运动与传动部件的高温润滑与磨损难题方面具有重要的应用价值和应用前景。”程军介绍。强度、塑性、热稳定性和耐磨性优于传统合金中低温下,金属材料摩擦表界面会发生严重的弹塑性变形、局部断裂和磨粒磨损,而高温下则会发生材料黏着、软化变形和氧化磨损,这些因素导致金属材料在宽温度范围内表现出严重的摩擦磨损。针对上述问题,晶粒细化和复合润滑相/抗磨相是目前提高金属材料耐磨损性能的主要手段。“但是,这两类方法通常会引发新的问题,如当晶粒细化至纳米尺度时,可能会在摩擦过程中引发严重的纳米晶不均匀塑性变形,增加磨损;复合润滑相/抗磨相和基体相之间的错配界面可能会使摩擦界面在磨损过程中发生脆性断裂。”程军说。研究表明,如果在摩擦副界面之间引入一个能够逐级释放摩擦应力的界面层,可极大减小摩擦过程中不均匀塑性变形和界面错配导致的磨损问题。然而,这种特殊的界面层难以通过常规的制备或加工手段获得。基于这个问题,研究人员考虑是否可通过调控合金的成分和结构设计制备一种新型金属材料,使其能在中低温摩擦过程中原位形成逐级释放应力的梯度界面耐磨层,高温摩擦过程中形成耐磨损釉质层,从而在宽温度范围内保持稳定的低磨损性能。高熵/中熵合金独特的浓缩固溶体结构使其表现出优于传统合金的强度、塑性、热稳定性和耐磨性等性能。因此,研究人员以镍元素为溶剂,引入等摩尔比的铝、铌、钛和钒4种元素作为合金化元素,通过将合金化浓度从25 at.%(原子百分数)提高至50 at.%,制备了一种具有纳米分级结构和成分波动特征的新型镍铝铌钛钒中熵合金。为了使溶质元素之间形成高混合熵的过饱和固溶体结构,元素粉末需经历32小时的机械合金化过程,形成面心立方结构和体心立方结构的混合固溶体粉末。研究人员通过放电等离子烧结使粉末在1050℃发生异质相分离,并在冷却后固结成型,最终形成高体积分数的纳米耦合晶粒相和分级纳米沉淀相,其呈现纳米分级结构和成分波动特征。纳米分级结构异质相的形成将使合金可在磨损诱导的变形过程中沿深度方向原位形成梯度界面层,选用高浓度的易氧化的铝和铌会促进合金在高温摩擦过程中快速形成保护性氧化釉质层。此外,高浓度的钛可显著提升合金体系的晶格畸变效应,从而提高摩擦界面层的屈服强度。“与传统合金相比,该合金的结构由分级纳米耦合晶粒组成,表现出纳米尺度的成分波动特征,这种独特的异质性结构使合金在室温至800℃宽温度范围内的磨损过程中自发激活自适应摩擦界面保护行为,形成耐磨损纳米梯度摩擦层或釉质层。该材料作为高温抗磨材料具有重要的应用价值。”程军说。他认为该合金成分可调、可采用热压、喷涂等多种工艺固化成型,有望实现产业化应用。
  • 用布洛维硬度计进行硬度测试的必要性
    硬度测试硬度定义材料机械性能对解决各种机械和建筑工程的设计及加工问题具有特别重要的意义。例如轴承,经常受力的部件要有较高的强度,常受冲击的部件要耐冲击、耐磨等。要确定这些机械性能需经过一系列的机械性能测试,诸如拉、压及疲劳测试等破坏性测试。而硬度测试可以直接测试零部件,是非破坏性测试。硬度是金属材料力学性能中最常用的一个性能指标。金属硬度常被认为是“是材料抵抗弹性变形,塑性变形或破坏的能力”。硬度值不仅与材料的弹性极限,弹性模数、屈服极限、脆性乃至于材料的结晶状态、分子结构和原子间键结合力等有关,而且与测量条件和测量方法密切相关。硬度测试硬度测试的必要性1// 硬度测试的结果在一定条件下能反映出材料在化学成分、组织结构和处理工艺上的差异:检查原材料、监督热处理工艺正确性、研究固态相变过程、研究新材料、新合金等。2// 硬度测试法在工艺管理和生产过程中进行质量控制:对未经热处理的试件进行硬度测试,以避免混料、错料。硬度测试监管加工过程:避免切削或磨削加工量过大,引起退火而改变性能。3// 研究金属焊接结构时,硬度测试法确定焊缝产生淬硬倾向,以及确定热影响区:表面洛氏和维氏硬度法测表面热处理强化效果及硬度梯度、表面强化层或渗层的深度。显微硬度测试法是金相分析方法的补充,测量显微组织中相的硬度。4// 硬度测试在保证产品质量,改进工艺方面的作用:例如轴承,如果硬度过高就容易发生脆裂 如果硬度过低就容易磨损变形 硬度适量可以在很大程度上延长轴承的寿命。在加工过程中需要对5%~10%的样品进行硬度测试,即中间测试,检验加工工艺的正确性,保证加工质量。5// 硬度测试成为检验产品质量的重要手段:一架大型喷气客机有成千的零件要求测硬度,一辆汽车有上百种零件测硬度,一只仅有一百多零件的手表也有七十多个零件需要测硬度。6// 硬度与材料的化学成分、热处理状况及金相结构有一定的关系,所以硬度测试也是理化分析、金相研究的重要手段。 总之,在机械制造、冶金、精密仪器仪表等行业中,从生产到科研,从选材、加工到成品验收,硬度测试都是不可缺少的手段,特别是近代材料科学的发展与硬度测试密切相关。硬度测试常用硬度测试方法材料的软与硬是相对的,人们最初就是根据材料抵抗划磨的能力来比较材料软硬程度。1722 年雷奥姆尔(Reaumvr)首先应用了矿物对金属进行刻画的初始硬度测试。后来,人们提出过几百种测量金属硬度的方法。时至今日,常用的硬度测试有十几种,例如:静载测试法的布氏、洛氏、维氏(包括显微维氏、努氏)等;动载测试法的肖氏、里氏硬度测试等。荷兰轶诺布、洛、维硬度计布氏硬度计轶诺INNOVATEST布氏硬度计 型号例举:NEXUS 3100 NEXUS 3200 NEXUS 3001XLM-IMP NEXUS 3300(M)NEXUS 3400(M) NEXUS 3300FA NEXUS 3400FA NEXUS 8103RSB NEXUS 8103XLM-RSBNEMESIS 9600RS(B)......洛氏硬度计轶诺INNOVATEST洛氏硬度计 型号例举:FENIX 200AR FENIX 200ACL FENIX 200DCL FENIX 300RS FENIX 300RS-IMP FENIX 300XL NEXUS 605RS(B) VERZUS 710RS(B) VERZUS 720RS(B) NEMESIS 6100 NEMESIS 6200 NEMESIS 9100RS(B)......HAWK 250RS HAWK 400RSHAWK 400RS-IMP HAWK 651RS HAWK 652RS-IMP ......维氏硬度计轶诺INNOVATEST维氏、显微、努氏硬度计型号例举:FALCON 400 FALCON 450 FALCON 500 FALCON 600 FALCON 5000 FALCON 400G2 FALCON 450G2 FALCON 500G2 FALCON 600G2 FALCON 5000G2FALCON 800G2 (敬请期待)......布洛维硬度计轶诺INNOVATEST布洛维/通用硬度计 型号例举:FENIX 300U NEMESIS 5100NEMESIS 5100G2 NEMESIS 9100 NEXUS 7700 NEXUS 8100 NEXUS 8100XLM NEMESIS 9600......荷兰轶诺INNOVATEST,专注硬度测试,致力于设计和制造闭环传感器控制的硬度计. 欢迎来电来函进行技术交流
  • 新突破!中国科学家领衔,率先实现“三维透射电镜技术”成熟应用
    2023年12月1日,重庆大学作为第一完成单位和第一通讯作者单位在顶级期刊《Science》发表最新研究成果。论文题目为《3D microscopy at the nanoscale reveals unexpected lattice rotations in deformed nickel》(纳米分辨三维电镜揭示变形镍的异常晶格转动),是材料科学与工程学院黄晓旭团队及其合作者利用自主研发的三维透射电镜技术在纳米金属研究领域取得的新突破。此前,重庆大学材料科学与工程学院在材料科学领域已有5篇论文发表在《Science》和《Nature》上。黄晓旭教授传统的电子显微镜技术,只能观察样品的表层,或者观察材料内部三维结构的二维投影,这大大限制了人们对材料微观组织的认识。因此,过去二十多年,在全球范围内,广大科学家致力于开发三维表征技术,空间分辨率在微米尺度的三维表征技术研发已取得了重要进展,其应用促进了材料科学领域的重要科学发现。但是,更多更深层次的材料科学问题需要纳米级甚至原子级的三维表征技术,将空间分辨率从微米级提高到纳米级,需要提高三个数量级,这是一个巨大的挑战。黄晓旭团队经过十多年的不懈努力,在国家重点研发计划等项目的支持下,成功开发了一系列基于电子衍射的三维透射电镜技术,空间分辨率1nm。这些技术的研发填补了纳米级三维电镜取向成像技术的空白,将大大促进三维材料科学的发展。金属中位错界面的三维透射电镜成像纳米金颗粒的三维透射电镜成像本研究利用三维取向成像技术,首次实现了纳米金属塑性变形的三维电镜研究。发现了纳米金属塑性应变可恢复的反常现象,并揭示了这一现象的物理本质。本工作的新发现发展了纳米金属塑性变形理论,将为先进纳米结构材料研发、纳米材料使役行为的预测和控制以及微纳器件功能优化提供理论指导。纳米金属镍变形前(A)和变形后(B)三维形貌与晶体取向变化黄晓旭团队长期致力于先进表征技术和纳米金属研究,在三维表征技术的研发、纳米金属的变形机理和强化机制研究等方面已取得了多项创新工作,相关成果多次在《Science》和《Nature》杂志发表。重庆大学/西南技术工程研究所贺琼瑶博士和欧洲散裂中子源Søren Schmidt博士为共同第一作者,重庆大学/北京科技大学吴桂林教授、清华大学Andrew Godfrey教授和重庆大学黄晓旭教授为共同通讯作者。重庆大学朱万全博士、黄天林教授、张玲教授和冯宗强副教授,以及丹麦技术大学Dorte Juul Jensen教授为共同作者。原文链接:https://www.science.org/doi/10.1126/science.adj2522黄晓旭团队部分成员
  • 新品推荐——方源仪器多功能电子织物强力机YG026M
    方源仪器多功能电子织物强力机YG026M仪器创新点:1、进口夏普蓝色液晶显示屏(LCD操作面板),全中文菜单提示,,自动化程度高,每一操作步骤都有中文提示不会出现误操作;2、三菱十六位工业级单片机控制,十六位A/D转换器,抗干扰性能强、数据传输快;3、PC机在线控制,动态跟踪试验机工作状态,接收测试数据并实时显示强伸曲线;曲线可以单一显示,也可以叠加显示4、大量存贮测试数据,并可进行数据汇总、分类等处理(测试机);5、随机配备LCD操作面板,使强力机可脱离软件及计算机独立操作并打印测试结果(双向控制);多功能电子织物强力机YG026M适用范围:广泛适用于纺织、印染、服装行业对断裂强力(条样法、抓样法)、断裂伸长率、撕破(单舌、双舌、梯形)强力、弹子顶破强力及弹性材料反复拉伸(弹性变形率、回复率、塑性变形、)、定伸长、定负荷、服装缝口脱开程度、缝线滑移、针织品掖下接缝强力及缝纫线、单纱强力的检测。也可用于拉链、金属、纸张、非织造布、线材、皮革强力和伸长的测试。多功能电子织物强力机YG026M主要特点:仪器特性:1、伺服电机响应时间10ms/1000转,有效满足了各种材料的一次性拉伸、定负荷定时拉伸、定伸长定时拉伸、反复拉伸、弹性试验等测试;2、力值校整采用全数码标定,方便明了;3、动态采样频率高达1000次/秒以上,即在测试过程中,计算机以每秒1000次以上的速率采集强力与伸长数据,从而有效保证原始峰值不丢失,使强伸曲线更准确。便于对材料的各项力学性能进行深入分析(如初始模量、屈服点、断裂点、断脱点等);4、相关参数设定均对外开放,使仪器满足不同标准的测试要求(但默认值为标准规定的值);5、可选用气动夹具夹持,传感器、夹持器与机架间均采用标准接口连接,更换方便;6、多项保护:超载、负力值保护,限位保护,过流、过压保护等;7、力值单位:N、Kgf、1b、in、cN 等自由转换。 多功能电子织物强力机YG026M软件功能:①参数设定:测试员姓名、试样名称、批次、编号等参数均可独立设定并打印在测试报告中;②可以输出力值平均值、大值、CV值, 长度平均值、大值、CV值,断裂功,测试结果以报表形式打印输出,也可存盘保存,具有历史数据查询功能;③测试曲线选点放大功能,点击曲线上任一点均可显示强力值与伸长值;④测试数据报告可转换为EXCEL文档保存至PC机中;⑤测试软件包含织物多种强力测试方法,使测试更方便、快捷、准确及实现低成本运行;⑥开放式用户程序,用户可自行编辑相应测试方法(选购件)。注:该机型软件功能终身免费升级。 多功能电子织物强力机YG026M 硬件配置:①大屏幕(夏普5.7英寸)液晶图形显示器,对已得数据大值、小值、平均值、均方差、变异系数均有显示;②日本三菱十六位工业控制单片机、美国AD公司十六位A/D转换器,提高仪器数据处理速度、抗干扰能力强、确保仪器可长时间无故障运行;③日本松下公司伺服驱动器及电机(矢量控制),电机响应时间短,无速度过冲、速度不均等现象;④韩国KNS公司产滚珠丝杆、精密导轨,使用寿命长,噪音低。多木川编码器对仪器定位、伸长精确控制;⑤基础型:提供夹具3套、传感器1套;普天针式打印机1台;计算机1台。 软件配置:①质量专家分析软件1套(光盘); ②程序卡:国标、美标各一套。如您对电子织物强力机感兴趣,可通过仪器信息网400-860-5168转2014 和我们取得联系!
  • 文天精策原位拉伸试验机冷热台助力超低温金属材料研究
    文天精策原位拉伸试验机冷热台助力超低温金属材料研究随着现代各行业的飞速发展,越来越多的金属材料需要在低温环境中使用,如低温压力容器、桥梁、建筑材料等,因此对于这些材料的各项力学性能的准确测量也就显得至关重要,尤其是试样的屈服强度、抗拉强度、延伸率和面缩率等拉伸性能指标。如:液体火箭发动机的结构材料除了承受高温冲击外,由于液氢(沸点-253℃)、液氧(沸点-183℃)等低温贮存推进剂的存在,还有超低温(-100℃以下)环境要求,故液体火箭发动机理想的结构材料需要具备优良的低温力学性能;用于低温手术的医疗器械,使用液氮对患者的局部肉体进行低温瞬时低温冷冻,使得肉体固化后进行快速和无痛手术。文天精策仪器科技原位拉伸试验机冷热台,作为可适配多数拉伸试验机的低温试验平台,通过准确控温,实现不同环境温度下材料的力学性能测试,从而准确的考察不同变形温度下材料的力学性能,为其在复杂环境温度下的服役,提供数据支撑。原位拉伸试验机冷热台降温过程超低温单向拉伸试验对金属材料而言,其服役温度显著影响其力学性能。部分金属在超低温(77 K)条件下时,其断裂强度、延伸率等会显著提升。并且相比高温成形工艺会造成材料的氧化的缺点,低温下的成形工艺则不存在这样的问题,这为金属材料成形工艺的成形能力提升,提供了新的途径。Ÿ 材料的硬化、脆化Ÿ 材料的塑性变形能力改变Ÿ 材料的应变分布演化更加均匀Ÿ 材料的塑性变形机制发生变化超低温单向拉伸试验检测试样在单向应力状态下,温度对其力学性能与变形机制的影响。降温程序控制过程295 K与77 K下纯铜的单向拉伸应力-应变曲线研究内容及关键点:Ÿ 原位拉伸试验机冷热台的温控算法可准确控制变形所需温度;Ÿ 原位拉伸试验机冷热台可适配大多数万*能试验机实现低温拉伸试验,准确测试材料的低温力学性能;Ÿ 原位拉伸试验机冷热台的氮气回流除雾技术与可视窗口,可结合DIC测试技术实现超低温变形过程中应变的实时监测;Ÿ 通过设置拉伸试验机参数,可实现变温单向拉伸试验,测试复杂温度环境下材料的力学性能。试验表明:文天精策仪器科技研发的原位拉伸试验机冷热台,可与各种万*能试验机适配,在试验过程中通过文天精策原位拉伸试验机冷热台中的温控程序,实现实时控温,进行不同变形温度下的单向拉伸试验力学性能测试。并且,通过设置拉伸过程中的实验参数,完成试样在复杂变温环境下的力学性能测试,指导在复杂温况下材料的服役。
  • 西安交大发明无损调控微纳尺度含缺陷晶体力学性能的新方法
    p  早在2008年,单智伟教授与合作者们就在《自然材料》报道了微纳尺度单晶镍中的“力致退火”现象,即通过对微纳尺度的单晶体施加载荷并使其发生塑性变形, 晶体内部的缺陷密度将大大降低甚至为零,同时材料的强度得到明显提升。由于该发现迥异于人们基于已有知识的判断,即塑性变形通常使晶体内部位错密度升高,因而受到研究人员的广泛关注。随后该现象在多种面心立方晶体中得到了验证。但是,基于模拟计算和一些实验观测,人们普遍认为体心立方金属不会有力致退火现象,原因是体心立方金属的螺位错具有不共面的特性,通常表现出一系列不同于面心立方金属的变形行为。经过对已有工作的仔细梳理和分析,单智伟教授等认为在合适的尺寸范围内,体心立方金属中也应该存在类似的力致退火现象。通过巧妙的实验设计,研究团队以令人信服的证据证实了上述推测,从而推翻了此前人们对于该问题的认知(黄玲等,《自然通讯》,2011)。/pp  尽管力致退火现象的普适性得到了证实,但是其应用前景却得到了质疑,原因是力致退火的过程总是伴随着显著的塑性变形,从而使样品几何发生明显的改变。能否在不改变样品几何的条件下将其内部的缺陷去除呢?在日常生活中,我们知道如果要把一根半埋于土壤中的柱状物直接拔出来是比较困难的,但是如果我们先将其进行多次小幅晃动,则最终可能较轻松地将其拔出地面。受此启发,可以推断,如果对含缺陷的晶体施加一循环载荷,控制好力的幅值,使其足够大,能使缺陷动起来并在镜像力的帮助下逐渐从材料表面湮灭和逃逸,但同时又足够小,不在晶体内产生新的位错,就有可能在不改变样品几何的条件下,使得材料中的缺陷密度大幅降低,甚至到零,也就是实现“力致修复”。如果上述想法得到实现,其在纳米压印等领域就可能得到有效的应用。/pp  基于上述想法,借助于定量的原位a href="http://www.instrument.com.cn/zc/1139.html" target="_self" title="" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "透射电镜/span/a纳米力学测试装置,选取亚微米单晶铝为研究对象,研究团队的王章洁博士对其进行了低应变幅的循环加载,发现在几乎不改变材料外观几何的情况下,微纳尺度单晶铝内的缺陷逐渐被驱逐出样品,导致缺陷密度大幅度下降,进而使得材料的强度得到了大幅度的提升。同时发现,可以通过控制应变幅和循环周次等来调控材料内的缺陷密度,进而调控材料的屈服强度。另外,课题组还发现可以通过检查力和位移曲线是否有滞后环以及环的大小来诊断被测材料中是否有可动缺陷以及其数量的多少。这些发现不仅对于理解小尺度材料内的缺陷在循环载荷下的演变规律具有显著的科学意义,并且对于调控对缺陷敏感的功能材料的性能有重要的启发意义和应用前景。/pp  值得注意的是,当块体材料经受循环加载时,通常会引起材料内部缺陷的增殖与聚集,并进而引起裂纹萌生,并在承载应力远小于宏观屈服应力的情况下发生断裂,也就是所谓的疲劳断裂,它也是很多工程构件失效的主要形式。对微纳尺度材料进行循环加载可导致“力致修复”与块体材料中循环加载所导致的疲劳破坏的效应完全相反。这一事实再次表明,作为连接连续介质力学和量子力学的桥梁,微纳尺度材料的结构与行为的内在机理和规律不能通过外推已有的宏观材料的机理和规律来得到,而是具有其独特性,必须通过创新实验方法和思路来加以揭示和解释。/pp  近日,西安交大微纳尺度材料行为研究中心(简称“微纳中心”, http://nano.xjtu.edu.cn)在美国科学院院刊 (PNAS, Proceedings of the National Academy of Sciences of the United States of America)在线发表(http://www.pnas.org/content/early/2015/10/14/1518200112)了他们的最新研究成果,即在不改变样品外观几何的条件下,可以通过小应变循环加载的方式来诊断和调控微纳尺度单晶材料中的缺陷,进而达到调控其力学性能的目的。 该论文的作者包括微纳中心的新讲师王章洁博士、李巨教授、马恩教授、孙军教授和单智伟教授, 约翰霍普金斯大学的博士生李庆杰,清华大学的崔一南博士、柳占立副教授和庄茁教授,美国麻省理工学院道明博士,美国卡耐基梅隆大学的Subra Suresh 教授。马恩教授和李巨教授同时分别为约翰霍普金斯大学和美国麻省理工学院的全职教授,并分别担任微纳中心的海外主任和学术委员会主任。该研究工作得到中国国家自然科学基金、973项目及111项目的资助。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201511/noimg/d5aa1b18-2d88-40a5-a6c7-669b88c9ce82.jpg" title="图1.png" width="600" height="408" border="0" hspace="0" vspace="0" style="width: 600px height: 408px "//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201511/noimg/71dd12f6-2be0-449f-b8db-404d6b6bbdd3.jpg" title="图2.png"//p
  • 中国机械工程学会发布《轴承套圈(滚道)喷射式强化研磨机》团体标准
    日前,经中国机械工程学会标准化工作委员会审定,《轴承套圈(滚道)喷射式强化研磨机》(T/CMES 12002-2022)标准正式发布,并将于2022年2月实施。该标准由中国机械工程学会特种加工技术分会组织、广州大学广东省强化研磨高性能微纳加工工程技术研究中心(广州市工业和信息化委机器人智能装备研究平台)牵头研制。高端装备作为“大国重器”及“装备制造皇冠顶端的明珠”,处于国家高新技术价值链顶端和现代产业链核心环节,是实现“中国制造2025”、“制造强国”及“新基建”战略优先发展方向。而轴承作为重要的运动和动力传递核心功能部件,更被称为“装备芯片”,位列关键核心基础件首位。高端装备关键核心零部件射流冲击强化改性微纳研磨(成套)装备轴承套圈(滚道)喷射式强化研磨机针对以工业机器人减速器轴承为代表的高端装备关键核心零部件,面向 GCr15、9Cr18、Cronidur 30、Si3N4、ZrO2、X-30、CSS-42L、ZGCr15、GCr15SiMn等新一代高性能轴承高温合金材料,开展射流冲击强化改性微纳研磨高性能加工。该设备作为集磨粒微切削、超声强化、弹塑性变形、多相射流、固液相摩擦化学效应等多种方法于一体的抗疲劳、抗腐蚀、抗磨损的高性能制造装备,通过机-电-液-智等多目标协同融合控制,首创具有“表面微织构(油囊、纹理)、N-M络合物微纳尺度强化”特性的表面微纳强化改性层,改善精度等级、工况振动、有效运行寿命、MTBF、强化层硬度、扭矩传递效率等关键核心指标,实现轴承基础件在高功率密度加工环境下的宏\介\微多尺度抗磨延寿、高温耐蚀、抗疲劳、长寿命、精度保持性及控形控性适配性等高性能制造目标,突破其高精度、高能效、高寿命、高强度、高可靠性等“五高”服役性能瓶颈,助力装备运转平稳性、重复定位精度、回转精确度及可靠性寿命等服役行为性能指标显著提升。工业机器人减速器轴承射流冲击强化改性微纳研磨加工该技术标准规定了轴承套圈(滚道)喷射式强化研磨机的范围、术语定义、结构组成、技术参数、质量保证、安全性试验、检验规则标志、包装及贮运等要求,显著提升轴承等基础件成型质量、材料强度及工作性能等。依托该标准研制成功的技术装备可进一步拓展至航空航天、隧道盾构、武器装备、海洋工程、数控机床、轨道交通、新能源、精密仪器、智能农机、核电等重大装备发展领域,为最终形成具有完全自主知识产权的装备基础件射流强化改性微纳研磨加工装备标准群奠定了坚实的基础,对服务国家新材料新装备新制造交叉创新学科掌握标准制定权,突破国际高端装备高性能智能制造“卡脖子”技术壁垒提供关键变革性手段,具有重大意义和深远影响。同时,该系列另一项标准《轴承套圈(滚道)喷射式强化研磨加工工艺》也已进入立项预研。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制