当前位置: 仪器信息网 > 行业主题 > >

太阳能正银浆料

仪器信息网太阳能正银浆料专题为您整合太阳能正银浆料相关的最新文章,在太阳能正银浆料专题,您不仅可以免费浏览太阳能正银浆料的资讯, 同时您还可以浏览太阳能正银浆料的相关资料、解决方案,参与社区太阳能正银浆料话题讨论。

太阳能正银浆料相关的资讯

  • 飞纳电镜能谱一体机 Phenom ProX 在利德浆料成功验收
    p style="TEXT-ALIGN: center"img style="WIDTH: 600px HEIGHT: 108px" title="2.png" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201510/uepic/2f4ede14-87a6-4ade-8bfd-9402d76e9ce7.jpg" width="600" height="108"//ppbr//pp湖南利德电子浆料股份有限公司成立于 2008 年,原隶属于湖南利德集团,是原集团的电子材料事业部,单独成立的具有独立法人资格的股份制公司,公司坐落于湖南株洲(国家)高新区金龙路国投众普森科技园,是专门从事电子浆料研发、生产与销售的高新技术企业。/ppbr//pp公司从事电子浆料开发生产已有十余年历史,专注于研发和生产各种厚膜行业用电子浆料,产品包括各种银浆、电阻浆和介质浆,其中银浆和介质浆全为无铅环保产品。所有产品均遵循环保,节能的理念,且经过与客户使用条件几乎相同的测试与试验,力图真实体验客户感受。公司采取自主研发和与高校合作方式,先后承担了国家“863”项目、国家中小企业创新基金项目及湖南省重点科技项目,形成了具有完全自主知识产权的多系列电子浆料产品。/ppbr//ppstrongPhenom SEM 的应用/strong/pp应用领域:太阳能电池浆料、金属基板浆料、汽车玻璃热线浆料、银钯浆料及普通浆料、低温浆料及导电胶。/ppbr//pp样品 纯 Al 浆料/ppbr//pp style="TEXT-ALIGN: center"img style="WIDTH: 600px HEIGHT: 303px" title="Snip20150922_115.png" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201510/uepic/f629b550-2c06-49cf-8612-052ce76be860.jpg" width="600" height="303"//ppbr//pp利用四分割背散射探头的 Topo 模式,可以清楚的分辨 Al 浆料表面的凸起和凹陷,观察其形貌。同时,在 Full 模式下通过被加强的对比度,分辨出轻重元素,找到并排除样品中的杂质。/ppbr//pp样品 太阳能背板 Al 浆截面/ppbr//pp style="TEXT-ALIGN: center"img style="WIDTH: 600px HEIGHT: 638px" title="飞纳电镜铝浆截面.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201510/uepic/b28a9b82-1ef2-4de6-b74e-814acb9e9563.jpg" width="600" height="638"//ppbr//pp太阳能电池板背部设计的环保型导电铝浆,与晶体硅片实现完美的热膨胀匹配,转换效率高,其中的鼓包是需要工艺中排除的缺陷,利用飞纳电镜扫描区域的旋转,将基板置于水平位置,利于观察分析和排除缺陷。/ppbr//pp样品 Ag 粉/ppbr//pp style="TEXT-ALIGN: center"img style="WIDTH: 600px HEIGHT: 480px" title="飞纳电镜 Ag 粉.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201510/uepic/ea574af0-c3a2-4144-8ae6-606d7f9f71e7.jpg" width="600" height="480"//pp style="TEXT-ALIGN: center"img style="WIDTH: 600px HEIGHT: 335px" title="飞纳电镜利德表格.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201510/uepic/aa1eea30-4098-4048-b75f-f8ed2d7cce81.jpg" width="600" height="335"//pp style="TEXT-ALIGN: center"br//pp利用飞纳全景拼图软件,可在较大区域中采集500张高倍银颗粒图像,然后利用飞纳颗粒系统软件,对其进行单颗粒识别和颗粒参数的统计分析。/ppbr//ppstrong客户选购 Phenom 飞纳的原因/strong/pp客户购买主要是基于飞纳独特的双低倍导航(快速寻样)、优越的抗震性能和小巧的体积。/pp2015 年 8 月 22 日,Phenom 飞纳电镜在利德浆料历时四天的培训验收工作顺利完成,感谢公司领导及同事的支持,也祝愿利德浆料在 Phenom 飞纳电镜的协助下,领军行业,把握脉搏,精益求精,走向卓越。/p
  • 赫施曼助力太阳能电池银浆银含量的测定
    太阳能电池是一种利用太阳能将能量转换为电能的装置,其中一个重要的组成部分是导电银浆,它的性能对太阳能电池的效率和寿命有着重要的影响。根据GB/T 43788-2024,太阳能电池用银浆银含量的测定方法为:硫氰酸盐标准溶液滴定法。实验涉及如下内容:硫氰酸盐标准滴定溶液的配置与标定:称取0.6g于硫酸干燥器中干燥至恒重的标准物质或工作基准试剂硝酸银(c=0.1mol/L),记为m0,溶于100mL去离子水中;或用滴定器取35.00~40.00mL硝酸银标准滴定溶液(c=0.1mol/L),记为V0,加60mL去离子水,用Miragen电动移液器加2mL硫酸铁铵溶液(100g/L),用瓶口分液器加10mL硝酸溶液(3+7),在不断摇动下,用配制的硫氰酸盐溶液经过赫施曼光能滴定器滴定。终点前摇动溶液至完全清亮后,继续滴定至溶液所呈浅棕红色保持30s为终点,记录硫氰酸盐溶液体积Vb1(用标准物质或工作基准试剂硝酸银标定时)或Vb2(用硝酸银标准滴定溶液(c=0.1 mol/L)标定时)。试料溶液滴定:在装有试料溶液的碘量瓶中,用Miragen电动移液器加10mL硫酸铁铵溶液(100g/L),在不断摇动下用硫酸盐标准滴定溶液(c(NaSCN)=0.1mol/L,或c(KSCN)=0.1 mol/L或c(NH4SCN)=0.1 mol/L)经过赫施曼opus电子滴定器滴定,终点前摇动溶液至基本清亮后,继续滴定至溶液由白色变为浅棕色时静置,观察上层清液所呈浅棕红色保持30s为终点,记录滴定试料溶液消耗硫氰酸盐标准滴定溶液的体积V。移取液体的一般是量筒和移液管,存在三个缺点:一是敞口操作,对强腐蚀、有毒有害、挥发性的液体,存在安全隐患;二是操作上环节多,需目视确认凹液面,实现精度难以保证;三是效率较低,无法满足日益增加的液体移取的工作需求。赫施曼瓶口分配器可代替量筒、刻度移液管,便捷、安全地进行0.2-60mL的常规液体(酸、碱、有机试剂等)的移取,而实验室移取小体积(几微升到10毫升)的液体,一般采用移液器。Miragen电动移液器,数值靠设定或选定,电机控制活塞运动,吸液和排液也更加稳定,还有步骤少、调数快、模式多等诸多优势。Miragen电动移液器可给电机多段信号,从而达到吸液和排液分次数且各段体积可调。可实现单吸多排、多吸单排等效果,且程序可存储和调用,比手动移液器便捷很多。滴定法一般使用的是玻璃滴定管,对试验人员的技术水平、实操经验和耐心的要求较高,还有灌液慢、控速难,读数乱(不同人次、位置的凹液面读数可能出现偏差)三大痛点。赫施曼的光能滴定器可抽提加液、手转硅胶轮控制滴定速度和体积;opus电子滴定器可通过触屏来进行灌液、预滴定(先加入一定体积的滴定液)、快速滴定和半滴滴定等功能。两种滴定器均为屏幕直接读数,可提高工作效率、降低目视误差,无需大量实操经验,降低了培训成本和人员个体差异,所得数据也更加准确、稳定。
  • 人和科仪亮相第八届国际太阳能光伏展
    人和科仪亮相第八届国际太阳能光伏展2014年5月20日到22日SNEC 第八届国际太阳能产业及光伏工程(上海)展览会暨论坛在上海新国际博览中心举行。该展会展出内容包括:光伏生产设备、材料、光伏电池、光伏应用产品和组件,以及光伏工程及系统,涵盖了光伏产业链的各个环节。本次展出面积达15万平方米,逾100000万名专业人士、5000多家企业参与。此次人和科仪展出的产品有:BROOKFEILD R/S+CPS流变仪 BROOKFIELD NEW DV2T粘度计日新 纳米均质机 NLM100EXAKT 电子控制型三辊机 120E公转自转行星式浆料混合脱泡机PDM-300 这些与光伏行业息息相关的产品,吸引了众多国内外专业观众的目光。 通过本次第八届国际太阳能光伏展,使人和科仪在太阳光伏领域的新产品及解决方案得到展示,让更多的人了解人和。同时通过与行业用户面对面进行互动交流,现场用户的操作体验,使人和能够更加了解行业客户的需求,实现人和为客户创造更多价值的承诺。展会现场我们还进行了微信粉丝的招募活动,现场加人和微信即可获得精美礼品一份。每周我们还会在粉丝中举办有奖问答,答对有奖~~~欢迎大家前来参与…… 更多详情欢迎来电咨询:400 820 0117同时欢迎点击我司网站 www.renhe.net 查询更多产品优惠信息扫描以下二维码或是添加微信号“renhesci”,加入人和科仪的微信平台,即刻成为人和大家庭中的一员。 现在加入更有好礼相送! 上海人和科学仪器有限公司上海市漕河泾新兴技术开发区虹漕路39号华鑫科技园区B座四楼(200233) 电话:021-6485 0099 传真:021-6485 7990 公司网址: www.renhe.net E-mail:info@renhesci.com 【上海人和科学仪器有限公司数十年来一直致力于提升中国实验室水平,从提供全球一流品质的实验室仪器、设备,到为客户度身定制系统的实验室整体解决方案,通过专业、细致和全面的技术支持服务实现“为客户创造更多价值”的承诺。主要代理品牌:DRAGONLAB、BROOKFIELD、GRABNER、EXAKT、ATAGO、ILMVAC、IKA、MIELE、MEMMERT、KOEHLER、SIEMENS、YAMATO等。】
  • ‘阳光动力2号’来了,你对太阳能材料了解多少?
    2015年3月29日,阳光动力官方微博发布消息称,&ldquo 今早5点,&lsquo 阳光动力2号&rsquo 的飞行员之一贝特朗· 皮卡尔将驾机从缅甸曼德勒前往重庆。预计到达重庆江北机场时间为明天凌晨1点。&rdquo 随后,飞机将于当天继续飞往南京,预计到达时间为3月31日夜里或4月1日凌晨。 重庆是&lsquo 阳光动力2号&rsquo 的这次环球之旅一个目的地,&lsquo 阳光动力2号&rsquo 的此次旅程温差极大,从-41摄氏度~50摄氏度,飞行高度也有9000米,超越珠穆朗玛峰。是什么保障他们安全飞行?这就要把目光投向飞机的材料,比如光伏电池、碳纤维及其他新型材料。 在此,我们主要关注太阳能电池。制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池材料可分为:1、硅太阳能电池材料;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶材料太阳能电池等。 如何针对太阳能电池及其他材料进行检测呢?2015年4月14日下午14:00,安捷伦公司分子光谱应用工程师张晓丹将通过仪器信息网网络讲堂在线为大家讲解针对太阳能材料检测领域的整体解决方案,涉及太阳能电池盖片、EVA膜透过率测试、镀膜测试、能隙测定等。 预了解更多内容,请扫描二维码报名。 本次会议报名及参会均不收取费用,欢迎想太阳能材料检测领域技术信息的网友报名。
  • 德国莱茵 TUV 在中国推出太阳能电池检测业务
    助力本地太阳能电池厂商,电池片检测无需远渡重洋  上海2012年5月7日电 /美通社亚洲/ -- 全球领先的第三方检验、检测及认证技术服务提供商德国莱茵 TUV 集团日前宣布在中国推出太阳能电池检测业务,这是迄今唯一在中国本土提供太阳能电池片标定检测的国际第三方检测机构。   德国莱茵 TUV 太阳能电池检测实验室  中国不仅是目前全球最大的太阳能组件生产商,同时也是世界最大的晶硅太阳能电池制造基地,内地及台湾的晶硅太阳能电池产量占据全球的60%。晶硅太阳能电池是太阳能组件的重要组成部分,其性能的优劣和使用寿命将直接影响组件的性能并最终影响太阳能电站的性能。而在太阳能电池的研发、生产过程中,精确测试电池片的各项参数就显得尤为重要,其参数特性也是光伏产品加工工艺调整和技术革新的重要依据。之前所有权威的电池片标定机构都在国外,内地及台湾的电池片生产厂家往往需要诉诸海外权威机构来寻求电池的标定检测,其服务周期长,且在运输过程中极易造成样品的损坏。为满足广大电池厂商的需求,更好地服务本地客户,德国莱茵 TUV 适时推出了面向电池片生产厂家和买家的电池片标定服务。  中国不仅是目前全球最大的太阳能组件生产商,同时也是世界最大的晶硅太阳能电池制造基地,内地及台湾的晶硅太阳能电池产量占据全球的60%。  德国莱茵 TUV 能提供电池片在标准测试条件下的电参数特性、电池片的光谱响应测试等服务。测试能力上配备国际领先的设备及经验丰富的外籍专家,测试精度在全球同类实验室中处于领先地位。实验室可以为客户度身定制测试方案,提供准确详尽的测试报告,为电池厂商在竞争中彰显优势,顺利挺进国际市场。  “让客户享受我们本地化的快捷服务与专业技术支持,节省生产链环节的时间及资金投入,缩短产品交付周期,保证太阳能产品的最终品质,最终使中国的太阳能电池厂商在国际市场立于不败之地,是我们在中国投资此项太阳能电池检测业务的初衷。”德国莱茵 TUV 太阳能及燃料电池技术大中华区总监唐妩丽说道。她继续强调:“莱茵的光伏专家正与当地的光伏行业一起克服技术上的挑战,全力支持光伏技术的进一步发展,我们坚信在不久的将来光伏仍将成为主要能源之一。”  作为世界领先的太阳能产业测试服务提供商,光伏仍是德国莱茵 TUV 集团的重要业务。公司早在1995年开始实验室规模的太阳能电池组件的技术测试。目前德国莱茵 TUV 集团在全球太阳能产业的专家网络有七个实验室、250位专家。作为太阳能电池组件的测试和认证的全球市场领导者,德国莱茵 TUV 集团经营测试实验室,分别位于班加罗尔(印度),庆(韩国),科隆(德国),上海(中国大陆)和台中(台湾),以及在 TUV 莱茵 PTL 的坦佩(美国),横滨(日本)。在世界各地,约500家光伏组件制造商是独立的测试服务供应商德国莱茵 TUV 集团的客户。  关于德国莱茵 TUV 大中华区  德国莱茵 TUV 集团作为国际知名的独立第三方检验、检测和认证机构,拥有140年的经验,在全球五大洲 61 个国家设有 500 家分支机构,全球员工数超过 16,000,能提供全球客户所需的专业服务支持。德国莱茵TUV大中华区员工约 3,000 人,服务范围包含工业及能源服务、电子电气产品测试、通讯测试、消费品测试、人体工学评估、交通服务、轨道系统安全、食品安全、管理体系等检验认证服务。德国莱茵 TUV 向来以严谨高质量的测试认证服务著称,并以公正独立的角度提供各项专业评估,为当地企业提供符合安全、质量以及环保的优质服务和解决方案。www.tuv.com
  • 宁波材料所在柔性有机太阳能电池领域取得进展
    p  有机太阳能电池具有质轻、柔性、成本低、弱光响应等优点,是当前太阳能电池技术的前沿热点研究方向。高效率﹑耐弯折和廉价的柔性有机太阳能电池在柔性可穿戴和便携式电子设备、光伏建筑一体化和军事等领域具有很强的应用潜力。目前,大多数有机太阳能电池的研究结果都是基于刚性的氧化锡(ITO)玻璃基板。但有机太阳能电池如果要实现商业化应用,其真正的优势是采用低成本的湿法印刷和卷对卷大面积工艺制造。在有机太阳能电池中,最常用的电极材料是铟掺杂的氧化锡(ITO)。然而,ITO在塑料基板上存在导电性差和机械脆性等问题,而且ITO通常在高温下通过真空溅射进行加工,这使得其价格昂贵,并且不利于采用大面积印刷和卷对卷来制备。已经有一些报道采用新的电极材料来代替传统ITO,如纳米银线、石墨烯、碳纳米管、导电聚合物等,其中聚(3,4-亚乙基二氧噻吩):聚(苯乙烯磺酸)(PEDOT:PSS)薄膜的成本相对较低,并且该薄膜表现出高光学和电学特性、优异的热稳定性、良好的柔韧性等。利用酸掺杂PEDOT:PSS可以大幅提高其导电率,但目前报道的大多数采用强酸如硫酸、硝酸等进行掺杂,再进行高温后处理,容易损伤PET等柔性塑料基板。/pp  近日,中国科学院宁波材料技术与工程研究所研究员葛子义团队在前期高效率有机太阳能电池研究的基础上(Nature Photonics, 2015, 9, 520 Advanced Materials, 2018, 30, 1703005 Macromolecules, 2018, DOI: 10.1021/acs.macromol.8b00683 Journal of Materials Chemistry A, 2018, 6, 464),在柔性有机太阳能电池领域又取得新进展,创新性地开发了低温酸处理PEDOT:PSS电极替代需要高温溅射且昂贵的ITO电极。通过低温甲磺酸处理来提高PEDOT:PSS薄膜的导电性、降低薄膜的粗糙度,同时避免传统的强酸处理对柔性塑料衬底的破坏。进而利用全溶液加工技术,采用PBDB-T和IT-M非富勒烯活性层,制备了全湿法加工非ITO的单结柔性有机太阳能电池,电池的能量转换效率达到10.12%,这是迄今报道的全湿法加工的柔性有机太阳能电池的最高效率。而且这类全溶液加工的柔性有机太阳能电池非常符合卷对卷印刷和刮涂等大面积制备工艺的技术要求,为有机太阳能电池低成本柔性化制备提供了重要的参考途径。该项工作以All Solution-Processed Metal Oxide-Free Flexible Organic Solar Cells with Over 10% Efficiency 为题发表在国际期刊《先进材料》(Advanced Materials)上。葛子义和团队成员樊细为该论文的共同通讯作者,硕士生宋伟为第一作者。/pp  上述研究得到了国家重点研发计划(2017YFE0106000和2016YFB0401000)、国家自然科学基金(51773212, 21574144和21674123)、中科院前沿科学重点研究项目(QYZDB-SSW-SYS030)、中科院重点国际合作项目 (174433KYSB20160065)、中科院交叉创新团队、浙江省杰出青年基金(LR16B040002)和宁波市科技创新团队(2015B11002,2016B10005)等资助。/pp style="text-align: center "img title="W020180523579124813794.png" src="http://img1.17img.cn/17img/images/201805/insimg/b0085859-db45-42e0-b92f-b5f1ebccc183.jpg"//pp style="text-align: center "图:柔性有机太阳能电池的结构示意图和光伏特性曲线/p
  • 弗尔德仪器参加第二届全国太阳能材料与太阳能电池学术研讨会
    太阳能电池材料简述目前,人类的主要能源(石油、煤炭、天然气)的储存量是有限的,为了应对能源危机和环境污染,新能源已是全球关注的焦点,太阳能因其清洁环保尤其备受关注。近几年太阳能电池产业以平均年增长率为30%的速度飞速发展。太阳能电池的种类十分多,按材料分类可分为四类:硅太阳能电池;多元化合物薄膜太阳能电池;有机物太阳能电池;纳米晶太阳能电池,综合考虑材料的价格、对环境的影响及转换效率等因素,以硅为原材料的电池是太阳能电池中最重要的成员。研究和应用最广泛的太阳能电池主要是单晶硅、多晶硅和非晶硅电池。而开发太阳能电池的两个关键问题就是:提高效率和降低成本。为了促进我国在太阳能材料与太阳能电池研究领域的交流和发展,“2018第二届全国太阳能材料与太阳能电池学术研讨会”于2018年6月22-24日在广州召开。本次会议由中国化工学会化工新材料委员会及新能源材料技术创新与协同发展中心主办,暨南大学承办。弗尔德(上海)仪器设备有限公司携旗下研磨筛分品牌德国Retsch(莱驰)、多功能粒度粒形分析仪品牌德国Retsch Technology(莱驰科技)、热处理技术品牌CarboliteGero(卡博莱特盖罗)、元素分析仪品牌德国Eltra(埃尔特),参加了第二届全国太阳能材料与太阳能电池学术研讨会,为太阳能电池材料的应用提供全方位的解决方案。大会主要从学术和产业化视角探讨我国太阳能光伏材料与器件,新型钙钛矿和化合物薄膜半导体材料与器件等方面科研成果与产业应用现状,探索太阳能开发与利用的研究新思路和新方法,推进太阳能研究领域人员之间的交流与合作,进一步提高我国太阳能领域科学研究与技术创新能力。 德国Retsch(莱驰)提供的行星式球磨仪PM系列和高能水冷球磨仪Emax能够实现纳米研磨,满足太阳能电池材料用户最为严苛的研磨粒径需求。此外,德国Retsch(莱驰)的筛分仪种类齐全、筛分方式多样、测量范围广泛、配套使用不同规格的分析筛,可以满足太阳能电池材料行业的粒径分级和测量的需求,筛分结果精确且具有重复性,符合DIN/EN/ISO/ASTM等国际国内标准,是全球唯一一家可提供全系列筛分仪的专业生产厂家。Retsch Technology(莱驰科技)专业从事粒度及粒形分析测试仪器的研发和制造,采用双镜头专利的动态图像分析技术,可精确分析可流动性的颗粒、粉体、胶体、悬浊液、磁性材料等样品的粒度及形态。Camsizer X2设计基于广受欢迎的Camsizer并进一步优化精细样品的测量条件(从0.6μm到8mm),不仅提高了光学解析度,更提供多样的的进样方式适用工业陶瓷行业的应用。德国Eltra(埃尔特)专业从事元素分析仪的制造研发和生产,可为陶瓷样品提供碳/氢/氧/氮/硫五种元素分析的整体解决方案。6月24日,第二届全国太阳能材料与太阳能电池学术研讨会圆满落幕,针对太阳能电池材料应用的具体解决方案与参会的专家学者们进行了深入交流。弗尔德仪器衷心地感谢各位客户的关注和支持!基于客户给予的信任和要求,弗尔德仪器定会不负众望、与日俱新,努力为太阳能电池材料客户提供一份满意的解决方案。除了仪器的展示,弗尔德仪器还在展会上介绍2018年抽奖活动,2018年7-12月,每月产生1个大奖10个幸运奖,大奖奖品价值3000元人民币。奖品有金条、进口空气净化器、高级电饭煲、食品料理机、进口道具组合、美颜相机。现在就关注“弗尔德仪器”官方微信,参加抽奖!
  • 我国成立风能太阳能仿真检测认证技术实验室
    经国家能源局批准,以北京鉴衡认证中心为依托的“国家能源风能太阳能仿真与检测认证技术重点实验室”日前在北京宣告成立。  中国风能协会秘书长、北京鉴衡认证中心主任秦海岩称,这标志着我国风能太阳能行业拥有了集仿真技术、标准研究、检测认证技术研究和实践于一体的公共技术服务平台,对加快推动我国风能太阳能行业技术进步和国际化进程意义重大。  据了解,该实验室将紧密围绕我国风能太阳能技术领域的重大需求,着力完善风能太阳能标准和检测认证体系,加强相关标准研究、产品检测试验关键技术研究和认证技术研究,重点建设风电半物理仿真中心、风电机组和太阳能测试中心以及风电、光伏发电远程监测中心等。  目前,重点实验室的风电设备检测中心建设已经取得重大进展,位于河北省保定市的风电叶片与轴承检测中心的一期工程已经完工并投入使用。该中心全面建成后,可完成包括叶片原材料、叶片零部件、100米叶片全尺寸结构试验、无损检测、叶片跟踪测试等所有叶片相关试验测试,以及5兆瓦风电轴承和变桨系统的相关试验测试,试验条件达到国际先进水平。
  • KLA将携最新新品亮相SNEC太阳能光伏展
    KLA Instruments 小课堂定期分享KLA Instruments旗下产品的各种技术资料、应用笔记和使用指南。旗下产品包括:轮廓仪、纳米压痕仪、薄膜测厚仪、方阻测量仪以及晶圆缺陷检测系统。 6月13日 KLA Instruments&trade 将亮相一年一度的2024太阳能光伏与智慧能源大会(SNEC)并展出为太阳能行业定制的最新新品 光学轮廓仪Zeta&trade -Solar2024飞行计划-第二站: 上海 SNEC光伏展览会是全球性的专业光伏展,其展出内容包括:光伏生产设备、材料、光伏电池、光伏应用产品和组件,以及光伏工程及系统、储能、移动能源等,涵盖了光伏产业链的各个环节。SNEC光伏论坛形式也格外丰富多彩,涉及光伏产业未来市场趋势分析、合作发展策略、各国政策导向、行业最前沿技术、光伏金融等,是向业界展示成果的最佳机会。KLA Instruments&trade 将借此次机会展出最新推出的新品光学轮廓仪Zeta&trade -Solar、Zeta&trade -20HR,探针式轮廓仪 Tencor P-7、方阻测试仪Filmetrics R54等多款重点机型,并由市场总监 Oskar Amster带来关于“KLA轮廓仪在晶硅/薄膜太阳能电池制程中的应用”的精彩演讲,欢迎莅临。展会时间:2024年6月13日-15日展会地点:国家会展中心(上海市青浦区崧泽大道333号)展位号: 3H-F10, F11演讲主题:KLA轮廓仪在晶硅/薄膜太阳能电池制程中的应用演讲嘉宾:Mr. Oskar Amster 演讲时间:2024年6月14日,上午10:00-10:15演讲地点:国家会展中心上海洲际酒店,大宴会厅3Oskar Amster PROFILE KLA Instruments&trade 市场总监Mr. Oskar Amster目前担任KLA公司旗下仪器事业部市场与战略研发总监的职位, 在KLA有10年的光学表征研发工作经历并曾担任过多种管理职务。在加入KLA之前, 他曾在Taylor Hobson公司担任光学轮廓仪产品研发和销售经理,并在PrimeNano公司材料表征部门担任过高级管理职务。他在表面测量和材料表征领域拥有超过25年的工作经验。Mr. Amster 毕业于加州州立理工大学,获得了材料工程硕士学位和物理学学士学位。在此次展会上,KLA将首次展出新品 Zeta&trade -Solar它是一款为太阳能行业定制的光学轮廓仪,可满足独特的太阳能电池金属化需求,针对先进的太阳能电池工艺金属细栅和主栅测量而设计。这款全新的 Zeta 型号利用3D成像技术的进步简化了成像系统。提供多种XY测量台选项,可满足230mmx 230mm最新一代太阳能电池的测量需求。此外还开发了 Zeta-Solar 软件, 将易于使用的 Profilm 软件与 Zeta 系统开发的成熟金属测量技术无缝结合。 全新的太阳能电池检测技术,可用于晶硅太阳能电池生产和研发中的金属栅线测量。 太阳能电池金属细栅和主栅高度和宽度测量(全自动化检测和分析 / 多截面分析 / 宽度、高度、高宽比和横截面积的统计分析/ 合格品/不合格品识别分析 HDR功能,可优化印在超低反射率绒面的栅线测量 自动拼接功能,可用于大视场(FOV) 区域测量,如主栅和栅线接触点等 高清三维显示功能 太阳能电池金属栅线的3D真彩色成像 采用230mm x 230 mm 可编程XY 测量台,适用于最新一代太阳能电池产品 产品性能:可重复性和再现性欢迎莅临展台,了解更多新品信息,及KLA在光伏制造领域的解决方案。
  • 浙江太阳能产品质检中心成立
    2009年12月17日,浙江省太阳能产品质量检验中心成立大会在浙江省海宁市袁花镇太阳能工业园隆重举办。浙江省质监局领导,嘉兴市质监局领导,海宁市政府领导,海宁市质监局、科技局、经贸局、发改局、财政局、人事局,袁花镇党委政府领导,国家中心、太阳能行业协会领导,全省太阳能企业受邀代表,及相关部门领导和新闻媒体等120人共同参与本次活动,庆祝中心的成立。  活动上午,由几个政府及质监局领导发言,共同祝贺中心的成立,并希望质检中心为浙江太阳能行业做出更大的贡献,最后海宁市政府领导和质监局领导共同为浙江太阳能产品质量检验中心举行了揭牌仪式。  活动下午,在中心继续举办了“潮韵科技讲坛-太阳能热利用发展趋势”论坛,海宁市质监局稽查大队长江平先生在海宁市太阳能企业在太阳能产品标示、标注及质量情况方面作了主题发言,叮嘱企业严把质量观念,遵守国家标准,实现稳步快速发展。国家太阳能热水器质量监督检验中心(北京)代表张昕宇先生对今年太阳能热水器产品的质量检测情况也作了详细的阐述,随后国家太阳能热水器质量监督检验中心(昆明)高文峰先生作了主题为“南方太阳能热利用情况及发展”的讲座,帮助企业拓展云南、广东等南方市场,市场上容易遇到的问题,和当地的太阳能利用情况,受到与会代表的一致肯定和感谢。  太阳能产业是浙江海宁的新兴产业,经过十多年的发展形成了初具规模的太阳能产品及完整产业链集群。2008年统计太阳能热水器已销售500万平方米,占全国20%。但生产企业整体规模不大,产品质量参差不齐,而绝大部分又没有自检设备,产业升级遭遇瓶颈。  浙江省太阳能产品质量检验中心的成立,可以为数以千计的企业提供一个检测设备齐全、检验能力强大的公共服务平台。在光热方面,中心的检测设备和检测参数几乎覆盖了产业链的每种产品,从家用太阳能热水系统技术条件的综合测试,到全玻璃真空管的膜层太阳能吸收率与半球反射比的分光光度检测 从密封圈、金属板材元素分析和抗腐蚀性的理化试验,到玻璃毛坯管检测,检测中心二期已规划建设光电产品的检验项目。  浙江省太阳能产品质量检验中心必将为太阳能产业的健康、有序、发展起到保驾护航的重大作用,而置身于这一产业集群的中心区域更可为企业提供快捷、方便、高水平的贴心服务。  相关链接:浙江省太阳能产品质量检验中心简介和服务  浙江省太阳能产品质量检验中心,隶属于海宁市产品质量监督检验所,于2008年3月启动筹建,经过一年的紧张筹建在2009年12月正式成立。该省级太阳能产品质量检验中心总投资1365万元,其中仪器设备资产500万元 建筑面积4033平方米,其中办公面积1000平方米,实验室面积2000多平方米,装备有700平方米的的太阳能热性能检测平台、90平方米恒温恒湿实验室和6平方米步入式超低温实验室。  目前中心已通过省级计量认证和审查认可,具备家用太阳能热水系统、全玻璃真空太阳能集热管、太阳能集热器及硅胶圈、蒸散型钡吸收剂、不锈钢、支架等太阳能产品原辅材料的31各项目检验能力 检验中心的员工本科以上学历工作人员占90%,其中硕士及以上学历职工达20%。通过不断的努力,目前质检中心已成为集技术检测、科研开发和技术咨询服务为一体的专业省级质检中心。中心举杯同时开展16台套家家用太阳能热水器、2台套集热器,10批次真空管的检测能力,中心的检测能力、检测规模达到了国内先进水平。中心的建立也必将成为推动浙江省太阳能产业发展、提升太阳能产品质量和培育太阳能专业技术人才的基地,成为省太阳能行业提供技术交流、共同发展的平台。
  • 国家太阳能光热利用产品质检中心通过论证
    日前,国家质检总局科技司委派调研组,对浙江省在海宁市申请筹建的“国家太阳能光热利用产品质量监督检验中心”进行了现场调研和论证。调研组认为,海宁中低温太阳能光热利用产品数量多,集中度高,块状产业特点突出,地方政府对国家质检中心筹建给予高度重视和大力支持,在海宁建立国家质检中心具有必要性和可行性。调研组要求按专家审查意见完善筹建任务书及其他相关材料,尽快上报国家质检总局批准筹建。  海宁及周边地区是我国太阳能光热利用产业三大集聚区之一,2010年海宁太阳能科技工业园被确定为浙江省循环经济试点基地。覆盖真空毛管、集热管、支架、水箱等各类配件到成品整机生产,形成了较完整的产业链。2012年被省商务厅命名为新能源科技兴贸创新基地。通过筹建国家质检中心, 努力打造集 “科研、检测、标准、培训、咨询”五位一体的太阳能光热利用产品公共服务平台,将更好地提升我省中低温太阳能光热利用产业技术水平,增强市场竞争力,满足产业创新发展的需求。
  • 二维超泡沫在改善太阳能水蒸发的应用研究
    作为最有效的水净化方法之一,太阳能净化水已获众多研究学者的关注。一方面,利用太阳能净化水非常环保,另一方面,该工艺所需的设备安装和操作要求相对较低。为了提高太阳能净化水的效率,已有学者提出了几种净化方法,如预热法、夜间加热法和附加热源法,带有黑色吸收片(BAS)的增强型太阳能蒸馏法(SSG)就是其中的一种方法。但SSG蒸发只发生在水-气界面,如何增加加热过程中界面面积成了提高SSG效率的关键。此外,BAS材料本身的性能也是SSG的速率的重要影响因素。大量研究发现,微尺寸多孔结构BAS可以提高SSG的蒸发速率:一方面,这种结构大大增加了水-气界面;另一方面,BAS自身具有高吸收率和良好的隔热性能,这既能够减少热量损失,又能够提高吸热效率。此外,双层BAS能够进一步提高SSG的速率。通常,BAS可以由化学方法或者碳化方法制得,然而这样制得的BAS的孔径的大小和孔的分布都是随机的,无法可控地得到最佳的蒸发速率。为了进一步优化SSG,古斯塔夫• 埃菲尔大学的Elyes Nefzaoui团队与巴黎东大Tarik Bourouina以及西安交通大学的韦学勇教授联合提出了一种二维超材料泡沫(meta-foams),这种超泡沫具有确定的孔径和规则的孔分布,在优化研究中可作为有效可控的模型,该团队也将这种超泡沫作为表面增强型太阳能水蒸发器的研究工作中。在该研究工作中,纳米黑硅(B-Si)因其在可见光到近红外波段具有优异的吸收率和光热性能被用作超泡沫材料。采用等离子刻蚀制备了具有分层纳米结构和周期性二维多孔超泡沫,并就孔径大小、孔的数量对蒸发速率的影响进行了探索。研究发现:孔径和孔的数量是一把双刃剑,一方面,孔径和数量要尽可能的多,以保证系统能提供充足的水量;另一方面,孔径过大和数量过多会导致吸收的热量减少。此外,研究团队也设计了双层系统,以保证可靠的吸水性、稳定的吸热和隔热性能。实验表明,在一次太阳光辐射、常温、相对湿度为58%时,直径20μm的B-Si超泡沫样品最佳蒸发速率可达到1.34 kg/(h⋅m2),转换率可以达到可观的89%(实验条件不变的情况下,理论蒸发速率可达 1.5 kg/(h⋅m2)),蒸发速率是普通蒸馏法的3.96倍。同时,该团队发现了另外一种低成本制造超泡沫的方法:借助摩方高精度3D打印设备(nanoArch S130,摩方精密)制作超泡沫样品。实验证实,在同一实验条件下,孔径为275μm的3D打印的超泡沫的蒸发速率为1.32 kg/(h⋅m2)。这个结果与B-Si超泡沫的最佳值相当,在SSG中显示出非常优越的性能。3D打印的超泡沫可以作为B-Si超泡沫的低成本代替品,具有很好的发展潜力和应用前景。图1.超泡沫的概念示意图:(a)由二维周期结构制成的优化超材料,(b)应用于优化太阳能水净化,(c)B-Si周期性微孔超泡沫的SEM图像。测量的吸收光谱:(d)不同多孔表面的原始测量数据,(e)暴露在太阳辐射下的结构表面有效吸收率。图2.二维B-Si超泡沫:(a)断面示意图,(b)用于实验样品照片,(c)三种不同超泡沫材料的蒸发速率,与常规泡沫蒸发速率和自然水蒸发速率进行了比较。图3.3D打印的超泡沫:(a)圆柱微孔的截面SEM视图,(b)三种不同的超泡沫的蒸发速率,并与自然水蒸发速率进行了比较。图4.吸收率和蒸发速率、表面平衡温度的函数关系图5.孔隙率和蒸发速率的函数关系图6.硅基二维超泡沫的制作过程此外,该团队还用海水对二维超材料超泡沫的表面强化型太阳能蒸馏进行了实验评估:将超泡沫在海水中浸泡了14天,并与同等实验条件下用去离子水浸泡的超泡沫进行对比。实验结果发现,在海水中浸泡14天后,超泡沫在SSG的蒸发性能降低约7%-9%。从图7可推测,蒸发性能降低很可能是由于结晶盐堵塞了超泡沫的孔隙,导致吸收率的降低。如果能够解决孔隙堵塞的问题,那么具有BAS超泡沫结构的SSG在海水净化方面将发挥巨大的应用潜力。图7.(a)海水蒸发速率和去离子水蒸发速率的对比(b)海水中浸泡之前超泡沫表面的显微镜图像(c)海水中浸泡之后超泡沫表面的显微镜图像该研究成果以题为:Two-dimensional metamaterials as meta-foams for optimized surface-enhanced solar steam generation发表在《Solar Energy Materials & Solar Cells》期刊上。
  • 人和科仪亮相2022年第八届太阳电池浆料与金属化技术论坛
    上海人和科学仪器有限公司携带具有物联网功能的智能三辊机、超高压纳米均质机、稳定分析仪等在浆料行业具有广泛应用的仪器设备。参加了在常州富力喜来登酒店举办的第八届太阳电池浆料与金属化技术论坛。 TRILOS 智能三辊机 应用于: 浆料的均匀分散 TRILOS 超高压纳米均质机 应用于: 有机载体经微射流均质机预处理后, 可提高分散性,然后与玻璃粉、 银粉混合,制得浆料。 LUMiSizer稳定性分析仪 应用于: 浆料的稳定性的精确快速评价 该论坛主要探讨光伏行业展望与浆料市场前景,太阳电池技术与金属化工艺发展趋势,银浆金属化导电机理与接触机制研究,SE PERC、异质结和TOPCon电池进一步提效降本的浆料和金属化解决方案,激光转印技术实现路径与产业化进展,先进铜电镀技术与应用,银包铜浆料成本优势与电池稳定性研究,丝网印刷和电池烧结技术与设备,钙钛矿叠层电池金属化工艺展望等。会议现场,这些仪器设备一经展出就吸引了大家的目光。通过人和科仪技术工程师们的认真耐心的讲解以及现场样品的演示,使得大家对这些仪器设备有了一个更为直观和细致的了解。现场让大家最感兴趣的就是TRILOS特有的物联网功能。该功能可以全程自动设置并记录设备运行全过程,在方便客户进行数据分析的同时避免人为因素造成的误差。此外,物联网平台还可以接入投料、配料、预混以及在线监测等设备进行联用。 人和公司(www.renhe.net)始终聚焦行业痛点,在解决方案中不断融入符合中国制造2025标准,具有自动化、智能化、数字化、微型化、模块化并带物联网的仪器设备。让客户通过这些仪器设备实时获取生产过程中的信息反馈,进行综合分析,不断优化生产工艺,从而实现在提高产品质量的同时,降低生产成本。
  • 日本研制新材料可望用于太阳能电池研发
    日本理化研究所日前发布的新闻公报说,其科研人员研制出一种高分子膜,在光线照射下,这种材料的分子相对位置会发生变化。这一成果有望应用于仿生医学和太阳能电池开发。  公报说,研究人员选择能在光线照射下改变自身结构的偶氮苯分子,让它们与一种分子主链周围垂直密布许多侧链的刷子状高分子“聚合物刷”相结合,制成光应答单元。此后,再让这种“单元”夹在两层聚四氟乙烯薄膜之间,给薄膜施加类似熨斗的热和压力,形成具有立体层次结构的聚合物刷薄膜。  研究人员借助同步辐射加速器SPring-8的X射线详细分析这种聚合物刷薄膜。他们观测到聚合物刷以垂直于薄膜表面的形态有规则地分布,由于这种材料分子的排列结构具有特异性,当材料中的偶氮苯分子在光线照射下改变结构时,这种分子的极细微活动会朝一个方向集中,最终使整个薄膜发生肉眼可见的弯曲。也就是说,这种高分子材料能把光能转化成用于运动的能量。  公报说,这种新材料可用作人造肌肉材料,生产这种新材料的分子取向控制技术可应用于有机薄膜太阳能电池等产品研发。据悉,有关这项成果的报告已在美国《科学》杂志上发表。
  • 科学家研发出基于光纤的三维隐蔽型太阳能电池
    可再生能源和绿色能源是驱动未来经济发展的动力。作为重要的可持续能源技术之一,太阳能电池将成为主要能源以满足全球对能源的需求。在各类太阳能电池中,染料太阳能电池以其较高的性价比而得到了广泛应用。  传统的染料太阳能电池利用纳米颗粒和纳米线来提高其光电转换效率。然而这些都是基于二维的平面结构,从而限制了此类光电池效率的进一步提高。美国佐治亚理工学院(Georgia Institute of Technology)王中林教授领导的研究小组研制开发出纳米和光纤技术相结合的三维染料太阳能电池。其独特的三维结构大大提高了同类太阳能电池的光电转换效率。这一最新成果近期发表在德国《应用化学》(Angewandte Chemie) 上。  王中林教授,魏亚光博士和研究生本杰明温超布将太阳能电池结构和光纤技术结合在一起,利用纳米结构实现了三维光电池的设计。光纤和纳米线混合结构的三维染料太阳能电池主体结构包括光纤和垂直生长于光纤表面的氧化锌纳米线阵列(如图所示)。太阳光从光纤一端延轴向入射并传播。三维太阳能电池的核心设计思想在于入射光在光纤内传播过程中多次反射。每一次反射过程中,入射光会通过氧化锌纳米线与其表面附着的染料相互作用。多次反射增加了入射光子与纳米线表面的染料相互作用的次数,从而大大增加了对光线的吸收以及光电子的输运效率。实验结果表明,对于同一个三维染料太阳能电池,相对于光线照射在光纤侧壁,光线延轴向传播将太阳能电池的能量转换效率提高了六倍。在一个太阳(AM 1.5)光照下,基于氧化锌纳米线的三维染料太阳能电池的光电转换效率达到3.3%。这一效率比此前报道的同类型二维染料太阳能电池的最高效率高出120%,比使用带有二氧化钛薄膜涂层的氧化锌纳米线的染料太阳能电池效率高出47%。  新型的三维染料太阳能电池在科研和实际应用中具有以下突出特点。从物理学的角度来看,以纳米线为基础的二维染料太阳能电池的表面面积较小,从而限制了染料的加载和对太阳光的吸收。增加纳米线的长度可以增大表面积,但纳米线的长度受到材料制备和电子扩散长度的限制。三维染料太阳能电池的独特结构克服了上述困难:入射太阳光在光纤内多次反射,在不增加电子输运距离的情况下多次与纳米线表面的染料相互作用,大大增加了对光线的吸收以及光电子的输运效率。在应用上,三维染料太阳能电池具有以下主要优点:首先,光纤的使用使得太阳能电池得以远程工作和具有高移动性。它可以工作在太阳光无法到达的地层和海洋深处 其次,三维染料太阳能电池可以有更小的尺寸,更高的效率,更大的流动性,更可靠的设计,更灵活的形状,并有可能降低生产成本 第三,三维染料太阳能电池可以在不同的光强下有效工作,具有较高的动态工作范围。此研究成果为设计使用光纤和有机、无机材料混合结构的三维高效多功能太阳能电池开辟了崭新方法和思路。  光纤和纳米线混合结构的三维染料太阳能电池结构和基本工作原理示意图。A)三维染料太阳能电池包括光纤和垂直生长于光纤表面的氧化锌纳米线阵列。图中上半部为传统光纤用于光线的远程传输,下半部为太阳能电池用于光电转换。B) 三维染料太阳能电池的细节结构。
  • “双碳”目标下再看太阳能光伏电池—硅料、硅片杂质元素分析技术
    材料是社会进步的重要物质条件,半导体产业近年来已成为材料产业中备受瞩目的焦点。从沙子到晶片直至元器件的制造和创新,都需要应用不同的表征与检测方法去了解其特殊的物理化学性能,从而为生产工艺的改进提供科学依据。仪器信息网策划了“半导体检测”专题,特别邀请到布鲁克光谱中国区总经理赵跃就此专题发表看法。布鲁克光谱中国区总经理 赵跃赵跃先生拥有超过20年科学分析仪器领域丰富的从业经历,先后服务于四家跨国企业,对于科学分析仪器以及材料研发行业具有深刻理解,促进了快速引进国外先进技术服务于中国的科研创新和产业升级。2020年9月,习近平主席在第75届联合国大会上,明确提出中国力争在2030年前实现“碳达峰”,2060年前实现“碳中和”的目标。“双碳”目标的直接指向是改变能源结构,即从主要依靠化石能源的能源体系,向零碳的风力、光伏和水电转换。加快能源结构调整,大力发展光伏等新能源是实现“碳达峰、碳中和”目标的必然选择。目前,光伏产业已成为我国少有的形成国际竞争优势、并有望率先成为高质量发展典范的战略性新兴产业,也是推动我国能源变革的重要引擎。太阳能光伏是通过光生伏特效应直接利用太阳能的绿色能源技术。2021年,全球晶硅光伏电池产能达到423.5GW,同比增长69.8%;总产量达到223.9GW,同比增长37%。中国大陆电池产能继续领跑全球,达到360.6GW,占全球产能的85.1%;总产量达到197.9GW,占全球总产量的88.4%。截止到2021年底,我国光伏装机量为3.1亿千瓦时。据全球能源互联网发展合作组织预测,到2030、2050、2060年我国光伏装机量将分别达到10、32.7、35.51亿千瓦时,到2060年光伏的装机量将是今天的10倍以上。从发电量来看,虽然其发电容量仍只占人类用电总量的很小一部分,不过,从2004年开始,接入电网的光伏发电量以年均60%的速度增长,是当前发展速度最快的能源。2021年我国光伏发电量3259亿千瓦时,同比增长25.1%,全年光伏发电量占总发电量比重达4%。预计到2030年,我国火力发电将从目前的49%下降至28%,光伏发电将上升至27%。预计2030年之后,光伏将超越火电成为所有能源发电中最重要的能源,光伏新能源作为一种可持续能源替代方式,经过几十年发展已经形成相对成熟且有竞争力的产业链。在整个光伏产业链中,上游以晶体硅原料的采集和硅棒、硅锭、硅片的加工制作为主;产业链中游是光伏电池和光伏组件的制作,包括电池片、封装EVA胶膜、玻璃、背板、接线盒、逆变器、太阳能边框及其组合而成的太阳能电池组件、安装系统支架;产业链下游则是光伏电站系统的集成和运营。硅料是光伏行业中最上游的产业,是光伏电池组件所使用硅片的原材料,其市场占有率在90%以上,而且在今后相当长一段时期也依然是光伏电池的主流材料。在2011年以前,多晶硅料制备技术一直掌握在美、德、日、韩等国外厂商手中,国内企业主要依赖进口。近几年随着国内多晶硅料厂商在技术及工艺上取得突破,国外厂商对多晶硅料的垄断局面被打破。我国多晶硅料生产能力不断提高,综合能耗不断下降,生产管理和成本控制已达全球领先水平。2021年,全球多晶硅总产量64.2万吨,其中中国多晶硅产量50.5万吨,约占全球总产品的79%。全球前十硅料生产企业中中国有7家,世界多晶硅料生产中心已移至中国,我国多晶硅料自给率大幅提升。与此同时,在多晶硅直接下游硅片生产中,因单晶硅片纯度更高,转化效率更高, 消费占比也不断走高,至 2020 年,单晶硅片占比已达 90%的水平。用于光伏生产的太阳能级多晶硅料一般纯度在6N~9N之间。无论对于上游的硅料生产,还是单晶硅片、多晶硅片生产,硅中氧含量、碳含量、III族、V族施主、受主元素含量、氮含量测量是硅材料界非常重要的课题,直接影响硅片电学性能。故准确测试上游硅料、单晶硅片中相应杂质元素含量显得尤为必要、重要。在过去的十几年中,ASTM International(前身为美国材料与试验协会)已经对上述杂质元素的定量分析方法提出了国际普遍通行的标准,其中,分子振动光谱学方法因其相对低廉的设备成本、快速、无损、高灵敏度的测试过程,以及较低的检测下限,倍受业内从事品质控制的机构和组织的青睐。值得一提的是,我国也在近几年陆续制定和出台了多个以分子振动光谱学为品控方法的相关行业标准 (见附录)。这标志着我国硅料生产与品控规范进入了更成熟、更完善、更科学、更自主的新阶段。德国布鲁克集团,作为分子振动光谱仪器领域的领军企业,几十年来坚持为工业生产和科学研究提供先进方法学的助力。由布鲁克光谱(Bruker Optics)研发制造的CryoSAS全自动、高灵敏度低温硅分析系统,基于傅立叶变换红外光谱技术,专为工业环境使用而设计。顺应ASTM及我国相关标准中的测试要求,此系统可以室温和低温下(<15K)工作,通过测试中/远红外波段(1250-250cm-1)硅单晶红外吸收光谱(此波段红外吸光光谱涵盖了硅晶体中间隙氧,代位碳,III-V族施主、受主元素以及氮氧复合体吸收谱带。),可以直接或间接计算出相应杂质元素含量值。检测下限可低至ppta(施主,受主杂质)和ppba量级(代位碳,间隙氧),很好地满足了上游硅料品控的要求,为中游光伏电池和光伏组件的制作打下了扎实的原料品质基础。随着硅晶原料产能的逐年提高,布鲁克公司的 CryoSAS仪器作为光伏产业链上游的重要品控工具之一,已在全球硅料制造业中达到了极高的保有量。随着需求的提升,电子级硅的生产需求也在持续增加。布鲁克公司红外光谱技术也有成熟的方案和设备,目前国内已有多个用户采用并取得了良好的效果。低温下(~12 K),硅中碳测试结果(上图),硅中硼、磷测试结果(下图)附录:产品国家标准:《GB/T 25074 太阳能级多晶硅》《GB/T 25076 太阳能电池用硅单晶》测试方法国家标准:《GB/T 1557 硅晶体中间隙氧含量的红外吸收测量方法》《GB/T 1558 硅中代位碳原子含量红外吸收测量方法》《GB/T 35306 硅单晶中碳、氧含量的测定 低温傅立叶变换红外光谱法》《GB/T 24581 硅单晶中III、V族杂质含量的测定 低温傅立叶变换红外光谱法》(布鲁克光谱 供稿)
  • 尚德实验室获北京鉴衡认证中心太阳能光伏产品金太阳认证认可
    2010年6月7日电 尚德电力控股有限公司今天宣布, 尚德光伏产品检验实验室近日参加并通过北京鉴衡认证中心授权的总共27个测试项目,涵盖 IEC61215:2005全部18个测试项目、IEC 61730-2:2004 9个测试项目(除燃烧实验外的全部组件测试项目),由此而获得北京鉴衡认证中心太阳能光伏产品金太阳认证认可。北京鉴衡认证中心万琳副主任说:“尚德公司是国际领先的光伏龙头企业,产品在国内外有着广泛的应用和良好的声誉。鉴衡认证中心是中国光伏产品认证的权威机构和倡导者,通过认可企业的实验室,可以极大地帮助企业缩短认证周期,节省认证费用 同时也将促进双方在产品质量保证、检测技术交流、实验室管理等领域的广泛合作,达到共同促进光伏产业健康可持续发展的目的。”  尚德公司副总裁张光春先生表示:“我们非常高兴能成为鉴衡认证中心认可工厂实验室,鉴衡认证中心是国内光伏产品认证和检测的领跑者,此次合作,有助于促进我们实验室的不断进步,同时也缩短了产品的认证周期。一直以来,尚德始终把产品质量放在首位,对实验室的建设非常重视,投入也很大,并在今年2月获得了中国合格评定国家认可委员会(CNAS)的国家实验室认可,成为国内得到认可项目最多、最全的企业光伏实验室,这标志着尚德光伏产品检验实验室具备了世界一流的管理水平和检测技术能力,确保了实验数据的准确性、可靠性和公正性。我们将不断加强和扩大与鉴衡认证及其他一些著名的国际认证机构合作,确保把具备世界一流品质的产品交给我们每一个客户。”  尚德光伏产品检验实验室致力于开展与国内外知名测试认证机构的合作,在2009年06月,获得了 UL 授予的中国光伏行业第一个 WTDP(Witness test Data Program)证书 在2009年12月,获得 VDE 授予的 TDAP(Test Data Acceptance Program)证书,成为亚洲首个获得 VDE 认可的目击光伏测试实验室,并在2010年2月荣获中国合格评定国家认可委员会(CNAS)国家实验室认可证书。此次获得北京鉴衡认证中心太阳能光伏产品金太阳认证认可工厂实验室,意味着尚德生产的新型号组件产品在国内外市场的认证周期将会大幅度的缩减,这有助于尚德的组件更快的投放市场,并在竞争中获得先机。  关于鉴衡认证中心  鉴衡认证中心(China General Certification Center)是由中国家认证认可监督管理委员会(CNCA)2003年批准成立,由中国计量科学研究院组建,致力于可再生能源产品认证、检测等技术服务的专业机构,是我国第一家开展太阳能光伏、光热产品认证的机构,是目前我国光伏行业制订认证技术规范最多、技术能力最强、认证范围覆盖领域最广的专业可再生能源认证机构,也是唯一合法拥有“金太阳”认证标志知识产权的认证机构。  关于尚德电力控股有限公司  尚德电力控股有限公司是全球领先的太阳能光伏企业,公司专业从事晶体硅太阳能电池、组件,硅薄膜太阳能电池、光伏发电系统和光伏建筑一体化(BIPV)产品的研发、制造与销售。2009年,尚德电力实现晶体硅太阳能电池、组件产能达1100兆瓦,全年组件出货量达704兆瓦,是全球最大的晶体硅太阳能电池、组件生产商。其自主设计、研发、生产和销售高质、高产、价优、环保的太阳能产品,被广泛应用于住宅、商用建筑、工业和公共设施等领域。尚德电力在全球设有三大区域总部,分别位于中国、瑞士和旧金山,在中国拥有无锡、上海、洛阳、青海四大生产基地。尚德电力积极致力于改善人类的生活环境,并通过研发先进的太阳能解决方案实现可持续性发展。  尚德光伏产品检验实验室是尚德公司下设的专业从事太阳能光伏组件检测的独立测试机构,严格按照 ISO/IEC17025:2005《检测和校准实验室能力的通用要求》(CNAS-CL01《检测和校准实验室能力认可准则》)的要求,逐步建立了完善的质量管理体系,规范管理和运作。经过不断努力,已经成长为世界一流,国内最大,技术顶尖的光伏组件检测实验室。实验室分室内和室外两部分,室内面积1800平方米,室外面积7000平方米,下设性能检测室、安全检测室和环境检测室三个专业检测室,引进国内外先进仪器设备30余台,拥有包括脉冲及稳态太阳模拟器、多台步入式环境实验箱、机械载荷、冰雹测试机,EL(电致发光)及高精度红外相机等尖端检测设备,能够检测和评估光伏组件质量和性能方面的所有指标。同时拥有一批高素质的、富有经验和专业知识背景的技朮团队。
  • 化学所在钙钛矿太阳能电池材料与器件方面取得系列进展
    p style="text-indent: 2em text-align: justify "近年来,钙钛矿太阳能电池因其高的转换效率、简单的制备工艺和低廉的制造成本受到了全球学术界和产业界的广泛关注,发展迅速。钙钛矿太阳能电池实际应用的重要瓶颈和关键问题在于如何实现低成本、大面积、高效率器件及解决稳定性的难题。/pp style="text-indent: 2em text-align: justify "在中国科学院战略性先导科技专项和国家自然科学基金委的支持下,中科院化学研究所分子纳米结构与纳米技术重点实验室研究员胡劲松课题组科研人员在这一领域开展了相关研究,并于近期与相关合作者一起取得了系列新进展。他们开发了一种风刀涂布方法,实现了大面积钙钛矿薄膜、电子传输层(ETL)和空穴传输层(HTL)的高质量涂布,在全程不需旋涂和反溶剂的情况下,获得了转换效率(PCE)可达20%以上的电池器件(图1),为高效率钙钛矿光伏器件的低成本规模化制备提供了一种思路。相关工作发表于Joule (DOI:10.1016/j.joule.2018.10.025)上。在HTL方面,开发了新型低成本、易制备的二维共轭有机小分子空穴传输材料OMe-TATPyr代替spiro-OMeTAD,实现了平均20%的PCE(Angew. Chem. Int. Ed. 2018, 57, 10959)。在ETL方面,研究人员发现在无ETL时透明电极与钙钛矿薄膜间的费米能级差距减小,接触界面能带弯曲减弱,因此对光生电子的抽取及光生空穴的排斥作用同时减弱,使得电子在界面的转移效率急剧下降,导致载流子复合严重,器件PCE降低。这一新的理解提高了对钙钛矿光伏器件结构与异质结界面的认识,阐释了无ETL器件PCE低的原因。据此,他们提出通过延长载流子寿命来解决无ETL钙钛矿光伏器件转换效率低的新方案。发现当载流子寿命接近微秒时,无ETL器件的PCE可以接近传统p-i-n结构器件,并且获得了PCE为19.52%的无ETL钙钛矿光伏器件(图2)。这些结果有助于解决钙钛矿器件对传统器件结构的依赖问题,也为钙钛矿光伏技术的低成本规模化制备提供了多样化的选择。相关工作发表于Chem上(Chem, 2018, 4, 2405-2417)。/pp style="text-indent: 2em text-align: justify "  钙钛矿电池的稳定性是其应用的瓶颈和关键。研究人员在钙钛矿层与HTL间引入高迁移率疏水共轭高分子界面层,一方面改善空穴的提取效率,另一方面可以有效阻隔湿气与传输层中添加剂对钙钛矿层的侵蚀,从而显著提高了钙钛矿太阳能电池的空气稳定性和光电转换效率(Solar RRL, DOI: 10.1002/solr.201800232,inside cover;Nano Res., 2018, 11,185-194)。相比于有机无机复合钙钛矿材料,纯无机钙钛矿材料表现出更优异的热稳定性。其中,立方相CsPbI3具有合适的带隙而备受关注,但其立方相室温下是热力学不稳定相,因此理解立方相CsPbI3在合成与器件制备过程中的相不稳定性机制,进而制备室温下相稳定的光伏相CsPbI3,对于其在光伏和光电领域中的应用具有重要意义。研究人员近期首次从原子尺度上观测到了极性溶剂会诱导立方相CsPbI3纳米晶晶格发生畸变,进而相变失稳,从实验和原理上解释了极性溶剂对立方相CsPbI3纳米晶稳定性的影响,揭示了极性溶剂诱导立方相CsPbI3纳米立方体相变的机制及其多级次自组装成单晶纳米线和微米线的机制(图3)。这一研究结果对理解立方相CsPbI3相不稳定机制提供了新的认识,并为立方相CsPbI3的制备及保存使用过程中的溶剂选择提供了指导。相关工作发表于J. Am. Chem. Soc., 2018, 140, 11705–11715,并入选当期封面。/pp style="text-indent: 2em text-align: justify "在此基础上,研究人员发展了一种方法,通过高介电常数质子性溶剂控制CsPbI3钙钛矿前驱体结晶时的表面能,在不引入有机配体或进行金属/卤素掺杂的情况下,利用一步溶液沉积和低温退火工艺,获得了在室温下稳定的新光伏相-正交相g-CsPbI3薄膜。通过XRD精修确定了其晶胞参数,研究了薄膜的形成机制和能带结构,并构建了基于g-CsPbI3薄膜的平面异质结太阳能电池,获得了11.3%的PCE(图4),这是目前为止报道的全无机纯CsPbI3钙钛矿太阳能电池的最高效率。由于所得g-CsPbI3薄膜在室温下的热力学稳定性,电池表现出显著改善的长达数月的空气稳定性。该研究首次报道了室温下热力学稳定的新型正交光伏相g-CsPbI3薄膜及其高效率电池器件,为解决全无机CsPbI3钙钛矿光伏相室温下结构不稳定问题提供了全新的视角和思路。紧接上述极性溶剂对立方相CsPbI3纳米晶稳定性影响的工作,相关研究结果以全文形式发表于J. Am. Chem. Soc., 2018, 140, 11716–11725。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201812/uepic/f0d4fd56-3c93-4498-8a6b-2116edd0aad2.jpg" title="1.png" alt="1.png"//pp style="text-indent: 2em text-align: left "图1. 全程风刀涂布制备高效率钙钛矿太阳能电池/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201812/uepic/ffccfd44-cbfd-433a-8ac8-ba29e66f6683.jpg" title="2.png" alt="2.png"//pp style="text-indent: 2em text-align: left "图2. 高效率无电子传输层钙钛矿太阳能电池/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201812/uepic/94a0fedd-8d1f-40c2-9b2f-95eea8b72344.jpg" title="3.png" alt="3.png"//pp style="text-indent: 2em text-align: left "图3. 极性溶剂诱导立方相CsPbI3纳米晶的晶格畸变及其多级次自组装/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201812/uepic/ae415cdf-6e56-4dc1-832d-ba11459b3873.jpg" title="4.png" alt="4.png"//pp style="text-indent: 2em text-align: left "图4. 室温热力学稳定的正交光伏相g-CsPbI3薄膜及全无机钙钛矿太阳能电池/p
  • 科学家开发出太阳能电池用新型聚合物材料
    p  迄今为止,世界上80%以上的能源是通过燃烧石油、天然气和煤产生的。首先,这会导致严重的环境污染 其次,人类在过去不到两百年的时间里已消耗了经过数百万年形成的全球石油资源可开采储量的一半以上。目前,世界各地的科学家的主要目标集中在如何提高太阳能的光电转换效率,却很少有人关注太阳能电池板基体材料的稳定性。br//pp  在俄罗斯科学基金会资助下,以俄科院化学物理问题研究所科学家为首的国际团队开发出以有机半导体材料(共轭聚合物和富勒烯衍生物)为基体的高效稳定的薄膜太阳能电池,这是一种光化学和热稳定性较高、且具备可有效适用于有机太阳能电池的最佳性能的新型光敏材料。有机太阳能电池由于光电转换成本比化石燃料价格更低,因而有望彻底改变全球能源产业。研究成果发表在《Journal of Materials Chemistry》杂志材料上。/pp  太阳光是一种很有前途的环保、廉价的能源。据估算,全人类每年能量需求约为20太瓦,而太阳每年辐射到地球的能量约105太瓦。因此,太阳可视做现代社会取之不尽用之不竭的能源。以有机半导体材料为基体的太阳能电池具有重量轻、成本低、灵活性等特点,已经引起研究人员和创新型企业的极大关注。/pp  俄科学家的研究成果主要包括:/pp  一是创建了适用于有机太阳能电池的新的共轭聚合物组,并发现使用单体单元在主链中无序排列的不规则共聚物,其光电特性明显优于链节以严格顺序交替排列的常规结构聚合物。研制开发的以共轭聚合物为基体的有机太阳能电池的效率大于7%,这是国际上面积大于1平方厘米的同类装置中能得到的最好结果之一。/pp  二是开发出用于有机太阳能电池、以富勒烯衍生物为基体的新型电子受体材料,这种新型材料能够保证有机太阳能电池在140℃高温下运行稳定。这是实现有机太阳能电池类设备长期稳定运行并得到实际应用的重要步骤。/pp  俄科学家在以色列内盖夫沙漠中对若干类型的有机太阳能电池进行了实地试验,研究了影响太阳能电池操作稳定性的最重要因素。结果发现,采用电子顺磁(自旋)共振法可以轻松完成材料的光稳定性筛查并找出最具前景的结构。/pp  上述研究工作是与德国弗劳恩霍夫太阳能研究所、巴伐利亚能源产业应用研究中心和以色列本-古里安大学的科学家合作完成的。/ppbr//p
  • 宁波材料所在提高钙钛矿/晶硅叠层太阳能电池效率方面取得新进展
    近年来,钙钛矿/硅叠层太阳能电池技术飞速发展,其效率已从13.7%发展到如今的33.2%,这得益于其更宽的太阳光谱吸收范围和更高的开路电压输出值。因此,钙钛矿/硅叠层太阳能电池被认为是最有希望从根本上提高光电转换效率并大幅降低太阳能发电成本的新型光伏技术。   然而,钙钛矿/硅叠层电池的不稳定性,特别是钙钛矿顶电池的不稳定性,仍然是限制其实际应用的主要障碍之一,通常与钙钛矿薄膜内部的残余应力密切相关。钙钛矿薄膜内部残余应力的存在会显著降低钙钛矿相变、缺陷形成和离子迁移的能垒,并最终加速钙钛矿的降解。因此,如何有效释放钙钛矿薄膜内部的残余应力并获得高效稳定的叠层器件成为关键。   近期,中国科学院宁波材料技术与工程研究所所属新能源所硅基太阳能及宽禁带半导体团队在叶继春研究员的带领下,在前期晶体硅和钙钛矿太阳电池研究的基础上(Adv. Sci. 2021, 8, 2003245 J. Mater. Chem. A 2021, 9, 12009 Energy Environ. Sci. 2021, 14, 6406 Adv. Funct. Mater. 2021, 32, 2110698 Nano Energy 2022, 100, 107529 Joule 2022, 6 , 2644 ACS Appl. Mater. Interfaces 2022, 14, 52223 Adv. Energy Mater. 2023, 13, 2203006 J. Mater. Chem. A, 2023,11, 6556 Nat. Commun. 2023, 14, 2166),在高效钙钛矿/硅叠层电池领域取得了新的进展。   该团队提出一种基于表面重构的钙钛矿/硅叠层太阳能电池,认证效率达到29.3%(稳态效率29.0%),是目前报道的基于遂穿氧钝化接触(TOPCon)电池的最高效率之一。   在该工作中,研究人员将正丁基碘化胺(BAI)溶于二甲基甲酰胺(DMF)和异丙醇(IPA)的混合溶剂中,并用于表面后处理。这种方法不仅可以实现BA离子在钙钛矿表面全面的A位替换,还能促进BA离子向钙钛矿薄膜内部的深扩散。在不影响薄膜质量的前提下,实现了钙钛矿薄膜表面和内部残余应力的同时释放。经过应力释放的薄膜表现出更少的缺陷态、更弱的离子迁移和更好的能级排列等优点,制得的单结电池和叠层电池分别获得21.8%和29.3%的效率,并展现出良好的热、湿、光照和运行稳定性。该工作促进了高效稳定的钙钛矿基太阳电池应变工程发展,并为未来的应用和部署提供了参考。   相关成果以“Surface Reconstruction for Efficient and Stable Monolithic Perovskite/Silicon Tandem Solar Cells with Greatly Suppressed Residual Strain”为题发表于Advanced Materials(DOI:10.1002/adma.202211962)上。2020级直博生李鑫为第一作者,应智琴博士后、杨熹副研究员和叶继春研究员为共同通讯作者。该研究得到了国家自然科学基金(Grant No. 62204245)和浙江省重点研发计划(Grant No. 2022C01215)等项目的支持。基于钙钛矿表面重构的两端口钙钛矿/硅叠层太阳电池
  • 太阳能热水器配件曝铅超标
    近日,一家知名太阳能热水器厂商自曝行业潜规则:“半成品太阳能”横行,配件重金属析出。该企业负责人认为,太阳能热水器配件铅含量超标对消费者来说,就如同奶粉中添加的三聚氰胺。此说法一出,引起网友及社会各界的关注与讨论。  南方日报记者调查发现,太阳能热水器配件良莠不齐的状况确实存在,但是否构成铅超标威胁身体健康尚难定论。  据太阳能热水器业内人士与专家介绍,目前,我国太阳能热水器行业所存在的“铅超标”问题,理论上并没有该企业所曝的那么标准。太阳能热水器行业普遍采用铜质材料配件,在刚开始并不一定会出现这种铅超标的问题,只是在用了一二十年后,可能有这种隐患。但具体的影响程度还需要进一步量化研究。  此外,有专家建议,如果消费者在选择太阳能热水器配件时对再生铜的安全性不放心,可以选择PVC塑料管或者其他安全原料做的配件。  走访配件差价大非原厂产品成行规  日前,记者走访一些太阳能热水器卖场发现,不少太阳能热水器的配件都不是品牌原厂的,而是由经销商自行采购,一些销售人员告诉记者,如果不需要配件,价格还可以有优惠。  记者在网上搜索太阳能热水器的铜配件,价格从3元到几十元不等。淘宝上一位卖家告诉记者,大部分的太阳能公司都不会配原装配件,所以一些经销商为了牟取利润最大化,会使用较差的铜配件,容易产生铅等重金属超标。  广东桑×太阳能某代理商客服表示,业内行情确实是“厂家只包太阳能主机,不包管道配件”的情况。且桑×太阳能在装机时,只包楼面管道(楼顶到室内前的管道),不包室内管道。“不管是楼面管道还是室内管道,客户可以通过经销商帮忙配置,也可以根据自己的品牌喜好去市面购买。”一些厂商所采用的楼面管道一般都是家用的PC管。  佛山市南海区丽水某节能设备经营部经销包括皇明等多种品牌的太阳能热水器。其工作人员再次向记者肯定了业内“厂家做主机,辅助管道可自配”的现状。  “不过针对重金属含量超标的问题,目前还没有出现过投诉案例。”该工作人员表示。广东省内的情况,“其实跟国内的情况一样,目前舆论的焦点在于铜材质上,主要就是管道和出水龙头的材质上。”  他透露,在业内,大品牌的有些配件是自己的标配,用的材料比较好,而有些品牌则自己不出配件,消费者必须自行在市场上去选购相应的配件。现实情况是,不管是标配,还是自配,其实用的都是铜材质,只是像皇明这些大品牌的要厚一点,相应价格也会比其它贵很多。有些经销商为了赚差价,有可能给消费者搭配一些便宜的非原厂配件。  在他看来,此次曝光的焦点应该是企业标准的参差不齐,重金属含量超标的问题则有点被夸大了。  分析配件铅超标对健康影响几何?  皇明集团表示,通过实地调查监测的结果分析,使用有铅超标铜配件的太阳能热水器,长期积累,会导致消费者铅中毒,并且年龄越小对铅的通透性越高。  不过,有节能设备业内人士向记者解释,皇明所曝出的问题,实际是在铜质水龙头使用一二十年后才有可能出现的,如果真是质量不达标,国家肯定早就禁止生产了。  而有网友提出,太阳能热水器在国内已经使用近20年,并没有出现过类似这种因体外使用太阳能热水器而导致铅中毒的案例。皇明集团有关负责人也表示,这些问题属于隐患,并无实际案例。  对此,太阳能热利用专业委员会主任罗振涛在接受采访中表示,提出铜配件铅含量超标问题对行业是个警示,但如何解决这一问题需要认真研究。“推广镍安铜配件”是不是就能杜绝铅的析出,还需要研究。  在铅是否超标尚不明朗的情况下,市民在使用太阳能热水器时该注意什么问题呢?多数专家表示,太阳能热水器的水用来洗澡没有问题,但是不能直接饮用。武汉大学公共卫生学临床流行病研究中心教授廖皓磊接受媒体采访时表示,相较于接触皮肤,铅进入消化道后果要严重,因为胃肠道更易吸收重金属,而皮肤表层有数十层上皮细胞结构,有一定防御作用。市民一定要严格区分生活用水和饮用水,尽量避免饮用太阳能热水器中的水。  建议  可采用非金属管道等安全材料  针对行业内太阳能热水器金属析出超标的问题,有企业呼吁行业必须强制厂家采用原装“镍安铜配件”。然而,根据记者调查,推广镍安铜配件,也只是理论上可以减少危害而已。  有业内人士向记者介绍,目前太阳能热水器业内均使用的是铜质水龙头,镍安铜和不锈钢,其实都是不错的材质。这些材质在行内已经有几十年的使用历史,至今也没听说哪个行业的铜质、不锈钢、铁之类的不能用,包括pvc、pc这些材质管道、配件,都是达到国家环保标准的。  广东工业大学材料与能源学院教授张仁元分析,若太阳能热水器真的存在铅超标的问题,那么对人体肯定是有伤害的。尽管过去这二十多年来,他在使用这些材质的配件时并没有遇到身份不适的情况,但这个行业能从关注能源使用拓展到关注水质问题,应该是一种进步。消费者如果对再生铜不放心,可以选择PVC塑料管或者无铅黄铜为原料做的配件。  浙江大学能源系胡亚才教授也认为,皇明集团捅出太阳能热水器行业存在铜配件“铅超标”的问题,还需要有关的研究机构予以定性定量的分析。
  • 我科学家首创宽带隙半导体材料太阳能电池
    日前,厦门大学物理与机电工程学院康俊勇教授课题组研发成功一种新型太阳能电池,即将氧化锌和硒化锌两种宽带隙半导体材料用作太阳能电池,从而大大稳定了太阳能电池的性能并使其寿命延长。这也是国际上首次实现了宽带隙半导体在太阳能电池中的应用。近期,英国皇家化学学会的《材料化学》杂志发表了这一成果,在国际上引起广泛关注。  所谓宽带隙半导体,一般是指室温下带隙大于2.0电子伏特的半导体材料。从物理学上来讲,带隙越宽,其物理化学性质就越稳定,抗辐射性能越好,寿命也越长 但与此相对应,带隙宽的一个缺点是——这种材料对太阳光的吸收较少,光电转换效率低。由于这种“致命性缺陷”,宽带隙半导体材料以往在太阳能电池中不用作发电的关键结构,而仅用作电极。  据介绍,目前,在太阳能电池中,应用较多的是硅太阳能电池,但其寿命有限。针对硅电池“寿命短”的问题,从2005年起,厦门大学半导体光子学中心的专家们将眼光瞄向了具有稳定物理化学性质、抗辐射性能好、“寿命长”的宽带隙半导体,致力于“宽带隙半导体在太阳能电池应用”的研究。  经过深入研究,课题组发现,有两个制约“转化”的瓶颈:一是能否形成光生电流 二是能否提高宽带隙半导体的吸光率。  最让课题组“费脑筋”的是如何让光电子“流动”起来。经过多次实验,课题组决定,选用两种宽带隙半导体材料——氧化锌和硒化锌作为太阳能电池的材料,形成类似于PN结的带阶,让电流“流动”起来。  同时,课题组在提高吸光率上也大“做文章”——“改革”了以往的制备方式,通过控制条件,让两种材料实现共格生长,首次形成新型量子结构,大幅度降低了宽带隙半导体的有效带隙,增加了吸收太阳光的范围。同时,将叠层状的薄膜形式改为一根一根的同轴线形式,每根仅有200纳米。这样一来,吸光面积大幅度增加,吸光率也随之提高。
  • 等离子如何提升太阳能光伏板封装可靠性
    等离子清洗机提升太阳能光伏板封装可靠性2017年,习近平总书记在党的十九大报告中提出,必须树立和践行“绿水青山就是金山银山”的理念,站在人与自然和谐共生的高度谋发展。生态环境是人类生存发展的根基,通过清洁能源的开发使用,才能做好保护生态环境,走好绿色发展之路。一、清洁能源之太阳能光伏一般情况,太阳能光伏板的使用环境较为苛刻,而国家规定光伏电站的设计使用寿命是25年,因此太阳能光伏组件封装的可靠性就显得尤为重要。光伏产业流程中,哪些环节会影响最终的封装效果呢? 二、光伏产业流程 显而易见,中游太阳能光伏板制程中,背板可靠性、压层件工艺、整体光伏组件封装工艺等,均是影响太阳能光伏板封装可靠性的重要因素。下面我们来了解,如何使用等离子技术,提高太阳能光伏组件封装可靠性!三、等离子提升太阳能光伏板封装可靠性太阳能光伏板在生产过程中,存在大量涂覆、复合、粘接、热压等工艺,使用等离子技术活化后,可以有效提高材料表面的润湿性,从而提升整体封装效果。01 等离子提升光伏背板可靠性太阳能背板需具备优越的耐候性、高绝缘性以及低水透性能。含氟材料的耐候性、斥水赤油性能,能很好的满足这一要求,但斥水斥油性不利于与基材复合,因此在与基材(PET)涂覆/复合前,使用等离子清洗,可有效提高含氟材料与基材涂覆/复合的可靠性。02 等离子提升光伏压层件工艺可靠性 压层件工艺中,使用等离子清洗机对光伏玻璃表面和底板上的氟膜进行表面处理,能更好的与EVA结合,提高压层件各组件的结合强度。03 等离子提升“组件”工艺可靠性压层件完成后,加上边框、密封胶、接线盒,就完成了我们的主体“太阳能光伏板”的制作。在这一环节,使用等离子清洗机对边框进行处理,从理论上讲,对密封效果也会有一定程度的提升。后续加上逆变器、汇流箱、支架、蓄电池等,一个整体的光伏系统就可以完成啦。
  • How It’s Made——钙钛矿太阳能电池的崛起
    导语:与其他光伏材料相比,钙钛矿太阳能电池在性能的提升方面表现出了惊人的速度。近期,来自德国柏林科技大学的Steve Albrecht等研究者在Science正刊中报道了一个单片钙钛矿/硅串联太阳能电池,其认证的功率转换效率高达29.15%,预计还会进一步提高。现如今,钙钛矿太阳能电池生产技术逐渐趋于成熟,生产设备也逐渐小型化和便捷化。继2009年和2012年的早期关键实验之后,人们对这些生产设备的兴趣激增,目前正在进一步优化它们的性能,并寻找可行的商业应用路线。本文,我们将带您看看钙钛矿太阳能电池材料的制造过程和相关技术。什么是钙钛矿太阳能电池钙钛矿太阳能电池(PSC)顾名思义是由钙钛矿材料作为核心部件制备的太阳能电池。钙钛矿材料的种类很多,但它们都有ABX3的化学通式,其中A和B是阳离子,X是阴离子。在钙钛矿光伏材料中,B通常是金属阳离子,X是卤族元素,A可以是有机或无机阳离子。重要的是,这些成分必须以一种特定的几何结构排列,A穿插在阳离子BX6八面体的间隙。如下图所示。 钙钛矿太阳能电池材料晶格结构的3D示意图(中央亮斑为B,红色为X,蓝色为A) 钙钛矿是钙钛矿太阳能电池中吸收光的材料,它吸收光子并产生电子-空穴对。之后,这个电子-空穴对会分离(也可能不会,这是导致太阳能电池效率低下的原因),释放出电子和正电荷载流子。这些电子(负)和空穴(正)载流子分别被设备中的其他材料(传输层)收集,然后流出,在外部电路中产生电压。人们尝试用各种钙钛矿材料来制备PSCs,其中常见的是MAPbI3。这种材料由基铵正离子嵌入Pb2+离子和碘离子(I-)组成的八面体框架。钙钛矿光伏薄膜材料制备太阳能电池的制备过程主要分为薄膜的制备和后续的加工。后续的加工流程与硅基太阳能电池的后续加工有些类似,涉及到微纳加工与封装等流程,我们不做详细介绍。对于薄膜的制备技术目前主要有液体旋涂和真空镀膜两类。旋涂技术由于设备简单,易于快速搭建等特点很容易在实验室实现。但是其规模化拓展性较差,器件的重复性和稳定性以及与后续加工流程的兼容性等方面仍有不足。在真空镀膜方面目前较为流行的是采用物理气象沉积(physical vapor deposition—PVD),例如热蒸发等方式。对于热蒸发技术来说,在真空室中加热钙钛矿前驱体,使它们向上蒸发并覆盖在基片上。通过对过程的精细控制,形成所需的钙钛矿薄膜。热蒸发方法制备出的薄膜不仅性能出色,同时还能与太阳能电池制造过程中需要的其他过程具备良好的兼容性 (例如,传输层和金属接触层的沉积也经常使用PVD)。热蒸发制备方案概要以制备钙钛矿太阳能电池的常用材料MAI(methylammonium iodide)和PbI(lead iodide)为例,MAI蒸发温度约为150℃,而金属卤化物PbI需要400℃~500℃。这与常规的金属热蒸发相比温度低很多,但对热蒸发源温度控制的性要求较高。传统金属热蒸发更注重所能达到的高温(可达~1800℃),如果采用传统的蒸发源生长钙钛矿材料很容易导致温度过冲,制备的薄膜性能不稳定,甚至前驱体会瞬间挥发殆尽导致生长失败。钙钛矿光伏材料除了在较低温度下生长之外,沉积速率也是一个重要的控制变量。由于沉积速率并非温度的直接函数,钙钛矿材料在沉积时需要对每一个蒸发源的速率进行标定与检测。通常在热蒸发过程中,可以采用晶振探头来探测每一个蒸发源的蒸发速率。对于常规的金属热蒸发过程,材料从蒸发源沿着直线方向到达衬底,按照类似于标准分布函数的规律在衬底上沉积成薄膜。然而对于非常易挥发的材料,例如MAI,蒸发过程中会先在源上方形成较高的蒸气压,这会导致材料向侧方扩散,导致材料在腔体的其他部位形成非必要的沉积。因此,对于钙钛矿光伏材料的沉积过程必须控制得更加精密,否则MAI容易导致其他材料的晶振传感器被污染。专业的低温热蒸发技术与设备英国Moorfield 公司基于多年的薄膜设备生产经验发布了低温蒸发(LTE)技术和相关设备。这使得科研人员能够快速建立高性能的钙钛矿光伏薄膜沉积系统。Moorfield 公司用于钙钛矿太阳能电池制备的设备包括台式nanoPVD - T15A,以及功能增强型的落地式MiniLab系列。这样的低温热蒸发系统具有以下几方面的优点:● 低温蒸发源与控制器:超低的热容量,可选择主动水冷方案实现控制和小的温度过冲;基于传感器的PID反馈回路使得温度、功率或沉积速率可控。● 石英晶振传感器探头:水冷式,降低温度影响。专业设计和安装位置,在生长高蒸汽压钙钛矿前驱体时使信号“串扰”小化。● 真空系统:专业真空腔体设计和定制,包括可选的耐腐蚀泵组系统和预抽保护功能。● 过程控制:采用先进的自动过程控制器,允许多阶段程序设定操作,每个阶段包含单个或多个源蒸发(即共同蒸发),反馈回路控制每个源的速率。● 多功能配置:允许在一个系统上通过不同的PVD技术沉积钙钛矿和其他PSC涂层。此外,系统可以配备冷却或加热样品台,用于处理热敏感基片或在沉积期间/沉积后进行热处理。nanoPVD系统中的LTE蒸发源手套箱集成式系统虽然成品PSCs元件可以在大气条件下使用,但通常有必要在惰性气氛下进行器件封装制造。因为在后的保护涂层覆盖之前,湿气和氧气会对材料性能造成影响。因此,一些PSC制备工作通常在惰性气体(如纯氩气或氮气)的手套箱中进行。基于MiniLab 026和MiniLab 090平台的Moorfield LTE系统可以与手套箱集成,允许在惰性气氛中对衬底或样品进行加工处理。Moorfield可以提供整套的手套箱集成系统或与客户选定的手套箱进行集成。其中MiniLab 026系统可以与用户已有的手套箱进行现场的集成安装。Minilab090系统样品腔(左),与手套箱集成的系统(右)总结钙钛矿材料在太阳能电池方面表现出良好的前景,真空蒸发镀膜是一种很有前途的制备方法且容易实现工业化生产。用于钙钛矿薄膜制备的沉积系统需要进行优化设计,以提高薄膜材料的品质。Moorfield Nanotechnology公司具有雄厚的专业技术基础和先进的设备解决方案,包括全套LTE蒸发源、过程控制选件和完整的沉积系统。此外Moorfield Nanotechnology还提供其他多种材料制备的专业设备,例如磁控溅射、电子束蒸发、快速制备石墨烯的nanoCVD系统。台式高精度薄膜制备与加工系统新动态Moorfield 公司在中国科学院技术物理研究所的台设备安装成功,本次在技术物理研究所安装的是台式高性能二维材料等离子软刻蚀系统—nanoETCH。该系统对输出功率的分辨率可达毫瓦量,对二维材料可实现准确的逐层刻蚀,也可实现二维材料层内缺陷制造,此外还可对石墨基材等进行表面处理。该系统目前正处于技术培训阶段,不日将正式交付使用。中国科学院技术物理研究所安装的nanoETCH系统
  • 江苏质检:关于太阳能热水器产品检测情况的汇报
    关于太阳能热水器产品检测情况的汇报江苏省产品质量监督检验研究院  近日,部分媒体登载了个别企业质疑有企业与我院联手骗取国家惠民补贴的消息。对此质疑,我院作如下说明:  一、关于太阳能热水器产品提前送检问题  2011年9月29日,国家发改委、国家质检总局、国家认监委正式发布了强制性国家标准GB26969-2011《家用太阳能热水系统能效限定值及能效等级》,明确规定该标准于2012年8月1日正式实施。根据国家发改委、国家质检总局 2005 年 3 月 1 日施行的《能源效率标识管理办法》相关规定,未办理能效标识备案的太阳能热水器产品生产企业,不得生产和销售太阳能热水器产品。  江苏是太阳能热水器产品生产大省。为帮助太阳能热水器产品生产企业有效落实强制性国家标准GB26969-2011《家用太阳热水系统能效限定值及能效等级》,完成太阳能热水器能效标识备案工作,我院于2011年12月,联合中国能源效率标识管理中心、国家太阳能标准化委员会召开了宣贯会议,组织太阳能热水器产品生产企业学习强制性国家标准GB26969-2011《家用太阳热水系统能效限定值及能效等级》等重要文件,动员生产企业尽早送检,提前做好能效标识备案工作。  随着宣贯工作的深入开展,从2012年2月底至6月4日,我院陆续接受企业委托检验。从2012年3月4日开始,我院共计对29家生产企业的379个品种的太阳能热水器产品进行了检测。  二、关于我院检测能力问题  我院现有太阳能热水器检测固定工位14个、活动工位5个,每天可出具19台热水器的热性能数据。从今年3月4日到6月4日,在我院开展太阳能热水器产品检测的3个月中,至少有41天的气象状况(不含符合气象条件但我院未做热性能试验的天数),满足标准规定的实验要求。按有效检测天数计算,我院具备出具近779份热性能数据的检测报告的能力。实际情况是,我院出具了379份能效检测报告。  三、关于产品检测工作完成后未及时出具检测报告问题  因我院开展太阳能热水器产品检测时,中国能源效率标识管理中心的《家用太阳热水系统能源效率标识实施规则》、《家用太阳热水系统能源效率标识样式和规格》、《家用太阳热水系统能源效率标识备案表》、《家用太阳热水系统能源效率检测报告》格式还未发布,我院与太阳能热水器产品生产企业签订的委托检验协议中签订的出具检测报告的时间也没到期,加之强制性国家标准GB26969-2011《家用太阳能热水系统能效限定值及能效等级》标准明确规定的实施日期为2012年8月1日。因此我院在完成太阳能热水器产品检测后,并未即时出具统一的能效检测报告。  四、关于集中出具检测报告问题  2012年6月1日(星期五),国家节能产品惠民工程管理办公室在网上发出通知,要求太阳能热水器产品生产企业在6月4日(星期一)一天内完成惠民工程申报,其中能效检测报告是申报材料之一。为了适应企业申报惠民工程的需要,我院在已完成的太阳能热水器产品检测的基础上,集中出具了379份能效检测报告和相应的型式检验报告。  感谢新闻界对我院关心,真诚欢迎媒体加强监督。  2012年10月17日
  • 天普太阳能组建太阳能技术检测中心
    3月9号,罗振涛、霍志臣、何涛、张晓黎等太阳能行业领导和专家到天普公司考察调研。罗主任、霍秘书长与程翠英总经理和太阳能资深专家罗赞继研究员、于学德高工亲切交谈,探讨天普研究院的发展大计。     行业专家们指出,天普是太阳能行业的骨干企业。起步早,创新成果丰富。研究院要本着有所为有所不为的态度,找准定位,明确目标,建立广泛利用社会资源,走集约科研的路子。程总介绍说,在太阳能行业天普首倡太阳能系统安全性,只有从消费者利益出发,建立起完整的质保体系,才能建立起太阳能在消费者心中的信任度,从而提升和带动整个行业的高标准。     技术检测中心主要任务是:为太阳能系统安全性保驾护航。积极开展太阳能等可再生能源技术研究和产品开发,开展太阳能热利用及高效节能产品的相关技术测试和产品检测服务,面向北京地区和国内外开展可再生能源领域的学术交流与合作,为太阳能热利用企业提供技术交流平台。  测试中心的成立,还为天普的太阳能产业技术和管理人才提供了一个交流平台,将成为中国太阳能产业的人才培养基地 同时该中心作为太阳能产业的公共研发平台,也将成为技术创新和技术推广的平台,有利于推动中国太阳能行业的快速壮大。
  • 我国科学家在太阳能海水淡化方面取得重要突破
    p style="text-align: justify "  随着社会发展,淡水资源变得越发匮乏,水资源短缺正成为全球需要共同面对的挑战。光热蒸汽技术以太阳能和海水为原料,为清洁水资源的生产提供了一条路径。然而,传统的块体光热蒸汽技术由于产水效率较低(约40%),难以满足实际需求。/pp style="text-align: justify "  在“纳米科技”重点专项“表面等离激元高效光热转换机理、器件及太阳能热利用”项目支持下,南京大学朱嘉教授团队将氧化铝多孔模板与金属纳米颗粒自组装技术结合,创新性地设计了一种新型吸收体材料,在400nm到10μm波段具有99%的太阳光吸收效率。结合新型界面光热转换设计,将这种材料应用到海水淡化上,光热蒸汽转化效率可达90%,并且水质可以满足WHO的饮用水标准。在此基础上,该团队进一步实现蒸汽焓存储利用和太阳能水电联产,依靠太阳光和自然水源两种地球上最充沛的资源,即可实现洁净水和电的联产。同时,该团队也将界面太阳能蒸汽技术创新性地推广到了污水处理、灭菌等领域,取得了较好的结果。/pp style="text-align: justify "  我国科学家取得的成果,引起了国际学术界和产业界的广泛关注。《科学》杂志以《新的水纯化系统可帮助世界解渴》为题进行专文介绍。这一新型太阳能海水淡化技术显示出广阔的前景,不但可以为贫困、偏远地区提供经济、可行的饮用水方案,也可为海洋、沙漠、军事等特殊地区及应用领域提供小型、便携的供水方案,更有可能为世界性的水资源缺乏问题贡献“中国水方案”。/pp/p
  • 华南理工大学学生花250万造太阳能小屋
    ■华工学生造的太阳能小屋可以拆装,可根据需要随处安家。这是它的外观。  ■太阳能小屋温馨智能的室内设计。  我们未来的家长什么样?也许,我们从华南理工大学学生一手建造的太阳能小屋中可以看到希望。这间造价250万元的小屋刚在&ldquo 2013年国际太阳能十项全能赛&rdquo 上夺得亚军,它几乎实现了亲们所有环保与高科技梦想的&ldquo 完美别墅&rdquo :翠绿翠绿的有机蔬菜环绕着四周,想吃出门就有得摘 墙体是保温的,由甘蔗渣制成,低碳环保 室内全部智能控制,大手一挥,灯都亮了 更特别的是,这幢&ldquo 别墅&rdquo 可以移动,随时可以把家安在不同城市&hellip &hellip   别墅能拆装随处可安家  今年8月11日,被誉为&ldquo 太阳能界奥林匹克&rdquo 的中国国际太阳能十项全能竞赛在山西大同落下帷幕。经过与全球各地代表队的激烈角逐,华南理工大学代表队TeamSCUT 荣获亚军,并取得国内代表队第一名的好成绩。  此次华工代表队设计的太阳能房屋《E-concave》,集节能、宜居、模块化、高科技四大理念为一身,在建筑设计、能源利用、生态材料探索、智能化、集成化等方面进行了深入的创新性探索。  房屋墙体使用了甘蔗渣回收制成的聚氨酯保温材料,同时结合性能极高的真空绝热板,达到了很高的保温系数,如同一件厚厚的外衣,抵御寒冬的北风和低温,保证了房屋的保温性能。室内外都采用环保可回收利用的材料,包括竹木材料、木材、钢材等等,创造出自然舒适的居住空间。房屋采用光伏光热一体化的光热板,产生电量的同时能加热热水,满足房屋正常的热水所需。房屋的大部分家用电器及设备能实现智能控制,且房屋内的生活用水、污水及雨水都能回收,通过人工湿地净化后,用于浇灌庭前蔬菜等。  值得一提的是,该房屋可以达到7级抗震,不仅可以在大多数地区用于日常居住,还可拆卸,利用卡车运往震后灾区,并在短期内安装使用。造价降低后未来进家庭这幢长得像别墅的太阳能小屋,是一座特别生活化、人性化、智能化的建筑。  在厨房区域,所有的家电都整合到橱柜当中,且橱柜没有一个门把手,用手轻轻碰一下柜门,橱柜就会缓缓打开 锅的上方有一个金属块,往外一拉,抽油烟机就展现在眼前并开始工作,烹饪完毕后,往里一推,抽油烟机就被收纳起来。  客厅更是高科技的完美化身:客厅墙壁上,装有房屋的中央智能控制系统,选择&ldquo 家庭模式&rdquo ,房间的大灯就会亮起,选择&ldquo 电影模式&rdquo ,大灯熄灭,壁灯打开,窗帘自动关闭,投影屏慢慢垂下,环绕立体声的音响也从各个角落&ldquo 冒&rdquo 出来。而当所有的门窗以及灯光都关闭时,你站在客厅中央,轻轻一挥手,室内大灯瞬间就会被你&ldquo 点亮&rdquo &hellip &hellip   目前,这幢&ldquo 别墅&rdquo 以390万元的身价,转入大赛组委会名下,继续保留在山西大同太阳宫广场,作为未来绿色公园的一道亮丽风景线,继续向世人展示其风采。  团队队长曹祖略介绍,这幢太阳能环保小屋耗时一年多建成,房屋造价约250万元,&ldquo 八九十平方米的房子,要200多万,相当于传统房屋而言,造价的确偏高&rdquo 。对此问题,该团队指导老师钟冠球介绍,希望未来能通过研发,降低成本,让高科技又环保的太阳能小屋&ldquo 飞入寻常百姓家&rdquo 。  【对话】为了完成设计,去各路企业&ldquo 化缘&rdquo   新快报:这幢太阳能房屋全由团队40多名学生完成。一年多的设计建设过程中,你们面临的最大挑战是什么?  曹祖略:这是我们人生的第一幢房子,我们既是设计师,又是施工匠。最大挑战应该是多个专业、多个系统的组合,需要在一个狭小的空间内完美呈现。比如空调管线如何隐藏好,同时又满足功能需求。而不同专业的队员也需紧密配合,这个过程中,吵架是常有的事。但最终我们建成了一幢像家一样温馨的太阳能小屋。  新快报:怎么解决钱的问题?  曹祖略:按设计方案预算,团队设计的房屋造价超过人民币200万元,单靠主办单位的60万元启动资金远远不够。我们就去各路企业&ldquo 化缘&rdquo ,获得了多家企业资金、技术、材料等帮助。但一开始,不少企业还以为我们是骗子呢。  (曹祖略:华工建筑学院学生、TeamSCUT团队队长)  【新快知道】  国际太阳能十项全能竞赛  国际太阳能十项全能竞赛(Solar Decathlon,SD)是由美国能源部发起并主办的,以全球高校为参赛单位的太阳能建筑科技竞赛。目的在于借助世界顶尖研发、设计团队的技术与创意,将太阳能、节能与建筑设计以一体化的新方式紧密结合,设计、建造并运行一座功能完善、舒适、宜居、具有可持续性的太阳能居住空间,从而证明单纯依靠太阳能的住宅,一样可以是功能完善、舒适而且具有可持续性的居住空间。  自2002年开始,大赛在美国本土和欧洲已成功举办六次,吸引了来自美国、欧洲、中国等在内的100多所大学参赛。每届比赛都有几十万的民众现场参观,数百家媒体进行报道。
  • 太阳能电池组件污染的实际成本
    越来越多的太阳能行业报告表明,太阳能电池组件污染所造成的经济损失和生产损失令人吃惊。什么是太阳能电池组件污染,它会造成哪些影响,可以采取什么措施来预防或减少这种污染?Kipp & Zonen 公司研发的灰尘监测系统DUSTIQ是如果解决这一难题的? 什么是太阳能电池组件污染? 太阳能电池组件污染是由空气中的污染物和颗粒物(如沙子、土壤、盐、鸟粪、花粉、雪、霜)以及不同类型的尘埃颗粒物(如二氧化硅、灰烬、钙和石灰石)沉降在光伏组件表面造成的。地面上小至 25 微米的微尘,通过风吹、农业活动、火山活动、交通运输以及附近人和动物的运动而移动。 中东和北非 (the MENA region) 是粉尘积聚发生率最高的地区,这一问题影响了全球的光伏工业园区,导致维护、维修的成本增加,并可能降低了能源产量。如果不加以控制,最初的光伏污染会导致能量的产能减少;特别是长期积累的污垢,如遇潮湿会导致微粒胶结,鉴于此情况下形成的硬质不透明层几乎不可能去除,最终会致使太阳能电池组件完全丧失产能。在较干燥的环境中(降水量通常需要超过 20 毫升才能影响组件表面的清洁),以及在倾斜角度较小的光伏组件配置中,空气污染和污染物积聚的严重程度会加剧。大部分电力于正午时(太阳在天空中处于最高点时)在光伏站内产生,日出和日落时的生产损失最大,虽然这些时刻仅占当天剩余时间的总产能的一小部分,但准确监测颗粒污染可以为维护计划提供信息,从而降低运行和维护成本 (O&M),并充分发挥太阳能转换高效生产时间的潜能。光伏组件的性能还受到组件温度和辐照度变化的影响,致使最初的颗粒污染进一步恶化为软硬阴影问题。在多支路配置中,单个电池或隔离区内的软阴影可以通过公用逆变器在其他并联支路中引发电流不平衡。在单个支路上,光伏阵列隔离区上的硬阴影将降低支路电压,但与在单个支路上的软阴影一样,逆变器将检测并调节降低电压。然而,并联阵列中不同支路上的电压不匹配(即部分阴影),意味着连接到单个公共逆变器的不同并联支路将传送不同电压,致使调节最佳电压值以达到最大功率这一过程变得复杂且不可预测。 如何降低光伏污染的影响,同时提高产能 减少因光伏组件污染而导致的发电量,降低产量损失造成的不利影响, 重要因素是准确收集有关污染率(SR) 的数据,并与同类“洁净”组件的预期数据进行比较。详细而准确地监控污染率将通过显著减少“停机”时间来确定计划内和计划外维护的时间和成本效益。有效的数据记录和报告可使清洁污染的光伏组件的时间更有效,而非依赖固定的维护计划。这种固定维护计划可能会产生不必要的清洁成本或在纠正不可预测的环境事件的影响方面出现延误。优化电厂组件功能的关键在于正确的预防性、纠正性的维护策略。
  • 太阳能薄膜电池研究获得重要进展
    德国美因茨大学13日发表公报说,该校研究人员参与的太阳能薄膜电池研究项目取得重要进展,有望使太阳能薄膜电池突破目前20%光电转化率的纪录。  目前光电转化率最高的是铜铟镓硒(CIGS)太阳能薄膜电池,可达20%,但与超过30%的理论值仍相距甚远,其主要难题是材料中的铟、镓分布和比例难以达到理想值。  美因茨大学的研究人员与IBM公司德国美因茨分部以及生产特种玻璃的德国肖特公司等合作,借助电脑模拟程序发现铜铟镓硒材料的铟镓分离温度,即在稍低于正常室温的情况下,铟镓会完全分开且分布不均匀,从而导致材料的光电作用减弱。而超过这个温度后,铟镓会相互融合,且温度越高其分布得就越均匀。这表明太阳能薄膜电池生产过程需要较高的温度,只要最后的制冷步骤足够快就能使这种均匀性“定格”。  以往生产工艺受生产必需的玻璃底板的耐热性限制,无法提高温度。为此肖特公司研发了一种能够耐受超过600摄氏度的特殊玻璃材料。研究人员说,此项成果是一个重大突破。  这一成果发表在美国《物理评论快报》上。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制