当前位置: 仪器信息网 > 行业主题 > >

肽生物标志物

仪器信息网肽生物标志物专题为您整合肽生物标志物相关的最新文章,在肽生物标志物专题,您不仅可以免费浏览肽生物标志物的资讯, 同时您还可以浏览肽生物标志物的相关资料、解决方案,参与社区肽生物标志物话题讨论。

肽生物标志物相关的资讯

  • 赛默飞世尔科技成立全新生物标志物转化中心
    赛默飞世尔科技成立全新生物标志物转化中心目标是加速以质谱技术为基础的生物标志物研究,并加速这种研究应用到日常临床试验的开发中  中国上海,2011年9月13日——全球科学服务领域的领导者,赛默飞世尔科技(以下简称:赛默飞)于2011国际人类蛋白质组(HUPO)大会上宣布成立全新生物标志物转化中心(BT中心)。BT中心的目标是加速以质谱技术为基础的生物标志物研究,并加速这种研究应用到日常临床试验的开发中,以最终实现商品化。该中心位于马萨诸塞州剑桥,汇集了来自赛默飞BRAHMS产品线及质谱生物标志物研究(BRIMS)中心的专家。  “我们对BRIMS中心负责质谱生物标志物研究和高通量定量试验开发的专业人才进行了纵向整合,目标是扩大新蛋白质和肽生物标志物的应用及临床试验的潜力,”赛默飞BRAHMS生物标志物研发总监Bruno Darbouret如是说,“这一发展最终将加速疾病诊断测试的商品化。”  赛默飞拥有专利Thermo Scientific BRAHMS生物标志物,现已成为专业体外诊断测试的领先供应商,不仅充分了解临床市场的需求,并将致力于诊断开发、验证及商品化,为BT中心确定重点疾病领域。公司与临床研究人员所建立的良好关系将有助于获取临床合作伙伴和病人样品,有利于利用BRAHMS生物标志物开展研究和验证工作。  针对所选的疾病领域,BRIMS中心将致力于以质谱定量技术为基础的生物标志物研究和多重选择反应监测(SRM)试验的开发工作,以识别潜在生物标志物及其与临床相关的异构体。随后将开发可靠、可重现的目标质谱试验方法用于验证潜在生物标志物,并最终应用于临床诊断市场。  赛默飞将拥有所有生物标志物及试验相关的知识产权,并且在获得所有所需的法规批准后,将试验商品化为临床诊断产品和服务。  “将质谱生物标志物研究有效转化为日常临床诊断试验开发是个体化医学领域一项重要的挑战,”BT中心团队负责人Bryan Krastins如是说,“要想弥合这两者间的差距,必须在质谱生物标志物研究和日常试验开发方面具有非常出色的能力。了解临床医师和病人的需求、拥有丰富的临床验证经验,这是将新兴测试转化为日常临床试验的必备条件。全新的BT中心整合了所需的所有能力,旨在加速从生物标志物研究到临床试验开发和验证的整个过程。”  Thermo Scientific BRAHMS产品线包含一系列诊断测试流程,以改善对危害生命的疾病的诊断和治疗,利用专利生物标志物为病人和用户提供更经济、更专业的诊断技术。Thermo Scientific BRAHMS产品已应用于全球各地超过60个国家。  位于马萨诸塞州剑桥的BRIMS中心为蛋白质生物标志物的识别和验证开发了一系列方法和应用。该中心配备完整的Thermo Scientific质谱仪产品,由质谱、蛋白质技术和信息学等领域的专业科研人员组成,同时也负责开发针对蛋白质组学研究的软件工具。  欲了解更多关于赛默飞蛋白质组学研究的解决方案,请拨打电话800 810 5118 或400 650 5118,发送邮件至cru.cn@thermofisher.com,或登录网站http://www.thermo.com.cn/ms。  关于赛默飞世尔科技  赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。我们致力于帮助我们的客户使世界更健康、更清洁、更安全。公司年销售额接近110 亿美元,拥有员工约37000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与工业过程控制行业。借助于Thermo Scientific 和Fisher Scientific 两个首要品牌,我们将持续技术创新与最便捷的采购方案相结合,为我们的客户、股东和员工创造价值。我们的产品和服务有助于加速科学探索的步伐,帮助客户解决在分析领域所遇到的各种挑战,无论是复杂的研究项目还是常规检测或工业现场应用。 欲了解更多信息,请浏览公司网站:www.thermofisher.cn
  • 默克密理博生物标志物与转化医学中文站隆重上线
    多维全面地研究疾病状况下的生物学变化将是转化医学研究时代最重要的发展方向。与生物标志物逐个检测再进行数据叠加分析不同,Milliplex多重检测技术整合了从细胞内指标到细胞外的、最完整的、最全面的生物标志物库,在Luminex仪器平台上进行同时检测,获得最准确、最精确、批次间最稳定的结果。基于默克密理博35年的专业基础和积累,Milliplex建立了生物标志物多重检测的行业金标准。为了让转化医学研究者了解液相芯片技术,默克密理博隆重推出中文版Milliplex生物标志物与转化医学专题网站。访问Milliplex生物标志物与转化医学中文站您可以通过此网站了解最新生物标志物与转化医学的前沿进展、生物标志物检测平台及其软件、以及基于此平台的默克密理博Biomarker检测服务。专业领域的转化医学研究者也可选择您目前从事的领域,快速选择合适您的生物标志物服务、配套试剂或检测平台。立即登录Milliplex生物标志物与转化医学中文站更多信息,请访问此处
  • 代谢组学| 岛津质谱助力生物标志物的研究与发现
    导读代谢组学(Metabonomics / Metabolomics)是继基因组学和蛋白质组学之后新近发展起来的一门学科,是系统生物学的重要组成部分,已经应用到了诸如动物、植物、微生物的机理研究中,着重探索、发现与疾病、医药、功能相关的生物标志物(Biomarker)。生物标志物是指“一种可客观检测和评价的特性,可作为正常生物学过程、病理过程或治疗干预药理学反应的指示因子”,寻找和发现有价值的生物标志物已经成为当前生物、医药领域的研究热点。然而,生物标志物的发现,是一场砂砾淘金、去伪存真的艰难征程,面临诸多挑战。 挑战1 生物标志物的发现,海量筛选,准入高,难度大 相比于基因组学和蛋白组学,代谢组学难度急剧增加。原因有: 1. 目标物范围更广:基因/转录组只需测4种核苷酸排列,蛋白组测20种氨基酸排列,代谢组则包含各类小分子代谢物,要进行结构鉴定可比大海捞针; 2. 需要交叉专业知识:如将代谢组学应用在生物研究中,需要分析化学背景进行分离检测,这些数据的正确解析和可视化需要有统计分析的基础;最后需要了解生物学知识以诠释数据背后的生物学意义; 3. 软硬件要求高:使用的分析体系大都属于高端仪器及其配套软件,比如色-质谱联用系统里色谱可选GC-MS,LC-MS,CE-MS,质谱根据靶向、非靶向可选QQQ,Q-TOF,IT-TOF等;海量数据采集完毕还需要专业、多功能数据分析平台解读数据,最后还要对潜在生物标志物进行结构鉴定,因此代谢组学每一步都是准入高,难度大! 挑战2 如何去伪存真,减少无意义差异物,找到真正的生物标志物 代谢组学巨大的挑战之一,是如何减少生物样品本身,或采集、保存、前处理和分离检测过程中产生“非预期”或“噪音”代谢物,从而去伪存真,找到真正的差异生物标志物: 1. 个体情绪差异、非目标病因的生理差异(近期饮食习惯、喝水量、排尿量、运动量、生病、过敏)、其他药物的耦合作用/副作用,都会对个体代谢物产生非预期的影响; 2. 在采集样本时,如血样、组织、器官,采集者参差不齐的技术熟练度也会引入其他刺激和干扰因素; 3. 样品的保存同样会引入大量干扰物或造成样品变化。比如保存前是否存在溶血,保存温度,冷冻时间长短等,都会使样品产生不可预期的变化; 4. 不同的样品前处理手段,如液液萃取、固相萃取、蛋白沉淀等,其化学、物理选择性不同;另外,操作人员的熟练度、溶液量、溶液污染、萃取柱批间差等样本外的误差,都可能会造成样品组内和组间差异。 海量的待选小分子目标物,加上上述这些“不确定性”和“科学偏差”产生比生物标志物浓度更高、响应更强的无意义组别差异物,使得代谢组学在生物标志物发现的路上,困难重重,犹如大海捞针,沙里淘金。虽然后续的统计分析会把大多数的这类干扰物去除,却不能保证最终能得到正确的生物标志物,或使其处于最显著地位。 虽然代谢组学研究困难重重,但经过多年的研究探索,科研界都认同利用代谢组学的思路发现生物标志物是方向正确、前景广阔的,相信随着分析仪器,特别是高端质谱及其配套软件和科学家研究水平的提高,越来越多有用的生物标志物会被挖掘出来造福于人类。 岛津是全球领先的质谱研发、生产厂家:从上世纪70年代开始研发扇形质谱,成功生产了世界上第一台商品化扇形磁场型质谱GCMS LKB9000;80年代开发了基质辅助激光解析电离飞行时间质谱(MALDI-TOF)和电感耦合等离子体质谱(ICP-MS),岛津科学家田中耕一先生在2002年因为MALDI离子源的研发获得了诺贝尔化学奖,因此岛津拥有深厚的质谱研发基础和实力。 目前岛津质谱的产品线齐全,有机质谱包括单四极杆质谱(SQ)、三重四极杆质谱(TQ)、高分辨质谱离子阱飞行时间质谱(IT-TOF)和四极杆飞行时间质谱(Q-TOF);无机质谱有ICP-MS;生命科学领域有MALDI-TOF、质谱显微镜等。这些质谱仪器与分离技术联用,满足科学研究的各种需求。基于岛津高端质谱,国内高校研究所发表了多篇代谢组学用于脑卒中、癌症和动物生理相关的生物标志物发现的文章,在此系列微信中挑选出典型案例,帮助读者进一步了解疾病和生理现象。
  • 专家共议《感染相关生物标志物临床意义解读专家共识》
    p  感染性疾病是严重的公共卫生问题和造成人类死亡的重要因素。大多数感染性疾病只要得到及时、准确的诊断,并给予科学合理的治疗,都有可能在相对较短的时间内彻底治愈。感染相关生物标志物的检测对感染性疾病的辅助诊断、判断预后、确定抗感染疗程与连续监测方面都有较大帮助,甚至能在一定程度上帮助区别引起感染的致病原。/pp  近日,在南京举办的《感染相关生物标志物临床意义解读专家公识》(以下简称《共识》)媒体专访会上,中国人民解放军总医院呼吸科主任解立新教授、解放军南京总医院呼吸病研究所所长施毅教授以及浙江省人民医院检验中心主任周永列教授从不同角度对《共识》内容进行了全面、深入的解读。/pp  strong感染生物标志物PCT与IL-6 辅助感染性疾病诊疗/strong/pp  “感染性疾病不能仅靠症状、体征、影像学表现作出判断,优选良好的感染相关生物标志物对于帮助临床鉴别感染与非感染、动态评价疾病严重程度和预后、指导抗菌药物的合理使用具有重要意义。”解立新教授指出,“优选感染标志物应具备的特性包括:灵敏度高,可以在感染早期即发生显著变化且不受非感染因素影响 具有高特异性,能够区分病原体类别,鉴别是否为细菌性感染 能够辅助评估感染严重程度和预后,监测治疗应答,并指导抗菌药物的使用等。”/pp  传统的细菌感染生物标志物包括外周血白细胞(WBC)、红细胞沉降率(ESR)、中性粒细胞碱性磷酸酶(NAP) 积分、内毒素水平等,其或因影响因素较多、特异性不高,或因操作相对烦琐,目前临床价值有限且已不再广泛应用。C-反应蛋白(CRP)是目前在临床广泛应用的细菌感染生物标志物。作为敏感的炎症指标,CPR检测快速、便捷,其升高幅度与感染或炎症严重程度呈正相关 CRP检测还可辅助区分细菌感染和病毒感染。/pp  此外更值得关注的是,更多优秀生物标志物如降钙素原(PCT)、白细胞介素6(IL-6)等近年也逐步在临床上开始应用,具有广阔的应用前景。施毅教授指出:“PCT作为目前临床常用的重要细菌感染生物标志物,参考意义较大 IL-6检测的相对优势则在于急性感染的早期发现。”/pp  PCT是一种功能蛋白,是降钙素合成过程中的中间产物,是无激素活性的降钙素前肽物质。《共识》指出,PCT对严重细菌感染的早期诊断、判断病情严重程度、预后、评价抗感染疗效、指导抗菌药物应用等方面都具有较高的临床价值,且对全身与局部感染具有较高诊断价值,是判断脓毒症的重要工具。/pp  一项包含 30 个临床试验的荟萃分析证实PCT可有效辅助脓毒症的早期诊断。实验数据显示:当PCT截断值定为 1.1μg /L 时,早期识别脓毒症的敏感性为77%,特异性为79%。此外,PCT在局灶性细菌感染中往往正常或轻度升高,可辅助诊断局灶性细菌感染。同时,PCT水平可有效反映患者细菌感染严重程度,其浓度与全身性细菌感染严重程度呈正相关。/pp  在判断脓毒症患者预后及辅助指导抗生素治疗方面,研究证实,经过有效的抗感染治疗,脓毒症患者24小时后循环中的PCT水平可降低50%,其降低程度和患者存活率升高呈正相关,而PCT水平仍继续增高或居高不下则提示预后不良 PCT检测结合临床信息能够进一步明确抗生素治疗的必要性以及优化抗生素使用流程,动态监测PCT水平可辅助抗生素治疗,检测结果可作为开始抗生素治疗的指征以及抗生素疗效判断的标准,从而显著减少抗生素暴露时间,且安全性良好。/pp  IL-6是参与脓毒症等感染的重要炎性介质,在感染发生后很快释放入血,可作为感染程度的指标。《共识》指出,在炎症反应中,IL-6的升高早于其他细胞因子,也早于CRP和PCT,2小时即达峰值且持续时间长,因此可用来辅助急性感染的早期诊断。/pp  《共识》强调,没有任何一个生物标志物是绝对敏感又绝对特异的,不能单凭某个生物标志物的改变来诊断疾病,只有结合、参照患者的临床表现与其他实验室检查结果,才能作出正确的判断。施毅教授指出:“多个指标的联合检测将是未来的发展趋势,可提高对感染性疾病的早期诊断率和预后判断价值。”PCT联合IL-6检测可用于细菌性感染辅助诊断,避免单一指标对感染类别判断的误差,从而帮助临床医师快速确定患者的治疗方案、提高治疗成功率,具有重要的临床应用价值。/pp  strong电化学发光分析法,提升生物标志物临床价值/strong/pp  “好的生物标志物需要有好的检测方法来实现临床价值,PCT与IL-6的临床运用需要以精准的检验结果作为有力支撑。此次《共识》反映了临床需求,为检验科在感染生物标志物的检测和质量控制技术的发展指明了方向。”周永列教授表示,“在选择检测系统时,控制总误差及校准品溯源性是检验结果准确性的关键所在,同时要重视检测系统的性能验证,做好质量控制。”/pp  《共识》指出,罗氏诊断ElecsysR BRAHMS PCT是国内外最常用的PCT检测之一,其使用电化学发光法技术,使检测结果高度一致且具有可溯源性,仅需18μl样本量,就可在18分钟内实现0.02~100ng/ml的检测范围。同时,其拥有优秀的批内和批间精密度,可适用于所有罗氏诊断免疫分析平台,实现高度一致性的检测结果。联合ElecsysR IL-6检测,有助于临床医生早期发现感染,实现鉴别诊断、疗效监测、预后评估,进而改善治疗决策,提高感染性疾病治疗的成功率。/p
  • 日研检生物标志物新方 灵敏度提高至百万倍
    日本东京大学日前发表一份公报称,其研究人员发明一种生物标志物检测新技术,使癌细胞和流感病毒等生物标志物的检测灵敏度提高到此前的100万倍。这有助于较早发现相关疾病。相关论文将刊登在《芯片实验室》杂志网络版上。  抗体抗原反应是指抗原与相应抗体之间所发生的特异性结合反应,抗原是血液中的癌细胞和病毒等产生的特异性蛋白质,抗体则指可与相应抗原发生特异性结合的免疫球蛋白。  迄今,利用抗体抗原反应进行生物标志物检测时,主要采用的酶连接免疫吸附剂测定法是将可溶性的抗原或抗体吸附到聚苯乙烯等固相载体上,进行免疫反应的定性和定量测定。不过由于要在小型试管中操作,所以浓度被稀释,灵敏度较低。  东京大学教授野地博行领导的研究小组利用半导体制造中常用的精密加工技术,在1平方厘米的玻璃上开出100万个小孔,然后让抗体抗原反应产生的分子流过,可以逐一捕捉到这些分子。在检测前列腺癌指标“前列腺特异抗原”时,即使其浓度只有传统检测法的百万分之一,也仍然可以被检测出来。
  • 代谢组学|生物标志物应用于中风的早期诊断及治疗
    导读脑卒中俗称中风,是全球范围内发病率、致死率以及致残率最高的疾病之一,治疗脑卒中所消耗的人力财力巨大,给患者和家人带来多重痛苦。 目前发现80%-85%的脑卒中为缺血型脑卒中,在发病前期有一个短暂的窗口期,有效地在窗口期诊断脑卒中可对后续治疗起到事半功倍的效果。目前已发现一些药物能有效减轻缺血引起的脑损伤,但机理尚不清楚。研究清楚脑卒中发病及药物作用机理,亦可帮助更有效的治疗。 近年来的研究表明,缺血性脑卒中与缺血缺氧引发的炎症反应有密切联系,而炎症反应多与脂质代谢相关联。通过比较健康人与患者体内脂质种类及浓度的差别,进而找到关键的“生物标志物”,既可帮助脑卒中的早期快速诊断,又有助于理解致病及治疗机理。广东医科大学蔡春教授团队及华南理工大学周婷老师团队利用岛津特色质谱仪,分别以靶向和非靶向代谢组学的手段开展了脑卒中相关研究,以下是相关成果简介。 蔡春教授团队使用岛津超高效液相-三重四极杆质谱联用仪LCMS-8045比较了122名健康志愿者和197名缺血性脑卒中病人血浆中158种脂肪酸的浓度差异,通过机器学习的方法建立了模型。该模型找到了一组生物标志物(AA、DHA、13-HODE等),能准确区分脑卒中患者与健康志愿者;另一组生物标志物(11-HETE和8-iso-15-keto-PGF2α)能区分初次发病患者和复发患者。这一研究发表在化学领域一区杂志Chemical Communications中,为脑卒中的早期诊断提供了新的有力工具,且通过一组而不是一个生物标志物的检验,能大大提高预测的准确性。 蔡春教授团队文章首页 岛津超高效液相-三重四极杆质谱联用仪 LCMS-8045 正常组与患病组脂肪酸浓度水平比较 周婷老师团队利用岛津超临界流体色谱仪与离子阱-飞行时间质谱仪联用系统(SFC-IT-TOF)研究了异甜菊醇钠治疗脑卒中的作用机制。首先,利用SFC-IT-TOF分析了正常大鼠、给药大鼠和脑卒中模型大鼠脑组织中的代谢物,通过PLS-DA、OPLS-DA等统计学手段找到组间差异性的生物标志物,再利用IT-TOF对代谢物质量数的精确测定,结合公共数据库,对差异性代谢物进行定性,最终筛选出20个生物标志物,其中溶血磷脂和多不饱和脂肪酸的水平显著升高,说明了脑卒中的病理机制可能与PLA2以及炎症反应有关。 岛津超临界流体色谱仪Nexera UC系统正常组与给药组OPLS-DA得分图 利用岛津特色质谱仪及液相前端系统,两个科研团队从不同的角度推进了我们对脑卒中的理解,让我们在战胜脑卒中的道路上更进了一步。 参考文献:Zhang L. et al., Integration of ultra-high-pressure liquid chromatography–tandem mass spectrometry with machine learning for identifying fatty acid metabolite biomarkers of ischemic stroke, Chem Comm, doi 10.1039/d0cc02329a Yang Y. etal., Lipidomics study of the protective effects of isosteviol sodium on stroke rats using ultra high-performance supercritical fluid chromatography coupling with ion-trap and time-of-flight tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis 157 (2018) 145–155
  • 发展中的肿瘤生物标志物无创成像新技术
    作者:Todd Sasser,美洲应用主管及高级NMI应用专家 临床前成像对了解人体处于健康与疾病等不同状态下运行的方式以及描述人体对生理或环境变化起着至关重要的作用。它能在器官、组织、细胞和分子水平上提供对疾病过程的重要见解。这些知识有助于开发新的治疗策略,进而改善患者的治疗结果并挽救生命。而对于评估新疗法的有效性和安全性以及在临床使用前描述药物分布模式,临床前成像同样十分重要。 利用解剖学评估技术,如磁共振成像(MRI)、计算机断层扫描(CT)以及用于分子可视化的正电子发射断层扫描(PET)和单光子发射计算机断层扫描(SPECT),可以实现对动物模型的经济高效的高通量纵向研究。在开始临床试验之前,小动物研究对于探索和验证临床前阶段的显像剂十分必要。根据PET成像所提供的数据,可以从动物研究推及人类研究,在这种情况下,研究人员越来越多地将其运用于药物转化开发阶段。 临床前PET肿瘤研究 为患者提供更个性化癌症治疗的需求,推动了临床前PET肿瘤研究的进展。大量不同类型的肿瘤(包括那些尚未得到很好表征的肿瘤)及其对治疗的不同反应,使得寻找有效的新癌症疗法变得非常具有挑战性。PET等非侵入性活体成像技术通过对肿瘤相关过程的实时可视化,使研究人员能够更好地了解肿瘤演变的过程。 这些方法有助于提高对肿瘤形态、演变和生物标志物表达的认识。通过静脉注射放射性示踪剂成像,PET能够提供有关肿瘤受体表达、能量代谢和其它生物标志物的信息。这种放射性示踪剂包括一种放射性同位素,最常见的是氟-18(18F),它附着于一个靶向某个特定受体代谢途径的分子,肿瘤细胞对它的摄取受到监测。 “常规”PET示踪剂,如18F-FDG或18F-氟胸腺嘧啶(FLT),被视为肿瘤生理学的黄金标准及监测通用标志物,包括代谢改变和缺氧、增殖和转移。研究人员目前正在开发更为特异的PET药物,能够靶向某种分子或基因产物的表达,并有可能帮助研究人员更好地理解与评估肿瘤生物学和治疗反应。 多模式技术 新型PET示踪剂的发展,结合CT及MRI等其它成像方式,可以应用于肿瘤演变的研究和生物学特性的表征。自20世纪90年代中期以来,PET/CT中的CT部分为功能性PET成像提供了解剖学参考和衰减图,并因其高通量、易用性以及在骨、肺应用中的高分辨率而成为实现一系列功能的有用工具。然而,PET/CT成像仍然使用电离辐射,而PET/MR技术可以减少这一局限。PET/MR在多参数成像和优越的解剖软组织对比度方面的潜力,使其成为临床前肿瘤学研究中日益流行的方法。它能提供一些独特的能力,包括检测肿瘤边缘、评估单个肿瘤内示踪剂分布以生成感兴趣区域、在一系列临床前模型中计算标准化摄取值(SUV),从而改进互补PET数据的功能分析。虽然PET和CT数据是连续采集的,但是一些PET/MR系统可以同时采集数据,从而能实现复杂的成像工作流程。 在临床前肿瘤学中,PET/MR出色的解剖软组织对比度提供了在广泛的模型中检测肿瘤边缘/体积的独特能力,这可以提高互补PET数据的功能性分析。MR已经被证明可以检测早期的异种移植瘤,以及大多数器官中的早期原位和自发性肿瘤(图1A)。由于能实现肿瘤环境的解剖学分辨率(图1B),并通过多种因素(灌注/扩散、蛋白酶活性、缺氧、代谢物和代谢)联合检测对其进行进一步增强(图1C),因而PET/MR提供了一种可用于探究肿瘤微环境复杂性的独特工具。同时,甚至还可以利用多重功能以更高的精度对单个变量(例如新陈代谢)进行研究。图1:PET/MR在临床前肿瘤研究中的独特能力。(A)早期原位CT-2A胶质瘤小鼠的 8天18F-FDG/PETMR成像。PET/MR可以在更广泛的异种移植、原位和自发性肿瘤模型中以及肿瘤演变的早期阶段提供肿瘤边缘检测。(B)异种移植SKOV3肿瘤小鼠的18F-FDG/PET-MR成像。PET/MR可以提供精细的软组织细节,特别是与肿瘤生物学研究相关的细节。(C)晚期小鼠CT-2A胶质瘤的18F-FDG/PET和DWI-MR成像。功能性PET和功能性MR的交叉多重、多参数检测,可以揭示单一功能性MR或单一PET无法确定的生物过程。使用Bruker BioSpec 70/20带PET插件获得的图像。图片供稿:Uwe Himmelreich博士、Willy Gsell博士、Cindy Casteels博士和Matteo Riva博士,比利时鲁汶大学医院分子小动物成像中心(MoSAIC)。 开发未来的癌症疗法 多模式PET技术的不断发展将继续推动临床前肿瘤学研究。PET、PET/MR和PET/CT在示踪剂开发、治疗监测和肿瘤生物学研究方面的成效正在改变癌症的治疗方式,使之朝着更个性化治疗的方向发展。使用先进成像仪器进行的前沿研究,正使该领域向个性化治疗、优化癌症治疗与患者护理的方向更进一步。 作者简介Todd Sasser博士是布鲁克临床前成像应用负责人。他直接与各研究点合作,涉及感染成像、癌症生物学和探针开发等多个学科领域的PET应用。Sasser博士曾就读于英国利物浦大学和美国夏威夷大学,还是法国圣母大学的访问学者。
  • Sciex与新加坡PPC合作研究癌症生物标志物
    Sciex公司与位于新加坡国立大学生命科学部的蛋白质和蛋白质组学研究中心(PPC)在2015年5月18日宣布签署学术合作备忘录,旨在促进在生物标志物发现方面的共同研究和开发。  从合作双方来看,他们将分别扮演生物医学研究中的学术和商业角色。这项合作将促进癌症的检测和筛查。  Danaher集团旗下的Sciex公司和PPC将开发以质谱为基础的方法用于斑马鱼血清蛋白质和代谢物的分析,也会合作举办蛋白质组学定性和定量方法研讨班,作为可选择的蛋白质组学方法用以培训新加坡地区的研究者。  Sciex和PPC表示:研究人员开发的方法和技术将用于癌症演变生物标志物的发现,这将对癌症机理研究和抗癌药物的药代动力学和药效学研究带来帮助。除此之外,这些方法和技术也可用于探测环境监测的生物标志物。  PPC拥有来自Sciex公司的三套质谱系统来进行试验研究,包括QTRAP 6500、TripleTOF 5600和4800 Plus MALDI-TOF/TOF。还具有Swath 2.0数据采集软件用于大量样本的蛋白质生物标记物的定量分析。  &ldquo 我们与PPC的合作是反映我们致力于为新加坡研究人员探究疾病演变和药物开发提供支持的又一座里程碑。&rdquo Sciex公司总裁Jean-Paul Mangeolle在一份声明中表示。编译:郭浩楠
  • 沃特世推出全新CCS数据库,用于代谢组学/脂质组学生物标志物的结构鉴定
    囊括900多个内源性物质的CCS(碰撞截面积)数据库,提高分析人员对非目标性生物标志物鉴定的信心沃特世公司(纽约证券交易所代码:WAT)近日针对基于离子淌度质谱技术的科学研究推出了全新的代谢组学与脂质组学分析数据库。此数据库囊括了900多个化合物的碰撞截面(CCS)测得值,CCS值体现了测量气态离子的三维构象,为确认生物标志物的结构提供了另一个参数。此外,数据库中还包括600个化合物MS/MS质谱图,用于生物标志物的结构确认。 这一全新的数据库目前已经整合至沃特世公司独有的软件平台UNIFI科学信息系统中,该平台兼具仪器控制、数据分析、可视化以及色谱和质谱结果管理功能。此外,该数据库还可与Progenesis QI软件联合使用。沃特世已经在美国质谱协会(ASMS)第64届年会上隆重介绍了这款全新的数据库。 借助全新的CCS数据库,科学家们可以通过离子淌度分离技术准确鉴定复杂样品基质中的生物标志物。CCS值是一项精确的离子物理化学性质,与气态离子的大小、形状和所带电荷有关。在样品量有限且样品高度复杂的非靶向代谢组学与脂质组学研究中,研究人员可利用数据库中的CCS值确认不同样品组中表现出显著统计差异的内源性代谢物和脂质的鉴定结果。 沃特世组学解决方案高级市场开发经理David Heywood表示:“代谢组学与脂类组学是生物标志物发现和转化研究的关键技术,无论我们是需要通过鉴定目标内源性生物标志物进行功效研究,或者需要了解疾病进展,这些技术都在研究中占据着重要的位置。在非靶向代谢组学与脂质组学研究中,研究人员需要尽可能多地获取基本生物学信息,因此离子淌度质谱技术必不可少。离子淌度技术可提高总体色谱峰容量,而CCS值则能够帮助研究人员更加有信心地对特定代谢物进行准确鉴定。” 适用于UNIFI的代谢组学与脂质组学分析CCS数据库可与Vion IMS QTof和SYNAPT G2-Si HDMS系统配合使用,使高分辨淌度质谱的使用更加简单方便。 高分辨淌度质谱技术则能够与Progenesis? QI软件配合使用,可以帮助从事生物标志物鉴定的研究人员在代谢组学与脂质组学中获得稳定可靠的鉴定结果。 更多信息:http://www.waters.com/clarity 关于沃特世公司(www.waters.com)沃特世公司(纽约证券交易所代码:WAT)专注于为实验室相关机构开发和生产先进的分析和材料科学技术。50多年来,公司开发出一系列分离科学、实验室信息管理、质谱分析和热分析技术。 ###Waters、UNIFI、Progenesis、Vion、SYNAPT和HDMS是沃特世公司的商标。
  • 新开发:应用岛津质谱技术开发生物标志物
    -冠状动脉狭窄症的血液检查方法 -东京大学医学部附属医院株式会社岛津制作所 因动脉硬化等而变狭的冠状动脉(注1)在经过置管治疗后,通过心脏置管检查(注2)确认治疗部位是否痊愈的方法现已是标准的检查方法。但是,这种检查对身体的负担大,并且费用昂贵。为此,需要一种能够代替心脏置管检查的简易检查法。 最近,东京大学医学部附属医院循环系统内科・ 普及预防医学讲座特任副教授铃木亨、东京大学大学院医学系研究科循环系统内科学教室原教授永井良三、教授小室一成与株式会社岛津制作所基础技术研究所主任研究员藤本宏隆合作研究,共同开发了基于质谱分析装置(注3)的新血液检查法。在进行冠状动脉置管治疗后再次狭窄的诊断中,可以简便地判断患者是否需要接受心脏置管检查,这是一个可以减轻身体负担、令人期待的新检查方法。本研究开发的成果已经于5月13日(美国东部夏令时间)发表在Clinical Chemistry电子版上。今后,该院争取实现该诊断法的实用化。 本开发获得了厚生劳动科学研究经费、科学研究经费(文部科学省)、尖端研究开发支援(FIRST)计划(日本学术振兴会)、创新体系整备事业(形成尖端融合领域创新基地)计划(文部科学省)的支持。【发表者】东京大学医学部附属医院 循环系统内科・ 普及预防医学讲座  特任副教授 铃木亨株式会社岛津制作所 基础技术研究所 生命科学研究所 主任研究员 藤本宏隆【研究背景】 对于造成心绞痛的冠状动脉狭窄的治疗通常采用使用支架(注4)或气球导管(注5)的心脏置管治疗(注6)。但是,治疗后经过约半年的时间,约有10~30%的患者在治疗部位再次发生狭窄,称为「再狭窄」。为此,在日本,置管治疗后经过约半年时,通常进行置管检查,确认是否发生再狭窄。此检查对于发生了狭窄的患者来说是非常必要的检查,但检查使用造影剂、使用粗注射针刺血管等,造成患者较大的身体负担,还有放射线辐射问题,并且,费用也比较昂贵。因此,这就需要先进行可简便筛查的血液检查,诊断患者是否需要接受置管检查。 东京大学医学部附属医院循环系统内科・ 普及预防医学讲座的特任副教授铃木亨以及株式会社岛津制作所基础技术研究所生命科学研究所主任研究员藤本宏隆,从2006年开始实施共同研究,使用质谱仪开发基于生物标志物的新诊断法,用于诊断患者是否需要接受置管检查。 世界体外诊断药市场在2012年已经达到524亿美元的规模,今后的年平均增长率预计为7%。2011年的日本市场规模达7,711亿日元规模。【研究内容】 已经在临床上用作心衰生物标志物(注7)的B型利钠肽(BNP)(注8)是否也可以应用于冠状动脉狭窄诊断?至今尚未明确。B型利钠肽是由32个氨基酸连接而成的肽,但近年来,世界上有报告称在实际的血液中,除32个氨基酸连接的形态之外,好像还存在着其他形态。 研究队伍首先使用MALDI-TOF型质谱仪(注9)调查了患者血液中的BNP形态,结果发现存在由4种形态组成的BNP:除了原本由32个氨基酸组成的BNP之外,还有末端去掉2个氨基酸的片段、去掉3个氨基酸的片段以及去掉4个氨基酸的片段。 使用发生冠状动脉再狭窄的患者血液与未发生冠状动脉再狭窄的患者血液详细分析了这4种BNP,得知了此病状与BNP片段(具体地讲,是末端去掉4个氨基酸的片段与去掉2个氨基酸的片段之比)之间有相关性。增加临床检体的分析数量,进一步进行探讨,并设定截止值(注10),结果可知可以进行再狭窄排除诊断(没有发生再狭窄的诊断),明确了此BNP片段可以作为冠状动脉置管治疗后再狭窄的生物标志物。 根据以往各类的研究报告,造成狭窄的因子有性别差、吸烟、糖尿病、肥胖等。通过此次的统计解析,明确了造成再狭窄发生的因子只有用于狭窄治疗的支架种类和此次判明的BNP片段。目前,就诊断应用以及未来可否用于预测诊断继续进行追踪调查,争取将研究成果实用化,还原给社会。【术语解说】(注1)冠状动脉如花冠状包围心脏的血管(动脉),向心脏供给氧。(注2)心脏置管检查将被称为置管的吸管状细管从手腕或大腿根部的动脉插入到心脏的血管(冠状动脉)或心脏中,注入造影剂,观察冠状动脉的状态或测定心室内压力或观察心脏运动的检查。(注3)质谱分析仪将极少量的样品电离,进行分离・ 检测・ 数据解析,获得与化合物质量相关信息的分析仪器。(注4)支架金属制成的网状筒,用于使用置管扩张变狭冠状动脉的治疗。近年使用可溶出预防再次发病的药剂的支架。(注5)气球导管用于使用置管扩张变狭冠状动脉治疗的「气球」。(注6)心脏置管治疗为扩张因动脉硬化等变狭、血液不易流动的冠状动脉,使用置管进行治疗的方法。气球导管扩张变窄部分,或在此部位放置支架的治疗方法已经普及。(注7)生物标志物血液、尿等中所含的蛋白质等物质,用于掌握疾病存在、进行程度的指标。(注8)B型利钠肽(BNP)从心脏分泌的一种荷尔蒙,当在心衰等心脏承受负担的状态下从心脏(主要是心室)分泌到血液中。(注9)MALDI-TOF型质谱仪组合基质辅助激光解吸电离法(MALDI:Matrix Assisted Laser Desorption Ionization)与飞行时间质谱分析法(TOF-MS:Time of Flight Mass Spectrometry)的质量分析装置。MALDI已是生物大分子电离的主要方法,从(株)岛津制作所的田中耕一发明的Soft Laser Desorption(获得2002年诺贝尔化学奖)发展而来。(注10)截止值为确定有无疾患而设定的值,以此值为界线改变治疗方案等。【发表杂志】杂志名: Clinical Chemistry电子版刊登时间:5月13日(美国东部夏令时间)论文题目:Processed B-type natriuretic peptide is a biomarker of postinterventional restenosis in ischemic heart disease【参照URL】普及预防医学讲座主页:http://plaza.umin.ac.jp/upm/index.html≪ 东京大学医学部附属医院 咨询方式≫ ・ 有关本检查方法的咨询东京大学医学部附属医院 循环系统内科・ 普及预防医学讲座特任副教授 铃木亨电话:03-5800-9846(直通)     FAX:03-5800-9847E-mail:torusuzu-tky@umin.ac.jp・ 有关采访的咨询东京大学医学部附属医院 公共关系中心担当:小岩井、渡部电话:03-5800-9188(直通)     E-mail:pr@adm.h.u-tokyo.ac.jp≪ 岛津制作所 咨询方式≫ 株式会社岛津制作所 广报室担当:石川电话:075-823-1110 E-mail:isikawa@shimadzu.co.jp参考图1 新开发的诊断方法的概念图 在存在各种物质的血液中,使用抗体只捕捉BNP(免疫沉降法)。BNP除原本的形态(成熟体)外,还存在未成熟体、部分切断的处理体以及翻译后修饰的形态(翻译后修饰体)。这些各种形态的BNP被同一抗体捕获,使用目前已普及的免疫化学方法不能区分检出。但是,如果使用质谱分析仪就可以分别予以检出。 参考图2 新生物标志物的临床有效性 上图表示血管(冠状动脉)内发生狭窄,经置管治疗治疗约半年后,发生再狭窄时与未发生时的情况。 在置管治疗后约半年后进行的置管检查时采集血液,计算从此血液样品中检出的2种BNP片段(末端去掉4个氨基酸的片段与去掉2个氨基酸的片段)的强度比后,调查有与再狭窄和无再狭窄的相关性,结果看见与此强度比的相关性。特别是如果将强度比设定为1.52,则比值大于1.52的患者都未发生再狭窄,这个结果显示出排除诊断的可能性。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳及成都5个分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站http://www.shimadzu.com.cn/an/。
  • 阿尔茨海默病早期诊断新进展:中国科学家发现新生物标志物
    “该发现不仅突破了传统阿尔茨海默病诊断标志物的局限性,还显著提高了诊断的准确度。此外,这些新发现的生物标志物不仅限于脑脊液研究,还可能在血液检测中展现出同样的诊断潜力。”复旦大学附属华山医院神经内科郁金泰教授团队联合复旦大学类脑智能科学与技术研究院的冯建峰/程炜团队发现了对阿尔茨海默病(Alzheimer’s disease,AD)诊断和预测具有重要价值的新型生物标志物——YWHAG,它在识别生物学定义的AD和临床诊断的AD痴呆时的准确度分别高达96.9%和85.7%。当地时间2024年7月10日,该研究在线发表于《自然-人类行为》(Nature Human Behaviour)上。阿尔茨海默病是一种起病隐匿、呈进行性发展的神经退行性疾病,临床特征主要为认知障碍、精神行为异常和社会生活功能减退。据美国阿尔茨海默病协会(Alzheimer’s Association)数据,全球约有5500万人患有阿尔茨海默病和其他痴呆症。因发病机制未明,阿尔茨海默病被认为是“研发黑洞”。当地时间2023年7月6日,美国食品药品监督管理局(FDA)完全批准日本卫材药业(Eisai)和美国渤健公司(Biogen)联合开发的阿尔茨海默病新药Leqembi上市,它也成为20年来首款获FDA批准上市的阿尔茨海默病新药。当地时间2024年7月2日,美国药企礼来(LLY.US)的阿尔茨海默病新药Kisunla获FDA批准上市。两款新药均用于早期阿尔茨海默病患者,这也让早期诊断成为关键。由于两种靶向药物的获批,以及阿尔茨海默病生物标记物研究的进展,美国阿尔茨海默病协会和美国国家衰老研究所在当地时间2024年6月27日更新了《阿尔茨海默病诊断和分期的修订标准(2024年)》(以下简称“新标准”),它将阿尔茨海默病定义为一种生物衰老过程,在无症状时,人们就已经出现阿尔茨海默病神经病理变化,这些变化可以通过生物标记物检测出来。因此,新标准认为不能仅凭临床表现诊断阿尔茨海默病,要通过生物标记物来确诊。郁金泰告诉澎湃科技,通过临床表现诊断阿尔茨海默病即基于患者的认知功能下降和行为改变,结合临床评估、神经心理测试和影像学检查等来定义该疾病。这种诊断通常在病情进展到中晚期时进行,主要依赖于症状和体征。而通过生物标记物来诊断阿尔茨海默病是指基于脑组织的病理特征来诊断该疾病,即β-淀粉样蛋白病理和tau病理的存在,这些病理变化可以通过活检、PET(正电子发射断层扫描)成像或脑脊液(CSF)生物标志物检测来评估,是目前公认的诊断标准。这种定义更加依赖于明确的生物学特征,使得诊断更加客观和精准。新标准将β-淀粉样蛋白病理和tau病理归类为阿尔茨海默病神经病理变化的核心生物标记物,除此之外,阿尔茨海默病的生物标记物还包括疾病发展过程中的非核心生物标记物,如炎症标记物、免疫激活生物标记物等;与非阿尔茨海默病共有的常见病理标记物,如脑血管疾病、神经元α-突触核蛋白疾病生物标记物等。郁金泰团队发现了一种新的生物标记物。其研究共纳入707名参与者,包括认知正常、轻度认知障碍和阿尔茨海默病的人。通过对SomaScan平台(美国Somalogic公司研发的蛋白质生物标志物检测平台,通过高通量分析生物样品中蛋白质浓度变化来监测健康和疾病)检测的脑脊液蛋白质组学数据进行深入分析挖掘,研究团队在6361个蛋白质中筛选出对阿尔茨海默病生物学诊断最重要的四个生物标志物:YWHAG、SMOC1、TMOD2和PIGR蛋白,以及对阿尔茨海默病临床诊断最重要的五个生物标志物:ACHE、YWHAG、PCSK1、MMP10和IRF1蛋白。YWHAG在识别生物学定义的阿尔茨海默病和临床诊断的阿尔茨海默病痴呆时表现最佳,准确度分别达96.9%和85.7%。使用前述四个和五个蛋白分别组成的组合可将诊断准确性提高到98.7%和97.5%。YWHAG、SMOC1、TMOD2和两种蛋白组合的卓越性能不仅在独立的外部队列中得到了验证,而且在区分尸检病理证实的阿尔茨海默病与非阿尔茨海默病时也得到了验证,甚至优于经典的阿尔茨海默病脑脊液核心标志物(Aβ42、p-tau181、t-tau)以及这三种经典标志物的组合。除了卓越的诊断效能,它们在预测阿尔茨海默病临床进展方面也表现良好,与阿尔茨海默病核心病理和认知能力下降密切相关。郁金泰向澎湃科技解释,YWHAG是一种14-3-3蛋白家族成员,也称为14-3-3 gamma。YWHAG蛋白可参与调节细胞周期、信号传导和代谢等多种细胞过程。YWHAG在阿尔茨海默病患者的脑脊液中表现出显著的表达变化,其异常表达与神经退行性变和病理变化相关,通过检测YWHAG的变化,可以反映出阿尔茨海默病病理过程中的神经元损伤和细胞信号通路改变,有助于早期检测和诊断阿尔茨海默病。据郁金泰介绍,检测YWHAG蛋白的方法包括:酶联免疫吸附测定(ELISA),即使用特异性抗体检测YWHAG蛋白,定量分析其在血浆或血清中的水平;质谱分析(LC-MS),即通过液相色谱-质谱联用技术对YWHAG蛋白进行精确检测;免疫印迹(Western blot),即使用抗体对YWHAG进行特异性检测,评估其表达水平;以及SOMAscan,这是一种蛋白质组学技术,利用适体(DNA或RNA寡聚体)进行蛋白质检测,能够高通量、高灵敏度地检测包括YWHAG在内的多种蛋白质。郁金泰团队认为,此次研究成果不仅为阿尔茨海默病的早期诊断和疾病预测提供了全新的生物标志物,更在临床应用和未来研究方面展现了广阔的前景。该发现不仅突破了传统阿尔茨海默病诊断标志物的局限性,还显著提高了诊断的准确度。此外,这些新发现的生物标志物不仅限于脑脊液研究,还可能在血液检测中展现出同样的诊断潜力。据悉,相关的血液YWHAG研究已经在进行中,相关成果已申请专利。研究团队表示,这预示着更加便捷、非侵入性的阿尔茨海默病诊断方法或许将在不久的将来成为现实。新标准特别提到,近年来阿尔茨海默病诊断领域最重要的进展是血液标志物(BBM)的发展,其中一些(不是全部)检测方法表现出准确的诊断性能,这使得阿尔茨海默病的生物学诊断更易获取,并有望彻底改变临床护理和研究。该领域目前正处于过渡阶段,在此期间,血液标志物正在与传统的脑脊液和PET生物标志物相结合进行诊断。
  • CPSA上海2010之讨论主题:药物开发中生物标志物的检测与利用
    仪器信息网讯 2010年4月7日-9日,第一届化学和药物结构分析上海研讨会(CPSA Shanghai 2010,the 1st Annual Shanghai Symposium on Chemical and Pharmaceutical Structure Analysis)在上海锦江饭店顺利举行;来自国内外的100多位学者和专家到会;仪器信息网作为特邀媒体参加了此次研讨会。  一年一度的CPSA会议起始于1998年,通过制药工业有关问题的公开讨论,对其创新技术与工业实践进行回顾,分享他们各自的高新技术实践经验以及对当前学术发展前景的看法。本届上海研讨会主题为“分析性能研究进展:创新应用和新型工作流程”。  【讨论主题:药物开发中生物标志物的检测与利用】Christine Miller博士 Paolo Vicini博士 Hequn Yin博士  相关主题报告:  Optimizing Peptide Quantitation in Drug Discovery  主讲人:Christine Miller博士(安捷伦科技,Agilent Technologies)  Intergrating Data to Generate Knowledge for Drug Discovery: A Role for PK-PD and Translational Research  主讲人:Paolo Vicini博士(辉瑞Pfizer)  Use of Biomarkers in Proof of Concept Trials  主讲人:Hequn Yin博士(诺华Novartis)  相关观点/见解:  (1)ADME研究进展大大改善药物开发过程中的损耗率;  (2)与其它小分子相比,多肽类的参数优化应采用不同的方式;利用多反应监测(MRM)为基础的方法,肽定量可用于药品重要性靶蛋白的多元实验;  (3)生物标志物可以帮助个性化用药等制定方案。
  • 【医学应用】微萃取技术在呼吸生物标志物分析中的应用
    新冠肺炎还未走,支原体肺炎又起!许多企业已经开始纷纷入局呼吸道诊断赛道,尝试通过呼吸物分析能够诊断和监测相关疾病。而前不久,由德国PAS Technology转让到德祥旗下英诺德INNOTEG旗下的技术产品——Needle Trap动态针捕集技术及配套采样装置,在通过呼吸产物分析的诊断与检测应用中具备相当的优势。本文将分享英诺德INNOTEG Needle Trap动态针捕集技术及配套采样装置在临床领域的应用优势。呼吸生物标志物呼气挥发性有机物(VOCs)分析是一种新的医学科学方法,有望成为一种新型的无创诊断工具。呼吸取样与血液或组织分析相反,其无创,并且可以频繁重复检测,对患者和采集样本的工作人员没有任何风险。呼吸 VOCs 的来源可以是作为细胞或微生物的生化产物,也可以是外源污染物或先前吸收。 表1:在人类呼吸中检测到的典型挥发性有机化合物和建议的来源呼吸气体采样一般来说,呼吸周期的不同阶段物质浓度不同,彻 底控制取样是一项关键要求。由于对呼吸采样标准没有严格要求,许多研究使用的是整个呼气的采样(混合呼气)。这就导致了一个问题:混合呼吸会有污染物的影响!该如何解决?解决方案肺泡气中血液中挥发性物质的浓度比混合呼气样高出两倍,污染物的浓度也比混合呼气样低。因此,对呼出气的不同阶段进行取样,不仅可以提高呼气分析的可 靠性,还可以帮助确定呼气生物标志物的来源。 图1:通过二氧化碳示踪识别呼吸阶段和控制肺泡取样。I+II+III 期=呼气期(“混合呼气期”),III 期=肺泡/潮气期。PetCO2=潮汐末二氧化碳分压自动肺泡取样 图2:英诺德INNOTEG Sampling Case 自动采样器英诺德INNOTEG Sampling Case-B,一种新的呼吸气体自动控制取样装置,可在护理点进行直接肺泡取样,无需任何额外的取样或储存步骤。采样前,设置 CO2阈值(通常为 25 和 30 mmHg pCO2),以便区分呼吸周期的吸气期和肺泡期。一旦超过阈值,瓣膜就会打开,肺泡气体可采入一种带填料的捕集针被吸附——英诺德INNOTEG Needletrap 动态捕集针。采样原理图如下,这样可以准确地识别呼吸周期的肺泡期和吸气期: 图3:二氧化碳自动控制动态针捕集微萃取呼吸采样装置结论内源性呼吸生物标志物的浓度变化与肺炎、急性呼吸窘迫综合征(ARDS)等急性肺疾病和哮喘、慢性阻塞性肺疾病(COPD)等慢性疾病有关,因此可以帮助诊断和监测护理。由于细菌在生长过程中会产生VOCs,甚至可能通过呼吸 VOCs识别传染源。NT具备更有针对性的临床应用应用英诺德INNOTEG Needle Trap(动态针捕集微萃取),由于样品体积小以及水的影响小,快速可控的样品制备有利于临床的应用。采样和解吸程序的自动化以及采样稳定性的提高,增强了英诺德INNOTEG Needle Trap作为患者和分析仪器之间的通用接口的潜力,用于筛选以及在临床环境中的有针对性的应用。英诺德INNOTEG 气体采样器Sampling Case 英诺德INNOTEGSampling Case气体采样器是一种采集VOCs样品的便携式自动采样装置,与Needle Trap动态捕集针技术或热吸附管联用,用于挥发性有机物VOCs分析。用户通过设定采样体积,采样流速即可实现自动采集气体样品。 英诺德INNOTEG Sampling Case 气体采样器和Needle Trap动态捕集针相连,采样器自动采集气体样品中的挥发性有机物到动态捕集针或热脱附管中。应用于环境,食品,植物,临床呼吸等不同行业VOCs采样,不仅可用于现场采样和临床采样,还可以便携式带到野外采样。产品优势:1. 便携式设计:可实现实验室和野外采样;2. 取样量:10ml-10L;3. 电子MFC,流速范围: 1-50ml/min或5-250ml/min;4. 控制器:带液晶屏的控制器单元;5. 电源:LiPo-lon锂电池,24V直流,10Ah;6. 充电:110-230V AC,50/60 HZ,2A;7. 多种型号可选,SC-XS和SC-S型号用于常规采集;SC-L型号用于常规采样、静态顶空采样;SC-XL型号用于常规采样、静态/动态顶空采样、外接气源压力控制采样;SC-B型号专门用于呼吸肺泡气采样。型号: 英诺德INNOTEG Needle Trap动态针捕集技术英诺德INNOTEG 新型的动态针捕集装置(Needle Trap),把吸附剂填充在针尖内,可装填多达三种不同商用固体填料,是一种新型的无溶剂微萃取技术,集采样、萃取、浓缩、进样于一体,适于痕量挥发性及半挥发性有机物分析。英诺德INNOTEG Needle Trap动态针捕集技术,为气态基质中的痕量分析提供了一种新的样品制备方式。通过增加吸附剂的量以及复合不同种类的吸附剂在增加吸附能力,尤其是对小分子的吸附。利用样品量少和内部膨胀气流热解析的技术进行快速解析而无需冷凝装置,有利于痕量级别的气体分析,其灵敏度高,检出限低。产品优势:1. 英诺德INNOTEG Needle Trap技术易于操作使用,便捷,可用于现场采样的技术;2. 灵敏度高,填有多种吸附剂的动态针捕集装置分析ppb/ppt级低浓度范围挥发性有机物;3. 英诺德INNOTEG Needle Trap的体积小,需要的样品量少,热解析速率只需30s,一方面不需要冷阱聚焦聚焦来解吸样品并且不会造成拖尾峰,另一方面,投入成本和使用成本大大降低;4. 样品采集和存储稳定性强,针头两端有PTFE堵头密封,易于保存,运输方便。规格:Luer-Lock连接头长度:在50mm至70mm之间直径:三种尺寸可选0.7mm/0.4mm;22号规格 (0.72mm/0.4mm) ;23号规格 (0.64mm/0.35mm) ;针尖形式:圆锥形(侧孔,钝面,或根据需求定制)填料:可根据目标组分选择填充不同种类的吸附剂,增大吸附容量和吸附范围如果您对上述产品感兴趣,欢迎随时联系德祥科技。德祥科技德祥集团成立于1992年,总部位于香港特别行政区。作为科学仪器供应商和服务商,德祥服务于大中华区和亚太地区,每年都为数以千计的客户提供全套解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。作为深耕科学仪器行业的供应商与服务商,德祥现已服务于政府、高校、科研、制药、检测、食品、医疗、工业、环保、石化以及商业实验室等众多领域。公司目前在亚太地区设有13个办事处和销售网点,3个维修中心和1个样机实验室。2009至2021年间,德祥先后荣获了多个奖项。我们始终秉承诚信经营的理念,致力于成为更好的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!英诺德INNOTEG英诺德INNOTEG是德祥集团旗下自主研发品牌,专业从事科学仪器设备研发生产的高科技企业,是集实验室设备研发生产、方法开发、实验室仪器销售和技术服务为一体的专业厂家。多年以来,英诺德INNOTEG致力于研发高效的实验室创新设备。公司十分重视技术的研究和储备,一直保持高比例研发投入,创建了一支由博士、硕士和行业专家等构成的经验丰富,技术精湛的研发团队,在仪器分析技术领域开展了颇有成效的研究开发工作。此外,英诺德INNOTEG还与各大科研院所、高校合作,积极推进科技成果项目的产业化。英诺德凭借强大的研发能力,注重前瞻性技术研发,已推出多款科学仪器设备及实验室耗材产品。
  • 420万!北京大学计划采购超高灵敏度生物标志物确证质谱仪
    一、项目基本情况项目编号:OITC-G220311778项目名称:北京大学医学部超高灵敏度生物标志物确证质谱仪采购项目预算金额:420.0000000 万元(人民币)最高限价(如有):420.0000000 万元(人民币)采购需求:包号货物名称数量主要用途和要求是否允许采购进口产品采购预算1超高灵敏度生物标志物确证质谱仪1套选购一套超高灵敏度生物标志物确证质谱仪,主要用于微量样本中的代谢物、蛋白标志物、高覆盖代谢组学、脂质组学、新型药物研发等相关领域生物标志物的确证。鉴于生物样品难于获取、样本中代谢物/蛋白质等成分含量低且动态范围宽,要求仪器灵敏度高,重现性好、抗污染能力强、稳定性好、线性范围宽且精确稳定、操作便利、软件系统完善、功能强大。公司在国内有较强的技术支持和维修力量,响应迅速(24小时)。是420万元合同履行期限:合同签订后 90 天(国内供货)或者L/C后 90 天(进口免税)。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:无3.本项目的特定资格要求:1) 投标人须符合《中华人民共和国政府采购法》第二十二条的规定;(具体为供应商参加政府采购活动应当具备下列条件:(一)具有独立承担民事责任的能力;(二)具有良好的商业信誉和健全的财务会计制度;(三)具有履行合同所必需的设备和专业技术能力;(四)有依法缴纳税收和社会保障资金的良好记录;(五)参加政府采购活动前三年内,在经营活动中没有重大违法记录;(六)法律、行政法规规定的其他条件。)2) 投标人须在中华人民共和国境内合法注册、有法人资格并符合工商局或相关行业主管部门核准的经营范围或经营许可(进口产品投标必须委托国内代理商投标);3) 代理商投标必须有制造厂商针对本项目的授权(仅针对进口产品投标);4) 投标人按照招标公告要求购买了招标文件;5) 投标人不得为招标人或招标代理机构的附属或相关机构;6) 投标人不得为列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的供应商。7) 为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得参加本项目投标;8) 投标单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动;9) 本项目不接受联合体投标。三、获取招标文件时间:2022年11月22日 至 2022年11月29日,每天上午9:00至12:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:登录“东方招标”平台(http://www.oitccas.com/)注册并购买。方式:登陆“东方招标”平台(http://www.oitccas.com/),点击“获取采购文件”链接图标,或直接输入访问地址(http://www.oitccas.com/pages/sign_in.html?page=mine)完成投标人注册手续(免费),然后登陆系统寻找有意向参与的项目,已注册的投标人无需重新注册。招标文件售价:每包人民币600 元。如决定购买招标文件,请完成标书款缴费及标书下载手续。售价:¥600.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年12月13日 13点30分(北京时间)开标时间:2022年12月13日 13点30分(北京时间)地点:北京市海淀区西三环北路甲2号院科技园6号楼13层第一会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1、投标文件递交地点:北京市海淀区西三环北路甲2号院科技园6号楼13层第一会议室2、招标文件采用网上电子发售购买方式:1)登陆“东方招标”平台(http://www.oitccas.com/),点击“获取采购文件”链接图标,或直接输入访问地址(http://www.oitccas.com/pages/sign_in.html?page=mine)完成投标人注册手续(免费),然后登陆系统寻找有意向参与的项目,已注册的投标人无需重新注册。招标文件售价:每包人民币600 元。如决定购买招标文件,请完成标书款缴费及标书下载手续。2)投标人可以电汇的形式支付款(应以公司名义汇款至下述指定账号)。开户名称:东方国际招标有限责任公司开户行:招商银行北京西三环支行账 号:8620816577100013)投标人应在“东方招标”平台上填写开票信息。在投标人足额缴纳标书款后,标书款电子发票将发送至投标人在“东方招标”平台上登记的电子邮箱,投标人自行下载打印。3、以电汇方式购买招标文件和递交投标保证金的,须在电汇凭据附言栏中写明招标编号、包号及用途(如未标明招标编号,有可能导致投标无效)。4、采购项目需要落实的政府采购政策:(1)政府采购促进中小企业发展(2)政府采购支持监狱企业发展(3)政府采购促进残疾人就业(4)政府采购鼓励采购节能环保产品七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:北京大学地址:北京市海淀区学院路38号联系方式:凌老师; 010-828013592.采购代理机构信息名 称:东方国际招标有限责任公司地 址:北京市海淀区西三环北路甲2号院科技园6号楼13层01室联系方式:王军、郭宇涵、李雯;010-682905083.项目联系方式项目联系人:凌老师电 话:010-82801359
  • 探索“冰山”下的奥秘| 蛋白生物标志物新发现
    可否记得造成泰坦尼克号沉默的元凶之一---冰山?据阿基米德原理,自由漂浮的冰山约有90%的体积隐藏在海水之下。即使在发现冰山的同时转身,泰坦尼克是否能够躲得过海水下的庞大冰山呢?自然界从来都是如此,永远都是一副犹抱琵琶半遮面的的样子,让我们不禁想要也不得不去探知面纱下的未知!据统计,我们已知的人类蛋白有400,000多种,但约有300,000种因为表达丰度过低无法实现传统方法的检测。而现有技术可检测的100,000种蛋白中,大多又无法在健康个体中检测到,而仅出现在特定的疾病时期。大量蛋白生物标志物的重要功能,如同海平面下的冰山,无法被诸如免疫组化,ELISA,Luminex等蛋白检测技术准确界定。解决灵敏度不够导致目标蛋白无法检测的问题,逐步揭秘“冰山”下的奥秘,正是我们默克致力于超高灵敏度蛋白检测探索的强大动力。作为一项新型技术,在Erenna基础上进一步开发的二代技术SMC x PRO™ 在2017年正式进入中国。它通过信号增强和背景降低以及小体积采样,让超高灵敏度的蛋白检测成为现实。 SMC™ 技术在经典的三明治免疫夹心原理基础上,通过创见性的洗脱步骤使得荧光素标记的检测抗体从免疫复合物中解离下来,并最终在默克SMC系统内被激光激发,相应的光学信号被灵敏地记录下来并进行定量计算。结合这种独特的反应原理,SMC采用高能激光检测技术,通过单个信号分子的精 准检测,极大地降低背景提高信噪比,实现无与伦比的----超高检测灵敏度。在一个系统里可以同时检测低表达和高表达的蛋白靶标,揭示疾病相关生物标志物的微小变化。与其他传统检测技术相比,SMC定量生物标志物的灵敏度要高出10-1000倍。它能够检测过去无法检测的生物标志物,在带来科学突破的同时,也能让医生更广泛评估患者的风险,实现积极的健康管理。这项技术可应用在多种疾病领域,它在肿瘤,药物安全评价,神经科学,心血管疾病,代谢病,炎症反应,药效动力学和药代动力学等多个研究领域已经获得了大量成功的数据,并发表了一系列重要的文献。平台的卓越检测灵敏度,高度的灵活性,宽广的动态范围,以及高通量的检测能力都将助力科研工作者的创新研究。 SMC x PRO™ 在产品的研发上不遗余力,新品持续更新中: 与此同时,SMC 也为科研工作者的定制化试剂与样本测试服务提供便利,为您的研究节省时间和资源!查看默克SMCxPRO™ 单分子免疫检测仪
  • 密理博运用MAGPIX探索生物标志物系列讲座火速报名中
    默克密理博与路明克斯联合讲座之让MAGPIX与您一起开启生物标志物探索之旅北京站地点:好苑建国酒店(建国门内大街17号),2011年6月20日下午13:30-14:00 开场致辞14:00-14:45 Luminex公司及MAGPIX 技术简介14:45-15:00 茶歇15:00-15:45 Milliplex及MAGPIX技术在心血管系统疾病、神经退行性疾病及肿瘤标志物研究的应用15:45-16:15 革命性的信号转导磷酸化位点定量检测技术----EpiQuant16:15-16:35 革命性的mRNA检测新技术---qBeads (无需PCR,一步直达)16:35-17:00 默克密理博生物标志物收费服务注册登记及抽奖地点:北京大学医学部(PUHSC)逸夫楼,2011年6月21日上午09:00-09:30 开场致辞09:30-10:15 Luminex公司及MAGPIX 技术简介10:15-10:30 茶歇10:30-11:15 Milliplex及MAGPIX技术在心血管系统疾病、神经退行性疾病及肿瘤标志物研究的应用11:15-11:45 革命性的信号转导磷酸化位点定量检测技术----EpiQuant11:45-12:05 革命性的mRNA检测新技术---qBeads (无需PCR,一步直达)12:00-12:30 默克密理博生物标志物收费服务注册登记及抽奖12:30-13:30 午餐上海站地点:好望角大酒店 (肇嘉浜路500号),2011年6月22日下午13:30-14:00 开场致辞14:00-14:45 Luminex公司及MAGPIX 技术简介14:45-15:00 茶歇15:00-15:45 Milliplex及MAGPIX技术在心血管系统疾病、神经退行性疾病及肿瘤标志物研究的应用15:45-16:15 革命性的信号转导磷酸化位点定量检测技术----EpiQuant16:15-16:35 革命性的mRNA检测新技术---qBeads (无需PCR,一步直达)16:35-17:00 默克密理博生物标志物收费服务注册登记及抽奖广州站地点:中山大学医学院,2011年6月24日下午13:30-14:00 开场致辞14:00-14:45 Luminex公司及MAGPIX 技术简介14:45-15:00 茶歇15:00-15:45 Milliplex及MAGPIX技术在心血管系统疾病、神经退行性疾病及肿瘤标志物研究的应用15:45-16:15 革命性的信号转导磷酸化位点定量检测技术----EpiQuant16:15-16:35 革命性的mRNA检测新技术---qBeads (无需PCR,一步直达)16:35-17:00 默克密理博生物标志物收费服务注册登记及抽奖报名参加本次讲座现在就注册登记默克密理博的生物标志物收费服务,即刻享有MAGPIX的新一代技术!所有与会者都有机会赢取本次活动大奖----时尚iPod NANO!
  • P4定档9月北京,热议新型肿瘤生物标志物&精准诊断/用药!
    新条例实施以后,陆续出台了生物标志物、伴随诊断、抗肿瘤药物开发、肿瘤筛查、人类遗传资源管理等多个征求意见/指导原则,更加严格、细分的法规指南也反映了肿瘤精准医疗行业的快速发展,以患者主动参与(Participatory)、早期预警(Predictive)、预防(Preventive)和个体化(Personalized)为特征的P4医学落地在即:• LDT试点政策实施以来,如何实现进一步的路径合规?• 如何切实推动精准药物与伴随诊断协同开发?• 如何平衡泛癌种普筛与单癌种筛查技术/应用需求?• 如何进一步优化实体瘤MRD/耐药/病理等技术路线与应用探索?• 单细胞测序/多组学/AI等前沿技术转化几何?• 如何继续挖掘泛癌种生物标志物对于药物开发与临床转化的价值?• 如何开发双抗/溶瘤病毒/细胞治疗等新兴免疫疗法中的Biomarker加速转化?• 如何发现转化潜力免疫检查点/靶向药物的创新靶点?… … 值此行业奋发之际,P4 China 2022 (第六届国际肿瘤精准医疗大会)将于2022年9月2-3日(周五-周六)在北京隆重升级上线,深度探讨行业痛点与年度热门议题,与行业专家共探肿瘤精准最新法规、前瞻早筛诊断技术开发产品落地、免疫疗法/靶向药物精准开发之路!点击查看官网:https://www.bmapglobal.com/p4china2022【聚焦新视角--论坛结构全新升级!】主论坛(Day 1上午)——监管动向/政策解读/行业前沿• 解读最新LDT/CDx等注册/合规政策及临床建议• 探讨大数据/国产替代/底层技术等行业前沿发展分论坛 A 肿瘤早筛/早检(Day 1下午—Day2)——肿瘤精准诊断:新型诊断生物标志物发现与前瞻性技术探索• 全/泛/多癌种普筛/筛查• 单癌种早筛/早检:更优甲基化技术与策略• 肿瘤诊断前沿技术:单细胞测序/前沿多组学等技术• 学习miRNA/全癌甲基化等新型标志物的开发转化• 聆听甲基化/质谱/长片段/单细胞/多组学等前沿技术分论坛 B 肿瘤预后/耐药监测/病理(Day 1下午—Day2)——肿瘤精准诊断:新型诊断生物标志物发现与前瞻性技术探索• MRD检测/耐药/预后• 鉴别/病理诊断• 讨论实体瘤MRD更优技术路线等预后监测等技术与应用• 探索新型病理诊断/RNA检测/耐药基因等精准鉴别诊断技术分论坛 C肿瘤免疫/靶向药物(Day 1下午—Day2)——肿瘤精准药物:Biomarker/转化医学/伴随诊断与最新免疫/靶向药物开发• 新兴免疫疗法/ICIs等免疫药物与Biomarker研究/伴随探索• 创新靶向药物与Biomarker研究/伴随诊断开发• 解锁细胞/基因/双抗/PROTAC/KRAS等转化与Biomarker/伴随• 了解最新泛癌种Biomarker/预测性等生物标志物及伴随诊断开发【谁将来参会?】• 体外诊断所属法规监管机构4%• 体外诊断、第三方检验机构:液体活检、基因检测/测序服务企业25%• 医院:肿瘤临床专家20%• 药企:肿瘤免疫/靶向药物企业28%• 科研院校5%• 上游仪器设备开发制造企业与试剂耗材企业10%• CRO/实验室搭建/数据服务等其他服务供应商5%• 其他3%【群英荟萃--往届重磅嘉宾(部分)】Leroy Hood,美国科学院、美国工程院、美国医学院院士和美国艺术与科学院士詹启敏,中国工程院院士,北京大学医学部主任、分子肿瘤学国家重点实验室主任李金明,国家卫生健康委临床检验中心副主任兼临床分子与免疫室主任黄杰,中检院体外诊断试剂检定所非传染病诊断试剂室主任Elizabeth Mansfield,GRAIL法规战略负责人,前FDA个体化医疗办公室主任李为民,四川大学华西医院/华西临床医学院院长姚树坤,中日友好医院原副院长,中国生物工程学会精准医学专委会主任委员石远凯,国家癌症中心/中国医学科学院肿瘤医院国家药物临床试验机构副主任赵景民,解放军302医院病理诊断与研究中心主任支修益,首都医科大学肺癌诊疗中心主任、宣武医院胸外科首席专家殷晓璐,阿斯利康全球研发(中国)有限公司精准医学部中国区负责人苏欣莹,辉瑞中国研发转化医学负责人段纯喆,罗氏中国生物标志物研发部乳腺癌和妇科肿瘤疾病领域负责人叶斌,盛诺基医药临床转化医学及开发副总裁李培麒,基石药业早期开发副总裁姜傥,迪安诊断董事,高级副总裁阮力,厦门艾德生物副总经理、技术总监汪笑男,世和基因创始人、首席技术官吴琳,和瑞基因首席技术官汪宇盈,华大数极首席技术官Leroy Hood, member of the National Academy of Sciences, the National Academy of Engineering, and the National Academy of MedicineElizabeth (Liz) Mansfield, Vice President of Regulatory Strategy at GRAIL Jinming Li, Deputy Director of National Center for Clinical Laboratories *更多往届嘉宾阵容及会后报告,欢迎联系组委:180 1793 9885(同微信)【P4 招展/论坛组织工作全面启动!】1、对话科研及企业专家,共促精准医疗行业高效新发展!论坛开放特装展位,主题演讲、卫星会、晚宴赞助,插页广告,吊绳&名卡、手提袋、瓶装水、椅套广告等多种形式、全方位供您展示肿瘤精准“诊+疗”产品与技术!详情欢迎咨询:180 1793 9885(同微信)2、肿瘤界超强阵容集结令!P4演讲嘉宾火热征集中!演讲摘要/论文投稿,经组委评估并确认的嘉宾将享受以下福利:获得一张免费全程参会证;会议期间午餐券、嘉宾招待晚宴;在会议期间专享演讲嘉宾休息室;组委会官方宣传与推广。投稿邮箱:p4china@bmapglobal.com3、精彩内容会前不停播!P4直播嘉宾持续招募中!如果您:有领先的突破与进展热衷于分享行业热点话题希望结识到更多的行业同仁并与之交流远在海外,受疫情影响行程不便,无法莅临现场......P4会前系列直播平台欢迎您的加入!组委会将免费提供优质直播服务,包含直播间搭建,前期宣传与准备,以及组织观众问答环节等,详情可扫描下方二维码或点击链接填写:https://jinshuju.net/f/ESfs4s,组委将在7个工作日内联系您!【感恩回馈!老客户专享!】为感谢行业同仁对P4一直以来的大力支持,特面向P4的往届参会嘉宾与参展企业,开放惊喜参会/参展折扣!详情欢迎联系组委咨询:180 1793 9885(同微信)【喜迎复工,畅享特惠!】6月17日前,5人组团注册报名P4,即享限时复工特惠,单人立减1380元起!*详情欢迎联系组委咨询:180 1793 9885(同微信)扫码即可咨询赞助/参会报名/演讲/往届报告/媒体合作等事宜。赞助/演讲/媒体合作详情欢迎联系组委会:电话:180 1793 9885(同微信)邮箱:p4china@bmapglobal.com网站:www.bmapglobal.com/p4china2022媒体合作联系:上海商图信息咨询有限公司赵俊雯| Jane ZhaoTel:+86 136 6556 4971官网: www.bmapglobal.com
  • 沃特世携手新加坡生物工程技术研究院 开发肿瘤标志物鉴定技术
    美国马萨诸塞州米尔福德市,2016年6月28日 — 沃特世公司(纽约证券交易所代码:WAT)今日宣布与隶属于新加坡科技研究局(A*STAR)的生物工程技术研究院(Bioprocessing Technology Institute, BTI)合作开发新方法,用于新型肿瘤标志物的鉴定以及糖基化修饰通路的研究,以帮助开发新型治疗方案。  此次研究合作的一个重要内容是开发一个基于实验数据的与疾病相关的鞘糖脂(GSL)头部基团数据库,该数据库将包含GSL多糖名称、葡萄糖单位(GU)校正后的色谱保留时间[1]和碰撞截面(CCS)数值以及对应的质谱图。  GSL的结构高度复杂,其中多糖头部基团与脂肪酰基团相连。要分析这类物质的分子组成,必须解析其分子序列、端基异构性、分支结构、寡糖基的连接位置,以及脂肪酰基团的基序。GSL对细胞的生长、相互作用和信号传送非常关键,它的结构变化可能会引发疾病或促使不同类型的肿瘤发生恶化。多糖头部基团的分析一直以来都是糖科学领域的一大难题,单独使用液相色谱(LC)或质谱(MS)技术都无法轻松区分出异构体结构。  BTI的科学带头人、研究科学家Susanto Woen博士表示:“通过本次合作,BTI能够充分应用沃特世的糖组学专业知识开发新的分析方法,并建立前所未有的GSL信息数据库。这不仅有利于我们对潜在临床标志物的探索,还能帮助我们深入了解经过治疗干预之后的疾病发展与患者复原情况,从而在改善人类健康的同时解决生物制药行业的某些需求。此次合作让我们有幸成为国际糖组学研究网络中的一员,我们将致力于开拓新技术,以确定疾病或疾病状态中GSL糖基化与任何表型/基因型特征之间的潜在联系。”  沃特世公司健康科学市场总监Jose Castro-Perez博士说道:“通过进一步加强合作关系,我们将更深入地帮助BTI开发创新型分析方法,并建立以鞘糖脂为重点的肿瘤糖生物学综合实验性多糖数据库。我们希望此次合作能够开发出先进的方法,用以研究肿瘤分类和生物标志物发现过程中涉及的GSL糖基化。”  在此次合作中,沃特世将提供专业的科学知识以及Waters SYNAPT G2-S High Definition Mass Spectrometry 行波离子淌度高清质谱系统。这款仪器采用的行波离子淌度质谱技术能够对离子进行快速分离,不仅可按照离子的大小、质荷比进行分离,还能够根据离子的形状实现分离。CCS值是一项精确的化合物物理化学性质,与气态离子的大小、形状和所带电荷有关。这套系统可根据每个多糖头部基团的CCS值实现分离,深入揭示它们独有的化学结构,随后,获得的结构数据可用于更详细地描述待研究的GSL。相较于单独使用质荷比的方法,行波离子淌度能够提供更高的分析专属性。  沃特世与BTI的合作始于2014年,合作之初的主要目标是评估专为生物制药应用而开发的新型 GlycoWorks RapiFluor-MS N-糖标记分析试剂盒的性能,以及开发此试剂盒相关的糖基化分析完整工作流程,涵盖样品前处理到样品分析。  关于沃特世公司(www.waters.com)  沃特世公司(纽约证券交易所代码:WAT)专注于为实验室相关机构开发和生产先进的分析和材料科学技术。50多年来,公司开发出一系列分离科学、实验室信息管理、质谱分析和热分析技术。  ###  Waters、SYNAPT、High-Definition Mass Spectrometry、GlycoWorks和RapiFluor-MS是沃特世公司的商标。  [1]Albrecht, S. Vainauskas, S. Stockmann, H. McManus, C. Taron, C. H. Pauline M. Rudd, Anal. Chem. DOI:10.1021/acs.analchem.6b00259.
  • 进展|基于质谱的多组学方法发现新冠后遗症生物标志物
    全球居民已经承受了长达三年的新冠疫情带来的巨大健康和经济压力,而这场危机带给人们的负面影响仍久久无法消散。  根据北京最新疫情周报的数据显示,新型冠状病毒感染、手足口病、其他感染性腹泻疾病、流行性感冒和病毒性肝炎等传染病共占法定传染病报告发病数的92.9%。其中,新冠病毒感染在报告病例数中位居首位,持续地活跃在人们的视线中。有研究显示,虽然绝大多数人在两周内从感染中恢复,但其中很大一部分人(7.5%)报告持续 12 周或更长时间的症状(长新冠),5.2% 的患者长新冠持续一年以上。近期,阿尔伯塔大学牵头的团队通过多组学分析(包括基因组学、转录组学、蛋白组学等)结合机器学习,找到了与COVID-19后遗症(通常称为“长COVID”)的关键临床特征相关的潜在预测生物标志物。  研究人员在《Cell Reports Medicine》上写道:“我们利用机器学习算法,根据多组学特征的变化对PASC表型产生了深入的了解,并开发出了一个与长期临床结果相关的最小分子联检组合。”  该团队在对274个血浆蛋白进行定向液相色谱-多反应监测-质谱分析的基础上,使用机器学习算法根据多组学特征的变化,成功地对PASC表型产生了深入的了解,并开发出了一个与长期临床结果相关的最小分子联检组合。他们的研究揭示了与急性感染不同的相关生物过程,这项成果将有助于针对长期COVID患者开发特异性疗法和生物标志物。参与者包括20名进入重症监护室和97名在2020年秋季至2021年6月底期间治疗COVID-19的患者,这段时间跨越了加拿大的第二和第三波大流行。除了从28名健康对照个体采集的血样样本,30名已完全康复半年后的COVID-19患者采集的的血样、32名轻度PASC患者和55名重度PASC患者采集的血液样本的类似图谱外,多组学数据还有助于寻找与全因死亡、住院治疗或PASC相吻合的标记物。在确定了根据测量分子聚类的三组个体后,研究小组建立了一个涵盖7种细胞因子和13种代谢物的预后模型——一组富含T细胞衰竭和能量代谢成分的预测性生物标志物,其显示出在急性SARS-CoV-2感染后易于发生不良结果的个体的准确率约为83%。作者报告说:“我们的研究揭示了疗养期间不同于急性感染的相关生物过程,它支持针对长期COVID患者开发特异性疗法和生物标志物。更广泛地说,我们的研究结果表明,长程COVID患者的康复期表现为明显的炎症、血小板脱颗粒和/或凝血过程、能量代谢改变、肠道菌群失调和氨基酸代谢改变。”研究小组指出,这些发现指明了潜在的治疗策略,包括抗炎或抗凝、抗氧化或补充牛磺酸氨基酸等方法。作者在报告中指出:“鉴于长新冠缺乏经证实的有效疗法,我们的研究结果指出了未来研究可能探索的几条途径,有必要在大型前瞻性队列中开展研究,以确认长新冠病理生理学中涉及的生物标志物和分子通路,并评估已确认的几个治疗靶点的疗效,以便在临床试验中加以考虑。”  总之,这项研究是一项重要的成果,为我们深入了解长期COVID提供了新的思路和方法。虽然仍需进一步研究来确认这些发现的有效性和可靠性,但这项工作为科学家和医生提供了新的思路和指导,也为我们进一步控制和治疗COVID-19疫情提供了新的希望。  原文献链接:https://www.cell.com/cell-reports-medicine/fulltext/S2666-3791(23)00431-7
  • 近亿元!宇测生物完成A轮融资,打造新型生物标志物临床转化产业链闭环
    近日,苏州宇测生物科技有限公司宣布完成近亿元A轮融资,由博远资本领投,健壹(原国药)资本跟投,老股东普华资本与知名产业资本持续加注。本轮融资将助力宇测生物打造新型生物标志物临床转化产业链闭环,推进超敏生物标志物检测技术的深度开发和新型生物标志物的临床转化进程。创新引领未来,宇测生物单分子免疫诊断技术领跑细分赛道宇测生物拥有的单分子免疫检测技术拥有完全自主知识产权,创新的技术路径具有通量高、稳定性好、易量产的优势,使单分子免疫检测技术临床转化成为可能。迄今为止,宇测生物核心单分子免疫检测设备产品线已全面覆盖半自动、全自动、超敏、高通量等科研、临床需求,试剂盒产线覆盖包括神经、传染病、肿瘤、心肌、炎症等多应用领域,形成坚实的产品壁垒。通过产业资源整合,宇测生物也已实现在上游核心原材料、分子辅助诊断等领域的关键布局。近期,宇测生物获得国内首张全自动单分子免疫诊断设备的医疗器械批文,预示着公司已在单分子免疫检测领域全面领跑细分赛道。打造临床转化闭环,宇测生物开启新型生物标志物临床转化大航海时代单分子免疫检测技术灵敏度比传统免疫检测技术提高了1000倍,被认为是继化学发光技术后的下一代免疫检测技术。灵敏度的显著提升使近千种传统免疫检测技术难以实现临床转化的生物标志物在临床领域应用成为可能。宇测生物以单分子免疫检测技术为核心,致力于打造新型生物标志物筛选、核心原材料研发、超敏生物标志物检测试剂盒开发到临床转化的完整商业闭环,推进超敏新型生物标志物的临床转化应用。博远资本投资副总裁李瀚表示:“很高兴可以领投宇测生物的A轮融资。单分子免疫检测技术具有远超传统免疫检测技术的灵敏度,是许多低丰度生物标志物开发和临床转化非常重要的工具。宇测生物具有完全自主知识产权的单分子免疫检测技术平台填补了国内超敏检测领域的空白,该平台的易用性优势,非常适合神经退行性疾病、眼科、肾内科、感染等多病种、多类型的新标志物临床转化。很荣幸与拥有强大研发能力、活力与行业经验兼具的优秀团队合作,期待宇测生物能够持续创新,推动单分子免疫等新型技术在生命科学和临床诊断的应用拓展。”健壹资本合伙人邹敏表示::“宇测生物符合我们在IVD领域 “临床+生命科学工具”的投资策略。公司基于单分子免疫的创新技术路线,在科研和临床方向已经树立了自己的领先优势。特别是神经科学领域,做到了上游抗体原材料的自主可控,配合分子诊断平台,可以为临床提供更完善的诊断方案。我们也恭喜宇测全自动单分子免疫设备已经拿证,看好宇测年轻、有活力的团队能够持续在商业化进展上有所突破。”普华资本管理合伙人周密表示:“宇测生物非常符合我们' 转化医学' 的投资理念,我们认为医疗器械创投的核心命题是知识产权或科技成果的临床转化和商业转化,医疗器械转化需要“产学研医政”五位一体紧密配合,创投机构和政府部门是背后重要的推动力量。宇测生物具有自主知识产权的单分子免疫检测技术优势明显,临床转化能力强,以单分子免疫检测技术为核心的新型生物标志物转化平台将有机会促进大量生物标志物“产学研医政”的真正转化。我们很高兴见证了宇测生物在过去的两年时间里创造的成就,也衷心期待宇测生物可以在生物标志物临床转化上实现真正的商业价值。”宇测生物创始人官志超表示:“感谢本轮投资者和宇测生物所有股东的支持,很庆幸可以在一个最合适的时代践行技术创新和商业转化的理想。我们将在更专精、更远大的科研、临床路上,继续砥砺前行、扬帆起航,努力朝向成为客户信赖的生命健康领域支持者和引领者。”关于宇测生物苏州宇测生物科技有限公司成立于2019年,拥有近6000平方米研发生产中心,是实现单分子免疫检测技术产业化的高新技术型公司,核心技术具备完全自主知识产权,成功填补了国内这一领域发展前沿的空白。公司以“成为客户信赖的生命健康领域支持者和引领者”为公司发展愿景,秉持“以精准检测成就人类健康,以科技创新创造无限未来”的公司使命,以单分子免疫检测技术为核心,致力于新型生物标志物的研发与临床转化,将有希望推进下一代免疫检测技术的变革。关于博远资本博远资本成立于2017年,是一家专注于投资和孵化中国市场杰出医疗健康创业企业的专业投资机构。目前,博远资本管理两支人民币基金和两支美元基金,基金管理总规模已经超过了70亿元。博远资本不仅是投资人,更是创业者的长期伙伴。自成立以来,博远资本始终坚持以创业者为中心,长期助力和积极赋能优秀的医疗健康行业创业者,搭建行业生态圈,打造中国医疗健康产业新一代领军企业。关于健壹(原国药)资本上海健壹私募基金管理有限公司(原国药资本)由原国药集团资深管理团队按照市场化机制于2012年成立,兼具CVC战略投资和独立VC基金的市场化优势,专注于医药健康领域的早期和成长期股权投资。健壹资本充分利用自身产业资源赋能被投企业,成立以来,健壹资本的基金规模超过65亿元,全面覆盖了早期创新类、成长类和并购整合类项目,投资了80多个医药健康领域领先企业。健壹资本始终秉承“真诚、专业、共赢”。关于普华资本普华资本创立于2004年,总部位于杭州,在北京、上海、深圳、英国伦敦分别设有投资办公室,是一家专业从事风险投资及管理业务的机构。自创立以来,普华资本秉承“怀普泽之心,行华实之事”的愿景,投资于早期、成长期创业创新企业,助力创业者实现梦想,倾力为投资人创造回报。经过多年的不懈坚持,普华资本非常荣幸地投资了400多家优秀的创业企业。普华资本仍将持续保持专注和执着,勤奋和敏锐,助力更多优秀创业者和企业。
  • 我国科学家发现新型主动脉瘤和夹层生物标志物及治疗靶点
    主动脉夹层是一种高致死率的心血管疾病,其发病率为1.3-8%,目前尚无能够有效预防其发生发展的药物。因此,研究人员一直在努力探索相关标志物和潜在治疗靶点。  近日,北京大学和武汉同济医院的研究团队在《European Heart Journal》杂志发表了题为“Untargeted metabolomics identifies succinate as a biomarker and therapeutic target in aortic aneurysm and dissection”的文章,通过代谢组学分析发现主动脉瘤和夹层(Aortic aneurysm and dissection,AAD)患者血浆中琥珀酸水平明显升高,大规模人群验证结合临床资料分析,证明琥珀酸可以作为诊断AAD的新型生物标志物。细胞层面研究、动物模型试验以及基因敲除试验进一步证实血浆中高浓度琥珀酸加重小鼠AAD的进展,抑制巨噬细胞内琥珀酸生成通路,降低琥珀酸水平,可以降低ADD发病率、减轻AAD进展、缓解血管扩张、降低血管炎症等。  该研究首次揭示了琥珀酸可以作为AAD诊断的新型生物标志物及治疗靶点。  论文链接:  https://academic.oup.com/eurheartj/advance-article/doi/10.1093/eurheartj/ehab605/6371855#  注:此研究成果摘自《European Heart Journal》杂志,文章内容不代表本网站观点和立场,仅供参考。
  • 肿瘤标志物联合检测法应用指南
    肿瘤标志物联合检测法在早期发现、病程监控、机制研究、肿瘤转移及预后监测中应用 据统计,我国每年新患癌症的病人约160万人,每年因癌症死亡的人数约130万人。我国大、中城市居民的许多死亡原因中,癌症是第一位死因。 世界卫生组织作出最新权威性结论,癌症患者如能早期发现,治愈率可达80%以上。肿瘤标志物可以比影像学更早的发现肿瘤,因而对于治疗癌症意义深远。肿瘤标志物的分泌来源于肿瘤微环境的基质细胞以及肿瘤细胞,存在于细胞、组织或体液中,能用化学或免疫方法定量证实肿瘤存在,监测肿瘤治疗和预后的物质。 图1:常见肿瘤标志物联合检测方案 目前为止,还没有找到灵敏度、特异性100%的肿瘤标志物。单一指标、单一因子的检测很难准确的实现肿瘤早期检测、病程监控及预后治疗效果的评估等。如传统的Elisa方法,仅能进行单一蛋白因子的检测。若要提高检测的准确性和特异性,需要进行多个Elisa实验检测不同的蛋白因子。以10个蛋白因子检测为例,需要10个Elisa试剂盒,至少1ml的样本,一周时间才能得到结果。无论从人力、财力还是时间和样本量来说,都不是很好的选择。而且10个因子不是同时检测也可能造成结果的误差。图2 检测对象越丰富疾病区分度越好(class代表指标分类,marker代表具体指标) 目前,实现肿瘤标志物联合检测的最便捷最高效的技术手段之一就是xMAP技术。xMAP技术基于不同荧光编码的微珠。每一种编码微珠标记一种可捕获相应目标分子的抗体,根据检测靶标的数量,选择1-100种标记的微珠,混合后与样品中待测的靶标分子作用,然后在液流驱动下逐个通过检测窗口,两束不同波长激光对每个微球进行检测,635nm激光检测微球的色标编码从而确定检测的靶标,532nm激光检测相应靶标上的荧光标记进行定量,通过计算机分析和标准曲线拟合,直接对每一种目标分子进行定量。该技术利用Luminex多功能液相芯片平台实现了对蛋白、核酸等靶标分子的多重检测,是唯一被纳入美国临床实验室质控的高通量技术,被誉为真正的临床型生物芯片。 图3 xMAP技术原理图 视频1:xMAP技术原理及Milliplex技术平台介绍基于xMAP技术的多重检测平台的优势:- 多重检测:实现1-500重因子同时检测,为微量样本的精确检测提供技术保障;- 高灵敏度:精密的光学设计提升检测灵敏度,可低至0.04pg/ml;- 快速/高通量:96/384孔板自动化高通量检测,每小时数据量可达9,600个结果;- 微量样本:仅需10-50ul的样本量使得跟踪动物模型的阶段性变化成为可能,避免个体差异带来的实验误差。 目前,已有几千篇文献报道利用xMAP技术进行肿瘤标志物联合检测以提高肿瘤检查准确性和特异性。例如,Irene等人采用非侵入性方法(血清)对卵巢癌6个标志物进行检测,发现6个标志物联合诊断比原来的单个CA-125检测准确率明显提升(95.3% vs 72%),从而能够展开卵巢癌的早期治疗(图2)。 图4:Irene等人卵巢癌早期检测研究已发表于Clinic Cancer Research(IF: 8.19) 作为Luminex 最早的全球合作伙伴,Merck提供包括Luminex仪器、Milliplex高通量多因子检测试剂盒、Milliplex Analyst 软件和Biomarker service在内的一整套高通量多因子检测平台。Merck始终致力于生物标志物多重检测技术与研发,拥有三十多年的研发和服务经验。目前可以提供8个种属超过1200个蛋白因子的检测,涉及免疫、代谢、肿瘤、神经、信号通路、干细胞等多个热门研究领域,能够满足多数肿瘤标志物开发与诊断需求。此外,Merck已与全国各地肿瘤医院与研究所合作,提供检测平台和服务,积累了二十年检测与分析的经验,因此开设肿瘤标志物联合检测法应用专题,分享成功经验给广大临床及诊断研究工作者。 本专题将分成多期探讨肿瘤的早期发现、病程监控、机制研究、肿瘤转移及预后监测等方面的标志物多重检测应用。欢迎订阅Merck生物标志物期刊,掌握最新研究进展。 点击此处订阅 若以上链接无法点击,请扫描二维码。专题下一期预告:肿瘤早期诊断之多重生物标志物检测法默克生命科学Tel: 021-38529074Email: china.marketing.online@merckgroup.comweibo: 默克生命科学新浪微博wechat: 公众号默克生命科学
  • 我国科学家发现急性缺血性卒中的潜在生物标志物
    侧支循环状态在大血管闭塞所致急性缺血性卒中(AIS)的严重程度和临床结局方面起着至关重要的作用。开发帮助识别和监测侧支循环状态的生物标记物将有助于卒中的诊断和预后判断。近日,我国科学家团队在《Signal Transduction and Targeted Therapy》杂志发表题为“FSAP aggravated endothelial dysfunction and neurological deficits in acute ischemic stroke due to large vessel occlusion”的研究论文。研究显示,侧支循环不良的AIS患者血浆因子VII激活蛋白酶(FSAP)的水平显著升高。  该研究通过蛋白质组学分析,绘制了由不同侧支循环状态大血管闭塞引起AIS的患者的血浆蛋白谱。结果显示,FSAP抑制剂高分子量透明质酸可升高促血管生成因子水平,改善脑血屏障的完整性,促进缺血半暗带新生微血管的形成,从而改善神经功能。通过无偏RNA测序应用转录组学分析进一步发现,Wnt(果蝇wingless基因与原癌基因integration-1的合称)信号与FSAP介导的血管内皮功能障碍密切相关。抑制Wnt-5a可以很大程度上逆转高分子量透明质酸的保护作用。  因此,FSAP可作为大血管闭塞后侧支循环状态的潜在生物标志物,并有望成为AIS的治疗靶点。  论文链接:https://www.nature.com/articles/s41392-021-00802-1  注:此研究成果摘自《Signal Transduction and Targeted Therapy》杂志,文章内容不代表本网站观点和立场,仅供参考。
  • GE生命科学推出Cell DIVE多重成像技术 使细胞生物标志物分析更精确
    p style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "2019年9月26日, GE生命科学推出了Cell DIVE™ 多重成像技术,这是一种基于抗体的解决方案,将多年的研究进展用于转变免疫肿瘤学。/pp style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "GE生命科学基因组学和细胞研究总经理Emmanuel Abate说:“ Cell DIVE多重成像技术是我们致力于进一步改变生命的生物疗法和诊断方法的又一例证。” “这是免疫肿瘤学领域令人振奋的一天,我们在了解患者的生物标志物谱如何帮助治疗方面还处于早期研究阶段。”/pp style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "这项技术是为科学家开发的,开发工作开始于2008年,第一项专利于2009年获得授权。在过去的十年中,Cell DIVE已通过多个合作者在全球范围内进行评估,从而形成了出版物,演示文稿和研究资料库。Gerdes等人在2013发表的一篇具有里程碑意义的论文中,描述了“ mTOR / MAPK信号蛋白异质模式的量化和可视化”,以应对肿瘤异质性的挑战。所有这些工作使我们拥有了400种经过验证的商业抗体以及可靠的解决方案进入市场。/pp style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "GE生命科学诊断部门负责人Prachi Bogetto说:“开放式系统的灵活性允许自定义生物标志物面板设计,使我们更接近最终的诊断工具。” “这种灵活的解决方案还支持整个载玻片,目标区域和组织微阵列(TMA)成像。”/pp style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "从本质上讲,科学家将反复探测,成像和去染色,以仅从一张组织图像中捕获数千个空间细胞数据点。有了我们广泛的已验证抗体清单,科学家可以定制自己的面板,并可以根据需要灵活地进行染色和成像。我们的方案足够温和,不会伤害组织样本,科学家可以放心使用,无需剥离抗体或进行复杂的样品制备。目前,Cell DIVE多重成像解决方案现已上市。/pp style="text-align: center line-height: 1.5em text-indent: 0em margin-bottom: 10px " /pp style="text-align: center "img width="550" height="543" title="CellDive_2.png" style="width: 431px height: 435px max-height: 100% max-width: 100% " alt="CellDive_2.png" src="https://img1.17img.cn/17img/images/201909/uepic/5f22f327-8033-4004-8113-089f5ad9f293.jpg" border="0" vspace="0"//pp style="text-align: center "女性,41岁,肺癌,(DAPI蓝色 AKT绿色 EGFR红色 pEGFR Aqua pERK黄色 HER 2品红色)/p
  • 沃特世携手新加坡生物工程技术研究院合作开发肿瘤标志物鉴定和肿瘤生物学研究的新策略
    此次合作旨在促进分析方法的开发,建立以鞘糖脂为重点的癌症糖生物学多糖数据库沃特世公司(纽约证券交易所代码:WAT)今日宣布与隶属于新加坡科技研究局(A*STAR)的生物工程技术研究院(Bioprocessing Technology Institute, BTI)合作开发新方法,用于新型肿瘤标志物鉴定以及研究糖基化修饰通路以帮助开发新型治疗方案。此次研究合作的一个重要内容是开发一个基于实验数据的与疾病相关的鞘糖脂(GSL)头部基团数据库,该数据库将包含GSL多糖名称、葡萄糖单位(GU)校正后的色谱保留时间1和碰撞截面(CCS)数值以及对应的质谱图。GSL的结构高度复杂,其中多糖头部基团与脂肪酰基团相连。要分析这类物质的分子组成,必须解析其分子序列、端基异构性、分支结构、寡糖基的连接位置,以及脂肪酰基团的基序。GSL对细胞的生长、相互作用和信号传送非常关键,它的结构变化可能会引发疾病或促使不同类型的肿瘤发生恶化。多糖头部基团的分析一直以来都是糖科学领域的一大难题,单独使用液相色谱(LC)或质谱(MS)技术都无法轻松区分出异构体结构。BTI的科学带头人、研究科学家Susanto Woen博士表示:“通过本次合作,BTI能够充分应用沃特世的糖组学专业知识开发新的分析方法,并建立前所未有的GSL信息数据库。这不仅有助于我们探索潜在的临床标志物,还能深入了解经过治疗干预之后的疾病发展和患者复原情况。希望我们的研究能够在改善人类健康的同时解决生物制药行业的某些需求。此次合作让我们有幸成为国际糖组学研究网络中的一员,我们将致力于开拓新技术,用以确定疾病或疾病状态中GSL糖基化与任何表型/基因型特征之间的潜在联系。”沃特世公司健康科学市场总监Jose Castro-Perez博士说道:“通过进一步加强合作关系,我们将更深入地帮助BTI开发创新型分析方法,并建立以鞘糖脂为重点的肿瘤糖生物学综合实验性多糖数据库。我们希望此次合作能够开发出先进的方法,用以研究肿瘤分类和生物标志物发现过程中涉及的GSL糖基化。”在此次合作中,沃特世将提供专业的科学知识和Waters SYNAPT G2-S High Definition Mass Spectrometry行波离子淌度高清质谱系统。这款仪器采用的行波离子淌度质谱技术能够对离子进行快速分离,不仅可按照离子的大小、质荷比进行分离,还可根据离子的形状实现分离。CCS值是一项精确的化合物物理化学性质,与气态离子的大小、形状和所带电荷有关。这套系统可根据每个多糖头部基团的CCS值实现分离,深入揭示它们独有的化学结构,随后,获得的结构数据可用于更详细地描述待研究的GSL。相较于单独使用质荷比的方法,行波离子淌度能够提供更高的分析专属性。沃特世与BTI的合作始于2014年,合作之初的主要目标是评估专为生物制药应用而开发的新型 GlycoWorks RapiFluor-MS N-糖标记分析试剂盒的性能,以及开发此试剂盒相关的糖基化分析完整工作流程,涵盖样品前处理到样品分析。 关于沃特世公司(www.waters.com)沃特世公司(纽约证券交易所代码:WAT)专注于为实验室相关机构开发和生产先进的分析和材料科学技术。50多年来,公司已开发出一系列分离科学、实验室信息管理、质谱分析和热分析技术。###Albrecht, S. Vainauskas, S. Stockmann, H. McManus, C. Taron, C. H. Pauline M. Rudd, Anal. Chem. DOI:10.1021/acs.analchem.6b00259.Waters、SYNAPT、High-Definition Mass Spectrometry、GlycoWorks和RapiFluor-MS是沃特世公司的商标。
  • 纳米孔测序和DNA“条形码”相结合 一次检测数十种生物标志物
    英国帝国理工学院的科学家与牛津纳米孔技术公司合作研制出一种新方法,可同时分析数十种不同类型的生物标志物,改变了对心脏病和癌症等疾病的检测,从而让临床医生收集到有关患者疾病的更多信息。研究成果25日发表在《自然纳米技术》杂志上。  目前,许多疾病是通过血检来诊断的,血检能寻找一种生物标志物(例如蛋白质或其他小分子)或最多几种相同类型的生物标志物。  心力衰竭检测就是依靠寻找几种常见的蛋白质来判断病情的。但最新方法能额外检测40种不同类型的miRNA分子,有望提供一种低成本和快速的方案来发现病情,并帮助指导治疗方案。  这种结果在不到一毫升的血液中就能实现。研究人员先将短DNA序列组成小标签,每个标签编码一个独特的探针,旨在附着在不同的生物标志物上,这就像DNA“条形码”。一旦血液样本与DNA“条形码”混合,所得溶液就会注入牛津纳米孔公司之前开发的低成本手持设备MinION中。  该设备包含一系列纳米孔,能够从通过它们的每个DNA“条形码”中读取电信号。设备产生的复杂电信号由机器学习算法解释,负责识别样品中存在的每个生物标志物的类型和浓度。  这意味着,该方法以两种方式用于加快诊断速度:除了一次测量更多生物标志物外,它还可以帮助找到新的生物标志物。虽然目前只有少数生物标志物被验证用于诊断心脏病,但通过同时测量40种额外的miRNA类型,研究人员可看到其中的关联性,未来还可通过更多的测试进行验证。  只要去医院,人们基本都会和生物标志物打交道。比如,检测血液中的葡萄糖含量,看是否患上糖尿病,这是生化标志物;再比如,做个CT,看体内是否有不正常的“疙瘩”,这是影像学标志物。通常一种检测手段只能检测特定的几种标志物,本文介绍的方法,则可以额外检测40种不同类型的miRNA分子,而且仅仅需要“一滴血”。它的意义不仅在于加快检测速度,还可以帮助发现更多生物标志物与疾病的对应关系,提高对特定疾病的监测、诊断准确度。
  • C=C位置探索思路或将发现脂质生物标志物——访清华大学瑕瑜教授、欧阳证教授
    p  脂质组学是通过以生物质谱为核心的分析技术了解脂质的结构与功能,从而揭示脂质代谢与机体的生理、病理过程之间的相互关系的一门学科。从2003年第一篇脂质组学研究论文发表,该学科在十几年的时间里逐步发展。/pp  在清华大学有一支以质谱技术为基础,研发小型仪器和直接采样离子化技术并开展脂质组学研究与应用的研究团队。该团队是国内唯一一个通过分析C=C位置进行脂质学研究的课题组,也是国内为数不多的将仪器研发与质谱应用技术结合起来的团队。这个团队还有个独特的地方,它是由清华大学精密仪器系和化学系内的两支课题组的结合。团队中的两位课题组教授均为国家“千人计划”入选者,并从美国普渡大学双双归国。脂质组学研究是该团队从2013年起就开始进行的一项研究。近期该实验室在脂质组学研究方面主要聚焦在哪些方面?采用了哪些质谱分析方法?是否开发了新的仪器与技术?小质谱与脂质组学研究的结合情况如何?仪器信息网编辑围绕以上问题采访了该实验室两位教授:清华大学化学系教授瑕瑜和清华大学精密仪器系教授欧阳证。/pp style="text-align: center "img title="Prof.ouyang xiayu.jpg" src="http://img1.17img.cn/17img/images/201706/insimg/e4a37e93-1f36-42fe-a334-a37e9b6a1ce3.jpg"//pp style="text-align: center "  strong清华大学化学系教授瑕瑜与精密仪器系教授欧阳证在ASMS 2017的合影/strong/ppspan style="font-size: 20px "strongspan style="color: rgb(0, 112, 192) font-family: 黑体, SimHei "-根据C=C做脂质组学定性、定量分析,换个角度建立脂质分析整体工作流程/span/strong/span/pp  目前脂质组学分析主要有两类分析策略,即为鸟枪法和液质联用分析法。鸟枪法不需要分离,是一种可以直接、快速得到脂质轮廓的质谱方法,但并不适用于低信号强度的脂质分子 液质联用分析法能够得到更广泛和细节的脂质分子信息,但需要在质谱分析之前增加液相分离步骤。然而,目前这两种方法都无法确定同分异构脂质分子的C=C位置。同分异构体的定性和定量问题并不能通过已有方法得到解决。/pp  瑕瑜长期从事生物质谱为基础的气相化学自由基研究,一个偶然的机会,瑕瑜课题组的马潇潇博士(现为清华大学精密仪器系助理教授)在进行光化学自由基反应时发现受激发的丙酮与脂质C=C反应的结果并没有形成断裂加成峰,而是整个丙酮加到脂质分子上去。查阅资料之后,发现这是一个已知反应Paternò -Bü chi(PB反应)。根据PB反应的机理就能够清晰地解析离子碎裂谱图从而确定C=C位置。“这个发现对确定脂质同分异构体C=C位置,以及进行脂质定量分析非常有帮助。”瑕瑜说。/pp  从2014年发表第一篇文章起,他们将这一理论应用在了脂质组学研究中。 PB反应在鸟枪法策略中进行脂质同分异构体的定性与定量分析的研究已经取得了成功。目前,PB反应在液质联用策略中的脂质组学分析研究工作也已经完成。瑕瑜表示:“液质联用分析脂质组学能够得到更多的分子信息,应用面会更加广泛。将PB反应用在这个技术中,能够给脂质组学的发展提供更多机会。”/pp  现有的商业脂质解析数据库并不包括脂质C=C位置信息,并不能进行脂质同分异构体的定性与定量分析。目前,欧阳证与瑕瑜的研究团队正在进行包含C=C位置信息的脂质组学分析数据库建立工作。“我们希望让更多做脂质组学研究的人知道这个技术,并通过建立这个数据库帮助到需要了解脂质C=C信息的研究。”欧阳证在谈到该数据库的建立时说,“事实上,我们将要建立的不止是一个数据库,而是包括前端液相方法、PB反应、质谱方法、数据库与软件分析在内的整体工作流程。”/pp  据了解,欧阳证提到的脂质组学研究工作流程中的液相、PB反应以及CID(碰撞诱导解离)数据已经基本收集完毕。/ppspan style="color: rgb(0, 112, 192) font-size: 20px "strongspan style="color: rgb(0, 112, 192) font-family: 黑体, SimHei "-把反应器装进盒子,灵活使用质谱技/span/strongstrongspan style="color: rgb(0, 112, 192) font-family: 黑体, SimHei "术/span/strong/span/pp  提出工作流程的概念就是希望这个方法能够简单、方便和易用。团队在工作流程设计方面开展了大量工作,其中也包括将该分析方法的灵魂反应-PB反应的模块化。“我们的实验室和清谱科技合作制作了用于PB反应的源前反应器‘微流光反应器’,样品经液相分离后进入反应器并在流动的过程中进行光化学自由基反应,之后进入质谱分析。研制的主要目的是使PB反应能够更方便地应用在脂质分析中。”瑕瑜在介绍PB反应的模块化反应器时说,“该反应器设计为可拆卸的小型模块,就像一个小盒子,能够与商业ESI源配合使用”。/pp  工作流程以质谱平台为基础,质谱技术与分析方法也是谋求方法改进的重要方面。“我们将QTRAP与QTOF配合使用来建立最初的方法,”在介绍方法建立过程时欧阳证说:“在了解脂质类别与细节结构时,我们采用QTRAP进行质谱分析。该类仪器能进行多级质谱分析,并能够实现复杂样品中的极低浓度目标物的富集,这对了解脂质分子基础结构非常有利。”/pp  在确定脂质分子结构和明确目标脂质分子之后,工作流程更适合于在QTOF上进行。瑕瑜表示:“QTOF分析速度快,并能提供低端质量数的精确值,适合于大量样本的目标脂质分析。不仅能够让液相-PB反应-质谱分析这个工作流程更快,同时也是鸟枪法快速脂质分析的好平台。”/pp style="text-align: center "img title="lab.jpg" src="http://img1.17img.cn/17img/images/201706/insimg/7f8d8c10-44fd-4a81-88fe-70c8e7f07244.jpg"//pp  样品越多对仪器分析速度和数据软件处理速度以及工作流程的设计要求就越高,目前该实验室正在从软件及流程设计的角度对工作流不断优化,以期更好地用在脂质组学研究及实际应用中。/ppspan style="color: rgb(0, 112, 192) font-family: 黑体, SimHei font-size: 20px "strong-寻找潜在疾病标志物,脂质组学研究与小型质谱具有共同发展方向/strong/span/pp  脂质组学研究经过十几年的发展,不断有新的探索成果出现。已经有越来越多的脂质组学研究者发现了在不同疾病阶段下脂质轮廓的变化。这项整体的应用方法流程能够通过提供双键信息应用于脂质组学生物研究中,也具有为临床疾病研究提供生物标志物的潜力。/pp  目前,FDA还没有批准任何脂质分子作为生物标志物用于临床。瑕瑜认为,这是该方法研究的好机会。/pp  这个工作流程不需要内标就能完成对不同脂质同分异构体的快速定量。将脂质分析简化为分析C=C不同位置的比例情况,仅需得到同分异构体的比例,这就避免了采样过程或离子化时产生的波动与误差,令结果非常准确。“这个途径或许能够寻找到潜在疾病生物标志物。”瑕瑜说,“或者说同分异构体比例本身就是一个能够说明疾病情况的‘生物标志物’”/pp  欧阳证团队研发的小型质谱仪已经能够测定小的生物标志物和脂质组。小型质谱已经与团队的脂质组学分析方法结合用于组织取样直接分析。/pp  在该实验室进行的一项神经退型疾病治疗药物效果的动物模型研究中,研究者采用小型质谱-脂质组学方法直接实时检测组织脂质同分异构体比例变化,从而判断损伤情况和药物效果。“以PB反应为基础的脂质组学方法快速,仅需要得到同分异构体比例,具有较高的准确性,适合与小型质谱结合使用。”欧阳证认为小型质谱与这项脂质分析方法的结合具有理想的发展前景,“现阶段分子层面的脂质代谢研究还很少,PB反应-脂质分析能够从分子层面提供数据信息,这与小型质谱的发展方向相吻合。小型质谱与该方法结合很可能将为医疗伴随诊断提供指导信息。”/pp style="text-align: right "采访编辑:郭浩楠/pp  —————————————————————————/pp  strong后记/strong:将PB反应模块化、建立数据库和工作流程都是为了将这些技术推广,并能够让更多脂质组学和代谢组学的研究者能将这些技术应用到自己的研究发现中。由于脂质分子结构的多样性,脂质组学能够给生物学研究、临床研究提供更多有意义的信息。临床医疗是该实验室研究团队在仪器研发和方法开发方面的最终应用方向,也是很多组学研究团队的目标领域。瑕瑜教授和欧阳证将研究与团队带回祖国,与很多研究者一样,看好国内的人力资源与技术发展平台。愿在更多团队的共同努力下,我国的组学研究能够发挥科研力量,更多地真正应用于临床。/p
  • 岛津先进医疗保健案例临床科研探究丨使用质谱探索生物标志物和临床应用前景研究
    随着社会进入人口老龄化时代,如何延长健康寿命成为了迫切的课题。岛津长期致力于X射线成像诊断和质谱分析技术,以医疗、成像技术的可视化、以及使用质谱仪进行定量分析为基础,在可显著改善医疗保健未来的研发最前线,与合作伙伴一起,日日探索。通过预防、超早期诊断,进行身心负担较少的治疗,妥善管理预后,尽可能地延长健康的生活。岛津的先进医疗保健事业愿与大家共创未来。使用质谱探索生物标志物和临床应用研究生物标志物的发现为进一步了解疾病发病率和各种疾病的进展提供信息。判断是否罹患癌症或某些疾病及其进展程度,生物标志物的检测结果极为重要。因此,探索研究有效反映病情和疗效的新生物标志物是近年来兴起的临床科研领域。在这些临床应用的各种研究中,高灵敏度的质谱技术起着至关重要的作用,今后有望开发体外诊断和有效的疾病防治方法。什么是生物标志物?生物标志物是对疾病相关化合物,如尿液、血液和组织中所含的代谢物或蛋白质等物质的生物学鉴定和分析测量。这些标记物可作为定量掌握某些病情和体内生理变化的指标。联合研究合作伙伴方“我的研究重点是了解心脏病的发病机制。在这个过程中,我们使用质谱作为主要工具来发现与心脏病发病相关的化学特征。最近,利用质谱和非靶向代谢组学的方法,我们发现了一种叫做三甲基胺-N-氧化物(TMAO)的物质与心脏病的发生有关。补充功能研究发现,在动物模型中,TMAO既可导致心血管疾病,并且人体和动物模型均确认其为肠内细菌所产生的代谢物。我坚信,未来质谱分析技术将在心血管疾病的预防和治疗监测方面发挥越来越大的作用。”本文涉及的仪器仅限医学科研使用,不得用于诊疗及其相关流程。本文内容非商业广告,仅供专业人士参考。
  • Olink新品发布|Explore HT 蛋白标志物平台开启蛋白组学新时代
    Olink 于 2023 年 7 月 12 日 宣布发布 Olink Explore HT 新产品,该变革型高通量蛋白组学解决方案以全方位的已验证特异性、可扩展性和简化流程。Olink Explore HT 代表了新一代蛋白组学的重大进步,科学家们仅需 2 μl 样品即可准确检测超过 5,300 种蛋白标志物,且重新设计后的整个流程更简化。与上一代 Explore 产品相比,新品不仅将特异蛋白标志物检测数量提高了 80%,同时将样品检测通量提高 4 倍,数据输出能力提高 8 倍,并以更简化的操作流程进一步提高了从样品到数据产出效率。更重要的是,这些创新也缩减了环境空间,所有组件降低了 6 倍,外部包装降低了 10 倍。  Olink CEO Jon Heimer说到:“Olink Explore HT 展示了我们秉承持续创新的承诺,为科学研究提供强有力的解决方案。在几年前,Olink Explore HT 的强大功能几乎是难以想象的。而现在,这是 Olink 迄今为止提供的最先进的高通量蛋白组学产品,其卓越性能将赋能 21 世纪医疗健康提供重要新发现。”  Olink Explore HT 旨在全方位解锁所有规模蛋白质组学的巨大价值,以推进多组学研究。并可广泛应用于疾病治疗领域,加深疾病发生、进展及结果进程中,在分子信号通路水平的全面理解。Olink Explore HT 还将推动药物研发新发现,从基于疾病致病蛋白鉴定的靶点发现,到对作用机制研究的实操见解,以及通过对临床试验中现有样品的重新审查来重新利用扩展治疗方法。  瑞典乌普萨拉大学的Ulf Gyllensten教授说到:“我们对 Olink Explore HT 新平台感到非常兴奋。凭借 Olink 变革型 PEA 多重标记检测技术,Olink Explore HT 使得我们能从微量临床样品中进行高通量、超多重和极其精准的蛋白分析。将 PEA 技术与 NGS 读数结合后,Olink Explore HT 将以其前所未有的能力,进一步揭示全人类蛋白组。作为早期用户,我们已经成功地使用该平台发现识别妇科癌症的诊断和预后蛋白生物标志物。使用 Olink Explore HT 具有的更大规模的蛋白标志物库进行蛋白组学分析,定会加速新型生物标志物的发现,并揭示重要的生物学新见解。更广泛地说,从基础科研到转化研究的整个药物开发过程中,该平台将开启一种强大的基于多组学的新方法。”  Olink Explore HT 代表了 Olink PEA 技术与 NGS 读数相结合的前沿创新。每一个经过充分验证的分析实验,都再次验证 Olink 用户所信任的特异性和灵敏度的卓越标准。
  • 肿瘤标志物 7 种检测方法学大比拼
    p style="text-align: justify "  肿瘤具有高死亡率、高转移率和高复发率,是危害人类健康的重大疾病。诊断肿瘤的传统方法有病理组织活检、核磁共振成像(magnetic resonance imaging,MRI)、电子计算机断层扫描(computed tomography,CT)、B超、X线胸片、内镜检查等。这些检查对于肿瘤早期的检测效果十分有限,部分检测方法不仅价格昂贵,且会给患者带来痛苦。因此,在肿瘤早期阶段开展快速、有效的检测十分必要,不仅可以达到早发现、早治疗的目的,还可以改善患者就医体验。肿瘤标志物的筛检对于肿瘤早期检测具有重要意义[1]。/pp style="text-align: justify "  肿瘤标志物是指由肿瘤组织或宿主与肿瘤相互作用所产生的一类活性物质,能够提示肿瘤存在与生长变化。肿瘤标志物常常存在于血清、细胞、尿液、体液或组织中,常见的有癌胚蛋白、肿瘤抗原、酶类标志物、激素、糖类抗原等。肿瘤标志物检测具有操作便捷、标本易获取、非侵入性、价格低廉、易于动态监测疾病等优点。肿瘤标志物的检测对于肿瘤的预防、早期诊断与鉴别诊断、辅助肿瘤分类、疾病监测、指导治疗和预后判断有重要作用,可有效弥补其他医学技术对肿瘤诊断、治疗及预后判断的不足[2]。肿瘤标志物种类繁多,检测方法也各异,本文将几种常见肿瘤标志物检测方法的研究进展作一综述。/pp style="text-align: justify "  span style="color: rgb(0, 32, 96) "strong1、放射免疫分析/strong/span/pp style="text-align: justify "  放射免疫分析是一种传统的检测肿瘤标志物的方法,是将放射性核素检测技术与抗原抗体结合特异性的特点相结合,以定量微量物质。放射免疫分析多使用放射性核素125I,因其具有放射性高、易标记、衰变过程中释放的射线易于被检测等优势,逐渐替代了3H和14C而被广泛使用。放射性核素标记具有高灵敏度、易于商品化等优势,曾被广泛应用,但与其他方法[3]相比,存在试剂盒使用寿命短、有放射性污染风险等缺点,目前已逐渐被其他检测方法取代。/pp style="text-align: justify " span style="color: rgb(0, 32, 96) "strong 2、化学发光免疫分析/strong/span/pp style="text-align: justify "  化学发光免疫分析是目前常用和较为成熟的肿瘤标志物检测技术,其利用化学发光物质作为标记物,根据发光信号的强度来判断待测物质的量。自1928年德国化学家Albrecht发现鲁米诺的化学发光特性后,该检测技术由于灵敏度高、快速、线性范围广、仪器结构简单、适合小型化、无放射性危害等优点得到不断发展[4,5]。化学发光免疫分析为化学发光法,使用直接发光物质(如吖啶酯)标记抗体,或使用酶类催化剂(如辣根过氧化物酶)[6]标记抗原抗体。将化学发光技术与微芯片电泳化学发光(microchip-electrophoresis chemiluminescence,MCE-CL)等技术联合使用,具有效率高、分析快、自动化程度高、需要更少样品和试剂的优点[7,8]。/pp style="text-align: justify "  传统化学免疫分析采用酶标技术,用辣根过氧化物酶催化鲁米诺的免疫测定技术曾被广泛使用,目前的免疫测定系统通常使用信号探针标记抗体并进一步测量目标分析物浓度。但这类天然酶具有稳定性差、来源有限、对环境变化敏感、易受环境影响而变性等缺点,且标记过程通常会损害抗体分子的生物活性,因而基于金属及金属复合物[9,10]、磁性纳米颗粒[11]、量子点[12]等催化发光底物的无酶免疫系统[13]不断发展,将电化学技术和化学发光相结合检测肿瘤标志物,兼具了化学发光的高灵敏度和电化学的时间、空间可控性[14,15]的优点。有研究人员以CuS纳米粒子作为过氧化物酶模拟物,设计了一种新型的无标记化学发光(chemiluminescence,CL)免疫方法测定甲胎蛋白,与基于酶标的CL免疫测定法相比,提出的无标记测定模式更简单、价廉、快速。采用无标记的CL免疫测定法测定甲胎蛋白的线性范围为0.1~60ng/mL,检出限为0.07 ng/mL,且此CL免疫测定系统显示出良好的特异性、可接受的重复性和良好的准确性[16]。/pp style="text-align: justify "  span style="color: rgb(0, 32, 96) "strong3、酶联免疫吸附试验/strong/span/pp style="text-align: justify "  酶联免疫吸附试验是一项临床上已普及的检测技术,这一技术将抗原或抗体包被于固相支持物上,将酶标抗原或抗体加入抗原抗体复合物中,通过底物使酶显色来达到检测目的。不同的研究人员会采用不同的酶联免疫吸附试验策略,如使用单克隆多克隆抗体[17]及嵌合抗体[18]来开发肿瘤标志物检测试剂盒。酶联免疫吸附试验被开发后其检测系统得到不同的优化,如凝集素及生物素-亲和素系统[19]在酶联免疫吸附试验中的应用大大增强了其检测的敏感性,荧光素酶夹心酶联免疫吸附试验系统[20]也使检测的敏感性不断增强。酶联免疫吸附试验不仅适用于对单一分析物的测定,在多个分析物同时存在时,同样具有良好的适用性[21]。/pp style="text-align: justify "  除酶联免疫吸附试验外,越来越多的研究集中于开发具有酶样活性的模拟酶[22]。ZHANG等[23]以Cu2+作为助催化剂,利用Cu2+/Ag-AgI复合物作为催化剂具有在可见光下使3,3´ ,5,5´ -四甲基联苯胺(3,3´ ,5,5´ -tetramethylbenzidine,TMB)颜色产生变化的特性,构建了夹心型比色法,通过监测TMB溶液的颜色变化以定量癌胚抗原的水平,其开发的比色免疫测定在血清样品分析中表现出良好的选择性、重复性和稳定性。/pp style="text-align: justify "  span style="color: rgb(0, 32, 96) "strong4、免疫传感器/strong/span/pp style="text-align: justify "  免疫传感器一直备受肿瘤研究者关注和青睐。将特异性免疫反应与生物传感技术相结合形成的生物传感器,其生物识别部分来自抗原与抗体的特异性识别和结合作用,通过理化换能器和信号放大装置将生物信号转变为电信号用于检测。与其他几种检测方法相比,免疫传感器具有灵敏度高、操作方便、设备简单、成本低、可实现实时动态检测等优势。目前,免疫传感器大部分处于试验阶段,正向高通量、商品化发展,以满足临床大样本检测的要求,随着技术的不断成熟,有望成为肿瘤标志物的新型检测手段。检验医学网/pp style="text-align: justify "  金属纳米材料由于拥有独特的光学、电子和催化特性常被用于构建免疫传感器[24,25]。LIU等[26]使用多孔铂纳米颗粒和PdPt纳米笼同时测定肿瘤标志物癌胚抗原和甲胎蛋白,利用多孔铂纳米颗粒较大的表面积和较强的导电性,PdPt纳米笼优异的催化性能及高负载能力,增强和放大响应信号,实现了对双重分析物的灵敏测定。另外,使用纳米合金材料制作的传感器,与使用单一金属材料相比具有更好的生物相容性,金属之间良好的协同作用使传感器催化性能进一步被放大。ZHANG等[27]使用PdPt纳米颗粒,以石墨烯片和多壁碳纳米管作为传感平台,组成纳米复合物修饰电极,来测定肿瘤标志物潜伏膜蛋白-1,比单独使用Pd纳米粒子具有更高的过氧化物酶活性,PdPt凹面不仅可以提供较大的表面积,还可以提供更丰富的催化反应活性位点。/pp style="text-align: justify "  碳纳米材料,包括单壁碳纳米管、多壁碳纳米管、石墨烯、碳纳米纤维、碳球等,由于其良好的力学性能、较高的化学稳定性、特殊的电学性质、优异的机械性能和良好的导热性被广泛用于免疫传感器的制造,制造的传感器具有响应速度快、电子传递速率高、负载量大、吸附性好、催化活性等优点。LIANG等[28]研制了以双层酶修饰碳纳米管作为标记的夹心型免疫传感器,利用层层自组装技术将辣根过氧化物酶装配到多壁碳纳米管上,实现了信号放大,为临床分析的超灵敏检测提供了有力的支持。/pp style="text-align: justify "  聚合物复合材料由于良好的氧化还原性能,被作为免疫传感器信号指示剂[29,30]。TANG等[31]用聚多巴胺-PB2+(PDA-Pb2+)纳米复合材料作为氧化还原体系,用壳聚糖-金纳米复合材料涂覆电极,对癌胚抗原进行敏感性的电流分析。利用聚合物复合材料制作的免疫传感器,因聚合物复合材料掺杂带来的半导体或导体性质,其活性可被调节,掺杂/去掺杂的可逆过程使其可检测不同的分析对象,扩大了检测范围。/pp style="text-align: justify "  免疫传感器的制备除上述几种材料外,还常引入其他具有不同功能的材料来提高性能。如利用量子点高表面活性、小尺寸及对光、电、温度等敏感的特性,构建的传感器灵敏度较高[32,33] 利用磁性纳米粒子的磁效应构建的传感器抗干扰性好[34] 利用介孔材料良好的孔隙结构和界面结构构建的传感器,能够保持酶良好的活性和功能性 利用水凝胶构建的传感器稳定性好,水溶性高,能够对外界刺激产生响应并产生相应变化[35]。此外,利用羟基磷灰石(hydroxyapatite,HAP)纳米颗粒,利用HAP-NPs与钼酸盐的反应检测甲胎蛋白,构建的传感器选择性好、灵敏度高,且成本低[36]。/pp style="text-align: justify "  span style="color: rgb(0, 32, 96) "strong5、蛋白组学/strong/span/pp style="text-align: justify "  蛋白组学是近年来兴起的肿瘤研究领域热点之一,以蛋白质为核心,对蛋白质的表达模式和功能模式进行研究。蛋白组学技术具有高通量、微型化、自动化的优势,目前被广泛用于临床肿瘤学研究,为肿瘤标志物的研究提供了良好的平台,但同时具有检测成本昂贵、对技术人员操作要求高等缺点。/pp style="text-align: justify "  span style="color: rgb(0, 32, 96) "①双向电泳/span/pp style="text-align: justify "  双向电泳是蛋白组学的经典技术,是利用蛋白质的等电点和不同相对分子质量来分离蛋白质的一门技术。双向电泳是蛋白组学的核心技术之一,能够通过染色强度得到蛋白质翻译后修饰的信息,能够同时分离数千种蛋白质。但其有不能分辨低拷贝数蛋白、检测蛋白比估计总蛋白数少、耗时长、操作过程繁琐等缺点,不能实现完全自动化,研究者常将其与质谱技术联用以分离、鉴定蛋白质[37],即将蛋白质用双向电泳分离后,运用质谱技术进行逐一鉴定,这也成为蛋白组学研究的核心技术。相差凝胶电泳在双向电泳的基础上利用不同的染色对2个样本进行标记,通量更高,提高了凝胶间的可比性,工作效率得到提升。/pp style="text-align: justify "  span style="color: rgb(0, 32, 96) "②质谱技术/span/pp style="text-align: justify "  质谱技术是将物质离子化,根据不同质荷比进行时间和空间的分离,进而获得样品的相对分子质量、分子结构等多种信息的分析方法。由于其具有高分辨力、高精度等特点被广泛用于多个领域。近年来,常用色谱-质谱技术,因其兼具了色谱的分离能力和质谱的鉴定能力,能够对蛋白质进行准确、快速的分析和定量[39,40]。基质辅助激光解吸飞行时间质谱和电喷雾电离质谱是经过改进的质谱技术,前者利用基质吸收激光的能量,得到肽质量指纹谱,通过检索数据库以鉴定蛋白质 后者利用电喷雾法,液相化多肽以鉴定蛋白质。这2种方法能保证电离时样品分子的完整性,不会使离子碎片化。检验医学网/pp style="text-align: justify "  span style="color: rgb(0, 32, 96) "③蛋白质芯片/span/pp style="text-align: justify "  蛋白质芯片是近十年来新兴的分析技术,即在支持物表面排列蛋白质探针以捕获目标蛋白,再通过检测器进行定性或定量分析。根据载体性质不同,可分为固相蛋白质芯片和液相蛋白质芯片,临床上常用来筛选和寻找肿瘤标志物。反相蛋白质芯片也是蛋白组学高通量方法[41]。蛋白质芯片不仅可用来研究蛋白质与蛋白质之间的相互作用,还可研究蛋白质与核苷酸间的相互作用,具有通量高、速度快、灵敏度高的优点。DUAN等[42]设计了一种蛋白质芯片,使用胶体纳米金标记葡萄球菌属蛋白A作为指标,应用免疫金银染色增强技术扩增检测信号,此蛋白质芯片可在不存在交叉反应的情况下检测乙型肝炎病毒抗体和丙型肝炎病毒抗体,并可在40min内提供结果,速度相对酶联免疫吸附试验等方法更快。YANG等[43]开发了一种微阵列芯片,首次使用硅和水凝胶作为微阵列的载体,构成的芯片具有二氧化硅和水凝胶两者的优点。/pp style="text-align: justify "  span style="color: rgb(0, 32, 96) "④表面增强激光解析及电离飞行时间质谱/span/pp style="text-align: justify "  表面增强激光解析及电离飞行时间质谱是将质谱与蛋白质分离技术相结合的技术,能够检测到其他传统方法检测不到的蛋白质,只需少量样品,检测时间短且重复性高,可分析复杂样品。该技术基于特殊芯片的表明增强吸附作用,将样品蛋白质吸附到芯片上后,将结合蛋白质解离成核电离子以绘制质谱图。将健康人与肿瘤患者的蛋白图谱进行比较,能够发现差异表达的蛋白质。JIN等[44]开发了一种对糖类抗原19-9正常的胰腺癌患者与健康或良性个体进行诊断和鉴别诊断的方法,使用与CM10芯片联合的表面增强激光解吸及电离飞行时间质谱分析相关样品,生成了具有不同蛋白质的诊断模型。/pp style="text-align: justify "  span style="color: rgb(0, 32, 96) "strong6、分子生物学方法/strong/span/pp style="text-align: justify "  检测肿瘤标志物的分子生物学方法包括聚合酶链反应(polymerasechain reaction,PCR)、荧光原位杂交技术(fluorescencein situ hybridization, FISH)、逆转录PCR、单链构象多态性(single-strand conformationpolymorphism,SSCP)、多种测序技术等。分子生物学技术具有高通量,特异性强、敏感性高等优势,但也存在价格昂贵、检测周期长等缺点。/pp style="text-align: justify "  PCR是目前被广泛使用的一种简单、敏感、高效、特异和快速的,能在体外扩增DNA的技术。由经典PCR衍生出的技术被广泛应用于肿瘤标志物的检测,如逆转录PCR被用于口咽癌[45]、结直肠癌[46]、前列腺癌[47]、肺癌[48]等多种肿瘤的检测。甲基化特异性PCR是一种检测特异位点甲基化的技术[49],检测DNA甲基化敏感性极高,KOIKE等[50]发现甲基化特异性PCR对于胃癌标志物的检出率高于逆转录PCR。此外,多种PCR衍生技术如扩增融合PCR、实时荧光定量PCR等也被运用于肿瘤标志物的检测。/pp style="text-align: justify "  FISH以标记的特异寡聚核苷酸片段作为探针,根据核酸碱基配对原理,将标记的探针与单链核酸片段配对,在荧光显微镜下观察目标序列的分布。FISH虽属于低通量检测,但目前已被用于检测肿瘤细胞[51]、突变染色体[52]、染色体重排[53],在肿瘤生物标志物检测和个体化医疗方面具有重要意义。/pp style="text-align: justify "  span style="color: rgb(0, 32, 96) "strong7、液体活检/strong/span/pp style="text-align: justify "  液体活检是一种从血液等非实性样本中取样,用于诊断和检测肿瘤的方法。液体活检技术主要包括循环肿瘤细胞(circulating tumor cell, CTC)检测、循环肿瘤DNA(circulating tumor DNA, ctDNA)检测、外泌体检测等。与组织活检相比,液体活检能够早期筛查、检测肿瘤标志物,克服了肿瘤的时空异质性,具有无创、易反复取样、操作简便、可实时监控等优点,但同时也有价格昂贵、检测标准不统一等缺点。CTC检测目前主要使用的是免疫细胞化学方法,但CTC极低的丰度及其异质性使其面临着技术挑战。ctDNA检测主要采用分子生物学方法,但ct DNA具有易降解、含量低等缺点,为精准检测带来困难。外泌体检测在肿瘤诊断方面显示出良好的应用前景,是具有发展潜力的诊断方法,但其提取及操作尚无统一流程,检测系统有待进一步完善,以满足临床大规模样本检测的需要。检验医学网/pp style="text-align: justify "  strong总结/strong/pp style="text-align: justify "  肿瘤标志物作为临床上肿瘤辅助诊断、治疗参考以及预后判断的重要指标,目前在应用上愈发广泛,临床对检测技术的要求也不断发展。不仅有大量灵敏度或特异性更高的标志物被发现,而且在检测方法上也紧跟临床工作需求而不断发展。不同检测方法均有其优势与不足,如何对不同方法进行整合,提高肿瘤标志物的检出能力,是研究者们需关注和探索的问题。能够在肿瘤早期检出低含量肿瘤标志物,永远是临床肿瘤诊断的主要需求。不管使用何种材料,使用何种方法,提高检测的敏感性和特异性及稳定性永远是肿瘤标志物研发所追求的目标。/pp style="text-align: justify text-indent: 2em "strong参考文献/strong/pp  [1]GERDTSSON A S, WINGREN C, PERSSON H, et al. Plasma protein profiling in a stage defined pancreatic cancer cohort-implications for early diagnosis[J]. Mol Oncol, 2016, 10(8): 1305-1316./pp  [2]COLEMAN R L, HERZOG T J, CHAN D W, et al. Validation of a second-generation multivariate index assay for malignancy risk of adnexal masses[J]. Am J Obstet Gynecol, 2016, 215(1): 82e1-82. e11./pp  [3]MURATA T, TSUZAKI K, NIRENGI S, et al. Diagnostic accuracy of the anti-glutamic acid decarboxylase antibody in type 1 diabetes mellitus: comparison between radioimmunoassay and enzyme-linked immunosorbent assay[J]. J Diabetes Investig, 2017, 8(4): 475-479./pp  [4]CHANG Y, XU J, ZHANG Q. Microplate magnetic chemiluminescence immunoassay for detecting urinary survivin in bladder cancer[J]. Oncol Lett, 2017, 14(4): 4043-4052./pp  [5]NAKAGAWA M, KARASHIMA T, KAMADA M, et al. Development of a fully automated chemiluminescence immunoassay for urine monomeric laminin-γ2 as a promising diagnostic tool of non-muscle invasive bladder cancer[J]. Biomark Res, 2017, 5: 29./pp  [6]ZHAO L, DAN W, SHI G, et al. Dual-labeled chemiluminescence enzyme immunoassay for simultaneous measurement of total prostate specific antigen (TPSA) and free prostate specific antigen (FPSA)[J].Luminescence, 2017, 32(8): 1547-1553./pp  [7]LIU J, ZHAO J, LI S, et al. A novel microchip electrophoresis-based chemiluminescence immunoassay for the detection of alpha-fetoprotein in human serum[J]. Talanta, 2017, 165: 107-111./pp  [8]LI S, YANG T, ZHAO J, et al. Chemiluminescence noncompetitive immunoassay based on microchip electrophoresis for the determination of β-subunit of human chorionic gonadotropin[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2017, 1053: 42-47./pp  [9]ZHANG Q, DAI H, WANG T, et al. Ratiometric electrochemiluminescent immunoassay for tumor marker regulated by mesocrystals and biomimetic catalyst[J]. Electrochimica Acta, 2016, 196: 565-571./pp  [10]LI S, SHI M, ZHAO J, et al. A highly sensitive capillary electrophoresis immunoassay strategy based on dual-labeled gold nanoparticles enhancing chemiluminescence for the detection of prostate-specific antigen[J]. Electrophoresis, 2017, 38(13-14): 1780-1787./pp  [11]HUANG Z J, HAN W D, WU Y H, et al. Magnetic electrochemiluminescent immunoassay with quantum dots label for highly efficient detection of the tumor marker α-fetoprotein[J]. J Electroanal Chem, 2017, 785: 8-13./pp  [12]GUO Z, HAO T, DU S, et al. Multiplex electrochemiluminescence immunoassay of two tumor markers using multicolor quantum dots as labels and graphene as conducting bridge[J]. Biosens Bioelectron, 2013,44: 101-107./pp  [13]SHIM C, CHONG R, LEE J H. Enzyme-free chemiluminescence immunoassay for the determination of thyroid stimulating hormone[J]. Talanta, 2017, 171: 229-235./pp  [14]ZHANG M, GE S, LI W, et al. Ultrasensitive electrochemiluminescence immunoassay for tumor marker detection using functionalized Ru-silica@nanoporous gold composite as labels[J]. Analyst, 2012, 137(3):680-685./pp  [15]BABAMIRI B, HALLAJ R, SALIMI A. Ultrasensitive electrochemiluminescence immunoassay for simultaneous determination of CA125 and CA15-3 tumor markers based on PAMAM-sulfanilic acid-Ru(bpy)32+ and PAMAM-CdTe@CdS nanocomposite[J]. Biosens Bioelectron, 2018, 99: 353-360./pp  [16]YANG Z, CAO Y, LI J, et al. Smart CuS nanoparticles as peroxidase mimetics for the design of novel label-free chemiluminescent immunoassay[J]. ACS Appl Mater Interfaces, 2016, 8(19): 12031-12038./pp  [17]CHEN S L, LI Y L, TANG Y, et al. Development and evaluation of a double antibody sand wich ELISA for the detection of human sDC-SIGN[J]. J Immunological Methods, 2016, 436: 16-21./pp  [18]YAMASHITA J, KOBAYASHI I, TATEMATSU K, et al. Sand wich ELISA using a mouse/human chimeric CSLEX-1 antibody[J]. Clin Chem, 2016, 62(11): 1516-1523./pp  [19]OUJI-SAGESHIMA N, GERAGHTY D E, ISHITANI A, et al. Establishment of optimized ELISA system specific for HLA-G in body fluids[J]. HLA, 2016, 88(6): 293-299./pp  [20]LI Y, LI Y, ZHAO J, et al. Development of a sensitive luciferase-based sand wich ELISA system for the detection of human extracellular matrix 1 protein[J]. Monoclon Antib Immunodiagn Immunother, 2016,35(6): 273-279./pp  [21]LAKSHMIPRIYA T, GOPINATH S C B, HASHIM U, et al. Multi-analyte validation in heterogeneous solution by ELISA[J]. Int J Biol Macromol, 2017, 105(Pt 1): 796-800./pp  [22]WANG J, CAO Y, XU Y, et al. Colorimetric multiplexed immunoassay for sequential detection of tumor markers[J]. Biosens Bioelectron, 2009, 25(2): 532-536./pp  [23]ZHANG B, WANG X, ZHAO Y, et al. Highly photosensitive colorimetric immunoassay for tumor marker detection based on Cu2+ doped Ag-AgI nanocomposite[J]. Talanta, 2017, 167: 111-117./pp  [24]LAI G, WANG L, WU J, et al. Electrochemical stripping analysis of nanogold label-induced silver deposition for ultrasensitive multiplexed detection of tumor markers[J]. Anal Chim Acta, 2012, 721: 1-6./pp  [25]LIANG Y H, CHANG C C, CHEN C C, et al. Development of an Au/ZnO thin film surface plasmon resonance-based biosensor immunoassay for the detection of carbohydrate antigen 15-3 in human saliva[J]. Clin Biochem, 2012, 45(18): 1689-1693./pp  [26]LIU N, FENG F, LIU Z, et al. Porous platinum nanoparticles and PdPt nanocages for use in an ultrasensitive immunoelectrode for the simultaneous determination of the tumor markers CEA and AFP[J]. Microchim Acta, 2015, 182(5-6): 1143-1151./pp  [27]ZHANG X, ZHOU D, SHENG S, et al. Electrochemical immunoassay for the cancer marker LMP-1 (Epstein-Barr virus-derived latent membrane protein 1) using a glassy carbon electrode modified with Pd@Pt nanoparticles and a nanocomposite consisting of graphene sheets and MWCNTs[J]. Microchim Acta, 2016,183(6): 1-8./pp  [28]LIANG M, YUAN R, CHAI Y, et al. Double layer enzyme modified carbon nanotubes as label for sand wich-type immunoassay of tumor markers[J]. Microchim Acta, 2011, 172(3-4): 373-378./pp  [29]LIU Z, RONG Q, MA Z, et al. One-step synthesis of redox-active polymer/AU nanocomposites for electrochemical immunoassay of multiplexed tumor markers[J]. Biosens Bioelectron, 2015, 65: 307-313./pp  [30]CAI X, WENG S, GUO R, et al. Ratiometric electrochemical immunoassay based on internal reference value for reproducible and sensitive detection of tumor marker[J]. Biosens Bioelectron, 2016, 81: 173-180./pp  [31]TANG Z, MA Z. Ultrasensitive amperometric immunoassay for carcinoembryonic antigens by using a glassy carbon electrode coated with a polydopamine-Pb(Ⅱ) redox system and a chitosan-gold nanocomposite[J]. Microchim Acta, 2017: 1-8./pp  [32]LIU W, ZHANG A, XU G, et al. Manganese modified CdTe/CdS quantum dots as an immunoassay biosensor for the detection of Golgi protein-73[J]. J Pharm Biomed Anal, 2015, 117: 18-25./pp  [33]TIAN J, ZHOU L, ZHAO Y, et al. Multiplexed detection of tumor markers with multicolor quantum dots based on fluorescence polarization immunoassay[J]. Talanta, 2012, 92: 72-77./pp  [34]SUN X C, LEI C, GUO L, et al. Giant magneto-resistance based immunoassay for the tumor marker carcinoembryonic antigen[J]. Microchim Acta, 2016, 183(3): 1107-1114./pp  [35]WANG H, MA Z. A cascade reaction signal-amplified amperometric immunosensor platform for ultrasensitive detection of tumor marker[J]. Sensors Actuators B Chemical, 2017, 2017: 254./pp  [36]HUANG Y, TANG C, LIU J, et al. Signal amplification strategy for electrochemical immunosensing based on a molybdophosphate induced enhanced redox current on the surface of hydroxyapatite nanoparticles[J]. Microchim Acta, 2017, 184(3): 1-7./pp  [37]HODGKINSON V C, AGARWAL V, ELFADL D, et al. Pilot and feasibility study: comparative proteomic analysis by 2-DE MALDI TOF/TOF MS reveals 14-3-3 proteins as putative biomarkers of response to neoadjuvant chemotherapy in ER-positive breast cancer[J]. J Proteomics, 2012, 75(9): 2745-2752./pp  [38]CHEN Y T, CHEN H W, DOMANSKI D, et al. Multiplexed quantification of 63 proteins in human urine by multiple reaction monitoring-based mass spectrometry for discovery of potential bladder cancer biomarkers[J]. J Proteomics, 2012, 75(12): 3529-3545./pp  [39]SINCLAIR J, TIMMS J F. Ovarian cancer[M]. Clifton: Humana Press, 2013: 271./pp  [40]WANG F, XIE B, WANG B, et al. LC-MS/MS glycomic analyses of free and conjugated forms of the sialic acids, Neu5Ac, Neu5Gc and KDN in human throat cancers[J]. Glycobiology, 2015, 25(12): 1362-1374./pp  [41]SONNTAG J, BENDER C, SOONS Z, et al. Reverse phase protein array based tumor profiling identifies a biomarker signature for risk classification of hormone receptor-positive breast cancer[J]. Translational Proteomics, 2014, 2(1): 52-59./pp  [42]DUAN L, WANG Y, LI S S, et al. Rapid and simultaneous detection of human hepatitis B virus and hepatitis C virus antibodies based on a protein chip assay using nano-gold immunological amplification and silver staining method[J]. BMC Infect Dis, 2005, 5: 53./pp  [43]YANG Z X, CHEN B A, WANG H, et al. Hand y, rapid and multiplex detection of tumor markers based on encoded silica-hydrogel hybrid beads array chip[J]. Biosens Bioelectron, 2013, 48: 153-157./pp  [44]JIN X L, XU B, WU Y L. Detection of pancreatic cancer with normal carbohydrate antigen 19-9 using protein chip technology[J]. World J Gastroenterol, 2014, 20(40): 14958-14964./pp  [45]GAO G, CHERNOCK R D, GAY H A, et al. A novel RT-PCR method for quantification of human papillomavirus transcripts in archived tissues and its application in oropharyngeal cancer prognosis[J]. Int J Cancer,2013, 132(4): 882-890./pp  [46]YADEGARAZARI R, HASSANZADEH T, MAJLESI A, et al. Improved real-time rt-PCR assays of two colorectal cancer peripheral blood mRNA biomarkers: a pilot study[J]. Iran Biomed J, 2013, 17(1): 15-21./pp  [47]VAN NESTE L, BIGLEY J, TOLL A, et al. A tissue biopsy-based epigenetic multiplex PCR assay for prostate cancer detection[J]. BMC Urol, 2012, 12: 16./pp  [48]LIN Q, MAO W, SHU Y, et al. A cluster of specified microRNAs in peripheral blood as biomarkers for metastatic non-small-cell lung cancer by stem-loop RT-PCR[J]. J Cancer Res Clin Oncol, 2012, 138(1): 85-93./pp  [49]GONZALGO M L, NAKAYAMA M, LEE S M, et al. Detection of GSTP1 methylation in prostatic secretions using combinatorial MSP analysis[J]. Urology, 2004, 63(2): 414-418./pp  [50]KOIKE H, ICHIKAWA D, IKOMA H, et al. Comparison of methylation-specific polymerase chain reaction (MSP) with reverse transcriptase-polymerase chain reaction (RT-PCR) in peripheral blood of gastric cancer patients[J]. J Surg Oncol, 2004, 87(4): 182-186./pp  [51]LV Y, MU N, MA C, et al. Detection value of tumor cells in cerebrospinal fluid in the diagnosis of meningeal metastasis from lung cancer by immuno-FISH technology[J]. Oncol Lett, 2016, 12(6): 5080-5084./pp  [52]TINAWI-ALJUNDI R, KNUTH S T, GILDEA M, et al. Minimally invasive prostate cancer detection test using FISH probes[J]. Res Rep Urol, 2016, 8: 105-111./pp  [53]FERNÁ NDEZ-SERRA A, RUBIO L, CALATRAVA A, et al. Molecular characterization and clinical impact of TMPRSS2-ERG rearrangement on prostate cancer: comparison between FISH and RT-PCR[J]. Biomed Res Int, 2013, 2013(3): 465179./ppbr//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制