当前位置: 仪器信息网 > 行业主题 > >

钛镍钯合金

仪器信息网钛镍钯合金专题为您整合钛镍钯合金相关的最新文章,在钛镍钯合金专题,您不仅可以免费浏览钛镍钯合金的资讯, 同时您还可以浏览钛镍钯合金的相关资料、解决方案,参与社区钛镍钯合金话题讨论。

钛镍钯合金相关的资讯

  • 借助流化沙浴实现镍钛合金热定型
    借助流化沙浴实现镍钛合金热定型个#Cole-Parmer沙浴用于人体心脏支架工艺#镍钛合金是一种形状记忆合金,能将自身的塑性变形在某一特定温度下自动恢复为原始形状的特种合金,具有良好的可塑性,又称热定型能力,被广泛应用于多个领域包括医疗器械、航空航天、电子等领域。在医疗领域中,镍钛诺可以用于制造支架、人体植入设备,导丝、取石篮、过滤器、针头、牙科锉刀和其他手术器械。高纯度原料和熔融方法可以确保取得均匀的最终产品。行业常采用不同的热处理加工方法来实现最终产品成型。Cole-Parmer系列流化沙浴能够覆盖温度范围从-100°C到700°C的应用,因在超高温度下也能保持温度稳定性和均一性,并且保证温度精密,是镍钛诺热处理的理想选择。✦ ++Cole-Parmer流化沙浴床应用✦ +► 镍钛合金热处理热处理常用于设定镍钛合金的最终形状。如果镍钛合金有合理的冷加工量(大约30%或更多),400℃到 500℃的温度和适当的停留时间将产生一个直的、扁平的或成型的零件。术语“形状设置”通常用于此过程,成型零件是使用定制夹具创建的。一些常见的热处理方法是钢绞线退火(用于直线和管材)、箱式炉、熔盐浴和流化沙浴床。热处理的另一个目的是确定镍钛合金的最终机械性能和转变温度。材料经过冷加工后,适当的热处理将在材料中建立可能的最佳形状记忆或超弹性性能,同时保留足够的残余冷加工效果以抵抗循环过程中的永久变形。► 镍钛合金热处理的难点解决面临的难点:高温情况下的温度均一性合金的热处理需要在一个特定的稳定高温环境下进行,若是温度过高会导致产品的弹性功能丧失,而温度过低则会导致产品没有成功的坚硬化,不利于后期的使用处理难点解决:Cole-Parmer流化沙浴床可以在700℃的温度条件下,提供一个最高±0.01℃的高温环境浴,可以帮助客户轻松地完成各种温度条件下的高温热处理。Cole-Parmer流化沙浴床工作中► Cole-Parmer流化沙浴床更多应用推荐基本通用款高温度稳定性高流量清洗款1、温度探头校准—不规则形状传感器2、聚合物清洁快速清洗,限度地减少昂贵的生产设备停机时间,只需要烘箱1/3时间无刀具损伤、钢丝擦刷、刮伤损坏无人值守清洗,降低了劳动成本不会腐蚀磨料模具轻松处理断路板、模具、喷嘴及其他模具材料的小孔沙浴流化床的能源效率无需耗材、溶剂或任何其他有害的化学物质去除几乎所有的塑料,如PVC、PET、Flouropolymers和PEEK聚合物3、恒温加热—替代水浴盐浴等4、材料热处理—镍钛合金等
  • 中国生物材料学会征集《镍钛形状记忆合金骨板形状恢复能力测试方法》等10项团体标准意见
    p style="text-align: justify text-indent: 2em "日前,中国生物材料学会发布关于征集《可降解镁合金半连续铸棒》等10项团体标准意见的通知。strong具体如下:/strong/pp style="text-align: justify text-indent: 2em "各学会会员及有关单位:/pp style="text-align: justify text-indent: 2em "根据2019年中国生物材料学会批准立项的团体标准项目,由中国生物材料学会团体标准化技术委员会归口的《可降解镁合金半连续铸棒》等10项团体标准项目已形成征求意见稿,并完成编制说明的编写。/pp style="text-align: justify text-indent: 2em "现公开征集意见,请各相关单位或个人将意见或建议填写至征求意见稿反馈表(附件21),并于2020年5月20日前以电子邮件的形式发送至各标准工作组联系人邮箱。逾期无回复或反馈按无意见处理,请各位专家和相关单位积极参与。/ptable cellspacing="0" cellpadding="0" class="table table-bordered" style="box-sizing: border-box margin: 0px 0px 20px padding: 0px border: 1px solid rgb(221, 221, 221) font-variant-numeric: inherit font-variant-east-asian: inherit font-stretch: inherit font-size: 15.4px line-height: inherit font-family: SourceHanSansCN-Regular, " noto="" sans="" cjk="" source="" han="" vertical-align:="" border-spacing:="" background-color:="" max-width:="" white-space:="" width:=""tbody style="box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline "tr class="firstRow" style="box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline "td width="25" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "strong序号/strong/p/tdtd width="351" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "strong标准名称/strong/p/tdtd width="5" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "strong制修订/strong/p/tdtd width="43.66666666666667" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "strong工作组联系人/strong/p/tdtd width="134" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "strong电子邮箱/strong/p/td/trtr style="box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline "td width="25" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "1/p/tdtd width="383" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "可降解镁合金半连续铸棒(Biomedical biodegradable magnesium alloys semi-continuous casted bars)/p/tdtd width="5" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "制定/p/tdtd width="43.66666666666667" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "朱世杰/p/tdtd width="134" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "zhusj@zzu.edu.cnbr style="box-sizing: border-box "/ br style="box-sizing: border-box "/ /pp style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " /p/td/trtr style="box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline "td width="25" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "2/p/tdtd width="383" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "可降解医用镁合金毛细管材(Biomedical degradable magnesium alloy microtubes)/p/tdtd width="5" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "制定/p/tdtd width="43.66666666666667" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "朱世杰/p/tdtd width="134" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "zhusj@zzu.edu.cn/p/td/trtr style="box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline "td width="25" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "3/p/tdtd width="383" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "可降解镁合金热挤压棒材(Biomedical biodegradable magnesium alloys extruded bars)/p/tdtd width="5" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "制定/p/tdtd width="43.66666666666667" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "朱世杰/p/tdtd width="134" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "zhusj@zzu.edu.cn/p/td/trtr style="box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline "td width="25" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "4/p/tdtd width="383" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "镍钛形状记忆合金骨板形状恢复能力测试方法(Standard for Evaluating Shape Recoverability of Nickel-Titanium Shape Memory Alloy Bone Plates)/p/tdtd width="5" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "制定/p/tdtd width="43.66666666666667" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "闫鹏伟/p/tdtd width="134" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "supeyan@qq.com/pp style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " /p/td/trtr style="box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline "td width="25" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "5/p/tdtd width="383" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "镍钛形状记忆合金骨植入物体外镍离子释放模型(The model of Nickel ion release in vitro of nickel-titanium shape memory alloy bone implant)/p/tdtd width="5" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "制定/p/tdtd width="43.66666666666667" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "郑亚亚/p/tdtd width="134" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "441845847@qq.com/pp style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " /p/td/trtr style="box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline "td width="25" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "6/p/tdtd width="383" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "镍钛形状记忆合金心脏封堵器形状恢复性能评价方法(Evaluation method for evaluating shape recovery ability of Nickel-Titanium shape memory alloy cardiac occlude)/p/tdtd width="5" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "制定/p/tdtd width="43.66666666666667" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "刘艳文/p/tdtd width="134" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "liuyanwen@lifetechmed.com/p/td/trtr style="box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline "td width="25" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "7/p/tdtd width="383" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "镍钛形状记忆合金自膨式血管支架形状恢复能力测试方法(Test method for evaluating shape recoverability of Nickel-Titanium shape memory alloy self-expanding vascular stent)/p/tdtd width="5" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "制定/p/tdtd width="43.66666666666667" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "李勇/p/tdtd width="134" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "liyong@microport.com/pp style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " /p/td/trtr style="box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline "td width="25" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "8/p/tdtd width="383" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "心脏封堵器体外脉动耐久性测试方法(Standard test methods for in vitro pulsatile durability testing of Cardiac occluder)/p/tdtd width="5" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "制定/p/tdtd width="43.66666666666667" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "姚斌/p/tdtd width="134" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "liuyanwen@lifetechmed.com/p/td/trtr style="box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline "td width="25" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "9/p/tdtd width="383" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "直管型血管支架 磁共振适用性 射频致热试验方法(Standard Test Method for Measurement of Radio Frequency Induced Heating On Straight Tubular Stents During Magnetic Resonance Imaging)/p/tdtd width="5" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "制定/p/tdtd width="43.66666666666667" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "张争辉/p/tdtd width="134" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "zzhyy17@163.com/pp style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " /p/td/trtr style="box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline "td width="25" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "10/p/tdtd width="383" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "外科植入物用Ti-24Nb-4Zr-8Sn合金(Wrought Ti-24Nb-4Zr-8Sn Titanium Alloy for Surgical Applications)/p/tdtd width="5" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "制定/p/tdtd width="43.66666666666667" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "郝玉琳/p/tdtd width="134" valign="top" style="box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline "ylhao@imr.ac.cn/p/td/tr/tbody/tablep style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/a6a1b616-5712-474f-a4c9-9ecc2f1e4aad.doc" title="附件1:《可降解镁合金半连续铸棒》征求意见稿.doc"附件1:《可降解镁合金半连续铸棒》征求意见稿.doc/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/470e3963-e2ae-40b2-8eb1-7365dd9436fb.docx" title="附件2:《可降解镁合金半连续铸棒》编制说明.docx"附件2:《可降解镁合金半连续铸棒》编制说明.docx/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/a5b167c3-73ec-4d31-8349-b1b1a3c027e6.doc" title="附件3:《可降解医用镁合金毛细管材》征求意见稿.doc"附件3:《可降解医用镁合金毛细管材》征求意见稿.doc/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/30dbd099-4028-4ab3-9438-8592251ba06e.docx" title="附件4:《可降解医用镁合金毛细管材》编制说明.docx"附件4:《可降解医用镁合金毛细管材》编制说明.docx/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/5a9e7d8a-8311-48ce-8386-d15c23203dc5.doc" title="附件5:《可降解镁合金热挤压棒材》征求意见稿.doc"附件5:《可降解镁合金热挤压棒材》征求意见稿.doc/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/b7eb32fb-f924-4ee7-a075-4c702e545bec.docx" title="附件6:《可降解镁合金热挤压棒材》编制说明.docx"附件6:《可降解镁合金热挤压棒材》编制说明.docx/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/b78cb9c8-2e1b-4e7e-94f7-27e3842c2d6d.docx" title="附件7:《镍钛形状记忆合金骨板形状恢复能力测试方法》征求意见稿.docx"附件7:《镍钛形状记忆合金骨板形状恢复能力测试方法》征求意见稿.docx/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/80ab6a9c-9b2b-40bf-bfe2-305972209709.doc" title="附件8:《镍钛形状记忆合金骨板形状恢复能力测试方法》编制说明.doc"附件8:《镍钛形状记忆合金骨板形状恢复能力测试方法》编制说明.doc/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/7ecfb1a1-1cc7-49c8-b3c8-290e3aa5e68f.docx" title="附件9:《镍钛形状记忆合金骨植入物体外镍离子释放模型》征求意见稿.docx"附件9:《镍钛形状记忆合金骨植入物体外镍离子释放模型》征求意见稿.docx/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/6d2ac525-ca1f-4015-9934-78347485ed90.doc" title="附件10:《镍钛形状记忆合金骨植入物体外镍离子释放模型》编制说明.doc"附件10:《镍钛形状记忆合金骨植入物体外镍离子释放模型》编制说明.doc/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/6d5bffab-29ec-4a87-992d-67f3f78bef76.doc" title="附件11:《镍钛形状记忆合金心脏封堵器形状恢复性能评价方法》征求意见稿.doc"附件11:《镍钛形状记忆合金心脏封堵器形状恢复性能评价方法》征求意见稿.doc/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/6e0aa921-ba62-40dd-bda2-802615468cba.doc" title="附件12:《镍钛形状记忆合金心脏封堵器形状恢复性能评价方法》编制说明.doc"附件12:《镍钛形状记忆合金心脏封堵器形状恢复性能评价方法》编制说明.doc/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/f9f2366a-a29f-48bc-9174-73a9cf95ab7a.docx" title="附件13:《镍钛形状记忆合金自膨式血管支架形状恢复能力测试方法》征求意见稿.docx"附件13:《镍钛形状记忆合金自膨式血管支架形状恢复能力测试方法》征求意见稿.docx/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/5b6bcc1d-609f-4b94-bf70-e392edf1518a.doc" title="附件14:《镍钛形状记忆合金自膨式血管支架形状恢复能力测试方法》编制说明.doc"附件14:《镍钛形状记忆合金自膨式血管支架形状恢复能力测试方法》编制说明.doc/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/f388dbbe-5877-4eee-92c8-dce16595ea34.docx" title="附件15:《心脏封堵器体外脉动耐久性测试方法》征求意见稿.docx"附件15:《心脏封堵器体外脉动耐久性测试方法》征求意见稿.docx/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/a8e29df8-a908-4ee3-8002-d095a7967d71.doc" title="附件16:《心脏封堵器体外脉动耐久性测试方法》编制说明.doc"附件16:《心脏封堵器体外脉动耐久性测试方法》编制说明.doc/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/1e61a66a-ac3d-4b6f-b8b3-bad5da2ed049.docx" title="附件17:《直管型血管支架 磁共振适用性 射频致热试验方法》征求意见稿.docx"附件17:《直管型血管支架 磁共振适用性 射频致热试验方法》征求意见稿.docx/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/1212d876-cc6c-4910-9fd5-2e3064979be7.doc" title="附件18:《直管型血管支架 磁共振适用性 射频致热试验方法》编制说明.doc"附件18:《直管型血管支架 磁共振适用性 射频致热试验方法》编制说明.doc/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/944e5ed5-8974-4bf4-b611-d1d53185604d.docx" title="附件19:《外科植入物用Ti-24Nb-4Zr-8Sn合金》征求意见稿.docx"附件19:《外科植入物用Ti-24Nb-4Zr-8Sn合金》征求意见稿.docx/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/52cfec65-ff6e-4b3f-9ecb-c9a4db721a68.pdf" title="附件20:《外科植入物用ti-24nb-4zr-8sn合金》编制说明.pdf"附件20:《外科植入物用ti-24nb-4zr-8sn合金》编制说明.pdf/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/47a5488c-c74d-4183-b5d6-725fb8f39d9e.docx" title="附件21: 中国生物材料学会团体标准征求意见稿反馈表.docx"附件21: 中国生物材料学会团体标准征求意见稿反馈表.docx/a/p
  • 中关村材料试验技术联盟立项《镍基合金中厚板超声检测方法》等13项团体标准
    经中国材料与试验标准化委员会(以下简称:CSTM标准化委员会)标准化领域委员会审查,CSTM标准化委员会批准(具体标准如下,详细公告内容请至CSTM官网查看),特此公告。序号标准名称标准立项号所属委员会1镍基合金中厚板超声检测方法CSTM LX 0100 01438—2024FC012复合材料挖补修复打磨工艺通用要求CSTM LX 0311 01439—2024FC03/TC113功能复合材料夹层结构修复技术通用要求CSTM LX 0311 01440—2024FC03/TC114生物基聚氨酯地坪材料CSTM LX 0327 01441—2024FC03/TC275地坪工程现场验收检测方法 第9部分 防静电性的测定CSTM LX 0327 00556.9—2024FC03/TC276地坪工程现场验收检测方法 第10部分 防滑性的测定CSTM LX 0327 00556.10—2024FC03/TC277渗透型液体硬化剂化学成分分析方法CSTM LX 0327 01442—2024FC03/TC278低释放树脂地坪材料CSTM LX 0327 01443—2024FC03/TC279铺装型环氧卷材地坪CSTM LX 0327 01444—2024FC03/TC2710石膏基自流平砂浆集中采购通用要求CSTM LX 0327 01445—2024FC03/TC2711火花放电原子发射光谱仪使役性能评价方法CSTM LX 9804 01446—2024FC98/TC0412中阶梯光栅电感耦合等离子体发射光谱仪使役性能测试及评价方法 第1部分:金属及合金成分分析CSTM LX 9804 01447.1—2024FC98/TC0413仪器使役性能评价机构通用要求CSTM LX 9804 01448—2024FC98/TC04联系方式如有单位或个人愿意参与该标准项目的工作,请与项目牵头单位联系。CSTM标准化委员会秘书处联系方式联系人:陈鸣,范小芬办公电话:010-62187521手机:13011072266,13426028810邮箱:chenming@ncschina.com,fanxiaofen@ncschina.com通讯地址:北京市海淀区高梁桥斜街13号钢研集团新材料大楼1020邮编:100081
  • 2012年镍铬锰硅国际市场研讨会暨钨钼钒钛2012年会隆重召开
    仪器信息网讯 由中国五矿化工进出口商会(CCCMC)、中国特钢企业协会和我的钢铁网联合主办的“2012年镍铬锰硅国际市场研讨会暨钨钼钒钛2012年会”于2012年8月8日-10日在天津滨海假日酒店隆重召开。300余名来自钢铁企业以及铁合金企业的代表参加了此次会议。会议现场中国特钢企业协会秘书长王怀世先生主持会议我的钢铁网常务副总裁宋天翔先生致辞  大会报告国家信息中心首席经济师兼经济预测部主任 范剑平先生当前宏观经济形势和宏观调控政策取向  范剑平先生在报告中分析了当前的宏观经济形势,上半年我国经济缓中趋稳,自2009年金融危机以来,我国4月份经济气温再次探底。主要原因有进出口下滑影响经济增长 基建投资低增长拖累装备制造业 房地产拖累相关产业去库存化 工业生产明显放缓 外商直接投资已是连续6个月呈现负增长。中国五矿化工进出口商会金属和矿产商品部主任 刘志阳先生保障资源稳定供应 突破供需紧平衡瓶颈  刘志阳先生介绍说2011年至2012年上半年中国锰、铬、镍矿进口量价齐跌、港存量居高不下、中国锰铬镍矿进口量站全球进口总量比较稳定。中国锰铬镍矿进口放缓的原因:全球经济整体疲软,中国经济难以独善其身 中国钢材市场持续低位运行 矿石替代品进口增加 国外资源富集过出台限制原矿出口政策等。中国特钢企业协会顾问 胡名洋先生铁合金、特殊钢、先进装备制造业产业链分析  胡名洋先生介绍说“十二五”期间是特殊钢与先进装备制造业发展战略机遇期,二者是一对高度关联的战略新兴产业链,必将牵动铁合金行业技术与产品质量提升。铁合金是保证特殊钢、合金钢性能的关键因素,但我国铁合金的数量和质量保障力不足。要高度关注高品质特殊钢与铁合金市场的对接,重视特殊钢在先进装备制造业中的应用。天津太钢天管不锈钢有限公司高级工程师、 市场商情和质量异议主管 梁伟刚先生镍铁行业的风险识别及镍铁对不锈钢行业的贡献  梁伟刚先生介绍了镍铁行业风险识别、镍铁行业风险表现、不锈钢需求分析、不锈钢市场现状、镍铁对不锈钢行业的贡献、我国主要在建新建镍铁项目。梁伟刚先生指出目前中国及全球的镍产量呈总体增加的趋势。我的钢铁网副总裁首席分析师 贾良群先生中国钢铁市场基本分析  贾良群先生在报告中介绍说目前钢铁企业利润明显下降,大中型钢铁企业一季度亏损10.34亿元,钢铁的表观消费量增长速度也出现了较明显的下降。从长期看,国情决定了钢市场发展的空间仍然存在 从中期看,客观决定了钢市场必须经历艰难的磨练 短期看,稳增长政策在市场上已有了一定的反映 眼下看,钢材市场将处于阶段性振荡探底当中。湘西自治州德邦化工有限公司董事长 陈德根先生电解锰市场回顾与展望  陈德根先生回顾了我国电解锰行业在过去的50年中,从零起步发展到2006年电解锰独霸世界的愿望就在眼前,再到当前产能过剩、盲目竞争、事故频繁,企业发展步履维艰的境地。对于目前的不利局面,陈德根先生提出了企业应提高技术、注重环保,建议国家调整出口关税的思想。浙江华光冶炼集团有限公司董事长 刘光火先生中国镍铁市场项目分析报告书  刘光火先生在报告中介绍了镍铁市场对镍矿的需求情况、镍铁冶炼过程中经常遇到的问题、冶炼成本的控制及工艺改进、冶炼镍铁工艺的发展趋势、镍铁被其他产品替代的可能性分析、印尼镍矿政策对国内外镍铁市场的影响等。  此外,会议还特别邀请了国际锰协会(IMnI)分析师 Mark Camaj先生 、塔瑞萨 CEO 屠昆先生、鄂尔多斯冶金有限责任公司 赵学东先生、江西稀有稀土金属钨业集团有限公司 副总经济师祝修盛先生、金堆城钼业股份有限公司内贸部经理 李永辉先生 、湖北晶洋实业有限公司 副总 黄启会先生 、江苏仪征市铁丰铁合金制造有限公司董事长徐礼言先生为与会代表带来了有关钢铁及铁合金市场分析的精彩报告。
  • 合金分析仪助力钛铝合金材料技术升级,手机变弯将不成问题
    据报道,韩国浦项大学最新研发了一种强度极高的钛铝合金材料,可以近乎完美地解决手机边框强度问题,再也不用担心手机变弯了。 至于钛铝合金的成本,据悉,这种材料是由钢、锰、铝、镍、钛等多种金属组成的合金,成本比传统的钛合金低了90%,智能手机完全能承受这一成本。 三星有望首先用上这种新材料,此外,这种材料还能用在汽车、飞机等领域。未来合金分析仪又将成为手机是否能够弯曲的检测大使。
  • 不同系列的Delta手持式合金分析仪都能分析哪些合金材料中常见元素?
    Delta手持式合金分析仪都 能分析哪些合金材料中常见元素?这是许多合金材料商最想了解的事情,甚至有些废旧金属回收厂商也十分关注Delta手持式合金分析仪是否能够满足其在繁杂 的废旧金属堆里识别区每一个不同的废旧金属的含量价值。那么今天,我们就将从Delta手持式合金分析仪的型号以及不同型号都主要支持哪些元素的分析做一 个简短的介绍。 Delta手持式合金分析仪型号主要有三种规格,分别是: 经典型,DCC-2000手持式合金分析仪。 标准型,DPO-2000手持式合金分析仪。 高端型,DP-2000手持式合金分析仪。 这三种型号是目前合金分析仪中最常见的型号,也是伊诺斯手持式合金分析仪系列中销量比较好的几款(与之前的Alpha系列合金分析仪、Omega系列合金分析仪以及Explore系列合金分析仪比较而言)。 经典型,DCC-2000手持式合金分析仪采 用了单光速、ALLOY软件模式,SI-PIN探测器,靶材可选配AU,4W电流,X射线管。它能支持包含:Ti钛、V钒、Cr铬、Fe铁、Co钴、Ni 镍、Cu铜、Zn锌、W钨、Hf锆、Ta钽、Re铼、Pb铅、Bi铋、Zr锆、Nb铌、Mo钼、Ag银、Sn锡、Sb锑、Pd钯、Cd镉。 标准型,DPO-2000手持式合金分析仪采 用了三光速、ALLOY puls软件模式,标准型SDD探测器,探测面积达25MM2,靶材精选Ag或Au,4W X射线管。它能支持包含:AI铝、Si硅、P磷、S硫、Mg镁、Ti钛、V钒、Cr铬、Fe铁、Co钴、Ni镍、Cu铜、Zn锌、W钨、Hf锆、Ta钽、 Re铼、Pb铅、Bi铋、Zr锆、Nb铌、Mo钼、Ag银、Sn锡、Sb锑、Pd钯、Cd镉。 高端型,DP-2000手持式合金分析仪采用了三光速、ALLOY puls软件模式,超大型SDD探测器,探测面积达30MM2,靶材精选R h或Au,数据率提高12.5%,超大型SDD极大地改善Mg、Ai、Si 、P、S测试精度。在可测元素范围上与DPO-2000手持式合金分析仪相同。 以上测试元素范围仅为例举,许多非常见的元素Delta手持式合金分析仪依然可以分析.
  • 全球钴矿资源大汇总 矿“高镍低钴”时代真的来临了吗?
    p style="text-indent: 2em "钴是一种重要的金属,外观呈银白色,比较硬而脆,有铁磁性,作为战略资源,拥有良好的物理、化学以及机械性能,是制造高温合金、硬质合金、金刚石工具、电池材料、防腐材料、磁性材料等重要原料。广泛应用于航空航天、电子电器、机械制造、汽车、化工农业、陶瓷领域。众所周知,钴在地球上分布相对集中,分布以刚果(金)为主,澳大利亚和古巴次之。/pp style="text-align: center text-indent: 0em "img src="http://img1.17img.cn/17img/images/201805/insimg/d63ff7c4-b019-417a-9537-76bd47b50c83.jpg" title="全球钴矿资源大汇总“高镍低钴”时代真的来临了吗?111.jpg"//pp style="text-indent: 2em "从上面的表格能够得知,刚果(金)的钴资源分布非常大,与第二名的澳大利亚在其储量就相差了230万吨,在钴资源使用量巨大的今天,刚果(金)在世界上的重要性可见一斑。在钴资源的利益链条下,钴资源稀缺的国家每年都与刚果(金)签订了长期协议。但日前,一篇名为“三星SDI开发出新汽车电池 减少钴的含量”的文章吸引了小编的眼球。文章中表示,三星找到新方法生产含钴很少的电池,甚至根本没有钴。5月7日,SMM发布的《高位钴价突然断崖下挫 市场悲观引发恐慌浪潮》一文中也表示,马斯克在上周四与分析师进行有关收入的话题探讨时表示,特斯拉汽车将减少对钴资源的依赖。该公司已经削减了电池中的占比,毕竟钴是一种非常昂贵的金属。马斯克表示:“我们认为钴资源的获取依然很难。”/pp style="text-indent: 2em "未来我国新能源市场呈现“高镍低钴”趋势?/pp style="text-indent: 2em "期货日报与上海金属网联合采访彭博行业研究环球金属与矿业主管朱轶说:“我们认为高镍低钴是现下电池用料的较大趋势,目前可以看到,镍的成本远远低于钴,但新能源汽车行业的需求对镍品种的真正影响,没有市场预期那么大。”/pp style="text-indent: 2em "出现这种观点,小编认为,其一,镍分布相对集中,在大洋洲的新喀里多尼亚、澳大利亚东部,印度尼西亚和菲律宾、中美洲的加勒比海等地,澳大利亚、新喀里多尼亚、俄罗斯、古巴、加拿大、巴西、南非、印尼占全球总镍金属储量的89.5%,总镍基础储量的84.1%。而我国的镍矿资源相对稀缺,对进口资源的依赖程度较高。需要依赖进口澳大利亚镍金属。其二,随着新能源汽车的开发和普及,三元材料是目前能量密度最高的正极材料,现在市场比较倾向高镍的三元材料,但是反观一看,从2014年开始,印尼已经禁止原矿出口,印尼是全球重要的资源出口国,其镍矿出口约占全球20%,这无疑对我国企业发展造成了严重的影响。另外镍的下游需求百分之七十来自于不锈钢行业,而在中国,百分之八十的需求也是来自不锈钢行业,所以新能源行业在镍的需求占比不会很大。 /pp style="text-indent: 2em "总结/pp style="text-indent: 2em "钴资源在刚果(金)地区占据较大,刚果(金)当然就拥有了绝对主导权,加之现在刚果(金)地区局势动荡,对于像中国一样的钴资源稀缺国家而言是很难得到的,即使能够得到其成本也会很高。从这一点来看,三星公司开发研制新型的含少量钴或者不含钴电池对于那些稀缺国家是可喜的,如若三星的电池应用市场并受到好评,不知对于其他国家的经济增长会不会又是致命一击?近年来,随着全球新能源产业的蓬勃发展,镍钴锰酸锂三元正极材料到广泛关注,其中,金属钴是不能忽视的重要材料。资料显示,2016年全球新能源汽车钴需求量为1.44万吨,2017和2018年新能源汽车钴需求预计分别为2.04和2.05万吨,对应增速分别为41.7%和22.7%。有机构预测,2020年全球新能源汽车三元电池对钴需求将达到3.56万金属吨,相比2015年增长10倍,也将带动届时的全球钴需求量达到15万吨左右。/pp style="text-indent: 2em "随着新能源领域对动力电池、特殊合金材料需求的影响,全球对钴的需求还将保持旺盛的态势。从钴的供需平衡上看,依据现有在产矿山产量计算,2016—2018年,钴的需求缺口每年在1000—3000吨以上,2019年—2020年,随着新能源汽车的崛起以及手机、笔记本的更新换代、化学化工领域的应用增加,全球对钴的缺口将更加突出。另一方面,我们也应该考虑,电池内没有钴性能会不会受影响?所以,目前来看钴还是具有非常重要的作用,但我们不排除,会受政治因素等影响造成市场波动。 /p
  • 先进合金材料,“能力”永不过时
    先进材料产业是制造业转型提升的核心领域和重要支撑之一,主要解决国家重大战略需求和产业发展瓶颈,提升关键战略材料的保障能力,服务国家战略,政府主管部门出台了一系列支持新材料行业发展的政策。《中国制造2025》、《新材料产业发展的政策》等产业政策为相关产业发展提供了稳定的支持。先进铜及铜合金作为核心导体材料,广泛用于电子信息产业超大规模集成电路引线框架,国防装备的电子对抗、雷达、大功率微波管,高脉冲磁场导体材料,高速轨道交通用架空导线、大功率调频调速异步牵引电动机导条与端环,新能源汽车用电阻焊电极、电池材料、充电桩弹性材料,冶金工业用连铸机结晶器、电真空器件,电气工程用开关触桥和各种导线等。我国军用飞机配套的航空发动机及涉及发动机的维修包括涡轮叶片、涡轮盘等。这些部件主要由高温合金和钛合金制造。先进航空发动机高温合金使用量达到 50%以上,中信证券研究部预测我国军用航空发动机 2025 年对高温合金需求量将达到 16,578 吨。高熵合金是近年来发展起来的新型合金材料,有望突破传统材料的性能极限,已经成为近年来材料科学发展新的热点和方向之一。为促进国内先进合金材料的研究与发展,仪器信息网将于2022年8月10日组织召开 “先进合金材料”主题网络研讨会。依托成熟的网络会议平台,为先进合金材料相关研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习、交流平台,让大家足不出户便能聆听到精彩报告。会议日程报告时间报告题目演讲嘉宾9:30-10:00电子薄膜和集成电路用高纯铜及铜合金靶材及其检测技术冯先进(北京矿冶研究总院 研究员/高级工程师)10:00-10:30TBD程书莉(珀金埃尔默公司 首席无机分析应用科学家)10:30-11:00高熵合金加工成形技术张勇(北京科技大学 教授)11:00-11:30镍基单晶高温合金中拓扑密排相的形成机制杜奎(中国科学院金属研究所 研究员)演讲嘉宾(排名不分先后)参会方式本次会议免费参会,参会报名请点击会议官网或扫描二维码:https://www.instrument.com.cn/webinar/meetings/alloy2022/ 扫码报名赞助参会:扫码联系
  • 合金真的有那么难消解吗?Multiwave 5000 给你答案“NO”!
    合金真的有那么难消解吗?合金(alloy)是指一种金属与另一种或几种金属或非金属经过混合熔化,冷却凝固后得到的具有金属性质的固体产物。常用的合金有哪些常用的合金包括:耐腐蚀合金、 耐热合金 、高强度不锈钢等。尽管标准不锈钢不易腐蚀,但在条件苛刻的环境中,所造成的腐蚀仍可能会导致材料中出现孔隙。由于镍可有效提高耐高温的强度,而铬,硅和铝可提供抗氧化保护。人们通过添加适当分量的铬,钼,镍和其他合金金属,用以提供全面的腐蚀防护,改进不锈钢的质量,并提高对晶界腐蚀,点蚀,缝隙腐蚀以及应力腐蚀开裂的抵抗能力。高性能的合金材料具有高耐腐蚀性,耐热性,高强度等特征,并可应用于一些条件苛刻的环境,如脱盐,原子能,半导体,太阳能电池和燃料电池等先进技术领域。消解合金样品面临的挑战分析并测试合金中元素的组成和元素的含量成为控制合金材质的关键。合金的主要成分来自矿物冶炼,以镍铁合金为例,它的生产工艺在世界范围内比较成熟的是利用红土镍矿进行火法冶炼。火法冶炼镍铁指:在高温条件下,以C(或Si)用作还原剂,对氧化镍矿中的NiO及其他氧化物(如FeO)进行还原而得。除此以外,合金中还含有碳、硅、硫、磷等其他杂质,这对消解合金样品带来一定的挑战。然而在安东帕Multiwave 5000面前一切将变得非常简单安东帕Multiwave 5000系列微波消解仪试验方案仪器:Multiwave 5000,20SVT50 转子样品样品名称标准型号Hastelloy C22NiCr21Mo14WStainless Steel 1.4404EN: X2CrNiMo17-12-2Stainless Steel 1.4301EN: X5CrNi18-10FeTi 7039EN: X5CrNi18-10Ferrochrome 471EN: X5CrNi18-10Hastelloy C22是一种全能的镍铬钼钨合金,比其他的现有的镍铬钼合金拥有更好的总体抗腐蚀性能;不锈钢1.4404则更耐氯化物侵蚀,因此可在盐水环境中使用。该钢经过改良可加工,具有非常好的耐腐蚀性,通常用于建筑和建筑业,用于关键部件的应用;不锈钢1.4301具有基本的耐腐蚀性,故经常应用于日常产品中,例如橱柜、热水器、锅炉、汽车配件等;FeTi 7039和Ferrochromium 471是来自钢铁厂的工艺样品。FeCr合金作为钢的添加料生产多种高强度、抗腐蚀、耐磨、耐高温、耐氧化的特种钢是航空、宇航、汽车、造船以及国防工业生产枪炮、导弹、火箭、舰艇等不可缺少的材料 消解程序首先称取200mg细粉的样品至消解管中,过程中要避免由于静电吸引而弄脏容器壁。先添加HCl(盐酸),以防止样品钝化,几分钟后加入硝酸、氢氟酸。在加酸过程中,若发现有剧烈反应,应将样品在通风橱中静置待反应缓和,然后再继续添加酸。值得一提的是,并非所有种类的钢和合金样品都必须添加氢氟酸。 如果样品中含有硅,则HF的添加尤为重要。在添加了相应的酸和进行预反应之后,将容器密闭并插入转子中,开始消解程序。温度程序消解效果使用Multiwave 5000 成功地消解了200mg样品,用去离子水稀释至40 mL后,消化的溶液呈绿色(源自高Cr浓度)或呈浅黄色。 不论颜色如何,所有样品均被完全消解。样品消解效果样品消解效果样品消解效果⬅ 向左滑动试验结论配备Rotor 20SVT50的安东帕Multiwave 5000系列微波消解仪是一种功能强大的配置,可用于对苛刻的无机基质进行快速可靠的高端样品消解。本次试验成功地证明了Multiwave 5000可以方便地在常规基础上完全消化各种钢和高性能合金。Multiwave 5000系列配备的SmartVent技术以及SVT50容器可在高温下提供更多的样品量。SmartTemp技术可确保对反应性样品进行快速可靠的温度控制,在强力排气的情况下。SmartVent检测器可通过增加排气量来快速去除蒸汽。
  • 高纯金属基体的ICP-OES分析 | 强大的干扰消除能力:Avio ICP-OES分析金属镍中的杂质
    伦敦金属交易所(London Metal Exchange,LME)是世界上最大的有色金属交易所,成立于 1876 年,于 2012 年被香港证券交易所英镑收购,成为其全资附属公司。伦敦金属交易所的交易品种主要有铜、铝、铅、锌、镍和铝等,发布的成交价格被广泛作为世界金属贸易的基准价格,其价格和库存对世界范围的有色金属生产和销售有着重要的影响。如同 24K 金与 18K 金的差价一样,不同纯度金属的价格差异明显。因此,伦敦金属交易所对交易金属的纯度有着严格的分级和要求,对检测手段也有着严格的规范。从本文开始,我们将陆续推出伦敦金属交易所有色金属质量控制系列 —— 高纯基体金属的 ICP-OES 分析,以镍、铅、铝等为例,让大家了解电感耦合等离子体发射光谱(ICP-OES)技术在分析高纯度金属基体中的杂质元素的应用,以及珀金埃尔默 Avio 系列 ICP-OES 在此领域应用的技术特点和优势。ICP-OES 的英文为 Inductively Coupled Plasma Optical Emission Spectrometer,基本原理简单说来就是元素的原子或离子受热或电激发后,发生电子层跃迁,随后从激发态回到基态时发射出具有特征波长和强度不同的电磁辐射,从而进行元素的定性和定量。ICP-OES 系统的组成如下图所示。ICP-OES 技术具有高效稳定,连续快速多元素同时测定,精确度高,检测线性宽等特点,能够进行 70 多种金属元素和部分非金属元素的分析,多数元素的检出限能达到 ppb 级,在地质、冶金、环保、化工、生物、医药、食品、农业等方面用途广泛。那么,让我们先从用途最为广泛的合金材料之一金属镍中的杂质检测开始说起吧!金属镍中的杂质检测金属镍(Ni)由于其具备高温和低温下的高耐腐蚀性和高强度,成为合金材料生产制备中最广泛使用的金属材料之一。伦敦金属交易所发布了不同规格的金属镍的杂质要求,表 1 列举了99.80% 纯度金属镍标准规范中的杂质要求。表1.伦敦金属交易所 99.80% 纯度金属镍(镍标准规范)众所周知,谱线干扰是使用 ICP-OES 检测高纯基体金属样品中的杂质时常常遇到的难题。我们看看珀金埃尔默如何使用 Avio 500 电感耦合等离子体光谱仪(ICP-OES),并利用多谱拟合专利技术(MSF)解析谱线,成功消除主体元素 Ni 对 某些杂质元素如 Bi 和 Sn 的测定干扰,准确检测高纯度金属镍中的杂质元素。样品样品以 5% 硝酸(v/v)消解。按照“99.80% 纯度金属镍标准规范”的要求,所有分析在 1% Ni 溶液中进行,并按照其对杂质元素含量的规定进行加标回收实验。标准工作曲线用 5% 硝酸(v/v)溶液配制浓度水平为 0.25,0.5 和 1.0 ppm 的混合标准溶液。仪器珀金埃尔默 Avio 500 ICP-OES,仪器参数、实验条件设置见表 2,各杂质元素的测定波长见表 3。表2. Avio 500 ICP-OES 仪器参数和实验条件表3. 各杂质元素的测定波长回收率混合标准溶液加到 1% Ni 溶液中的回收率均在 ±10% 以内,结果如图 1 所示,表明能够准确检测低浓度的杂质元素。图1. 各杂质元素在 1% 浓度 Ni 溶液中的加标回收率干扰消除在检测中,Bi 和 Sn 的测定会明显受到 Ni 基体的光谱干扰。使用珀金埃尔默多谱线拟合(MSF)专利技术(原理如图 2 所示),建立模型,可以消除 Ni 谱线干扰。图2. 珀金埃尔默多谱线拟合(MSF)专利技术方法检出限方法检出限定义为连续 7 次测量 1% Ni 溶液中各杂质元素为 0.25 ppm 的测量值的标准偏差的 3 倍,结果如图 3 所示,表明方法的检出限符合金属镍标准规范要求。图3. 1% Ni 溶液中各杂质元素的检出限(蓝色)和金属镍标准规范要求(红色,按100倍稀释99.80%纯 Ni 计算)仪器稳定性通过 6 小时连续分析 1% Ni 溶液中内标物 钪(Sc)的光谱信号强度的变化考察仪器的稳定性,结果见图 4,信号强度的变化在 ±10% 以内,表明仪器有着良好的稳定性 。图 4. 1% Ni 溶液中内标物钪(Sc)的光谱信号强度变化本文证明了珀金埃尔默 Avio ICP-OES 可以对高纯 Ni 中的杂质元素进行准确分析,符合伦敦金属交易所对高纯金属 Ni 的要求。通过使用多谱线拟合(MSF)技术解析谱线, 成功消除了主体元素 Ni 对 Bi 和 Sn 的测定干扰。 Avio 200 ICP-OESAvio 500 ICP-OES 扫描下方二维码,即可下载珀金埃尔默ICP-OES相关应用资料。下期预告伦敦金属交易所有色金属质量控制系列(2),高纯金属基体的ICP-OES分析:Avio 500 分析金属铅中的杂质,将介绍伦敦金属交易所对金属铅的标准规范,以及Avio 系列ICP-OES在其分析中,特别是在成本控制方面的表现,敬请期待。
  • 艾克第三代手持光谱分析仪 | 合金模式及技术参数介绍
    艾克(i-CHEQ)第三代手持X射线荧光光谱分析仪——将改变你的材料分析方式!创新再升级!艾克第三代手持式光谱分析仪新品正式发布,从未知到精确,将为您解锁新的可能性。无论您的需求是回收行业还是精密制造行业,只要需要对材料元素的检测,艾克新品—第三代手持式光谱分析仪都是您的不二选择!艾克第三代手持光谱仪应用于金属回收及未知材料、贵重及特种合金等检测,轻巧便携、坚固耐用,人体工学设计,只需轻轻扣动板机,即可进行无损的元素分析,告别高成本、耗时长的实验室检测,让你真正体验到“口袋中的实验室”所带来的便捷。 金属回收及未知材料现场检测和快速分类,1-3秒即可测出合金牌号和成分含量,精度可达0.01%。常规钢材金牌号识别200、300、400、500、600系列不锈钢及模具钢牌号;铝合金牌号鉴定及成份分析,常见的1-7系列铝合金的分析。高温合金牌号识别GH2132、GH4169、GH3128、GH4145、GH3030、GH3039、GH4140、GH3600、GH3625,等系列合金。三元锂电池正极材料检测NCM523、NCM622、NCM811等材料。贵金属检测快速检测:金、银、铂、铑、钯、钌、铱、锇等贵金属。优势及配置:"一键式"开机并检测,减少人为错误操作;一体式供电,超大容量电池,无续航焦虑;智能化体验,结果中英文显示;全息地理信息标注(GPS);高清摄像头,自动对焦;(选配)通过 WiFi,4G/5G、手机热点、USB、蓝牙、APP进行数据及报告输出;5.5寸高分辨率主流电容屏,自动感光清晰可见;Intel 高性能四核处理器,256GB 固态硬盘,DDR内存,Windows 10系统,运行速度碾压同类仪器;1/3机身为轻质铝合金结构,具有优良的防辐射和散热效果;最新 FP 算法,测试速度快,2-3秒内身份等级鉴定;优秀的架构,高低温环境使用无任何差异,舒适的人体工学设计,使用更轻松便捷;无操作待机时自动关机,减轻元器件的消耗;(用户可自定义关机时间)符合IP65标准。技术参数:重量基本重量不超过1.5kg;(带电池)电池10200 mA;尺寸245mm x 86mm x 310mm;(长宽高)激发源大功率高性能X射线管;靶材:5种可选择 金(Au)、银(Ag)、钨(W)、钽(Ta),钯(Pb);电压35kv50KV(电压智能可变)滤波器多种滤波器可选择,根据不同的被检测物自动调节;探测器高灵敏度Si-Pin/SDD探测器;(解析度≦180eV)探测器制冷温度Peltier效应半导体制冷,制冷温度-35℃;标准片外置316标准片/窗口保护盖;处理器Intel 2133MHz高性能四核处理器;操作系统Microsoft Windows 10系统;数据处理256GB,固态硬盘,内存DDR4 4GB;软件模式合金、矿石、土壤、RoHS (按需选择)数据分析搭载专业智能分析软件,具有智能化、速度快、操作简单等优点。整个分析过程仅需数秒便可完成;数据显示精确到百分比(%)显示,光谱或峰强度(计数率)或;数据传输手机4G、共享热点、WiFi与手机APP进行数据传输;显示屏720x1280高分辨率5.5寸主流电容屏,自动感光清晰可见,智能化人机界面;外形设计一体化机身设计,坚固、防水防尘及防冻,有效防震,适应潮湿或低温等野外环境使用;安全操作一触式“扳机”,软件具有自锁和防空测等保护功能;分析元素Mg(镁)、Al(铝)、Si(硅)、P(磷)、S(硫)、Ti(钛)、V(钒)、Cr(铬)、Mn(锰)、Fe(铁)、Co(钴)、Ni(镍)、Cu(铜)、Zn(锌)、Hf(铪)、Ta(钽)、W(钨)、Hg(汞)、Se(硒)、Au(金)、Br(溴)、Pb(铅)、Bi(铋)、Zr(锆)、Nb(铌)、Mo(钼)、Ag(银)、Cd(镉)、Sn(锡)、Sb(锑)、Re(钛)、Ir(依)、Pt(铂)、Ru(钌)、Rh(铑)、Pd(钯)等元素;测试环境条件温度-20~+40℃,湿度<80%RH。售后服务:24/7服务热线;两小时内响应回复;远程在线故障诊断排除;长期备品备件保有库存;新机免费安装及培训;新机15天内包换;(除人为毁坏外)可根据客户需求定制保修期限;新机保修一年,长期维护(含软件升级)
  • 岛津EPMA在形状记忆合金中的应用
    形状记忆合金是通过热弹性与马氏体相变及其逆变而具有形状记忆效应的由两种以上金属元素所构成的材料。迄今为止,人们发现具有形状记忆效应的合金有50多种,在航空航天、机械电子、生物医疗等领域具有广泛的应用。下文将举例介绍电子探针(EPMA)在镍-钛形状记忆合金中的应用。图1. 岛津场发射电子探针EPMA-8050G岛津EPMA-8050G型电子探针(图1)搭载高质量场发射电子光学系统,结合岛津特有的52.5°高X射线取出角和全聚焦晶体,可以实现:01优越的空间分辨率EPMA-8050G可达到的更高级别的二次电子图像分辨率3nm(加速电压30kV)。(加速电压10kV时20nm@10nA/50nm@100nA/150nm@1μA)02大束流更高灵敏度分析可实现其他仪器所不能达到的大束流(加速电压30kV时可达3μA)。在超微量元素的检测灵敏度上实现了质的飞跃,将元素面分析时超微量元素成分分布的可视化成为现实。按原子比由Ti和Ni各占50%的合金称为镍-钛合金(Nitinol),具有良好的形状记忆性能和超弹性性能。形状记忆合金具有一个显著的特点,即变形到任意形状后,加热到相变温度(相变点)或更高时,能恢复变形前的原始形状,而超弹性合金则是在载荷作用下变形,在载荷消除后恢复原始形状。相变温度大致可以在0℃-100℃之间变化,主要通过改变Ti和Ni的合金原子比值或者加入1%或更少的第三相元素(比如Cr、Co、Cu等)。正畸金属丝是一种典型的镍-钛合金,具备形状记忆和超弹性性能,主要的选材差异在于根据患者的牙周状况和对疼痛的敏感程度来选择具有不同相变温度的矫正材料。图2. 展示了正畸金属丝中主要的合金元素面扫描图像及相分析结果,清晰可见材料基体的元素组成以及其中离散分布的微米级别的混合相结构。图2. 正畸金属丝中各合金元素面扫描图像及相分析结果选择三种具有不同相变温度的正畸材料分别进行定量分析,结果如表1所示,总含量低于1%的Cr元素存在较为明显的含量差异。表1. Af27、Af35、Af40型号正畸金属丝元素定量测试结果结合图3. 展示的三种不同型号的元素面扫描结果,可以更清楚地看到Cr元素含量的差异,同时离散分布的点状微结构中Ni元素被替代的情况也存在差别。图3. 各型正畸金属丝中的元素面扫描图像(a)Af27,(b)Af35,(c)Af40图4. 展示了放大条件下Af27材料中微结构的元素面扫描及相分析结果,表明多化合物混合相的存在。图4. Af27正畸金属丝中化合物相分析更多电子探针仪器信息和相关应用敬请关注岛津科技资讯通推文内容。本文内容非商业广告,仅供专业人士参考。
  • Retsch高能球磨仪Emax机械合金法制备半导体合金
    文章摘要: 机械合金化(Mechanical Alloying,简称MA)是指金属或合金粉末在高能球磨机中通过粉末颗粒与磨球之间长时间激烈地冲击、碰撞,使粉末颗粒反复产生冷焊、断裂,导致粉末颗粒中原子扩散,从而获得合金化粉末的一种粉末制备技术。本文以硅锗合金和碲化铋半导体材料合金化制备实验为例,介绍了高能球磨仪Emax的使用方法和技术优势,对合金样品制备的应用有借鉴作用。 传统方法制备不锈钢类合金要求高温下进行熔融,如果需求量很小抑或无法熔融,机械合金法就是一个很好的替代方法,传统上会用行星式球磨仪来完成。上世纪60年代末,美国国际镍公司用机械合金法第一次制备成功耐高温镍铁合金并以此申请专利。机械合金研磨需要有强劲的动能把固体粉末结合在一起,行星式球磨仪产生的高能撞击可以提供所需能量。在研磨球的撞击和挤压下,细粉颗粒会发生塑性形变并且焊合在一起。所以机械合金法可以弥补传统高温熔融无法制备的样品的不足,并且可以制备更大自由度混合比的样品。热电合金材料硅(Si)和锗(Ge)都是最通用常见半导体材料—是光电电池和晶体管产业的基石。硅锗合金材料性质如带隙可以由改变硅和锗混合比例来调整。热电合金材料用于制造航天热偶发电机,保证了空间探索和试验设备的动力供应。在商用热电材料领域,碲化铋(Bi2Te3)因其热电效能转化率高,是研究最多的材料,被用来做半导体制冷元件。 高能球磨仪EmaxEmax的转速能达到每分钟2000转,特殊设计的跑道型研磨罐可以产出更大的粉碎能。结合了高速撞击力和密集摩擦力,高能球磨仪的强劲能量输入可以做快速纳米研磨实验和机械合金应用。跑道型的研磨罐和偏心轮运动方式,有效保证了样品的混合,样品最后不仅可以磨得很细,粒度分布范围也会变很窄。内置水冷管路可以快速带走样品子啊研磨中产生的热量,保护样品免受过高温度影响,从而可以不像行星式球磨仪一样需要间歇停转,大大提高研磨工作效率。如果有更严格的控温需要,Emax还可以外接冷水机,进一步降低研磨温度(最低工作温度不能低于5摄氏度)。 图1:研磨前样品XRD 分析结果 Si(红)Ge(绿)整个扫描范围从10-60°,可以看出Si和Ge晶面特征峰。图2:研磨5小时后XRD分析结果 可以看出晶面特征峰已经偏移和合并,机械合金化已有效果图3:研磨5,8,9小时后XRD分析结果 晶面特征峰值会有所变窄和迁移,显示5-6小时的反应后机械合金反应已经基本完成原来硅和锗的机械合金化反应用是用行星式球磨仪进行的,但是会有很多问题导致结果不尽如人意。行星式球磨仪需要至少80分钟才能把样品处理到可以进行机械合金化的初始细度,接下来即使用中低转速400转/分也会导致样品在研磨罐中结块,无法使用其全部能量来进行机械合金反应。另一个问题是研磨罐过热需要间歇,在整个13小时的反应时间中需要额外加入至少90分钟停止时间。而高能球磨仪Emax自带水冷功能,高速运行也无需间歇,没有样品结块的现象,同时还大大提高了反应效率。 图4: 图 5:Bi和Te机械合金反应 1小时后XRD分析结果 图4为球料比10:1 (体积比)图5为球料比5:1(体积比) 机械合金法制备硅锗合金硅锗合金比为SI 3.63克 Ge2.36克,用50ml碳化钨研磨罐,10mm碳化钨研磨球8个(球料比10:1)。硅料和锗料的原始尺寸为1-25mm和4mm。2000转/分20分钟后,样品已经微粉化无结块现象。接下来1200转/分 9个小时(每隔1小时中间间歇1分钟后反转样品以避免样品结块)。机械合金反应前20分钟样品做了XRD定性和定量分析,Si和Ge的特征峰值都可以很清晰地辨认出来,说明碳化钨球几乎没有产生摩擦效应。在整个反应过程中合金始终保持微粉化,Emax的温度没有超过30℃。经过9个小时的反应后,整个样品基本消除了不定形态,呈微晶状态。机械合金法制备碲化铋研究不同球料比(10:1或5:1)对反应的影响,50ml 不锈钢研磨罐, 10mm不锈钢研磨球 10个。 球料比10:1的罐子中加入2.09克Bi和1.91克Te。 球料比5:1的罐子中加入4.18克Bi和3.83克Te。800转/分 70分钟(每10分钟间歇1分钟并反转),结果做了XRD分析。在经过近1小时机械合金研磨,Bi和Te的特征峰都有明显可辨的偏移,显示化合物Bi2Te3开始形成。球料比10:1的样品形成速度比5:1的更快,因为5:1样品中Te的特征峰值强度更大,说明10:1样品中的Te反应地更多。合金反应继续1200转/分3小时后,没有样品结块。和原来用混合研磨仪1200转/分 6.5小时制备相比,高能球磨仪Emax只需要2-3个小时候就能轻松完成任务。
  • 新版欧盟镍释放测试标准开始实施
    2013年3月1日起,欧盟旧版的镍释放标准EN 1811:1998+A1:2008被新版标准EN 1811:2011替代。  1. 新旧版标准的比对  新版的标准较旧版的标准主要有以下不同:  (1) 范围扩大至所有与人体长期接触的物品,以及延伸至刺穿人体的部件   (2) 测试溶剂的制备进行测试和有所改变   (3) 校正因子0.1被弃用,引入了测试不准的概念,即在不确定的范围内无法断定合格与否   (4) 添入了一个新的标准附录C   (5) 新版标准EN 1811:2011将太阳镜和眼镜框架排除在外,而太阳镜和眼镜框架的镍的释放测试使用EN 16128:2011。  2. 欧盟关于镍释放的规定  欧盟在REACH法规的附件XVII中就对于与皮肤长期接触的镍的含量有相应的规定:  在由穿刺引起的伤口愈合过程中插入耳孔或人体其他部位的耳钉或其他类似物品,其镍释放量应低于0.2μg/cm2/周   与皮肤长期直接接触的制品,如戒指、手镯等其镍释放量应低于0.5μg/cm2/周。  3. 业界关注  由于校正因子0.1被弃用,引入了测试不准的概念,因此在实际测试中:  与皮肤长期直接接触的制品中的镍释放量不大于0.28μg/cm2/周(含0.28μg/cm2/周)时被判定为合格 而当0.28μg/cm2/周含量0.88μg/cm2/周时被判定为结果未知(即不能判断为合格或不合格) 镍释放量大于等于0.88μg/cm2/周时被判定为不合格   由穿刺引起的伤口愈合过程中插入耳孔或人体其他部位的耳钉或其他类似物品中的镍释放量不大于0.11μg/cm2/周(含0.11μg/cm2/周)时被判定为合格 而当0.11μg/cm2/周含量0.35μg/cm2/周时被判定为结果未知(即不能判断为合格或不合格) 镍释放量大于等于0.35μg/cm2/周时被判定为不合格。  4. 相关知识  镍是一种常见的金属,在饰品中常以镀层或合金的形式存在。与皮肤长期接触的过程中,这些产品释放的镍可能会导致皮肤过敏甚至皮炎。慢性吸入镍可导致心、脑、肝等退变。
  • 甘肃将建有色金属合金及加工工程实验室
    据甘肃省发改委介绍,为形成行业先进的加工技术研发能力,给有色金属企业提供技术创新的平台,甘肃省将组建成立有色金属合金及加工工程实验室。  据了解,该工程实验室将在镍、钴、铜、铝、镁基新型合金及加工技术和成套设备的研发方面形成有自主知识产权的专利技术,成为甘肃有色金属企业的产业自主创新重要源头和提升企业创新能力的技术支撑平台,并力争5年之内成为在西北地区有重要影响的、国内高水平的有色金属合金及加工技术研究与开发、产业升级、自主创新能力提升的基地。
  • 德国莱驰:研磨利器破合金制备难题,精兵团队保粉碎市场江山
    p style="text-align: justify text-indent: 2em "机械合金化是指利用机械能的作用使材料的组元在固态下实现合金化的材料制备技术。近年来广泛的应用于制备各种高性能材料,包括弥散强化合金、金属间化合物,磁性材料、储氢合金、纳米晶合金、纳米晶陶瓷、纳米复合材料等。/pp style="text-align: justify text-indent: 2em "为了帮助业内人士了解机械合金化最新技术以及研磨仪最新应用等内容,仪器信息网特别策划了“研磨仪VS机械合金化”专题,并邀请到弗尔德科学仪器事业部总经理董亮就相关问题发表了看法。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/202009/uepic/7d4d18aa-97dc-4dcc-b335-2d9a58d17c38.jpg" title="5 (1)_wps图片_副本.jpg" alt="5 (1)_wps图片_副本.jpg" width="450" height="354" border="0" vspace="0" style="max-width: 100% max-height: 100% width: 450px height: 354px "//pp style="text-align: center "strong弗尔德科学仪器事业部总经理 董亮/strong/pp style="text-align: center "strong/strong/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong仪器信息网:研磨仪对机械合金化技术的发展有何意义?机械合金化技术的发展有哪些方面值得特别关注?/strong/span/pp style="text-align: justify text-indent: 2em "strong董亮:/strong回答这个问题之前,先聊聊什么是机械合金化技术。/pp style="text-align: justify text-indent: 2em "机械合金化技术是上世纪1969年美国国际镍公司Benjamin提出的一种制备合金粉末的高能球磨技术,它最初主要用于制备氧化物弥散强化镍基合金,一开始被叫做球磨混合,后来国际镍公司专利代理律师Mr. Ewan C. MacQueen第一个在专利申请中将此工艺称为“机械合金化”。接着80年代初又在机械合金化过程中发现了非晶化现象,然后发现了准晶、难熔金属化合物、稀土硬磁合金等新材料。1990年,Schlup等人发表了机械合金化制备纳米晶材料的报道,使该技术更加引人注目。/pp style="text-align: justify text-indent: 2em "到目前为止,用机械合金化技术已成功制备出纳米晶纯金属、不互溶体系固溶体纳米晶、纳米非晶、纳米金属间化合物及纳米金属-陶瓷复合材料等。应该说,机械合金化技术的发展是非常迅猛的,尤其是在纳米材料研究领域备受关注。/pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 112, 192) "仪器信息网:目前,研磨仪技术发展到了哪一个阶段,市场上的仪器是否能满足用户在机械合金化技术方面的应用?/span/strong/pp style="text-align: justify text-indent: 2em "strong董亮:/strong高能球磨仪是目前制备机械合金的主要仪器,按照研磨球的运动方式,主要分为3大类,即行星式、振荡式和搅拌式。其中行星式和振荡式在实验室中更为常见,搅拌式(砂磨机)可能在生产企业中运用更多。/pp style="text-align: justify text-indent: 2em "研磨机的研磨时间、研磨速度、研磨介质、球配比,甚至于气体环境和研磨温度等因素都会对机械合金的制备结果产生重要影响。机械合金化制备技术归根结底,就是都需要更高的能量(可换算为g加速度)输入,更好的气氛保护(可以充惰性气体),更方便准确的温度监控(可以定制温度极限来设定研磨时间和运转速度),更为安全可靠的研磨设备(可以满足长时间稳定工作)。/pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 112, 192) "仪器信息网:贵公司在机械合金化技术领域的主推仪器?贵公司研磨仪产品的定位及发展历史?有哪些独具优势的技术?/span/strong/pp style="text-align: justify text-indent: 2em "strong董亮:/strong德国RETSCH(莱驰)是弗尔德旗下的第一个实验室仪器品牌,也是固体样品前处理领域的行业领头羊,已经有超过100年的历史了,其研磨粉碎设备的应用面是非常广泛的。/pp style="text-align: justify text-indent: 2em "针对机械合金制备,莱驰的设备主要是两大类:行星式球磨仪PM系列(PM100/200/400)、高能振荡式球磨仪Emax和MM500。莱驰的球磨机定位于高端实验室的研发和质量控制,有许多独家领先的技术。/pp style="text-align: justify text-indent: 2em "例如,PM行星球磨仪太阳轮直径大,转速比高,研磨效率因子高,FFCS(自由运动补偿底座)技术确保了行星球磨仪可以在高速下长期稳定工作,研磨罐的安全挡片装置防止使用意外的发生。/pp style="text-align: center text-indent: 0em "a href="https://www.instrument.com.cn/netshow/C18660.htm" target="_self"img style="max-width: 100% max-height: 100% width: 450px height: 600px " src="https://img1.17img.cn/17img/images/202009/uepic/b82ef4a7-a520-4f40-8bb4-905011c1249b.jpg" title="PM 400行星球磨仪.png" alt="PM 400行星球磨仪.png" width="450" height="600" border="0" vspace="0"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C18660.htm" target="_self" style="text-decoration: underline "strongPM400 行星球磨仪/strongstrong/strong/astrong/strong/pp style="text-align: justify text-indent: 2em "Emax高能球磨仪的研磨罐采用独家专利跑道型设计保证了研磨球运动方式与能量输出的完美控制,全球领先且目前唯一的水冷式控温技术又使得其成为了第一台可以稳定运行在2000 rpm的球磨仪。/pp style="text-align:center"a href="https://www.instrument.com.cn/netshow/C210582.htm" target="_self"span style=" font-family:宋体 font-size:14px"img style="max-width: 100% max-height: 100% width: 450px height: 337px " src="https://img1.17img.cn/17img/images/202009/uepic/bb43fb4e-09ba-4daf-a8cb-d8276f74e843.jpg" title="Emax高能球磨仪.png" alt="Emax高能球磨仪.png" width="450" height="337" border="0" vspace="0"//span/a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C210582.htm" target="_self" style="text-decoration: underline "strong style="text-indent: 0em "Emax 高能球磨仪/strongstrong style="text-indent: 0em "/strong/a/pp style="text-align: justify text-indent: 2em "MM500采用高频振荡方式,可以同时使用多个研磨罐的多工作平台设计等等。/pp style="text-indent: 0em text-align: center "a href="https://www.instrument.com.cn/netshow/C330815.htm" target="_self"img src="https://img1.17img.cn/17img/images/202009/uepic/4bd69f95-99a2-4fb2-90dc-ddcbecc40979.jpg" title="MM 500高能混合型球磨仪.png" alt="MM 500高能混合型球磨仪.png" width="450" height="338" border="0" vspace="0" style="text-align: center text-indent: 0em max-width: 100% max-height: 100% width: 450px height: 338px "//a/pp style="text-indent: 0em text-align: center "a href="https://www.instrument.com.cn/netshow/C330815.htm" target="_self" style="text-decoration: underline "strong style="text-indent: 0em "MM500 高能混合型球磨仪/strongstrong style="text-indent: 0em "/strong/a/pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 112, 192) "仪器信息网:贵公司研磨仪产品最具优势的应用领域是哪些?主推哪些解决方案?这些方案可以为用户解决什么研究难题?/span/strong/pp style="text-align: justify text-indent: 2em "strong董亮:/strong德国莱驰在中国的主要客户群为四类:科研院校、政府实验室、外资企业、大中型国有企业。其中传统的行星式球磨仪覆盖面很广,客户基础雄厚。比如环境地质的样品前处理,比如纳米材料和合金制备领域,当然也包括一些企业的研发部门。/pp style="text-align: justify text-indent: 2em "近几年,我们主要推广Emax高能水冷球磨仪,这是目前莱驰绝对强势的产品。前面提及了多个影响到合金制备技术的主要因素,其中最重要的就是能量输入及温度控制,这些Emax都具有无可比拟的优势。/pp style="text-align: justify text-indent: 2em "首先,速度越快,能量输入越大,合金化的效率就越高,Emax可以用到最高2000 rpm转速,产生非常大的能量输入。同时,它具备了水冷技术,可以控制研磨温度在某一个范围之内,这样即避免样品发热产生的晶体结构变化,又不需要像传统球磨机一样需要采用间歇模式进行散热,极大的缩短了研磨时间。Emax也可以配置通气罐,采用气氛保护进行研磨,也有定制的Apps,适合远程控制或操作。/pp style="text-align: justify text-indent: 2em "Emax的出现,代表了最先进的球磨技术,解决了客户之前许多难题(比如研磨时间太长,担心样品发热等),得到了广大客户的肯定,在中国的销售量也是节节攀升。/pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 112, 192) "仪器信息网:您认为目前国内外研磨仪产品技术及市场发展态势有什么不同?您如何看待未来中国市场的需求及发展潜力?/span/strong/pp style="text-align: justify text-indent: 2em "strong董亮:/strong十年前,可能大家对样品前处理或者取制样技术还没有概念,也不知道用什么仪器或者怎么选择解决方案,最为典型的就是用家用食品料理机或者中药粉碎机来处理很多实验室样品,那个时候,德国莱驰是在培育市场,引导客户的理念,应该说德国莱驰或者其中国公司弗尔德(上海)仪器设备有限公司是整个中国实验室研磨粉碎市场的奠基者。/pp style="text-align: justify text-indent: 2em "现在客户对前处理都相对重视起来了,也懂得了分析的误差绝大部分来自于样品前处理,基本上都会配套购买前处理设备。当然,现在市场上也出现了许多五花八门的产品或者莱驰的模仿者,这对德国莱驰是个挑战,因为国内外客户对样品前处理的要求是不同的。/pp style="text-align: justify text-indent: 2em "国外主要是企业客户,考虑的是人工成本高,逐步用仪器设备代替,国外客户更重视细分的应用,更重视研磨的效率(比如花费的时间和精力),相对更重视仪器的品质和使用寿命。/pp style="text-align: justify text-indent: 2em "国内客户则更希望仪器功能多,通量大,价格低,考虑短期的效果多于长期的效果,尤其对售后服务和使用寿命这些买了之后用了很久之后才能体现的东西不敏感。另外,就是中国的很多行业对前处理的标准化还比较落后,很多标准已经很陈旧,也没有十分明确的前处理实验流程,这也影响到德国莱驰和中国市场的同步发展。/pp style="text-align: justify text-indent: 2em "当然中国市场是潜力巨大的,作为一个国际性公司,要在能保证产品质量稳定的前提下,更多的因地制宜,发展符合中国的业务策略或者符合中国客户口味的产品,现在不是要Made In China,而是要Made For China,在这个方面,德国莱驰或者我们中国分公司还有很长的一段路要走。/pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 112, 192) "仪器信息网:针对当前的市场格局,贵公司在研磨仪产品方面有什么样的布局?重点拓展的新领域有哪些?/span/strong/pp style="text-align: justify text-indent: 2em "strong董亮:/strong德国莱驰的传统强势领域是食品或者环保的质量检测,但看看近几年推出的产品线:2016年推出高能水冷球磨仪Emax;2019年推出了MM 500 nano高能振荡球磨仪;2020年推出了MM 500多平台版vario。可以看到,莱驰的研发重心逐步转向了材料制备领域,这和目前国内外对先进材料的重视程度是一致的,比如新能源电池、航空航天、军工等领域都需要更好更为先进的原材料。/pp style="text-align: justify text-indent: 2em "未来几年,德国莱驰在产品的布局主要体现在几个方面:①稳固传统领域的产品,加快产品外观细节的更新速度,大家应该会看到未来几年莱驰每一个系列产品的外观或设计细节的更新;②以新材料应用为导向,加强优势产品(比如Emax、MM 500、全自动冷冻研磨机等)的市场推广和力度;③以行业标准为指导,加强和后端设备的配套,包括弗尔德仪器旗下其他品牌设备,提供客户整体解决方案;④仪器的小型化,自动化,数据化等。/pp style="text-align: justify text-indent: 2em "德国莱驰,一直被模仿,从未被超越,打江山易,保江山难,莱驰在中国能有这样的市场份额和知名度,与中国优秀的销售团队,技术服务团队和良好的代理商网络是分不开的。/pp style="text-align: justify text-indent: 2em "2020年是很特殊的一年,新冠疫情很大程度上改变了中国的业务模式甚至影响到了全球的经济。在这个背景下,弗尔德(上海)仪器设备有限公司还要保持良性的发展,实属不易,难度大才更能体现管理者的勇气和魄力,体现团队坚韧不拔的上进心,我希望能和所有关心德国莱驰的人一起努力,一起成长,不负韶华!/ppbr//p
  • 研磨应用的珠穆朗玛峰——SPEX机械合金化
    机械合金化(MA) 最早是由美国国际镍公司的本杰明(Benjamin)等人,于1969年前后研制成功的一种新的制粉技术,并被成功应用到弥散强化高温合金的制备中。从其严格定义上讲是指,金属或合金粉末在高能球磨仪中通过粉末颗粒与磨球之间长时间激烈地冲击、碰撞,使粉末颗粒反复产生冷焊、断裂,导致粉末颗粒中原子扩散,从而获得合金化粉末的一种粉末制备技术。时至今日,人们对机械合金化理论理解进一步加深,机械合金化所需的高能球磨机性能也进一步提升,其应用已扩展至非晶态合金、准晶、纳米晶以及非平衡态材料的研究。(图片来源于网络)机械合金化过程 机械合金化是一个复杂的过程,要获得理想的相和微观结构,对实施机械合金化的高能球磨机提出了极高的要求,因此机械合金化也被称之为研磨应用的“珠穆朗玛峰”。在大多数情况下,在有限的球磨时间内仅仅使各组元在那些相接触的点、线和面上达到或趋近原子级距离,并且最终得到的只是各组元分布十分均匀的混合物或复合物。当球磨时间非常长时,在某些体系中也可通过固态扩散,使各组元达到原子间结合而形成合金或化合物。(图片来源于网络)机械合金化利器——SPEX三维∞高能球磨仪 目前在全世界范围内,已有数千篇使用SPEX高能球磨仪做机械合金化和纳米材料研究的高端文献,甚至可以说,每个做机械合金化研磨的实验室里,都至少有一台SPEX三维∞式高能球磨仪。SPEX发明了三维∞式研磨方式,高能效,可连续工作10000分钟以上,完美契合机械合金化需求,在研磨界没有其他厂家的性能与之匹敌,成就SPEX在研磨界的领导地位。首先,机械合金化需要极高的动能,球磨设备需要具备极高的研磨能力。为了增加研磨介质,研磨罐和物料粉末撞击力和摩擦力,为物料粉末达到原子间结合提供提供极高的动力源泉,SPEX高能球磨仪采用更有效的∞式三维运动方式,其碾磨能量密度达到传统行星式二维运动的6-8倍。其次,研磨时间也是影响机械合金化效果的重要因素。随着研磨的进程,合金化程度会越来越高,因此需要球磨设备提供足够长时间的稳定研磨能力;SPEX高能球磨仪机械工作耐久性极限达10000分钟以上,充分保证了机械合金化进程的有效性。最后,研磨温度也是机械合金化进程中必须考量的重要因素。因为无论机械合金化的最终产物是固溶体、金属间化合物、纳米晶、还是非晶相都涉及到高温扩散降解问题,研磨温度越高,合金化产物高温扩散降解越快,合金化效率越低下;SPEX独特专利设计的∞式三维运动方式,更高比例输出正面撞击力,而非摩擦力,因此热生成更低,合金化效率更高。
  • 奥林巴斯合金分析仪揭秘东京奥运会奖牌成分
    众所周知,奥运会的奖牌分为金、银、铜三种,分别发给冠军、亚军以及季军。可是你知道吗?奥运会的金牌,并不是金子做的哦,其材质是“银”!国际奥委会其实对奥运会的奖牌有着详细的规定,对其原材料的规定是这样写的:第一名和第二名的奖牌主体是银质,至少纯度在92.5%之上,第一名的奖牌至少有6g的纯金镀层。从规定中我们就能够看出,奥运会金牌只是在表面镀6g以上的金而已,最终的底材依然是银。鉴别含金量其实除了奥运会的奖牌,很多号称“金银”的首饰、纪念品等都并非是纯金、纯银打造。如果将贵金属作为商品进行交易,那么有效鉴别其“真假”就显得尤为重要。XRF是一种可以迅速、轻松地确定贵金属化学成分、纯度和成色的无损检测技术,能够快速提供贵金属的克拉值。奥林巴斯的Vanta分析仪是一款手持式XRF分析仪,可以对包括黄金、铂金、白银在内的贵金属进行即时、无损的分析。Vanta分析仪可提供出色的精度和准确度,可以在购买黄金、销售或生产珠宝时,快速、准确地确定克拉值(贵金属含量)以进行质量控制和定价。Vanta的可定制的界面,使用起来简便直观,因此即使没有什么经验的用户,经过简短的培训,也可以很快掌握使用分析仪的方法。用户还可以将结果下载,快速制作成证书。据说,东京奥运会的奖牌是“从垃圾里捡出来”的,这是怎么回事呢?原来,在本届东京奥运会中,奥委会誓将”绿色环保低碳”的理念贯彻到底,将奖牌制作方式进行创新,首次使用回收的旧手机和家电来制作“绿色奖牌”,并且号召日本民众捐出自己的废旧电子产品,再从这些淘汰的“电子垃圾”中提炼奖牌所需的贵金属原料。像不像小时候经常听到门外在喊:“高价回收冰箱、彩电、洗衣机。”从2017年4月开始,日本用两年的时间在全国收集了约78985吨的小家电和621万部旧手机,从中提炼出32公斤的纯金、3500公斤纯银和2200公斤纯铜,从中已经获得制作奖牌所需的99.3%的黄金,85.4%的白银以及100%的铜。这项活动在日本收到了民众的广泛参与,日本全国放置了18000个收集箱,90%的地方当局都参与了这项活动。谈到日本制作的“绿色奖牌”,有网友调侃道:“不知运动员拿到奖牌之后,咬一口是不是有一股CPU的味道?”根据了解,电路板中除了含有30%的惰性氧化物及30%的塑料之外,还含有40%的金属,在金属含量中有0.1%的黄金量。一吨废旧的手机电路板可提取0.034g黄金,0.34g白银,25克铜等金属,而一吨的矿石也只能提取20g黄金,由此可见在废旧电路中提取的含金量非常可观。使用奥林巴斯手持式Vanta合金分析仪,用户可以对废料进行快速、准确的分拣,它可在1~2秒钟时间内对大多数合金的级别和纯金属进行可靠的辨别。Vanta合金分析仪装配有一个至少含25种元素的标准软件包,在数秒钟之内即可生成合金的化学成份信息,并确定合金的ID牌号。从简单的分拣到进一步的级别区分,Vanta都会提供极为精细的材料化学成份信息,从而快速精确地辨别纯金属和合金的级别。 (使用Vanta快速分析汽车催化剂中的铂族元素 )此外,Vanta合金分析仪还可应用于以下检测场景:基于硅和铝元素的低含量,分拣出重合金分析母板电子元件,识别含贵金属(银、金、钯等)的电子元件,分拣和辨别出有毒物质及含铅的焊料,评价细碎材料中的铜含量从回收流水线上快速分拣出含铅的玻璃与玻璃陶瓷制品,探测出有毒的元素分析含钯、铂、铑等贵金属的汽车催化剂材料在熔渣融化的过程中,监控熔渣的化学成份,从而对质量进行控制,并对熔炉的寿命进行预测。可分拣并评价从不同的融化过程中回收的熔渣。
  • 三元素分析仪可检测普碳钢及低合金钢
    三元素分析仪可检测普碳钢及低合金钢 微机三元素高速分析仪是用于多元素分析的三通道光电比色分析仪。该仪器在国内外先进技术的基础上,首次采用了&ldquo 智能动态跟踪&rdquo 和&ldquo 标样曲线的非线性回归&rdquo 等先进技术,使传统比色仪的日常调整和标样曲线的建立方法起了根本性的变化。使本仪器跻身于高档分析仪器的行列。 QL-BS3型微机三元素分析仪也可以单独作为一台数据处理计算机使用,使其处理功能得到充分发挥。微机三元素分析仪主要可检测普碳钢及低合金钢,更适用于对金属等材料中的硅、锰、磷、镍、铬、铜、稀土、镁、铜、铁、铝、钒、钨、钛等多种元素的比色分析,现已大量地在冶金、机械、化工等行业,对炉前、成品、来料化验等均可使用。它是新一代比色分析仪器的理想换代产品。 南京麒麟分析仪器有限公司技术部
  • 光学浮区法单晶生长技术在氧化物和金属间化合物材料领域应用进展
    化学性质活泼、高熔点、高压、高质量单晶生长法宝! 新一代高性能激光浮区法单晶炉-LFZ助您实现高饱和蒸汽压、高熔点材料及高热导率材料等常规浮区法单晶炉难以胜任的单晶生长工作。高精度光学浮区法单晶炉-IRF助您实现高温超导体、介电材料、磁性材料、热电材料、金属间化合物、半导体、激光晶体等材料的生长工作。高温高压光学浮区炉助您实现各种超导材料单晶,介电和磁性材料单晶,氧化物及金属间化合物单晶等材料的生长。四电弧高温单晶生长炉助您实现化学性质活跃但熔点高的金属间化合物,包括含有稀土元素(或者金属铀)的二元及四元金属间化合物、合金单晶等材料的生长。高质量单晶生长设备——单晶炉系列1. 高精度光学浮区法单晶炉在休斯勒型镍-锰基合金磁致冷材料领域的应用 休斯勒(Heusler)型的镍-锰基材料自从发现其巨磁热效应以来,在过去的几十年中已成为被广泛研究的热点新型磁致冷材料之一。研究发现,休斯勒型铁磁性材料镍-锰-锡在从高温至低温的变温过程中会发生高温相(铁磁奥氏体相)到低温相(顺磁马氏体相)的转变,且该转变受磁场调制。高对称性的奥氏体相经一结构相变成低对称性的马氏体相,会造成磁有序降低,磁熵增加,这一过程为吸热过程,亦即形成反磁热效应,这也是磁致冷的基本原理。而休斯勒型镍-锰-锡合金材料也因为其成本廉价、无毒、无污染、易于获取、磁热效应显著、相变温度可调等一系列的特点成为一种具应用潜力的室温磁致冷材料。 研究表明,休斯勒型镍-锰-锡合金的单晶材料具有更大的磁效应导致的应变或磁热效应,且具有强烈的各向异性特点,因此研究者希望其单晶或单向织构晶体具有更加优异的磁性能。目前,已有学者采用布里奇曼技术和Czochralski方法制备出了镍-锰-镓和镍-锰-铟材料的单晶材料,但镍-锰-锡合金由于在晶体生长过程中易形成氧化锰,因此其高质量的单晶样品制备具挑战性。上海大学的余金科等人克服了镍-锰-锡合金单晶生长中的氧化锰形成及挥发的难题,采用光学浮区技术成功合成了高质量的镍-锰-锡合金单晶样品。晶体生长过程及样品腔实物图片晶体实物及解理面图片 余金科等人所用的光学浮区法单晶炉为Quantum Design日本公司推出的新一代高精度光学浮区炉单晶炉,文献中报道的相关晶体生长工艺参数为:生长速度6 mm/小时;转速(正、反)15转/分钟,氩气压力7bar。 Quantum Design 日本公司推出的高温光学浮区法单晶炉,采用镀金双面镜、高反射曲面设计,高温度可达2100℃-2200℃,系统采用高效冷却节能设计(不需要额外冷却系统),稳定的电源输出保证了灯丝的恒定加热功率,这对于获得高质量单晶至关重要。浮区炉技术特色:■ 占地空间小,操作简单,易于上手,立支撑设计■ 镀金双面高效反射镜,加热效率更高■ 可实现高温度2150°C■ 稳定的电源■ 内置闭循环冷却系统,无需外部水冷装置■ 采用商业化标准卤素灯 参考信息来源:[1]. Optical Floating-Zone Crystal Growth of Heusler Ni-Mn-Sn Alloy. Yu, Jinke & Ren, Jian & Li, Hongwei & Zheng, Hongxing. (2015). TMS Annual Meeting. 2015. 49-54.[2]. Ni-Mn-Sn(Co)磁制冷薄带材料结构相变及磁性能表征,王戊 硕士论文,上海大学 2. 高精度光学浮区法单晶炉在磁电领域取得重要进展在人类漫长的历史发展长河中,“材料学”贯穿了其整个历程。从人类活动早期开始使用木制工具,到随后的石器、金石并用(此时的金属主要指铜器)、青铜、铁器等各个时代,再到后来的蒸汽、电气、原子、信息时代,每个发展阶段无不伴随着人类对材料的认识和利用。在诸多材料中,铁是人类早认识和使用到的材料之一,早在西周以前我国就已开始将铁用于生产生活中[1];人们在长期的实践中也逐渐认识到相关材料的磁性并将其运用于实践中,司南就是具代表性的发明。这些在不少历史典籍中都有记载,比如:《鬼谷子谋篇十》记载:“故郑人取玉也,载司南之车,为其不惑也。夫度材量能揣情者,亦事之司南也”;《梦溪笔谈》提到:“方家以磁石磨针缝,则能指南”;《论衡》书曰:“司南之杓,投之于地,其柢指南”等等[2]。由此可见,人们对磁性材料的兴趣也算由来已久。 当时代来到21世纪,化学、物理、生物、医学、计算机等各个领域的技术都有了前所未有的突破,先进的生产力也将人类的文明推进智能工业化、信息化时代,随之而来的是人们对材料的更高要求。在诸多材料当中,多铁材料兼具铁磁、铁电特性,二者之间有着特的磁电耦合特性;与此同时,磁场作用下的电化和电场作用下的磁化等性质为未来功能材料探索和发展提供了更为宽广的选择和可能,在存储、传感器、自旋电子、微波器件、器件小型化等领域拥有巨大的潜在价值。2007年的《科学》杂志对未来的热点发展问题进行了报道,其中,多铁材料作为的物理类问题入选[3]。因此,研究并深刻理解磁电耦合和多铁材料背后的机理,有着非常重要的理论价值和实践意义。 近期,哈尔滨工业大学的W.Q.Liu等人对磁电材料Mn4Nb2O9单晶样品进行了深入的研究。研究表明:零磁场测试介电常数时,没有发现介电常数的反常,此时Mn4Nb2O9基态表现为顺电特性;而在磁场条件下,介电常数在Neel温度处发生突变的峰,且随着磁场的增加介电峰也增强,且峰位向低温端偏移,这意味着磁场有抑制反铁磁转变的趋势;高场(H≥4T)下的介电常数-温度依赖关系也跟H2正比关系,由此也表明Mn4Nb2O9是线性磁电材料。更多研究结果可参考文献[4]。以上图片引自文献[4].在该项研究工作中,作者合成Mn4Nb2O9单晶样品所用设备为Quantum Design Japan公司的高精度光学浮区法单晶炉,文章中所用单晶生长参数为:Ar气氛流速4 L/min,生长速度6 mm/h,转速25 rpm。参考信息来源:[1]. https://baijiahao.baidu.com/s?id=1713600818043231130&wfr=spider&for=pc[2]. https://baike.baidu.com/item/%E5%8F%B8%E5%8D%97/3671419?fr=aladdin[3]. https://www.science.org/doi/10.1126/science.318.5858.1848[4]. Wenqiang Liu, Long Li, Lei Tao, Ziyi Liu, Xianjie Wang, Yu Sui, Yang Wang, Evidence of linear magnetoelectric effect in Mn4Nb2O9 single crystal, Journal of Alloys and Compounds,Volume 886,2021,161272,ISSN 0925-8388, https://doi.org/10.1016/j.jallcom.2021.161272.3. 高温高压光学浮区法单晶炉在外尔半金属材料领域应用案例 1929年,德国科学家外尔(Weyl)解出了无质量粒子的狄拉克方程,相应的无质量粒子被称为外尔费米子。然而直到2015年科研人员才在实验中观察到外尔费米子,被中国科学院物理研究所的研究人员报道,距离外尔费米子概念的提出,足足过去了近90年。2018年科研人员通过性原理计算预言RAlGe(R=Pr,Ce)体系有望成为新的磁性外尔半金属。目前人们对RAlGe(R=Pr,Ce)材料的物理性质研究还比较少,更进一步深入的实验研究需要大尺寸的单晶样品去支持。 H. Hodovanets等人曾用助熔剂方法生长CeAlGe单晶,但由于实验中需要用到SiO2容器,导致用该方法获取的单晶样品中会存在Si杂质,同时伴有CeAlSi相;另外,轻微的Al富集会导致形成不同的晶体结构。这些都大限制了拓扑外尔点的形成。因此,获取化学计量比的单晶样品对于研究材料的物理性质非常重要。Pascal Puphal等人近期的研究工作报道了其分别用助熔剂方法和高温高压浮区法两种晶体生长技术获得的RAlGe(R=Pr,Ce)单晶样品及研究成果。尽管作者为了避免Si的污染,采用了Al2O3坩埚,但终样品中Al的含量偏高问题依然存在,单晶样品表面成分:Ce1.0(2)Al1.3(5)Ge0.7(3)/ Pr1.0(1)Al1.2(2)Ge0.8(2),剥离面成分为:Ce1.0(1)Al1.12(1)Ge0.88(1)/Pr1.0(1)Al1.14(1)Ge0.86(1)。而采用浮区法则生长出了近乎理想化学计量比(1:1:1)的单晶样品,成分分别为:Ce1.02(7)Al1.01(16)Ge0.97(9)和Pr1.08(24)Al0.97(7)Ge0.95(17)。 浮区法得到的晶体的劳厄图片 Pascal Puphal等人所采用的浮区法单晶炉为德国ScIDre公司的HKZ高温高压光学浮区炉,文献中提到的相关实验参数为:5 KW功率的氙灯,晶体生长速度为1 mm/小时,CeAlGe采用30 bar的Ar保护气氛,PrAlGe采用5 bar的Ar保护气氛。德国ScIDre公司推出的高温高压光学浮区法单晶炉高能够提供3000℃的生长温度,晶体生长腔大压力可达300 bar,甚至10-5 mbar的高真空。适用于生长各种超导材料单晶,介电和磁性材料单晶,氧化物及金属间化合物单晶等。ScIDre单晶炉技术特色:► 采用垂直式光路设计► 采用高照度短弧氙灯,多种功率规格可选► 熔区温度:高达3000℃► 熔区压力:10bar/50bar/100bar/150bar/300bar等多种规格可选► 氧气/氩气/氮气/空气/混合气等多种气路可选► 采用光栅控制技术,加热功率从0-100% 连续可调► 样品腔可实现低10-5 mbar真空环境► 丰富的可升选件 参考信息来源:[1]. http://www.iop.cas.cn/xwzx/kydt/201507/t20150720_4395729.html[2]. Single-crystal investigation of the proposed type-II Weyl semimetal CeAlGe, H. Hodovanets, C. J. Eckberg, P. Y. Zavalij, H. Kim, W.-C. Lin, M. Zic, D. J. Campbell, J. S. Higgins, and J. PaglionePhys.Rev. B 98, 245132 (2018).[3]. Bulk single-crystal growth of the theoretically predicted magnetic Weyl semimetals RAlGe (R = Pr, Ce), Pascal Puphal, Charles Mielke, Neeraj Kumar, Y. Soh, Tian Shang, Marisa Medarde,Jonathan S. White, and Ekaterina Pomjakushina, Phys. Rev. Materials 3, 0242044. 高温高压光学浮区法单晶炉在准一维伊辛自旋链材料领域应用进展 低维磁性材料具有非常丰富和奇特的物理性质,且与多铁性和高温超导电性等材料密切相关。对低维磁性材料的物理性质进行研究有助于探索相关奇异现象的根本机制,从而对寻求新的功能材料提供帮助。因此,近年来关于低维磁性材料的研究吸引了科学家们的广泛关注。近日,德国马普固体化学物理研究所的学者A. C. Komarek等人[1,2]在准一维伊辛自旋链材料CoGeO3中发现了非常明显的1/3磁化平台,并通过中子衍射手段详细探究了其微观自旋结构。研究表明,初的零场反铁磁自旋结构的变化,类似于反铁磁“畴壁边界”的形成,从而产生一种具有1/3整数传播矢量的调制磁结构。净磁矩出现在这些“畴壁”上,而所有反铁磁链排列的三分之二仍然可以保留。同时A. C. Komarek等人也提出了一个基于各向异性受挫方形晶格的微观模型来解释其实验结果。更为详细的报道可参考文献相关文献[1,2]。A. C. Komarek等人所用的CoGeO3单晶样品由高压光学浮区法单晶炉(型号:HKZ, 制造商:德国ScIDre公司)制备获得[2],文章中报道的CoGeO3单晶生长参数为:Ar/O2混合气(比例98:2),压力80 bar,生长速度3.6 mm/hour。CoGeO3单晶实物图片 引自[2] 参考信息来源:[1]. Emergent 1/3 magnetization plateaus in pyroxene CoGeO3, H. Guo, L. Zhao, M. Baenitz, X. Fabrèges, A. Gukasov, A. Melendez Sans, D. I. Khomskii, L. H. Tjeng, and A. C. Komarek, Phys. Rev. Research 3, L032037[2]. Single Crystal Growth and Physical Properties of Pyroxene CoGeO3,Zhao, L. Hu, Z. Guo, H. Geibel, C. Lin, H.-J. Chen, C.-T. Khomskii, D. Tjeng, L.H. Komarek, A.C. Crystals 2021, 11, 378.5. 高温高压光学浮区法单晶炉在锂离子电池领域新应用进展 锂离子电池由于具有能量密度高、寿命长、充电快、安全可靠、绿色环保等诸多优异性能,其与当今人民的日常生活已密不可分,在手机、电脑、电动车、电动汽车、航空航天等领域均有广泛的应用。 其中,Li2FeSiO4作为新一代锂离子电池阴材料,由于具有价格低廉、环境友好、安全性好等技术优势,因此在大型动力锂离子电池应用方面具有良好的前景。然而,Li2FeSiO4材料在不同温度具有不同的结构相(∼ 400 °C :Pmn21, , ∼ 700 °C :P121/n1, and ∼ 900 °C :Pmnb),研究其不同结构的电化学性质对于进一步对其进行改性研究尤为重要。 Waldemar Hergetta等人[1]采用高压光学浮区法获得了高温相(Pmnb)Li2FeSiO4单晶,并研究了晶体生长工艺参数对杂相的影响,相关结果已发表在Journal of Crystal Growth。作者所采用的高压光学浮区炉为德国ScIDre公司的HKZ高压光学浮区法单晶炉,文章报道的晶体生长参数为:生长速度10 mm/h,保护气氛Ar(30 bar)。温度梯度分布 引自[1]XRD图谱及晶体实物图片 引自[1]参考信息来源: [1]Waldemar Hergett, Christoph Neef, Hans-Peter Meyer, Rüdiger Klingeler, Challenges in the crystal growth of Li2FeSiO4, Journal of Crystal Growth, Volume 556,2021,125995,ISSN 0022-0248, https://doi.org/10.1016/j.jcrysgro.2020.125995.
  • 中国先进钛合金航空科技重点实验室成立(图)
    11月17日,先进钛合金航空科技重点实验室在北京中航工业航材院挂牌成立。  先进钛合金航空科技重点实验室评审会由中航工业科技与信息化部主持召开,由多名专家组成的评审小组认真听取了航空重点实验室的设立申请报告,审查了相关支撑资料,并对航空重点实验室进行实地考察。专家组高度评价了钛合金重点实验室的科研水平和技术实力,经过严格质询和深入讨论,专家组一致通过了钛合金科技重点实验室的设立申请。  据了解,作为钛合金航空重点实验室的依托单位,航材院钛合金研究室一直是国内航空钛合金领域的领导者,其部分成果的技术指标达到甚至超过国际先进水平。钛合金航空重点实验室主要定位于开展创新性、探索性的前沿科学研究,以逐步扭转我国航空钛合金领域基础研究相对薄弱的局面。“中航工业和基础院多年来一直在资金和项目上给予我们很大的支持。”钛合金航空重点实验室主任黄旭在接受记者采访时表示,“重点实验室的成立也为我们带来了品牌效应,可以极大促进航材院航空钛合金材料研制和应用研究工作。”  钛合金是飞机和发动机的重要结构材料,因其优异的比强度及抗腐蚀等性能被大量作为航空器的承力构件,其应用程度也是衡量航空装备技术水平的重要指标。北京有色金属研究总院惠松晓教授表示,近年来,我国在钛合金领域研发能力显著增强,取得了多个关键项目的自主知识产权,为扩大钛合金在航空领域的应用范围打下了坚实基础。
  • 师昌绪:中国高温合金之父——2010年度获奖人
    人物小传:1920年生于河北省徐水县,1945年毕业于西北工学院矿冶系,1952年获美国欧丹特大学冶金博士学位,1955年回国。他是我国著名的物理冶金学家、材料科学家、战略科学家,中国科学院院士,中国工程院院士,第三世界科学院院士。曾任中科院金属所所长、中国科学院部技术科学部主任、国家自然科学基金委副主任、中国工程院副院长。  这是一位九旬老人的退休生活:每天上午8点钟离开家,9点钟到办公室,来访的客人有时一天好几拨,请他提供咨询意见的、指导科研工作的、题词的、写序的……几乎有求必应。此外,去年一年,北到哈尔滨、南到广州,他出了10次差,还在北京主持、参与了几十个学术会议。  这位乐此不疲、退而不休的老人,就是2010年度荣获国家科技奖最高奖的两位得主之一,我国高温合金材料的奠基人、在材料腐蚀、镁合金、碳纤维等多个领域贡献卓著的战略科学家师昌绪先生。  “我这样的生活很没意思,也不希望别人都像我一样。”师先生自我解嘲说:“但我已经是这么个定型了,在家反而苦恼,所以天天工作,生活很充实,觉得能对得起国家、民族,也就是这个样子。  “美国人做出来了,我们怎么做不出来?”  1月7日上午,在国家自然科学基金委(以下简称基金委)的一间会议室里,记者见到了91岁的师先生。虽然发已掉光、牙已全无,但老先生却背不驼、眼不花,步伐稳健、思维敏捷。听着后辈和老同事讲述他的往事,师先生时而会心一笑,时而神色凝重 他对数十年前的事情记得一清二楚,时不时插话补充两句 说到激动处,忍不住用手指敲得桌子“笃笃“直响。  “北京、上海,这两个地方任你选。”1955年6月,时任中科院技术科学部主任的严济慈,对刚从美国回来的师昌绪说。  结果,这位35岁的洋博士选择了沈阳,因为中科院金属所在沈阳。到金属所后,他被指定为鞍钢工作组的负责人,由物理冶金理论研究,转向炼钢、轧钢工艺开发。两年之后,师昌绪又服从国家需要,转任金属所高温合金研究组的负责人,带领一支小分队常驻抚顺钢厂,研制航空发动机的核心材料——高温合金。师昌绪带领科研人员奋力攻关,很快开发出代替镍基合金GH33的铁基高温合金GH135,用这种新材料制作的航空发动机关键部件——涡轮盘,装备了大量飞机。  更难啃的骨头在后面。1964年,中国的新型战斗机设计出来了,就差发动机用的耐高温高压涡轮叶片。此前,只有美国能研制这种空心叶片,国内的人都没见过。一天晚上八九点钟,航空材料研究所的副总工程师荣科找到师昌绪家里,问他能不能牵头搞空心叶片。“我也没见过空心叶片,也不知道怎么做。”师先生回忆说,“但我当时就想,美国人做出来了,我们怎么做不出来?中国人不比美国人笨,只要肯做,就一定能做出来。”  第二天,他与时任金属所所长的李薰先生研究决定接受这个任务。荣科听到这一消息自然高兴,但同时也“提醒”师昌绪:我可是立了军令状的,做不出来,我把脑袋割下来。师昌绪一笑:咱们就共同承担吧。  为啃下这块硬骨头,由师昌绪挂帅,从金属所的相关研究室挑选了“一百单八将”,成立了专门的项目组。他们采纳了容科“设计——材料——制造一体化”的建议,与发动机设计和制造厂等合力攻关。在当时的条件下,要在100毫米的叶片上均匀做出粗细不等、最小直径只有0.8毫米的9个小孔,谈何容易!他们攻克了型芯定位、造型、浇注、脱芯,以及断芯无损检测等一道道难关,于1965年研制出中国第一代铸造多孔空心叶片,使我国成为世界上第二个能研制这种叶片的国家。  后来,国家决定把空心叶片的生产转移到远在贵州的一个工厂,航空部点名师昌绪带队到生产第一线,帮助解决生产中的技术难题。当时从沈阳到贵阳要坐48个小时的闷罐火车,路上连喝的水都没有。工厂的条件极为艰苦,一日三餐吃的都是发霉的大米和红薯干,以至于厂里的总工程师过意不去,利用星期天到集市上买来白面,给科研人员蒸馍改善生活。师昌绪他们日夜在车间里鏖战。经过几个月的努力,他们终于克服了实际生产中的技术难关,至今所生产的数十万个叶片没出过一起质量问题。  “当时当然有压力了,但关键看你敢不敢往前冲。”忆当年,师先生雄心不改,“只要努力,肯定能做出来,除非你不努力。”  “我自己最大的特点,就是好管闲事”  “师先生,这个事您可别管!”2000年春,年近80的师昌绪找到基金委材料科学部原常务副主任李克健,说想和他一起抓一下碳纤维。李克健听后立马摇头,“这事太复杂!谁抓谁麻烦!”  李克健说的是大实话。质量轻、强度高的碳纤维是航天、航空用基础原材料,我国从1975年就开始攻关,大会战搞了不少,钱花了很多,但就是拿不出合格稳定的产品,以至于许多人避之唯恐不及。  “我们的国防太需要碳纤维了,不能总是靠进口。”师先生说,“如果碳纤维搞上不去,拖了国防的后腿,我死不瞑目。”  李克健听后深受感动,接受了师先生的邀请。这年8月,师先生召集了由原国防科工委、科技部、总装备部、基金委等相关单位58人参加的座谈会,探讨怎样把碳纤维搞上去。大家的一致意见是,碳纤维能搞上去。会议纪要里,专门写了这样一句:请师昌绪院士作为技术顾问和监督。  师先生欣然从命,很快又召集了第二次座谈会,讨论具体方法。座谈会上,有人给师先生泼凉水:上亿的资金哪里去找?就是钱弄来了,谁去协调指挥?过去几个部委联合起来都没弄好,你师老能指挥得动么?  “只要国家需要,困难再大也要干!”不服输的师先生上书中央,陈说利害。很快,这封信批转到科技部,科技部在863计划中专门增设了1亿元的碳纤维专项。在实施过程中,师先生吸取以前的教训,定了一条规矩:统一领导,谁拿专项的钱,谁就归我们管,不管你是哪个单位的。然后,专项领导小组派人到申报单位,现场取样,让第三方单位统一测试。数据出来后,大家一起讨论,优胜劣汰,结果。志在必得的一所知名大学落选,产品过硬的民营企业威海拓展一举中标。师先生一抓到底,不仅多次到威海实地指导,还专门给航空总公司写信化缘3000万元,帮助相关单位开展应用试验。现在,无论是航天还是航空,我国所需的碳纤维已可立足国内,完全依赖进口成为历史。  “我自己最大的特点,就是好管闲事”。师先生笑称。  凡是对国家有益的,对别人有益的,他都不避利害,乐于去管。  “师老很有眼光,他所管的闲事,要么是刚刚起步、困难很多,要么是涉及面广、关系复杂。只要这些闲事关系到国家的重大需求,师先生就抓住不放,该呼吁的呼吁,能扶持的扶持。”李克健说。  这样的例子还有很多。  从上世纪五六十年代开始,多个部委在全国各地陆续建立了26个材料环境腐蚀试验查与监测网站,检测材料在大气、海洋、土壤等环境中的腐蚀数据,为今后的大工程建设提供选材和防腐设计的决策依据。据基金委原秘书长袁海波回忆,80年代中期,我国开始大刀阔斧地推进科技体制和拨款制度改革,期间出现盲区,许多腐蚀监测站成为被遗忘的角落,陷入人走站亡的困境。1986年,基金委会成立,出任副主任的师昌绪力排众议,说服有关部委的领导,把腐蚀监测站的的数据检测分析建设列为基金委的重大项目,常年给予支持。后来等三峡大坝和核电站等工程上马时,大家才发现:腐蚀监测站提供的数据资料太重要了!  上世纪90年代,生物医用材料在国际上方兴未艾。由于我国起步晚,跟国外的差距很大,搞生物医用材料的学者和企业地位不高,这方面的研究没有引起应有的重视。李克健回忆说,当时师先生敏锐地觉察到,生物医用材料将是事关13亿国人健康的大产业,应该加快发展。经过他多方奔走,中国生物材料委员会在1996年宣告成立。由于该委员会的人员涉及十几个学会,关系比较复杂,找不到合适的主席人选,75岁的师先生只好勉为其难,连续干了两届。去年,中国科协批准成立中国生物材料学会 明年,世界生物材料大会明年将在成都举行。  ……  数十年“管闲事”的结果,是“管”出了一位名副其实的战略科学家。“与师先生相处20多年,我感受最深的,就是他的亲和力。不管到哪儿,在哪个地方工作,都有很强的亲和力、吸引力和凝聚力。”说到这里,袁海波很是感慨,“作为一个大科学家,做到这一点是很不容易的。在技术科学和工程科学领域,尤其需要团队精神,需要德高望重的学术牵头人,把方方面面的力量凝聚起来。“这一点,当前在我国科技界特别重要,也特别不容易!”亲和力来自淡泊名利的品格。国际材料联合会是世界材料学界的权威学术机构,加入该组织对促进我国材料科学的发展非常重要。据曾任中国材料研究学会副理事长的袁海波回忆,1986年国际材料联在美国举行会议,师先生与清华大学的李恒德教授应约参加,期间做了大量工作,妥善处理了与台湾相关的议题,终于在1991年底说服国际材联修改章程,接纳中国材料联合会代表中国成为其会员,台湾作为中国的一个地区与中国材料联合会并存。1991年,中国材料研究学会在中国材料联合会的基础上正式成立,许多人认为师先生是该研究会理所当然的理事长。结果,师先生主动让贤,自己只做顾问。“师先生就是这样,以事业为重,以把大家的积极性调动起来为重,从不考虑自己的位子、自己的利益。”袁海波说。亲和力来自尊重他人的作风。“1964年我担任师先生研究室的学术秘书,刚开始挺拘谨的,后来发现他一点架子也没有。”说起40多年前的往事,中科院金属所前所长李依依院士至今仍很动感情,“师先生非常尊重别人,从不把自己摆得很高。他带领我们研究高温合金,不像有的老师,要求你一定要照着他说的去做,而是划一个大的范围,让你放手去干;你有什么不同的想法,他也支持你做,哪怕做错了再重来都可以。跟师先生工作心情是非常愉快的,在他的团结指导下,完全可以指到哪儿就能打到哪儿。”让李依依特别钦佩的,是师先生对每一个人都平等相待,哪怕对方只是普通的工人。“在金属所工作时,从他家到科研大楼只有一两百米的距离,5分钟的路程他要走半个小时,因为一路上老有人找他聊天。前几年,我跟师先生重回贵州叶片生产厂,老工人们都围过来跟他握手:‘师老师,您好久没来了!’。”亲和力来自严谨求实的学风。虽然年事已高,但师先生开会做演讲、报告,不管是学术的还是管理类的,极少让别人“代劳”;凡是让他办的事情,都一丝不苟,绝不马虎。袁海波刚担任基金委秘书长不久,把大家精心编辑的《科技成果汇编》送给师先生过目。“我原以为他大的方面看一看就完了,没想到每一篇他都认真修改,改了一半多,连每一项成果的英文标题都不放过!”1998年,鉴于师先生在高温合金材料领域的卓越贡献,包括GE等大公司在内的11个国际跨国公司联合授予他“突出贡献奖”,并称他为“中国高温合金之父”。“这不对!”师先生听说后立即纠正,“在国内搞高温合金有人比我早,我只是做了较大的贡献。”师先生说:“我这个人没什么本事,就在于能团结大家。”
  • 西安交大科研人员在调控高熵合金的点缺陷扩散方面取得重要进展
    空位和间隙是晶体材料中的两种本征点缺陷。然而,这两种缺陷的动力学行为却有极大差异。在常规的纯金属中(如铜,镍),间隙的扩散速率往往比空位高出若干个数量级。这样巨大的动力学行为的差异对材料的宏观性能带来显著影响,例如材料的耐辐照损伤性能。在辐照环境下,金属内部同时产生大量间隙和空位,而间隙与空位的巨大的扩散速率差异往往导致点缺陷湮灭效率不高,大量的缓慢扩散的空位存留下来从而产生如层错四面体、位错环以至空洞等结构缺陷。因而,降低间隙与空位的扩散速率差异能够帮助改善材料的耐辐照性能,但是目前还缺少大幅度缩减这两者扩散率差的有效调控方法与手段。针对以上问题,西安交大材料学院的丁俊教授与马恩教授团队,利用第一性原理分子动力学模拟对等原子比NiCoCrFe(Pd)合金中点缺陷扩散行为进行研究,提出了一种可以大幅缩减两种点缺陷之间扩散速率差异的合金设计策略。研究表明,将更大的Pd原子加入到NiCoCrFe合金中,形成等原子比的NiCoCrFePd合金,两种点缺陷(空隙和空位)的扩散运动的数值上变得非常相似(图1)。统计NiCoCrFe和NiCoCrFePd合金在不同温度下的扩散速率,并且得到相应的扩散激活能(图2a中拟合直线的斜率),发现Pd的加入使间隙与空位扩散的激活能变得非常接近,这是在单相合金中第一次实现相似的间隙与空位扩散速率(如图2b, c所示)。对合金中空位迁移过程中的局部晶格畸变和键长变化进行分析表明,点缺陷迁移率(特别是它们的差异)变化的起源是大原子Pd阻塞了间隙扩散通道,而同时又通过减少初态和鞍态之间的键长变化降低了空位扩散的能量成本。图1. 1500K下NiCoCrFe合金与NiCoCrFePd合金的间隙和空位的扩散位移及轨迹图2. 不同温度下NiCoCrFe合金与NiCoCrFePd合金的间隙和空位的扩散系数及激活能的对比通过调控高熵合金中组成元素的尺寸差异,本工作首次在单相金属结构材料中实现了近乎相等的空位和间隙两种点缺陷扩散速率。这一长期以来难题的解决,是合金设计调控点缺陷扩散研究方面的重要突破。此结果为抑制空洞生成、材料肿胀提供了新的策略,为设计先进核用的耐辐照合金提供了新的思路。此外,本研究工作关注的合金组成元素的设计,未来可以与高熵合金中局域化学有序结构的调控相结合,来进一步提升材料的抗辐照性能(研究团队的近期论文Z. Zhang et al.,PNAS, 120 (2023) e2218673120详细地阐述了局域化学有序对高熵合金的辐照损伤和缺陷演化行为的影响及其机理)。这一系列工作对设计高性能核用结构合金材料具有重要的指导意义。日前,上述研究成果以“缩小多主元合金中空位和间隙之间的扩散速率差(Minimizing the diffusivity difference between vacancies and interstitials in multi-principal element alloys)”为题发表于《美国科学院院刊》(Proceedings of the National Academy of Sciences of the United States of America, PNAS)。西安交大金属材料强度国家重点实验室为论文通讯单位。西安交大材料学院博士研究生张博召与助理教授张真为论文共同第一作者,材料学院丁俊教授和马恩教授为论文共同通讯作者。该工作得到了科技部重点研发计划、国家自然科学基金和国家级青年人才项目支持计划的共同资助,以及西安交大高算平台计算资源的支持。论文链接地址:https://www.pnas.org/do i /10.1073/pnas.2314248121
  • 力学所在钛合金超高周疲劳研究中取得新进展
    长寿命高可靠是重大工程装备的重要指标,特别是以先进航空发动机和高铁车轴为代表的关键部件,服役寿命内承受了超过107甚至1010周次的循环载荷作用,进入了超高周疲劳(即107周次以上的疲劳)研究范畴,这颠覆了传统基于疲劳极限(对应107周次)的疲劳强度与寿命设计理念,成为近年来疲劳研究的前沿和热点。因此,揭示超高周疲劳的微观机理和规律等科学问题,建立疲劳寿命与疲劳强度的准确预测模型,将具有重要的科学意义和工程应用价值。力学所非线性力学国家重点实验室微结构计算力学课题组以航空发动机用TC17钛合金和增材TC4钛合金为研究对象,揭示了疲劳载荷过程中形成的形变孪晶和纳米晶是钛合金超高周疲劳裂纹萌生和演化的重要因素(图1),提出了钛合金超高周疲劳裂纹萌生和初始扩展机理(图2);通过巧妙的变幅加载设计,测得超高周疲劳裂纹萌生和初始扩展区域的等效裂纹扩展速率在10-13~10-11 m/cyc量级(图3a和3b),进而对超高周疲劳寿命进行了预测,预测结果与实验结果吻合(图3c)。图1 TC17钛合金扫描电子显微镜和电子背散射衍射观测结果(σα=588 MPa, R=–1, Nf=1.4×108 cyc). a: 试样局部区域扫描电子显微镜图像. b-d: 分别是图a中方框区域的反极图、相图以及母体晶粒和孪晶变体基面的施密特因子. e: 微裂纹附近扫描电子显微镜图像. f-h: 分别是图e中方框区域的反极图、相图以及母体晶粒和孪晶变体基面的施密特因子. 加载方向沿着纸面向上和向下.图2 钛合金超高周疲劳裂纹萌生和初始扩展机理示意图. (i) 疲劳载荷过程中位错塞积引起的局部高应力诱导孪晶、滑移或微裂纹的形成. (ii) 孪晶系统或位错之间的相互作用导致位错胞或位错墙的形成,进而形成微尺度滑移带和亚微米晶粒,最终形成纳米晶粒 然后,微裂纹沿着纳米晶粒-粗晶粒界面或在纳米晶粒区域内形成. 此过程中,由于微结构不均匀或变形不协调,微裂纹的形成也可以与晶粒细化无关,即微裂纹形成于α相团簇、较大的α相或α-β界面. (iii) 微裂纹增长或联接,并在疲劳载荷过程中进一步诱导晶粒细化或微裂纹的形成. (iv) 过程(iii)继续,直到裂纹萌生和初始扩展阶段结束.图3 增材TC4钛合金超高周疲劳裂纹萌生和初始扩展速率与寿命预测. a: 变幅加载下SEM照片(σα,H= 600 MPa, σα,L= 400 MPa, R=–1, σα,L下累积1.6×108周次). b: 裂纹萌生和初始扩展区域(Fine Granular Area, FGA)内等效裂纹扩展速率与文献中裂纹扩展速率的比较. c: 不同应力比下S–N数据以及R=–1下疲劳寿命预测结果与实验结果的比较.研究发现,材料缺陷不仅会显著降低钛合金的疲劳性能,而且缺陷对高周和超高周疲劳行为的影响与其引入形式密切有关。对于材料内部缺陷,高周和超高周疲劳S–N曲线呈现连续下降特征,而表面人工缺陷试样S–N曲线具有平台区特征(图4)。原位显微镜观测以及扫描电子显微镜和透射电子显微镜观测表明,与内部缺陷诱导的超高周疲劳失效不同,表面人工缺陷诱导的超高周疲劳未呈现伴随纳米晶粒形成的、缓慢的裂纹萌生和初始扩展过程;一旦裂纹萌生,裂纹将快速增长,试样在很少周次内发生失效(图5)。认为这种失效是疲劳载荷与时间相关过程(如水气影响、氢的作用等)的协同作用所致。进一步提出试样几何形状和表面缺陷对钛合金高周和超高周疲劳强度的影响模型。该模型不但能用于关联缺陷对钛合金疲劳强度的影响(图6a),而且也有效用于文献中缺陷(包括裂纹)对一些金属材料高周疲劳强度的影响(图6b-6f)。图4 缺陷引入形式和缺陷尺寸对疲劳性能的影响. (a) 缺陷引入形式对增材TC4疲劳性能影响. (b) 人工表面缺陷对TC17钛合金疲劳性能影响. 实线表示双对数坐标下线性拟合得到的中值S–N曲线.图5 含表面人工缺陷TC17钛合金超高周疲劳原位显微镜观测(σα=368 MPa, R=–1, Nf=1.95×107). 加载方向沿着纸面向上和向下.图6 缺陷对高周和超高周疲劳强度影响的模型结果与实验结果比较.对几种常用的应力比对高周疲劳强度影响模型在超高周疲劳范畴的预测能力也进行了对比研究。多种材料实验数据表明,Walker公式σα,R=σα,-1[(1–R)/2]γ相比Goodman公式σa,R=σα,-1[1–(σm/σb)]和Smith-Watson-Topper公式σa,R=σα,-1[(1–R)/2]1/2更好地预测应力比对超高周疲劳强度的影响(图7),其中σα,R和σα,-1分别是应力比R和–1下的疲劳强度,σm和σb是平均应力和拉伸强度,γ是材料参数。图7实验结果与不同模型预测结果的比较.相关研究得到国家自然科学基金基础科学中心“非线性力学的多尺度力学研究”项目(11988102)、国家自然科学基金重大研究计划“航空发动机高温材料/先进制造及故障诊断科学基础”培育项目(91860112)等支持。部分研究结果是与北交大等合作完成,主要研究成果发表在Int. J. Fatigue 2023, 166: 107299 2023, 167: 107331 2022, 160: 106862 Eng. Fract. Mech. 2022, 259: 108136 2022, 272: 108721 2022, 276: 108940 J. Mater. Sci. Technol. 2022, 122: 128-140 Theor. Appl. Fract. Mech. 2022, 119: 103380。
  • 《钢铁及合金 硅含量的测定 重量法》等353项国家标准即将实施!
    关于批准发布《钢铁及合金 硅含量的测定 重量法》等353项国家标准和4项国家标准修改单的公告国家市场监督管理总局(国家标准化管理委员会)批准《钢铁及合金 硅含量的测定 重量法》等353项国家标准和4项国家标准修改单,现予以公告。国家市场监督管理总局 国家标准化管理委员会2024-04-25序列国家标准编号国 家 标 准 名 称代替标准号实施日期1GB/T 223.60—2024钢铁及合金 硅含量的测定 重量法GB/T 223.60—19972024-11-012GB/T 754—2024发电用汽轮机参数系列GB/T 754—20072024-11-013GB/T 1361—2024铁矿石分析方法总则及一般规定GB/T 1361—20082024-11-014GB/T 1503—2024铸钢轧辊GB/T 1503—20082024-11-015GB/T 3428—2024架空导线用镀锌钢线GB/T 3428—20122024-11-016GB/T 3594—2024渔船用电子设备电源技术要求GB/T 3594—20072024-11-017GB/T 3648—2024钨铁GB/T 3648—20132024-11-018GB/T 3880.2—2024一般工业用铝及铝合金板、带材 第2部分:力学性能GB/T 3880.2—20122024-11-019GB/T 3880.3—2024一般工业用铝及铝合金板、带材 第3部分:尺寸偏差GB/T 3880.3—20122024-11-0110GB/T 4074.1—2024绕组线试验方法 第1部分:一般规定GB/T 4074.1—20082024-11-0111GB/T 4074.2—2024绕组线试验方法 第2部分:尺寸测量GB/T 4074.2—20082024-11-0112GB/T 4074.3—2024绕组线试验方法 第3部分:机械性能GB/T 4074.3—20082024-11-0113GB/T 4074.4—2024绕组线试验方法 第4部分:化学性能GB/T 4074.4—20082024-11-0114GB/T 4074.5—2024绕组线试验方法 第5部分:电性能GB/T 4074.5—20082024-11-0115GB/T 4074.6—2024绕组线试验方法 第6部分:热性能GB/T 4074.6—20082024-11-0116GB/T 4103.18—2024铅及铅合金化学分析方法 第18部分:银、铜、铋、砷、锑、锡、锌、铁、镉、镍、镁、铝、钙、硒和碲含量的测定 电感耦合等离子体质谱法2024-11-0117GB/T 4137—2024稀土硅铁合金GB/T 4137—20152024-11-0118GB/T 4138—2024稀土镁硅铁合金GB/T 4138—20152024-11-0119GB/T 4330—2024农用挂车GB/T 4330—20032024-11-0120GB/T 4331—2024农用挂车 试验方法GB/T 4331—20032024-11-0121GB/T 4701.12—2024钛铁 钛含量的测定 二安替吡啉甲烷分光光度法2024-11-0122GB/T 4701.13—2024钛铁 硅、锰、磷、铬、铝、镁、铜、钒、镍含量的测定 电感耦合等离子体原子发射光谱法2024-11-0123GB/T 4797.3—2024环境条件分类 自然环境条件 第3部分:生物GB/T 4797.3—20142024-11-0124GB/T 5121.8—2024铜及铜合金化学分析方法 第8部分:氧、氮、氢含量的测定GB/T 5121.8—20082024-11-0125GB/T 5324—2024棉与涤纶混纺本色纱线GB/T 5324—20092024-11-0126GB/T 5484—2024石膏化学分析方法GB/T 5484—20122024-11-0127GB/T 5683—2024铬铁GB/T 5683—20082024-11-0128GB/T 5762—2024建材用石灰石、生石灰和熟石灰化学分析方法GB/T 5762—20122024-11-0129GB/T 6730.73—2024铁矿石 全铁含量的测定 EDTA光度滴定法GB/T 6730.73—20162024-11-0130GB/T 8122—2024内径指示表GB/T 8122—20042024-11-0131GB/T 8177—2024两点内径千分尺GB/T 8177—20042024-11-0132GB/T 8492—2024一般用途耐热钢及合金铸件GB/T 8492—20142024-04-2533GB/T 9058—2024奇数沟千分尺GB/T 9058—20042024-11-0134GB/T 9442—2024铸造用硅砂GB/T 9442—20102024-04-2535GB/T 10395.28—2024农业机械 安全 第28部分:移动式谷物螺旋输送机2024-11-0136GB/T 10932—2024螺纹千分尺GB/T 10932—20042024-11-0137GB/T 11066.12—2024金化学分析方法 第12 部分: 银、铜、铁、铅、铋、锑、镁、镍、锰、钯、铬、铂、铑、钛、锌、砷、锡、硅、钴、钙、钾、锂、钠、碲、钒、锆、镉、钼、铼、铝含量的测定 电感耦合等离子体原子发射光谱法2024-11-0138GB/T 11091—2024电缆用铜带箔材GB/T 11091—20142024-11-0139GB/T 11420—2024搪瓷制品和瓷釉 光泽度测试方法GB/T 11420—19892024-11-0140GB/T 12690.12—2024稀土金属及其氧化物中非稀土杂质 化学分析方法 第12部分:钍、铀量的测定 电感耦合等离子体质谱法GB/T 12690.12—20032024-11-0141GB/T 12705.2—2024纺织品 防钻绒性试验方法 第2部分:转箱法GB/T 12705.2—20092024-11-0142GB/T 12916—2024船用金属螺旋桨技术条件GB/T 12916—20102024-08-0143GB/T 12959—2024水泥水化热测定方法GB/T 12959—20082024-11-0144GB/T 13077—2024铝合金无缝气瓶定期检验与评定GB/T 13077—20042024-11-0145GB/T 13210—2024柑橘罐头质量通则GB/T 13210—20142024-11-0146GB/T 13539.6—2024低压熔断器 第6部分:太阳能光伏系统保护用熔断体的补充要求GB/T 13539.6—20132024-11-0147GB/T 13539.7—2024低压熔断器 第7部分:电池和电池系统保护用熔断体的补充要求2024-11-0148GB/T 13748.20—2024镁及镁合金化学分析方法 第20部分:元素含量的测定 电感耦合等离子体原子发射光谱法GB/T 13748.20—2009GB/T 13748.5—20052024-11-0149GB/T 13818—2024压铸锌合金GB/T 13818—20092024-04-2550GB/T 13929—2024水环真空泵和水环压缩机 试验方法GB/T 13929—20102024-08-0151GB/T 13930—2024水环真空泵和水环压缩机 气量测定方法GB/T 13930—20102024-08-0152GB/T 14048.11—2024低压开关设备和控制设备 第6-1部分:多功能电器 转换开关电器GB/T 14048.11—20162024-11-0153GB/T 14207—2024夹层结构或芯子吸水性试验方法GB/T 14207—20082024-11-0154GB/T 14264—2024半导体材料术语GB/T 14264—20092024-11-0155GB/T 14408—2024一般工程与结构用低合金钢铸件GB/T 14408—20142024-04-2556GB/T 14949.7—2024锰矿石 钠和钾含量的测定 火焰原子吸收光谱法GB/T 14949.7—19942024-11-0157GB/T 15115—2024压铸铝合金GB/T 15115—20092024-04-2558GB/T 15148—2024电力负荷管理系统技术规范GB/T 15148—20082024-11-0159GB/T 15579.1—2024弧焊设备 第1部分:焊接电源GB/T 15579.1—20132024-11-0160GB/T 16477.1—2024稀土硅铁合金及镁硅铁合金化学分析方法 第1部分:稀土总量、十五个稀土元素含量的测定GB/T 16477.1—20102024-04-2561GB/T 16659—2024煤中汞的测定方法GB/T 16659—20082024-11-0162GB/T 17215.301—2024电测量设备(交流) 特殊要求 第1部分:多功能电能表GB/T 17215.301—20072024-11-0163GB/T 17215.302—2024电测量设备(交流) 特殊要求 第2部分:静止式谐波有功电能表GB/T 17215.302—20132024-11-0164GB/T 17241.1—2024铸铁管法兰 第1部分:PN系列GB/T 17241.1—1998[部]GB/T 17241.2—1998[部]GB/T 17241.3—1998[部]GB/T 17241.4—1998[部]GB/T 17241.5—1998[部]GB/T 17241.6—2008[部]GB/T 17241.7—1998[部]GB/T 17241.1—1998[代完]GB/T 17241.2—1998[代完]GB/T 17241.3—1998[代完]GB/T 17241.4—1998[代完]GB/T 17241.5—1998[代完]GB/T 17241.6—2008[代完]GB/T 17241.7—1998[代完]2024-11-0165GB/T 17241.2—2024铸铁管法兰 第2部分:Class系列GB/T 17241.1—1998[部]GB/T 17241.2—1998[部]GB/T 17241.3—1998[部]GB/T 17241.4—1998[部]GB/T 17241.5—1998[部]GB/T 17241.6—2008[部]GB/T 17241.7—1998[部]GB/T 17241.1—1998[代完]GB/T 17241.2—1998[代完]GB/T 17241.3—1998[代完]GB/T 17241.4—1998[代完]GB/T 17241.5—1998[代完]GB/T 17241.6—2008[代完]GB/T 17241.7—1998[代完]2024-11-0166GB/T 17259—2024机动车用液化石油气钢瓶GB/T 17259—20092024-11-0167GB/T 17737.10—2024同轴通信电缆 第10部分:含氟聚合物绝缘半硬电缆分规范GB/T 17737.2—20002024-11-0168GB/T 17737.11—2024同轴通信电缆 第11部分:聚乙烯绝缘半硬电缆分规范2024-11-0169GB/T 17737.119—2024同轴通信电缆 第1-119部分:电气试验方法 同轴电缆及电缆组件的射频功率2024-11-0170GB/T 17737.9—2024同轴通信电缆 第9部分:柔软射频同轴电缆分规范2024-11-0171GB/T 17937—2024电工用铝包钢线GB/T 17937—20092024-11-0172GB/T 18153—2024机械安全 用于确定可接触热表面温度限值的安全数据GB/T 18153—20002024-04-2573GB/T 18222.2—2024小艇 用操纵速度确定最大推进额定功率 第2部分:艇体长度在8m~24m之间的艇2025-05-0174GB/T 18336.1—2024网络安全技术 信息技术安全评估准则 第1部分:简介和一般模型GB/T 18336.1—20152024-11-0175GB/T 18336.2—2024网络安全技术 信息技术安全评估准则 第2部分:安全功能组件GB/T 18336.2—20152024-11-0176GB/T 18336.3—2024网络安全技术 信息技术安全评估准则 第3部分:安全保障组件GB/T 18336.3—2015[部]2024-11-0177GB/T 18336.4—2024网络安全技术 信息技术安全评估准则 第4部分:评估方法和活动的规范框架GB/T 18336.3—2015[部]2024-11-0178GB/T 18336.5—2024网络安全技术 信息技术安全评估准则 第5部分:预定义的安全要求包GB/T 18336.3—2015[部]GB/T 18336.3—2015[代完]2024-11-0179GB/T 18891—2024三相交流系统相位差的钟时序数标识GB/T 18891—20092024-11-0180GB/T 18910.11—2024液晶显示器件 第1-1部分:总规范GB/T 18910.1—20122024-08-0181GB/T 18910.12—2024液晶显示器件 第1-2部分:术语和符号GB/T 18910.11—20122024-08-0182GB/T 18910.21—2024液晶显示器件 第2-1部分:无源矩阵单色液晶显示模块 空白详细规范GB/T 18910.21—20072024-04-2583GB/T 18910.2—2024液晶显示器件 第2部分:液晶显示模块 分规范GB/T 18910.2—20032024-04-2584GB/T 18910.22—2024液晶显示器件 第2-2部分:彩色矩阵液晶显示模块 空白详细规范GB/T 18910.22—20082024-04-2585GB/T 18910.3—2024液晶显示器件 第3部分:液晶显示屏 分规范GB/T 18910.3—20082024-08-0186GB/T 18910.63—2024液晶显示器件 第6-3部分:液晶显示模块测试方法 有源矩阵液晶显示模块运动伪像2024-08-0187GB/T 19318—2024小艇 远程液压操舵系统GB/T 19318—20032025-05-0188GB/T 19533—2024汽车用压缩天然气钢瓶定期检验与评定GB/T 19533—20042024-11-0189GB/T 19544—2024脊柱矫形器的分类及通用技术条件GB/T 19544—20042024-08-0190GB/T 19960—2024风能发电系统 风力发电机组通用技术条件和试验方法GB/T 19960.1—2005,GB/T 19960.2—20052024-11-0191GB/T 20183.1—2024植物保护机械 喷雾设备 第1部分:喷雾机喷头试验方法GB/T 20183.1—20062024-11-0192GB/T 20183.2—2024植物保护机械 喷雾设备 第2部分:评价液力喷雾机水平横向分布的试验方法GB/T 20183.2—20062024-11-0193GB/T 20183.3—2024植物保护机械 喷雾设备 第3部分:评价单位面积施药液量调节系统性能的试验方法GB/T 20183.3—20062024-11-0194GB/T 20340.1—2024农用挂车和被牵引设备 牵引杆千斤顶 第1部分:设计安全、试验方法和验收条件GB/T 20340—2006[部]2024-11-0195GB/T 20340.2—2024农用挂车和被牵引设备 牵引杆千斤顶 第2部分:应用安全、试验方法和验收条件GB/T 20340—2006[部]GB/T 20340—2006[代完]2024-11-0196GB/T 20790—2024半喂入联合收割机 技术条件GB/T 20790—20062024-11-0197GB/T 20871.12—2024有机发光二极管显示器件 第1-2部分:术语与文字符号GB/T 20871.2—20072024-08-0198GB/T 20871.61—2024有机发光二极管显示器件 第6-1部分:光学和光电参数测试方法GB/T 20871.61—20132024-08-0199GB/T 21832.3—2024奥氏体-铁素体型双相不锈钢焊接钢管 第3部分:油气输送用管2024-11-01100GB/T 21833.3—2024奥氏体-铁素体型双相不锈钢无缝钢管 第3部分:油气输送用管2024-11-01101GB/T 21836—2024四氧化三锰GB/T 21836—20082024-11-01102GB/T 21956.1—2024农林拖拉机 窄轮距轮式拖拉机翻滚防护装置 第1部分:前置式GB/T 21956.1—2015GB/T 21956.2—20152024-11-01103GB/T 21956.2—2024农林拖拉机 窄轮距轮式拖拉机翻滚防护装置 第2部分:后置式GB/T 21956.3—2015,GB/T 21956.4—20092024-11-01104GB/T 23561.11—2024煤和岩石物理力学性质测定方法 第11部分:煤和岩石抗剪强度测定方法GB/T 23561.11—20102024-08-01105GB/T 23561.1—2024煤和岩石物理力学性质测定方法 第1部分:采样一般规定GB/T 23561.1—20092024-08-01106GB/T 24675.1—2024保护性耕作机械 第1部分:浅松机GB/T 24675.1—20092024-11-01107GB/T 24675.2—2024保护性耕作机械 第2部分:深松机GB/T 24675.2—20092024-11-01108GB/T 25049—2024镍铁GB/T 25049—20102024-11-01109GB/T 25390—2024风能发电系统 风力发电机组球墨铸铁件GB/T 25390—20102024-11-01110GB/T 25392—2024农业工程 电气和电子设备 耐环境试验GB/T 25392—20102024-11-01111GB/T 25632—2024增材制造机床软件数据接口格式GB/T 25632—20102024-11-01112GB/T 26027—2024高损伤容限铝合金型材GB/T 26027—20102024-11-01113GB/T 26080—2024塔机用冷弯矩形管GB/T 26080—20102024-11-01114GB/T 26114—2024液体过滤用过滤器 通用技术规范GB/T 26114—20102024-11-01115GB/T 26527—2024有机硅消泡剂GB/T 26527—20112024-11-01116GB/T 26600—2024显微镜 光学显微术用浸液GB/T 26600—20112024-11-01117GB/T 27692—2024高炉用铁球团矿GB/T 27692—20112024-11-01118GB/T 2820.9—2024往复式内燃机驱动的交流发电机组 第9部分:机械振动的测量和评价GB/T 2820.9—20022024-11-01119GB/T 28629—2024水泥熟料中游离二氧化硅化学分析方法GB/T 28629—20122024-11-01120GB/T 28780—2024机械安全 机器用整体照明系统GB/T 28780—20122024-11-01121GB/T 28884—2024大容积气瓶用无缝钢管GB/T 28884—20122024-11-01122GB/T 2900.17—2024电工术语 量度继电器和保护设备GB/T 2900.17—20092024-04-25123GB/T 2910.11—2024纺织品 定量化学分析 第11部分:某些纤维素纤维与某些其他纤维的混合物(硫酸法)GB/T 2910.11—20092026-05-01124GB/T 29284—2024聚乳酸GB/T 29284—20122024-11-01125GB/T 29324—2024架空导线用碳纤维增强复合材料芯GB/T 29324—20122024-11-01126GB/T 29335—2024食品容器用爪式旋开盖质量通则GB/T 29335—20122024-11-01127GB/T 29603—2024食品容器用镀锡或镀铬薄钢板全开式易开盖质量通则GB/T 29603—20132024-11-01128GB/T 30117.1—2024非相干光产品的光生物安全 第1部分:通用要求2024-11-01129GB/T 30177.2—2024过滤机性能测试方法 第2部分:真空过滤机2024-11-01130GB/T 30270—2024网络安全技术 信息技术安全评估方法GB/T 30270—20132024-11-01131GB/T 31211.1—2024无损检测 超声导波检测 第1部分:总则GB/T 31211—20142024-04-25132GB/T 31211.2—2024无损检测 超声导波检测 第2部分:磁致伸缩法GB/T 28704—20122024-04-25133GB/T 31268—2024限制商品过度包装 通则GB/T 31268—20142024-11-01134GB/T 32270—2024压力管道规范 动力管道GB/T 32270—20152024-04-25135GB/T 32285—2024热轧H型钢桩GB/T 32285—20152024-11-01136GB/T 32590.1—2024轨道交通 市域铁路和城轨交通运输管理和指令/控制系统 第1部分:系统原理和基本概念GB/T 32590.1—20162024-11-01137GB/T 32590.2—2024轨道交通 市域铁路和城轨交通运输管理和指令/控制系统 第2部分:功能需求规范2024-11-01138GB/T 32590.3—2024轨道交通 市域铁路和城轨交通运输管理和指令/控制系统 第3部分:系统需求规范2024-11-01139GB/T 33352—2024电子电气产品中限用物质筛选应用通则 X射线荧光光谱法GB/T 33352—20162024-08-01140GB/T 33423—2024沿海及海上风电机组腐蚀控制技术规范GB/T 33423—20162024-11-01141GB/T 33488.5—2024化工用塑料焊接制承压设备检验方法 第5部分:衍射时差法超声检测2024-11-01142GB/T 33563—2024网络安全技术 无线局域网客户端安全技术要求GB/T 33563—20172024-11-01143GB/T 33565—2024网络安全技术 无线局域网接入系统安全技术要求GB/T 33565—20172024-11-01144GB/T 34549—2024卫生洁具 智能坐便器GB/T 34549—20172024-11-01145GB/T 34924—2024低压电气设备安全风险评估和风险降低指南GB/T 34924—20172024-11-01146GB/T 36450.3—2024信息技术 存储管理 第3部分:通用轮廓2024-11-01147GB/T 37820.1—2024船舶与海上技术 船舶安全标志、防火控制图标志、安全提示和安全标记的设计、位置和使用 第1部分:设计原则GB/T 37820.—20192024-08-01148GB/T 38001.51—2024柔性显示器件 第5-1部分:光学性能测试方法2024-08-01149GB/T 38001.52—2024柔性显示器件 第5-2部分:非便携式曲面显示器件光学性能测试方法2024-08-01150GB/T 38001.53—2024柔性显示器件 第5-3部分:目视评价方法2024-08-01151GB/T 38216.5—2024钢渣 氧化锰含量的测定 火焰原子吸收光谱法2024-11-01152GB/T 40096.6—2024就地化继电保护装置技术规范 第6部分:母线保护2024-11-01153GB/T 40096.7—2024就地化继电保护装置技术规范 第7部分:变压器保护2024-11-01154GB/T 40344.3—2024真空技术 真空泵性能测量标准方法 第3部分:机械增压泵的特定参数2024-04-25155GB/T 40565.1—2024液压传动连接 快换接头 第1部分:通用型2024-11-01156GB/T 42126.5—2024基于蜂窝网络的工业无线通信规范 第5部分:应用要求2024-11-01157GB/T 42151.4—2024电力自动化通信网络和系统 第4部分:系统和项目管理2024-11-01158GB/T 42513.6—2024镍合金化学分析方法 第6部分:钼含量的测定 电感耦合等离子体原子发射光谱法2024-11-01159GB/T 42513.7—2024镍合金化学分析方法 第7部分:钴、铬、铜、铁和锰含量的测定 火焰原子吸收光谱法2024-11-01160GB/T 43130.2—2024液化天然气装置和设备 浮式液化天然气装置的设计 第2部分:浮式储存和再气化装置的特殊要求2024-08-01161GB/T 43259.556—2024能量管理系统应用程序接口(EMS-API)第556部分:基于CIM图形交换格式(CIM/G)2024-11-01162GB/T 43590.504—2024激光显示器件 第5-4部分:彩色散斑的光学测试方法2024-08-01163GB/T 43694—2024网络安全技术 证书应用综合服务接口规范2024-11-01164GB/T 43696—2024网络安全技术 零信任参考体系架构2024-11-01165GB/T 43698—2024网络安全技术 软件供应链安全要求2024-11-01166GB/T 43739—2024数据安全技术 应用商店的移动互联网应用程序(App)个人信息处理规范性审核与管理指南2024-11-01167GB/T 43741—2024网络安全技术 网络安全众测服务要求2024-11-01168GB/T 43746.1—2024钻孔和基础施工设备安全要求 第1部分:通用要求2024-11-01169GB/T 43746.2—2024钻孔和基础施工设备安全要求 第2部分:建筑施工用移动式钻机2024-11-01170GB/T 43746.3—2024钻孔和基础施工设备安全要求 第3部分:桩和其他基础施工设备2024-11-01171GB/T 43779—2024网络安全技术 基于密码令牌的主叫用户可信身份鉴别技术规范2024-11-01172GB/T 43843—2024网络协同制造平台数据服务要求2024-11-01173GB/T 43844—2024IPv6地址分配和编码规则 接口标识符2024-11-01174GB/T 43845—2024基于扫描氮-空位探针的微弱静磁场成像测量方法2024-11-01175GB/T 43846.1—2024显微镜 显微镜物镜的命名 第1部分:像场平面度/平场2024-11-01176GB/T 43846.2—2024显微镜 显微镜物镜的命名 第2部分:色差校正2024-11-01177GB/T 43846.3—2024显微镜 显微镜物镜的命名 第3部分:光谱透射率2024-11-01178GB/T 43847—2024光学和光子学 光谱波段2024-11-01179GB/T 43848—2024网络安全技术 软件产品开源代码安全评价方法2024-11-01180GB/T 43849—2024水下机器人整机及零部件基本环境试验方法 水静压力试验方法2024-04-25181GB/T 43850—2024面向装备制造业的研发设计资源分类及编码2024-11-01182GB/T 43851—2024制造物流系统互联互通通用要求2024-11-01183GB/T 43853—2024激光修复层高温摩擦磨损性能试验 球-盘法2024-04-25184GB/T 43855—2024衣物洗涤质量要求2024-04-25185GB/T 43856—2024印刷技术 印刷工作流程的颜色一致性2024-04-25186GB/T 43857—2024教学设施安全和管理要求2024-08-01187GB/T 43858—2024陆地生态系统生物长期监测规范2024-04-25188GB/T 43859—2024水分活度仪性能测定方法2024-04-25189GB/T 43860.1210—2024触摸和交互显示 第12-10部分:触摸显示测试方法 触摸和电性能2024-04-25190GB/T 43860.1220—2024触摸和交互显示 第12-20 部分:触摸显示测试方法 多点触摸性能2024-04-25191GB/T 43860.12—2024触摸和交互显示 第1-2部分:术语和文字符号2024-04-25192GB/T 43861—2024微波等离子体原子发射光谱方法通则2024-04-25193GB/T 43862—2024智能电视交互应用接口技术要求2024-11-01194GB/T 43863—2024大规模集成电路(LSI) 封装 印制电路板共通设计结构2024-08-01195GB/T 43864.12—2024显示光源组件 第1-2部分:术语和文字符号2024-08-01196GB/T 43865—2024直接进样测汞分析方法通则2024-04-25197GB/T 43866—2024企业能源计量器具配备率检查方法2024-11-01198GB/T 43867—2024电气运输设备 术语和分类2024-11-01199GB/T 43868—2024电化学储能电站启动验收规程2024-11-01200GB/T 43869—2024船舶交通管理系统监视雷达通用技术要求2024-11-01201GB/T 43870.1—2024磁性材料居里温度的测量方法 第1部分:永磁材料2024-11-01202GB/T 43870.2—2024磁性材料居里温度的测量方法 第2部分:软磁材料2024-11-01203GB/T 43872—2024水泥氯离子固化率检测方法2024-11-01204GB/T 43873—2024超薄玻璃退火上下限温度试验方法2024-11-01205GB/T 43874—2024玻璃材料及制品压缩性能试验方法2024-11-01206GB/T 43875—2024水泥原材料中总铬的测定方法2024-11-01207GB/T 43876—2024水泥净浆黏度测定方法2024-11-01208GB/T 43877—2024铁矿石 同化性能测定方法2024-11-01209GB/T 43878—2024旋挖钻机截齿2024-11-01210GB/T 43881—2024低膨胀玻璃线热膨胀系数试验方法 激光干涉法2024-11-01211GB/T 43882—2024净味沥青混凝土2024-11-01212GB/T 43883—2024微束分析 分析电子显微术 金属中纳米颗粒数密度的测定方法2024-11-01213GB/T 43884—2024金属覆盖层 钢铁制件的锌扩散层-渗锌 技术要求2024-11-01214GB/T 43885—2024碳化硅外延片2024-11-01215GB/T 43886—2024影像材料 已加工彩色照片 热稳定性测量方法2024-11-01216GB/T 43887—2024核级柔性石墨板材2024-11-01217GB/T 43888—2024钢轨超声检测方法2024-11-01218GB/T 43889—2024微束分析 电子探针显微分析仪(EPMA)质量保证程序实施导则2024-11-01219GB/T 43891—2024非金属化工设备 不透性石墨换热器传热系数和流阻性能测试方法2024-11-01220GB/T 43892—2024石英玻璃光谱透射比试验方法2024-11-01221GB/T 43893—2024装配式钢结构建筑用热轧型钢2024-11-01222GB/T 43894.1—2024半导体晶片近边缘几何形态评价 第1部分:高度径向二阶导数法(ZDD)2024-11-01223GB/T 43895—2024增材制造 材料 模具钢粉2024-11-01224GB/T 43896—2024金属材料 超高周疲劳 超声疲劳试验方法2024-11-01225GB/T 43897—2024铸造高温合金 母合金 单晶2024-11-01226GB/T 43898—2024工程机械液压缸用精密无缝钢管2024-11-01227GB/T 43899—2024生铁 多元素含量的测定 火花放电原子发射光谱法(常规法)2024-11-01228GB/T 43900—2024钢产品无损检测 轴类构件扭转残余应力分布状态超声检测方法2024-11-01229GB/T 43901—2024镍铁 砷、锡、锑、铅和铋含量 电感耦合等离子体质谱法(ICP-MS)2024-11-01230GB/T 43902—2024绿色制造 制造企业绿色供应链管理 实施指南2024-08-01231GB/T 43903—2024绿色制造 制造企业绿色供应链管理 信息追溯及披露要求2024-08-01232GB/T 43904—2024风能发电系统 风力发电机组运行评价指标体系2024-11-01233GB/T 43905.1—2024焊接及相关工艺中烟尘和气体取样的实验室方法 第1部分:电弧焊中烟尘排放速率的测定和分析用烟尘的收集2024-11-01234GB/T 43905.2—2024焊接及相关工艺中烟尘和气体取样的实验室方法 第2部分:电弧焊、切割及气刨中一氧化碳、二氧化碳、一氧化氮、二氧化氮排放速率的测定2024-11-01235GB/T 43905.3—2024焊接及相关工艺中烟尘和气体取样的实验室方法 第3部分:电弧焊中臭氧排放速率的测定2024-11-01236GB/T 43905.4—2024焊接及相关工艺中烟尘和气体取样的实验室方法 第4部分:焊接材料焊接烟尘排放限值2024-11-01237GB/T 43905.5—2024焊接及相关工艺中烟尘和气体取样的实验室方法 第5部分:基于热解-气相色谱-质谱法的焊接或切割中有机材料热降解物的识别2024-11-01238GB/T 43905.6—2024焊接及相关工艺中烟尘和气体取样的实验室方法 第6部分:电阻点焊中烟尘和气体的定量化测定2024-11-01239GB/T 43906—2024金属材料硬钎焊质量要求2024-11-01240GB/T 43907.1—2024农林拖拉机和机械 拖拉机与机具间的摄像头接口 第1部分:模拟摄像头接口2024-11-01241GB/T 43908—2024水肥一体化设备2024-11-01242GB/T 43909—2024叉车属具 安全要求2024-11-01243GB/T 43910—2024物流仓储设备 术语2024-11-01244GB/T 43911—2024锅炉热工性能试验不确定度的评定方法2024-11-01245GB/T 43912—2024铸造机械 再制造 通用技术规范2024-11-01246GB/T 43913—2024钢制异径短节2024-11-01247GB/T 43914—2024绿色制造 评价指标2024-08-01248GB/T 43915—2024纳米几何量标准样板测试方法2024-11-01249GB/T 43916—2024真空技术 真空计 电容薄膜真空计的规范、校准和测量不确定度2024-04-25250GB/T 43917.1—2024焊接烟尘捕集和分离设备 第1部分:一般要求2024-11-01251GB/T 43917.2—2024焊接烟尘捕集和分离设备 第2部分:分离效率的测试和标记要求2024-11-01252GB/T 43917.3—2024焊接烟尘捕集和分离设备 第3部分:焊枪上烟尘吸气装置捕集效率的测定2024-11-01253GB/T 43917.4—2024焊接烟尘捕集和分离设备 第4部分:捕集装置最小风量的测定2024-11-01254GB/T 43918—2024交流标准电能表GB/T 17215.701—20112024-11-01255GB/T 43919—2024民用航空锻件数字化生产车间集成要求2024-11-01256GB/T 43920—2024压铸用铝液集中熔炼配送通用技术规范2024-04-25257GB/T 43921—2024无损检测 超声检测 全矩阵采集/全聚焦技术(FMC/TFM)2024-04-25258GB/T 43922—2024在役聚乙烯燃气管道检验与评价2024-04-25259GB/T 43923—2024工业车辆 操作手册2024-11-01260GB/T 43924.1—2024航空航天 MJ螺纹 第1部分:通用要求2024-08-01261GB/T 43924.2—2024航空航天 MJ螺纹 第2部分:螺栓和螺母螺纹的极限尺寸2024-08-01262GB/T 43924.3—2024航空航天 MJ螺纹 第3部分:流体系统管路件螺纹的极限尺寸2024-08-01263GB/T 43925—2024套管和油管全尺寸拉伸应力腐蚀试验方法2024-08-01264GB/T 43926—2024油气输送管道事故后状态评估技术规范2024-08-01265GB/T 43927—2024航天器用锂离子蓄电池组安全设计与控制要求2024-08-01266GB/T 43928—2024宇航用商业现货(COTS)器件保证指南2024-08-01267GB/T 43929—2024空间用纤维光学器件测试指南2024-08-01268GB/T 43930—2024宇航用电磁继电器通用规范2024-08-01269GB/T 43932—2024岩溶流域碳循环监测及增汇评价指南2024-08-01270GB/T 43933—2024金属矿土地复垦与生态修复技术规范2024-08-01271GB/T 43934—2024煤矿土地复垦与生态修复技术规范2024-08-01272GB/T 43935—2024矿山土地复垦与生态修复监测评价技术规范2024-08-01273GB/T 43936—2024石油天然气项目土地复垦与生态修复技术规范2024-08-01274GB/T 43937—2024岩溶区水土资源开发利用规范2024-08-01275GB/T 43938.1—2024碳纤维增强复合材料薄壁管件力学性能试验方法 第1部分:拉伸试验2024-08-01276GB/T 43938.2—2024碳纤维增强复合材料薄壁管件力学性能试验方法 第2部分:压缩试验2024-08-01277GB/T 43939—2024宇航用石英挠性加速度计伺服电路通用测试方法2024-08-01278GB/T 43940—20244Mb/s数字式时分制指令/响应型多路传输数据总线测试方法2024-08-01279GB/T 43941.1—2024星地数据传输中高速调制解调器技术要求和测试方法 第1部分:调制器2024-08-01280GB/T 43942—2024智能船舶风险评估方法2024-11-01281GB/T 43943—2024船舶环境噪声2024-08-01282GB/T 43944—2024船舶内装材料计权隔声指数测量方法2024-11-01283GB/T 43945—2024基于统计能量分析的船舶舱室噪声预报2024-08-01284GB/T 43947—2024低速线控底盘通用技术要求2024-11-01285GB/T 43948—2024小艇 操舵装置 缆索滑轮传动系统2025-05-01286GB/T 43949—2024海洋移动钻井平台钻井系统 配置和技术要求2024-11-01287GB/T 43950—2024工业浓盐水回用技术导则2024-08-01288GB/T 43951—2024食品容器用覆膜铁、覆膜铝质量通则2024-11-01289GB/T 43953—2024全生物降解聚乙醇酸(PGA)2024-11-01290GB/T 43954—2024重瓣红玫瑰精油2024-11-01291GB/T 43955—2024棉及化纤纯纺、混纺纱线检验、标志与包装2024-11-01292GB/T 43956—2024中尺度全球地表覆盖制图数据产品规范2024-08-01293GB/T 43957—2024林草物联网 面向视频的无线传感器网络媒体访问控制和物理层协议2024-04-25294GB/T 43958—2024林草物联网 面向视频的无线传感器网络技术要求2024-04-25295GB/T 43959—2024锅炉火焰检测系统技术规范2024-11-01296GB/T 43960—2024云制造服务平台开放接口要求2024-11-01297GB/T 43961—2024制造系统诊断维护技术与应用集成通用要求2024-11-01298GB/T 43962.1—2024动力电池数字化车间集成 第1部分:通用要求2024-11-01299GB/T 43964—2024家用和类似用途电自动控制器空中下载(OTA)技术要求2024-11-01300GB/T 43965—2024电子级正硅酸乙酯2024-11-01301GB/T 43966—2024高效液相色谱-四极杆电感耦合等离子体质谱联用法通则2024-04-25302GB/T 43967—2024空间环境 宇航用半导体器件单粒子效应脉冲激光试验方法2024-04-25303GB/T 43968—2024高效液相色谱-原子荧光光谱仪联用分析方法通则2024-11-01304GB/T 43969—2024智能语音控制器通用安全技术要求2024-11-01305GB/T 43970—2024化学蒸气发生-原子荧光光谱分析方法通则2024-11-01306GB/T 43971—2024遥感器定标用积分球光源测试规范2024-11-01307GB/T 43972—2024集成电路封装设备远程运维 状态监测2024-11-01308GB/T 43974—2024载物电气运输设备通用规范2024-11-01309GB/T 43975—2024船舶交通管理系统数据综合处理器技术规范2024-11-01310GB/T 43976—2024电子气体 四氟甲烷2024-11-01311GB/T 43977—2024电子气体 八氟环丁烷2024-11-01312GB/T 43978—2024室内LED显示屏光舒适度评价要求2024-04-25313GB/T 43979—2024室内LED显示屏光舒适度评价方法2024-04-25314GB/T 43980—2024口译服务 医疗口译要求2024-11-01315GB/T 43981—2024基层减灾能力评估技术规范2024-11-01316GB/T 43991—2024城市隧道运维服务规范2024-11-01317GB/T 43992—2024城市光环境建设服务质量评价规范2024-11-01318GB/T 43993—2024城市公共设施 电子围网系统 运行规范2024-11-01319GB/T 43994—2024粮食安全储存水分2024-11-01320GB/T 43997.1—2024地表温度热红外遥感反演 第1部分:单通道法2024-11-01321GB/T 43997.2—2024地表温度热红外遥感反演 第2部分:分裂窗法2024-11-01322GB/T 43999—2024应急呼吸道传染病患者转运设备技术要求2024-11-01323GB/T 44000—2024空间环境 材料空间环境效应地面模拟试验装置通用要求2024-04-25324GB/T 44001—2024空间环境 地磁场参考模型2024-04-25325GB/T 44003—2024力学性能测量 REBCO涂层导体(镀铜)脱层强度测试方法2024-11-01326GB/T 44004—2024纳米技术 有机晶体管和材料表征试验方法2024-11-01327GB/T 44006—2024红外图像温度表示规则 RGB法2024-11-01328GB/T 44007—2024纳米技术 纳米多孔材料储氢量测定 气体吸附法2024-08-01329GB/T 44008—2024应急医用模块化集成系统通用技术要求2024-08-01330GB/T 44009—2024绿色产品评价 染料2024-11-01331GB/T 44010—2024救灾帐篷 通用技术要求2024-11-01332GB/T 44011.1—2024自然灾害综合风险评估技术规范 第1部分:房屋建筑2024-11-01333GB/T 44012—2024应急避难场所 术语2024-04-25334GB/T 44013—2024应急避难场所 分级及分类2024-04-25335GB/T 44014—2024应急避难场所 标志2024-04-25336GB/T 44020—2024信息技术 计算机图形图像处理和环境数据表示 混合与增强现实中实时人物肖像和实体的表示2024-11-01337GB/T 44021.1—2024音视频及相关设备 功耗测量 第1部分:总则2024-11-01338GB/T 44021.2—2024音视频及相关设备 功耗测量 第2部分:测试信号和媒介2024-11-01339GB/T 44021.3—2024音视频及相关设备 功耗测量 第3部分:电视机2024-11-01340GB/T 44021.4—2024音视频及相关设备 功耗测量 第4部分:录像设备2024-11-01341GB/T 44021.5—2024音视频及相关设备 功耗测量 第5部分:机顶盒(STB)2024-11-01342GB/T 44021.6—2024音视频及相关设备 功耗测量 第6部分:音频设备2024-11-01343GB/Z 3480.4—2024直齿轮和斜齿轮承载能力计算 第4部分:齿面断裂承载能力计算2024-11-01344GB/Z 3480.22—2024直齿轮和斜齿轮承载能力计算 第22部分:微点蚀承载能力计算2024-11-01345GB/Z 14048.24—2024低压开关设备和控制设备 第7-5部分:辅助器件 铝导体的接线端子排2024-11-01346GB/Z 29014.3—2024切削刀具数据表达与交换 第3部分:刀具项目参考字典2024-11-01347GB/Z 42151.77—2024电力自动化通信网络和系统 第7-7部分:用于工具的IEC 61850相关数据模型机器可处理格式2024-04-25348GB/Z 43963—2024确定额定电压在交流1000V以上至2000V,直流1500V以上至3000V间设备的电气间隙、爬电距离的数值以及对固体绝缘要求的指南2024-11-01349GB/Z 43973—2024非介入式负荷监测(NILM)系统用感知装置2024-11-01350GB/Z 43996.2—2024微细气泡技术 农业应用 第2部分:评价大麦种子发芽促进作用的测试方法2024-11-01351GB/Z 43998—2024纳米技术 混合粉尘制造环境空气中纳米级炭黑和无定形二氧化硅浓度的测量方法2024-11-01352GB/Z 44002—2024空间环境 太阳能量质子注量和峰值通量的确定方法2024-04-25353GB/Z 44005.1—2024纳米技术 黏土纳米材料 第1部分:层状黏土的特性及测量方法2024-11-01二、国家标准修改单序列国家标准编号国 家 标 准 名 称代替标准号实施日期1GB/T 609—2018化学试剂 总氮量测定通用方法 《第1号修改单》GB/T 609—20062024-04-253GB/T 18369—2022玻璃纤维无捻粗纱 《第1号修改单》GB/T 18369—20082024-08-014GB/T 19624—2019在用含缺陷压力容器安全评定 《第1号修改单》GB/T 19624—20042024-04-25
  • 最新修订的硬质合金国家标准将于9月1日正式实施
    根据中华人民共和国国家标准批准发布2008年第5期公告,以下一批最新修订的硬质合金标准将于9月1日正式实施。标准号      标准名称      被代替标准      批准日期      修订日期      实施日期         GB/T 4295-2008      碳化钨粉      GB/T 4295-1993      1984-03-28      2008-03-31      2008-09-01         GB/T 5124.1-2008      硬质合金化学分析方法 总碳量的测定 重量法      GB/T 5124.1-1985      1985-04-24      2008-03-31      2008-09-01         GB/T 5124.2-2008      硬质合金化学分析方法 不溶(游离)碳量的测定 重量法      GB/T 5124.2-1985      1985-04-24      2008-03-31      2008-09-01         GB/T 6150.1-2008      钨精矿化学分析方法 三氧化钨量的测定 钨酸铵灼烧重量法      GB/T 6150.1-1985      1985-06-21      2008-03-31      2008-09-01         GB/T 6150.10-2008      钨精矿化学分析方法 铅量的测定 火焰原子吸收光谱法      GB/T 6150.12-1985      1985-06-21      2008-03-31      2008-09-01         GB/T 6150.11-2008      钨精矿化学分析方法 锌量的测定 火焰原子吸收光谱法      GB/T 6150.13-1985      1985-06-21      2008-03-31      2008-09-01         GB/T 6150.14-2008      钨精矿化学分析方法 锰量的测定 硫酸亚铁铵容量法和火焰原子吸收光谱法      GB/T 6150.16-1985      1985-06-21      2008-03-31      2008-09-01         GB/T 6150.15-2008      钨精矿化学分析方法 铋量的测定 火焰原子吸收光谱法      GB/T 6150.17-1985      1985-06-21      2008-03-31      2008-09-01         GB/T 6150.4-2008      钨精矿化学分析方法 硫量的测定 高频红外吸收法      GB/T 6150.5-1985      1985-06-21      2008-03-31      2008-09-01         GB/T 6150.5-2008      钨精矿化学分析方法 钙量的测定 EDTA容量法和火焰原子吸收光谱法      GB/T 6150.6-1985,GB/T 6150.7-1985      1985-06-21      2008-03-31      2008-09-01         GB/T 6150.6-2008      钨精矿化学分析方法 湿存水量的测定 重量法      GB/T 6150.8-1985      1985-06-21      2008-03-31      2008-09-01         GB/T 7160-2008      羰基镍粉      GB/T 7160-1987      1987-01-07      2008-03-31      2008-09-01         GB/T 13390-2008      金属粉末比表面积的测定 氮吸附法      GB/T 13390-1992      1992-02-19      2008-03-31      2008-09-01
  • 手持式合金分析仪测定常用不锈钢304和316
    不锈钢指耐空气、蒸汽、水等弱腐蚀介质和酸、碱、盐等化学浸蚀性介质腐蚀的钢,又称不锈耐酸钢。不锈钢中不同的合金成分含量对不锈钢的耐蚀性、耐高温氧化性能和机械强度具有很大的影响。不锈钢基本合金元素有Fe、Cr、Ni、Mn、Mo、Cu、Nb、 Ti、 Si等元素,不同的配比成分用以满足不同用途对不锈钢组织和性能的要求。 以我们生产生活中常用的不锈钢304和316为例,介绍手持式合金分析仪在不锈钢牌号快速检测方面的应用。304不锈钢即18/8不锈钢,GB 牌号为0Cr18Ni9 316 不锈钢也是一-种得到较广泛应用的钢种,GB牌号为0Cr17Ni12Mo2,主要用于食品工业和外科手术器材,添加钼元素使其获得一种抗腐蚀的特殊结构。316中含有更高的镍和钼合金成分,导致316的价格比304高,在实际贸易时,不同种类的钢种难以快速区分,可能对用户带来重大损失,也会给带来一定的产品质量甚至安全隐患。在实际生产生活中由于316与304不锈钢在外观上不容易区分,常规的分析方法又比较繁琐耗时。手持式合金分析仪是一种专门用于现场的便携式光谱仪,能够快速、无损、准确地给出不锈钢材料的成分、含量和牌号信息,很适合用于现场大量原材料和产品的筛查和复检。 仪器简介赛谱司手持式合金分析仪x50是具有很高速元素分析能力的手持式合金分析仪,可满足多种金属基体材料以及土壤,塑胶,矿石等多种复杂材料的光谱化学成分分析需要。以其快速的分析速度,媲美实验室级的分析精度和便于操作的特点为同类型手持式光谱分析仪设立了新的标准。在大多数应用场合,如金属牌号鉴别,x50可以在区区两秒的分析时间内给出金属牌号以及实验室级的材料化学组成分析结果。而对于复杂基体分析如环境监测分析,x50无需复杂的样品前处理,即可取得同类设备无法取得的低的元素检测下限。 制样取样方法 该仪器对样品要求不高,可以直接对准样品表面进行测定。 测试结果 准确度(选取6块不锈钢样品进行准确度测试) 精密度(选取304和316两种牌号的不锈钢标样,进行多次重复测量(n=10),单次测量6s) 结论手持式合金分析仪x50能在2s内对不锈钢材料进行快速无损判别,方便简捷,精密度好,对样品制备要求较低,甚至可以不用样品前处理。本文中对304和316不锈钢的测试也说明了该仪器在实际鉴别中的应用效果是很好的,而且该方法与传统方法相比,省去了复杂的前处理过程,分析速度快,对样品表面无损,检测效率高,成本低,适合大量样品实时快速鉴别,以及原材料快速复检的生产需要。
  • 美国发布首套航天材料增材合金粉末标准
    p style="text-indent: 2em "近日, SAE(国际自动机工程师学会)旗下的AMS-AM(航空航天材料增材制造委员会)发布了行业首套航天材料规范,四项技术标准主要与激光粉末熔合(LPBF)技术及3D打印合金材料相关。/pp style="text-indent: 2em "此次规范的发布源于美国的联邦航空管理局(FAA)在2015年提出的,成立标准委员会并制定相关文件,协助发展增材制造并指导认证用于生产零部件的材料,这也包括了几乎不能有任何质量问题的大型商用飞机。此次发布规范的四项粉末标准具体是,从AMS7000到AMS7003,包括LPBF法生产镍合金部件的耐腐蚀耐热性能,应力消除,热等静压和固溶退火,还有金属粉末的组成和生产工艺要求,激光熔接工艺几项。/pp style="text-indent: 2em "该委员会还将继续制定包括金属和其他聚合物的增材规范,毫无疑问行业门槛已经开始有了,并且将不断提升。/pp style="text-indent: 2em "SAE总部位于美国宾州,由航空航天、汽车和商用车辆行业的工程师和相关技术专家组成的,前身即美国汽车工程师学会。/p
  • XRD冷热台助力我国零膨胀钛合金特殊材料研发
    在航空航天、微电子器件、光学仪器等精密仪器设备中应用的结构部件,对尺寸稳定性有极为严苛的要求。由于温度升高或降低而导致的材料形状变化对其功能特性和可靠性有着很大影响。因此,具有近零热膨胀性能的钛合金在需要高尺寸稳定性的结构中具有极高的应用价值。例如,美国国家航空航天局已针对太空望远镜所需的超高稳定性支撑结构,使用这类钛合金制造了镜体支架。在激光加工领域,已有使用这种材料制造的光学透镜筒体,解决了透镜焦点热漂移的问题。这类材料特殊的热膨胀性能与其内部αʺ马氏体物相的各向异性热膨胀行为有关。但是,现有的通过冷加工工艺获得的低热膨胀系数限制于单相马氏体相区,即使用温度上限通常小于~100℃,限制了其在工程领域的广泛应用。近期东莞理工学院中子散射技术工程研究中心王皓亮博士在冶金材料领域的TOP期刊《Scripta Materialia》上发表题目为《Nano-precipitation leading to linear zero thermal expansion over a wide temperature range in Ti22Nb》的研究论文。论文介绍了在宽温域线性零膨胀钛合金特殊热膨胀性能形成机理方面取得的新的进展。论文第一作者为东莞理工学院机械工程学院王皓亮博士,通讯作者为机械工程学院孙振忠教授,共同通讯作者为比利时鲁汶大学Matthias Bönisch博士,合作作者有中国散裂中子源殷雯研究员和徐菊萍博士等。王皓亮博士主要从事金属材料物相晶体结构、微观组织及应力分析;钛合金固态相变及功能性研究;高等级耐热钢焊接接头蠕变失效预测研究。1.拉曼光谱在材料研究中的应用(图1.Ti22Nb合金通过析出纳米尺寸第二相获得的宽温域零膨胀性能)研究人员利用中子衍射技术表征材料微观结构的巨大优势,配合使用XRD冷热台(变温范围 -190℃到600℃ ,温控精度±0.1℃,文天精策仪器科技(苏州)有限公司)实现测试样品的温度变化,精确鉴定了线性零膨胀Ti22Nb钛合金中的物相组成,证实了依靠溶质元素扩散迁移形成的等温αʺiso相也具备调控热膨胀系数的功能。相对于冷加工材料,该研究中通过机械+热循环处理获得的双相复合材料,其低热膨胀行为的作用范围被拓宽至300℃。结合其他原位X-ray衍射和EBSD/TKD电子显微表征技术,在纳米到微米尺寸范围内全面分析了材料微结构要素,澄清了热循环过程中纳米尺寸αʺiso相的形成路径,揭示了微观晶格畸变/相变应变、晶体学取向参量和宏观热膨胀系数的之间的定量关系,为设计具有较宽使用温度范围的低/负热膨胀钛合金提供了新的途径,是从理论研究向技术和产品层面跃进的重要依据和前提。 (图2.(a)不同状态Ti22Nb合金中子衍射谱线,(b)原位升降温XRD谱线(c)母相及析出相衍射峰强度随温度演化规律)(图3.原位升降温XRD测试)图4.原位XRD冷热台
  • 【科普】LIBS光谱仪的温度稳定性对合金分析精度的影响
    激光诱导击穿光谱(LIBS)是一项利用高度聚焦激光器烧蚀材料表面来测定材料化学成分的分析技术。LIBS 是用于材料验证计划中的质量控制(QC)和材料可靠性鉴别(PMI)的重要技术,尤其适用于钢铁行业。大多数手持式 LIBS 分析仪采用 1064nm 波长脉冲激光器。高能量短脉冲(纳秒)在单位面积产生的功率足以烧蚀少量材料(大约一纳克)并在样品表面产生等离子体。Thermo ScientificTM NitonTM ApolloTM手持式 LIBS 分析仪来自等离子体的光是多色的(白光),这意味着它包含多个不同的波长。白光被衍射光栅分成组分波长,其原理与白光穿过棱镜被分成各种颜色的彩虹大致相同。不同元素会发出特定波长的光,光的强度与元素浓度成正比。光谱仪可测量特定波长下发射的光子数量,并生成样品光谱。它通过测量关注元素的典型峰,并生成浓度指示结果。Thermo ScientificTM NitonTMApolloTM手持式 LIBS 分析仪用于测量每个元素的波长线的光谱仪,在机械尺寸方面必须高度稳定。鉴于铁谱中有数千条密集的发射线,必须将测量窗口保持在精确的绝对波长范围内,这对于避免附近线的干扰至关重要,否则这些干扰可能会漂移到分析窗口中,而所需线的信号会从窗口中漂移出来。如果产品不具有坚如磐石的尺寸稳定性,这种情况就会发生。光谱仪支架材料的尺寸会随温度变化而稍有变化。这会导致读数出现误差。 Thermo ScientificTM NitonTM ApolloTM手持式 LIBS 分析仪大多数手持式 LIBS 分析仪均采用 Invar-36 光谱仪支架。Invar 是一种 36% 镍铁合金,在室温至大约 230°C 的温度范围内,具有所有金属和合金中最低的热膨胀(来源:AZO 材料)。Thermo ScientificTM NitonTM ApolloTM手持式 LIBS 分析仪Invar-36 支架所用材料是大多数金属中膨胀系数随温度变化最小的材料。此外,应对光谱仪所在的整个环境进行温度控制,以免温度波动,因为轻微膨胀就可能导致读数出现误差。大多数(即使不是全部)供应商都会使用散热片来缓解外部环境温度波动。散热片质量越大,温度变化缓解效果就越好。为了更方便,散热器可采用更小尺寸和更小质量的设计。但是,相对于更稳健的设计,减小尺寸和质量通常会降低性能。Thermo ScientificTM NitonTM ApolloTM手持式 LIBS 分析仪产品特征意识到这些因素的用户几乎会首先根据性能进行投资,因为测量结果会关乎生命安全。在航空航天、汽车、石油和天然气及建筑行业,进行合金分析时,“关键任务验证”不仅仅是一个口号… … 这就是它的含义!互动福利扫描下方二维码免费下载Thermo ScientificTM NitonTMApolloTM手持式 LIBS 分析仪产品手册赛默飞世尔科技中国简介赛默飞世尔科技进入中国发展已超过35年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数约为5000名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有7家工厂分别在上海、北京、苏州和广州等地运营。我们在全国还设立了8个应用开发中心以及示范实验室,将世界级的前沿技术和产品带给中国客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心,拥有100多位专业研究人员和工程师及70多项专利。创新中心专注于针对垂直市场的产品研究和开发,结合中国市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2600名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制