当前位置: 仪器信息网 > 行业主题 > >

炭黑分散影响因素

仪器信息网炭黑分散影响因素专题为您整合炭黑分散影响因素相关的最新文章,在炭黑分散影响因素专题,您不仅可以免费浏览炭黑分散影响因素的资讯, 同时您还可以浏览炭黑分散影响因素的相关资料、解决方案,参与社区炭黑分散影响因素话题讨论。

炭黑分散影响因素相关的资讯

  • HunterLab测色仪在色素炭黑中的应用
    一、炭黑的特性1、黑度与粒径黑度直接与炭黑的粒径相关,粒径越小,比表面积愈大,炭黑的黑度越高。这是因为尽管原生粒子已熔合成原生聚集体,但是其比表仍能起作用,原生粒子细,则凝聚体的比表面积越大。所显现的颜色更黑,防紫外线作用更佳。由于细粒子炭黑的吸光率比粗粒子炭黑的更高,所以着色力更强。但是当粒径减小时,由于蓝光被优先吸收,为此色调变成棕相。细微原生粒子赋予炭黑更大的比表面积,同时增加分散难度,一般通过表面处理可调整润湿性和改善分散性。2、结构炭黑粒子不仅以原生粒子形式存在,而且在生产熔结成凝聚体。这种凝聚体是由原生粒子经化学键结合。在凝聚过程中,由大量链枝的原生凝聚体构成的炭黑称为高结构炭黑。而原生凝聚体由较少链枝原生粒子组成的炭黑,则称为低结构炭黑。3、表面化学性炭黑的生产方法不同其表面化学性能各异。炭黑表面具有不同的含氧官能团(如羧基、内脂基、酚基、羰基等)。一般含氧官能团高的炭黑,挥发份高,其色调可调性能好,其流动度也较高。炭黑样品加热至825± 25oC后以百分重量损失表示炭黑挥发份。炭黑含氧基因越多,挥发份也越大。4、吸湿性和密度炭黑是一种表面积大的物质,因此有一定的吸湿性。炭黑的吸湿量主要由表面积大小来决定。可加强措施,尤其在包装、贮存和运输的过程采取办法以减少产品的吸湿性。因为水分(吸湿量)过高会对加工过程带来麻烦,所以要求对某些品种炭黑有特殊包装。粉状的色素炭黑还是粒状的色素炭黑用于给定的塑料掺混物取决于分散的类型和树脂的特性,但加工能力也是很重要的因素,目前多数分散设备都能发挥剪切力,足以将粒状分散均匀。二、炭黑在塑料行业中的应用在选择之前,必须确定其用途,例如用于着色、防紫外光、或导电等等。1、着色用炭黑色素炭黑一般都能较好的给塑料着色,可根据着色特性或物化性能选用色素炭黑,着色用炭黑的品种的选择基本上都是随成品必须达到的黑度而定。 用极细的色素炭黑可以完成黑度要求特别高的着色; PE垃圾袋,塑料袋,电缆材料之类产品只需中等水平黑度,可以用比表面积较低,结构较高的炭黑品种;塑料调色时,炭黑称量和配料时出现的微小误差,均会导致明显的色差,因此,宜采用粒径较大,着色力较差的低色素炭黑,这样炭黑用量可以稍大,称量误差相对小些,并有分散性较好、价格较低的优点。对于灰色塑料,采用细粒色素炭黑往往呈现棕相灰色,而采用粗粒子色素炭黑可产生蓝相灰色。与其它有机颜料相比,炭黑除分散较困难外,其他性能均较好。科学的炭黑配合量,可提供较好的抗静电或导电性。炭黑基本上是无毒的,但较易飞扬和污染,故常以色母粒形式供塑料行业使用,在消除污染的同时也改善了炭黑在塑料中的分散。炭黑作为塑料用颜料,常用的剂型有粉状和粒状。粒状炭黑飞扬较少,但分散较难,故在塑料着色中采用粉状炭黑。 2、紫外线防护性的应用炭黑在塑料工业中用途之一是防紫外光老化,由于炭黑有较高的吸光性,因而能有效的防止塑料受阳光照射而产生光氧化降解。炭黑作为紫外光稳定剂在塑料中所起的作用有:把光能转化为热能;保护塑料表面而免遭一定波长的射线照射;截取原子团而产生防老化作用,从而阻止催化降解。紫外线对聚烯烃特别有害,试验证明当一定细度的炭黑的浓度为百分之二时可以达到完美的紫外线屏蔽作用。炭黑对塑料的紫外线老化的防护作用,取决于炭黑的粒径、结构和表面化学性。炭黑的粒径较小时,因表面积增大,其吸收光或遮光能力增加,故紫外线防护作用增强,但粒径小于20nm,其防护作用趋于同一水平,原因是当粒径过小时,逆向散射减小,而继续向前的光会威胁聚合物的稳定性。结构较低,即聚集体尺寸较小时,因聚集体几何体积较小,会增强对聚合物的防护作用,这也是结构较低的炭黑较黑的原因。炭黑表面含氧基团较多,即挥发份较高时,能消除聚合物分解时产生的基因,因此防护作用也增强。三、HunterLab测色仪(着色强度测定仪)在炭黑中的应用1、表面特征的影响在测配色时,光泽和表面平整度对色差的影响最大。当光线照射到凹凸不平的表面时,在表面产生反射、散射和吸收。粗糙的表面散射大,反射和吸收少,所以人眼的反应光泽就低,而高光的涂料表面平整,反射大,散射少,人眼对光泽就特别敏感,光泽就高。从实际生产的经济性考虑,我们根据用途选择合适粒径的消光剂,它决定了消光剂的用量,一般消光剂用量越多,光泽越低。HunterLab测色仪(0o/45o或45o/0 o)对黑颜色和白颜色光泽的敏感性特强。以高色素炭黑为例,光泽从20降到10时,△E要相差1左右(用类似人眼的0o/45 o测量),而其他品牌的测色仪测相同的黑板时,△E误差在0.3以内。其他颜色光泽在± 1.0度范围内变化时,△E一般在允许误差范围以内。当然在生产中颜料的耐高温性和烘烤的时间和温度也会对△E产生较大影响,这是在实际生产中要特别当心的问题。2、台式、手提式设备一应俱全台式测色仪LabScan XE和新款手提式测色仪MiniScan EZ,他们有其独特的优势,测试结果保持与人眼一致, MiniScan EZ轻巧、携带方便,可直接测量读取数据,也可以连接到电脑上输出数据。特别在生产线或与客户交流时,可以充分发挥其携带方便的优势。
  • Zeta电位测试的影响因素
    Zeta电位是反映悬液中颗粒表面带电的重要参数,那么颗粒的悬浮环境必然会对电位产生较大的影响,比如悬液中的pH值、电导率以及小分子组份的浓度等,都会对悬浮颗粒表面产生影响,从而直接影响到体系的Zeta电位和稳定性。为了能够系统的对不同的影响因素考察,我们采用丹东百特的BeNano纳米粒度及Zeta电位分析仪分别对不同体系进行了研究。一、pH值对电位数据的影响将10mg聚丙烯酰胺乳胶球样品分散在10mL纯净水中得到母液,通过添加盐酸和氢氧化钠调节样品pH值,并在不同pH值下检测其Zeta电位,结果如下:图1. 不同pH值下样品的Zeta电位曲线通过曲线可以看到,在pH 2-9范围内,随着pH降低,样品Zeta电位从较高的负值向0趋近。这是由于溶液环境中的[H+]浓度随pH降低逐渐增高,样品表面的负电逐渐被中和,趋向于携带更多的正电荷造成的。二、电导率对电位数据的影响采用Duke的聚苯乙烯乳胶球作为研究对象,通过加入不同浓度的氯化钠水溶液来配置一系列不同电导率的乳液,测试其Zeta电位,结果如下:图2. 不同电导率下样品的Zeta电位曲线从上图中可以看到随着电导率的变大,Zeta电位绝对值呈变小的趋势。这是因为在溶液中离子强度与盐的价态和浓度相关。盐的价态越高,浓度越高,离子强度越高,对于颗粒表面电势屏蔽作用越强,颗粒的Zeta电位相应的越低。三、组成成分浓度变化对电位数据的影响采用一款纳米金刚石粉末作为原料,然后将该粉末分别悬浮在含有不同浓度的乙醇胺的水溶液中,在相同条件下分别测试该金刚石颗粒的Zeta电位,数据如下:通过上表可以看出在加入不同量的乙醇胺的环境中,样品的Zeta电位有明显差别。3个样品的Zeta电位均为负值,说明纳米金刚石在这三个环境中均携带负电荷。分散在水中的1#样品的电导率较低,其Zeta电位在-20 mV以上相对较高,而分散在醇胺溶液中的2#和3#样品电导率高于水,Zeta电位明显降低。说明乙醇胺的存在明显对金刚石表面电荷有抑制作用,浓度越高,其体系也越不稳定。
  • 干货|7大因素影响激光粒度测试结果
    p style="text-indent: 2em "编者按:粉体的粒度及粒度分布是衡量产品质量的关键性指标,而目前最火的粒度检测方法之一就是激光粒度仪了。这种粒度检测方法不受温度变化、介质黏度、试样密度及表面状态等诸多因素的影响,具有测试速度快、测量范围广、便捷易操作等特点。放眼市场,激光粒度仪的品牌和型号也可谓五花八门,琳琅满目。但值得称道的激光粒度仪虽然不胜枚举,却仍然会收到诸多因素的影响,造成检测结果的不稳定。太原理工大学矿业工程学院的专家张国强就深度剖析了7大影响激光粒度仪检测结果的因素。/pp style="text-indent: 2em "专家观点:/pp style="text-indent: 2em "目前市面上的激光粒度分析仪其基本原理均为米氏散射理论及其近似理论。包括测量纳米级颗粒所使用的动态光散射原理也是借助米氏散射理论而补充完善起来的 。米氏散射理论把待测颗粒等效成各向同性的球形粒子,在入射光照射下根据麦克斯韦电磁方程组,可以求出散射光强角分布的严格数学解。 利用米氏散射理论的基本公式进一步求出此时散射光强分布对应的颗粒粒径。米氏散射理论通过测量待测样品的散射光强分布巧妙地解决了超细颗粒的粒度测量问题,但由于基于米氏理论的激光粒度测量技术本身的复杂性,提前预先设定的边界条件并不能全面地反映实际样品的具体情况。 同时商品化的激光粒度分析仪由于受生产厂家技术实力水平的限制,导致各厂家仪器的内部构造与算法程序等方面均存在差异。/pp style="text-indent: 2em "为探究粉体粒度测试评价用标准样品的特性,为激光粒度分析仪生产厂家提供优化仪器性能的理论依据,为粒度检测用户提供评价激光粒度测试结果可靠性与准确性的依据。下面我将对激光粒度仪测试结果的重要影响因素进行分析:/pp style="text-indent: 2em "(1)复折射率/pp style="text-indent: 2em "激光散射法粒度测量的对象一般是微米级的粒子,这些粒子的光学常数并不能简单看成/pp style="text-indent: 2em "粒子材料的光学性质,而是指颗粒的复折射率n’,其定义为:n‘=n+ik。其中 n 为通常所说的折射率,虚部k表示光在介质中传播时光强衰减的快慢,即吸收系数,有时也被称作吸收率。/pp style="text-indent: 2em "复折射率的选择合适与否直接影响到粒度检测结果的准确性与可靠性,但是影响待测颗粒复折射率的因素较多,难以确定其准确值,所以到目前为止在激光粒度测量领域中仍旧没有确定复折射率的统一方法 。在实际的粒度检测过程中,一般只是对同种物质使用一个固定的复折射率,这样的测量结果必然会与样品的真实值有较大偏差。 但是如果针对不同粒/pp style="text-indent: 2em "度区间的颗粒都去寻找其复折射率,却又不现实的。/pp style="text-indent: 2em "(2)折射率/pp style="text-indent: 2em "Mie 散射理论是麦克斯韦电磁方程组的严格解,激光法检测的前提假设是粉体粒子是球形且各向同性的,大多数晶体在不同的方向上有不同的折射率。由于不同厂家的设备中光能探测器的数量、空间分布位置、灵敏度的不同也会导致检测结果的差异。/pp style="text-indent: 2em "(3)内置算法/pp style="text-indent: 2em "由于光强分布的差异,不同粒度仪生产厂家所采用的软件内置算法不同,造成系数矩阵的计算结果差异,由此给反演带来不同程度的误差。/pp style="text-indent: 2em "(4)内外复折射率/pp style="text-indent: 2em "球形石英粉等颗粒,在高温环境下烧灼成型。由于既要成球,又要熔透转变为非晶型或不定形,其技术难度很高。 所以在生产过程中会有部分无定形态的熔融石英包裹在结晶石英上,以及熔融石英内部含有空心气泡。这种颗粒被称为双层颗粒,颗粒内外复折射率不同,导致激光法测量时可能带来较大误差,据相关文献,最大误差可能超过 50%。/pp style="text-indent: 2em "(5)反常异动现象/pp style="text-indent: 2em "有研究者发发现在有些折射率下对于部分粒径区间,随着粒径的变小,散射光强分布主峰会向探测器内侧移动,而正常情况下应向探测器外侧移动,从而影响粒度检测的结果。 这种现象被称为散射光能分布的反常移动现象。/pp style="text-indent: 2em "(6)分散状态/pp style="text-indent: 2em "使用激光粒度仪检测过程中,需注意保证待测颗粒处于良好的分散状态。 当前市面上的主流激光粒度仪, 基本上都带有离心循环分散和超声分散两种分散模式,所以对于这种类型仪器的用户,不建议测试前的机外分散, 因为在用烧杯将分散后的溶液导入循环槽的过程中极易在杯底残留部分大颗粒,导致测试结果产生误差。 在仪器中分散样品时,应注意根据物料性质调整超声和离心循环分散的功率,太大容易导致气泡的产生,太小则容易导致分散效果变差和大颗粒沉底。/pp style="text-indent: 2em "(7)仪器的保养程度/pp style="text-indent: 2em "激光粒度仪的保养程度,对检测结果有较大影响。激光粒度仪需要定期标定维护。在实际的使用过程中发现,部分样品极易在测试过程中附着在仪器的管路内部,从而混入之后的测试样品中带来测试误差。而仪器自带的清洗功能很难解决这类问题,需要在激光粒度测量中引起足够重视。/pp style="text-indent: 2em "鉴于激光粒度测量过程中的影响因素过多,各种样品不同粒级区间的复折射率难以确定,所以目前来看并没有可靠地依据来证明激光粒度测试的准确性,这也是激光粒度检测急需解决的问题。在对粉体粒度要求较高的领域,可以采用多种粒度检测手段,综合比较检测结果,来得到较为可靠的粉体粒度值。此外研制并推广国家及行业内认可的激光粒度分析标准样品,也是一个解决激光粒度检测差异性的实用方法。/p
  • 国际标准ISO对橡胶添加剂白炭黑的粒径表征的要求
    白炭黑即沉淀二氧化硅,又名水合二氧化硅,分子式为 SiO2.nH2O,是一种白鱼、无毒、无定形微细粉状物,具有多子性、高分散性、质轻、化学稳定性好、耐高温、不燃烧、电绝缘性好等优异性能的重要无机硅化合物。其相对密度为2319-2653,熔点为1750℃。主要用作橡胶、塑料、合成树脂以及油漆等产品的填充剂,也可用作润滑剂和绝缘材料。目前全世界70%的白炭黑用于橡胶工业,是优良的橡胶补强剂,能改善胶接性和抗撕裂性,其性能明显优于普通炭黑。2000年国内橡胶工业总需求量大于160万吨,白炭黑在橡胶中已广泛的用来替换炭黑。白炭黑粒径的大小会影响到在橡胶中的分散性能、橡胶的拉伸性能、耐磨性和抗湿滑性能。炭黑在橡胶基体中的分散是影响复合材料的生热和磨耗的关键因素,从增强炭黑与橡胶之间的相互作用角度出发,通过炭黑改性、橡胶改性和液相复合技术等方法可制备综合性能优异的炭黑/橡胶复合材料。ISO20937《Rubber compounding ingredient-precipitated silica-Determination of aggregate size distribution by disc centrifuge》国际标准采用差速离心法进行白炭黑的粒径表征。利用离心圆盘可以精确测量白炭黑总的粒径分布情况,根据测试的时间与转速,依据斯托克斯定律可以实现5nm-75um的粒径测量。国际标准中所使用的仪器参数如下:离心圆盘:允许转速可以达到24000r/min探头式超声仪:至少200W的功率制冷温度浴:如低温温度浴高精密天平:±0.01g一次性注射器:1ml和2ml的规格卷边瓶:推荐使用35ml,直径30mm,高65mm水:去离子水蔗糖:粉末,≥99.7十二烷:99%PVC标准溶液:推荐使用220nm±20nm目前对于炭黑粒径的分析,ISO国际标准推荐使用CPS Instrument,Inc公司的纳米粒度分析仪,并且详细记录了仪器中参数的设定值,对于操作者只需要跟着内容操作,一步步进行即可得到白炭黑的粒径 结果。 美国CPS纳米粒度分析仪(如图所示)可以真实反映样品在溶液中的真实粒径分布状态,粒径测试结果的精确度媲美扫描电镜,分析范围为5nm-75um。主要特点如下:所需样品量少。每次只需要0.1ml,这在疫苗研发、化学合成方面具有极大的优势。一次测试可到40多个样品。在前处理准备工作做完以后,可结合标准颗粒一批次测试40多个样品。分辨率高。同激光散射和颗粒计数等方法比较,对于样品中即使只有1%峰值差异的颗粒,依旧可以很好地区分测量出来,即可以得到真实的粒度分布结果。灵敏度高。低至 10-8 g 的样品就可以满足日常分析需要。分析时间端。和传统沉降法比较,由于采用更快的圆盘转速和高速检测器,因此极大缩短了分析所需时间。对于粒径分布范围很宽的样品,通过可选的速度调节功能圆盘,仅需常规圆盘分析时间的 1/20。图1 CPS纳米粒度仪(左图为自动进样器,右边为自动梯度液生成器)
  • 稳定性分析系列讲座-产品稳定性的机理、影响因素及如何使用仪器快速预判
    大昌华嘉科学仪器部重磅发布稳定性分析系列讲座,包括线上和线下课程两类,本系列课主要介绍了多重光散射技术在食品领域的应用,并阐述了不同的配方、工艺对产品稳定性的影响效果。同时,线下课程更加注重理论基础和实际操作培训,让用户可以体验高效、精确的稳定性测试技术。欢迎大家参加!线上课程:讲师介绍何羽薇大昌华嘉科学仪器部技术专员何羽薇老师有30年分析仪器使用经验,重点关注材料化学、表面化学和流变学相关仪器的应用开发。课程详情主讲专家介绍——何羽薇何羽薇老师的应用经验涵盖食品、化妆品、陶瓷、涂料、墨水、石油化工等领域,擅长仪器图谱分析并熟练将仪器得到的数据应用到产品开发。研究方向重点在使用多重光散射仪,粒度仪、流变仪,表界面张力仪,ZETA电位仪,并结合稳定性基础DLVO理论,从表面化学、颗粒间相互作用入手,分析样品稳定性机理,为新产品的研发,问题样品的解决提供思路和解决方案。培训适合对象◆ 生产企业负责食品研发、质量控制相关负责人◆ 食品添加剂的研究人员、应用工程师◆ 高等食品院校和科研机构中从事食品行业的科研人培训内容简介从7月13日起,课程将首先从食品行业的稳定性问题开始分享。每周一、周四上午 10:30-11:30 精彩内容源源不断7月13日 讲,综述(1h)◆ 关于稳定性,讲讲那些你没有关注但是很重要的东西◆ 从原料、配方到工艺,在开发产品的时候需要关注的那些关键点,如何检测,如何预判,如何解决7月16日 第二讲,乳品及含乳饮品稳定性的特点,添加不同成分的乳品不稳定性的原因如何预判及解决方案(1h)◆ 纯牛奶稳定性◆ 高钙奶、高蛋白奶◆ 风味奶(红枣奶、香蕉奶)◆ 咖啡奶(中性乳饮料)◆ 发酵乳及酸饮:褐色乳饮料、酸性奶饮料、搅拌型酸奶◆ 凝固型酸奶、鲜奶酪、再制奶酪等7月20日 第三讲、乳化类型产品的特点,不稳定的原因,需要特别注意点(1h)◆ 稀奶油、发泡奶油◆ 核桃奶、杏仁露、椰奶、豆奶7月23日 第四讲,果汁饮料的稳定性特点,不稳定的原因,需要特别注意点(1h)◆ 透明果汁饮料◆ 不透明脱脂饮料◆ 多肽类蛋白饮料7月27日 第五讲,粉体类原料的润湿性对产品稳定性的重要性,如何评价(1h)◆ 奶粉◆ 植脂末◆ 茶粉7月30日 第六讲,如何获得口感极佳的肉类制品,如何控制肉汤的口感和稳定性(1h)◆ 肉的乳化性、凝胶性,分别有哪些影响因素需要控制◆ 制备良好口感制品,需要的稳定性控制因素◆ 肉汤的物理稳定性,决定了肉汤的口感8月3日 第七讲,调味料稳定性(1h)◆ 耗油的稳定性研究◆ 果酱、番茄酱、芝麻酱、花生酱的稳定性研究◆ 色拉酱的稳定性研究8月6日 第八讲,其他(1h)◆ 啤酒的澄清度控制因素,啤酒泡沫稳定性评价◆ 打蛋液泡沫的稳定性决定了烘焙产品的口感 识别二维码报名“稳定性分析系列讲座”同时,我们推出了精彩的线下实操课程:有关分散体系稳定性的基础知识及分散体系中各组分的潜在不稳定风险及其原理分析天1、 稳定性基础理论DLVO理论2、 体相中乳化剂的存在方式及其对稳定性的影响3、 各种类型乳化吸附特性比较及乳化剂的界面竞争吸附4、 最新的picking乳液和Junus乳液的特点及应用5、 推荐乳化剂预测方法综述及乳状液稳定性预测实验设计6、 实操第二天1、 流变学基础知识2、 各种类型稳定剂的基本流变学分类3、 不同的流变仪的不同的作用4、乳状液体系稳定剂与乳化液滴的相互作用及其对体系稳定性的影响5、推荐稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么6、实操第三天1、工艺过程中,乳化罐叶片位置角度对混合均匀度的而影响,需要关注的流体动力学影响2、热处理对稳定性的影响3、均质与杀菌工艺参数影响稳定性的基本原理4、推荐评价稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么5、如何解读稳定性分析仪报告,从中可以得到那些信息。稳定性实验数据处理 GB/T 384316、疑难解答互动交流线下实操课程时间,连续4个月,每月1期,每期3天:线下培训为收费培训,具体价格请电话/邮箱咨询。欢迎感兴趣的朋友踊跃报名!
  • 稳定性分析系列讲座-产品稳定性的机理、影响因素及如何使用仪器快速预判
    大昌华嘉科学仪器部重磅发布稳定性分析系列讲座,包括线上和线下课程两类,本系列课主要介绍了多重光散射技术在食品领域的应用,并阐述了不同的配方、工艺对产品稳定性的影响效果。同时,线下课程更加注重理论基础和实际操作培训,让用户可以体验高效、精确的稳定性测试技术。欢迎大家参加!线上课程:讲师介绍何羽薇大昌华嘉科学仪器部技术专员何羽薇老师有30年分析仪器使用经验,重点关注材料化学、表面化学和流变学相关仪器的应用开发。课程详情主讲专家介绍——何羽薇何羽薇老师的应用经验涵盖食品、化妆品、陶瓷、涂料、墨水、石油化工等领域,擅长仪器图谱分析并熟练将仪器得到的数据应用到产品开发。研究方向重点在使用多重光散射仪,粒度仪、流变仪,表界面张力仪,ZETA电位仪,并结合稳定性基础DLVO理论,从表面化学、颗粒间相互作用入手,分析样品稳定性机理,为新产品的研发,问题样品的解决提供思路和解决方案。培训适合对象◆ 生产企业负责食品研发、质量控制相关负责人◆ 食品添加剂的研究人员、应用工程师◆ 高等食品院校和科研机构中从事食品行业的科研人培训内容简介从7月13日起,课程将首先从食品行业的稳定性问题开始分享。每周二上午 10:30-11:30 精彩内容源源不断7月13日 讲,综述(1h)◆ 关于稳定性,讲讲那些你没有关注但是很重要的东西◆ 从原料、配方到工艺,在开发产品的时候需要关注的那些关键点,如何检测,如何预判,如何解决7月16日 第二讲,乳品及含乳饮品稳定性的特点,添加不同成分的乳品不稳定性的原因如何预判及解决方案(1h)◆ 纯牛奶稳定性◆ 高钙奶、高蛋白奶◆ 风味奶(红枣奶、香蕉奶)◆ 咖啡奶(中性乳饮料)◆ 发酵乳及酸饮:褐色乳饮料、酸性奶饮料、搅拌型酸奶◆ 凝固型酸奶、鲜奶酪、再制奶酪等7月21日 第三讲、乳化类型产品的特点,不稳定的原因,需要特别注意点(1h)◆ 稀奶油、发泡奶油◆ 核桃奶、杏仁露、椰奶、豆奶7月28日 第四讲,果汁饮料的稳定性特点,不稳定的原因,需要特别注意点(1h)◆ 透明果汁饮料◆ 不透明脱脂饮料◆ 多肽类蛋白饮料8月4日 第五讲,粉体类原料的润湿性对产品稳定性的重要性,如何评价(1h)◆ 奶粉◆ 植脂末◆ 茶粉8月11日 第六讲,如何获得口感极佳的肉类制品,如何控制肉汤的口感和稳定性(1h)◆ 肉的乳化性、凝胶性,分别有哪些影响因素需要控制◆ 制备良好口感制品,需要的稳定性控制因素◆ 肉汤的物理稳定性,决定了肉汤的口感8月18日 第七讲,调味料稳定性(1h)◆ 耗油的稳定性研究◆ 果酱、番茄酱、芝麻酱、花生酱的稳定性研究◆ 色拉酱的稳定性研究8月25日 第八讲,其他(1h)◆ 啤酒的澄清度控制因素,啤酒泡沫稳定性评价◆ 打蛋液泡沫的稳定性决定了烘焙产品的口感 识别二维码报名“稳定性分析系列讲座”同时,我们推出了精彩的线下实操课程:有关分散体系稳定性的基础知识及分散体系中各组分的潜在不稳定风险及其原理分析天1、 稳定性基础理论DLVO理论2、 体相中乳化剂的存在方式及其对稳定性的影响3、 各种类型乳化吸附特性比较及乳化剂的界面竞争吸附4、 最新的picking乳液和Junus乳液的特点及应用5、 推荐乳化剂预测方法综述及乳状液稳定性预测实验设计6、 实操第二天1、 流变学基础知识2、 各种类型稳定剂的基本流变学分类3、 不同的流变仪的不同的作用4、乳状液体系稳定剂与乳化液滴的相互作用及其对体系稳定性的影响5、推荐稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么6、实操第三天1、工艺过程中,乳化罐叶片位置角度对混合均匀度的而影响,需要关注的流体动力学影响2、热处理对稳定性的影响3、均质与杀菌工艺参数影响稳定性的基本原理4、推荐评价稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么5、如何解读稳定性分析仪报告,从中可以得到那些信息。稳定性实验数据处理 GB/T 384316、疑难解答互动交流线下实操课程时间,连续4个月,每月1期,每期3天:线下培训为收费培训,具体价格请电话/邮箱咨询。欢迎感兴趣的朋友踊跃报名!
  • LUM第11届分散体分析和材料测试国际会议(ICDAMT 2024)
    新闻发布颗粒表面特征及其理解三位候选人被提名2024年LUM青年科学家奖柏林,2024年4月15日:2024年6月10日和11日,LUM GmbH将在柏林主办第11届分散体分析和材料测试国际会议(ICDAMT 2024)。科学委员会主席兼LUM董事总经理Lerche教授博士:“自2014年以来,我们一直在宣传青年科学家奖(YSA),以表彰在颗粒和分散体表征以及材料测试领域的杰出科学成就,并根据规定的考核标准在会议上授予该奖项。来自德国、法国、印度、挪威和捷克等国家的年轻科学家响应号召,分分申请了该奖项。来自欧洲和印度的三名决赛选手最终被评委会提名。应邀请,他们将带着有趣的研究成果出席会议。完全独立于选择程序,颗粒表面特性及其表征的课题在所有指定的应用中都有令人振奋的发现,这是我们在自己的科学工作和与客户的合作中越来越多地遇到的趋势。”Amin Said Amin,德国杜伊斯堡-埃森大学能源与材料工艺颗粒科学与技术研究所(EMPI-PST),因其题为“开发系统选择探针液体的方法以确定炭黑材料的汉森溶解度参数”的工作而获得提名。当涉及到颗粒在液体中的分散时,Hansen溶解度参数(HSP或Hansen分散性参数,HDP)特别相关;它们表征了纳米颗粒的表面性质。HDP可以提供对电极、电解质和电化学系统的其他关键部件的开发和设计中的关键因素的理解。目前通过沉淀测定纳米颗粒HDP的方法是基于使用具有不同HSP的各种液体。这些实验耗时且部分对环境有害,并与潜在的健康风险有关。为了应对这一挑战,Amin和他的团队开发了一种两阶段策略,可以系统地选择更少的液体。分析多样本分散体系分析仪LUMiSizer用于这些研究。法国巴黎索邦大学勒芒分子与材料与软物质科学与工程研究所的Théo Merland成功提交了一份申请,描述了他在富勒烯水悬浮液方面的工作。巴克明斯特富勒烯(C60)因其高共轭性而成为一种有吸引力的分子,在(电光)和生物医学领域有着广泛的应用。在许多应用中,它的使用需要在水性介质中进行处理。然而,由于富勒烯是高度疏水的,它只能以ppm的水平分散在水中。Merland和他的团队开发了两种不同的方法将大量富勒烯分散在水中:Ouzo效应,富勒烯首先溶解在与水混溶的有机溶剂中;乳液蒸发,使用与水不混溶的溶剂。LUMiSizer用于测定纳米板,其中一些大于光散射方法的检测上限。此外,使用相同的装置表征富勒烯悬浮液的分离稳定性。班加罗尔纳米与软物质科学中心-Center for Nano and Soft Matter Sciences, Bengaluru的Priyabrata Sahoo和印度曼尼帕尔曼尼帕尔高等教育学院-Manipal Academy of Higher Education, Manipal, India以其在液相剥离中界面性质优于本体溶剂性质的科学成果入围决赛:总结了使用分散分析仪的实验研究。液相剥离(LPE)是获得二维(2D)材料(如石墨烯、氮化硼、MXene等)并在各种应用中利用其奇异特性的最成功技术之一。尽管LPE是一个简单且可扩展的过程,但剥离机制相当复杂,文献中尚未对此进行详细研究。Sahoo和他的团队的工作目标是了解溶质-溶剂界面在2D材料的LPE和分散稳定性中的作用。使用分散体分析仪(LUMiSizer)来了解在不同溶剂中获得的分散体的剥离效率和稳定性。您可在会议上与入围者获取联系;我们诚挚邀请您到柏林参加学士会议。会议注册:https://conference2024.lum-gmbh.com/2014-2024LUM 青年科学家奖获得者回顾:https://www.youtube.com/watch?v=4JFF1TZkY0M会议摘要: https://www.lum-gmbh.com/files/Presse/Presse_2024/ICDAMT2024_web.pdf会议课题:https://www.lum-gmbh.com/files/Presse/Presse_2024/ICDAMT2024_web.pdf新闻联系: LUM GmbH, Justus-von-Liebig-Str. 3, 12489 Berlin, Germany, support@lum-gmbh.de, www.lum-gmbh.com
  • 德勤2016全球医疗,健康产业报告,,解读哪些因素影响,医疗控费?
    全球医疗健康领域,包括医疗服务商、支付方、政府和其他利益方,正积极以高效、公平合理的手段改善医疗服务。慢病扩散以及人口老龄化是引发变化的主要原因。经济学人信息部(EIU)的报告指出,按美元计算,2014年60个国家的医疗健康支出平均增长了2.6%,同时世界卫生组织WHO的一份报告指出,发达国家和发展中国家之间的医疗行业支出差异明显。图1能看到中国2013年人均医疗花费为367美元,离美国人均9146美元差距显著。全球2016年预计医疗花费增长四个百分点,2017年和2018年将平均超过6%,尤其是亚洲和中东地区,私立或公立医疗花费都将继续上涨。但现 实是矛盾的,既要控费,又要提高服务水平,为此EIU预测2015~2019年,全球医疗健康支出平均仅增加4.3%,占据总GPD的比例是由2015年 的10.3% 下降到2019年的10.1%。纵观影响2016全球医疗行业的几大因素,分别是人口、经济、运营、创新和制度监管。如图2所示。尽管医疗费用增加与行政费用、保险费上涨、护理成 本过高等密切相关,但另一方面,采用新医疗技术和创新手段也会导致医疗成本上涨。但未来发展道路是明晰的,相关部门必须寻求新的方式以降低成本。影响医疗成本的因素分析医疗机构的整合趋势医疗行业正从过去零碎分散的模式转向整合和连接。在部分国家,日益激烈的竞争和大幅攀升的成本将呈现“规模越大越好”的演化格局。医疗机构相互并购,医生群体结盟独立,既顺应经济扩增的趋势,也能有力抵御不断施压的上层监管。提高医疗流程透明度、增加护理质量,提升医疗结果,是监管部门所要求的,由个人决定医疗方式将逐渐被标准化的指导和政策规定所替代。最后,通信技术的普及将连接全世界,大众对医疗行业的期望也越来越高。追求人口健康负责健康管理的医疗机构意识到现在更需要提前预知人们的疾病风险,医疗机构和社会保健体系当通力合作,让公共和私营部门共同由疾病治疗转型为医疗预防,从而优化医疗结果。尽管在英国、墨西哥、日本和德国已经显现了好的苗头,但整体来看,预防医疗还处于早期阶段。价格评级标准的改变最著名的转变就是美国提倡医疗改革从由按服务项目付费的FFS模式,转向按服务结果付费的VBS方式。现状是一些机构在积极为VBC模式作准备,另一些仍 然保持观望态度。行动缓慢的医疗机构其行为是可以理解的,因为VBS模式的投资巨大,且FFS付款模式利润可观,而且利益相关方对医疗价值判断还未作出明 确合理的硬性规定。所以,当医疗费用和病人数量同步激增,利益相关方需要想方设法采取更低廉的成本来应对。现实是很多障碍正阻挡目标的实现。VBC模式医疗卫生系统正在通过优化供应链,加速资金周转,改善服务。比如批量采购、提高记录管理、减少劳动力成本支出、提高临床医疗效率,这些途径都能在短期内提 升利润,但终究不是最本质的解决办法。前瞻性地卫生医疗系统对现有财务业务模型更为看重,会重视每一美元换来的医疗实际价值。图3反映了VBC付费模式由FFS、共享节约、绑定付费、风险共担到成本平摊等模式的过渡,由低阶向高阶,医疗机构承担的控费责任和支付费用风险也越来越高。为此,医疗机构为重建VBC模式,需要围绕如下方面进行投入:1.对医疗表现进行评估:采取报告和分析工具测量结果;2.病人参与:利用工具提升病人医疗知识和能力,增加治疗依从性;3.医疗协同:医疗服务方审时度势地适时参与管理,减少成本,提升质量;4.风险分担:对由临床或病人生活习惯引发的疾病风险进行分级管控;5.医疗计划:基于循证医学开发新的医疗路径,持续管理疾病。PPP模式公私合营的PPP模式将构建基础设施、共同开发技术,参与运营管理活动。PPP模式能帮助政府提供更多医疗服务,拓展医疗覆盖面,解决成本负担。一些PPP模式包括风险分级,类似VBC模式,政府会根据医疗结果给私人机构以经济奖励。PPP模式会催生更高效的医疗运营体系,以病人为中心的医疗模式就是最明显的变化。从单一科室的孤立医疗转向整合多科室的综合性医疗,从断点片段式医疗跨向疾病连续监测医疗,从以医生为主体转向患者为中心的医疗,从个体医生的医疗服务转向多专业混合小组诊断医疗,从片面局部的医疗管理转向与外部合作共同管护病人。德勤报告还指出对于中国的二三线城市,即便中国政府已经为医院投入大量资金,但医疗基础服务还有待加强。这些城市需要训练有素的医生、擅长疾病诊断的医生以及其 他医疗从业者,让移动医疗技术投资和基础设施投资效益最大化。图6反映了世界范围内,在2014年和2019年每千张床位和当地人口的相对比率。此外,各国在医疗行业方面的改进还包括重组行政功能、信息共享和公开、减少重复的医疗检测服务、大胆采用数字技术,减少对面对面医疗的依赖,提倡居家护理医疗和患者的自我健康管理。很多国家比如加拿大、英国和澳大利亚等,都有不同的自主性医疗健康机构,从初级到二级医疗、三级医疗、临床培训、领导力发展、质量标准制定、检验、 监管到决策机构,有不同的服务行政部门,分别各司其事。预计,2016年很多医疗健康机构都会努力降低单位成本,实施共享服务。另外据兰德公司研究,美国31%的医疗费用发生在院内,改善院内医疗协调流程,对降低医疗浪费,促进整个医疗行业发展大有裨益。成本压力、人员配比 模式改变、技术进步和消费者偏好都营造了“无处不在”的新医疗。相应地,众多医疗健康系统都在引进可供选择的多种医疗服务模式,如去中心化地由国家控制下 放到地方管理,从大型医院移植到成本更低的基础设施应用。据统计,平均来看,从2014年到2017年,每1000名医生和全世界人口的比例基本保持不变,印度是最短缺医生的,医生和人口比例为 0.6:1,而中国同样不容乐观。医院多点执业还未放开,这阻止了民营医院的发展。虽然在部分地区有多点执业的试点项目,但大众还是在意公立医院的排名和 品牌影响力,民营医院和外资医院在招收高信誉度的医生方面困难较大。面对市场竞争加剧,加之持续监管压力,美国医疗机构大多采取并购整合医院的形式,提供规模化地大卫生系统和更广泛的服务范围。2014年和2015年中期,医疗机构之间的医疗投资并购增长加剧,如图8所示:美国医疗机构并购占据了2015上半年大部分的并购事件。医疗技术创新医药创新人类基因组和精准医药的出现,开辟了靶向治疗最具挑战性疾病的新途径。然而,医疗创新的成本代价也很高。眼下,医疗创新会继续拉高医疗成本。比如,美国批准的治疗丙肝新药,虽然长远来看,新药物将节省肝功能衰竭、癌症的治疗成本,但药品单价仍然昂贵。为此,部分州以及商保公司实际是限制新药的使用范围,最终导致公私营机构的激烈竞争,政府也会对比新旧药的应用成本、综合考虑。精准医疗个性化的精准医疗将从过去质量泛化的大规模医疗,变为整合药物和设备的综合诊断、疾病管理。比如,美国政府的FY2016预算就提出2.15亿美元用于精准医疗,重点是建设大型纵向延伸研究,并在法律框架下,保证患者数据在众多医疗机构和组织间共享。基于遗传学的个人健康护理将从根本上改善预后效果,比如30%~40%的患者服用药物是有副作用的,然而精准治疗将帮医生制定更准确的治疗方案,减少副作用。数字化地连接医疗未来趋势是打通院内院外,实现医患间随时随地交流。医疗机构将探索医患增进交流的模式,鼓励患者参与,支持院外的预防、管理慢病。由移动医疗mHealth概念逐渐转化为连接医疗cHealth。通信、诊断、治疗和监控的过程数字化实现离不开医疗技术的进步。可穿戴设备能捕捉数据,移动医疗APP和社交媒体都参与其中。例如,发展中国家严重缺乏医疗资源和基础设施,尤其是农村地区,所以需要探索数字化技术改善基础医疗服务,以弥补和城市健全医疗体系的差距。全球数字医疗市场包括无线医疗技术、电子健康档案EHR、电子病历EMR、移动医疗、远程医疗和其他。2013年全球市场608亿美元,2020年 预计为2333亿美元,年复合增长率为21.2%。而且,数字医疗发展带动了无线设备、传感器与智能设备的发展。2014年数字医疗的投资超过40亿美 元,远程医疗是增长最快的领域,从2013年到2014年,一年间增长了3.15倍。举例可穿戴设备如何搜集人体健康数据,隐形眼镜监测血糖、听力设备增强听力、心率监测设备、腕带监测心跳和血压及热量、智能药片监测服药的生理反应、鞋垫传感器测量体重、体脂平衡和温度。如图9所示:
  • 粘度的测量以及影响因素
    您如何准备要测量的样品? 在流变和粘度测量中,样品制备都会影响测量结果。 在低剪切速率下测量样品时尤其如此。 1.重要的是在测量前不要摇动或搅拌样品,因为这会使样品承受无法确定的剪切载荷,除非样品有沉淀或其他分离现象。在这种情况下,将需要使用一致的方法和工具进行搅拌或摇动。 2.您的涂抹方法也应保持一致,例如汤匙或抹刀。 3.移液器或注射器的应用仅适用于油,树脂或溶剂。对于其他物质,这些施加方法将增加剪切载荷,这将减小测量值和偏斜结果。 4.尝试确保没有气泡,因为它们可以模拟非牛顿行为并提供错误的测量结果。 5.您使用的样品量必须与您使用的测量方法相匹配。样品太多或太少都会导致测量误差。 6.按照指导等待时间。制备可能会对样品产生压力,然后需要恢复期。将测量系统放置到位后,可能需要重新生成样品结构,然后才能进行准确的测量。 7.您还必须确保防止样品干燥,因为这会导致测量值过高。 哪些因素会影响粘度测量? 尽管测量流体粘度的过程可能看起来很简单,但是如果这些测量将是准确的,则有一些因素需要考虑。 温度是关键因素。温控浴的功能是在整个过程中保持精确的温度。您应该能够将浴温控制在所需温度(通常为40或100°C)的0.02°C以内。 有温度控制的浴缸系统,使您可以更轻松地完成此操作。 在毛细管粘度计中,U形玻璃的直径必须精确才能精确测量。因此,这些玻璃通常使用低膨胀硼硅酸盐玻璃制造。这有助于最小化误差,并每年重新校准毛细管粘度计。 在两次测量之间使用无残留溶剂彻底冲洗并干燥也很重要。 粘度计的尺寸会有所不同,以测量不同类型的粘度。无论仪器大小如何,他建议粘度计进行测量的最短时间应为200秒。这允许流体在标记点之间通过。
  • “蛋白样品冻干过程”干货分享!——深度解析相分离现象及影响因素
    冻干可以通过去除样品中的水分,限制分子的流动性,减慢药物成分的物理/化学反应来延长产品的保质期,然而固体状态的配方也不是一直稳定的,由于在干燥过程中,蛋白质暴露在许多应力作用下,在长期的储存过程中,仍然容易发生物理/化学反应。在冻干及储存过程中,我们常常会加入一些稳定剂来保护蛋白免受应力的影响,主要有两种稳定机理来解释:水替代假说和玻璃化假说;但是两种稳定机制都需要将蛋白质分子分散在稳定剂中,使得蛋白质和稳定剂都处于相同的单一无定形相,即不发生相分离。那么相分离是如何发生的?为什么会发生?相分离主要发生在冻干的预冻步骤,在一定程度上取决于冻干的工艺和配方成分。1、相分离的机理 图1:冻干分为三个步骤冻干主要分为三个步骤:预冻,主干燥及次级干燥。(如图1所示)在预冻过程中,溶液被降到一个很低的温度,晶核形成并且生长,样品中的溶质浓度不断浓缩,可以达到初始浓度的约50倍,如果在热力学和动力学上均利于反应发生的条件下,高浓度的溶质可以导致相分离。2、相分离热力学当溶液为成分A 和成分B的混合物,会发生下面的相互作用(如图2所示)。熵和焓之间的竞争决定了相分离的过程。相分离的热力学基于混合物的自由能(弗洛里-哈金斯理论),聚合物由于尺寸大小和连通性,不能充分利用可用体积,大分子量聚合物的熵变化较小,因此,混合物热力学更容易受到较大焓贡献的支配,当ΔGmix 0: 热力学上有利于相分离 (A-A和B-B相互作用优于A-B相互作用)。 图2:溶液A和B发生的相互作用如果相分离是热力学自发以及动力学上利于反应(足够的移动性和时间),蛋白和稳定剂会分离成两个不同的相,富含稳定剂的无定形相以及富含蛋白的无定形相,后者由于缺乏稳定剂的保护,蛋白更易于降解。(如图3所示)图3:蛋白和稳定剂会分离成两个不同的相3、相分离的检测方法无定形-无定形物质的相分离不容易检测,由于检测方法有限,证据不足,目前主要有如下检测方法:检测技术方法局限性调制DSC配方中有多个Tg’表示有多个无定形相通常,富含蛋白的相不能被DSC检测到,因为在Tg’温度下具有较小的ΔCP;要求高浓度的蛋白配方。拉曼成像技术非重叠成分峰的线谱分析范围:2-50微米;不能检出低于检测限的成分波动。固体核磁共振利用弛豫时间来探测2-5 nm, 20-50 nm分子大小物质的混溶性动态实验需要大量的样品。X射线衍射/散射在纳米尺度上探测结构特征对于两个组分,均包含重要的结构层次,无法区分相分离;成本高,动态实验。SEM肉眼观察物质的形态结果会存在模棱两可的现象;需要较大的容易辨认的相。电介质技术依赖于电场中的分子迁移率响应存在不确定性。4、工艺参数对相分离的影响过冷度-----成核温度❖热力学冻结温度和首次成核温度之间的差值为过冷度;(如图4所示)❖较高的成核温度会更易导致相分离;(由于溶质在远高于Tg’温度下进行浓缩) 图4:过冷度冷却速度❖控制达到给定过冷度的速度;❖缓慢的冻结速度会更容易导致相分离;退火❖主要用于填充剂结晶,控制冰晶形态或增加冰晶体的大小,缩短一次干燥时间;❖如果两相热力学更稳定,退火时间和迁移率的增加可能会提供相分离的机会;灌装体积❖较大的灌装体积会对相分离有较大的影响,因为在样品中具有较大的热梯度。案例分享成核温度和冷却速度对相分离的影响对已知的相分离聚合物体系 1:1 PVP29K:DEX10K(100 mg/ml) 进行研究,将冷却台放在拉曼显微镜下进行观察。(如图5所示) 图5:已知相分离聚合物体系在拉曼显微镜下的观察成核温度对相分离的影响 图6:成核温度对相分离的影响与每个单一组分相比,成核温度较高的一组(-5℃)对相分离具有较大的影响;其余的成核温度对相分离影响较小。(如图6所示)冷却速度对相分离的影响 图7:冷却速度对相分离的影响所有的冷却速度均会在一定程度上提高相分离的倾向,但是影响较小。(如图7所示)*结论在没有热历史的情况下,成核温度和冷却速率对相分离的影响较小。成核温度和灌装体积对相分离的影响 图8:成核温度和灌装体积对相分离的影响较大的灌装体积(1ml VS 0.2ml)和较高的成核温度(-5℃ VS -10 ℃)会导致相分离,可能是由于样品内部存在较大的温度梯度。(如图8所示)5、配方成分对相分离的影响在冻干过程中配方成分的兼容性是阻止相分离的关键,如研究表明聚合物体系的不混溶性随着聚合物分子量的增加而增加。对于蛋白而言,相分离的倾向性可能与稳定剂大小,静电相互作用(盐类),稳定剂类型(填充剂、表面活性剂),稳定剂浓度,蛋白质特性(等电点,大小),配方PH值等有关。案例分享——配方组分对相分离的影响❖实验进行了系统的研究,探索蛋白质:糖的比例以及蛋白质(分子量,电荷)和糖(分子量,单糖亚基和长度)的特性如何影响配方在冻干过程中的混溶性。(如图9,10,11所示)❖蛋白质和糖(200mg /mL)的混合物按以下比例(w:w):蛋白质:糖——0:1,1:9,1:4,1:2.3,1:1.5,1:1,1:5:1,2.3:1,4:1,9:1❖多个Tg’的存在表明存在相分离。 图9 图10 图11实验表明● 在所有的蛋白-糖体系均观察到了相分离现象(两个不同的Tg’),尽管不同的比例出现相分离的时间不同;● 不同蛋白-糖混合物Tg’的宽度不同,有可能多个Tg’会重叠在一起,形成一个较宽的Tg’, 导致无法检测到相分离现象;● 其中在牛血清蛋白和海藻糖混合物中,当二者比例为1:1.5和1:1 时,观察到存在相分离现象;(如图12所示) 图12● 对于蛋白-糖体系中,二者比例从1:2.3 到4:1 均观察到存在相分离现象;(如图13所示) 图13结论● 对于几乎所有被研究的体系中,当配方中蛋白质和糖的比例为1:1和1.5:1时确定会发生相分离现象,这表明蛋白质和糖的比例和系统的相分离倾向之间可能存在相关性;● 在系统的相分离趋势和以下属性之间似乎没有明显的相关性: # 蛋白质电荷/等电点 # 蛋白质分子量 # 糖的分子量 # 单糖亚基;● 在几乎所有研究的配方中,当蛋白和糖的比例为1:1时会发生相分离;● 本研究结果表明,冻干蛋白配方中应加入过量的稳定剂。6、冻干蛋白配方中相分离的重要性● 相分离取决于具体的操作过程和组分;● 在预冻过程中,温度/时间和浓度是关键因素,会影响系统相分离的趋势;● 蛋白和稳定剂的物理化学特性会影响相分离;● 在冻干过程中保护不足会导致长期储藏过程中不稳定性的增加;● 当缺乏稳定剂时,蛋白在干燥过程中会发生改变(即形成反应型结构),这可能会导致储存过程中潜在的稳定性问题;● 需要了解相分离如何影响冻干制剂的保质期;● 相分离检测是稳定性欠佳的指标;● 未检测到的相分离会影响蛋白质稳定性和整体产品质量;● 需要更好的检测方法!当前的方法可以证明样品存在相分离,但不能证明样品不存在相分离。参考文献[1] Padilla,A.M.et.Al.(2011).”The Study of Phase Separation in a Model Polymer Phase Separating System Using Raman Microscopy and a Low-Temperature Stage: Effect of Cooling Rate and
  • 实验室误差的种类及影响因素分析
    实验室误差分析就大的方面而论,主要分为软件方面、硬件方面和其它方面。软件方面实验室误差分析主要包括检验人员的主要因素,实际操作、检验方法和检验理论 硬件实验室误差分析主要包括检验设备和环境条件 其它方面实验室误差分析主要指由于科技水平限制而无法预知的那些方面。其中,软件方面实验室误差分析和硬件方面实验室误差分析是实验室误差分析的主要组成部分。因此,搞好实验室误差分析,主要就是搞好软件方面和硬件方面的实验室误差分析。其次,还与检验方法是否合理,所涉及的环境、标准溶液、产品标准与方法标准配套等因素有关。  1、软件方面实验室误差分析  软件方面实验室误差分析是实验室误差分析的关键。它是实践技能、检验方法、检验理论、检验信息过程的综合体。要搞好软件方面的实验室误差分析必须对这个综合体加以分析并予以改进。对综合体分析应从以下两个方面进行:  1.1 人员误差分析  检验人员由于主观因素和实际操作水平的不同必然会实验带来误差。其中主观因素的误差尤其难以控制,因为每个人的生理特点、个性和习惯各不相同,要想预防和消除这些由主观因素带来的误差,就必须要求检验人员有强烈的责任心,对工作认真负责,严格执行实验室检验人员规章制度,力求尽量最大可能摒弃那些可能影响实验的不良因素。实际操作水平的提高不但需要检验人员具备熟练的检验测试技能,而是还要具备丰富的科学理论知识,这就需要我们检验人员不懈的努力实习和长期的工作经验积累。  1.2 检验方法(检验理论)误差  检验方法误差主要指检验理论不十分完备,特别是忽略和简化所引起的误差。通用的实验、检验方法是在长期实践中逐渐形成并不断加以完善的。特别是在实际应用中,本着简单、快速、准确的要求,对检验方法进行合理的压缩和简化,压缩和简化后的检验方法虽然提高了检验速度和检测效率,但潜在地增大了实验误差。如检测碳酸饮料中的有机酸含最,采用倾折法消除饮料中二氧化碳对实验后果的影响。这种方法虽然提高了检验速度,但倾折法对饮料饮料中二氧化碳消除并不十分明显,所以说,倾折法并不是一个理想的压缩和简化的实验方法。因此,在进行实验室误差分析时,我们必须考虑到这一点。同时,要求检验人员必须认真分析检验方法,从试样制备、检验操作直至检验结果的分析与处理进行控制分析,保证检验结果准确可靠。  2、硬件方面实验室误差分析  硬件方面实验室误差分析是实验室误差分析的基础。搞好实验室硬件建设是减少实验误差,提高质检水平的根本。实验室的硬件主要指检测仪器、设备和工作环境。  2.1 检测仪器、设备误差  仪器、设备作为讲师器具,其本身的结构、工艺以及磨损、老化、故障都能引起误差。因此,对检测仪器、设备的保养、维护和使用要严格遵守实验室检测设备的规定,防止因检测仪器、设备人为磨损和不正当操作损坏而引起的器具误差。另外,大多数检测仪器、设备都是按相对测量法设计的,因此,在检验前或检验过程中必须用标准物质定度,以消除检测仪器、设备误差。  2.2 工作环境误差  工作环境主要包括温度、湿度、大气压强、电场、磁场、振动等因素。可以说,在实验室日常工作中,工作环境是经常被考虑到的因素。如我们在实验室检验时经常记录下的当时室内温度和湿度这两个环境参数,其实就是考虑到环境因素对分析实验的影响。环境误差作为实验室一种误差来源,是我们无法彻底消除的克服的,我们只有通过不断地改善实验条件,减少来自环境方面的误差。这就要求我们的各级政府都要重视实验室建设并给予积极的财政支持,保证实验室正常开展工作。  3、标准溶液、产品标准与方法标准的分析  3.1 标准溶液误差  标准溶液是滴定分析的基础,它的准确与否,直接影响到分析结果。1988年,国家颁布了&ldquo 化学试剂,滴定分析用标准溶液制备&rdquo 标准,即GB601&mdash 88,根据此标准制备的标准溶液,准确度很高,其相对误差不大于0.1%,这对于某些要求很高的分析检验,如化学试剂纯度的测定,是十分必要的,而对于食品中某些常量的分析测定,就有些小题大做了。根据食品的特点,各项指标一般要求精确到,4-I或± 0.1。以蛋白质含量为例,标准要求&ge 8.0为合格,按有效数字的概念,绝对误差不超过末位数的半个单位,上述数值的绝对误差为± 0.05,相对误差为± 0.6%,列于这样准确度要求的检验,强调用误差为0.1%的标准溶液来滴定,显然是不合理的。  一个常规分析实验室所其备的仪器、环境条件等,可以确保标准溶液的准确度达到0.2% ,这种准确度的标准溶液,既能满足一般分析工作的需譬,又有比较广泛的适用性。  3.2 产品标准与方法标准配套的误差  标准,具有科学性和严肃性。但在实际工作中,产品标准与方法标准有时会不匹配,主要表现是:分析方法的准确度远远高于结果要求的准确度,或分析过程中各参数的准确度不一致的问题。  例如:某一产品,标准要求的水份含量要小于等于5.0%,也就是说检验结果要求准确到0.1,而方法标准则要求用分析天平来称取样品,虽然分析天平的误差很小(绝对误差为± 0.0002),但与检验结果的准确度要求相比,使用分析天平是完全没有必要的。  我国现行标准中类似上述的问题还很多,这种情况的存在,既没有提高检验数据的准确度,也没有提高工作效率,必须引起我们足够的重视。从以上的分析和论述中,我们不难看出,只要我们切实抓好实验室软件方面和硬件方面及标准溶液、产品标准与方法标准的误差分析,我们就能有效地提高质检水平,从而为人民生命健康、财产安全和国内外贸易提供有力保障。
  • 免疫组化染色结果容易受哪些因素影响
    免疫组化染色结果容易受哪些因素影响众所周知免疫组化技术对于研究肿瘤的发展规律,进行良恶性分类及鉴别诊断具有重要的作用,因此在做此类实验过程中一定要加倍谨慎起来,尤其是免疫组化染色实验,其结果很容易受某些因素影响。那么,免疫组化染色结果容易受哪些因素影响? 专家指出:免疫组化染色的结果,与组织的固定、抗原的修复、抗体的保存及使用三个重要因素相关密切。 1、固定 常用的组织固定液是甲醛,标本必须及时固定,这有利于抗原的保存,防止抗原在组织细胞内弥散、丢失或失去免疫活性,但固定时间最好为!“ 小时,一般不超过”# 小时,因固定时间越长,部分组织细胞免疫组化标记敏感性会明显降低。其原因为甲醛固定过程中会形成醛键或羧甲基,而封闭了部分抗原决定簇;也会使蛋白与蛋 白之间发生交联,也可能会封闭抗原决定簇,使许多抗原如常用的$%、&$‘( 等免疫反应明显减弱,甚至消失,致酶标不能得出正确的结果,因此在染色时为取得良好的染色效果,必须对有些抗原进行预先修复,以进一步暴露抗原。 2、修复抗原 外检组织经过甲醛固定、脱水透明及浸蜡过程,组织中的抗原成分已被破坏或封闭,为了恢复组织的抗原性和提高组织对抗体的敏感性,一般需 修复抗原。有人用蛋白酶消化,或微波处理,或高压锅处理,使封闭的抗原成分暴露出来而显色。我们采用高温高压处理切片,切片在弱酸及高温高压下,使封闭的抗原显示出来,提高了阳性检出率和阳性强度,同时减轻了背景着色,使阳性结果清晰可辨。当然,不同组织、不同抗原其所用的高压时间及选用合适的抗原 修复缓冲液及其最适的。' 等均对结果影响甚大。 3、正确保存及使用抗体 抗体是免疫组织化学最基本的试剂与材料,它可分为第一抗体与第二抗体,因为抗体是蛋白质构成,保存或使用不当,不但会造成浪 费,而试剂变质会出现假阴性结果。对抗体及6、7试剂盒均应放置低温冰箱贮存,用一支取一支,对于一次用不完的抗体可保存在# 8冰箱内,而不要放在冰格室,因为那里的温度在+ 8以下,抗体会很快结冰,再次使用时又要溶解。这样几次冻融,抗体效价会急剧下降而失效。对一些将近失效期或已过失效期,有的适当提高工作浓度, 也可以作出正确的结果,以免丢失造成浪费。
  • 大型科学仪器中心对科技创新影响因素分析
    p  大型科学仪器集约化管理与创新能力提升之间存在着多维、动态和复杂的关系,具体表现为大型科学仪器参与创新活动的多模态性、大型科学仪器中心创新服务的多维性和创新能力的多元性。/pp  从服务创新产出视角看,大型科学仪器中心服务能力包括广度服务和深度服务两个维度。服务广度就是中心为多少单位或人员提供了服务,服务对象越多,频次越高则服务广度越大。为了满足特定科研人员个性化仪器设备利用需求或与科研人员合作开展项目攻关等,需要融入大型仪器设备中心实验操作人员的创新性思维,进行创新性服务。开展深度服务可以理解为满足高质量、高水平的服务需求而投入大量人力和创新型思维的服务。一般而言,深度服务更容易形成高质量、高水平的科技创新产出。/pp  大型科学仪器中心通过提供广辐射、高质量的服务,最终形成一系列创新产出,且创新产出以科技创新成果、人才培养以及对产业与社会经济的促进等多种形式体现。以大型科学仪器中心的服务为基点,通过对本领域科技创新服务客体的资源凝聚,形成基于服务的合作创新网络,实现以服务促创新的全过程。基于此,科技创新合作网络是基于服务形成的过程变量,囊括了科研院所、高校、企业等不同群体。科技创新合作网络是大型科学仪器中心聚集资源、提高仪器设备利用率的重要载体,通过实现对知识创造能力、知识流动能力、科技创新环境能力三个方面的促进,形成不同形式的科技创新产出,具体包括科技成果、人才培养以及产业促进等。/pp  大型科学仪器通常从观测、测量、分析等科研需求出发,用于满足特定领域的科学研究(或试验)目的,完成科学研究实验并产生实验数据或结论等。基于机构服务质量与大型科学仪器对创新的贡献属性,根据调研提出“大型科学仪器中心对创新能力影响因素模型”,研究模型中相关变量及其作用关系论述并提出相应假设。/pp  第一,仪器设备先进性。一般而言,在同一研究领域或针对同一类型的大型科学仪器设备,价值越高代表的先进性程度更高。购置时间近的大型科学仪器往往代表着较先进的科技水平,能够为科技创新活动提供更新的技术手段。/pp  第二,人力资源能力。“人”是大型科学仪器设备参与创新实践的重要主体,人力资源建设情况特别是仪器设备操作人员水平对创新能力产生重要影响。其中领军人才的学术影响力、资源凝聚力是仪器设备充分利用的关键因素,设备操作人员的操作水平是仪器设备用得好的关键因素。/pp  第三,服务项目层次。大型科学仪器设备参与创新活动过程中是否需要进行新方法探索、新试验媒介应用以及新设备极限值的突破等,核心在于服务客体的科技创新需求是否明确。一般认为,领域内高端人才在执行高层次科研项目中对仪器设备服务需求较为明确且创新思维强,而研究生为完成学位论文提出的仪器设备利用需求较为常规。/pp  第四,仪器设备开放环境。大型科学仪器设备使用时长、开放时长越高,仪器设备的利用率越高,或者基于大型科学仪器中心形成的科技创新网络聚集资源的能力越高,对创新产出的支撑越大。/pp  基于以上研究,提出对策建议如下:/pp  一是加强人力资源建设与储备,提升高水平人才在创新实践中的核心作用。建立基于创新导向的管人用人机制,建立健全完整人员培训制度体系,积极推进开展高层次人才、高级职称人才以及仪器设备技术型人才等复合型人才梯队建设。/pp  二是重视仪器设备更新与二次开发,充分发挥先进仪器设备在创新硬环境建设中的关键作用。鼓励和引导科研力量投入到大型仪器设备研发,凝练大型科学仪器设备创新型改造升级重大需求和重大任务,激励大型科学仪器设备中心开展仪器设备利用方法创新、介质创新。/pp  三是优化资源开放共享环境,增强仪器设备支撑科技创新活动的辐射力与影响力。建成跨部门、跨领域、多层次的大型科学仪器设备网络服务体系,通过多样化的创新服务形式,扩大科技创新合作与服务网络,形成院产学研紧密结合的业务合作关系,鼓励大型科学仪器中心从单一服务科研任务向多元化服务、服务“双创”转变。/pp  四是积极探索与高端创新主体构建稳定创新合作服务网络的适宜机制,提高大型科学仪器中心对高层科研项目的参与度。推动大型科学仪器中心由被动等待服务向主动参与创新转变,创新与高端创新群体的合作方式,建立紧密的科研合作关系。引导大型科学仪器中心提升共享服务能力,利用专享服务通道、专业服务团队等形式激发和吸引高端创新群体的创新服务需求,提高创新服务深度。/pp style="text-align: right "span style="font-family: 楷体, 楷体_GB2312, SimKai "  (此文为摘编版,全文参见2018年《中国科技资源导刊》第6期)/span/p
  • 你知道影响油品密度测定的因素有哪些吗?
    得利特简介得利特(北京)科技有限公司专注油品分析仪器领域的开发研制销售,致力于为国内企业提供高性能的自动化油品分析仪器。公司推出系列精品润滑油分析检测仪器、燃料油分析检测仪器、润滑脂分析检测仪器等。油品密度测定的影响因素解析油品密度测定的影响因素 油品在经过加工处理之后,往往需要对油品的密度进行检测,通过检测将不同油质的油品进行分类加工,然后将其通过合理的处理进行在包装,投入到社会的发展过程中去。但是在油品密度的检测往往会受到外界因素以及其他因素的影响,最终有可能造成对油品质量分析造成误差,使相关的油品不能够得到有效的利用。在进行检测的过程中,油品密度往往会受到温度,挥发性,粘度以及环境的影响。1.温度与油品密度测定的关系环境温度对密度计读数的影响也足以让测定结果产生偏差,一般油品的温度变化系数r值为0.00052-0.00107,因此,在密度测定过程中要注意环境温度变化的影响,防止一些不当的操作。对汽、煤、柴等轻质油品要注意油温与室温的差别,南方与北方的气温变化差别很大,特别是北方的气温,在春、夏、秋季与南方的状况无异。一般油温与室温相差不大,测定汽油、煤油、柴油等轻质油品密度时,大多数在室温条件下测量,试样和分析测试仪器两者温度基本一致,密度计在试样中停留短时间就可平衡,测定过程中温度计的读数很快就会稳定,而冬季则要注意,冬季时油品的温度―般在5~10~C,但实验室的室温会比油品的温度高,原因是实验室有取暖设施,因此,测定时要么将油品放置一段时间,使其温度自然上升,要么将油品在水溶中稍微加热,总之,要使测定时油品温度稳定,尽可能减少环境温度对密度测定的影响。2.挥发性及粘度对油品密度测定的影响要准确测定油品,特别是原油的密度是一项较困难的T作,这是由于原油的性质所决定的。原油是各种经类的混合物,原油的组成不同其性质也就各异。要测定原油的密度,从采样到实验室测定应尽量减少中间环节,防止轻组分的挥发,测定时原油的温度要适当,这一点至关重要。温度过高,测定时间过长,会导致轻组分挥发,使测定结果偏高 温度太低,原油粘度大(成糊状)使密度计不能自由沉浮而达到自然平衡状态,也将使测定结果偏高。3.环境因素对油品密度测定的影响在测定油品密度过程中,气流也会对测定结果产生影响。在测定工作时,气流越大,油品表面蒸发越大,轻组分挥发越严重,从而导致密度测定结果偏高。目前使用密度计法测定油品密度时,基本上都是在实验室内进行,但如果遇到特殊情况,如有货物利益人申请要求在采样现场进行检验,就必须在室外环境进行检验。在实验室条件下,要保证无气流产生是很容易满足的,只要关好门窗,关掉抽风机,避免人员频繁走动就可基本达到条件,但在室外的条件下,就要选择良好的避风点,测定过程要做到快而准,这种环境要求检验人员必须具备熟练的现场操作水平。综上所述,通过对环境因素以及挥发性,粘度、温度等因素的分析,本文对影响油品密度测定过程中的因素以及相应的检测方法进行了详细的论述。在未来的发展过程中,油品质量的好坏将直接影响其产生的效益,所以提高对油品密度测定影响因素的分析,减轻分析过程中以上因素的影响比重,将有效的提升油品密度测定的准确性。
  • 一文了解|影响红外热成像仪探测距离的因素
    约翰逊准则探测距离是一个主观因素和客观因素综合作用的结果,主观因素跟观察者的视觉心理、经验等因素有关。国外在这方面做了大量的研究,约翰逊根据实验把目标的探测问题与等效条纹探测联系起来,研究表明,有可能在不考虑目标本质和图像缺陷的情况下,用目标等效条纹的分辨力来确定红外热像仪成像系统对目标的识别能力,这就是约翰逊准则。目标的等效条纹是一组黑白间隔相等的条纹图案,其总高度为目标的临界尺寸,条纹长度为目标为垂直于临界尺寸方向的横跨目标的尺寸。等效条纹图案的分辨力为目标临界尺寸中所包含的可分辨的条纹数,也就是目标在探测器上成的像占的像素数。目标探测可分为探测(发现)、识别和辨认三个等级。探测,在视场内发现一个目标。这时目标所成的像在临界尺寸方向上必须占到1个像素以上。识别,可将目标分类,即可识别出目标是坦克、卡车或者人等。这是目标所成的像在临界尺寸方向上必须占到4个像素以上。辨认,可区分开目标的型号及其它特征,如分辨出敌我。这是目标所成的像在临界尺寸方向上必须占到8个像素以上。以上都是在临界值,也就是刚好能发现目标,以及目标与背景的对比度为1的条件下所得到的数据,从上面的约翰逊准则可以看出,一套热像仪能看多远,是由目标尺寸、镜头焦距、探测器性能等因素决定的。影响因素1. 镜头焦距决定热像仪的探测距离的最重要的因素就是镜头焦距。镜头焦距直接决定了目标所成的像的大小,也就是在焦平面上占几个像素。通常这是用空间分辨率(IFOV)来表示,它表示每个像素在物空间所张开的角度,也就是系统所能分辨的最小角度,一般由像元尺寸(d)与焦距(f)的比值得出,即IFOV=d/f。每个目标在焦平面所成的像占几个像素,可由目标尺寸、目标与热像仪的距离、空间分辨率(IFOV)计算得出。目标尺寸(D)和目标与热像仪的距离(L)的比值为目标的张角,再与IFOV相除得到像占用像素点的数量,即n=(D/L)/IFOV=(Df)/(Ld)。从中可以看到,焦距越大,目标像所占用的像素点越多,根据约翰逊准则可知,其探测距离更远。但另一方面,焦距越大,视场角越小,同时成本也更高。这里举个例子。热像仪焦平面的像元尺寸为17μm,配100mm焦距镜头,则空间分辨率IFOV为0.17mrad。观察1公里远的大小为2.3m的目标,则目标所张开的角度为2.3mrad,目标所成的像占用2.3/0.17=13.5个像素。根据约翰逊准则可知,达到辨认水平。2. 探测器性能镜头焦距是从理论上决定了热像仪的探测距离,在实际应用中起着重要作用的另一因素是探测器性能。镜头焦距只是决定了所成像的大小,占用像素点的数量,探测器性能则决定图像质量,如模糊程度,信噪比等。探测器性能可从像元尺寸、热灵敏度、信号处理等方面来分析。像元尺寸越小,则空间分辨率(IFOV)越小,从前面的讨论可看出,其探测距离越大。一个典型例子是,FLIR非制冷热像仪的Photon320的像元尺寸是38μm,Photon640的像元尺寸为25μm,如果都配100mm镜头,观察2.3m的目标,按照约翰逊准则,其识别距离分别为1公里、1.5公里。探测器的热灵敏度和信号处理决定了图像的清晰度。如果探测器的热灵敏度和信号处理能力不好的话,则所成的像只是一个模糊的热像,也就无法识别。因此,一些探测器的热灵敏度不高的话,则采取加大镜头口径的方法来提高图像效果,这不但增加了成本,而且也增加了使用上的不方便。美国FLIR的Photon系列,使用的镜头F数一般可降低到1.4~1.7,也就是口径可做得特别小。像现在国内普遍更新换代的12um要比17um的机芯看的距离多1.4倍。3. 大气环境虽然热辐射对大气的穿透能力比可见光强,但大气吸收、散射等对热像仪成像还是有一定的影响,特别是大雾和大雨的天气环境,从而影响到了热像仪的探测距离。像长波在雨雾中的穿透能力很差,中波在雾中的穿透力强,但穿雨同样不行。综上所述,红外热像仪探测距离受到几个方面的影响,它是探测器、镜头、目标、大气环境等客观因素、人的主观因素及软件算法共同影响的结果,所以在不考虑其它因素影响的情况下还是按照下面的公式进行计算。n=(D/L)/IFOV=【目标尺寸(D)*焦距(f)】/【目标与热像仪的距离(L)*像元尺寸(d)】但是不考虑大气环境的影响的话,一般会在探测上增加0.5个像数作为标准,识别加1个像数作为标准,辨认加2个像数作为标准来弥补不同探测器的灵敏度不一致及镜头良率的问题,来增大目标所占像数的数值确保能够得到想要的效果。
  • 聚乙烯中炭黑含量不同测试方法的探讨
    摘要采用GB13021《聚乙烯管材和管体炭黑含量测定(热失重法)》和热重分析仪两种方法测定聚乙烯中炭黑含量。对两种方法的测定结果进行了比较,结果表面,两种方法均有良好的重复性和准确度,测定结果基本一致,采用不同方法得到的测定结果间可以互相参考  关键词 GB13021,热重分析依法,炭黑含量  Carbon black content in polyethylene was determined by two methods of GB13021, polyethylene pipe and tube carbon black content determination (thermal gravimetric method) and thermo gravimetric analyzer. Compared with the measurement results of the two methods of the surface, the two methods have good repeatability and accuracy. The measurement results are basically the same, the determination results obtained by different methods can reference each other  Key wordsGB13021, thermal gravimetric analysis, carbon black content  近年来,聚乙烯管材已成为继PVC之后,世界消费量第二大的塑料管道品种,广泛应用于给水、农业灌溉、燃气输送、排污、油田、化工、通讯等领域。无添加剂的聚乙烯耐气候老化和日光曝晒性能很差,因而实际使用时都会添加炭黑[1]。炭黑能使材料具有足够的抗紫外老化能力,当炭黑含量为2.0%~3.0%时可确保有效地防止紫外线的影响[2]。由于炭黑含量大小对聚乙烯管材具有重要的影响,许多标准都对聚乙烯中的炭黑含量作了规定,为了研发生产和销售的目的,炭黑含量是聚乙烯管材必须进行检测的指标。目前管道用塑料中炭黑含量的测试方法主要执行GB13021–1991[3]。使用热重分析仪是现在常用的热分析手段,用来测量高聚物的成分极为方便,常用标准是ASTME1131–2008[4],热重分析仪也可以用于测定聚乙烯中的炭黑含量。目前这两种方法并存,不同实验室间经常采用不同的方法测试,存在炭黑含量分析结果无法直接比较的问题。笔者用以上两种方法测定同批聚乙烯粒料中的炭黑含量,对不同测试方法的优缺点、测量重复性以及两种方法测试结果的一致性进行了探讨,对炭黑含量测试方法的选择提供了参考。1实验部分  1.1主要仪器与材料  炭黑含量分析仪:HS-TH-3500型,上海和晟仪器科技有限公司;机械分析天平:精度0.0001g,上海天平仪器厂;热重分析仪:STA449C型;德国耐驰公司;电子天平:M2P型,德国赛多利斯公司;聚乙烯:市售。  1.2实验方法  1.2.1GB13021法  称取试样质量m1(1±0.05)g置于样品舟中,将样品舟放入炭黑含量分析仪中,调氮气流量130mL/min,在氮气保护下升温至600℃,恒温裂解30min,取出后放入干燥器冷却至室温,称量质量m2,再放入马弗炉中950℃灼烧10min,取出放入干燥器冷却至室温,称量质量m3。炭黑含量c(%)  按式(1)计算。  1.2.2热重分析仪法  称取试样质量(10±0.05)mg放入样品架上,合上加热炉,设置升温程序,氮气气氛下室温升至550℃,转换成氧气,在氧气气氛下升温至750℃,计算机自动采集升温过程中样品质量变化。  2结果与讨论  2.1测量结果比较  按照1.2.1测定聚乙烯中炭黑的含量,测定结果见表1。 按照1.2.2测定聚乙烯样品的热重曲线(见图1)。根据曲线上各步失重的百分数可以判断样品分解机理及各组分的含量。随着温度升高,聚乙烯发生裂解,持续到550℃质量恒定,因为炭黑在高纯氮气中不发生反应,此时切换气体,通入氧气,使炭黑反应至完全,试样质量再次恒定。从550℃切换氧气到650℃质量稳定时发生的质量减少就是聚乙烯中的炭黑含量。650℃质量稳定后剩余物质为聚乙烯中的灰分。聚乙烯样品中碳黑含量的测定结果列于表1。从测试结果看,两种测试方法的相对标准偏差均小于3%,说明两种方法均具有较好的重复性,其中热重分析仪法的相对标准偏差比GB13021的相对标准偏差略大,这跟热重分析仪法样品量少、样品不均匀有关。两种方法测试结果的一致性可以采用以下方法进行[5]:假设两种测试方法的测试结果分别为x11,x12…x1n,平均值为x1,标准偏差为S1;x21,x22…x2n,平均值为x2,标准偏差为S2。若把xx12-看作随机变量,则根据方差的基本法则有:  故若xx2S12(x1x2)-G-则认为两组数据是一致的。将表1中的数据代入公式可以计算出:xx0.8212-=,2S(x1-x2)=0.83,计算结果表明两组数据一致。两种方法测试的结果具有一致性,可以用来相互比对。  2.2热重分析仪法准确度  热重分析仪在分析过程中自动记录样品实时质量,人为因素小,热失重量的准确度可以用标准CaC2O4来验证。CaC2O4H2O随着温度升高会发生以下3步化学反应:CaC2O4H2O(固)=CaC2O4(固)+H2O(气)(3)CaC2O4(固)=CaCO3(固)+CO(气)(4)CaCO3(固)=CaO(固)+CO2(气)(5)在每步反应中都有气体放出,从而固体出现失重现象,根据化学反应方程和分子量就可以计算出每步化学反应的理论失重量。CaC2O4H2O的每步化学反应都可以反映在热失重曲线上,用热重分析仪得到的CaC2O4H2O失重量和理论值列于表2。 从表2可以看出热重分析仪在550~750℃内的测量相对偏差为1.3%,测量准确度高。热重分析仪法和GB13021方法测量炭黑含量的结果可靠。热重分析仪法快捷方便,但是测量相对标准偏差比GB13021测试方法的要大,原因是进行热重分析时所用样品量只有10mg,如果样品中的炭黑分布不均匀,用热重分析仪测聚乙烯中的炭黑含量时就会增大测试标准偏差。建议用热重分析法分析炭黑含量时尽量从多个聚乙烯颗粒上取样并且适当增加样品量。  3结语  从实验过程及分析结果可以看出炭黑含量分析的两种不同方法具有以下特点:(1)两种测试方法均可用来测定聚乙烯中的炭黑含量,测定结果基本一致,具有可比性。(2)GB13021法测炭黑含量试验重复性好,但是用到炭黑分析仪和马弗炉两种设备,实验过程中需要冷却和3次称量,操作较热重分析仪复杂。(3)热重分析法操作方便、快捷,结果直观,但是由于所用样品量小,测试结果标准偏差较大,测试中容易出现异常值,应该从多个颗粒上取样,尽可能增加样品量,测试次数至少2次,当出现两次偏差较大时,增加测试次数。
  • 新一代测序技术用户调查:瓶颈与影响购买的因素
    今年The Scientist杂志与另外一家国际市场情报与咨询公司Frost & Sullivan合作,展开了一项新一代测序技术NGS使用情况的用户调查活动。  调查结果显示,目前大部分新一代测序技术研究工作主要集中在基础研究和疾病相关的研究方面。这一调查受访者中约有40%的研究人员参与了新一代测序研究,不过下半年的人数可能还会增加4%,还有一半受访者表示在未来的两年内,将计划进行着方面的研究。  目前新一代测序技术流程中最大的瓶颈是分析和注释数据所花费的时间太长,大约有 32%的受访者都将这些工作外包给生物信息学同事,或者第三方公司。  那么影响购买者购买仪器的因素有哪些呢?  调查显示,数据的准确性和操作成本,这两者是购买测序设备的最重要采购标准。但是如果两种仪器的数据精确度相同,那么操作成本、应用的广泛性,读长和通量就成为了第二重要的参考因素。     平均花费的时间:  NGS 工作流程的最大瓶颈是分析和注释数据所花费的时间太长。有四分之一的研究人员表示NGS数据分析需要至少一周时间,还有32%的受访者将这一工作外包给其他生物信息学组同事或第三方公司。  影响购买者选择的因素:  数据的准确性和操作成本,这两者是购买测序设备的最重要采购标准。但是如果两种仪器的数据精确度相同,那么操作成本、应用的广泛性,读长和通量就成为了第二重要的参考因素。     NGS软件分析预算:  每年NGS 数据注释软件的预算是外包费用的两倍多,目前NGS 软件整体平均预算约为8,500 美元,不过这一数据还表明,内部和外包所花费的费用存在巨大差异,前者的费用约为13,000-14,000美元,后者的费用为4500-6300 美元)。
  • 玻璃化转变温度:定义、影响因素及应用
    玻璃化转变温度是指无定形或部分无定形的非晶态材料在熔点以下温度发生结构变化时所经历的一种状态转变。这种转变会导致材料在某一温度范围内出现明显的热胀缩现象,并伴随着比热容、热导率等物理性质的变化。玻璃化转变温度对于材料的使用性能和使用范围具有重要影响,因此被广泛应用于材料科学和工程领域。上海和晟 HS-DSC-101A 玻璃化转变温度测试仪玻璃化转变温度的定义是指非晶态材料在加热过程中,从玻璃态转变为高弹态的温度。这个转变过程通常伴随着比热容的增大和热导率的降低。玻璃化转变温度的计算方法通常采用动态力学分析法,通过测量材料的储能模量和损耗模量的变化来确定。影响玻璃化转变温度的因素有很多,其中主要包括温度、应力、压力、光照等因素。温度对玻璃化转变温度的影响最为显著,通常情况下,随着温度的升高,玻璃化转变温度会降低。应力也会对玻璃化转变温度产生影响,例如,在应力的作用下,材料的玻璃化转变温度会发生变化。压力对玻璃化转变温度的影响与应力类似。此外,光照等因素也会对某些材料的玻璃化转变温度产生影响。玻璃化转变温度在材料科学和工程领域有着广泛的应用。例如,在汽车制造业中,通过对塑料制品的玻璃化转变温度进行控制,可以实现对材料使用性能和使用范围的有效管理。在建筑材料中,通过对玻璃化转变温度的测量和分析,可以实现对建筑材料的有效监控和管理。总之,玻璃化转变温度是材料科学和工程领域中一个重要的概念。通过对玻璃化转变温度的研究和控制,可以实现对材料性能的有效管理,从而推动材料科学和工程领域的发展。未来,随着材料科学和工程领域的不断发展,玻璃化转变温度的研究和应用将会得到更加深入的拓展和应用。
  • 影响盐雾试验箱试验数值精准的因素→喷嘴
    盐雾试验箱试验数值的精准是由很多的因素所影响的,一个因素的不正确,就会造成试验数值的不正确。那么数值的精准和箱体整体的制造工艺和设计都是有着密切关系的,但是除了这些外,喷嘴也是会影响数值结果的。那么有以下这些点是需要注意的。 喷雾是直接由喷嘴喷出的,那么不同品质的喷嘴喷出的喷雾也是不一样的,可以说喷嘴的好坏直接影响了试验的成败。所以首先选择一款好的喷嘴是很重要的,一款好的喷嘴在孔径、弯曲角度等就经过了严格的控制。 那么有了一款好的喷嘴,也要正确的使用才能发挥出它的功效。从安装的时候就需要注意了,安装的时候要轻拿轻放,不能用力过大而造成喷嘴的破损。另外就是喷雾的时候压力不要设置的过大,因为这也会造成喷嘴的破损。 喷嘴安装好后,使用的水也是需要注意的。普通的自来水会有杂质,那么这些杂质会给喷嘴造成堵塞。所以自来水是不能使用的,而是要使用蒸馏水或者去离子水。除了水中的杂质外,空气中的水汽和油等也会造成喷嘴的堵塞,所以还需要安装油水分离器来排除压缩空气中的水汽和油等杂质。 所以可见喷嘴对于试验数值的准确度有着重要的影响,那么除了初期的正确使用外,平时定期的维护也是必须的。这样 盐雾试验箱才能发挥出它应有的功效,达到试验的目的。
  • Supelco推出QuEChERS方法分析绿色植物中农药的分散SPE产品
    Supelco新推出的Supel QuE Verde是由改进的新型石墨化碳黑,Z-Sep+和PSA三种填料混合而成。新型的石墨化碳黑填料可以有效保留色素,而不影响平面农药的回收率。而Z-Sep+是在硅胶表面双重键合了氧化锆和C18的新型填料。氧化锆可以保留脂肪和类固醇,而C18可以保留疏水杂质。混合填料中的PSA则可以有效去除酸性物质的干扰。这种新型的SPE产品在处理色素含量较高的复杂基质时可以保留95%的色素,而分析的农药回收率在70%~120%之间,特别是较难处理的平面农药,比传统的石墨化碳黑SPE产品的回收率要高。?参考AOAC 2007.01方法使用Supel QuE Verde来分析有?机菠菜和采摘的牛至叶中的农药。先用乙腈提取有机菠菜和牛至叶。详细的实验步骤和色谱条件可以在下图中找到。将50ng/ml的农药混标加到乙腈提取液中。最后的提取液稀释三倍,进入GC-MS分析,GC色谱条件也可以在图中找到。??结果显示Supel QuE Verd可以去除大量的干扰物质,样品经过处理后在GC-MS全扫描模式下具有极低的背景值。加标的12个农药响应值很好,回收率较高。同时我们也评估了Supel QuE Verd去除菠菜和牛至叶中色素的效果,我们用光谱法同时测量了经过Supel QuE Verd处理过的提取液和最初的乙腈提取液分别在664nm,647nm和630nm处的吸光值。结果表明Supel QuE Verd去除了大于95%的色素。下图是用Supel QuE Verd净化加标农药混标提取液的回收率。可以看出所有农药的回收率在70%到120%之间。 绿色植物用不同填料处理后的净化效果,可以很明显看出Supel QuE Verde可以去除更多的干扰杂质。? ?结论由于平面农药如六氯苯和百菌清等和石墨化碳黑的表面有较强的相互作用,因此在去除色素的同时又要保证农药的回收率是比较困难的。而经过实验证明,Supel QuE Verde既可以有效的去除色素,而且又能提供较高的农药回收率,是非常有效的分析绿色植物的前处理产品。更详细的应用资料,可以访问以下链接http://www.sigmaaldrich.com/china-mainland/zh/analytical-chromatography/analytical-products.html?TablePage=120095318产品信息产品描述包装产品编号Supel QuE Verde净化管, 2mL100支/盒55447-U Supel QuE Verde净化管, 15mL50支/盒55442-U 关于Supelco美国 Supelco公司成立于1966年,一直致力于色谱耗材的研究和生产,是色谱耗材的专业生产公司。超过40年在色谱和分析领域的技术经验, 拥有多项专利技术,提供范围广泛的产品:气相色谱柱(包括手性柱)和配件、液相色谱柱(包括手性柱)和配件、固相萃取小柱和装置、固相微萃取手柄和萃取头、空气检测产品、分析标准品和样品瓶等。1993年,Supelco正式加入美国Sigma-Aldrich公司,成为Sigma- Aldrich公司旗下分析业务的专业品牌。?
  • 影响纯水电导率分析仪的电导率测量因素有哪些
    影响纯水电导率分析仪电导率测量的因素主要包括以下几个方面:温度:温度是影响电导率测量最主要的因素之一。纯水的电导率随温度的变化而变化,通常电导率随温度升高而增加。因此,在测量纯水电导率时,需要对温度进行精确控制,并进行相应的温度校正,以确保测量结果的准确性。电极的品质和清洁度:电极的质量和清洁度直接影响到测量的准确性和稳定性。电极应当是高质量的,并经常进行清洁和校准,以避免污染物或氧化物的积聚对测量结果的干扰。电极的响应速度:电极的响应速度影响到测量的实时性和稳定性。快速响应的电极可以更快地达到稳定状态,从而提高测量的准确性。电极的稳定性:电极在长时间使用过程中的稳定性也是影响测量结果的因素之一。良好的电极设计和材料选择可以减少电极的漂移和老化,从而保证测量的长期准确性。环境条件:环境中的电磁干扰、振动或其他外部因素都可能对电导率测量造成影响。因此,在进行测量时,应尽可能在稳定的环境条件下操作,并采取适当的屏蔽措施以减少外部干扰。仪器的精度和校准:仪器本身的精度和校准水平直接决定了测量结果的准确性。定期进行仪器的校准和维护是确保测量结果可靠性的重要步骤。综上所述,纯水电导率分析仪的电导率测量受到温度、电极质量与清洁度、电极响应速度与稳定性、环境条件以及仪器精度与校准等多种因素的影响。正确控制和理解这些影响因素,是确保测量结果准确性和稳定性的关键。
  • 解析影响水质检测仪的因素国家标准
    解析影响水质检测仪的因素国家标准 影响因素在使用多参数水质检测仪检测水质过程中,能够影响水质检测的因素主要有来源因素和类别因素。首先是来源因素,在平时的工作中,有时候工作人员会将需要检测的水质样品的来源弄错,这样就会导致无法正确的进行水质结果分析,从而导致无法提供解决问题的方法。其次针对不同的水质样品,应该在多参数水质检测仪上选择不同的参数检测方法。比如地面水质与地下水质所使用的检测方法就大不同。通过对水体的水位、流速和流向的变化及沿岸城市分布、工业布局、污染源及其排污情况、城市给排水情况等可对地面的水质进行初步的采样。但是地下水质的采集就不适用于这种方法,它需要根据水质区域内的城市发展、工业分布情况、土地利用率等情况来进行水样收集。假如没有正确认识到各类水质的差别,就会影响水到质检测的结果的正确性。水资源可利用量是有限的,水资源并不是取之不尽、用之不竭的,因此要重视节约用水和开发利用的关系,节流要抓,开源也要抓。中国已经提出了建设节约型社会的总体要求,《节约用水管理条例》也正在紧张的起草当中,应当以此为契机,积极推广节水技术,积极推进节水意识,大力提高水资源的利用效率,同时严格控制用水总量,实行用水定额控制管理。根据水资源的分布范围和承载能力,正确引导工业产业聚集方式,在节流的同时,加强水资源保护工作,大力改善水环境以及水资源质量,增加可利用水资源总量,在水质问题日益突出,水量相对丰富的地区推行有效的开源措施。将多参数水质检测仪应用到日常加工生产过程中去 国家标准国家标准规定:总大肠菌群(MPN/100mL或CFU/100mL)不得检出;耐热大肠菌群(MPN/100mL或CFU/100mL)不得检出;大肠埃希氏菌(MPN/100mL或CFU/100mL)不得检出;菌落总数(CFU/mL)100。色度不超过15度;浑浊度 NTU 不超过3度;嗅和味 不得有异嗅异味;肉眼可见物不得含有;PH 6.5-8.5;总硬度(以CaCO3计)mg/L 450;铁 mg/L 0.3;锰 mg/L 0.1;铜 mg/L 1.0;锌 mg/L 1.0;挥发酚(以苯酚计)g/L 0.002;阴离子合成洗涤剂 g/L 0.3;硫酸盐 g/L 250;氯化物 g/L 250;溶解性总固体 g/L 1000;氟化物 g/L 1.0;氰化物 g/L 0.05; 氯仿 g/L 60;细菌总数 个/L 100;总大肠菌群 个/L 3;余氯 g/L ≥0.30。 [2]氯化消毒自来水消毒大都采用氯化法,氯气用于自来水消毒具有消毒效果好,费用较低,几乎没有有害物质的优点。但我们经过对理论资料了解、研究,认为氯气用于自来水消毒还是有在一定的弊端。氯化消毒后的自来水能产生致癌物质,有关方面专家也提出了许多改进措施。世界上安全的自来水消毒方法是臭氧消毒,不过这种方法的处理费用太昂贵,而且经过臭氧处理过的水,它的保留时间是有限的,至于能保留多长时间,还没有一个确切的概念。所以只有少数的发达国家才使用这种处理方法
  • 影响氧气检测仪的测量结果因素
    气体检测仪是一种气体泄露浓度检测的仪器仪表工具,主要是指便携式/手持式气体检测仪。主要利用气体传感器来检测环境中存在的气体种类,气体传感器是用来检测气体的成份和含量的传感器。一般认为,气体传感器的定义是以检测目标为分类基础的,也就是说,凡是用于检测气体成份和浓度的传感器都称作气体传感器,不管它是用物理方法,还是用化学方法。比如,检测气体流量的传感器不被看作气体传感器,但是热导式气体分析仪却属于重要的气体传感器,尽管它们有时使用大体的检测原理。 影响氧气检测仪测定的因素:1.氧气检测仪的污染。 在重新使用氧检测仪时,首先须留意在连接取样管路时是否漏进空气,并且必须认真将漏进的空气吹除干净,尽量不使大量氧气通过传感器以延长传感器寿命。2.氧气检测仪气路系统的简化及洁净。 微量分析要求必须有效排除气路上的各种管件,倒角机阀门,表头等中的死角对样气以致的污染。因此,手动弯管机应尽可能简化气路系统,选用死角小的连接件等。3.管道材质的选择。管道材质及表面粗糙度也将影响样气中氧含量的变化。一般不宜用塑料管,橡胶管等作为连接管路。通常选用铜管或不锈钢管。
  • 凝点测定仪哪些因素会影响凝点值
    凝点测定仪哪些因素会影响凝点值  凝点测定仪是用于测定凝点的仪器,油品在规定条件下冷却,随温度降低,油品并不立即凝固,要经过一个稠化阶段,在相当宽的温度范围内逐渐凝固。油品凝点只是油品丧失流动性时的近似的zui高温度,是测定石油产品力学特性变化温度的常用方法之一,受条件局限性很大。  (1)凝点与油品的化学组成有关。由石蜡石油制成的直馏重油,其凝点要比以环烷-芳香基石油制成的重油高;正构烷烃的凝点随链长的增加而升高;异构烷烃的凝点比正构烷烃的要低;不饱和烃的凝点比饱和烃的凝点低。  (2)凝点测定仪凝点与冷却速度有关。冷却速度太快,有些油品凝点偏低,因为当迅速冷却时,随着油品粘度的增大,晶体增长的很慢,在晶体尚未形成坚固的“石蜡结晶网络”前,温度就降低了很多;但也有凝点偏高的,要看油品性质而异。  (3)含蜡油品的凝点与热处理作用有关。所谓热处理是指使油品加热到某一温度,然后冷却到某温度的过程。热处理后含蜡油品凝点起变化的原因,是因为进行加热时溶解于油中的石蜡起了变化,因而在油品冷却时,凝点测定仪石结晶过程改变了自己的特性,改变了开始结晶温度,结晶体形状及其形成连续结晶结构的能力。
  • 影响水分活度重要的五大因素
    现在是春天微生物繁殖的活跃期,冠亚水分活度仪张明霞来给大家讲下影响活度的因素:(1)水分含量:同种产品的水分含量越高,水分活度越大,产品越易长霉。(2)产品中糖分、盐分:同一类产品中糖分、盐分越重,水分活度越低,越不易长霉。(3)产品锁水保水效果:产品加入锁水保水产品,水分活度越低,越不易长霉。(4)生产与销售环境:包装前湿度越高,产品水分活度越高,越容易长霉。(5)包装环境:包装密封性越好,产品受外部影响越小,水分活度越稳定。通过以上五点,可想而知水活度检测的重要性、、、、、、冠亚水分活度仪应用范围:冠亚GYW系列水分活度仪应用于广泛应用于面包、饼干、蛋糕、膨化食品、休闲食品、脱水食品、干果类、果酱类(萨拉、番茄)、食品添加剂等行业的活度检测中,快速满足烘焙食品、调料、农业、制药、饲料、添加剂、果酱行业等质量检验中对水份活度检测的强烈需求。水分活度仪可以用来判定食品行业的保质期!是目前---行业中水分活度的选择!GYW系列水分活度仪: (1)传感器:进口传感器 (2)准确性:0.010AW (3)分辨率: 0.001AW (4)重 复 性:≤0.005 (5)测量范围:0.000~1AW (6)测量精度:温度± 0.1℃ 活度±0.012(@25℃)(7) 测量时间:一般样品几分钟(8) 测量通道:单通道(多通道可选) (9)显示屏:7寸大触摸彩屏 (10)校准方式: 自动校准(校正值补偿) (11)操作方式:触摸 (12)显示速度:实时显示检测曲线 (13)样品皿容量:20ml (14)温度显示:0-50℃ (15)输出方式:微型打印机 (16)数据接口:RS232 (17)工作环境:温度0~50℃ 湿度0~95%RH (18) 功 耗:20W (19)供电电压:交流220V (20)外形尺寸:280mm×226mm×120mm
  • PCR原理、PCR扩增影响因素及预防解决方案
    PCR简介聚合酶链反应(polymerase chain reaction,PCR)是利用一段DNA为模板,在DNA聚合酶和核苷酸底物共同参与下,将该段DNA扩增至足够数量,以便进行结构和功能分析的一种反应。PCR扩增原理核酸降解是DNA/RNA分子中的碱基和戊糖间的氮糖苷键,或磷酸二酯键在物理因素、化学因素和生物因素等作用下发生水解,使DNA/RNA链发生断裂。▲ 图一:PCR原理反应示意图▲ 图二:PCR反应过程中温度变化图实时荧光定量PCR原理通过荧光染料或荧光标记的特异性探针,对PCR产物进行标记跟踪,实时监控反应过程,结合相应软件可以对结果进行分析,通过标准曲线对未知模板进行定量分析,计算待测样本的初始模板浓度。▶ 初始DNA浓度越高,荧光达到某一值(阈值)时所需要的循环数越少(Cq值)。▶ Log浓度与循环数成线性关系,根据样品扩增到阈值的循环数与已知起始拷贝数的标准品作出的标准曲线对比就可以计算出该样品的起始拷贝数。影响PCR扩增的因素▶ 模板间的交叉污染。▶ PCR试剂的污染。▶ PCR产物的污染。防止污染的预防操作❶ 永远要设置NTC(No Template Control)对照,一个不含有模板DNA但含有PCR体系中所有其他成分的对照。如果不能在污染的第一时间发现,会导致后续一系列的数据无法使用。❷ 准备PCR体系的移液器要专用,千万不能用吸取过PCR产物的移液器去准备PCR体系。❸ 打开离心管前先离心,开管动作要轻,以防管内液体溅出。❹ 最好在加完其他反应成分再加入模板。❺ 实验结束后及时清理台面。出现污染后的解决办法❶ 更换试剂:更换新的试剂和水,用确保无污染的移液器分装备用。❷ 清洁所有可能的污染源:实验台面,离心机,门把手等。❸ 实验过程更加小心,采用前面提到的各种防止污染的方法。CieloTM实时荧光定量PCR系统Harness of the power of qPCR☑ 数据可靠性:连续1000次实验后,结果高度一致。☑ 应用灵活性:提供多种qPCR应用分析。☑ 流程智能化:中英文用户界面,触控操作,可多机联用。☑ 在线便捷性:主机可独立运行qPCR程序,数据可USB、Wi-Fi等网络传输。
  • 微反应器用于研究影响迈克加成的动力学及生产放大因素
    摘要:微反应器是一种有效的工艺开发和强化的工具,但是从实验室工艺开发到放大实际生产仍然存在挑战,因为通道尺寸的改变极大的影响了传质传热过程。本文主要演示了一个放热迈克加成的完整的工艺开发过程,综合考虑了在实验室工艺开发阶段及生产放大过程中的通道尺寸,停留时间分布,反应物混合,反应热移除等关键影响因素。图1 合成3-哌啶丙酸乙酯反的反应原理图 环戊胺和丙烯酸乙酯经迈克加成反应生成3-哌啶丙酸乙酯,反应温度30-70oC,淬灭剂:乙酸的甲醇容液(乙酸体积分数:11% )。根据微反应器内部反应体积(开始混合处和加入淬灭剂处之间的反应器体积)和反应物流速计算。 图2 用于动力学研究的微反应器设计图(a)和实际管式微反应器图(b) 反应物先通过毛细管柱预热,然后通过混合器混合后再后续的不锈钢螺旋管中进行连续流动反应,反应温度由外部热浴装置控制,最后通过T型混合器加入淬灭剂终止反应,产物收集后自动进行GC分析。表1 不同尺寸通道内径传质效果比较表2 不同尺寸通道内径传热效果比较  保持反应器MR1和MR2长度相同,泵速基本相同的条件下,增大反应器通道尺寸后,净流速明显下降,MR2(0.008)相比于MR1(0.10 m/s)缩小了约10倍,径向扩散相关系数Re和Dn分别减小了4倍和2倍,轴向扩散相关系是B0变大,表明混合传质效果变差,理想的活塞流混合模式只有径向扩散,没有轴向扩散。在传热方面,大尺寸的微通道反应器MR2的比表面积和传热系数相对于明显变小,散热时间延长了9倍。   图3 ESK陶瓷SiC反应器(左)和反应板(右) 为了进一步扩大反应器通道内径进行对比,本文采用了Chemtrix公司的MR260型号的连续流动反应器,该反应器由混合板(含预热, T型混合和2.9mL的反应通道)和两个反应板(反应体积分别为16.8和33.6 mL,通道尺寸2.0×2.0 mm)组成。反应板内部通道90o折行排布(图3 右),极大增强了混合效果。MR260反应板是由3M ESK代加工生产,每个反应板都是陶瓷SiC材质,由换热层和反应层或混合层无压烧结而成,传热性能极好,生产通量最高达36L/h,可用于实际生产。 图4 ESK反应器和微反应器 MR2的产率对比图 通过对比发现,在保证较高的传热传质效率的前提下,4mL ESK流动反应器由于反应体积相对过小,产率较低外,MR2及54mL的ESK流动反应器的产率均达90%。由此证明微通道流动反应器工艺参数可一步放大,直接用于实际生产。 为了便于生产工艺的直接放大,我司还代理了Chemtrix其他型号的微通道反应器(流动反应器)。其中: 图5 Protrix微反应器 图6 Labtrix Start 微反应器 Protrix也是一款无压烧结3M ESK碳硅合金材质的模块化低通量流动合成反应器,可灵活安装1-4块SiC模块,每个模块上均设计两组体积不同的独立的流体通道,用户可根据需要灵活搭配,开发的生产条件可以直接放大到MR260或MR555进行实际生产。  玻璃材质的微通道反应器(芯片反应器)Labtrix系统,0.2-100 μL/min低通量,保留时间1.2 s-100min,也可用于快速筛选反应,研究反应动力学,教学演示等。尤其在教学演示方面,由于流动合成工艺的日趋成熟和完善,多所世界著名高校陆续将连续流动化学开展为一个单独的学科,如华盛顿大学,普度大学,赫尔大学,四川大学,中山大学等。为了便于教学,Chemtrix公司还专门为Labtrix系列配备了“Micro Reaction Technology on Organic Synthesis”教科书一本,教学方法一套及流动化学计算软件一套。  更多连续工艺设备及方案问题,请详询深圳市一正科技有限公司官网www.e-zheng.com或info@e-zheng.com参考文献:[1] Sebastian S. etc Kinetic and scale-up investigations of a Michael Addition in microreactors, Org. Process Res. Dev.,2014,18,1535-1544.
  • 酸性矿山废水中微生物分布影响因素
    随着全球工业化的迅速发展, 矿产资源的开发进一步加剧, 由此而产生的酸性矿山废水( AMD) 已经成为许多国家水体污染的主要来源之一。酸性矿山废水若不经处理任意排放就会造成大面积的酸污染和重金属污染, 它能够腐蚀管道、水泵、钢轨等矿井设备和混凝土结构, 还危害人体健康。另外, 酸性水会污染水源, 危害鱼类和其他水生生物 用酸性水灌溉农田, 会使土壤板结, 农作物发黄, 并且随着酸度提高, 废水中某些重金属离子由不溶性化合物转变为可溶性离子状态, 毒性增大。 对于酸性矿山废水的处理主要有这几种方法: 中和法、人工湿地法、硫化物沉淀法和微生物法。其中微生物法就是利用硫酸盐还原菌( SRB) 在厌氧条件下将AMD 中的硫酸盐还原为硫化物, 生成的硫化物再与废水中的重金属发生反应生成难溶解的金属硫化物。由于微生物技术的处理效果较好, 成本也较低, 且无二次污染, 因而受到广泛关注。 国内科学家对中国东南部14个地区的59个AMD样本进行了微生物群落分布的研究。通过对AMD样本中的微生物16SrRNA基因进行454测序,对测序结果进行了物种分布和聚类的分析,最终发现,影响微生物群落的主要因素并不是地域,而是环境的变化,如铁离子、硫酸根离子、有机物含量等等,相关学术论文发表在《自然》子刊ISME(International Society for Microbial Ecology)上。 通过对不同环境的微生物群落分布的研究,加深了人们对极端环境下微生物多样性的了解,为将来利用微生物技术对AMD进行处理和控制具有一定的理论和现实意义。 参考文献:ISME J. 2012 Nov 22. doi: 10.1038/ismej.2012.139. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage.Kuang JL, Huang LN, Chen LX, Hua ZS, Li SJ, Hu M, Li JT, Shu WS.
  • 传热传质过程之传热篇--传热系数Kv的重要性,影响因素及检测方法
    冻干过程中决定产品*质量的一个很关键的因素是产品温度,产品温度必须维持在关键温度以下避免结构塌陷,产品塌陷会影响到:产品外观、残余水分,复水时间,产品稳定性等;产品温度可以用来指示冻干终点,包括一次干燥和二次干燥的终点,当冻干过程参数发生偏移时,产品温度的测量用于证明产品质量,避免没必要的报废,然而在冻干过程中,产品温度不能被直接控制,只能通过层板温度和腔体压力来进行调整,受整个传热传质过程中层板能量的输入(Kv),冰升华界面的冷却(dm/dt)以及干燥层阻力(Rp)的影响。如下图,Kv值是影响传热过程的一个重要因素,Rp干燥层升华阻力是影响传质过程的一个重要因素,共同决定*的升华速率及产品的温度。 今天这里主要讨论传热系数Kv及其检测方法和主要影响因素,干燥层升华阻力Rp的影响因素和检测方法将会在后续的文章中跟大家分享和讨论。在整个冻干过程中,层板(为主)及周围环境提供热量,样品中的冰吸收热量后进行升华,从而将吸收的热量带走,进行一个理想状态下的稳态的传热传质过程。如果Kv值高,样品接受的热量超出了升华需要带走的热量,并且超过了样品的关键温度,样品就会具有融化及塌陷的风险,对*的样品质量造成影响。因此了解清楚冻干过程中的Kv值,对于整个冻干工艺设计及质量控制具有十分重要的意义。冻干过程的Kv值及来源从传热的方程式: 可以导出: 冻干过程中的传热有几种方式:直接热传导(Kc),气体传导(Kg)和热辐射(Kr),因此这里的Kv是这三种方式的总和,即Kv = Kc + Kg + Kr直接热传导(direct conduction)Kc&bull 不受压力影响,跟容器的形状、大小、材质及有关&bull 通过直接接触进行传热&bull 通过搁板和相邻西林瓶传热 气体传导(gas conduction)Kg&bull 受压力影响&bull Pc ↑ → 通过气体传导的热 ↑热辐射 (radiation)Kr&bull 不受压力影响,跟发射率e有关:取决于材料表面特质&bull 能量通过电磁波传播&bull 在不同温度的表面间&bull 很大程度上由冻干机的构造决定传热系数Kv主要取决于西林瓶的种类,大小及腔体的压力,可以用以下方程式表示: KC 是直接传热和热辐射传热系数的总和 是层板到西林瓶底部之间的气体传热系数P是腔体压力KD 是层板和西林瓶底部之间的平均距离与模制式西林瓶相比,管制式西林瓶具有较大的KC值以及较大的气体传热系数。比较有代表性的KC和KD值见下图(Pikal et al.) Av是西林瓶的外横截面积Ap是西林瓶的内横截面积KC的单位跟Kv相同KD的单位是Torr-1Kv值测定方法Kv值受各种因素的影响,那么如何测定Kv值呢? 根据传热传质方程式: 可得到 从Kv的方程式可以看出,只要获得dm/dt以及产品温度Tp就可以计算出Kv值。目前dm/dt 可通过重量法,MTM,TDLAS等方法获得;Tp可通过热电偶产品温度探头,MTM及TDLAS的方法获得,因此Kv值的测定方法目前主要有重量法,MTM方法,TDLAS方法等。重量方法(样品可以用水)具体方法:√ 将水灌装入西林瓶中√ 选取有代表性位置的西林瓶,称量每个西林瓶的重量并记录√ 运行冻干过程(在稳态过程持续几小时),设定层板温度Ts和腔体真空度Pc,用产品温度探头检测西林瓶底部的温度Tb√ 再对每个西林瓶进行称重,计算质量损失dm/dt√ 根据上述数据计算不同位置西林瓶的Kv值√ 计算Kv的平均值 重量方法可行但是比较繁琐,会花费很多的时间,一次实验只能得到一个压力值下的数据,可能会有人为因素带来的误差,一般检测的是单个样品的Kv值。MTM 方法(PAT工具)MTM(Manometric temperature measurement)技术是通过关闭产品腔和冷阱腔之间的隔离阀,通过压力升数据以及复杂的回归方程式,通过软件自动计算可以直接获得我们所需的Kv值。MTM方法可获得升华界面的产品温度Tp,更为准确。MTM方法检测的是批量样品的平均值。具体方法在此就不详细赘述,如需具体了解可点击填写表单咨询。 TDLAS方法(PAT工具)TDLAS (Tunable Diode Laser Absorption Spectroscopy)可调谐激光吸收光谱技术,在产品腔和冷阱腔的通道中安装相关的传感器对通道内水蒸气的浓度和流速进行直接监控,软件可得到实时的升华速率dm/dt数据,根据公式: 可以得到Kv值,并且可以通过一次实验得到不同压力条件下的Kv值,可用于不同规模的冻干机。TDLAS检测是批量样品的平均值,具体方法在此也不再详细赘述,如需具体了解可点击填写表单咨询。不同条件对Kv值的影响Kv 值会随着容器种类,容器大小,容器材质,冻干腔体形状,层板材质,冻干机差异,板层间距,环境条件等有所不同,同时也会随着冻干条件的改变而改变,这里着重分享几个重要的工艺条件对Kv值的影响。腔体真空度对Kv值的影响腔体中气体分子的热传导是Kv值的一部分来源,气体分子数越多,即腔体的真空数值越大,在一定程度上会增加Kv值,Pikal等人研究了3种不同类型的西林瓶,腔体压力和传热系数Kv值之间的关系,如下图,随着腔体压力的增加,Kv值呈非线性增加。(Pikal, M. J., M. L. Roy, and Saroj Shah. "Mass and heat transfer in vial freeze‐drying of pharmaceuticals: Role of the vial."Journal of pharmaceutical sciences 73.9 (1984): 1224‐1237. 层板温度和腔体压力对Kv值的影响Kuu,Wei Y等人研究了不同的层板温度,不同的真空度对Kv值的影响,实验中采用TDLAS快速检测样品的升华速率dm/dt。(Kuu, Wei Y., Steven L. Nail, and Gregory Sacha. "Rapid determination of vial heat transfer parameters using tunable diode laser absorption spectroscopy (TDLAS) in response to step‐changes in pressure set‐point during freeze‐drying." Journal of pharmaceutical sciences 98.3 (2009): 1136‐1154.)结果表明:腔体压力是影响Kv值的主要因素,层板温度对Kv值的影响较小,在低温条件下(-35℃到+5℃),中心样品的Kv <批次平均Kv <边缘样品Kv, 随着边缘Kv值的下降,边缘Kv和中心Kv的差距也逐渐缩小;然而在温度较高时(+20℃),中心Kv>边缘Kv。控制成核对Kv值的影响有实验表明当控制成核时,可以明显降低边缘样品的Kv值,并且当层板温度较高或较低时,能明显缩小边缘Kv和中心Kv的差距,使得整批样品的Kv值更均一。另外成核控制也能够时样品内部的结构更均一,孔径较大,缩短冻干时间的同时,使得批次间样品的质量更均一。总结传热系数Kv值在冻干过程中是决定产品温度的一个关键因素,对于前期的冻干工艺设计,优化以及*的商业放大化具有重要的作用,因此采用合理的方法能够快速检测和掌控Kv值并了解其影响因素,能够确保*产品的质量,降低报废率,*限度地节约成本。
  • 浅谈影响BOD5测定结果准确性的几个因素
    浅谈影响BOD5测定结果准确性的几个因素张建新,王宏,谭瑞冰(通辽市环境保护监测站,内蒙古通辽028000)摘要:对水样BOD;指标测定过程中,影响测定结果准确性的水样保存-与/g*g、稀释水与接种稀释水配制等几个主要因素进行了论述.关键词:BOD;测定;准确性;影响因素中图分类号:X8 文献标识码:A 文章编号:1673&mdash 260X(2009)05一0072一02 水作为一种资源,根据其用途,不仅有量的要求,还必须有质的要求,人类在生产与生活活动中,将大量的工业废水、生活污水及其他废弃物排入水体,造成地表水和地下水等水源的污染,引起水质恶化,从而影响人体健康.所以,人们在水环境方面所面临的问题是必须充分合理地保护、使用和改善水资源,使其不受或少受污染.水质监测正是以此为目的,以海洋、江、河、湖泊、水库、地下水等水体和工业废水、生活污水的排放口为对象而进行监督、检测,以检查水的质量是否符合国家规定的有关质量标准及排放标准要求,为控制水污染、保护水资源提供依据.1五日生化需氧量概述水污染主要包括无机物污染、耗氧有机物污染、痕量有害有机物污染.其中,耗氧有机物污染是大量耗氧有机物排入水域后,分解消耗大量溶解氧,从而破坏水体中氧的平衡,使水质恶化.人们常常利用水中有机物在一定条件下所消耗的氧,来间接表示水体中有机物的含量.生化需氧量是指在规定条件下,微生物分解存在于水中的某些可氧化物质、特别是有机物所进行的生物化学过程中消耗溶解氧的量.此生物氧化全过程进行的时间很长,如在20。C培养时,完成此过程需100多天,目前国内外普遍规定于20± l℃培养5天,分别测定样品培养前后的溶解氧,二者之差即为BOD,,以氧的毫克/升(rag/L)表示.2 BoD5指标监测结果准确性主要影响因素2.1水样的保存与运输各种水质的水样,从采集到分析的过程中,由于物理的、化学的和生物的作用,会发生各种变化,而影响BOD的测定结果.因此,必须在采样时针对水样的不同情况和待测物的特性实施保护措施,并力求缩短运输时间,尽快将水样送到实验室进行分析,当待测物的浓度很低时,更要注意水样的保存.用于分析BOD,指标的水样最好采用玻璃或聚乙烯容器盛装,并在采集时充满容器并密封,防止由于路途颠簸、水样振荡、与空气接触而加快水样中微生物对某些可氧化物质的分解作用.水样的运输过程中应最好进行冷藏(2&mdash 5。C暗处进行保存),配备专用隔热容器,放入致冷剂,将样品置于其中保存,这样也可以抑制微生物的活动,减缓物理作用和化学作用的速度,保证水样采集时的原始状况.水样采集后,应尽早进行测定,一般应在6h内进行分析,若需要远距离转运,在任何情况下,贮存时间不应超过24h.在测定条件及其他因素不允许的特殊情况下,可将水样进行冷冻(一20。C,一般不使用),但最长时间不可超过1个月.2.2稀释水与接种稀释水生化需氧量的经典测定方法,是稀释接种法,方法适用于测定BOD,大于或等于2mg/L,最大不超过6000mg/L的水样,当水样BOD5大于6000mg/L时,会因稀释带来一定的误差.当水样稀释倍数超过100倍时,应预先在容量瓶中用蒸馏水初步稀释后,再取适量进行最后稀释培养.因此,对稀释水及接种稀释水的要求就相当严格,也是关系到实验测定成败,影响测定结果准确性的主要因素.2.2.1稀释水对某些地面水及大多数工业废水,因含有较多的有机物,需要经稀释水稀释后再培养测定,以降低其浓度和保证培养过程中有充足的溶解氧.首先,在5-20L玻璃瓶内根据水样稀释倍数及平行样的要求装入一定量的蒸馏水,控制水温在20。C左右,然后用无油空气压缩机或薄膜泵,将吸人的空气先后经活性炭吸附管及水洗涤后,导入稀释水内曝气2&mdash 8h.停止曝气亦可导入适量纯氮,使稀释水中的溶解氧接近于饱和,保证水样稀释后有足够的溶解氧.然后,瓶口盖以两层经洗涤晾干的纱布,置于20℃培养箱中放置数小时,使水中的溶解氧含量达到8meJL左右,临用前还应在每升稀释水中加入氟化钙溶液、氯化铁溶液、硫酸镁溶液、磷酸盐缓冲液各lml,并混合均匀,以保证微生物生长的需要.稀释水的pH值应为7.2,其BOD5应小于0.2mg/L.这样才能保证经稀释后的水样在5天的培养过程中有足够的溶解氧,并保证微生物分解水中某些可氧化物质时有足够的养分.2.2.2接种稀释水水样的培养过程中,要有一定数量的微生物来分解水样中的有机物,但对于不含或少含微生物的工业废水,其中包括酸性废水、碱性废水、高温废水或经过氯化处理的废水,在测定BOD,时应进行接种,以引入能分解废水中有机物的微生物,当废水中存在着难于被一般生活污水中的微生物以正常速度降解的有机物或含有剧毒物质时,应将驯化后的微生物引人水样中进行接种.实际工作中,两个或三个稀释比的样品,凡消耗溶解氧大于2mg/L,和剩余溶解氧大于l mg/L的样品,计算结果时,应取其平均值.因此,接种液加入的多少对实验测定结果准确性有着举足轻重的作用.溶解氧消耗量小于2mg/L,有两种可能,一是稀释倍数过大;另一种可能是微生物菌种不适应,活性差,或含毒物质浓度过大,这时可能出现在几个稀释比中,稀释倍数大的消耗溶解氧反而较多的现象.这就要求在实践工作中不断总结工作经验,并根据接种液中菌群数量浓度、菌群的适应性、水样特征来控制接种液加入量的多少,以便提高测定水样BOD,指标数值的准确性.2.3其他影响因素在水样BOD,指标测定过程中还存在着其他一些影响结果准确性的因素.包括实验测定过程中所涉及的玻璃器皿应彻底洗净,先用洗涤剂浸泡清洗,然后用稀盐酸浸泡,最后依次用自来水、蒸馏水洗净,尤其在培养过程中盛装水样的溶解氧瓶应保证洁净;待测水样的pH值应在6.5&mdash 7.5之间,若水样的酸度或碱度过高,可用高浓度的碱或酸液进行中和,但用量不要超过水样体积的0.5%;从水温较低的水域或富营养化的湖泊中采集的水样,可遇到含有过饱和的溶解氧,此时应将水样迅速升温至20cc左右,在不使满瓶的情况下,充分振摇,并时时开塞放气,以赶出过饱和的溶解氧,等等一些其他影响因素.BOD,属于水体污染物的中一类比较重要的有机污染物指标,其数值的高低直接关系到水体水质.因此,我们应在今后的工作中对各类水体及污染源进行认真、细致地调查研究,通过可靠、准确、先进的测定手段和经过培训持证上岗的专业技术人员为保证,注意水质监测过程中各类指标监测结果的准确性控制,做好实验内及实验室间的质量保证工作,实现监测分析方法的标准化、逐步建立起完善的环境监测网络,提供出代表性、准确性、精密性、可比性及完整性的监测数据,为科技生产服务、为企业技术改造、清洁生产服务、为环境保护主管部门监督管理服务.参考文献:C1]魏复盛,齐文启,等.水和废水监测分析方法.北京:中国环境科学出版社.2002.[23章亚麟.环境水质监测质量保证手册.北京:化学工业出版社.1994.[3]黄秀莲.环境分析与监测.北京:高等教育出版社.1996.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制