当前位置: 仪器信息网 > 行业主题 > >

碳储量

仪器信息网碳储量专题为您整合碳储量相关的最新文章,在碳储量专题,您不仅可以免费浏览碳储量的资讯, 同时您还可以浏览碳储量的相关资料、解决方案,参与社区碳储量话题讨论。

碳储量相关的资讯

  • 七种产品铅溶出量超标 鲜艳陶瓷铅藏身何处
    2006年7月10日,国家质检总局公布了对北京等10省市60家企业生产的60种日用陶瓷产品的抽查结果,47种产品合格,产品合格率为78.3%。 7种产品铅溶出量严重超标。  2010年12月15日,广西质监局通报食品相关日用陶瓷产品抽样检验结果,此次共抽检日用陶瓷产品共223个批次样品,发现有4个批次样品的铅溶出量不符合相关标准的规定。  2012年3月6日,广东省工商局发布流通领域日用陶瓷质量监测情况通报,在180款被抽查的产品中有46款不合格,合格率仅为74.4%。其中有9款产品还被检出铅镉超标,而且其中六款都由正规厂家生产。  以上的数据表明:我国日用陶瓷铅溶出量超标情况并没有改善。今年,9款铅镉超标产品中,66.7%由正规厂家生产。这个比例暴露了国家相关部门对陶瓷企业监管不力。  鲜艳陶瓷体“铅”藏身何处?  陶瓷本身缺乏光泽,只有在表面施釉才能光亮。釉本身很难薄薄地、均匀地涂饰在陶瓷表面,需要添加助溶剂。而铅是一种低于300度熔点的金属,是理想的助溶剂,因此长期作为陶瓷釉料的助溶剂。准确地说,对人造成危害的不是陶瓷中存在的铅和镉,而是容易溶出从而进入食物(包括水、饮料)的铅镉离子。  (标准:根据国际标准化组织的规定,接触食物的陶瓷器皿铅溶出量不得大于1-5毫克/升,镉溶出量不得大于0.1-0.5毫克/升。)  儿童大脑对铅最敏感排铅能力只有成人的1/17  人们几乎每天都要使用的陶瓷餐具、茶具、咖啡具的陶瓷器皿,往往含有可以溶出的铅和镉。尤其在食物、水温度比较高时,有一定酸度时,例如在餐具中有醋,铅镉离子更容易溶出,随着食物和水进入人体。  研究已证实,铅可引起人体中枢神经系统的损害,从而导致行为改变,还能引起小细胞性贫血。慢性铅中毒还能干扰免疫系统功能,导致慢性铅中毒甚至死亡。  大连医科大学附属第二医院儿科医师闫冬表示:“儿童代谢旺盛,吸收强、排泄弱,导致铅更容易在儿童体内蓄积。从胎儿到6岁,是人的大脑对铅暴露最敏感的阶段。儿童排铅的能力却只有成人的1/17,再加上儿童口、手动作多,易触及和吞食含铅颗粒,所以儿童比成人更易发生铅中毒。”  购买国外名牌瓷器是否最明智?  发达国家不仅陶瓷制品铅镉溶出允许值标准高,而且标准执行很严格,应该说可以保证无毒无害。但是这些国家陶瓷制品价格昂贵,运到国内万里迢迢,除了极少数人,绝大多数国人难以问津。  但有孩子的父母认为,既然国内的陶瓷产品频频铅超标,为了保障小孩子的健康安全成长,何不花多一点钱,选择外国牌子呢?  且要看看外国牌子是否能信得过,决不能因为贴着“国外引进”的标签就对其刮目相看。不久前,香港海关抽查了来自日本、意大利、英国、葡萄牙等国的600款瓷器餐具,包括大小不同的碗、碟、杯和汤匙,结果有526款不符合国际标准规定,释放出过量的重金属铅,不合格率高达88%。  选购彩陶有高招  专家建议,釉上彩陶瓷较容易用目测和手摸来识别———凡画面不及釉面光亮,手感欠平滑甚至画面边缘有凸起感的千万要慎购。更可靠的方法是要求经销商或生产企业提供该产品的质量检验报告,这比肉眼观察要保险得多。  对不放心的产品,可用醋浸泡几个小时,若发现颜色有明显变化则应该弃之不用。  另外,使用时应该注意,对盛装食物的用具,应该注意与食物接触面的装饰不要多 盛装酸性食物的器皿,应该尽量选用表面装饰图案较少的产品。  不要因为颜色亮丽和价格便宜而选择地摊货。据了解,街头地摊与肩挑小贩所售的陶瓷餐具,大多数是一些土烧制的,上市前根本没有经过任何检验,有的瓷餐具表面的色釉经轻轻一擦,就出现剥落褪色,铅与镉的溶出量是否超标可想而知。
  • 央农记者采访:星创众谱储粮新科技设备
    2024年6月2日傍晚,央视农业农村频道《三农长短说》新闻栏目就标题为“粮食收了怎么储藏?”报道了在2024年全国粮食和物资储备科技活动周(以下简称“粮科院科技周”)中的储粮新科技设备的相关内容。根据“央农”记者报道内容可了解到,粮科院科技周中使用的新科技设备是国家粮食和物资储备局科学研究院和广东星创众谱仪器有限公司(以下简称“星创众谱”)联合研发的先进国产粮食品质快速检测仪器。把小麦等谷物放入仪器中,只要两分钟时间,粮食中的水分、蛋白质、湿面筋等质量指数就自动识别出来了。仪器的信息化、智能化、前沿性已经成为了储粮的新特点,且因一键识别,智能检测粮食品质的特点受到众多观众的关注。图片来源于CCTV节目官网《三农长短说》粮食收了怎么储藏?据采访所知,近红外光谱因为其在检测领域的优越性,所以近红外系列的粮食品质快检仪器适用于多种谷物的收购、存储、加工、育种等多个环节的快速、无损、多指标的定量检测分析。并且仪器可应用于实验室、车间等不同场合。星创众谱是一家院士团队创新创业公司,一直以来公司秉承“科技报国”的精神,以振兴光谱科学仪器民族产业为己任,致力于打破国外资本对于仪器市场的垄断,填补国内检测仪器的空白,为国家粮食、食品、制药、烟草等农业、工业领域的客户提供快速品质检测手段与安全保障方案。希望星创众谱再接再厉,为国家检测仪器行业的发展添力。
  • 岛津承办中储粮总公司技术交流会
    2010年12月1日-4日,由中央储备粮总公司主办、岛津公司承办的2010年中央储备粮总公司分析检测仪器技术交流会在岛津北京分析中心及九华山庄召开。来自中储粮总公司全国15个省级分公司的共33人参加了本次会议。     在分析中心举办的培训班现场  12月2日-3日在分析中心全天进行了AA-7000培训班。培训内容除了基础理论,仪器结构和上机操作外,穿插讲解了粮食样品的前处理方法及铅、镉测定的注意事项,并为客户准备了食品行业的数据集。在整个培训过程中,客户学习热情很高,积极讨论,与大家分享自己的工作经验。为保证学习效果,还进行上机操作,上机部分重点讲解了中储粮现在分析的项目石墨炉法测定铅,仪器自动配置铅的工作曲线。在中午及休息时间还讲解了上机操作及维护的部分主要内容。岛津分析中心各位老师为本次培训付出了辛苦努力,尤其是培训讲师侯艳红女士连续两天超额工作,保证了很好的培训效果。  12月4日,在岛津北京分公司举行了岛津产品技术交流会,首先由岛津公司李军波经理致辞欢迎,之后,围绕着分析仪器最完整方案制造商这一主题,结合岛津近几年最新最重要的机型为核心,由岛津公司的李智先生详细介绍了岛津公司和主要产品特点,尤其是再一次强调了原子吸收AA-7000的主要性能特点和优势,博得了中储粮各省级分公司技术负责人对岛津AA的认可和信任。     岛津公司的李智先生介绍岛津产品技术  本次培训和技交会为提高中储粮各省级监测中心的仪器检测技术,提高实验室操作水平起到了积极的作用。
  • 从“四无粮仓”到智慧粮仓,信息技术提升科学储粮水平
    自古以来,中国就有储备粮食的传统,粮食储备被认为是“天下之大命”,在中国很多考古遗址中,都发现有大量储藏粮食的窖穴。我国是人口大国,也是粮食消耗大国,正确处理人口与粮食之间的关系是国家稳定与发展的前提。在新中国成立时,中国粮仓库容量仅60亿斤,这些“粮仓”小而分散,而且潮湿多虫鼠,难以满足粮食安全存储的要求。虫害、霉害、鼠雀害时有发生,各地粮食损失非常严重。如今,我国粮食储藏量较新中国刚成立时已翻三百多倍,根据国新办发布的《中国的粮食安全》白皮书,中国的粮仓总容量在2018年已经达到了9.1亿吨。即便只装满1/3,也足够14亿人每人领回家400多斤。真真做到“手里有粮,心中不慌”。随着时代的进步、科技的发展,传统粮仓已经不能满足近年来的储粮需求。中国粮食储藏也在与时俱进,目前正向“绿色、生态、智能、高效”的阶段转型。通过互联网技术、无线通信技术和云计算技术,打造集“感应+数字+云端”于一体的“智慧粮仓”。“智慧粮仓”能实现多点感应,粮仓内的温度、湿度等有异常变化,系统立即发出警报,把之前以人为核心的保管模式,转变为科技化、信息化支撑的科学保管方式。建大仁科智慧粮仓监控系统是一套可无人值守24小时不间断实时监控记录的自动化监控系统。该系统由86壳温湿度传感器、环境监控主机、LED屏、工业485控制器和环境监控云平台组成,能对粮仓内的温湿度进行监测记录,并将温湿度数据通过环境监控主机实时上传至云平台,从而达到对粮仓内的温湿度进行实时监测控制,并可以在温湿度异常的情况下实现超限报警,以短信、电话、声光等形式通知管理人员。在粮仓管理中,重点在于合理的布置测温点,因为粮仓需要经常检查温度变化,方便及时发现粮仓的发热点,及时减少粮食的损失。针对粮仓温湿度监测我司推荐使用86壳温湿度传感器RS-WS-N01-1-*,该传感器内置瑞士进口原装高品质温湿度测量单元,带有液晶显示实时显示温湿度,方便现场观察监测数值。多种外延探头可选择,其外延探头线可延长至30米,便于多点测温。还可以能通过自身按键、配置软件或云平台设置其所有参数及温湿度监测的上下限值,能够对粮仓内的温湿度进行监测,并将实时数据在液晶屏上显示。环境监控主机RS-XZJ-100-Y通过RS485接口接入粮仓内安装的所有86壳温湿度传感器,接收所有监测终端上传的数据在液晶屏上轮显展示,并将数据上传至环境监控云平台,同时主机还有存储数据和断点续传的功能,可以保证使用时间内所有数据的完整。还可外接一路LED显示屏,把每个粮仓的温湿度数据直观的显示在LED大屏上。若监测到的实时数据超过上下限值,86壳温湿度传感器会就地声光报警,同时将报警信息上传至服务器,云平台会通过电话、手机、邮件等告警方式及时通知管理人员并联动工业RS485控制器开启空调或风机进行控温除湿。整个系统可靠、实用,可有效实现对其所在环境远程实时、动态监控,实时记录各监测点的温湿度状态数据,并对超限监测点发出警报、提示。不仅告别人工监测各项难点,还提高了温湿度的监测速度和监测精度,节省了大量人力和物力,减轻温湿度管理的工作强度,提高了管理效率。
  • 中储粮炮轰调和油猫腻 国标缺失已八年
    8月23日,中储粮油脂有限公司宣布推出“金鼎”食用调和油。作为市场新兵,中储粮此次使出了必杀技——国内首个公布调和油各种原料占比配方,意图打破食用调和油市场长期混乱的局面,也为自己迅速占领市场奠定坚实基础。  中储粮油脂有限公司副总经理王庆荣介绍,目前调和食用油最大的问题就是成分配比不透明,消费者缺乏知情权。“调和油生产企业通常用价格低的食用油做主要成分,将具有较高营养价值、价格高的油品仅添加很少比例,然后在商品名称上着重突出良好油品,比如橄榄调和油、茶籽调和油。但是,消费者却看不到这些调和油中各种油料具体的成分和比例。” 市场人士指出,中储粮金鼎此举意义重大,有望引领行业发展方向,带动调和油市场的规范、健康发展。就在今年7月,有消息称国家标准化委员会和国家粮食局将重新启动制定《食用植物调和油标准》,中储粮金鼎此举无疑传递出强烈的政策信号。  调和油市场乱象丛生  公开资料显示,2011年我国调和油市场消费量已经占小包装油消费总量的30%以上,终端市场上存在的调和油品种不下二十余种。  据了解,金龙鱼、福临门等大品牌凭据多年的市场深耕,在调和油市场中稳稳占据了前两名。AC尼尔森数据显示,Top10品牌占据市场72%左右的调和油份额,其余被区域品牌瓜分;金龙鱼坐稳调和油市场头把交椅,且同比增幅明显;福临门份额维持稳定,与第三品牌拉开了很大距离。  一个突出的现象是,这些调和油尽管都在名称上突出其最昂贵和最看重的油品,也会标注产品配料,但却看不到调和油所含各种油料的具体成分和比例。  业内专家认为,这释放给食用油行业的信号是,调和油生产企业往往仅将具有较高营养价值、价格高的油品放很少比例,用价格低的食用油作主要成分,却将调和油以前者来命名。  此前有媒体报道称,当前100元的大豆油,除去生产、包装和销售成本,只能赚3元钱,即3%的盈利。而100元的以大豆为基础油的调和油,盈利可以达到6元,即盈利6%,是纯大豆油盈利的一倍。  “导致这一现象出现的原因还是由于利益的驱使,在很大程度上是一种市场自然行为。在巨额利润的诱惑下,一些企业可能会对调和油中各原料的比例进行调节,从而出现欺骗消费者的行为。”一位不愿具名的业内人士告诉和讯网。  不仅于此,由于消费者缺乏对调和油各种油品构成比例的了解,导致长期误食,给身体营养均衡带来严重影响。  据了解,中储粮金鼎此次公布调和油的配方中,大豆油是主要成分,占比47.5%,而这已经是国内调和油非常理性的配方了;菜籽油是第二主要成分,点比41.4%,在目前调和油的配方中也属于较高的占比;另外添加了茶叶籽油和橄榄油等木本精华,使其含有茶多酚和橄榄多酚等抗氧化抗衰老的活性物质,添加了花生油和芝麻油,提升了产品的风味,更适合中国传统的口味习惯。  调和油国标长期缺位  我国大豆油、花生油、玉米油等八大食用油产品国家标准于2004年10月正式施行,标准明确要求产品等级、生产工艺、原料产地等须在包装上标示。  首先,在国标中,所有花生油、大豆油、玉米油、葵花籽油等油品的生产企业,必须在产品外包装上标明产品的生产工艺是“压榨”还是“浸出”法。压榨法是靠物理压力将油脂直接从油料中分离出来,其过程不涉及化学添加剂。从安全与环保上来看,采用物理方法的压榨油较有优势。它能够保持原料原有营养,油的品质比较纯正,但以压榨法生产食用油,出油率低,对原料的利用程度低,加工成本较高。这种方法常用于生产花生油。  浸出法是采用某种溶剂油将油脂原料经过充分浸泡后再进行高温提取,经过脱脂、脱胶、脱水、脱色、脱臭、脱酸后加工成成品油。浸出法制油,具有糟粕中残油少,出油率高,加工成本低等优势。只要合乎国家标准,以浸出法生产的食用油,其化学成分的残留很低,不会对人体健康产生任何影响。此法常用于生产大豆油、玉米油、葵花籽油。  长期缺位的是调和油。  2004年新的国家食用油标准开始施行后,当时食用调和油市场的随意勾兑现象、标识混乱、名称繁杂的问题就已经引起有关部门注意,食用调和油的国家标准制定工作也顺势而提上了国家粮食局等有关部门的议程。  2007年中国粮油学会油脂分会第十六届学术年会上,形成了“食用调和油国家标准《送审稿》”;2008年食用调和油国家标准开始向社会各界公开征求意见,意见反馈截止时间为2008年10月25日,但事实上,直到今天食用调和油国家标准也始终未有见到其真面目。  如何界定调和油存分歧  据了解,在当年征求意见的过程中,对于食用调和油的命名规则,有的油脂企业提出产品名称必须符合一定的条件才能命名,例如花生大豆调和油,名称中所涉及的原料油由前到后比例递减,而且由两种油调制而成的调和油,其中的主原料比例应不少于50%。  还有企业认为调和油中比例最大的原料油脂超过三分之一时,可以加在调和油前成为冠名调和油,建议营养型调和油(如橄榄调和油、葵花调和油等)营养油脂超过三分之一时,加在调和油前成为冠名调和油;风味型调和油(花生芝麻调和油),以调香为主的油品则另当别论。  食用调和油究竟是以占比三分之一还是50%的油料比例来命名,迄今未有定论。这正是调和油国标长期未能出台的原因所在,标准如何定,调和油概念如何界定,这都是非常复杂而且非常专业的问题,涉及到整个行业的发展,不得不慎之又慎。  对于迟迟未能出台的《食用调和油国家标准》,上述业内人士称,我国始终没有一种调和油标准来规范市场行为,仅仅依靠企业自行去监管机构进行备案,显然是远远不够的。  “公布配方、推动国标出台,是所有有责任企业的共同愿望,只有这个行业做好了,每个品牌才能更好地发展,我相信所有的同行在这一点上的态度都是一致的。”中储粮油脂有限公司副总经理王庆荣说。
  • 中储粮:目前无能力区分检测转基因和国产油菜籽
    近日,中储粮总公司连续在其官方网站回应“国储库流入大量转基因菜籽油”的媒体报道,引发舆论强烈关注。  中储粮称,检查发现违反收购政策将进口油菜籽掺入临储库存的企业有两家,这两家企业均为委托收储企业。不存在进口转基因菜籽油污染国家临储菜籽油库存的问题。  不少网民及公众表示,仍有疑问尚待解答。  一问:违规企业具体是哪两家?  中储粮尚未作出回应  中储粮官网28日称:8月末以来,中储粮总公司通过临储菜籽油验收检查、专项检查,以及财政专员办等有关部门的检查,对临储菜籽油收购的政策执行情况进行了全面核查。此次检查在湖北、湖南、四川三省共发现3个方面问题,涉及企业16家。其中,违反收购政策,将进口油菜籽掺入临储库存的企业两家,湖北一家企业掺入994吨进口菜籽油,湖南一家企业掺入483吨,两家企业均为委托收储企业。  质疑:有网民表示,“既然连混入数字都查得如此清楚,为何不能公布这两家违反收购政策的企业名称?”“应该曝光!让公众都知道它们的名字是对它们最严厉的惩罚!”  最新:中储粮尚未作出回应。  二问:进口菜籽油为何能混入临储库存?  回应:还无能力检测是否转基因  中储粮官网29日称:由于总公司自身没有菜籽油加工能力,所以临储菜籽油收购全部采取委托地方粮油加工企业收购、加工的办法。中储粮总公司作为临储菜籽油收购的监管主体,将继续接受国家有关监管部门的监督检查,配合有关部门严厉查处违反临储收购政策、损害国家利益的行为。  据介绍,国产菜籽油和进口的菜籽油相比,每吨贵1000元左右,高利润使得有些企业冒风险违规掺入进口菜籽油。  质疑:不少受访者表示,只有查清监管漏洞才能防止此类事件再次发生。  最新:中储粮购销计划部部长周毅接受采访时表示,我们向每个企业派出驻库监管员,职责是对收购、加工、储存进行全过程监管。但加工是24小时不间断的,我们没有这个力量(全天候监管),而且加工企业还有自己的油在加工。“我们的监管重点是在收购多少数量,你要拿多少油给我。”周毅表示,还无法通过感官区分进口转基因油菜籽和国产油菜籽,收购交过来的时候没有检测是否是转基因的技术手段,加工企业也不具备这个能力,这个就是企业要自律的问题。  三问:1477吨进口菜油中是否含有转基因菜籽油?  回应:进口菜籽油基本上是转基因的  此前中储粮称,进口转基因菜籽油污染国家临储菜籽油库存的问题目前不存在。对于已出现的混入问题,已经整罐全部退出临储库存。  质疑:网民表示,从中储粮给出的回应中,无法判断这些掺入临储库存的进口菜籽油是不是转基因的,这是公众最为关切的焦点。  最新:中储粮总公司综合部研究室申雷海表示,目前国内进口的菜籽油基本上是转基因的。  申雷海表示:“目前,总公司通过全面排查,只要发现委托企业进口转基因菜籽油充顶临储收购菜籽油,就坚决将该企业收购的油全部退出库存,并且取消其今后参与临储收购的资格。总公司将加大监管力度,严防进口转基因菜籽油混入行为,确保国家临储菜籽油全部是国产的非转基因菜籽油。”  四问:退出临储库存的进口菜籽油如何处理?  回应:标注成分后仍可在市场上流通  此前,中储粮称,“对于已经出现的混入问题,已经采取整罐全部退出临储库存”。  质疑:有网民追问“这些菜籽油将何去何从?是否会流入市场?”  最新:对此,申雷海表示,进口转基因菜籽油在商业经营中是允许的。  “它不像是问题奶粉需要销毁,只是不符合我们政策储备的规定,但是可以在市场上流通、经营。当然,作为转基因产品,在下游的加工、分包和零售环节上必须遵守有关规定,在标签中注明,包括我们出品的油,如果有转基因成分也会在包装上标注。”
  • 全球科研报告:中国科研产出量仅次于美国
    2004年以来中国科研产出发生翻番,有望10年内赶超美国 放眼未来,农业科学和生命科学领域有望出现快速增长   11月2日,汤森路透集团发布报告——《全球科研报告:中国》(Global Research Report: China)称,中国的科研产出量近年来发生了爆炸性增长。自2004年以来,中国的科研产出发生了翻番,速度远远超过了其他国家。以这一速度发展下去,中国将会在下一个10年赶上美国。  这份报告是汤森路透集团《全球科研报告》系列的一部分,该系列描绘了全球科研的变化图景。  《全球科研报告:中国》的一些主要发现包括:  中国的科研产出从1998年的2万多篇论文增加到2008年的接近11.2万篇论文,自2004年以来科研产出发生了翻番。中国在2006年超越了日本、英国和德国,目前仅次于美国;  中国的科研产出有望在未来10年赶上美国;  中国的科研重点集中在物理科学和技术方面。材料科学、化学及物理学占支配地位。放眼未来,农业科学和生命科学领域有望出现快速增长,热点学科包括免疫学、微生物学、分子生物学以及遗传学;  美国是中国的最大科研合作伙伴,在2004年至2008年间,在美科学家贡献了中国科研机构将近9%的论文;  中国与周边区域的地区性合作的成果显著,特别是与日本、韩国、新加坡以及澳大利亚的合作。
  • 水嘴国标对17种重金属析出量强制限定
    质检总局和国家标准委日前发布了新修订的《陶瓷片密封水嘴》(GB18145-2014)强制性国家标准,将水嘴的重金属析出、密封性能、流量、寿命作为强制性条款,其中重金属析出一款对17种重金属析出规定了严格的限量值。新标准将于2014年12月1日实施。  据国家标准委有关人士介绍,随着经济发展和社会进步,我国城乡居民对健康安全的要求越来越高。为满足健康安全需求,国家标准委高度重视水嘴铅超标问题,委托全国建筑卫生陶瓷标准化技术委员会组织行业专家、检验机构、认证机构、企业代表、消费者代表以及科研院所进行多轮论证和深入讨论,积极修订《陶瓷片密封水嘴》国家标准,将标准中金属污染物的种类明确增加到17种,尽可能涵盖了水龙头析出的所有金属污染物种类。  我国已是世界上最大的水嘴生产国和出口国,全国年产量超过1.5亿件,年销售额超过200亿元,最大的企业的产量约2000万件。我国陶瓷片密封水嘴内销的生产企业近300家,绝大多数是以小型私营企业为主,主要集中在广东、福建、浙江等沿海地区,占全国总产量的95%以上。  新标准将水嘴重金属析出、密封性能、流量、寿命作为强制性条款,其余为推荐性条款。据介绍,密封性能是水嘴最基本的性能要求,主要考核水嘴是否漏水,造成水资源浪费或损坏用户财产。流量是水嘴最重要的一项使用性能,决定水嘴是否节水并满足正常使用功能,流量太大造成水资源浪费,流量太小不能满足正常使用功能。寿命用来衡量水嘴使用周期,也是衡量水嘴质量好坏的一项重要指标,水嘴各项元件及辅助材料的质量会影响产品的寿命,通过对水嘴寿命进行强制要求,可以确保产品满足正常使用功能。  对于一段时间以来社会广泛关注的重金属析出指标及限量值,标准分别规定每升水中铅的析出量不大于5微克,其他16种金属每升水的析出限量分别作出规定。
  • 我国输欧多款塑料厨具初级芳香胺迁出量超标
    今年欧盟食品饲料快速预警系统(RASFF)第23周通报显示,近日欧盟成员国通报我国4批次塑料厨具初级芳香胺迁出量超标,本次通报国家为塞浦路斯。  按照欧盟(EU)No 284/2011号法规规定,塑料厨具中迁移出的初级芳香胺浓度不得高于0.01mg/kg,然而受通报的我国4批次塑料厨具中初级芳香胺的迁出量均超标。  据了解,塑料厨具中初级芳香胺超标的主要原因为,一是塑料原料中使用了某些含有偶氮染料组分的色粉等物质,在一定条件下分解形成各种芳香胺物质,这一现象特别在深色塑料制品中较容易出现 二是塑料原料生产过程中使用了一些含有芳香胺基团的物质或助剂,在受热等条件下可能释放出芳香胺 此外,塑料合成过程中使用的某些交联剂和扩链剂等在一定条件下也可释放出芳香胺物质。  近期欧盟相关通报如下:日期通报号产品类型通报类型通报基础通报国家来源通报原因分销国家/地区采取措施/分销状况04/06/20122012.0761食品接触材料信息通告市场官方控制塞浦路斯中国来自中国的塑料抹刀中有初级芳香胺(苯胺: 113 4,4'-丙二醛: 13.9 µ g/l)迁出 塞浦路斯从顾客召回/分配到通告国受限04/06/20122012.0763食品接触材料信息通告市场官方控制塞浦路斯中国来自中国的塑料厨房勺子中有初级芳香胺(苯胺: (aniline: 88 4,4'-丙二醛: 4916 µ g/l)迁出塞浦路斯从顾客召回/分配到通告国受限04/06/20122012.0764食品接触材料信息通告市场官方控制塞浦路斯中国来自中国的意大利厨房工具,塑料黑勺子中有初级芳香胺(苯胺: 195 µ g/l)迁出塞浦路斯从顾客召回/分配到通告国受限04/06/20122012.0761食品接触材料信息通告市场官方控制塞浦路斯中国来自中国的塑料抹刀中有初级芳香胺(苯胺: 113 4,4'-丙二醛: 13.9 µ g/l)迁出 塞浦路斯从顾客召回/分配到通告国受限
  • 苏泊尔回应质量门:称锰析出量符合限定标准
    摘要:2012年2月16日央视《焦点访谈》播出《打破钢锅问到底》之后,2月17日,苏泊尔(002032)临时停牌。苏泊尔发布公告称,公共传媒出现关于浙江苏泊尔股份有限公司的信息,可能对公司股票交易价格产生较大影响,于2012年2月17日临时停牌。  中国经济网北京2月17日讯 2012年2月16日央视《焦点访谈》播出《打破钢锅问到底》之后,2月17日,苏泊尔(002032)临时停牌。  苏泊尔发布公告称,公共传媒出现关于浙江苏泊尔股份有限公司的信息,可能对公司股票交易价格产生较大影响,于2012年2月17日临时停牌。  在去年被爆质量门之后,苏泊尔已经跌去了32%。  时隔不到半年苏泊尔再爆产品不合格,存在锰含量超标、镍含量不达标的问题。风声再起,再度停牌,这对苏泊尔的半壁江山来说可谓“危矣”。  而苏泊尔也立马有了回应的动作,苏泊尔17日早上在官网发布了《致苏泊尔的消费者》,称锰析出量符合限定标准。
  • 中国循环经济协会发布《粉煤灰重金属元素最大浸出量的测定方法》团体标准征求意见稿
    各有关单位:根据《中国循环经济协会标准管理办法(试行)》有关要求,由中国环境科学研究院等单位制定的团体标准《粉煤灰重金属元素最大浸出量的测定方法》已完成征求意见稿。现面向社会公开征求意见,请按格式要求完整填写《中国循环经济协会团体标准公开征求意见表》,于2024年6月22日前将意见反馈至协会科技标准部。联系部门:科技标准部联系电话:010-88334644-865/859电子邮箱:kjbz@chinacace.org关于对《粉煤灰重金属元素最大浸出量的测定方法》团体标准征求意见的函.pdf附件1:中国循环经济协会标准公开征求意见表.pdf团体标准-粉煤灰重金属元素最大浸出量测定方法(征求意见稿).pdf编制说明-《粉煤灰重金属元素最大浸出量测定方法》(征求意见稿).pdf
  • 我国对包装玻璃容器中重金属溶出量限量
    为保护人类安全和健康,中国对包装玻璃容器中铅 、镉、砷 、锑 溶出量规定了允许限量,涉及的产品范围包括所有接触食品、药品、酒、饮料等的包装玻璃容器 。  采用ICP-AES法同时测定食品玻璃容器 中铅、镉、砷、锑的溶出量,回收率为87.9%~121.1%,精密度为0.43%~1.99%,检出限为Pb0.007μg/ml、Cd0.0004μg/ml、As0.02μg/ml、Sb0.02μg/ml,方法简便快速,适合于食品玻璃容器中铅、镉、砷、锑溶出量的检测分析。
  • 国家粮食和物资储备局发布《粮油检验 储粮真菌标准图谱 第1部分:曲霉属》等12项标准征求意见稿
    各有关单位:我们组织起草的《粮油检验储粮真菌标准图谱第1部分曲霉属》等5项国家标准和《粮油机械移动式除尘器》等7项行业标准已形成征求意见稿,现向社会公开征求意见,截止日期为2024年5月27日。请将意见和建议反馈至对应的分技术委员会(SC)秘书处。有关分技术委员会联系信息如下:1.原粮及制品分技术委员会(SC1)秘书处联系人:陈园010-58523656电子邮箱:tc270sc1@ags.ac.cn2.油料及油脂分技术委员会(SC2)秘书处联系人:田华13308655730电子邮箱:oilfatbz@163.com3.粮食储藏及流通分技术委员会(SC3)秘书处联系人:王艳艳18623719538电子邮箱:tc270sc3@163.com4.粮油机械分技术委员会(SC4)秘书处联系人:杨喜华027-50657875电子邮箱:tc270sc4@126.com附件:附件.zip1.《粮油检验储粮真菌标准图谱 第1部分:曲霉属》(征求意见稿)文本及编制说明(SC1)2.《粮油检验储粮真菌标准图谱 第3部分:镰刀菌属》(征求意见稿)文本及编制说明(SC1)3.《粮油检验储粮真菌标准图谱 第4部分:其他常见菌属》(征求意见稿)文本及编制说明(SC1)4.《棕榈仁油》(征求意见稿)文本及编制说明(SC2)5.《粮油储藏粮情测控系统 第4部分:信息交换接口协议》(征求意见稿)文本及编制说明(SC3)6.《粮油机械移动式除尘器》(征求意见稿)文本及编制说明(SC4)7.《粮油机械粮食中铅镉快速测定仪阳极溶出伏安法》(征求意见稿)文本及编制说明(SC4)8.《粮油机械集装箱翻转机》(征求意见稿)文本及编制说明(SC4)9.《粮油机械平房仓装仓机》(征求意见稿)文本及编制说明(SC4)10.《粮油机械白米分级筛》(征求意见稿)文本及编制说明(SC4)11.《粮油机械针式冲击磨》(征求意见稿)文本及编制说明(SC4)12.《粮油机械抑尘发放料斗》(征求意见稿)文本及编制说明(SC4)13.意见反馈表国家粮食和物资储备局标准质量管理办公室2024年3月26日(此件公开发布)
  • 《自然》成果揭示: 微生物碳利用效率对全球土壤有机碳储起决定作用
    近日,清华大学和美国康奈尔大学的研究者带领国际团队,在生态学和计算机科学领域开展深度学科交叉,利用人工智能和数据同化技术,揭示了微生物碳利用效率对全球土壤有机碳储量的决定性作用。日前,该研究成果发表在《自然》杂志上。目前,促进土壤有机碳形成和积累是人们降低大气二氧化碳浓度、应对气候变化的自然解决方案。传统研究主要关注植物有机碳输入和土壤有机质分解这两类机制对土壤有机碳的影响。然而近年来,新的研究开始强调微生物过程在土壤有机碳形成和储存中的关键作用。微生物碳利用效率对土壤有机碳的两种控制途径 清华大学供图微生物既是土壤中主要的有机质分解者,同时也通过其生长和死亡直接产生土壤有机质。解析微生物过程对土壤有机碳储存的双重控制机制以及定量评估其相对重要性,是理解土壤碳循环及其响应气候变化的关键。为此,清华大学地球系统科学系教授黄小猛、博士生陶凤以及康奈尔大学教授骆亦其组织的国际研究团队,以微生物碳利用效率为变量整合了微生物过程对土壤有机碳储存的双重控制机制,并探讨了其与全球土壤有机碳储量的关系。研究团队通过将一个描述复杂土壤碳循环的机理模型与5万多条土壤碳观测数据相融合,发现在全球范围内,微生物碳利用效率与土壤有机碳储量正相关 。微生物代谢中对有机合成较高的碳分配比例最终导致了土壤有机碳的积累而不是流失。涌现的微生物碳利用效率与土壤有机碳储量关系 清华大学供图研究还发现,微生物过程在土壤碳储存中发挥着最为关键的作用,准确描述微生物碳利用效率的空间格局,也是准确模拟全球土壤有机碳储和空间分布的关键。其重要性是土壤有机质分解和植物碳输入等其他所有过程的4倍以上。“我们的团队突破性地解决了在全球尺度评估微生物过程与其他过程对土壤碳储存的相对重要性这一难题。”骆亦其说。据介绍,该研究立足于过去两百年的土壤碳循环理论,整合了世界最大的土壤有机碳数据库并结合先进人工智能和数据同化技术,首次系统评估了各种土壤碳循环过程对全球土壤有机碳储存的相对贡献。该研究还揭示了微生物碳利用效率与土壤有机碳储量的关系,为通过土地管理影响微生物过程促进土壤固碳和实现碳中和目标,提供了科学理论基础研究构建的机理模型。生态大数据与人工智能相融合的的新范式也为其他相关领域研究提供了新思路。
  • 国家标准《搪玻璃层试验方法 第10部分:生产和贮存食品的搪玻璃设备搪玻璃层中重金属离子溶出量的测定和限值》征求意见
    国家标准计划《搪玻璃层试验方法 第10部分:生产和贮存食品的搪玻璃设备搪玻璃层中重金属离子溶出量的测定和限值》由 TC72(全国搪玻璃设备标准化技术委员会)归口 ,主管部门为中国石油和化学工业联合会。主要起草单位 江苏扬阳化工设备制造有限公司 、天华化工机械及自动化研究设计院有限公司 、苏州市协力化工设备有限公司 、太仓新工搪玻璃有限公司 、北京华腾大搪设备有限公司 。征求意见稿编制说明
  • ABBLGR便携式温室气体分析仪亮相直播节目湿地“碳”究
    文章来源:观沧海9月16日,作为全国科普日联合主办单位,自然资源部以线上、线下相结合的方式举办了丰富多彩的主场活动,其中直播节目《湿地“碳”究》格外引人注目。滨海湿地对于固碳释氧、应对气候变化等具有重要作用。调查发现,滨海湿地的碳主要分布在植物、土壤和水域中,但这些碳也会通过呼吸作用释放到大气中,俗称为碳在“水-土-气-生”多圈层中的循环过程。那么,这些过程是如何观测?又有哪些因素控制着碳在各圈层分布?气候变暖是如何影响碳汇过程的?这些都是科研工作者重点攻关的科学问题。直播节目中,自然资源部北方滨海盐沼湿地生态地质野外科学观测研究站(以下简称滨海湿地野外站)站长叶思源带领观众走进滨海湿地野外站位于江苏盐城的观测站点,用通俗易懂的语言讲解了滨海湿地的生态功能,介绍了该团队野外作业相关情况,展示了在滨海湿地碳汇调查和研究方面取得的工作成果,深化了公众对碳达峰、碳中和目标的理解,推广了关爱湿地、保护湿地的理念。滨海湿地野外站一角科研人员野外调查现场地上植物能固碳研究滨海湿地碳汇奥秘,离不开调查装备的“硬件”支撑。 “芦苇是盐沼湿地的典型植物,植物体中45%的成分是碳。科研人员可以利用仪器观测植物进行光合作用的过程,也就是植物的固碳过程。”在江苏盐城湿地的芦苇地,叶思源首先向观众展示了调查常用仪器——新一代光合仪。“显示屏上的这条曲线反映了测量时间段内二氧化碳浓度的变化,如果曲线下降,表明二氧化碳浓度降低,说明植物正在吸收二氧化碳。” 那么,科研人员是如何得知这些地上植物的碳储量的呢?“最直接的办法是将其割了、晒干、再称重,从而估算出它的碳储量。”叶思源介绍,由于湿地调查范围较大,科研人员通常采用样方调查方法,了解湿地植物的种群、数量和生长状况,并进行生物量的测算,从而对湿地的固碳能力作出评估。 目前,滨海湿地野外站根据芦苇的生长特征,设置了50厘米×50厘米样方。科研人员对样方范围内每一株植物进行体检,测量其身高、体重、“腰围”等,计算每个样方的生物量,并根据区域植被分布面积,评估湿地的生物量,再根据碳转换系数,得出区域内植被圈层的碳储量。地下的巨大碳库除了湿地植物通过光合作用从大气中吸收二氧化碳,湿地的地下也存在一个巨大的碳库,而且地下碳的库存量远大于植被圈层的库存量。直播节目中,叶思源拿起一个刚从芦苇湿地取出的土壤柱状样品说:“由于湿地大部分时间处于静水水淹状态,缺氧的环境使得土壤中微生物分解碳的能力变得非常弱,再加上滨海地区河流较多,带来的泥沙快速埋藏植物残骸,形成长期稳定的碳库。我们通过仔细观察,可以看到土壤里面包含湿地植物的根茎,把土壤洗掉,称量植物的根,就能获得植物的地下生物量。”叶思源表示,在盐沼湿地中,土壤中的碳储量可占总碳储量的50%~98%。地上的芦苇,相当于一个加工厂,把碳生产出来,最后储存到土壤中。土壤的碳年复一年保存在这里,形成了一个巨大的碳库。水域固碳不容忽视此外,湿地中的水域固碳能力也不容忽视。叶思源介绍,湿地水域中生长的各类浮游植物也可以进行光合作用。浮游植物将水中游离的碳转化为有机碳,这样水里的碳少了,大气中的二氧化碳就会进入水体中进行补充,从而减少了大气中的二氧化碳,这就是水域光合固碳作用。直播节目中,叶思源向观众展示了一套可以测定浮游植物光合作用能力的实验装置。“我们通过监测发现,水质清澈的辽东湾水域比江苏近海浑浊水域初级生产力高出48倍,因此证明水的悬沙量对水域光合固碳效率影响很大。这提示我们,可以通过增加河流的漫游路径来减少浑浊度,进而增加近海水域的光合固碳能力。”叶思源说。监测温室气体排放速率调查发现,湿地生态系统中,储存于植物、土壤和水这3个圈层的碳并不是完全稳定储存的,有一部分通过呼吸作用和土壤矿化分解作用,以二氧化碳或甲烷的形式返回到大气中。那么,科研人员又是如何监测二氧化碳或甲烷等温室气体排放速率的呢?叶思源向观众介绍了一个形似黑箱的测量装置。“我们通过该封闭箱采集气体,用布罩住形成一个黑箱,连接仪器,可以看到在没有光合作用的情况下二氧化碳浓度的变化,从而测量湿地生态系统二氧化碳的释放速率。”叶思源介绍,总体来说,滨海湿地吸收的碳量远大于排放的碳量,是典型的负排放系统。滨海湿地野外站开展碳循环的研究工作,主要是围绕碳在不同圈层中的循环过程和控制因素,试图找到好的方法,能使生态系统多储存碳。研究发现,滨海湿地温度小于18摄氏度、盐度大于18‰时,二氧化碳和甲烷基本不排放。当盐度达到15‰时,湿地系统固碳能力可达到最佳状态。因此,科研人员可以通过调控湿地水的盐度增强其固碳能力。研究碳循环模式当前,在全球气候变化大背景下,碳循环模式发生了很大变化。叶思源介绍了一个用于研究湿地碳汇资源对全球变暖影响的增温模拟试验装置。该装置形似玻璃房,“房中”安装了很多传感器,可实时监测46个环境因子。叶思源表示,类似这种装置,滨海湿地野外站已布设于辽河三角洲、黄河三角洲、盐城3个湿地,覆盖了2种植被、3个纬度带,并与欧美国家同等的增温站联网,全球科学家共享数据,合作研究预测不同纬度、不同生境、不同地质演化阶段的滨海湿地在未来气候变暖情况下固碳能力的变化,为应对全球变暖提出科学建议。“我们初步研究发现,增温会破坏本土植物的固碳器官,但是会增强互花米草等入侵植物的固碳能力。”叶思源说,“当前该结论在学术界还存在争议,主要是增温的响应存在短期效应和长期效应的区别。为了更科学地认识湿地碳汇功能对增温响应的规律,我们必须在观测站进行长期监测,这也是建设该观测站点的目的。”直播节目尾声,叶思源向观众发出呼吁:“希望大家多多了解滨海湿地,保护湿地,关注全球气候变化,践行低碳生活,为实现‘双碳’目标作出自己的贡献。”链接:盐沼湿地如何固碳释氧地球上有四大碳库:岩石圈碳库、大气碳库、陆地生态系统碳库和海洋碳库。其中,海洋是地球上最大的活跃碳库,是陆地碳库的20倍、大气碳库的50倍。海洋每年吸收约30%的人类活动排放到大气中的二氧化碳。海洋储碳周期可达数千年,在全球气候变化中发挥着不可替代的作用。要实现碳达峰、碳中和目标,必须下大力减少大气中的二氧化碳,除了调整能源结构、推动产业结构转型、提升能源利用高效率、加速低碳技术研发推广,增加生态系统碳汇也是行之有效的方式之一。比如,滨海湿地生态系统单位面积的固碳速率是陆地生态系统的15倍和海洋生态系统的50倍。湿地是位于陆生生态系统与水生生态系统之间的过渡地带,泛指暂时或长期覆盖水深不超过2米的低地、土壤充水较多的草甸以及低潮时水深不过6米的沿海地区,包括咸水淡水沼泽地、湿草甸、湖泊、河流以及河口三角洲、泥炭地、湖海滩涂、河边洼地或漫滩、湿草原等。滨海湿地位于陆海交互带,是海岸带的一部分。天然的滨海湿地主要分为盐沼湿地、红树林湿地、珊瑚礁湿地、水草床湿地等类型。滨海湿地物种丰富,有很高的生态服务功能,在水土保持、岸线稳定、污染物质净化、碳埋藏与温室气体吸收以及为人类提供休息娱乐场所等方面具有很高的价值。作为滨海湿地的重要组成部分,盐沼湿地基本特性是地表水呈碱性且土壤中盐分含量较高,表层积累有可溶性盐,其上生长着盐生植物,如芦苇、互花米草、柽柳和赤碱蓬等。滨海盐沼湿地具有很高的初级生产力,其土壤除了表层数厘米或数毫米的氧化层外,下部还储有巨大的碳库。该生态系统碳库大致可分为3个部分,包括地上活生物量(灌木、禾本和草本等),地下活生物量(根系和根状茎)以及土壤碳库。盐沼湿地碳库主要由内源碳和外源碳组成。其中,外源碳是通过水系输入至盐沼系统,而内源碳主要来自盐沼湿地系统中的大型植物或藻类的光合作用,但内源碳大部分却以二氧化碳或甲烷的形式又返回到大气中了。植物是盐沼碳汇功能实现的关键所在。盐沼中的植物光合作用,又称初级生产过程。该过程以大气中的二氧化碳和土壤中的水为反应物,以光能为能源,以自身为反应器将光能转化成化学能固定于体内,完成碳元素从无机态向有机态的转化。盐沼中的植物与藻类生长能够通过光合作用快速固定大气中的二氧化碳。在潮下带盐沼中,主要初级生产者是浮游藻类和底栖藻类。这些藻类在空间上来源于海水水体、底部沉积物2个部分,海水水体固定的碳元素在潮汐水流的搬运作用下进行空间上的再分配,而底部沉积物固定的碳元素在空间上的分布较为稳定。在潮间带和潮上带盐沼中,大型植物类型是确定滨海湿地初级生产力的主要因素,大型植物固碳量普遍占滨海盐沼生态系统固碳量的90%以上。 UGGA 采用紧凑型设计,将所有组件集成于一只小巧的野外便携箱中。大大减少了体积,降低了重量,并提高了便携性。适合于各种测量载体,诸如汽车、飞机、舰船、无人机载,甚至单人人力携带。UGGA 可使用直流供电,且能耗低至 60W,内置 Wifi,可以通过多种电子终端进行遥控操作。UGGA 可以快速同时测量 CH4,CO2 和 H2O 浓度,操作简单,使用方便,是一款进行野外研究,泄漏检测,空气质量研究和土壤通量研究的理想设备。特点:● 便携式箱体设计● 体积小,重量轻 ● 可直流供电,且能耗低至 60W● 三种气体(CH4, CO2, H2O)同时测量● 内置 Wifi,可通过多种终端设备遥控操作性能指标:◆ 测量范围:● CH4:0~100 ppm● CH4:0~1%(需增加扩展量程选项)● CO2:0~20000 ppm● H2O:0~30000 ppm三种气体(CH4, CO2, H2O)同时测量内置 Wifi,可通过多种终端设备遥控操作◆ 可选测量范围:● CH4:0~1000 ppm● CH4:0-1%(需增加扩展量程选项)● CO2:0~3%● H2O:< 99%RH,无冷凝◆ 重复性 / 精度(1σ,1 秒 /10 秒 /100 秒)● CH4:1.4 ppb / 0.5 ppb / 0.2 ppb● CO2:300 ppb / 100 ppb / 30 ppb● H2O:50 ppm / 20 ppm / 10 ppm◆ 测量速度:0.01-1 Hz(用户可选)◆ 环境条件:● 操作温度:5~45 ℃● 环境湿度:0~100% RH,无冷凝◆ 输出:数字(RS 232)、模拟、以太网、USB◆ 电力需求:60 W (11–30 VDC) 66 W (100–240 VAC, 50/60 Hz)◆ 尺寸与重量:18cm(H)x 47 cm(W)x 36 cm(D),16.9 kg
  • 二氧化碳究竟“是正是邪”科学家算出答案
    p style="text-indent: 2em "二氧化碳是一个典型的“双面间谍”:一方面它能帮助土壤固碳,另一方面又会加剧温室效应。它究竟“是正是邪”,这成为了一道困扰全球变化研究领域多年的难题。记者9日从南京农业大学获悉,邹建文课题组通过观测计算,揭示了陆地生态系统碳氮过程对大气二氧化碳浓度升高的响应强度及其驱动机制,其论文发表在最新一期国际学术期刊《生态学快报》上。/pp style="text-indent: 2em "大气二氧化碳、甲烷和氧化亚氮等温室气体浓度升高是全球变化的主要驱动因子。大气二氧化碳浓度的升高一方面能促进陆地生态系统光合产物积累,增加土壤碳储量,形成土壤的固碳效应(A)。另一方面,又会增加陆地生态系统甲烷和氧化亚氮等温室气体排放,加剧温室效应(B)。那么,大气二氧化碳浓度升高背景下,A与B分别是多少?/pp style="text-indent: 2em "邹建文告诉记者,若A小于B,则陆地生态系统对气候变化呈现正反馈,温室效应将进一步加剧;若A大于B,则呈现负反馈,大气温室效应将减缓;若A等于B,两者相互抵消,反馈效应呈中性。/pp style="text-indent: 2em "课题组通过全球1655组观测数据发现,大气二氧化碳浓度升高导致陆地生态系统温室气体甲烷和氧化亚氮的年排放量增加了27.6亿吨二氧化碳当量,超过了土壤有机碳库增量(24.2亿吨二氧化碳当量),相当于每年陆地生态系统植被和土壤固碳总增量(39.9亿吨二氧化碳当量)的69%。/pp style="text-indent: 2em "因此,大气二氧化碳浓度升高背景下陆地生态系统温室效应很大程度上抵消了固碳效应。论文第一作者南农大资环院刘树伟副教授称:“综合二氧化碳本身的温室效应及其驱动的陆地生态系统对气候变化的反馈效应两方面来说,二氧化碳在大气中还是扮演着‘反角’。”/p
  • 自然资源部:发挥海洋固碳作用 助力实现“双碳”目标
    近日,自然资源部办公厅印发实施6项技术规程(以下称蓝碳系列技术规程),对红树林、滨海盐沼和海草床三类蓝碳生态系统碳储量调查评估、碳汇计量监测的方法和技术要求作出规范,用于指导蓝碳生态系统调查监测业务工作。目前了解到,2021年,自然资源部海洋预警监测司组织启动了蓝碳生态系统碳储量调查试点工作,在充分衔接国际相关标准的基础上,同步编制印发了红树林、滨海盐沼和海草床三类蓝碳生态系统碳储量调查与评估技术规程试行稿。自然资源部相关负责人介绍,经过一年多的试行,在验证了方法可行性的基础上,编制组结合实践听取各部门、各地方意见,对三类蓝碳生态系统碳储量调查评估技术规程试行稿进行了修订,形成了印发稿。2022年,随着蓝碳试点工作的深入开展,自然资源部海洋预警监测司启动了蓝碳生态系统碳汇监测试点工作,历时近两年编制完成红树林、滨海盐沼、海草床碳碳汇计量监测技术规程(试行),并在黄河口、曹妃甸等我国蓝碳生态系统重要分布区域进行了试点方法验证。上述负责人表示,蓝碳系列技术规程在充分吸收联合国政府间气候变化专门委员会(IPCC)推荐的方法学等国际标准的基础上,立足实际情况,对三类蓝碳生态系统的调查内容、碳储量计算、碳汇计量监测方法等提出了明确要求,填补了蓝碳生态系统业务化调查监测技术规程的空白,为摸清我国蓝碳生态系统碳储量本底和碳汇潜力,充分发挥海洋的固碳作用,实现国家“双碳”目标做出贡献。
  • 喜讯▏食安科技重金属检测仪入围中储粮管理集团2021年采购资格
    近日,中国储备粮管理集团有限公司公示2021年重金属检测仪入围项目,食安科技重金属检测仪获得入围资格! 粮食是重要的食品原料和战略物资,粮食质量安全直接关系人民群众的身体健康和生命安全,然而,近年来,随着我国工业化和城镇化进程加快,环境污染日益加剧以及JI端气候的增多,粮食质量安全隐患日益凸显,在我国的粮食质量抽检报告中,最常见的粮食问题有农药污染,真菌毒素污染,重金属污染等多方面的问题。粮油质量解决方案 真菌毒素快速检测技术
  • 重磅︱提升CO2排放信息化实测水平!中共中央 国务院重大政策频出,全面推进碳达峰碳中和工作开展
    9月22日,中共中央国务院发布《关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》(以下简称《意见》),这是我国目前出台的最顶层碳达峰碳中和工作意见,是各方面工作开展的纲领。▲国务院官方发布《意见》完整文件碳排放信息化实测《意见》二十九条指出,提升统计监测能力。健全电力、钢铁、建筑等行业领域能耗统计监测和计量体系,加强重点用能单位能耗在线监测系统建设。加强二氧化碳排放统计核算能力建设,提升信息化实测水平。依托和拓展自然资源调查监测体系,建立生态系统碳汇监测核算体系,开展森林、草原、湿地、海洋、土壤、冻土、岩溶等碳汇本底调查和碳储量评估,实施生态保护修复碳汇成效监测评估。10月26日,为深入贯彻落实党中央、国务院关于碳达峰、碳中和的重大战略决策,扎实推进碳达峰行动,国务院印发《2030年前碳达峰行动方案》。“政策保障”中指出,建立统一规范的碳排放统计核算体系。加强碳排放统计核算能力建设,深化核算方法研究,加快建立统一规范的碳排放统计核算体系。支持行业、企业依据自身特点开展碳排放核算方法学研究,建立健全碳排放计量体系。推进碳排放实测技术发展,加快遥感测量、大数据、云计算等新兴技术在碳排放实测技术领域的应用,提高统计核算水平。积极参与国际碳排放核算方法研究,推动建立更为公平合理的碳排放核算方法体系。▲国务院关于印发《2030年前碳达峰行动方案》的通知碳排放信息化实测是复核碳交易市场数据质量的有效手段,可很好辅助核查单位进行数据复验和因子校正,为促进碳排放权交易市场的健康有序发展保驾护航。数据是碳排放权交易市场的基石,关于碳排放权交易市场数据质量的保障,生态环境部也着重发文进行了要求。10月25日,生态环境部发布《关于做好全国碳排放权交易市场数据质量监督管理相关工作》的通知,要求近期个别企业和单位碳排放数据弄虚作假事例必须引起高度重视。▲生态环境部相关文件通知在碳排放权交易市场中,碳排放量实测主要分为两种:现场测量和非现场测量,现场测量一般是指在固定源排口加装温室气体排放连续监测装置(CEMS),通过连续监测浓度和流速直接测量排放量,非现场测量指通过采集样品送到有关部门,利用专门的检测设备和技术进行定量分析,确定排放因子等数据。二者相比非现场实测采样过程存在较大误差,且在碳排放量数据核算过程中有更多的人为因素干预,因此非现场实测要比现场CEMS实测存在更大的数据不确定性,现场实测更能反映真实的碳排放情况。为响应政策要求,践行企业责任,基于多年的技术积累,春来科技重磅推出针对固定源、环境空气和便携执法的温室气体在线监测多场景解决方案,可满足固定源温室气体排放量在线监测、环境空气温室气体浓度在线监测等场景需求,通过辅助碳排放人工核算体系,实现碳排放基础及过程数据的监测监管,实现碳管理的精细化、数字化和标准化,为实现“碳达峰”和“碳中和”的目标提供数据支撑。温室气体监测解决方案展示案例赏析:春来科技首个水泥厂碳排放CEMS正式运行,助力碳排放权交易市场精准MRV https://www.instrument.com.cn/netshow/SH104904/news_595243.htm
  • 助力“双碳”目标,广西首次完成自然资源碳汇试点野外调查
    2022年以来,广西自然资源厅立足于第三次全国国土调查数据,在田东县等7个县(区)启动实施自然资源碳汇调查监测试点工作,以建立自然资源生态系统碳汇调查监测与评估体系,支撑实现碳达峰碳中和目标。目前,包括水田、旱地、水浇地在内,试点县区耕地碳汇本底外业调查已基本结束,标志着广西首次开展的自然资源碳汇试点野外调查基本完成。采集土壤样本。广西自然资源厅 供图据广西自然资源厅自然资源调查监测处负责人介绍,广西生态优势突出、碳汇潜力巨大,但自然资源生态系统调查监测、碳汇评估体系建设等工作尚处于起步阶段。为服务“双碳”目标,提升生态系统碳汇统计监测能力,该厅在自然资源统一调查监测体系框架下,结合“天空地人网”技术优势,聚焦农田、林、草、湿地四类生态系统,选取田东县、阳朔县、钦州市钦南区、容县、环江毛南族自治县、来宾市兴宾区、宁明县等7个县(区)作为试点,开展生态系统碳汇本底调查、碳储量评估及碳汇潜力分析工作。试点着重探索通过土地利用现状调查监测数据,分析提取各类生态系统植被、土壤碳汇监测关键基础参数,支撑自然资源碳汇调查监测与评估体系构建。在试点中,广西利用遥感影像解译、土地利用现状调查、林草资源清查和现场监测等多种数据获取方式,借助地理信息技术,从土地利用方式、土壤、植被等方面选取典型样本,布设350个样地进行土壤抽样调查,计算20年内的耕地土壤碳汇参数。目前,全区已完成试点县(区)耕地实地勘察与外业调查采样,调查总面积达2万平方公里,获取了试点区域土地利用、耕地土壤和植被的碳汇参数,形成了首个覆盖全区地表的耕地碳汇本底数据库。通过试点区域碳汇参数,初步测算广西330.76万公顷耕地中蕴含3.66亿吨碳储量,耕地土壤碳汇潜力约8355万吨。广西耕地有机碳密度高水平主要分布在东南部,较高水平主要分布在东北部,等级依次向西南方向降低,耕地碳储量整体上呈现东南及中部高、东北和西北部低的空间格局,且存在显著的区域差异。布设350个样地进行土壤抽样调查。广西自然资源厅 供图目前,试点研究成果报告及耕地碳汇调查监测与评估技术规范已编制完成,开始征求意见。下一步,广西将通过遥感监测+实地清查与验证相结合的方式,获取试点地区耕地土壤有机碳密度、碳储量,评估耕地固碳潜力,为建立耕地保护碳汇补偿制度提供数据支撑,为全面开展碳汇调查监测与评估提供可复制、可推广的经验模式和标准体系。
  • 袁亮代表:加强深部煤炭安全开采与环境保护科技支持
    能源安全是国家安全的基石,生态环境是人类生存和发展的根基。全国人大代表、中国工程院院士、安徽理工大学校长袁亮在接受《中国科学报》采访时表示,“在实现碳达峰碳中和目标的背景下,我们亟需加强深部煤炭资源安全高效开采与煤矿区生态环境保护基础研究,加快推进高水平科技自立自强,更好保障国家能源安全、支撑美丽中国建设。”今年是袁亮履职全国人大代表的第六年。作为一名煤炭工业科研工作者,他始终关注着煤炭安全开采、生态环境保护等问题。在今年全国两会上,袁亮共提交了8份代表建议,其中有6份建议都是关于促进煤炭行业高质量发展,例如,“关于加大深部煤炭安全开采与环境保护科技支持的建议”“关于开发废弃矿山绿色资源支撑双碳目标政策支持的建议”“关于支持淮河流域能源资源开发与产业、生态协调发展的建议”……当前和今后相当长的一段时期内,煤炭仍将是我国能源供应体系中的主体能源。据统计,2022年煤炭占一次能源消费比重达56.2%,较好以煤炭安全保障的确定性应对了地缘事件与极端天气等的不确定性。然而,我国煤炭资源分布差异大,开采条件极其复杂,多数煤炭资源在深部,在5.97万亿吨煤炭资源储量中,埋深1000米以深的占53%。袁亮认为,“兜底保障国家能源安全必须开采深部煤炭。”在调研中,袁亮发现,随着煤炭开采由浅部走向深部,其开采环境、技术装备、灾害防治等都面临着前所未有的挑战。同时,煤炭开采导致土地资源破坏及生态环境恶化,开采沉陷造成我国东部平原矿区土地大面积积水受淹或盐渍化、西部矿区水土流失和土地荒漠化加剧,煤矿区生态环境保护迫在眉睫。对此,袁亮建议:首先,要加快布局深部煤炭安全开采与环境保护国家级科研平台。支持在深部煤炭安全开采与环境保护领域具有领先创新能力的国家级科研平台重组全国重点实验室,开展多场耦合致灾机理、煤与瓦斯共采理论、瓦斯动力灾害防治、绿色低损害开采、深地原位实验等基础研究,打造深部煤炭安全开采与环境保护国家战略科技力量。其次,积极推动深部煤炭安全开采与环境保护实现高水平科技自立自强。鼓励和支持围绕深井煤炭安全高效开采、黄淮海煤粮复合区生态环境保护等重点领域开展科研攻关,加强前瞻性核心关键技术及装备储备。发挥国家作为重大科技创新组织者的作用,以率先进入深部开采、灾害特征显著的中东部典型矿区为切入点,布局深部煤炭安全开采与矿区生态环境保护国家重大专项、重点研发计划、重大科研仪器研制、自然科学基金等重点项目,夯实基础研究地基。最后,引导煤炭企业发挥“出题人”“答题人”“阅卷人”作用。鼓励和支持煤炭头部企业围绕深部煤炭安全开采与环境保护现实难题,采用“揭榜挂帅”等方式攻克关键技术。支持建设黄淮海冲积平原等煤粮复合区典型矿区深部煤炭资源安全开发与环境治理示范工程,引领我国深部煤炭资源低损伤安全开采与区域生态环境一体化绿色低碳发展。
  • 中科院研发出基于二硫化钼/碳纳米复合材料的钠型双离子电池
    p  近日,中国科学院深圳先进技术研究院集成所功能薄膜材料研究中心研究员唐永炳及其研究团队,成功研发出一种基于二硫化钼/碳纳米复合负极材料的钠型双离子电池。相关研究成果以Penne-Like MoS2/Carbon Nanocomposite as Anode for Sodium-Ion-Based Dual-Ion Battery为题,在线发表在Small上。br//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/insimg/6177974b-2ba4-49ab-b8d7-66db7c701632.jpg" title="1.jpg"//pp  锂离子电池已广泛应用于便携式电子设备、电动汽车、储能设备等领域。但由于锂离子电池的大规模应用加之锂资源的匮乏和分布不均,使锂离子电池成本日益攀升,难以满足未来能源存储的低成本、长循环寿命、安全可靠等要求。钠与锂有相似的物理化学性质,且储量丰富、成本较低,使得基于钠离子的二次电池体系的研究近年来受到广泛关注。然而钠离子半径较大,导致Na+在电极材料中扩散缓慢,从而影响电池的倍率性能和循环性能。/pp  为改善钠离子电池的倍率性能和循环性能,唐永炳研究团队成员朱海莉、张帆等成功研发出一种基于二硫化钼/碳纳米复合负极材料的钠型双离子电池。该电池采用膨胀石墨作为正极材料,具有分级结构的MoS2/C纳米复合材料作为负极材料。由于这种具有分级结构的MoS2/C具有更宽的晶体片层间距,有利于提高Na+在其中的离子扩散速率,且碳层的引入提高了材料的电导率,使基于该MoS2/C纳米复合材料的钠型双离子电池具有良好的倍率性能和循环性能。结果表明,该电池在1.0-4.0V的电压区间,2C的电流密度下循环200圈后容量保持率为85%。这种新型钠离子电池在低成本、环保大规模储能领域,如清洁能源、智能电网等具有潜在的应用前景。/pp  span style="font-family: 楷体, 楷体_GB2312, SimKai "研究工作得到了国家自然科学基金、广东省科技计划项目、深圳市科技计划项目等的资助。/span/ppbr//p
  • 科学述评:自然解决方案助力中国实现碳中和
    近日,中国科学院华南植物园小良热带海岸带生态系统定位研究站站长、研究员王法明联合国内外海岸带碳汇研究领域的主要科学家,探讨了中国的海岸带蓝碳生态系统如何为减缓气候变化做出贡献。相关述评文章在线发表于《创新》。  “为了达到《巴黎协定》的目标,2020年中国政府承诺在2060年之前实现碳中和。除了大规模的减排脱碳,还需通过自然生态系统增加碳汇,以实现二氧化碳净零排放的总目标。”论文第一作者王法明对《中国科学报》表示。  我国碳储量高达118 Tg  文章指出,海岸带蓝碳生态系统,包括红树林、盐沼和海草床等,具有高效的二氧化碳吸存能力,因此保护和恢复这些生态系统成为重要的“基于自然的解决方案”。  从全国范围来看,中国的海岸带蓝碳生态系统总面积144万公顷,其碳储量高达118 Tg。其中,中国的红树林总碳储量约6.9 Tg,海草床生态系统总碳储量约1.4 Tg,远低于盐沼湿地的总碳储量25 Tg。此外,我国未被植被覆盖的滨海滩涂面积广大,总碳储量高达27~85 Tg。  除了碳储量,这些海岸带蓝碳生态系统的碳埋藏能力也是我们关注的重点。中国红树林每年的总碳埋藏量约为0.05 Tg/yr,海草床的总碳埋藏量为0.01-0.02 Tg/yr,盐沼湿地的碳埋藏量为0.50 Tg/yr;我国无植被覆盖的滨海滩涂的总碳埋藏量在0.28至1.5 Tg/yr之间。  “海岸带蓝碳系统通常具有非常低的甲烷排放量,但在某些特殊情境下,如低盐度下,也能排放一定量的甲烷。中国红树林的总甲烷排放量为0.01 Tg/yr,但还需要进一步计算中国其他海岸带生态系统(尤其是盐沼和滨海滩涂)中的甲烷排放量。”王法明表示。  当前,人类活动导致了大量海岸带蓝碳生态系统的丧失。在20世纪,全球海岸带湿地由于人类活动而减少了25~50%。自1950年代以来,中国的红树林总面积减少了一半。2021年,我国计划在未来十年将红树林恢复到48,650公顷。这些恢复的红树林将每年进一步吸收0.1 Tg的碳。  文章通讯作者之一、中国科学院华南植物园研究员任海指出,自1950年以来,中国的盐沼湿地大量损失,近些年虽然有一些改进。但是目前在国家层面还没有系统的恢复措施和计划。同时,我国每年有超过23,000公顷的滩涂湿地被开垦用于水产养殖、农业、盐田和城市扩建,而海草床每年损失也有几百到上千公顷。  文章估算了中国红树林和盐沼的横向碳通量分别为0.2 Tg/yr和0.9 Tg/yr。除了碳汇功能,这些海岸带蓝碳生态系统还具有重要的生态功能,对社会提供许多益处,如提供栖息地、调节和稳定气候、净化水质、保护水源、防洪、岸线稳定、具有丰富生物多样性和高生产力等服务功能。  助力我国蓝碳发展  文章指出,过去70年来中国海岸带蓝碳生态系统总面积的大幅减少导致了其蓝碳功能的明显下降,保护我国现存的海岸带蓝碳系统可以避免每年0.47~1.79 Tg C的排放,这也是实现碳中和最具成本效益的“基于自然的解决方案”。  “然而大部分的海岸带湿地的生态恢复都是以提高湿地面积为目标,忽视了生态质量和生态功能的恢复。相对于红树林,中国有更大面积的盐沼和滩涂湿地,如何保护和恢复这些海岸带湿地对于海岸带生态系统功能的提升至关重要。”王法明说。  文章表示,我国海岸带滩涂目前正面临互花米草入侵的威胁。尽管互花米草入侵后的泥滩滩涂的碳汇功能增加,提升了其蓝碳储量,但是入侵导致了其他生态系统功能的改变,如底栖生物多样性和鸟类多样性的变化。因此,需要进一步评估互花米草入侵后的综合生态效应。  除了保护和恢复之外,能够增强这些海岸带蓝碳系统的碳汇功能并减少碳排放的管理实践和技术也有助于碳中和目标的实现。然而,大多数的研究都集中在陆地生态系统,很少有关滨海湿地增汇减排技术的研究。  “中国海岸带蓝碳系统以盐沼为主导,红树林和海草床面积较小,而无植被的滨海滩涂面积广大。”王法明表示,保护和恢复这些海岸带蓝碳系统以及通过管理措施和技术提高它们的碳储存潜力,可以成为应对气候变化的一种“基于自然的解决方案”。  文章综合了几种有潜力提高滨海湿地蓝碳功能的管理措施和技术,包括施肥措施、生物炭施加、铁添加等。但是,其中一些技术措施也会对环境造成负面影响,因此这些管理措施和技术需要在增强蓝碳碳汇和保护自然生态系统之间取得平衡。  “尽管存在一些障碍需要克服,但保护和恢复中国海岸带蓝碳系统将是我国在2060年实现碳中和目标的一种经济有效的途径。”王法明表示,“积极采用‘基于自然的解决方案’对抗气候变化,可为可持续未来奠定基础。”
  • 基金委发布碳中和重大基础科学问题与对策专项资助指南
    2020年9月22日,习近平主席在第七十五届联合国大会一般性辩论上承诺,中国力争于2030年前达到CO2排放峰值,努力争取2060年前实现碳中和。中国的碳达峰与碳中和战略,不仅是全球气候治理、保护地球家园、构建人类命运共同体的重大需求,也是中国高质量发展、生态文明建设和生态环境综合治理的内在需求。碳中和战略涉及深度社会经济发展转型,以期实现低碳甚至零碳排放和基于技术变革的增汇目标,是面向可持续发展的重大机遇。为满足国家实施碳中和战略对基础科学研究的需求,充分发挥国家自然科学基金的基础性、科学性和前瞻性优势,促进地球科学与管理科学的融合创新,国家自然科学基金委员会地球科学部和管理科学部联合启动“面向国家碳中和的重大基础科学问题与对策”专项项目,拟针对国家碳中和的重大基础科学问题与对策开展专项资助工作。一、科学目标  围绕“减排”和“增汇”这两条实现国家碳中和战略的根本路径,本专项项目旨在系统揭示海洋和陆地碳汇格局、过程机制、演化趋势及其与气候系统的互馈机理,阐明地质碳封存过程机制、固碳功效、增汇潜力、技术风险与管理模式,剖析经济转型、路径优化、气候治理、国际合作等碳中和管理与政策问题,通过学科交叉融合研究,凝练关键基础科学问题并提出解决方案,服务于国家碳中和战略。本专项项目鼓励自然科学与管理政策研究团队联合攻关,突破学科间屏障,面向国家碳中和战略解决基础性和前瞻性的重大科学问题。二、拟资助研究方向  (一)中国海生态系统碳汇格局、清单及不确定性(申请代码1选择地球科学部D下属代码)  集成现场观测和卫星遥感数据,结合数值模拟等技术手段,系统评估中国海生态系统主要碳库时空变化,揭示渤海、黄海、东海和南海等主要中国近海系统的碳源汇格局,降低其评估的不确定性,提供中国区域高时空分辨率的海洋碳收支清单。  (二)中国海生态系统固碳关键过程与调控机制(申请代码1选择地球科学部D下属代码)  集成分析历史观测数据,深入研究我国邻近海域典型生态系统结构和碳汇功能的关系,揭示海水碳酸盐体系、浮游植物初级生产过程、群落净生产和浮游动物传递等关键碳汇过程的调控机制,甄别自然和人类活动对碳汇的影响,厘清暖化和富营养化等环境变化对生态系统碳汇功能的影响。  (三)海洋微型生物驱动与耦合的综合负排放机理(申请代码1选择地球科学部D下属代码)  通过学科交叉同步研究微型生物代谢驱动的碳、氮、硫循环过程,从分子、基因水平到种群、生态系统水平上阐释微型生物碳泵与无机碳汇的协同作用机理,探究微型生物碳泵驱动与耦合的有机碳-自生碳酸盐联合负排放路径,从实验观测到数值模拟建立微生物驱动的碳、氮、硫循环与碳汇耦合关系,实现海洋负排放机理上的突破,为碳中和目标提供海洋负排放的创新性理论和技术储备。  (四)中国陆地生态系统碳库现存量及其不确定性(申请代码1选择地球科学部D下属代码)  系统地评估2010-2020年间中国森林、草地、农田、湿地和内陆水体生态系统的全组分碳库的现存量、空间变异特征及其影响因素 量化地上植被、地下植被、土壤、凋落物碳库组分及其关系 评估碳库的现存量与容量,揭示碳库的稳定性以及估算的不确定性,凝练提出碳储量评估及其不确定性量化的方法体系。  (五)中国陆地生态系统固碳速率及其不确定性、稳定性和持续性(申请代码1选择地球科学部D下属代码)  基于长期调查样地、通量观测、多模型比对、多源数据整合等途径,定量分析森林、草地、农田、荒漠、湿地、内陆水体等类型陆地生态系统的固碳速率,以及以县、市、省等行政区划为主体的固碳速率,分析不同体系下固碳速率的不确定性 定量揭示中国陆地生态系统固碳速率的时空变异特征、影响因素和调控途径 评估碳汇功能的稳定性和持续性。  (六)中国陆地生态系统碳固持与碳汇功能的关键过程与调控机制(申请代码1选择地球科学部D下属代码)  研究土壤有机碳库关键属性的空间分布规律特征,解析森林、草地、农田、荒漠、湿地、内陆水体等类型生态系统土壤有机碳库的形成与稳定机制 研究主要生态系统类型土壤碳库关键属性和土壤碳转化的关键过程对全球变化的响应及其生物与非生物机制 探究植物及土壤微生物群落对土壤有机质稳定性的影响机制。  (七)中国陆地生态系统增汇潜力及风险评估(申请代码1选择地球科学部D下属代码)  根据不同的气候变化和大气沉降情景,结合我国重大生态工程及各类人为管理措施等,探讨不同时期、不同排放情境下的增汇潜力,量化气候变化和人为活动各分量对生态系统增汇潜力的贡献,在充分考虑固碳速率(动态特征)、稳定性、持续性的基础上,提出陆地生态系统增汇的系统管理优化方案。  (八)中国区域岩溶碳汇机理、清单及增汇潜力(申请代码1选择地球科学部D下属代码)  集成分析岩溶系统监测数据,发展新型融合观测系统,研究其中的碳循环过程与机理,建立岩溶碳汇算法,量化我国岩溶碳汇清单,评估岩溶碳汇速率与稳定性 研究微生物、碳酸苷酶、土地利用形式等对岩溶形成及碳汇的影响,探索通过人工干预加速岩溶碳汇的方法与途径,并评估其潜力。  (九)CO2封存的地质体结构透明化表征方法与埋存场地选址(申请代码1选择地球科学部D下属代码)  开展区域地质调查和工程地质勘察,进行多尺度地质结构观测,进行地表水/地下水物理化学力学性质测试,建立多尺度三维地质结构模型和水文地质结构精细化模型,开展数据挖掘、人工智能与大数据分析,建立CO2地质封存潜力评价指标体系。  (十)深地CO2封存多相流体与地质体的长时耦合作用(申请代码1选择地球科学部D下属代码)  建立真三向应力状态下CO2注入-运移-封存全周期过程中储层孔隙率-渗透率演化机制 揭示CO2-咸水-岩层耦合作用下储层孔隙力学长期变形规律以及时效致裂机理 建立渗透-化学-力学耦合作用下盖层岩体的真三向破坏准则及强度理论,揭示CO2聚集压力下盖层岩体时效损伤变形规律以及渐进式破坏机理。  (十一)去碳目标导向的CO2驱油与埋存的关键理论与技术(申请代码1选择地球科学部D下属代码)  研究适应不同类型地质封存需求的烟气净化和CO2捕集原理,分析高含水油藏开发历程对渗流、封存效率和封存安全性的影响规律,阐明高含水油藏中CO2-水-油-岩的微观相互作用,揭示高含水油藏封存CO2后流体重新分布及长期封存机制。  (十二)CO2地质封存潜力与资源协同方法(申请代码1选择地球科学部D下属代码)  构建区域尺度地质结构时空数据,量化不同区域的潜在碳封存储层及能力,探讨不同区域工业CO2排放源与区域碳封存能力的匹配性问题,揭示不同区域生物质能源、水资源、清洁能源等资源与碳封存的协同性。  (十三)地质碳封存安全与风险(申请代码1选择地球科学部D下属代码)  开展CO2-咸水物理化学作用下盖层渗漏破坏试验与模拟研究,揭示非纯CO2-咸水作用下盖层密闭性与力学特性演化机理,建立考虑储层密闭性及盖层突破性的力学稳定性评价方法 开展物理和化学两种捕获方式下多尺度地质结构劣化试验,建立断层活化判据,建立封存CO2后的监测方法,评价封存CO2后的长期封存机制、泄露风险和引发地质灾害的潜在风险。  (十四)中国海岸带生态系统碳汇格局、清单及潜力(申请代码1选择地球科学部D下属代码)  结合长期样地、通量观测、遥感监测、模型模拟等技术手段,构建红树林、盐沼、海草床等中国海岸带典型生态系统碳储量与碳通量的评估体系,阐明气候变化与人类活动影响下碳储量与碳通量的时空格局、演变规律及演化特征,揭示碳汇关键过程与调控机制,提供碳收支清单及不确定性,评估碳库稳定性、碳汇可持续性及潜力。  (十五)中国河流-河口-近海连续体碳交换与循环(申请代码1选择地球科学部D下属代码)  结合长期观测、遥感分析与模型模拟,厘清中国主要河流-河口-近海连续体的多界面碳传输通量特征,揭示碳传输的关键过程与调控机制,阐明气候变化与人类活动双重压力下河流-河口-近海碳交换的演变规律及其对海洋与陆地碳收支的影响。  (十六)陆海统筹下的中国海岸带生态系统保护修复与固碳增汇协同增效(申请代码1选择地球科学部D下属代码)  构建和发展陆海统筹下的中国海岸带生态系统固碳增汇的基础理论,研发红树林、盐沼、海草床等典型海岸带生态系统的增汇措施与关键技术,探索兼顾生态系统保护修复与固碳增汇的协同增效途径,评估不同增汇措施与技术实施的潜在风险,提出面向碳中和的海岸带生态系统保护修复的最优化管理方案。  (十七)区域碳循环过程与区域地球系统模式(申请代码1选择地球科学部D下属代码)  研发或优化包含碳循环过程的区域海陆气耦合的理论方法与关键技术,发展适用于中国区域海陆气耦合的区域地球系统模式 研究未来气候变化情景下东亚区域海洋和陆地生态系统碳循环及其与气候系统的互馈作用,阐明海陆气耦合对海洋和陆地生态系统碳源汇的影响。  (十八)中国碳中和行动有效性监测评估(申请代码1选择地球科学部D下属代码)  充分融合观察数据与数值模式,研究碳中和行动有效性监测评估的关键科学与技术,开展中国区域碳中和行动有效性监测评估,支撑碳收支盘点工作 开发碳同化系统、甄别自然与人为碳排放等关键措施与技术,评价不同碳中和路径的不确定性。  (十九)碳中和路径下的中国区域气候系统动力学(申请代码1选择地球科学部D下属代码)  从气候系统对温室气体强迫的快慢响应、反馈过程和气候敏感度等方面,揭示碳中和目标下中国区域气候系统的变化、不确定性以及关键的动力过程 研发能够有效减少模式预估不确定性的“涌现约束”方法,提高碳中和目标下东亚地区气候变化的预估可靠性,量化气候均态和极端事件等关键指标的变化和空间分布特征 评估碳中和政策在减缓增温、减轻气候灾害等方面的有效性 评估我国生态工程的碳汇作用及其气候影响。  (二十)面向不同碳中和路径下的自然生态系统碳汇演化集成研究(申请代码1选择地球科学部D下属代码)  探讨中国实现碳中和愿景的动态路径和技术途径,核算不同人为生态工程及管理措施对自然生态系统碳汇的影响潜力,基于不同的碳中和路径评价不同的管理体系对自然生态系统增汇的有效性、可行性以及经济性,提出自然生态系统增汇新技术方法和政策理论体系。  (二十一)面向碳中和的经济转型模式构建研究(申请代码1选择管理科学部G下属代码)  研究碳中和愿景与长期经济增长的相关影响 2030年前碳达峰和2060年碳中和愿景下经济结构形态演变特征和动力机制 碳中和愿景下的经济转型成本 碳中和愿景下的企业技术创新模式 研究进出口贸易对我国碳中和路径的影响 发展适合中国国情的碳中和经济学理论。  (二十二)面向碳中和的能源革命路径研究(申请代码1选择管理科学部G下属代码)  研究碳中和愿景下颠覆性能源系统技术与结构特征 碳中和愿景下能源系统形态动态演化过程、驱动机制和管理理论 基于大数据的能源系统复杂性建模方法 高比例可再生能源下的电力系统安全运行管理理论与方法 颠覆性能源技术和碳移除(CDR)技术在实现碳中和目标中的作用和发展路线图。  (二十三)重点行业和领域碳达峰、碳中和路径优化研究(申请代码1选择管理科学部G下属代码)  研究钢铁、水泥、石化等重点行业和交通、建筑等关键领域实现碳达峰和碳中和目标的主要障碍、技术措施、转型成本和优化路径 研究数字经济发展战略和乡村振兴战略对我国碳中和路径的影响 从物质流动和供给-需求系统的角度,综合分析主要行业和领域低碳发展的系统路径。  (二十四)碳达峰、碳中和区域协同路径优化研究(申请代码1选择管理科学部G下属代码)  研究自上而下与自下而上相结合的全国分区域碳中和路径评价理论和方法体系 碳中和愿景下我国分区域能源结构和产业结构转型的特征和驱动机制 全国重点产业空间布局特征对于区域和全国碳中和路径的影响机制 建立省级尺度的全国能源经济综合评估模型体系,识别实现碳达峰和碳中和目标的区域协同优化路径 选择京津冀、长三角、粤港澳、西部等区域开展碳中和先行示范区案例研究。  (二十五)面向碳中和的环境协同治理研究(申请代码1选择管理科学部G下属代码)  研究碳中和愿景下碳排放与大气污染物排放协同治理的模式与机制 研究不同区域碳中和路径对于大气污染物排放影响机制 研究不同碳中和路径下的空气质量空间格局特征、人群暴露风险特征和协同效益 研究碳中和与水污染、土壤污染治理的协同路径 研究碳中和路径下的中国分区域生态环境承载力 研究碳排放和非二氧化碳温室气体排放治理的协同路径。  (二十六)面向碳中和的国家气候治理体系研究(申请代码1选择管理科学部G下属代码)  研究面向碳中和愿景的法律法规体系创新 研究碳中和愿景下行业、地方碳排放总量控制的制度安排和协调机制 研究碳中和愿景下不同政策的交互影响 面向碳中和的政策工具创新和评估方法研究 碳汇体系建设与低碳消费模式对碳中和的贡献与激励机制研究 企业碳中和管理方法和激励机制研究 建立国家碳达峰、碳中和转型监测与战略决策支撑系统。  (二十七)面向碳中和的国际气候合作研究(申请代码1选择管理科学部G下属代码)  开展世界主要国家碳中和愿景比较和对我国的借鉴研究 面向全球碳中和的市场和非市场合作机制研究 研究基于算法的全球碳排放数据报告与核算理论和方法 研究国际碳定价机制链接和合作对我国和全球实现碳中和愿景中的贡献和影响 提出我国深入参与并引领国际气候合作机制构建的战略和策略。  (二十八)碳中和路径与对策综合研究(申请代码1选择管理科学部G下属代码)  综合运用管理科学、自然科学等相关领域的研究成果,建立由科学理论与技术支撑的碳中和路径决策系统,识别和探索在不同自然生态系统碳汇演化情景下的最优行动方案,支撑国家形成并实施碳中和综合战略和对策。三、项目遴选的基本原则  除撰写提纲要求外,申请书内容还须体现如下几个方面:(1)申请项目为实现总体科学目标的贡献 (2)针对本项目指南中研究方向拟重点突破的科学问题、达到的研究目标或技术指标 (3)为实现总体科学目标和满足多学科集成需要,申请人应承诺在研究材料、基础数据和实验平台上的项目集群共享。四、资助计划  本专项项目资助期限为4年,申请书中的研究期限应填写“2022年1月1日-2025年12月31日”,拟在每个研究方向资助1项,共资助28项,直接费用平均资助强度约300万元/项。其中,研究方向(二十)和(二十八)的集成项目资助强度可略高于平均资助强度。五、申请要求及注意事项  一)申请条件  本专项项目申请人应当具备以下条件:  1. 具有承担基础研究课题的经历   2. 具有高级专业技术职务(职称)   在站博士后研究人员、正在攻读研究生学位以及无工作单位或者所在单位不是依托单位的人员不得作为申请人进行申请。  (二)限项申请规定  1.本专项项目申请时不计入高级专业技术职务(职称)人员申请和承担总数2项的范围 正式接收申请到国家自然科学基金委员会作出资助与否决定之前,以及获得资助后,计入高级专业技术职务(职称)人员申请和承担总数2项的范围。  2.申请人和参与者只能申请或参与申请1项本专项项目。  3.申请人同年只能申请1项专项项目中的研究项目。  (三)申请注意事项  1.申请接收时间为2021年5月20日-2021年5月31日。  2.本专项项目申请书采用在线方式撰写。对申请人具体要求如下:  (1)申请人在填报申请书前,应当认真阅读本项目指南和《2021年度国家自然科学基金项目指南》的相关内容,不符合项目指南和相关要求的申请项目不予受理。  (2)本专项项目旨在紧密围绕核心科学问题,将对多学科相关研究进行战略性的方向引导和优势整合,成为一个专项项目集群。申请人应根据本专项拟解决的具体科学问题和项目指南公布的拟资助研究方向,自行拟定项目名称、科学目标、研究内容、技术路线和相应的研究经费等。  (3)申请人登录科学基金网络信息系统https://isisn.nsfc.gov.cn/(没有系统账号的申请人请向依托单位基金管理联系人申请开户),按照撰写提纲及相关要求撰写申请书。  (4)申请书中的资助类别选择“专项项目”,亚类说明选择“研究项目”,附注说明选择“科学部综合研究项目”。申请代码1应按照拟资助研究方向后标明的申请代码要求选择地球科学部或管理科学部相应的申请代码。以上选择不准确或未选择的项目申请不予受理。申请项目名称可以不同于拟资助研究方向下列出的研究内容名称,但应属该内容所辖之内的研究领域。  其中,管理科学部不受理如下申请人的项目申请:(i)作为项目负责人近5年(2016年1月1日后)已经获得国家社科基金资助,但在本项目申请截止日期前,尚未获得全国哲学社会科学工作办公室颁发的《结项证书》者。若已获得《结项证书》,申请人必须在申请书后附《结项证书》复印件,并在复印件上加盖依托单位法人公章。(ii)2021年作为负责人申请国家社科基金项目者。  (5)每个专项项目的依托单位和合作研究单位数合计不得超过3个 主要参与者必须是项目的实际贡献者。  (6)申请人应当按照专项项目申请书的撰写提纲撰写申请书,请在申请书正文开头注明“2021年度专项项目面向国家碳中和的重大基础科学问题与对策之研究方向:***(按照上述28个拟资助研究方向之一填写)”。申请书应突出有限目标和重点突破,明确对实现本专项总体目标和解决核心科学问题的贡献。  如果申请人已经承担与本专项项目相关的其他科技计划项目,应当在申请书正文的“研究基础与工作条件”部分论述申请项目与其他相关项目的区别与联系。  (7)申请人应当认真阅读《2021年度国家自然科学基金项目指南》申请规定中预算编报要求的内容,认真如实编报项目预算,依托单位要按照有关规定认真进行审核。  (8)本专项项目实行无纸化申请,申请人完成申请书撰写后,在线提交电子申请书及附件材料。依托单位只需在线确认电子申请书及附件材料,无须报送纸质申请书,但必须应在项目接收工作截止时间前(2021年5月31日16时)对本单位申请人所提交申请材料的真实性和完整性进行认真审核。项目获批准后,依托单位将申请书的纸质签字盖章页装订在《资助项目计划书》最后,在规定的时间内按要求一并提交。  3.本专项项目咨询方式。  (1)申请代码1属于地球科学部的专项项目  国家自然科学基金委员会地球科学部综合与战略规划处  联系电话:010-62327157  (2)申请代码1属于管理科学部的专项项目  国家自然科学基金委员会管理科学部综合与战略规划处  联系电话:010-62326898  (四)其他注意事项  1.为实现专项总体科学目标,获得资助的项目负责人应当承诺遵守相关数据和资料管理与共享的规定,项目执行过程中须关注与本专项其他项目之间的相互支撑关系。  2.为加强项目的学术交流,促进专项项目集群的形成和多学科交叉,本专项项目集群将设专项项目指导专家组和协调推进组,每年举办一次资助项目的年度学术交流会,并将不定期地组织相关领域的学术研讨会。获资助项目负责人必须参加上述学术交流活动,并认真开展学术交流。
  • 生态系统可抵消部分化石燃料碳排放
    p  国际社会公认,当前气候变化主要是由COsub2/sub浓度升高造成的。而减缓COsub2/sub浓度升高的主要途径一是节能减排,二是调节自然生态系统固碳。前者效果明显,而后者的作用依然在探索之中。中国科学家通过5年持续观察研究得出结论:中国陆地生态系统在2001年—2010年期间平均年固碳2.01亿吨,相当于抵消了同期中国化石燃料碳排放量的14.1%。《美国科学院院刊》以专辑形式发表了该项目的7篇研究论文。/pp  当今世界范围最大的野外调查项目/pp  陆地生态系统可以通过植被的光合作用吸收大气中的大量COsub2/sub。利用陆地生态系统固碳,是减缓大气COsub2/sub浓度升高最为经济可行和环境友好的途径。2011年初,中科院启动了“应对气候变化的碳收支认证及相关问题”专项,下设“生态系统固碳”研究,力图通过对中国各类生态系统的碳储量和固碳能力进行系统调查和观测,揭示中国陆地生态系统碳收支特征、时空分布规律以及国家政策的固碳效应。/pp  项目首席科学家之一方精云院士说,来自中科院及高校、部委所属35个研究院所的350多名科研人员,按照专项统一的实验设计和调查方法,系统调查了中国陆地生态系统(森林、草地、灌丛、农田)碳储量及其分布,调查样方17000多个、累计采集各类植物和土壤样品超过60万份。“这是当今世界范围最大的野外调查项目,为研究中国植被生产力、碳收支以及生物多样性的宏观格局提供了大量野外实测数据,也为我国国土资源规划、保护与利用等提供了重要的本底数据。”/pp  生态工程和秸秆还田均固碳/pp  自2015年开始,科研人员创新科研组织模式、打破课题间壁垒、实现数据完全共享,在凝练出若干个重大科学问题的基础上,对所有采集数据,统一汇总整理,统一控制数据质量、统一数据挖掘,从多个层面系统深入地分析了中国陆地生态系统碳源汇特征、驱动因素以及相应的生态系统功能,取得了一系列原创性重大成果。/pp  中国科学家的代表性成果包括:1.中国陆地生态系统在过去几十年一直扮演着重要的碳汇角色。在2001年—2010年期间,陆地生态系统年均固碳2.01亿吨,相当于抵消了同期中国化石燃料碳排放量的14.1% 其中,中国森林生态系统是固碳主体,贡献了约80%的固碳量,而农田和灌丛生态系统分别贡献了12%和8%的固碳量,草地生态系统的碳收支基本处于平衡状态 2.首次在国家尺度上通过直接证据证明人类有效干预能提高陆地生态系统的固碳能力。例如,我国重大生态工程(天然林保护工程、退耕还林工程、退耕还草工程,以及长江和珠江防护林工程等)和秸秆还田管理措施的实施,分别贡献了中国陆地生态系统固碳总量的36.8%(7400万吨)和9.9%(2000万吨) 3.首次在国家尺度上开展了群落层次的植物化学计量学研究,验证了生态系统生产力与植物养分储量间的正相关关系,揭示了植物氮磷元素的生产效率 4.首次揭示了生物多样性与生态系统生产力和土壤碳储量之间的相关关系,证实了增加生物多样性不仅能提高生态系统的生产力,而且可以增加土壤的碳储量。/pp  审稿人对成果高度评价/pp  对于中国科学家的论文,美国科学院院士InderM. Verma认为:“该专辑主题不仅在科学上,而且在社会领域都非常重要,应该会在世界上引起广泛的兴趣和产生重大的影响。”“论文为证实生态恢复工程对中国碳汇的影响方面作出了重要贡献。”/pp  另一位审稿人指出:“该研究非常重要。论文提供的翔实、独特的数据库将有助于地理学家、生物地球化学家、植物生态学家、生态生理学家、模型学家在大尺度范围上验证一些以往在小尺度上得到的假说。”/pp  有国内专家指出,这项研究成果也从科学角度有力地宣示了中国在生态文明建设中的成就,不仅提供了人类干预促进生态系统碳吸收的新见解,也为其他发展中国家提供了可借鉴的经验。/p
  • 国家粮食和物资储备局办公室关于申报2023 年国家粮油标准研究验证测试机构的通知
    各省、自治区、直辖市及新疆生产建设兵团粮食和物资储备局(粮食局),中国储备粮管理集团有限公司、中粮集团有限公司,国家粮食和物资储备局科学研究院,河南工业大学、南京财经大学、武汉轻工大学、江南大学,各有关单位:   为深入贯彻党的二十大精神,认真落实《国家标准化发展纲要》,加快构建推动粮食产业高质量发展的标准体系,充分发挥标准引领作用,切实提升标准化服务水平,根据《粮食和物资储备标准化工作管理办法》(国粮发规〔2021〕13 号)、《国家粮油标准研究验证测试机构管理暂行办法》(国粮标规〔2022〕73 号)等有关规定,现就申报 2023 年首批国家粮油标准研究验证测试机构有关事项通知如下。   一、工作目标   设立一批粮油标准研究验证测试机构,进一步提高粮油标准质量和可操作性,提升标准制修订的科学性、规范性、时效性,推动标准有效实施,更好服务保障国家粮食安全。   二、申报要求   申报国家粮油标准研究验证测试中心和国家粮油标准验证测试工作站,应符合国粮标规〔2022〕73 号文件明确的相关条件和要求。   三、工作程序   (一)自愿申报。符合条件的粮食质量安全检验机构、社会涉粮检验机构等单位,自愿填写申报材料(附件1),并将纸质申报材料及相应电子版报送所在地省级粮食和物资储备局(粮食局)审核。中储粮集团、中粮集团所属企业,分别报送集团公司审核。粮食行业中央级科研院所、涉粮高校等直接向国家粮食和物资储备局标准质量管理办公室(以下简称标准质量管理办公室)申报。申报材料应真实、客观、准确,不得弄虚作假。   (二)审核推荐。各省级粮食和物资储备局(粮食局)和中储粮集团、中粮集团分别最多推荐1 家国家粮油标准研究验证测试中心和 1 家国家粮油标准验证测试工作站;推荐已挂牌粮油国际标准研究中心的,不占用推荐名额。推荐单位要对申报材料的真实性、合法性等审核把关,并提出推荐意见,于2023年10月22 日前将纸质申报材料一式五份及相应电子版、汇总表(附件2),报送标准质量管理办公室。   (三)受理评审。标准质量管理办公室对申报材料进行形式审查和专家评审,择优遴选;必要时,组织专家等人员进行实地核查。需要进一步补充材料或作出说明的,有关单位应在规定时间内提供相关材料。   (四)结果公示。将遴选出的单位面向社会公示10个工作日,无异议或异议已处理的,按程序报国家粮食和物资储备局批准后,形成粮油标准研究验证测试机构名单并向社会公布。   (五)挂牌命名。按照规定,对遴选出的粮油标准研究验证测试机构统一命名挂牌,并制发证书和专用印章。   四、工作要求   参与申报、推荐、评审的单位和工作人员要严格落实中央八项规定及其实施细则精神,坚持科学、客观、公正、公平原则,严格遵照程序开展工作;严守纪律,不得弄虚作假,不得增加基层负担。严禁借评选之机牟取不当利益,不得以任何方式向申报对象收费。   五、联系方式   联系人:郭玉婷   电 话:010-68979610   邮 箱:gljbzc@126.com   地 址:北京市西城区月坛北街25 号院国家粮食和物资储备局标准质量管理办公室邮 编:100834   附件: 1.国家粮油标准研究验证测试机构申报书.docx    2.国家粮油标准研究验证测试机构申报汇总表.docx   国家粮食和物资储备局办公室   2023年9月7日 国家粮食和物资储备局办公室关于申报2023年国家粮油标准研究验证测试机构的通知.pdf
  • 喜报▏热烈祝贺食安科技连续入围中储粮2023年粮食重金属快检仪项目
    产品介绍 随着煤矿资源的开采及工业化进程的加速,大量的工业废渣、废水、废气排入环境,致使土壤、水质、空气中的重金属大量富集,造成严重污染。最后导致种植的食用农产品、养殖的肉类动物等重金属含量严重超标的情况,人们食用后,重金属不断在人体内积累,达到一定量后,导致重金属慢性中毒现象发生,国内已发生多起重金属集体中毒事件,给食品质量安全敲响了警钟。 开展食品重金属检测,有效避免重金属超标食品流入市场,保障消费者生命健康。 食安科技推出的重金属快速检测仪,突破关键技术,解决了传统电化学检测仪传感器易受干扰,影响准确度等问题,产品操作简单、检测速度快、准确度高、性能稳定、智能联网,适用于粮食、水产品、中药材、乳品、水质等样本中铅、镉等重金属元素污染的快速定量检测。 该产品连续入围中国储备粮管理集团有限公司粮食重金属检测供应资格名单。
  • NASA碳监测系统BlueFlux行动——Picarro助力红树林蓝碳通量的多尺度观测
    NASA碳监测系统BlueFlux行动——Picarro助力红树林蓝碳通量的多尺度观测江苏海兰达尔 2023-06-09 12:24 发表于江苏原文链接:https://doi.org/10.1101/2022.09.27.50975301蓝碳和红树林蓝碳是气候缓解战略的关键组成部分,该战略旨在通过沿海和开放海洋碳封存以降低大气二氧化碳浓度。在全球范围内,蓝碳有助于《巴黎协定》目标的达成,将全球平均气温上升幅度控制在远低于2℃以内,并实现温室气体净零排放。从蓝碳的角度来看,红树林生态系统非常有意义,因为它们是地球上最具生产力的生态系统之一,净初级生产力(NPP)在1000~2000gCm-2yr-1。虽然它们只占地球陆地面积的一小部分,但为全球NPP贡献了约210TgCyr-1。这些碳中的大部分储存在生物中或封存在土壤沉积物中,根据最近的激光雷达和雷达测量估计,红树林的总碳储量约为5.03PgC。这些碳储量只集中在几个关键的生物地理区域,例如,有10个国家占总碳储量的70%以上,这就意味着在国家范围内,红树林碳管理可以在国家层面制定的缓解气候变化策略上发挥重要作用。02BlueFlux行动2020年,美国航空航天局碳监测系统(NASA CMS)为建立BlueFlux行动提供了支持,目的是开发原型CO2和CH4产品以了解红树林的修复和保护情况。BlueFlux野外观测行动旨在提供横跨佛罗里达南部和加勒比地区的CO2和CH4通量的综合测量,重点是红树林系统,它们的季节性动态,以及邻近的生态系统,比如广阔的锯草沼泽以及其中的树木“岛屿”。这些通量测量覆盖了从“健康”的红树林到近期受到干扰和濒死的红树林“鬼森林”,来帮助了解在损失和恢复过程中碳通量的任何方向性变化。BlueFlux将有助于量化蓝碳如何减缓气候变化,并帮助减少红树林碳循环时空成分的不确定性。BlueFlux行动的目标示意图现场地面和飞机测量的目标区域在美国境内,在佛罗里达南部的核心地区,对碳储量和通量进行测量,以了解物种、干扰、水文和气候梯度如何解释通量变化。该行动计划在2022~2024年间进行6次现场观测,测量手段包括:1)对生态系统结构、物种以及腔室通量的地面测量,2)高塔通量测量,3)飞机测量,4)卫星遥感。墨西哥湾研究区域03地面测量:土壤和植被通量的腔室测量2022年3月,BlueFlux的第一次现场行动在大沼泽地国家公园进行,分别对两个高度退化和两个完整/再生的森林场地的树木,根系和土壤CO2和CH4通量进行了测量。根据植物的形态以及土壤沉积物成分的不同使用了不同的气室,CO2和CH4浓度的测量使用Picarro G4301 GasScouter 移动气体分析仪,测量频率为1Hz。静态气室法测量生态系统成分通量的示意图以及相应气室设计的照片04地面测量:水化学为了捕捉佛罗里达大沼泽地红树林水域的水-空气温室气体交换及其变化,于2022年3月进行了一项为期3天的空间调查,方法为驾驶一艘游艇从库特湾出发,沿乔河到鲨鱼河再到塔彭湾,然后返回,同时测量pH值,水温,盐度,CO2、CH4和N2O浓度以及CO2和CH4稳定同位素。地表水样从约0.5米深处连续泵送到由“淋浴头”平衡器组成的船载装置,该平衡器通过闭合空气回路连接到两台气体分析仪,Picarro G2201-i和Picarro G2308。使用校准的多参数探测器每分钟测量一次地表水电导率(EC)、溶解氧(DO)、温度、pH和有色可溶性有机物(CDOM)。同时定期收集过滤的无菌离散样品,并在耶鲁大学实验室内用于分光光度计pH、溶解无机碳(DIC)和总碱度(Talk)的测量。05机载涡流协方差通量测量:CARAFE机载涡流协方差(AEC)是一种公认的用于量化痕量气体和能量的地表-大气交换的技术。当与小波变换相结合时,AEC可以表征模型相关尺度(1-100km)下通量的空间梯度,是对地面观测数据很好的一种补充。Blueflux AEC观测采用了动态航空公司驾驶的配备气象和微量气体传感器的Beechcraft King Air A90飞机,并进行了CArbon大气通量实验(CARAFE)。由Aventech公司的AIMMS-20测量系统提供10 Hz的3D风速、空气温度、飞机位置和飞机方位(俯仰/翻转/偏航)观测。该系统包括一个用于气象测量的探测器(安装在左翼下方),该探测器与高分辨率差分GPS和惯性导航系统相结合。环境空气通过安装在右翼下方的进气口进行采样,并通过(机翼中的)聚四氟乙烯管传输到机舱中的两台气体分析仪。其中Picarro G2401-m机载专用气体浓度分析仪提供0.5Hz的CO2、CH4、H2O和CO测量值,而Picarro G2311-f双模式高精度气体分析仪提供10Hz的CO2和CH4测量值。G2401-m包含用于机载操作的专用压力控制系统,因此可对气体摩尔分数进行精准测量,而G2311-f可提供AEC所需的快速时间响应。CO2和CH4的干空气摩尔分数在实验室中使用NOAA WMO的压缩标准气体进行两点校准。下图为2022年4月进行的航测飞行轨迹,这些飞行测量重点关注佛罗里达南部和东部的沿海红树林植被,同时也包括一些内陆森林和湿地。每次飞行时间在2.5~4.5小时,典型的海拔高度为地平面以上100m,偶尔会进入到混合层(200-800m),以确定垂直通量散度和修正。在100米的高度,预计通量足迹大约为5000米宽,对于5~10m s-1的典型表面风速,50%的通量在1000米内,90%在5000米内。CO2的通量范围在0~-40μmol m-2 s-1,CH4的通量范围在0~200μmol m-2 s-1。总的来说,在4月的野外航测中,锯草的甲烷通量似乎更高,红树林的二氧化碳吸收量更大,接下来的飞行测量将继续探索季节和年际变化。BlueFlux AEC航测的飞行路线06预期结果目前“蓝碳”评估的不足之一是,人们考虑了碳存储量,但往往忽略了非二氧化碳温室气体的排放,这可能会极大地影响(积极或消极)这些生态系统的总体净辐射强迫效应。红树林是潮间带生态系统,虽然这些生态系统是净自养的,但小海湾和沉积物通常是大气中CO2和CH4的来源,也可以作为N2O的源或汇。沿着潮汐高度梯度(从小海湾到森林盆地),红树林覆盖率、物种多样性和沉积物结构会发生显著变化,导致温室气体通量的空间变异性很大。红树林温室气体通量的站点间变化会进一步受到各种其他因素的驱动,包括区域气候、水文、地貌、物理化学、生物,生物地球化学和人为因素等。BlueFlux行动旨在收集红树林结构和温室气体通量多尺度测量的详细信息,利用激光雷达或雷达等手段,掌握森林结构和地形信息,捕捉土壤、水文和扰动梯度。网格化碳通量产品将为评估过去二十年温室气体通量的趋势及其空间模式提供基础,以应对不断变化的气候以及极端气候的出现。编辑人:陆文涛审核人:史恒霖
  • 2021国家自然科学基金专项指南:面向国家碳中和的重大基础科学问题与对策
    4月30日,国家自然科学基金委员会发布《2021年度国家自然科学基金专项项目指南——面向国家碳中和的重大基础科学问题与对策》,拟资助28项,直接费用平均资助强度约300万元/项。2021年度国家自然科学基金专项项目指南——面向国家碳中和的重大基础科学问题与对策2020年9月22日,习近平主席在第七十五届联合国大会一般性辩论上承诺,中国力争于2030年前达到CO2排放峰值,努力争取2060年前实现碳中和。中国的碳达峰与碳中和战略,不仅是全球气候治理、保护地球家园、构建人类命运共同体的重大需求,也是中国高质量发展、生态文明建设和生态环境综合治理的内在需求。碳中和战略涉及深度社会经济发展转型,以期实现低碳甚至零碳排放和基于技术变革的增汇目标,是面向可持续发展的重大机遇。为满足国家实施碳中和战略对基础科学研究的需求,充分发挥国家自然科学基金的基础性、科学性和前瞻性优势,促进地球科学与管理科学的融合创新,国家自然科学基金委员会地球科学部和管理科学部联合启动“面向国家碳中和的重大基础科学问题与对策”专项项目,拟针对国家碳中和的重大基础科学问题与对策开展专项资助工作。一、科学目标围绕“减排”和“增汇”这两条实现国家碳中和战略的根本路径,本专项项目旨在系统揭示海洋和陆地碳汇格局、过程机制、演化趋势及其与气候系统的互馈机理,阐明地质碳封存过程机制、固碳功效、增汇潜力、技术风险与管理模式,剖析经济转型、路径优化、气候治理、国际合作等碳中和管理与政策问题,通过学科交叉融合研究,凝练关键基础科学问题并提出解决方案,服务于国家碳中和战略。本专项项目鼓励自然科学与管理政策研究团队联合攻关,突破学科间屏障,面向国家碳中和战略解决基础性和前瞻性的重大科学问题。二、拟资助研究方向(一)中国海生态系统碳汇格局、清单及不确定性(申请代码1选择地球科学部D下属代码)集成现场观测和卫星遥感数据,结合数值模拟等技术手段,系统评估中国海生态系统主要碳库时空变化,揭示渤海、黄海、东海和南海等主要中国近海系统的碳源汇格局,降低其评估的不确定性,提供中国区域高时空分辨率的海洋碳收支清单。(二)中国海生态系统固碳关键过程与调控机制(申请代码1选择地球科学部D下属代码)集成分析历史观测数据,深入研究我国邻近海域典型生态系统结构和碳汇功能的关系,揭示海水碳酸盐体系、浮游植物初级生产过程、群落净生产和浮游动物传递等关键碳汇过程的调控机制,甄别自然和人类活动对碳汇的影响,厘清暖化和富营养化等环境变化对生态系统碳汇功能的影响。(三)海洋微型生物驱动与耦合的综合负排放机理(申请代码1选择地球科学部D下属代码)通过学科交叉同步研究微型生物代谢驱动的碳、氮、硫循环过程,从分子、基因水平到种群、生态系统水平上阐释微型生物碳泵与无机碳汇的协同作用机理,探究微型生物碳泵驱动与耦合的有机碳-自生碳酸盐联合负排放路径,从实验观测到数值模拟建立微生物驱动的碳、氮、硫循环与碳汇耦合关系,实现海洋负排放机理上的突破,为碳中和目标提供海洋负排放的创新性理论和技术储备。(四)中国陆地生态系统碳库现存量及其不确定性(申请代码1选择地球科学部D下属代码)系统地评估2010-2020年间中国森林、草地、农田、湿地和内陆水体生态系统的全组分碳库的现存量、空间变异特征及其影响因素;量化地上植被、地下植被、土壤、凋落物碳库组分及其关系;评估碳库的现存量与容量,揭示碳库的稳定性以及估算的不确定性,凝练提出碳储量评估及其不确定性量化的方法体系。(五)中国陆地生态系统固碳速率及其不确定性、稳定性和持续性(申请代码1选择地球科学部D下属代码)基于长期调查样地、通量观测、多模型比对、多源数据整合等途径,定量分析森林、草地、农田、荒漠、湿地、内陆水体等类型陆地生态系统的固碳速率,以及以县、市、省等行政区划为主体的固碳速率,分析不同体系下固碳速率的不确定性;定量揭示中国陆地生态系统固碳速率的时空变异特征、影响因素和调控途径;评估碳汇功能的稳定性和持续性。(六)中国陆地生态系统碳固持与碳汇功能的关键过程与调控机制(申请代码1选择地球科学部D下属代码)研究土壤有机碳库关键属性的空间分布规律特征,解析森林、草地、农田、荒漠、湿地、内陆水体等类型生态系统土壤有机碳库的形成与稳定机制;研究主要生态系统类型土壤碳库关键属性和土壤碳转化的关键过程对全球变化的响应及其生物与非生物机制;探究植物及土壤微生物群落对土壤有机质稳定性的影响机制。(七)中国陆地生态系统增汇潜力及风险评估(申请代码1选择地球科学部D下属代码)根据不同的气候变化和大气沉降情景,结合我国重大生态工程及各类人为管理措施等,探讨不同时期、不同排放情境下的增汇潜力,量化气候变化和人为活动各分量对生态系统增汇潜力的贡献,在充分考虑固碳速率(动态特征)、稳定性、持续性的基础上,提出陆地生态系统增汇的系统管理优化方案。(八)中国区域岩溶碳汇机理、清单及增汇潜力(申请代码1选择地球科学部D下属代码)集成分析岩溶系统监测数据,发展新型融合观测系统,研究其中的碳循环过程与机理,建立岩溶碳汇算法,量化我国岩溶碳汇清单,评估岩溶碳汇速率与稳定性;研究微生物、碳酸苷酶、土地利用形式等对岩溶形成及碳汇的影响,探索通过人工干预加速岩溶碳汇的方法与途径,并评估其潜力。(九)CO2封存的地质体结构透明化表征方法与埋存场地选址(申请代码1选择地球科学部D下属代码)开展区域地质调查和工程地质勘察,进行多尺度地质结构观测,进行地表水/地下水物理化学力学性质测试,建立多尺度三维地质结构模型和水文地质结构精细化模型,开展数据挖掘、人工智能与大数据分析,建立CO2地质封存潜力评价指标体系。(十)深地CO2封存多相流体与地质体的长时耦合作用(申请代码1选择地球科学部D下属代码)建立真三向应力状态下CO2注入-运移-封存全周期过程中储层孔隙率-渗透率演化机制;揭示CO2-咸水-岩层耦合作用下储层孔隙力学长期变形规律以及时效致裂机理;建立渗透-化学-力学耦合作用下盖层岩体的真三向破坏准则及强度理论,揭示CO2聚集压力下盖层岩体时效损伤变形规律以及渐进式破坏机理。(十一)去碳目标导向的CO2驱油与埋存的关键理论与技术(申请代码1选择地球科学部D下属代码)研究适应不同类型地质封存需求的烟气净化和CO2捕集原理,分析高含水油藏开发历程对渗流、封存效率和封存安全性的影响规律,阐明高含水油藏中CO2-水-油-岩的微观相互作用,揭示高含水油藏封存CO2后流体重新分布及长期封存机制。(十二)CO2地质封存潜力与资源协同方法(申请代码1选择地球科学部D下属代码)构建区域尺度地质结构时空数据,量化不同区域的潜在碳封存储层及能力,探讨不同区域工业CO2排放源与区域碳封存能力的匹配性问题,揭示不同区域生物质能源、水资源、清洁能源等资源与碳封存的协同性。(十三)地质碳封存安全与风险(申请代码1选择地球科学部D下属代码)开展CO2-咸水物理化学作用下盖层渗漏破坏试验与模拟研究,揭示非纯CO2-咸水作用下盖层密闭性与力学特性演化机理,建立考虑储层密闭性及盖层突破性的力学稳定性评价方法;开展物理和化学两种捕获方式下多尺度地质结构劣化试验,建立断层活化判据,建立封存CO2后的监测方法,评价封存CO2后的长期封存机制、泄露风险和引发地质灾害的潜在风险。(十四)中国海岸带生态系统碳汇格局、清单及潜力(申请代码1选择地球科学部D下属代码)结合长期样地、通量观测、遥感监测、模型模拟等技术手段,构建红树林、盐沼、海草床等中国海岸带典型生态系统碳储量与碳通量的评估体系,阐明气候变化与人类活动影响下碳储量与碳通量的时空格局、演变规律及演化特征,揭示碳汇关键过程与调控机制,提供碳收支清单及不确定性,评估碳库稳定性、碳汇可持续性及潜力。(十五)中国河流-河口-近海连续体碳交换与循环(申请代码1选择地球科学部D下属代码)结合长期观测、遥感分析与模型模拟,厘清中国主要河流-河口-近海连续体的多界面碳传输通量特征,揭示碳传输的关键过程与调控机制,阐明气候变化与人类活动双重压力下河流-河口-近海碳交换的演变规律及其对海洋与陆地碳收支的影响。(十六)陆海统筹下的中国海岸带生态系统保护修复与固碳增汇协同增效(申请代码1选择地球科学部D下属代码)构建和发展陆海统筹下的中国海岸带生态系统固碳增汇的基础理论,研发红树林、盐沼、海草床等典型海岸带生态系统的增汇措施与关键技术,探索兼顾生态系统保护修复与固碳增汇的协同增效途径,评估不同增汇措施与技术实施的潜在风险,提出面向碳中和的海岸带生态系统保护修复的最优化管理方案。(十七)区域碳循环过程与区域地球系统模式(申请代码1选择地球科学部D下属代码)研发或优化包含碳循环过程的区域海陆气耦合的理论方法与关键技术,发展适用于中国区域海陆气耦合的区域地球系统模式;研究未来气候变化情景下东亚区域海洋和陆地生态系统碳循环及其与气候系统的互馈作用,阐明海陆气耦合对海洋和陆地生态系统碳源汇的影响。(十八)中国碳中和行动有效性监测评估(申请代码1选择地球科学部D下属代码)充分融合观察数据与数值模式,研究碳中和行动有效性监测评估的关键科学与技术,开展中国区域碳中和行动有效性监测评估,支撑碳收支盘点工作;开发碳同化系统、甄别自然与人为碳排放等关键措施与技术,评价不同碳中和路径的不确定性。(十九)碳中和路径下的中国区域气候系统动力学(申请代码1选择地球科学部D下属代码)从气候系统对温室气体强迫的快慢响应、反馈过程和气候敏感度等方面,揭示碳中和目标下中国区域气候系统的变化、不确定性以及关键的动力过程;研发能够有效减少模式预估不确定性的“涌现约束”方法,提高碳中和目标下东亚地区气候变化的预估可靠性,量化气候均态和极端事件等关键指标的变化和空间分布特征;评估碳中和政策在减缓增温、减轻气候灾害等方面的有效性;评估我国生态工程的碳汇作用及其气候影响。(二十)面向不同碳中和路径下的自然生态系统碳汇演化集成研究(申请代码1选择地球科学部D下属代码)探讨中国实现碳中和愿景的动态路径和技术途径,核算不同人为生态工程及管理措施对自然生态系统碳汇的影响潜力,基于不同的碳中和路径评价不同的管理体系对自然生态系统增汇的有效性、可行性以及经济性,提出自然生态系统增汇新技术方法和政策理论体系。(二十一)面向碳中和的经济转型模式构建研究(申请代码1选择管理科学部G下属代码)研究碳中和愿景与长期经济增长的相关影响;2030年前碳达峰和2060年碳中和愿景下经济结构形态演变特征和动力机制;碳中和愿景下的经济转型成本;碳中和愿景下的企业技术创新模式;研究进出口贸易对我国碳中和路径的影响;发展适合中国国情的碳中和经济学理论。(二十二)面向碳中和的能源革命路径研究(申请代码1选择管理科学部G下属代码)研究碳中和愿景下颠覆性能源系统技术与结构特征;碳中和愿景下能源系统形态动态演化过程、驱动机制和管理理论;基于大数据的能源系统复杂性建模方法;高比例可再生能源下的电力系统安全运行管理理论与方法;颠覆性能源技术和碳移除(CDR)技术在实现碳中和目标中的作用和发展路线图。(二十三)重点行业和领域碳达峰、碳中和路径优化研究(申请代码1选择管理科学部G下属代码)研究钢铁、水泥、石化等重点行业和交通、建筑等关键领域实现碳达峰和碳中和目标的主要障碍、技术措施、转型成本和优化路径;研究数字经济发展战略和乡村振兴战略对我国碳中和路径的影响;从物质流动和供给-需求系统的角度,综合分析主要行业和领域低碳发展的系统路径。(二十四)碳达峰、碳中和区域协同路径优化研究(申请代码1选择管理科学部G下属代码)研究自上而下与自下而上相结合的全国分区域碳中和路径评价理论和方法体系;碳中和愿景下我国分区域能源结构和产业结构转型的特征和驱动机制;全国重点产业空间布局特征对于区域和全国碳中和路径的影响机制;建立省级尺度的全国能源经济综合评估模型体系,识别实现碳达峰和碳中和目标的区域协同优化路径;选择京津冀、长三角、粤港澳、西部等区域开展碳中和先行示范区案例研究。(二十五)面向碳中和的环境协同治理研究(申请代码1选择管理科学部G下属代码)研究碳中和愿景下碳排放与大气污染物排放协同治理的模式与机制;研究不同区域碳中和路径对于大气污染物排放影响机制;研究不同碳中和路径下的空气质量空间格局特征、人群暴露风险特征和协同效益;研究碳中和与水污染、土壤污染治理的协同路径;研究碳中和路径下的中国分区域生态环境承载力;研究碳排放和非二氧化碳温室气体排放治理的协同路径。(二十六)面向碳中和的国家气候治理体系研究(申请代码1选择管理科学部G下属代码)研究面向碳中和愿景的法律法规体系创新;研究碳中和愿景下行业、地方碳排放总量控制的制度安排和协调机制;研究碳中和愿景下不同政策的交互影响;面向碳中和的政策工具创新和评估方法研究;碳汇体系建设与低碳消费模式对碳中和的贡献与激励机制研究;企业碳中和管理方法和激励机制研究;建立国家碳达峰、碳中和转型监测与战略决策支撑系统。(二十七)面向碳中和的国际气候合作研究(申请代码1选择管理科学部G下属代码)开展世界主要国家碳中和愿景比较和对我国的借鉴研究;面向全球碳中和的市场和非市场合作机制研究;研究基于算法的全球碳排放数据报告与核算理论和方法;研究国际碳定价机制链接和合作对我国和全球实现碳中和愿景中的贡献和影响;提出我国深入参与并引领国际气候合作机制构建的战略和策略。(二十八)碳中和路径与对策综合研究(申请代码1选择管理科学部G下属代码)综合运用管理科学、自然科学等相关领域的研究成果,建立由科学理论与技术支撑的碳中和路径决策系统,识别和探索在不同自然生态系统碳汇演化情景下的最优行动方案,支撑国家形成并实施碳中和综合战略和对策。三、项目遴选的基本原则除撰写提纲要求外,申请书内容还须体现如下几个方面:(1)申请项目为实现总体科学目标的贡献;(2)针对本项目指南中研究方向拟重点突破的科学问题、达到的研究目标或技术指标;(3)为实现总体科学目标和满足多学科集成需要,申请人应承诺在研究材料、基础数据和实验平台上的项目集群共享。四、资助计划本专项项目资助期限为4年,申请书中的研究期限应填写“2022年1月1日-2025年12月31日”,拟在每个研究方向资助1项,共资助28项,直接费用平均资助强度约300万元/项。其中,研究方向(二十)和(二十八)的集成项目资助强度可略高于平均资助强度。五、申请要求及注意事项(一)申请条件本专项项目申请人应当具备以下条件:1. 具有承担基础研究课题的经历;2. 具有高级专业技术职务(职称);在站博士后研究人员、正在攻读研究生学位以及无工作单位或者所在单位不是依托单位的人员不得作为申请人进行申请。(二)限项申请规定1. 本专项项目申请时不计入高级专业技术职务(职称)人员申请和承担总数2项的范围;正式接收申请到国家自然科学基金委员会作出资助与否决定之前,以及获得资助后,计入高级专业技术职务(职称)人员申请和承担总数2项的范围。2. 申请人和参与者只能申请或参与申请1项本专项项目。3. 申请人同年只能申请1项专项项目中的研究项目。(三)申请注意事项1. 申请接收时间为2021年5月20日-2021年5月31日。2. 本专项项目申请书采用在线方式撰写。对申请人具体要求如下:(1)申请人在填报申请书前,应当认真阅读本项目指南和《2021年度国家自然科学基金项目指南》的相关内容,不符合项目指南和相关要求的申请项目不予受理。(2)本专项项目旨在紧密围绕核心科学问题,将对多学科相关研究进行战略性的方向引导和优势整合,成为一个专项项目集群。申请人应根据本专项拟解决的具体科学问题和项目指南公布的拟资助研究方向,自行拟定项目名称、科学目标、研究内容、技术路线和相应的研究经费等。(3)申请人登录科学基金网络信息系统https://isisn.nsfc.gov.cn/(没有系统账号的申请人请向依托单位基金管理联系人申请开户),按照撰写提纲及相关要求撰写申请书。(4)申请书中的资助类别选择“专项项目”,亚类说明选择“研究项目”,附注说明选择“科学部综合研究项目”。申请代码1应按照拟资助研究方向后标明的申请代码要求选择地球科学部或管理科学部相应的申请代码。以上选择不准确或未选择的项目申请不予受理。申请项目名称可以不同于拟资助研究方向下列出的研究内容名称,但应属该内容所辖之内的研究领域。其中,管理科学部不受理如下申请人的项目申请:(i)作为项目负责人近5年(2016年1月1日后)已经获得国家社科基金资助,但在本项目申请截止日期前,尚未获得全国哲学社会科学工作办公室颁发的《结项证书》者。若已获得《结项证书》,申请人必须在申请书后附《结项证书》复印件,并在复印件上加盖依托单位法人公章。(ii)2021年作为负责人申请国家社科基金项目者。(5)每个专项项目的依托单位和合作研究单位数合计不得超过3个;主要参与者必须是项目的实际贡献者。(6)申请人应当按照专项项目申请书的撰写提纲撰写申请书,请在申请书正文开头注明“2021年度专项项目面向国家碳中和的重大基础科学问题与对策之研究方向:***(按照上述28个拟资助研究方向之一填写)”。申请书应突出有限目标和重点突破,明确对实现本专项总体目标和解决核心科学问题的贡献。如果申请人已经承担与本专项项目相关的其他科技计划项目,应当在申请书正文的“研究基础与工作条件”部分论述申请项目与其他相关项目的区别与联系。(7)申请人应当认真阅读《2021年度国家自然科学基金项目指南》申请规定中预算编报要求的内容,认真如实编报项目预算,依托单位要按照有关规定认真进行审核。(8)本专项项目实行无纸化申请,申请人完成申请书撰写后,在线提交电子申请书及附件材料。依托单位只需在线确认电子申请书及附件材料,无须报送纸质申请书,但必须应在项目接收工作截止时间前(2021年5月31日16时)对本单位申请人所提交申请材料的真实性和完整性进行认真审核。项目获批准后,依托单位将申请书的纸质签字盖章页装订在《资助项目计划书》最后,在规定的时间内按要求一并提交。3. 本专项项目咨询方式:(1)申请代码1属于地球科学部的专项项目国家自然科学基金委员会地球科学部综合与战略规划处联系电话:010-62327157(2)申请代码1属于管理科学部的专项项目国家自然科学基金委员会管理科学部综合与战略规划处联系电话:010-62326898(四)其他注意事项1. 为实现专项总体科学目标,获得资助的项目负责人应当承诺遵守相关数据和资料管理与共享的规定,项目执行过程中须关注与本专项其他项目之间的相互支撑关系。2. 为加强项目的学术交流,促进专项项目集群的形成和多学科交叉,本专项项目集群将设专项项目指导专家组和协调推进组,每年举办一次资助项目的年度学术交流会,并将不定期地组织相关领域的学术研讨会。获资助项目负责人必须参加上述学术交流活动,并认真开展学术交流。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制