当前位置: 仪器信息网 > 行业主题 > >

碳复合材料

仪器信息网碳复合材料专题为您整合碳复合材料相关的最新文章,在碳复合材料专题,您不仅可以免费浏览碳复合材料的资讯, 同时您还可以浏览碳复合材料的相关资料、解决方案,参与社区碳复合材料话题讨论。

碳复合材料相关的资讯

  • 碳纤维复合材料的“试验员”
    引 言自进入21世纪以来,科学技术对材料提出了越来越高的要求,碳纤维复合材料(CFRP)因其重量轻、强度高、耐腐蚀性强、弹性优良等特点,广泛应用于航天航空、汽车、电子电器、体育器材等领域,促使碳纤维复合材料行业快速发展。一方面CFRP广泛使用助推产业结构优化升级,实现绿色发展;另一方面CFRP的研究深度和应用广度及其生产发展的速度和规模,已成为衡量一个国家科学技术先进!复合材料的应用场景 CFRP强度评估方法由各种ASTM标准规定。岛津试验机可以根据ASTM各种测试标准做出解决方案,例如符合“平面内剪切试验-双V形切口剪切法(ASTM D5379)的试验示例,以及符合各种标准的夹具。采用双V形切口试样进行平面内剪切试验,得到CFRP的平面内剪切强度、平面内剪切破坏应变和平面内剪切弹性模量。碳纤维复合材料的测试标准碳纤维复合材料(CFRP)目前主要应用于飞机与汽车制造业,其刚性是重要应用参考,岛津试验机可以根据JIS K 7074和JIS K7084标准提供静态三点弯曲试验和高速冲击试验方案,且能获得精确获得试验数据。碳纤维是碳纤维增强塑料(CFRP)的重要组成部分,碳纤维的力学性能(拉伸强度/弹性模量)对复合材料物理性能有重要影响,岛津试验机系统可以对碳纤维及其复合材料进行拉伸试验,也可以配合高速摄像机实现从高时间分辨率的角度研究碳纤维布的破坏过程的可视化观察。使用X射线CT系统可以对试样中纤维的取向和空隙进行无损观察。这使得在进行测试之前能够观察内部状态,从而获得测试结果与内部结构紧密相关的数据。 岛津试验机拥有一百多年的历史和丰富的产品线,不管是静态试验机还是动态试验机,可以满足各种客户的需求,且进行定制化的夹具设计。岛津公司提供了一系列用于分析、测试和检验评估的仪器和系统(从分析和测试预处理到数据分析),从而有助于解决从CFRP原材料开发到产品耐久性评估各个阶段的各种问题,为营造和谐绿色的发展做出贡献。
  • 万测出席中国复合材料行业年会暨第五届碳纤维复合材料产业发展高峰论坛
    2023年11月17日-18日,中国复合材料行业年会暨第五届碳纤维复合材料产业发展论坛在上海成功举办。万测作为国内知名的材料力学测试解决方案供应商参加了本次论坛。 论坛期间,万测展示了微机控制电子万能试验机、电液伺服疲劳试验机、复合材料试验机、复合材料落锤冲击试验机等产品及解决方案,与现场嘉宾共同探讨了未来复合材料行业的发展趋势和挑战。 万测微机控制复合材料试验机主要用于复合材料的拉伸、弯曲、压缩、剪切、裂纹扩展等力学性能测试。具有应力、应变、位移三种闭环控制方式,可求出最大载荷、抗拉强度、弯曲强度、压缩强度、剪切强度、弹性模量、断裂延伸率、泊松比等参数。根据国家标准及ISO、JIS、ASTM、DIN等国际标准进行试验和提供数据。 作为国家级专精特新重点“小巨人”企业,万测一直以来都关注着复合材料的发展,承担着为国内复合材料发展做出贡献的责任和义务。为了更好地服务行业,万测将继续加大复合材料力学测试领域的研发投入,为广大用户带来更多专业的测试解决方案。未来,随着复合材料行业的持续发展和创新,万测将继续发挥其专业优势和技术实力,为我国复合材料行业的繁荣发展做出更大的贡献。
  • 2565万!河南省科学院碳基复合材料研究院热防护碳基复合材料性能考核测试平台建设项目
    一、项目基本情况1、项目编号:豫财招标采购-2023-5672、项目名称:河南省科学院碳基复合材料研究院热防护碳基复合材料性能考核测试平台建设项目3、采购方式:公开招标4、预算金额:25,650,000.00元最高限价:25650000元序号包号包名称包预算(元)包最高限价(元)1豫政采(2)20230881-1A包13100000131000002豫政采(2)20230881-2B包410000041000003豫政采(2)20230881-3C包110000011000004豫政采(2)20230881-4D包240000024000005豫政采(2)20230881-5E包105000010500006豫政采(2)20230881-6F包390000039000005、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等)5.1标的名称:河南省科学院碳基复合材料研究院热防护碳基复合材料性能考核测试平台建设项目5.2数量:1批(具体数量详见招标公告附件)5.3技术需求:详见招标公告附件。5.4质保期:国产设备:设备验收合格后3年(以最终验收结果单据签订时间为准)。进口设备:设备验收合格后1年(以最终验收结果单据签订时间为准)。5.5交货期:国产设备:签订合同150天内达到供货条件,接到采购人供货通知45天内安装调试完毕。(在达到供货条件至运输安装调试期间所产生的如仓库保管等一切费用由中标人承担)进口设备:签订合同240天内达到供货条件,接到采购人供货通知30天内安装调试完毕。(在达到供货条件至运输安装调试期间所产生的如仓库保管等一切费用由中标人承担)5.6质量标准:合格,满足采购人要求。5.7交货地点:郑州市内采购人指定地点。6、合同履行期限:同交货期7、本项目是否接受联合体投标:否8、是否接受进口产品:是9、是否专门面向中小企业:否二、获取招标文件1.时间:2023年07月14日 至 2023年07月20日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外。)2.地点:河南省公共资源交易中心(http://www.hnggzy.net)3.方式:供应商凭CA登陆(http://www.hnggzy.net)市场主体登录系统,在规定时间内按网站提示下载招标文件及相关资料(详见http://www.hnggzy.net公共服务-办事指南)。CA数字证书办理详见河南省公共资源交易中心门户网站(http://www.hnggzy.net/)“办事指南”专区。4.售价:0元三、凡对本次招标提出询问,请按照以下方式联系1. 采购人信息名称:河南省科学院碳基复合材料研究院地址:河南省郑州市金水区明理路266-38号联系人:王沛联系方式:0371-663227662.采购代理机构信息(如有)名称:河南省机电设备国际招标有限公司地址:河南省郑州市商都路27号财信大厦14-15层联系人:郭峰联系方式:0371-861360693.项目联系方式项目联系人:郭峰联系方式:0371-86136069
  • 2565万!河南省科学院碳基复合材料研究院热防护碳基复合材料性能考核测试平台建设项目
    一、项目基本情况1、项目编号:豫财招标采购-2023-5672、项目名称:河南省科学院碳基复合材料研究院热防护碳基复合材料性能考核测试平台建设项目3、采购方式:公开招标4、预算金额:25,650,000.00元最高限价:25650000元序号包号包名称包预算(元)包最高限价(元)1豫政采(2)20230881-3C包110000011000002豫政采(2)20230881-5E包105000010500005、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等)5.1标的名称:河南省科学院碳基复合材料研究院热防护碳基复合材料性能考核测试平台建设项目5.2数量:1批(具体数量详见招标公告附件)5.3技术需求:详见招标公告附件。5.4质保期:国产设备:设备验收合格后3年(以最终验收结果单据签订时间为准)。进口设备:设备验收合格后1年(以最终验收结果单据签订时间为准)。5.5交货期:国产设备:签订合同150天内达到供货条件,接到采购人供货通知45天内安装调试完毕。(在达到供货条件至运输安装调试期间所产生的如仓库保管等一切费用由中标人承担)进口设备:签订合同240天内达到供货条件,接到采购人供货通知30天内安装调试完毕。(在达到供货条件至运输安装调试期间所产生的如仓库保管等一切费用由中标人承担)5.6质量标准:合格,满足采购人要求。5.7交货地点:郑州市内采购人指定地点。6、合同履行期限:同交货期7、本项目是否接受联合体投标:否8、是否接受进口产品:是9、是否专门面向中小企业:否二、获取招标文件1.时间:2023年08月10日 至 2023年08月16日,每天上午00:00至11:59,下午12:00至23:59(北京时间,法定节假日除外。)2.地点:河南省公共资源交易中心(http://www.hnggzy.net)3.方式:供应商凭CA登陆(http://www.hnggzy.net)市场主体登录系统,在规定时间内按网站提示下载招标文件及相关资料(详见http://www.hnggzy.net公共服务-办事指南)。CA数字证书办理详见河南省公共资源交易中心门户网站(http://www.hnggzy.net/)“办事指南”专区。4.售价:0元三、凡对本次招标提出询问,请按照以下方式联系1. 采购人信息名称:河南省科学院碳基复合材料研究院地址:河南省郑州市金水区明理路266-38号联系人:王沛联系方式:0371-663227662.采购代理机构信息(如有)名称:河南省机电设备国际招标有限公司地址:河南省郑州市商都路27号财信大厦14-15层联系人:郭峰联系方式:0371-861360693.项目联系方式项目联系人:郭峰联系方式:0371-86136069
  • 专家学者共同探讨“复合材料技术与装备发展”
    6月24日,“复合材料技术与装备发展国际高端论坛暨智能成形制造技术与装备国际会议”在南京拉开帷幕。27位院士以及来自7个国家的专家学者共同探讨航空航天、轨道交通等领域,对复合材料技术与装备、智能成形制造技术与装备新的需求,交流最新研究成果和进展。  本次论坛由中国工程院主办,中国工程院机械与运载工程学部、南京航空航天大学等单位承办,机械结构力学及控制国家重点实验室、先进成形技术与装备国家重点实验室、先进复合材料技术与装备创新联盟协办,旨在针对国家前沿重点、难点与热点问题,为相关领域的中外顶级专家搭建高水平、高层次的交流平台,以期通过研讨,进一步认识和把握工程科技发展的方向,引领未来工程科技的发展。  中国工程院院士、南京航空航天大学校长单忠德表示,目前,国内对于复合材料技术装备的需求量大。在航空航天、轨道交通等各个行业,都需要大量高性能的材料、零部件和数字化装备。比如在地铁上运用碳纤维等复合材料,因轻量化可以降低车轮与轨道磨损,可以降低列车运行噪声。  “先进复合材料技术与装备是先进制造业的重要代表之一。复合材料构件成形制造装备由机械化、半自动化向自动化、数字化发展,不断往智能化网络化制造方向发展,这里就有很多基础理论方法、关键核心技术和系统装备需要去攻克。”单忠德说。  在中国科学院院士闫楚良看来,国内复合材料在基础研究和实际应用研究方面取得了显著的进步和成果,但也存在一些问题与挑战。他建议制定国家复合材料产业发展政策,引导复合材料产业体系化发展,同时建立先进复合材料发展智库。此外,要发挥行业协会与学会的信息、专家、技术平台等优势,以及国家科研体制的优势,促进先进复合材料技术的协同创新。  在25日的平行分论坛上,46位专家将就复合材料设计与智能复合材料等方面各抒己见,其中韩国、新加坡、德国、法国、美国等国家的13位学者将通过视频连线方式,进行报告交流,展示创新研究成果。
  • TA仪器受邀参加2010年复合材料应用高峰论坛
    21世纪的高性能树脂基复合材料技术是赋予复合材料自修复性、自分解性、自诊断性、自制功能等为一体的智能化材料。目前亚洲地区的复合材料产量已经占全球复合材料总量的42%,其价值超过了260亿美元,年平均增长率约为8%,放眼未来,亚洲复合材料市场充满了增长潜力。中大规模的轨道交通和市政建设、新能源的利用、航天航空发展和风能产业是带动亚洲复合材料市场增长的契机。新的需求增长强劲,不仅来自创新方面的领军企业,还包括许多新的市场参与者。  2010复合材料应用高峰论坛,将聚集300多位来自风电、航空航天、城市轨道交通、基础建设行业用复合材料的专业人士,共同探讨最新技术,最新市场动态、技术创新及应用案例分析等全方位资讯,致力于推动全球复合材料技术发展。  时间:2010年3月25-26日  地点:上海浦东淳大万丽酒店  TA的热分析和流变产品在复合材料的研究上有广泛的应用,长久以来也与多家机构和单位保持良好合作。由此,TA仪器受邀参加此次论坛,技术部经理何蓉女士并会在大会上报告“热分析和流变——表征高性能复合材料的关键”。TA在论坛现场有设立展示区,资料齐全,欢迎有兴趣的人士前往TA展台与我们进行交流。  更多活动资讯,请登录www.tainstruments.com.cn查询。  TA仪器——中国市场部
  • 1308万!河南省科学院碳基复合材料研究院热防护碳基复合材料性能考核测试平台建设项目中标公告
    一、项目基本情况1、采购项目编号:豫财招标采购-2023-5672、采购项目名称:河南省科学院碳基复合材料研究院热防护碳基复合材料性能考核测试平台建设项目3、采购方式:公开招标4、招标公告发布日期:2023年07月13日5、评审日期:2023年08月07日二、采购项目用途、数量、简要技术要求、合同履行日期:5.1标的名称:河南省科学院碳基复合材料研究院热防护碳基复合材料性能考核测试平台建设项目5.2数量:1批(具体数量详见招标公告附件)5.3技术需求:详见招标公告附件。5.4质保期:国产设备:设备验收合格后3年(以最终验收结果单据签订时间为准)。进口设备:设备验收合格后1年(以最终验收结果单据签订时间为准)。5.5交货期:国产设备:签订合同150天内达到供货条件,接到采购人供货通知45天内安装调试完毕。(在达到供货条件至运输安装调试期间所产生的如仓库保管等一切费用由中标人承担)进口设备:签订合同240天内达到供货条件,接到采购人供货通知30天内安装调试完毕。(在达到供货条件至运输安装调试期间所产生的如仓库保管等一切费用由中标人承担)5.6质量标准:合格,满足采购人要求。5.7交货地点:郑州市内采购人指定地点。5.8合同履行期限:同交货期三、中标情况包号采购内容供应商名称地 址中标金额单位豫政采(2)20230881-1A包(详见招标文件)河南恒孚来商贸有限公司郑州市金水区东明路187号B座6层60513,086,000.00元序号名称品牌(如有)规格型号数量单价1详见中标公告附件详见中标公告附件详见中标公告附件详见中标公告附件详见附件元豫政采(2)20230881-2B包(详见招标文件)珠海冀华物产有限公司珠海市吉大九洲大道东1199号泰福国际金融大厦22层办公05-01号4,087,000.00元序号名称品牌(如有)规格型号数量单价1详见中标公告附件详见中标公告附件详见中标公告附件详见中标公告附件详见附件元豫政采(2)20230881-4D包(详见招标文件)北京元业恒兴国际贸易有限公司北京市昌平区回龙观镇龙域北街8号院1号楼18层18052,398,000.00元序号名称品牌(如有)规格型号数量单价1详见中标公告附件详见中标公告附件详见中标公告附件详见中标公告附件详见附件元豫政采(2)20230881-6F包(详见招标文件)陕西航天技术应用研究院有限公司西安市航天基地东长安街504号A1楼220室3,880,000.00元序号名称品牌(如有)规格型号数量单价1详见中标公告附件详见中标公告附件详见中标公告附件详见中标公告附件详见附件元四、凡对本次公告内容提出询问,请按以下方式联系1. 采购人信息名称:河南省科学院碳基复合材料研究院地址:河南省郑州市金水区明理路266-38号联系人:王沛联系方式:185388257012.采购代理机构信息(如有)名称:河南省机电设备国际招标有限公司地址:河南省郑州市商都路27号财信大厦14-15层联系人:郭峰联系方式:0371-861360693.项目联系方式项目联系人:郭峰联系方式:0371-86136069
  • 从超级英雄到火星探索---复合材料在外骨骼中的应用
    外骨骼是一种包裹身体的刚性结构,通常用来辅助关节运动。这种“外服”试图像人造肌肉一样,帮助穿着者的肌肉收缩和伸展。 最早的机器人外骨骼的开发可以追溯到1965年左右,当时通用电气公司开发了哈迪曼(Hardiman),这是一种大型全身外骨骼,该项目由美国军方投资,设计方案类似于今天的机械外骨骼。军方的目的是让穿戴者拥有超人一样的力量。哈迪曼拥有28个关节和两个抓取臂,由复杂的液压和电子系统驱动。实验中,穿戴者曾成功举起过1500磅的重物。不过遗憾的是,限于当时的技术条件,哈迪曼自己也臃肿不堪,自重达1500磅。如此重量的外骨骼自然难以操控,稳定性不佳,体重带来的另一个问题是能源不足。结果哈迪曼没能走出实验室。 而同一时期,1969年,前南斯拉夫的米哈伊洛普平研究所(Mihajlo Pupin Institute),也做了动力外骨骼研究工作,目的是为了帮助下肢瘫痪患者实现部分运动功能,他们在全世界第一个提出了步态运动系统(legged locomotion systems)的概念。当代研究 人类一直没有停止对外骨骼的研究。继续向前迈进,我们关注到来自英国普雷斯顿市中央兰开夏大学(UCLAN)机械工程高级讲师Matt Dickinson博士。Matt博士在大学新建的工程创新中心工作,主要研究概念设计,特别侧重于复合材料通过3D打印技术的应用。 马特说:“老实说,如果你三年前告诉我,我们即将开发世界领先的外骨骼技术,我会质疑你的理智,但现在我们确实做到了。” “这一切都要归功于2019年赢得地区初级工程师比赛的一名当地青少年。幸运的是,我当时负责评估每一个参赛项目,而有一个项目立即触动了我,他提到为什么没有给患有肌肉疾病的儿童穿的特殊套装或外骨骼来帮助小朋友进行活动。我的第一直觉是,市场上肯定已经有这样的设备,但我发现我错了!” 欠缺开发的原因纯粹是设计。例如,你如何制作一套能随主人“生长”的衣服,既轻便又实用,而且成本低,以至于所有人都能穿? “作为一名机械工程师,我的第一个想法是用铝制作这套外穿装置,回过头来看,这完全是不可行的,而且制作成本非常昂贵。” 所需的材料必须是轻量的和容易获得的,但也必须是负担得起的。简而言之,如果没有人能够真正维护它,或者如果低收入家庭负担不起它,那么这项技术将是不可行的。 “外穿装置的结构被称为被动设计系统,这意味着它是整个装置的一部分,起着收缩点的作用,就像肌肉一样,但也是一个被动的外骨骼,分配力量和载荷。” “基于这个想法,我们试图将这各种技术结合起来,以构建一种混合系统,该系统将支持人体架构,并有助于肌肉的收缩和伸展,这也帮助我们开发出了现在的这一套新的驱动方法。” “我最初认为有可能支持这一设计的材料是聚乳酸(PLA)。在当时,还没有人测试这种材料是否能够支撑人体,但结果很快表明我们确实发现了一种非常特殊的东西。” 设计的第一次迭代证明了复合材料的适用性,尽管还需要解决材料对紫外线的反应问题以及人体皮肤中乳酸对材料的潜在浸渍问题。 “皮肤有时会激活材料中的乳酸,这会导致细菌的形成,最终破坏其结构完整性。于是我们加入了一种嵌入铜纳米颗粒的材料,它在人体汗液和复合材料之间形成了一道屏障——如果你愿意,这会是一种完美的抗菌剂,”马特说。 该项目还在探索短切碳PET的使用。复合材料提供了额外的强度,它将被用来作为外穿装置的支撑结构的核心,包裹在聚乳酸和碳纤维中。 “基本上,和所有研发一样,事情都在不断发展。这些是我们目前正在开发的材料,但我们仍在不断寻求开发新的复合材料,看看是否比当前的更适合。”马特继续说道。困局突破 “但这个情况下,我们的研发也碰到了困境,除非我们更好地了解这些材料的机械性能,也正好在这个时候,我们遇到了Tinius Olsen。” 光学引伸计、传感器以及非常强大的Horizon测试软件。公司的技术人员也在现场,根据研发的需要提供建议和指导。 然而,这次合作,还不仅仅是关于机械和测试建议。通过Tinius Olsen,Matt被介绍给ASTM标准委员会,成为F48.04外骨骼开发标准委员会的小组主席。 “ASTM F48委员会主要关注的是正在使用的部件的失效疲劳,与任何将用于人类使用的研发项目一样。通过日常使用中的压缩、拉伸和弯曲运动,对所用部件和/或材料进行预期寿命的评估。我们现在使用的Tinius Olsen的测试系统能够使我们更高效的进行所需的测试,大大缩短研发时间。” 在英国一个大型工程展上的一次偶然相遇为工作伙伴关系奠定了基础,最初,Tinius Olsen出借了一个50kN的试验机、一个“ASTM也对我们的研发项目带来了相当大的帮助,我们实际上已经从普雷斯顿的一个小实验室上升到了国际舞台上,见证了这一研发项目呈指数级地向前推进。如果没有Tinius Olsen,我们根本无法达到目前的水平。” “我们的最终目标是开发一套能够提供辅助生活的外穿装置。它的设计并不是为了增加力量,而是为了让患有肌肉疾病的儿童更灵活、更独立,最重要的是,提高生活质量。”其他应用 这一研发不仅在医学领域可以成功应用,在其他行业也有它的用武之地。例如,美国宇航局(NASA)等航天机构可以将这项技术应用到他们的宇航服设计中,以应对计划于20世纪30年代中期进行的火星任务。 同时它也可以扩展到军事应用,不仅用于支持士兵和飞行员的身体结构,还能应用于负责重型飞机、坦克和飞机建造和维护的地勤人员和技术人员。 职业体育也可以从中受益。美式足球和橄榄球等体育运动中的身体防护装备是显而易见的应用,但在治疗运动损伤这一方面也能有所作为。 而在建筑业和其他制造业相关的重型起重作业中,这类外穿装置将会降低工人的工伤概率,也能因此减少因工人劳累和背部受伤而损失的工作时间。
  • 耐超高温隔热-承载一体化轻质碳基复合材料取得重要进展
    中国科学院金属研究所热结构复合材料团队采用高压辅助固化-常压干燥技术,并通过基体微结构控制、纤维-基体协同收缩、原位界面反应制备出耐超高温隔热-承载一体化轻质碳基复合材料。近日,《ACS Nano》在线发表了该项研究成果。 航天航空飞行器在发射和再入大气层时,因“热障”引起的极端气动加热,震动、冲击和热载荷引起的应力叠加,以及紧凑机身结构带来的空间限制,给机身热防护系统带来了异乎寻常的挑战,亟需发展耐超高温并兼具良好机械强度的新型隔热材料。碳气凝胶(CAs)因其优异的热稳定性和热绝缘性,有望成为新一代先进超高温轻质热防护系统设计的突破性解决方案。然而,CAs高孔隙以及珠链状颗粒搭接的三维网络结构致使其强度低、脆性大、大尺寸块体制备难,大大限制了其实际应用。国内外普遍采用碳纤维或陶瓷纤维作为增强体,以期提升CAs的强韧性及大尺寸成型能力。然而,由于碳纤维或陶瓷纤维与有机前驱体气凝胶炭化收缩严重不匹配,导致复合材料出现开裂甚至分层等问题,反而使材料的力学和隔热性能显著下降。目前,发展兼具耐超高温、高效隔热、高强韧的碳气凝胶材料及其大尺寸可控制备技术仍面临巨大挑战。 超临界干燥是碳气凝胶的主流制备技术,其工艺复杂、成本高、危险系数大。近年来,热结构复合材料团队相继发展了溶胶凝胶-水相常压干燥(小分子单体为反应原料)、高压辅助固化-常压干燥(线性高分子树脂为反应原料)2项碳气凝胶制备新技术。为了实现前驱体有机气凝胶和增强体的协同收缩,本团队设计了一种超低密度碳-有机混杂纤维增强体,其碳纤维盘旋扭曲呈“螺旋状”,有机纤维具有空心结构,单丝相互交叉呈“三维网状”,赋予其优异的超弹性。该超弹增强体的引入可大幅降低前驱体有机气凝胶干燥和炭化过程的残余应力,进而可获得低密度、无裂纹、大尺寸轻质碳基复合材料。该材料在已知文献报道的采用常压干燥法制备CAs材料领域处于领先水平,可实现大尺寸样件(300mm以上量级)的高效、低成本制备,并具有低密度(0.16g cm-3)、低热导率(0.03W m-1 K-1)和高压缩强度 (0.93MPa)等性能。相关工作在Carbon 2021,183上发表。 在此基础上,本团队以工业酚醛树脂为前驱体,采用高沸点醇类为造孔剂并辅以高压固化,促使有机网络的均匀生长及大接触颈、层次孔的生成,实现了骨架本征强度的提升,同时采用与前驱体有机气凝胶匹配性好的酚醛纤维作为增强体,通过纤维/基体界面原位反应,实现了炭化过程中基体和纤维的协同收缩及纤维/基体界面强的化学结合,最终获得了大尺寸、无裂纹的碳纤维增强类碳气凝胶复合材料。该材料密度为0.6g cm-3时,其压缩强度及面内剪切强度分别可达80MPa和20MPa、而热导率仅为0.32W m-1 K-1,其比压缩强度(133MPa g-1 cm3)远远高于已知文献报道的气凝胶材料和碳泡沫。材料厚度为7.5–12.0mm时,正面经1800°C、900s氧乙炔火焰加热考核,背面温度仅为778–685°C,且热考核后线收缩率小于0.3%,并具有更高的力学强度,表现出优异的耐超高温、隔热和承载性能。相关工作在ACS Nano 2022,16上发表。 此外,上述隔热-承载一体化轻质碳基复合材料还首次作为刚性隔热材料在多个先进发动机上装机使用,为型号发展提供了关键技术支撑。 上述工作得到了国家自然科学基金委重点联合基金、优秀青年基金、青年科学基金、科学中心以及中科院青促会会员等项目的支持。 图1. 轻质碳基复合材料表现出优异的承载能力、抗剪切能力以及大尺寸成型能力图2. 高压辅助固化-常压干燥可实现较大密度范围轻质碳基复合材料的制备,其压缩强度显著高于文献报道的气凝胶和碳泡沫
  • 邀请函:KRÜSS诚邀您参加2022复合材料界面论坛
    KRÜSS于1796年诞生于德国汉堡,是表面科学仪器领域的全球领导品牌。先后研发了世界上第一台商用全自动表面张力仪和第一台全自动接触角测量仪,荣获多次国际工业设计大奖和德国中小企业最具创新能力TOP100荣誉。其它产品还包括各类动态表面张力仪、泡沫分析仪、界面流变仪和墨滴形状分析仪等。KRÜSS展会信息界面是决定复合材料性能的关键因素,是复合材料研究领域的焦点问题。“2022 复合材料界面论坛”重点聚焦碳纤维、芳纶纤维、聚酰亚胺纤维、碳纳米管纤维、玻璃纤维、陶瓷纤维、玄武岩纤维、植物纤维等高性能纤维增强复合材料的界面,主要围绕复合材料界面微观结构及其表征、界面微观力学、界面结构与界面行为之间的关系以及它们对材料宏观性能的影响等研究领域展开。KRÜSS诚邀您参加2022复合材料界面论坛会议时间:2022.8.11 - 12展位号:A03会议地址:宁波华侨温德姆至尊豪廷大酒店(浙江省宁波市海曙区柳汀街230号)典型应用通过接触角分析树脂和纤维浸润性树脂的表面张力分析通过表面能分析纤维和树脂的粘结强度基于OWRK模型的粘结效果评价等离子处理后表面能比较应用背景界面是决定复合材料性能的关键因素。树脂与纤维增强体的良好浸润是获得高质量复合材料界面的首要前提,对于树脂基复合材料而言,增强纤维与树脂基体之间的浸润性好坏对复合材料性能影响很大。一般来说,浸润性好、界面粘结强度就比较高。如果浸润性不好,界面上就容易留有空隙。因此,要制备高性能的复合材料,对增强材料的浸润性研究是十分必要的。
  • 工信部拟将碳化硅复合材料等纳入“十四五”相关发展规划
    工业和信息化部原材料工业司发布《关于政协十三届全国委员会第四次会议第1095号(工交邮电类126号)提案答复的函》,答复李佳等21位委员提出的《关于支持山西碳基新材料产业做大做强的提案》:  一、关于将山西确立为国家碳基新材料研发和产业化示范基地,在科技、人才、财税、金融等政策上给予重点倾斜  我部大力支持山西省发展壮大新兴产业。一是在示范基地方面,我部聚焦主导产业,引导推动产业集聚发展,组织开展了国家新型工业化产业示范基地工作,目前已批复山西省共7家示范基地,涉及有色金属、装备制造、高技术转化应用、煤焦化深加工等领域,并组织开展示范基地发展质量评价,加强对示范基地的分级分类指导。二是在财税政策方面,协调推动相关部门出台多项税收优惠政策,降低制造业增值税税率,对先进制造业增值税增量留抵税额全额退还,将制造业企业研发费用加计扣除比例提高到100%,对高新技术企业减按15%税率征收企业所得税,并将固定资产加速折旧政策适用范围扩大到全部制造业领域,制定了《重大技术装备进口税收政策管理办法实施细则》,山西省符合条件的碳基新材料企业均可享受上述优惠政策。三是在金融政策方面,推动先进制造业与证券、基金、银行、保险等金融机构合作,组织科创板申报企业科创属性评估,提供融资辅导、上市培育等服务,发挥国家级产业基金作用,围绕新材料等“卡脖子”关键环节开展项目投资,支持产业链协同发展。  下一步,我部将支持山西符合条件的产业集聚区申报国家新型工业化产业示范基地,不断提升产业集聚集群发展水平,并继续推动完善税收优惠政策,配合做好进口关税调整,积极引导国家制造业转型升级基金、头部投资机构对符合国家战略、具有优势的碳基新材料重点项目和骨干企业给予关注和支持。  二、关于将山西碳基新材料产业发展纳入国家“十四五”相关产业规划  国家高度重视碳基新材料产业创新发展。国务院办公厅印发的《关于促进建材工业稳增长调结构增效益的指导意见》、我部联合有关部门印发的《关于加快新材料产业创新发展的指导意见》和《新材料产业发展指南》均将碳基新材料列为重点支持对象,并针对碳基新材料产业发展专门出台了《加快推进碳纤维行业发展行动计划》《加快石墨烯产业创新发展的若干意见》等专项政策,在《重点新材料首批次应用示范指导目录》中列入了高性能碳纤维、石墨烯等碳基新材料品种。  下一步,我部将以重大关键技术突破和创新应用需求为主攻方向,进一步强化产业政策引导,将碳基材料纳入“十四五”原材料工业相关发展规划,并将碳化硅复合材料、碳基复合材料等纳入“十四五”产业科技创新相关发展规划,以全面突破关键核心技术,攻克“卡脖子”品种,提高碳基新材料等产品质量,推进产业基础高级化、产业链现代化。
  • 贝斯特科技亮相第十届商用飞机复合材料应用国际论坛
    2016年(第十届)商用飞机复合材料应用国际论坛于9月8-9日在中国商飞上海飞机设计研究院会议中心举行。本次论坛集中展示中国科技人员在商业大飞机复合材料领域前沿技术。论坛的亮点是突出商用飞机用复合材料结构的安全性和经济性,美国波音商用飞机公司,澳大利亚PTY 公司,意大利阿莱尼亚宇航公司等国际知名企业和机构的复合材料专家受邀出席并作大会报告。 贝斯特科技作为材料疲劳测试的专业品牌,携带动态疲劳试验机、热机械疲劳试验机、双轴疲劳试验系统等方面的最新技术进展与成果,积极的参与了此次盛会,吸引了众多参会者的眼球。贝斯特科技BISS产品不仅服务于航空材料,更是针对了不同应用领域: ? 金属和复合材料的应力 - 应变特性要求的设计,质量保证和认证的目的? 金属和复合材料在不同负载和环境条件下的耐久性、强度和断裂测试? 橡胶、聚合物和高分子材料制成的产品的动态性能和弹性性能测试? 悬架组件的性能和耐久性测试,如减震器、支柱,空气垫和静音托架? 铆接机身面板的残余裂纹疲劳和扩展寿命? 热电厂管道材料的蠕变疲劳和蠕变裂纹扩展性能? 组织工程、生物材料和再生医学领域的用户提供解决方案
  • 岛津试验机丨夹具世界系列之复合材料测试
    导读随着科技发展的日新月异,汽车、航天、航空等工业对材料性能的要求越来越高,单一材料如金属、陶瓷、高分子材料几乎都难以胜任。若将不同性能特点的单一材料复合起来,取长补短,则能满足现代高新技术的需求。复合材料既能保持组成材料各自的优异特性,又具有组合后的新特性,如比强度和比模量高、抗疲劳和破断安全性良好、高温性能优良等。以汽车工业为例,在车身及主要零部件、汽车结构件、电动汽车高压电池组件等应用中,复合材料可减轻重量实现汽车轻量化,同时减少碳排放。在飞机工业中,以波音777为例,其机体结构中复合材料仅占到约11%,而且主要用于飞机辅件;但到波音787时,复合材料的使用出现了质的飞跃,不仅数量激增,而且开始用于飞机的主要受力件,如今,波音787的复合材料用量已占到结构重量的约50% 。因此对于复合材料的研究,根据不同需求测试评估各种复合材料的力学性能,就显得尤为重要。今天,我们一起来看看岛津试验机在复合材料力学测试方面的夹具与应用。1 ASTM D6641组合载荷压缩测试复合材料不同于以往的均质材料,具有各向异性,在承受载荷的应力主轴方向呈现出拉伸、压缩、弯曲、向内剪切、向外剪切或兼有上述动向的复杂受力情况。为了提高对所设计产品的性能预测精度,需要采集各种数据,因此,在进行复合材料试验时,对于分别测量各断裂现象的试验方法的要求越来越高。例如根据标准ASTM D6641的组合载荷压缩(CLC)试验(如下图)是一种具有剪切和端面载荷组合的试验方法,提供了实现强度评估的同时进行弹性模量的测量。点击查看视频:https://mp.weixin.qq.com/s/6xI_kByFbXRV7nm8g6MJOw2 ASTM-D6484 开孔压缩强度测试碳纤维增强塑料(CFRP)以其强度高、重量轻等优点,在航空航天领域得到了广泛的应用。碳纤维具有优良的强度特性和高刚度特性,但在开孔时会损失很大的强度。复合材料零部件实际使用中,常需要开孔与别的部件连接。因此,飞机上使用的复合材料,必须对中心切出一个孔的试样的试验进行评估。我们根据ASTM-D6484对碳纤维塑料进行了开孔压缩试验。点击查看视频:https://mp.weixin.qq.com/s/6xI_kByFbXRV7nm8g6MJOw3 ASTM-D7078 V型切口剪切测试为了减少试制次数,降低新产品开发的成本,计算机辅助工程(CAE)分析被广泛应用。为了提高对所设计产品的性能预测精度,需要采集各种数据,因此,在进行 CFRP 试验时,对于分别测量各断裂现象的试验方法的要求越来越高。评价复合材料的试验方法有多种。其中,作为面内剪切试验方法,以纤维强化复合材料的纤维方向或织物层压材料为目标,在设有缺口的样片上取非对称的 4 个点加载弯曲负荷的Iosipescu法(ASTM D5379),以及在±45&ring 的层压材料上加载拉伸负荷的方法(ISO 14129)最为普及。本次试验使用 V-Notched Rail Shear 法(ASTM D7078),能够稳定进行面内剪切试验。另外,因样片的测量部位较大,可同时适用于无孔样片及短纤维系列 CFRP 层压材料的测量。点击查看视频:https://mp.weixin.qq.com/s/6xI_kByFbXRV7nm8g6MJOw4 其他复合材料测试夹具展示结语岛津标准试验机,试验载荷从 1 N到600KN不等,可适应各种样品,如橡胶、塑料、复合材料、金属、木材、玻璃陶瓷等材料的板、棒、线、绳等样品。本文介绍了岛津试验机在复合材料测试中主要夹具。另外,岛津夹具设计团队还可以根据特殊需求和标准,设计、定制夹具,以满足复合材料行业客户需求,提高复合材料的研究深度和应用广度,同时助推产业结构优化升级,实现绿色发展。撰稿人:杨汉章本文内容非商业广告,仅供专业人士参考。如需深入了解更多细节,欢迎联系津博士 sshqll@shimadzu.com.cn
  • 中科院研发出基于二硫化钼/碳纳米复合材料的钠型双离子电池
    p  近日,中国科学院深圳先进技术研究院集成所功能薄膜材料研究中心研究员唐永炳及其研究团队,成功研发出一种基于二硫化钼/碳纳米复合负极材料的钠型双离子电池。相关研究成果以Penne-Like MoS2/Carbon Nanocomposite as Anode for Sodium-Ion-Based Dual-Ion Battery为题,在线发表在Small上。br//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/insimg/6177974b-2ba4-49ab-b8d7-66db7c701632.jpg" title="1.jpg"//pp  锂离子电池已广泛应用于便携式电子设备、电动汽车、储能设备等领域。但由于锂离子电池的大规模应用加之锂资源的匮乏和分布不均,使锂离子电池成本日益攀升,难以满足未来能源存储的低成本、长循环寿命、安全可靠等要求。钠与锂有相似的物理化学性质,且储量丰富、成本较低,使得基于钠离子的二次电池体系的研究近年来受到广泛关注。然而钠离子半径较大,导致Na+在电极材料中扩散缓慢,从而影响电池的倍率性能和循环性能。/pp  为改善钠离子电池的倍率性能和循环性能,唐永炳研究团队成员朱海莉、张帆等成功研发出一种基于二硫化钼/碳纳米复合负极材料的钠型双离子电池。该电池采用膨胀石墨作为正极材料,具有分级结构的MoS2/C纳米复合材料作为负极材料。由于这种具有分级结构的MoS2/C具有更宽的晶体片层间距,有利于提高Na+在其中的离子扩散速率,且碳层的引入提高了材料的电导率,使基于该MoS2/C纳米复合材料的钠型双离子电池具有良好的倍率性能和循环性能。结果表明,该电池在1.0-4.0V的电压区间,2C的电流密度下循环200圈后容量保持率为85%。这种新型钠离子电池在低成本、环保大规模储能领域,如清洁能源、智能电网等具有潜在的应用前景。/pp  span style="font-family: 楷体, 楷体_GB2312, SimKai "研究工作得到了国家自然科学基金、广东省科技计划项目、深圳市科技计划项目等的资助。/span/ppbr//p
  • SAMPE2019复合材料性能表征和测试技术论坛召开
    p  strong仪器信息网讯/strong 2019年5月7日,SAMPE中国2019年会暨第十四届先进复合材料制品、原材料、工装及工程应用展览会召开同期,作为重要分会场——复合材料性能表征和测试技术论坛成功举办。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/9048b206-469a-49a0-966c-07f96df852fc.jpg" title="IMG_1110.jpg" alt="IMG_1110.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "SAMPE中国2019展会入口一角/span/pp  借助SAMPE中国平台,该论坛由中国航发北京航空材料研究院发起并已成功举办了7届,与往届不同的是,本届(第8届)论坛由中国航发北京航空材料研究院首次与天氏欧森测试设备(上海)有限公司共同主办。邀请11位复合材料性能表征和测试技术领域专家依次分享精彩报告并现场交流互动。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/2e74dd34-9fc7-4f33-be34-9072102b4bd6.jpg" title="IMG_1222.jpg" alt="IMG_1222.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "复合材料性能表征和测试技术论坛现场/span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/1874e0a9-42e8-47d6-b005-f014f5884a1f.jpg" title="IMG_1657.jpg" alt="IMG_1657.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "中国航发北京航空材料研究院高级工程师陈新文主持会/span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/244bbf31-17b2-4c4a-aec3-ed808366fc49.jpg" title="IMG_1266.jpg" alt="IMG_1266.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告人: 清华大学航天航空学院 王申博士/spanbr/span style="color: rgb(0, 176, 240) "/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "  报告题目:复合材料结构非接触测试技术及应用/span/pp  非接触测试是以光电、电磁等技术为基础,在不接触被测物体表面情况下,得到物体表面参数信息的测量方法。王申首先介绍了非接触测试技术的典型方法、特点等。接着分别重点介绍了基于3D扫描技术的物体形貌与损伤检测技术、数字图像相关方法(DIC)、基于红外热成像泄露定量测试方法、红外技术与数字图像相关技术结合等相关技术,包括基本测试原理、测试方法、实验装置等,并结合复合材料内部损伤检测、内部应力应变检测、飞行器结构在线健康检测等案例介绍了这些技术的相关应用。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/f5955fd9-c4fb-4447-8df4-5c1128e1ec4b.jpg" title="IMG_1290.jpg" alt="IMG_1290.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "报告人:天津工业大学先进纺织复合材料教育部重点实验室 郭玉路/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "  报告题目:含减纱点三维角联锁石英织物剪切性能试验研究/span/pp  郭玉路主要介绍了其关于三维角联锁石英织物剪切性能试验的相关研究研究,结果表明,含减纱点的三维角联锁石英织物的剪切性能会降低,且不同减纱方式对其剪切性能的影响不大。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/66146969-6673-4492-bf52-32d2d0ac6ee5.jpg" title="IMG_1302.jpg" alt="IMG_1302.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "报告人:日本龙派公司首席官 细川 雅彦博士/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "  报告题目:多轴编复合材料的力学性能研究/span/pp  细川 雅彦结合日本龙派公司在多轴编复合材料生产研发过程,介绍了系列相关力学性能的研究,研究表明,多轴编复合材料的抗拉强度与剪切角度无关,而抗拉模量则当剪切角为零度时最大。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/a04e7c75-2e7c-4a87-b41c-e61cbe33f788.jpg" title="IMG_1342.jpg" alt="IMG_1342.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "报告人:泰国拉贾马拉理工大学 萨蒙曼 尼姆朗教授/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "  报告题目:芳纶增强聚酰胺编制复合材料力学性能研究/span/pp  关于芳纶增强聚酰胺编制复合材料的力学性能研究,萨蒙曼 尼姆朗首先介绍了样品的制备和前处理方法。接着利用微滴包埋拉出法测定了复合材料界面剪切强度,结果表明,该样品进行去油处理后,其界面剪切强度可以提高约26%。而通过对芳纶增强聚酰胺编制复合材料拉伸试验表明,表面预处理可以将样品的拉伸强度提升9.1%,成型时间为40分钟时比成型时间8分钟的拉伸强度高18.1%。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/0a68c222-a98b-4ce0-8483-007857c01f46.jpg" title="IMG_1367.jpg" alt="IMG_1367.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "报告人:北京理工大学 刘刘教授/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "  报告题目:有限元模型修正结合数字相关技术在复合材料本构参数识别中的应用研究/span/pp  由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。而材料表征技术、无损检测技术、疲劳机构分析及失效分析等测试技术,可以有效的为复合材料的安全使用寿命提供保障。刘刘主要介绍了基于数字图像相关技术(DIC)和有限元模型修正(FEMU)相结合的方法,及在复合材料本构参数识别中的应用。研究结果表明,通过对高孔隙率陶瓷基复合材料的拉伸和v型缺口剪切试验,提取了具有参数的复杂本构模型。且该方法可以扩展全场变形测量的能力,以识别疲劳损伤的演化过程。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/be041841-694b-47d4-ba82-6213e8ffd3a0.jpg" title="IMG_1454.jpg" alt="IMG_1454.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "报告人: 赛默飞世尔科技大客户经理 蔡传忠/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "  报告题目:DVC技术在生物力学变化的体积表征中的应用/span/pp  数字体积相关(Digital Volume Correlation,简称DVC)技术能测量出三维图像变形前后,任意位置的采样点的位移和应变,可用于分析物体内部的三维变形情况。该技术相关研究发表文章量也在逐年增长。蔡传忠主要介绍了DVC技术的最新进展、实验设计方法等,接着讲解了赛默飞Amira-Avizo软件在DVC方面的应用,该软件提供高性能3D可视化和分析解决方案,适用于科学和工业数据。最后结合在生物学、地质学、化学等领域的应用实例讲解了Amira-Avizo在DVC方面实际应用方案。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/ec41418e-9740-48db-9b42-054b928ce463.jpg" title="IMG_1437.jpg" alt="IMG_1437.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "报告人:京都工艺纤维大学 西谷 圭吾博士/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "  报告题目:注射工艺制造碳纤维复合材料界面性能评价/span/pp  西谷 圭吾在报告中表示,PP和PC复合材料的界面性能可以通过100摄氏度热水处理碳纤维得以提高。纤维取向和残余纤维长度两个因素对注塑产品拉伸强度的影响要大于对其界面剪切强度的影响。而关于注塑成型的界面剪切强度的计算,Kelly Tyson方程计算相比微滴包埋拉出测试法更加精确。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/7be59fa3-7b34-4a3a-90e8-faffde76e4db.jpg" title="IMG_1518.jpg" alt="IMG_1518.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "报告人: 梅特勒-托利多技术应用顾问 陈成鑫/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "  报告题目:热分析技术在复合材料中的应用/span/pp  常用热分析手段包括DSC、TGA、TMA、DMA等,陈成鑫首先按照检测项目不同分类,逐一介绍了此四种热分析技术在复合材料表征中的推荐应用情况。接着分别以案例形式介绍了四种热分析技术的应用方案,包括DSC技术用于环氧树脂固化度的测试、评价固化促进剂的影响、复合材料的后固化等 TGA技术用于玻璃纤维含量、固化产品质量的鉴定等 TMA技术用于纤维方向的影响、PCB爆板时间、凝胶时间等 DMA技术用于通过Tg进行质量监控、聚合物-填料体系的分析、取向的影响等。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/56c1974c-4d25-49cd-b907-b498e00faa28.jpg" title="IMG_1676.jpg" alt="IMG_1676.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "报告人:天氏欧森测试设备(上海)有限公司大客户经理 黄安超/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "  报告题目:视频引伸计在复合材料测试中的应用/span/pp  黄安超首先介绍了聚合物基复合材料(PMC)和纤维增强材料(FRP)两种材料测试的国际标准情况,包括椎板/层板相关标准近40项、结构相关标准近20项、夹层结构相关标准近10项等。接着分别介绍了PMC/ FRP平面拉伸试验、平面压缩、平面剪切、弯曲、层间剪切强度、断裂韧性等相关力学试验的通用试验标准、夹具和附件的选择等。接着,介绍了天氏欧森视频引伸计在实时测试工程中的同心度检测应用,包括论证力学测试过程中实时同心度偏差、计算方法、搭配对中系统实时微量调整同心偏移等。天氏欧森光学视频引伸计在高低温应用方面,有效使用温度为,高分子材料(-150度至280度)、金属材料和复合材料(-150度至600度)等/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/14ce7618-35f3-4c01-bfa9-2c5e74468a8c.jpg" title="IMG_1673.jpg" alt="IMG_1673.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "报告人:中国航发北京航空材料研究院检测研究中心 王雅娜博士/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "  报告题目:复合材料ENF试验Ⅱ型层间断裂韧性数据处理方法综述/span/pp  复合材料层板结构层间较弱,分层易于发生,王雅娜通过对层间断裂韧性原理的计算推导,与大家分享了ENF试验Ⅱ型层间断裂韧性数据处理方法综述。结论表示,面积法和J积分法不受线弹性断裂力学的限制。柔度标定方法依靠试验数据的拟合确定柔度表达式,试验过程比基于梁理论的方法繁琐,被认为具有更高精度。在三种柔度标定方法中,CCI方法被认为是准确性和实用性的最佳组合。J积分法不依赖裂纹的观测,利用对ENF试验件梁截面旋转角度的测量,对裂纹长度在试验件宽度方向分布不均的情形具有显著的优势,是一种很有前景的方法。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/59201d77-0202-4df7-bbe1-603fc910da73.jpg" title="互动.png" alt="互动.png"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "现场互动/span/p
  • 中国国际复合材料工业技术展览会
    中国国际复合材料工业技术展览会尊敬的女士/先生:徳国耐驰科学仪器制造有限公司 诚挚邀请您出席以下展会,与我们共同探讨热分析在复合材料领域的应用和发展前景。会议名称:第二十六届中国国际复合材料工业技术展览会会议时间:2020年09月02-04日会议地点:上海,上海世博展览馆展位号:1号馆,A1242热分析测得的信息,可用于复合材料的热物性表征:- 树脂基体的玻璃化转变测量- 复合材料的热稳定性研究及成分测定- 树脂固化过程测量及动力学模拟- 复合材料制件的在线固化检测及工艺优化- 复合材料力学性能研究- 复合材料热传导性能研究- 复合材料热膨胀性能研究展会信息:“中国国际复材展”是亚太地区规模最大、影响力最广泛的复合材料专业技术展览会。以推动复合材料行业的繁荣发展为使命,努力搭建复合材料全产业链技术沟通、信息交流、人员往来的线上/线下专业平台,现已成为全球复合材料行业发展的重要风向标。现场展出设备:_差示扫描量热仪DSC_闪射法导热仪LFA_树脂固化检测仪DEA_流变仪Rheology诚挚邀请您莅临耐驰展台参观指导,耐驰将与您就共同关心问题进行深入探讨。感谢您对耐驰一如既往的支持,恭候您的光临!
  • 有机无机复合材料国家重点实验室成立
    有机无机复合材料国家重点实验室揭牌仪式近日在京举行。本实验室依托四大实验室进行组建。它们分别是纳米材料先进制备技术与应用科学教育部重点实验室、北京市新型高分子材料制备与加工重点实验室、北京市生物加工过程重点实验室和教育部超重力工程研究中心等实验室。  本实验室充分利用了北京化工大学在材料、化工和机械三个一级学科专业方向完整、研究实力雄厚的优势,通过材料、化工、机械、生物等学科间的交叉、渗透和整合以及多年的良性发展,针对有机无机复合材料领域中的重大主题,确立了五个特色研究方向:基础相材料及复合材料模拟与设计 无机相/有机相材料制备基础 树脂基功能纳米复合材料 弹性体基纳米复合材料 碳纤维复合材料。  实验室现有面积6919平方米,5万元以上仪器设备238台件,固定资产原值8270万元,仪器装备水平在材料科学与工程领域属国内一流,并拥有一支学术水平较高、创新能力强的研究队伍,基本满足了国家重点实验室的建设要求。来源科技网
  • 万测出席2023复合材料成型工艺与装备技术大会
    2023年12月19-12月20日,复合材料成型工艺与装备技术大会在上海成功举办。本次会议以“智造工艺,助力先进复合材料创新发展”为主题,邀请了行业领域专家、高校学者、企业代表等参会交流,报告先进的研究成果、共同打造国际的复合材料智造工艺与装备的供需交流合作平台。万测作为力学测试解决方案供应商出席了本次会议。会议期间,万测展示了微机控制电子万能试验机、电液伺服疲劳试验机、复合材料试验机、复合材料落锤冲击试验机等产品及复合材料测试解决方案,与现场嘉宾共同探讨了未来复合材料行业的发展趋势和挑战。随着科技的不断发展,复合材料的应用领域将会越来越广泛,同时对测试设备的要求也会越来越高。万测公司近年来持续投入资源研发先进的复合材料力学测试设备和技术,以满足不断发展和变化的市场需求。 万测微机控制复合材料试验机主要用于复合材料的拉伸、弯曲、压缩、剪切、裂纹扩展等力学性能测试。具有应力、应变、位移三种闭环控制方式,可求出最大载荷、抗拉强度、弯曲强度、压缩强度、剪切强度、弹性模量、断裂延伸率、泊松比等参数。根据国家标准及ISO、JIS、ASTM、DIN等国际标准进行试验和提供数据。 万测公司一直致力于为客户提供专业可靠的力学测试解决方案。在复合材料测试领域,万测取得多项成果及创新科技,与行业内企业取得长久的合作成为多家复材企业的合作伙伴。未来,万测也将继续深耕于材料测试领域为试验机的国产替代与复合材料的发展做出了自己的贡献。
  • 多位大咖相聚直播间,共探复合材料性能表征与评价
    p style="text-align: justify text-indent: 2em "复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了快速发展。/pp style="text-align: justify text-indent: 2em "为进一步促进全国各地高校、科研院所、企业等相关从业人员进行表征与检测技术交流,仪器信息网将于2020年6月15日举办“复合材料性能表征与评价”主题网络研讨会,邀请领域内杰出专家和业内人士围绕复合材料力学与物理性能、损伤与破坏、宏微观多尺度模拟、疲劳特性等方面带来精彩报告,并为参会人员搭建网络互动平台进行学术交流。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/f990c2d9-422f-4a10-98d7-bc7101e12c9f.jpg" title="1920_420cl.jpg" alt="1920_420cl.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) font-size: 20px "会议日程/span/strong/pp style="text-align: center "span style="color: rgb(0, 112, 192) font-size: 20px "/span/ptable border="0" cellspacing="0" cellpadding="0" style="border-collapse: collapse "tbodytr class="firstRow"td width="15" style="background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px "pspan13:30-14:00/span/p/tdtd width="204" style="background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family:宋体 color:black"聚合物基复合材料疲劳试验方法/span/p/tdtd width="266" style="background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family:宋体 color:black"陈新文/spanspan style="color:black"(/spanspan style="font-family:宋体 color:black"中国航发北京航空材料研究院/spanspan style="color:black")/span/p/td/trtrtd width="15" style="background: white border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="color:black"14:00-14:30/span/p/tdtd width="213" style="background: white border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family:宋体 color:black"复合材料力学性能试验解决方案/span/p/tdtd width="266" style="background: white border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family:宋体 color:black"王斌/spanspan style="color:black"(/spanspan style="font-family:宋体 color:black"力试(上海)科学仪器有限公司/spanspan style="color:black")/span/p/td/trtrtd width="15" style="background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="color:black"14:30-15:00/span/p/tdtd width="213" style="background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family:宋体 color:black"陶瓷涂层膨胀系数与残余应力测定/span/p/tdtd width="266" style="background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family:宋体 color:black"包亦望/spanspan style="color:black"(/spanspan style="font-family:宋体 color:black"中国建筑材料科学研究总院/spanspan style="color:black")/span/p/td/trtrtd width="15" style="background: white border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="color:black"15:00-15:30/span/p/tdtd width="213" style="background: white border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family:宋体 color:black"磁电弹复合材料多物理场耦合光滑有限元计算与表征/span/p/tdtd width="266" style="background: white border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family:宋体 color:black"周立明/spanspan style="color:black"(/spanspan style="font-family:宋体 color:black"吉林大学/spanspan style="color:black")/span/p/td/trtrtd width="15" style="background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="color:black"15:30-16:00/span/p/tdtd width="213" style="background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family:宋体 color:black"面向未来——联用技术在材料表征中的应用/span/p/tdtd width="266" style="background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family:宋体 color:black"刘文广/spanspan style="color:black"(/spanspan style="font-family:宋体 color:black"珀金埃尔默企业管理(上海)有限公司/spanspan style="color:black")/span/p/td/trtrtd width="15" style="background: white border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="color:black"16:00-16:30/span/p/tdtd width="213" style="background: white border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family:宋体 color:black"湿热环境下复合材料机械连接结构破坏行为/span/p/tdtd width="266" style="background: white border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family:宋体 color:black"程小全/spanspan style="color:black"(/spanspan style="font-family:宋体 color:black"北京航空航天大学/spanspan style="color:black")/span/p/td/trtrtd width="15" style="background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="color:black"16:30-17:00/span/p/tdtd width="213" style="background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family:宋体 color:black"特种复合材料的研究/span/p/tdtd width="266" style="background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family:宋体 color:black"黄培/spanspan style="color:black"(/spanspan style="font-family:宋体 color:black"重庆大学/spanspan style="color:black")/span/p/td/trtrtd width="15" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan17:00-17:30/span/p/tdtd width="213" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family:宋体"基于分级测试数据校验的大型复合材料结构失效行为的预测方法/span/p/tdtd width="266" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family:宋体"白瑞祥/spanspan(/spanspan style="font-family:宋体"大连理工大学/spanspan)/span/p/td/tr/tbody/tablep style="text-align: center "span style="color: rgb(0, 112, 192) font-size: 20px "strong报告嘉宾br//strong/span/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/202006/uepic/2702bdfb-fa29-4ce0-b537-ab7299b5ecb0.jpg" title="1.PNG" alt="1.PNG" style="text-align: center max-width: 100% max-height: 100% "//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/4065661e-41f1-4875-aa78-2a6be8ee4bb3.jpg" title="2.PNG" alt="2.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/f5505dd7-ec87-4bb4-bc5f-aee0b5dcf952.jpg" title="3.PNG" alt="3.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/40aa02ea-5a92-472c-97b7-657b4439abfb.jpg" title="4.PNG" alt="4.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/f657fd15-9168-4b26-a9fb-e9feeafee8aa.jpg" title="5.PNG" alt="5.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/61edc5a2-b3cb-4648-835c-037da8b6c49d.jpg" title="6.PNG" alt="6.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/0e135f99-ecd2-44b6-9ef3-d229cdbbc1d9.jpg" title="7.PNG" alt="7.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/8ec911db-d514-4c11-9e33-3c2bd148f5ab.jpg" title="捕获.PNG" alt="捕获.PNG"//pp style="text-align: justify text-indent: 2em "本次网络研讨会免费参会,并设有答疑交流环节,诚挚欢迎各地高校、科研院所、企业等复合材料相关从业人员参与。/pp style="text-align: center text-indent: 0em "span style="font-size: 20px "strongspan style="color: rgb(0, 112, 192) "报名方式/span/strong/span/pp style="text-align: justify text-indent: 2em "1、点击span style="color: rgb(0, 0, 0) "此处/spana href="https://www.instrument.com.cn/webinar/meetings/FHCL/" target="_self" style="text-decoration: underline "span style="color: rgb(0, 112, 192) "链接/span/a后报名。/pp style="text-align: justify text-indent: 2em "2、扫描下方二维码进行报名:/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/pic/ef40df0f-cee5-4549-98bd-8975e7fe1230.jpg"//ppbr//p
  • 万测受邀参加2022年中国(第八届)碳纤维及复合材料技术创新与应用发展论坛
    7月22日,主题为“创新驱动发展,材料助力‘碳中和’”的中国(第八届)碳纤维及复合材料技术创新与应用发展论坛在常州市顺利召开,近500位来自知名院校、科研单位和碳纤维企业的学术专家、企业代表共聚一堂,围绕碳纤维及复合材料的产业应用研讨创新发展之路,为促进碳纤维及复合材料产业发展建言献策。万测作为知名的碳纤维及复合材料力学性能检测方案供应商,受邀出席了此次行业盛会。 据悉,此次论坛邀请到多位行业专家和企业代表进行主题报告,内容包括“‘双碳’格局之下,碳纤维市场的前景和主要驱动力、新动向、新活力”、“‘碳中和’背景下,炭炭复合材料行业在新能源、航空航天方面的研究现状及发展趋势”、“高模量碳纤维产业化进展”等最新发展干货,现场学习气氛浓厚,讨论热烈。 近年来,碳纤维及复合材料以其优异的理化性能已成为目前世界首选的高性能材料。碳纤维及复合材料是发展国防军工、航空航天、新能源及高科技产业的重要基础原材料,同时在汽车工业、轨道交通、机械、电子、建筑、化工、医疗、海洋开发、体育休闲等国民经济各个领域具有无可比拟的应用优势,世界各国均把发展高性能碳纤维产业放在极其重要的位置。 作为立足客户市场需求,深耕试验技术研发的国内试验机行业先锋企业,万测近年来也积极投入碳纤维及复合材料力学性能测试方案的研制工作,经过一段时间的全力研发和层层评审验证,我司在复合材料测试系统上取得了丰富的技术成果,可为碳纤维及复合材料的质量控制、研究应用和产品设计工作提供良好的数据支撑。此次受邀参加复合材料技术创新与应用发展论坛,万测也带来了丰富的碳纤维及复合材料的静态与动态力学测试整体解决方案,先进的产品技术和优秀的实践成果受到了与会嘉宾们的关注与肯定。 本次论坛为广大碳纤维及复合材料上下游产业链搭建了一个合作交流平台,汇报了前沿技术研究及创新技术应用等方面的新进展,促进了行业关键技术的融合与交流。通过本次活动,万测也了解到了碳纤维及复合材料行业的新发展及新工艺,这也为我司日后不断提升研发能力和开拓新领域带来了新思路。未来万测也会积极参加各种行业交流展览会,为中国复合材料技术的发展贡献自己的力量!
  • 铝基复合材料在问天实验舱上成功应用
    作者:沈春蕾 来源:中国科学报7月24日,我国问天实验舱发射任务取得圆满成功。问天实验舱太阳翼柔性展开机构关键部件和多个实验机柜转接件中使用了一种新型铝基复合材料,该材料由中科院金属研究所研究员马宗义团队研制。据了解,问天实验舱配备了目前国内最大的柔性太阳翼,双翼全部展开后可达55米。太阳翼所使用的柔性展开机构某关键部件要求材料兼具轻质、高强、耐磨损、耐疲劳、高尺寸稳定性的特点,并且批量大、批次稳定性要求高。针对这一特殊需求,马宗义团队开发出各向同性碳化硅颗粒增强铝基复合材料中厚板可控塑性变形加工技术,产品批次间性能差异小于5%,解决了太阳翼展开机构关键部件无材可用的困境。问天实验舱实验机柜与实验舱内壁结构采用六点式机械连接,连接件在发射过程中在剧烈震动、摩擦工况下服役,是实验机柜载荷结构设计中受力最苛刻的零部件。针对这一工况要求,该团队研发出高性能碳化硅颗粒增强铝基复合材料锻件,采用该材料替代传统铝、钛等合金,实现了优异的轻量化加工制造,承受住了发射过程中的震动疲劳及磨损等,并使零件减重20%以上。
  • 2020-2025年全球汽车工业用复合材料市场复合年均增长率将达11.5%
    根据美国Research And Markets 1月25日发布的最新全球汽车工业用复合材料市场分析报告,全球汽车工业复合材料市场预计将从2020年的54亿美元增长到2025年的93亿美元,2020年至2025年之间的复合年均增长率(compound annual growth rate,CAGR)为11.5%。对轻量化和节能汽车的需求以及电动汽车的新兴发展是推动汽车工业复合材料市场增长的主要因素,而提高OEM厂商对严格的政府排放控制法规的认识则是汽车复合材料市场增长的机会。但是,COVID-19疫情对汽车复合材料的负面影响对汽车行业市场增长产生了不利影响。就增强纤维类型而言:玻璃纤维复合材料仍然是汽车工业复合材料最大的细分市场。玻璃纤维具有强度、耐久性、柔韧性、稳定性、重量轻、耐热、耐温、防潮等优点,是汽车工业复合材料生产厂家的首选材料。例如,在汽车中,玻璃纤维可用于不同的应用,如车身底部系统、前端模块、甲板盖、保险杠横梁、发动机罩仪表板和风道,以及其他车身部件。但是在2020年至2025年预测期内,预计碳纤维复合材料价值和产量的复合年增长率最高。就应用结构件类型而言:车身结构是汽车工业复合材料的最大应用。放置在整体式车身外表面上的车身复合材料被称为车身外部零件。外部零件包括主要部件如保险杠、挡泥板、前端模块、门板和引擎盖等。在汽车工业中使用复合材料是一个新兴趋势,因为这些复合材料有助于实现高性能性能,如高刚度、轻量化和高强度重量比。使用复合材料制造的外部零件具有刚性,因此在发生事故时提供最小的损坏风险。复合材料也有助于减轻外部部件的重量,从而使整个车身的重量减轻,并使其更省油。外部零件位于车身外表面,由于暴露在恶劣环境和极端天气下,更容易磨损。在外部部件中使用复合材料,如挡泥板、发动机罩、保险杠横梁、行李厢盖和其他部件,增加了汽车的耐久性,确保了较长的使用寿命并降低了维护成本。就轻量化汽车的类型而言:非电动汽车仍然是汽车工业复合材料应用最大的车型,包括宝马、奥迪、雷诺、保时捷、大众、菲亚特克莱斯勒等众多车企,均在在其高端非电动汽车中使用复合材料。例如,保时捷GT3 Cup II车型制造了CFRP组装支架,而宝马和菲亚特克莱斯勒则在其轻型仪表盘支架以及阿尔法罗密欧4C跑车的整个底盘中使用碳纤维复合材料和玻璃纤维增强聚丙烯(PP)复合材料。德国汽车制造商已经开发出Rodeo概念车,这是一款基于经典保时捷911 safari拉力赛车的全轮驱动碳纤维越野车。全球OEM采取的这些举措一直在推动汽车复合材料在非电动汽车中的应用。就汽车工业复合材料区域而言:欧洲是领先的汽车复合材料市场。欧洲汽车复合材料市场的增长是由该地区汽车行业中老牌汽车制造商的存在、工业扩张以及该地区汽车工业引进的工业4.0技术推动的。汽车工业是欧洲地区的主要产业之一,比其他任何地区都高。欧盟是全球最大的汽车生产国之一,该行业是研发领域最大的私人投资者,每年约投资574亿欧元,欧盟汽车工业的营业额占GDP的7%。
  • 复合材料&脆性材料测试之四问四答!
    复合材料&脆性材料测试之四问!1、适用于复合材料力学性能测试的标准有ISO国际标准、GB/T国家推荐标准,还可参照ASTM等国际先进标准,如何根据产品特性选择相应标准及检测方法?2、如何检测脆性材料的性能,模拟材料在实际工况条件下的可靠性,提高产品质量?3、目前使用的硬度检测真的是最优化的吗?如何更快更准确地做好硬度测试?4、材料力学性能测试技术飞速发展,如何应对材料测试领域的挑战?如果上面的问题您都门儿清了,请关闭浏览器呢!如果您想了解这四个问题的答案,请报名并参与3月25日14:00开始的&ldquo 材料力学性能测试技术与标准&rdquo 网络主题研讨会。马上报名:http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1374 扫码报名,一分钟搞定!
  • 2021年度中国复合材料学会优秀博士学位论文评审公示
    2022年7月19日,中国复合材料学会在北京学会会员之家组织开展了2021年度中国复合材料学会优秀博士学位论文评审会。根据《中国复合材料学会优秀博士学位论文评选条例》,经理事及相关单位推荐,通过资格审查、函审和会评,共有5篇论文获评优秀博士学位论文,5篇论文获提名奖。现将2021年度中国复合材料学会优秀博士学位论文及提名奖名单予以公示,公示期为2021年7月19日至2021年7月29日,共10天。公示期间,如有异议,可向中国复合材料学会实名反映,并提供联系方式和证明材料。评选结果见附件。联系人:靳鹏程电话:18600638835邮箱:xuehuibu@csfcm.org.cn地址:北京市海淀区花园东路15号旷怡大厦3层附件:2021年度中国复合材料学会优秀博士学位论文名单姓名单位论文题目张博北京交通大学用于发汗冷却的碳化硅基多孔陶瓷的制备与性能表征付宇彤清华大学纤维增强树脂基复合材料宏细观工艺力学研究庄磊西北工业大学ZrC-SiC改性C/C复合材料及其表面硅基陶瓷涂层的研究王兵哈尔滨工业大学基于FFT方法的编织复合材料异形结构损伤失效研究昝宇宁中国科学技术大学(B4C+Al2O3)/Al高温中子吸收材料的制备与加工研究2021年度中国复合材料学会优秀博士学位论文提名奖名单姓名单位论文题目王晓东北京航空航天大学基于细观力学的复合材料裂纹扩展及失效分析方法研究梁超博西北工业大学石墨烯泡沫/环氧树脂复合材料可控制备及电磁屏蔽性能刘京彪哈尔滨工程大学形状记忆聚合物及其复合材料性能与热力学行为研究王帅哈尔滨工业大学层状钛基复合材料多尺度组织调控与力学行为研究韩俊伟天津大学用于致密储能的锂离子电池负极材料设计和可控制备
  • 我国航天用第二代结构复合材料研究立项
    中国科技网北京1月7日电 未来载人登月、深空探测用的重型运载火箭直径约为目前我国在用运载火箭的2—3倍,为满足超大型树脂基复合材料结构的高刚度、轻量化、高可靠的要求,未来材料性能和大尺寸构件成型工艺水平必须较现有体系有明显提高。记者今天获悉,国防基础科研重大项目“结构复合材料关键材料体系的工程化应用技术研究”月初成功立项,相关负责人介绍,研究成果将满足未来航天型号发展需求。  据了解,该项目是在国防科工局的大力支持下,由航天材料及工艺研究所牵头,联合北京宇航系统工程研究所、中国运载火箭技术研究院研发中心和中科院化学所等单位实施。项目将集中研究相关的材料及超大型轻质结构件制备工艺技术、复合材料结构设计技术等,形成第二代复合材料及构件制造技术规范、方法、标准及数据库,提高材料技术成熟度,满足未来航天型号发展需求,同时牵引国内高性能碳纤维、高性能树脂等相关基础材料技术领域的发展,推动第二代复合材料在其他行业的推广和应用。  与目前广泛使用的第一代材料相比,新研制的第二代结构复合材料将促进航天用树脂基结构复合材料的升级换代,性能大幅度提高,且工艺适应性更好,质量稳定性更高,将对我国航天及相关领域技术的发展带来深远影响
  • “先进结构与复合材料”等重点专项2021申报指南:9项涉及3D打印材料
    2月4日,科技部发布关于对“十四五”国家重点研发计划“氢能技术”等18个重点专项2021年度项目申报指南征求意见的通知。其中,“先进结构与复合材料”、“高端功能与智能材料”两个重点专项均涉及增材制造(3D打印)先进材料及相关技术,共计9项,详情如下:“先进结构与复合材料”重点专项2021年度项目申报指南(征求意见稿)2.3 高品质TiAl 合金粉末制备及增材制造关键技术(共性关键技术)研究内容:针对电子束增材制造所需的低氧含量球形TiAl 合金粉末,研究铝元素挥发、粉末球形度差、空心粉高问题,突破工业化生产球形TiAl 合金粉末和工业化TiAl 构件增材制造关键技术;开展增材制造TiAl 合金的材料-工艺-- 7 -组织-缺陷-性能一体化系统研究及典型服役性能测试,突破构件增材制造工艺及性能控制关键技术,掌握包括材料、工艺、组织调控、性能特征及典型应用,为新一代航空发动机高温关键构件制造及工业化应用提供技术支撑。考核指标:粉末指标:粉末粒度45μm~105μm,收得率≥40%,粉末氧含量≤0.075wt%,粉末流动性≤35s/50g;成形件指标:室温抗拉强度≥600MPa、延伸率≥1.5%,650℃抗拉强度≥500MPa,650℃高周疲劳强度(σ-1,Kt=1,N=1×107)≥300MPa,650℃持久强度(σ100h)≥250MPa。3.3 先进铝合金高效加工及高综合性能研究(共性关键技术)研究内容:针对飞行器、船舶以及汽车等提速减重、绿色制造的迫切需求,开展以铸代锻、整体成型、短流程、低排放的高效加工技术研究,研发高综合性能的先进铝合金材料;开展先进铝合金材料综合性能评价及加工技术效能评价,形成铸锻一体成型的新型高综合性能铝合金高效加工技术,将铸造、增材制造等铝合金提升到变形铝合金强度水平。考核指标:铸锻一体成型高强铝合金屈服强度>350MPa、延伸率>6%、碳排放比A356 合金减少10%,建设10000 吨/年生产线,示范应用于汽车、通讯等;高强传动连接铝合金材料,抗拉强度≥450MPa、屈服强度≥400MPa、延伸率≥8%、疲劳强度≥300MPa、焊接系数达到0.85、满足高强传动连接部件需求、建设10000 吨/年生产线、示范应用于汽车等;核电超高强铝合金管材外径150mm、壁厚3.5mm、抗拉强度≥650MPa、满足应用要求;高强铝合金增材制造产品屈服强度≥400MPa、延伸率≥6%、疲劳强度≥200MPa、建立1000 吨/年生产线。4.4 低面密度空间轻量化碳化硅光学-结构一体化构件制备(基础研究)研究内容:针对空间遥感光学系统的应用需求,研究低面密度空间轻量化碳化硅光学-结构一体化构件的结构拓扑设计,开展复杂形状碳化硅构件的增材制造等新技术、新工艺研究,开发低面密度复杂形状碳化硅构件的近净尺寸成型与致密化烧结技术,开展低面密度碳化硅空间轻量化碳化硅光学-结构一体化构件的光学加工与环境模拟试验研究,实现满足空间遥感光学成像要求的低面密度碳化硅光学-结构一体化构件材料制备。考核指标:碳化硅陶瓷材料开口气孔率≤0.5%,弹性模量≥350GPa,弯曲强度≥350MPa,热膨胀系数2.1±0.15-6/K(@-50~50℃),热导率≥160 W/(mK);光学-结构一体化构件尺寸≥500mm,面密度≤25kg/m2,表面粗糙度Ra≤1nm,面形精度RMS≤λ/40(λ=632.8nm),500~800nm 可见光波段平均反射率≥96%,3~5μm 和8~12μm 红外波段平均反射率≥97%;通过空间成像光学系统环境模拟试验考核(包含时效稳定性、热真空、力学振动等试验,面形精度RMS≤λ/40)。6.1 金刚石超硬复合材料制品增材制造技术与应用示范(典型应用示范)研究内容:围绕深海/深井勘探与页岩气开采、高端芯片制造等国家重大工程对长寿命、高速、高精度超硬材料制品的需求,开展高性能金刚石刀具、磨具和钻具等结构设计和增材制造技术研究,结合新型金刚石超硬复合材料工具宏观外形和微观异质结构的理论设计和数值模拟,重点突破增材制造用超硬复合材料金属粉体关键制备技术和含超硬颗粒的多材料增材制造关键技术,完成典型工况条件下服役性能的评价。技术指标:切/磨削类制品在典型工况条件下磨耗比降低70%以上,耐热性达到800℃以上,使用寿命是现有加工材料的2 倍以上;钻具类制品抗弯强度2000MPa,冲击韧性≥4J/cm2,努氏硬度(压痕)达到50GPa,使用寿命达到YG15(WC-15Co) 类硬质合金的5 倍以上;形成年产百万件的工业化生产能力,实现2~3 种产品的规模应用。7.6 增材制造专用高性能高温合金集成设计与制备(基础研究)研究内容:针对航空发动机、高超声速飞行器、重载火箭等国家大型工程等所需高温合金精密构件服役特点和增材制造物理冶金特点,融合多层次跨尺度计算方法、并行算法和数据传递技术,发展增材制造专用高性能高温合金的高效计算设计方法与增材制造全流程模拟仿真技术,结合高通量制备技术和快速表征技术,建立增材制造专用高性能高温合金的材料基因工程专用数据库;结合机器学习、数据挖掘、可视化模拟等技术,开展增材制造专用高温合金高效设计与全流程工艺优化的研究工作,实现先进高温合金高端精密构件的组织与尺寸精密化控制,并在航空航天等领域得到工程示范应用。考核指标:针对国家大型工程等所需高温合金精密构件特点,研制出3~5 种增材制造专用高温合金,研发周期缩减40%以上、研发成本降低40%以上;发展高端增材制造装备和工艺配套的高温合金材料和技术体系,实现国产化规模应用,综合性能平均提升20%以上,产品成本降低30%以上,核心性能指标、批次稳定性达到国际先进水平;申请发明专利或软件著作权10 件以上。8.5 基于激光增材制造技术的超轻型碳化硅复合材料光学部件制造研究内容:面向空间光学系统轻量化的发展需求,研究新型超轻型碳化硅复合材料光学部件预制体激光增材制造用粉体原料的设计与高效制备技术;开发基于激光增材制造技术的碳化硅复合材料光学部件基体成型与致密化技术;开发基于激光增材制造技术的碳化硅复合材料光学部件表面致密层制备技术;开展超轻型碳化硅复合材料光学部件的加工验证研究。考核指标:碳化硅复合材料弯曲强度≥200MPa,弹性模量≥200GPa,热导率≥100W/(mK),热膨胀系数≤3×10-6/K;碳化硅复合材料光学部件口径≥350mm,轻量化率≥80%,面密度≤25kg/m2;研制出350mm 以上口径碳化硅复合材料光学部件, 表面粗糙度Ra≤1nm , 面形精度RMS≤λ/40(λ=632.8nm),500-800nm 波段平均反射率≥96%。8.8 增材制造先进金属材料的实时表征技术及应用研究内容:研发基于同步辐射光源的原位表征技术与装备,动态捕捉增材制造过程中高温下微秒级时间尺度和微米级局域空间内的相变和开裂;通过高通量的样品设计和多参量综合表征手段,揭示动态非平衡制备过程中材料组织结构的演化和交互作用规律。面向典型高性能结构材料,揭示增材制造快速熔化凝固超常冶金过程对稳定相、材料组织结构和最终性能产生影响的因素,快速建立材料成分-工艺-结构-性能间量化关系数据库;结合材料信息学方法,发展增材制造工艺和材料性能高效优化软件,在典型增材制造材料的设计与优化中得到应用。考核指标:发展基于同步辐射光源的增材制造原位表征技术与装备,在多个尺度上实时追踪增材制造过程中材料组织演变、裂纹生长和化学反应的动态过程。实现单点表征区域>200μm,空间分辨率≤10μm,时间分辨率≤5μs,表征通量>103 样品空间成份点的原位无损分析;构建高温合金、不锈钢、钛合金、铝镁合金等高性能结构材料成分-工艺-结构-性能数据库,开发增材制造工艺优化专用软件,应用于三种增材制造材料的设计与优化。申请发明专利3~5 项,软件著作权2~3 项。“高端功能与智能材料”重点专项2021年度项目申报指南(征求意见稿)2.2 骨组织精准适配功能材料及关键技术(共性关键技术)研究内容:面向因骨质疏松、骨肿瘤、感染等导致的人体骨组织缺损疾病治疗的需求,研发对骨组织功能重建具有生物适配功能的高端再生修复材料,开发融合生物材料、医学影像、计算机模拟、增材制造、人工智能的先进骨组织修复与再生成套技术,发展外场驱动的非侵入性材料,促进无生命材料向具有健全功能组织的转化。考核指标:获得3~5 种基于类骨无机粉体的新材料,阐明材料和组织相互作用机制及细胞信号通路;研发4~6 种外场驱动的新材料;突破大尺寸类骨无机材料3D 打印关键技术,骨修复体连通气孔率大于50%,孔径在100 μm-600 μm之间可控调节,压缩强度大于40 MPa,实现大尺寸骨缺损的再生修复;建立术前组织三维重建与手术模型制备、术中手术定位导板与精准修复再生修复材料构建、术后康复材料设计的围手术期骨精准再生修复成套技术;完成骨再生精准修复材料的临床前研究,开展临床试验20 例以上。4.4 声学超构材料及集成器件(共性关键技术)研究内容:面向高端技术装备振动与噪声控制的重大需求,开发声学超材料设计技术,发展基于3D 打印等先进制造手段的声学超材料制备方法,研发具备宽带、低频、全向等优异吸声、隔声特性的声结构功能材料和基于拓扑声学的全固态集成声学器件,实现基于超材料的低频声波定向传输;开发有效提高超声穿透性能并实现高分辨颅脑超声成像的双负参数声学超材料。考核指标:声学超构材料的工作频带范围20~800 Hz,厚度≤30 mm,其中吸声超材料实现设计带宽内吸声系数≥0.85、平均值≥0.95,隔声超材料实现设计带宽内插入损失≥20 dB、平均值≥30 dB。中频超构声学器件的工作频率≥100MHz,室温品质因子Q≥104,高频超构器件的工作频率≥3GHz,室温品质因子Q≥5×103,滤波器带宽的可设计范围优于0~3%,带外抑制≥40 dB,插入损耗≤5 dB。以上征求意见时间为2021年2月1日至2021年2月21日,修改意见请于2月21日24点之前发至电子邮箱。联系方式:重点专项名称邮箱地址先进结构与复合材料gxs_clc@most.cn高端功能与智能材料1.“十四五”国家重点研发计划“先进结构与复合材料”重点专项2021年度项目申报指南(征求意见稿).pdf2.“十四五”国家重点研发计划“高端功能与智能材料”重点专项2021年度项目申报指南(征求意见稿).pdf
  • 首日观众数量近万人!SAMPE 2021复合材料展成功举办
    7月7日-9日,SAMPE中国2021年会第十六届国际先进复合材料制品、原材料、工装及工程应用展览会在北京市中国国际展览中心(静安庄馆)成功举办。被誉为国内复材行业晴雨表的SAMPE中国年会,2021展会规模再创新高,展出面积25000平米,展商数量约300家,同期国际学术会议规模达到千人以上,展览会首日观众数量近万人。展览会注册处展览会现场盛况本届年会由SAMPE中国大陆总会 、中航复合材料有限责任公司、中国化学纤维工业协会、先进复合材料重点实验室、结构性碳纤维复合材料国家工程实验室主办,内容丰富,集行业展览、学术会议、技术培训、学生竞赛、SAMPE创新奖发布、新书首发六位一体。展览会吸引了来自航空、航天、汽车、高速列车、船舶、能源、电子、仪器仪表等领域的众多单位参展,全方位地呈现了先进复合材料产业链中的设计软件、原材料、辅助材料、生产装备、装配工装、复合材料结构、检测设备、加工手段、修理工具、回收再利用设备等产品。创新应用展示区:国家自行车队征战东京奥运会的上扬式一体把手碳纤维自行车仪器信息网作为仪器行业专业的门户网站,特别关注了本次参展的仪器设备厂商,并对部分企业进行了走访。力试科仪力试科仪是专业从事力学试验仪器设备的研发、制造、销售和服务的大型集团公司,主打产品为电子万能材料试验机、电液伺服疲劳试验机、多轴协调加载系统和各种专用试验机。本次展会,力试科仪带来了公司的新产品——带全温液压夹具的高低温环境力学性能测试系统,该系统高同轴度满足ASTM D3039规定的弯曲度小于3%,夹持压力可调,应力分布均匀,具有超大试验空间,可以满足从90°拉伸短试样到冲击后压缩、开孔压缩等转接夹具大空间的要求。天氏欧森天氏欧森,致力于静态材料试验技术的先进制造商。公司于1880年在美国费城建立,创始人为全球第一台万能材料试验机的设计者以及专利拥有者Tinius Olsen先生本人。2016年,天氏欧森来到中国上海,成立分公司,并建立超大规模的展厅及培训中心,展厅面积约900平方米,共展示10套设备,包括电子万能材料试验机、液压万能材料试验机、水泥压缩机、熔融指数仪、塑料冲击试验机及缺口制样机,以及一套双工位的全自动测试系统。三英精密三英精密,一家专业从事X射线CT检测装备研发和制造的国家高新技术企业,拥有自主核心技术,现已发展为国内X射线CT产品种类齐全的解决方案提供商。公司产品涵盖X射线三维显微镜、显微CT、工业CT、计量CT、平面CT、卧式CT、X射线在线检测设备和移动车载CT检测中心等。近日,三英精密与启迪漕河泾科技园合作共建的上海检测中心牌开业,该检测中心专注服务上海及周边地区的科研机构和企业,将大大提升三英精密在长三角地区的服务能力。MTS MTS,全球最大的力学性能测试与仿真系统供应商之一,主要产品包括动/静态材料试验系统,岩石力学测试系统,汽车性能、整车及零部件测试系统,飞机零部件及整机结构试验系统,生物材料/结构测试及模拟系统,建筑结构测试及地震模拟系统,各类载荷、位移及应变传感器,夹具及固件,环境模拟系统,液压作动缸,各类伺服控制系统,引伸计等。TA仪器TA仪器,沃特世的子公司,是热分析和流变分析仪器的重要制造商。本次展出的Discovery X3差示扫描量热仪,经过独特的设计,除去了多个测试步骤,其产生的实验数据量是标准DSC的三倍,有效地将三个仪器合并为一个此,此外,使用X3 DSC多样品池,在测量有价值的药物样品的同时进行仪器校准的内部验证也是可行的。新拓三维新拓三维,致力于先进三维光学测量技术研究、系列测量设备应用研发及技术方案提供的国家高新技术企业,研发团队的核心成员均为原西安交通大学三维光学测量研究团队成员,硕士以上学历占比超80%。公司主要产品包括三维外形轮廓检测测量、三维应变变形测量、三维动态和运动轨迹测量、科研分析仪器等。更多仪器展商掠影如下:耐驰梅特勒-托利多岛津美国物理声学林赛斯万测编辑评议:复合材料,作为新材料的一种,被列入国家首要发展战略之中,自身的多功能性使其在高精尖领域实现了广泛的应用。近年来,随着我国复合材料行业的迅猛发展,国产复合材料性能不断提升,原料和产品也在不断地推陈出新。然而,去年突如其来的一场新冠疫情,给全球各个产业带来了或多或少的冲击,复合材料行业同样未能辛免。从本届国际先进复合材料制品、原材料、工装及工程应用展览会现场的火爆程度来看,我国的复合材料行业已经率先走出疫情阴霾、全面复苏,复材原材料及产品产销两头旺。SAMPE中国2021年会复合材料展,一如往届,不仅发挥了行业引领和带动作用,为先进复合材料行业搭建了一个产、学、研、用合作交流的平台,也推进了我国先进复合材料服务于更轻、更强、更节能、更环保的绿色产业创新发展。
  • 英斯特朗材料试验机对赫氏复合材料进行弯曲测试
    英斯特朗,全球材料和结构测试设备制造的领先者,非常荣幸地宣布,安装在英国剑桥赫氏复合材料公司的600KN超高万能材料试验机成功通过试运行,可在-80°C到+350°C之间,对高级结构复合材料进行弯曲测试。  作为赫氏公司力学性能测试设备首先供应商之一,英斯特朗和赫氏有源远流长的合作关系-一起携手超过20年。赫氏公司全球工厂都安装了英斯特朗大量的测试设备,赫氏剑桥工厂配备了一系列英斯特朗测试设备,从台式机到最新购置的最新设备。  赫氏实验室工程师John Rennick评价说:“选择英斯特朗的理由是,能满足机器正常工作要求的能力,故障后快速响应能力,维修能力。英斯特朗设备在剑桥实验室无问题运行了多年,现场的材料工程师使用机架和Bluehill软件感到非常舒适。”  他们最新的英斯特朗系统包括了优异的对中性能和配置了许多附件,可进行各种各样的测试。配备的对中夹具可以按照NADCAP标准的要求,消除任何载荷线性偏差。液压夹具可帮助试样对中,和在高载荷加载下,提供优异的夹持功能。采用的特殊设计保证了,在-80°C到+350°C之间的测试温度范围内,夹具头和被夹试样在环境箱内,而液压油在箱外。  测试系统配置了英斯特朗Bluehill 2测试软件。赫氏剑桥工厂最近对所有英斯特朗设备进行了软件升级至Bluehill 2友好的使用界面,此举将减少运营培训费用和错误风险。软件使用非常直觉,易于掌握,包括了所有的功能,从高级计算到生成赫氏客户需要的报告。通过使用内置的转换功能,所有现存的Bluehill 1测试方法都会自动转换至最新的软件中。  John Rennick补充道:“英斯特朗在整个过程中,提供了优秀的支持和沟通,分派了一位专注的项目工程师在英斯特朗公司和赫氏工厂,对新机架进行了测试。机器的安装和正常工作日期已经告知了我们,这一天终于来到了。在3周的货运时间内,我们已对机架进行了签核和试运行,要求的验收标准达到了优秀。”      关于英斯特朗公司  英斯特朗是材料和结构测试设备制造的领先者。作为一家专业生产万能材料试验机的企业,英斯特朗生产试验机和提供服务,用来测试在不同环境条件下,材料、组件和结构的力学性能。  英斯特朗材料测试系统可在极大范围内对材料的力学性能进行评价,试验对象从易碎的灯丝到高级合金,为客户提供全面的解决方案,包括研发、质量和寿命测试。除此之外,英斯特朗还能提供广泛的技术服务,包括协助实验室管理、标定和培训。  更多信息,请浏览网站www.instron.com  关于赫氏公司  作为一家跨国公司,销售额超过13亿美金的赫氏公司(www.hexcel.com)是世界上高级结构材料制造的领先者。总部位于美国,在欧洲和美国有13家工厂,赫氏今天提供广泛和产品和服务在行业中无与伦比的深度。 从全球制造工厂,生产的先进材料解决方案的全方位,这包括来自碳纤维及织物增强一切预浸材料(或“预浸料”)和蜂窝芯,粘合剂、模具材料和成品飞机结构。
  • 贝斯特成功召开了2016 年先进的碳复合材料测试——使用在线损伤监测解释裂纹动力学技术交流会
    贝斯特成功召开了2016 年先进的碳复合材料测试——使用在线损伤监测解释裂纹动力学技术交流会。本次交流会在北京唯实酒店举行,旨在为复合材料科研工作者搭建的专业性技术交流平台。本次交流会将由贝斯特(中国)技术公司组办,为用户解读了国际碳复合材料微裂纹动力学检测技术最新技术。本次交流会关注现在最新的力学试验技术的发展,此技术解决了目前力学试验机无法在线测试微裂纹动力学的困境;会议由复合材料科学家R. Sunder博士主讲, 和各位同行交流了复合材料力学测试面临的挑战和解决方法。 R. Sunder博士履历1. 1978-1993,在国家航空航天实验室研究航空疲劳和机体残余强度(1978-1993);2. 1986-1988,镍基高温合金的性能,空军材料实验室,莱特帕特森空军基地,俄亥俄;3. 1992年创立了班加罗尔集成系统解决方案公司(BISS),领先的技术研发和制造商,为全球客户最先进的测试系统。2012年美国ITW集团收购了BISS公司,ITW为纽约证券交易所上市公司,全球财富200强企业。4. 1996至今,研究疲劳的阈值和变幅疲劳。5. ASTM(1985)和ASTM委员会E-8(疲劳与断裂)和D30(复合材料)的成员。超过50多篇同行评审的ASTM特殊技术出版物、国际疲劳杂志、工程材料和结构的疲劳与断裂的单一作者的论文。 参加技术交流的科研人员来自于:空中客车(天津)总装有限公司,北京科技大学,北京航天材料研究院,中国民航科学技术研究院, 中科院化学所、中科院理化技术研究所,北京航空航天大学,以及其它合作公司等。
  • 贝斯特商品化最新系统:碳纤维复合材料原位微裂纹动力学分析
    复合材料的微裂纹和断裂力学一直是困扰科研人员的难题, 对于类似金属材料的断裂力学研究已经有了丰硕的成果;但是复合材料的断裂力学机理和过程, 一直没有较好的测试技术和设备商品化, 贝斯特公司的研发人员通过多年的科研经验和创新的工作, 开发了碳纤维复合材料微裂纹动力学测试技术, 通过该技术可以在线原位扫描样品在外力作用下,内部裂纹的扩展机理和动力学;为科研人员提供一臂之力。 此系统主要由Nano系列动态试验机和原位扫面测试系统、多通道控制系统和专业软件组成。 涡流检测原理:通过感应磁场和微裂纹相关性测试碳纤维复合材料的裂纹动力学。 由于导电材料不均匀会导致磁导率、电导率不同,使涡流流通路径发生改变,导致涡流的大小、相位发生改变。如果被检测件存在缺陷(如表面裂纹),则会阻碍涡流流过,因涡流只能存在于导体材料中,故导致涡流流通路径的畸变,最终影响涡流磁场,使得涡流强度降低。 构造配置: 技术参数:* 400x400毫米扫描区域* 探针直径1 & 3 mm* 速度Up to 100 mm/s, 同步数据采集up to 5 kHz* 样品厚度 t 8 mm* 3-轴位置控制 X, Y旋转编码器; Z 激光位置反馈* 作为独立的完全集成 “工作站”测试系统控制器。独立的扫描应用* 单通道输出信号,整流直流(0-10V)* X, Y &与负载、行程、应变等信号的记录* 轴向和横向的合规性应用:
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制