当前位置: 仪器信息网 > 行业主题 > >

碳量子

仪器信息网碳量子专题为您整合碳量子相关的最新文章,在碳量子专题,您不仅可以免费浏览碳量子的资讯, 同时您还可以浏览碳量子的相关资料、解决方案,参与社区碳量子话题讨论。

碳量子相关的论坛

  • 有人测过碳点的量子产率吗

    请问测量碳点的量子产率的时候,我配置的碳点在390nm时强度最高,那我应该在390nm下计算碳点和硫酸奎宁的荧光积分面积吗,我看文献都用的是360nm,还有就是荧光积分面积是测量激发光谱后自己用origin拟合后积分得到还是直接用机器测量得到,因为我用的稳态荧光里面有直接测量量子产率的程序,但是好像只能扣背景,不能放入参比物质

  • 碳量子点如何做拉曼检测?

    不管是啥量子点,荧光都特别特别强,但是呢碳量子点做拉曼检测的文献报道还挺多的,不知道人家怎么才能测出来拉曼信号的。用显微共聚焦拉曼,532,785都试过了,全都测不出碳量子点的拉曼,求助该肿么办~~

  • 碳量子点TEM图求助

    碳量子点TEM图求助

    做了一个碳量子点的TEM,由于没做好功课,用了普通碳支持膜,并且没有纯化量子点,然后电子束打到样品上,样品开始蠕动鼓泡,最后形成一个圆环状的东西,请问一下这是什么[img=,690,518]http://ng1.17img.cn/bbsfiles/images/2018/04/201804162155555269_3851_3315367_3.jpg!w690x518.jpg[/img][img=,690,518]http://ng1.17img.cn/bbsfiles/images/2018/04/201804162155559970_3065_3315367_3.jpg!w690x518.jpg[/img][img=,690,518]http://ng1.17img.cn/bbsfiles/images/2018/04/201804162155572351_9480_3315367_3.jpg!w690x518.jpg[/img][img=,690,518]http://ng1.17img.cn/bbsfiles/images/2018/04/201804162156003224_254_3315367_3.jpg!w690x518.jpg[/img][img=,690,518]http://ng1.17img.cn/bbsfiles/images/2018/04/201804162156028616_9426_3315367_3.jpg!w690x518.jpg[/img]

  • 碳量子点的红外光谱分析

    碳量子点的红外光谱分析

    [color=#444444]赖氨酸微波法合成的碳量子点,红外光谱很奇怪,麻烦大神给指点一下。前面的图是我做的,后面是标准的[/color][color=#444444][img=,675,900]https://ng1.17img.cn/bbsfiles/images/2019/07/201907151452086370_5754_1646718_3.png!w675x900.jpg[/img][img=,675,900]https://ng1.17img.cn/bbsfiles/images/2019/07/201907151452334295_5429_1646718_3.png!w675x900.jpg[/img][/color]

  • 石墨烯结合量子点制成高灵敏光电探测器

    中国科技网讯 据物理学家组织网5月16日(北京时间)报道,西班牙塞西斯光学技术研究所用石墨烯结合量子点成功研发出一种混合型光电探测器,灵敏度是其同类探测器的10亿倍。研究人员指出,该研究预示了石墨烯在光学传感器和太阳能电池领域的新应用。相关论文发表在最新一期《自然·纳米技术》上。 石墨烯在光电子学和光电探测应用领域极有潜力,具有光谱带宽广、响应迅速的优点,但缺点是光吸收能力弱,缺乏产生多倍载荷子的增益机制。目前的石墨烯光电探测器响应度(一定波长的光在入射功率作用下的输出电流)在0.01A/W以下。 研究人员解释说,所需要的是一种迫使更多光被吸收的方法,石墨烯吸收光的效率仅为3%。为了提高光吸收率,他们转向了量子点。量子点是一种纳米晶体,能根据自身大小吸收不同波长的光。从本质上讲,光电探测器是一种把少量光转化为微小电流的设备,通过检测电流来确定有多少光进入了设备,或者直接用该电流产生其他反应,比如辅助产生摄影图像。 为了制造光电探测器,研究小组首先用标准的胶带法剥离出一层石墨烯作底片,用纳米印刷术在上面印上微小的黄金电极,然后用喷雾瓶将硫化铅晶体喷在上面。这些胶状晶体包含了各种大小的颗粒,几乎能吸收所有波长的光。他们用不同波长的光来照射探测器,检测其电阻和电量。 在制造量子点时,要保证在量子点和石墨烯之间实现配位体交换最大化,最大困难是找到合适的材料组合。研究人员说,他们经多次试验,终于使内量子效率达到了25%。在探测器中,量子点层中的光强烈而且可调,生成的电荷传导到石墨烯,在此电流多次巡回,响应度达到了107A/W。 研究人员还指出,在这种光电探测器基础上,还能造出更多新设备,如数字摄像机、夜视镜以及其他多种传感器设备。(记者 常丽君) 总编辑圈点 石墨烯极高的导电性着实令科学家着迷,也因此激发了科学家利用石墨烯来设计超高速光电探测器。传统的硅基光电探测器不能折叠,也不便宜,而且不够灵敏。多年来,一种便宜、可折叠的光电探测器一直是科学家们的梦想。单层石墨烯似乎可以胜任。然而单层石墨烯吸收光子的能力比硅还差,仅有3%的光子被吸收。而当量子点附着在其表面时,其吸收光子的能力可神奇地提高到50%。这样一来,可以穿在身上的电子产品或许真的不再是梦了。 《科技日报》(2012-05-17 一版)

  • 【讨论】科学家探讨"时间中传输" 量子纠缠观察创新设想

    (科技日报)在“普通的”量子纠缠中,两个粒子即使在空间上相隔遥远,彼此之间也有一种内在的联系。澳大利亚物理学家最近提出,只存在于时间上的量子纠缠也可能存在,而且还可以将这种类时纠缠转化为正常的类空纠缠。  澳大利亚昆士兰大学物理学家·杰伊·奥尔森和提马斯·拉尔夫在他们论文中描述了如何用两个探测器将类时纠缠转化成类空纠缠,并探讨了用类时纠缠来进行“时间中远距传输”的可能性。  奥尔森解释说:“基本上,一个在过去的探测器能‘捕获’某个处于过去量子场状态的信息,携带它及时赶赴未来——当它以光速运动时,这一信息会散逸到遥远的时空中去。当另一个处在同一空间位置的探测器捕获了处于未来场状态的信息,就能把这两个探测器相互比较,看看它们的状态是否发生了人们所熟知的普通纠缠——我们发现确实如此,它们应该是纠缠的。”  他们提出了实验设想,利用类时纠缠作为一种资源,将一个量子态移动到未来,并称这一过程为“时间中的超距传输”。设想实验中用到两个量子比特探测器,一个被连接到过去场,另一个被连接到未来场。首先,由与过去连接的探测器操作一个量子比特,生成有关量子比特如何被探测到的信息。然后将这一量子比特传输到未来,基本上跳过中间时期。再把第一个探测器移开,把第二个跟未来连接的探测器放在第一个探测器的空间位置上。  他们还强调,必须保证一种重要的对称时间相关性,实验才能有效进行。如果量子比特在零时刻被传输,第一台探测器在零时刻之前运行的时间必须和第二台探测器在零时刻之后开始运行的时间相同。比如,如果零时刻是12点整,第一台探测器在11点45分运行,第二台探测器必须等到12点15分才开始运行,这样才能获得纠缠。  根据他们以前的研究经验,这种类时纠缠应该生成一种源自量子真空的新型热效应(量子真空被认为有多种热效应,包括至今尚未观察到的霍金辐射)。他们预测,用当前的技术观察新型热效应可能比其他的热效应更容易。这种用于提取和转化类时纠缠的实验程序能提供在真空时空中直接观察量子纠缠的新途径。  “量子纠缠每天都能被观察到,”奥尔森说,“然而,在真空状态直接观察量子纠缠还是首次,量子纠缠将有可能作为一种资源用于量子技术。在物理学上,真空状态最接近‘空无一物’(没有普通粒子的状态),观察并利用真空中固有的纠缠作为一种技术资源,可能提供一种建造量子设备的方法,仅仅利用空闲的空间作为最基本的组成要素。”(常丽君)

  • 【分享】我自主研制纠缠光子法探测器量子效率绝对定标装置

    由中国计量科学研究院承担的国家“十一五”科技支撑课题 “利用相关光子测量技术建立光电探测器量子效率测量装置的研究”近日通过了专家验收。该课题自主研制的缠光子法探测器量子效率绝对定标装置,成功将我国光辐射功率计量的量程能力扩展到了光子水平,为用光子数重新定义国际基本单位之一的“坎德拉(cd)”量值复现研究奠定重要基础。  课题的研制成功,缩短了我国与国际发达国家之间在实现基于量子物理复现光辐射功率基准研究方面的差距;同时为研究量子信息、生物医学、空天探测器、天文物理、环境科学等领域中涉及到的光子探测技术提供了光子水平的计量技术保障。

  • 观察量子信息新方法可及时纠错量子状态

    中国科技网 讯(记者华凌)据物理学家组织网1月15日(北京时间)报道,耶鲁大学研究人员成功开发出一种新方法,既可以观察量子信息,同时还能保持其完整性,这将给量子力学研究提供更大的控制权,以纠正随机错误,并将极大地提升量子计算机的发展前景。该研究结果发表在最新一期《科学》杂志上。 耶鲁大学应用物理与物理研究教授米歇尔和主要研究者弗雷德里克说:“盯着一个理论公式是一回事,能够真正控制一个量子对象是另一回事。这项实验是量子计算过程中必不可少的一次彩排,可以真正积极地理解量子力学。” 在量子系统中,信息是由量子比特来存储的。量子比特可以假定为“0”或“1”两个状态,这两个状态在同一时刻是叠加的。正确认识、解释和跟踪它们的状态对于量子计算非常必要。但通常情况下,监视量子比特会损害其信息内容。 新开发的这种非破坏性的测量系统可以观察、跟踪和记录一个量子位所有状态的变化,同时保持量子比特的信息价值。研究人员说,原则上,这将允许其监视量子比特的状态,以纠正随机错误。 米歇尔说:“具有与量子比特对话的能力,并且听到它在告诉你什么,这就是关键所在。量子计算机一个主要问题是量子比特存储的信息‘寿命’有限,并持续衰减,所以必须予以纠正。” 弗雷德里克说:“只要你知道过程中发生了什么错误,就可以修正。这些错误基本上是可以撤消的。” 该研究团队现在可以成功地测量一个量子比特,未来面临的挑战是一次测量和控制更多的量子比特。他们正在开发基于此目的的超高速数字电子技术。 总编辑圈点: 薛定谔那只既死又活的猫,生动地诠释了量子世界的奇妙之处:量子时刻处于“0”和“1”两个状态,而你对单个量子状态的任何“窥探”都将改变其状态。科学家的新发现如果确实是针对单个量子比特,那么无疑是量子物理领域的一大突破。它在为更精确的量子计算提供测量基础的同时,也为量子密码领域的研究人员提出新的挑战:依靠量子状态不可测来杜绝量子通信被偷窥的方法,或许要更新了。 《科技日报》2013-1-16(一版)

  • 拓展量子技术应用新维度——自旋电子学介入量子应用领域成果初现

    本报记者 刘霞 综合外电http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130614/021371223980109_change_chd36128_b.jpg用激光操控单个电子自旋模拟图http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130614/021371223980140_change_chd36126_b.jpg 今日视点 科学家们一般认为,研究微观粒子运动规律的新兴技术——量子技术主要应用于计算、通讯和加密等领域,但据物理学家组织网近日报道,现在,科学家们利用自旋电子学(其基本理念是理解和操作电子的自旋来推动技术的发展)扩展了量子技术应用领域的新维度,使他们可以利用量子力学完成一些此前没有想到过的任务,比如用激光处理量子信息以及在纳米尺度上进行温度测量。 这两项研究都建立在对钻石内的氮晶格空位中心进行操控的基础上,都利用了这一瑕疵固有的“自旋”特性。氮晶格空位中心是钻石原子结构上的一种瑕疵,钻石晶格中的一个碳原子被一个氮原子取代,使其附近空缺出一个晶格空位,围绕氮原子旋转的自旋电子就变成一个量子比特(qubit)——量子计算机的基本单位。 这两篇文章的主要研究者、美国芝加哥大学分子工程学教授戴维·艾维萨洛姆表示:“过去20多年来,科学家们一直在研究如何隔离和控制固态内单个电子的自旋,最新研究就是基于这些研究所获得的结果。科学家们的初衷是制造出新的基于量子物理学的计算技术,但最近几年来,随着研究的不断深入,我们的关注点也在不断扩展,因为我们开始意识到,量子物理学的原理也适用于新一代的纳米传感器。” 用激光操控量子比特 艾维萨洛姆和加州大学圣巴巴拉分校(UCSB)以及德国康斯坦茨大学的6名合作者一起,研发出了一项新技术,他们在发表于5月7日美国《国家科学院学报》上的一篇论文中介绍了如何借助此项技术,只用激光就实现了对量子比特的操控,包括初始化、读取电子自旋态等。新方法不仅比传统方法更能实现统一控制,而且功能更多样,为探索新型固态量子系统打开了大门,也为科学家们朝着最终制造出性能远胜传统计算机的量子计算机开辟了新的路径。 传统计算机的基本信息单位是比特(bit),只能在0和1中选择其一;而量子比特能以多个状态同时存在,也即同时为0和1,这就使得量子计算机能够进行更复杂的操作,计算能力更强。 尽管氮晶格空位中心是一种很有前景的量子比特,过去10年来一直被广泛研究,但要用工业或生长的方法造出所需钻石却是极大的挑战。 艾维萨洛姆表示,与传统技术不同,他们研发的是一种利用激光脉冲在半导体内控制单个量子比特的全光策略,其“消除了对微波电路或电子网络的需求,仅仅用光和光子就可以做一切事情”。 作为一种全光学方法,新技术也有潜力进行升级,控制更多量子比特。另外,新方法的用途更加广泛,也可以用于探索其他物质内的量子系统,否则,这些物质很难被用来做量子设备。 基于电子自旋学的温度计 此前,科学家们也用氮晶格空位中心作为量子比特,在室温下制造出了可用于磁场和电场的传感器。现在,在发表于5月21日出版的美国《国家科学院学报》上的一篇论文中,研究人员展示了另外一种操控氮晶格空位中心的方法,并制造出了一种量子温度计。艾维萨洛姆估计,基于上述研究,他们可以研发出一款多功能的探测器。 艾维萨洛姆说:“我们能用这款探测器测量磁场、电场以及温度。或许最重要的是,因为这个探测器是一个原子尺度的瑕疵,能包含在纳米尺度的钻石粒子内,因此,它可以在一些极富挑战性的环境下工作,比如测量活体细胞或微流体电路内的温度。” 最新创新的关键是,科学家们研发出了一种控制技术操控自旋,使其能更灵敏地探测温度的变化。该研究的领导者、加州大学圣巴巴拉分校物理系研究生戴维·托尼表示:“过去几年,我们一直在探索用钻石内的这种瑕疵的自旋来制造温度计。最新技术让环境噪音的影响达到了最小,使我们能进行更加灵敏的温度测量。” 而且,科学家们可以在很大温度范围内(从室温到227摄氏度)对这种自旋电子进行操控。 艾维萨洛姆还表示,这一系统也能被用来测量生物系统内的温度梯度(自然界中气温、水温或土壤温度随陆地高度或水域及土壤深度变化而出现的阶梯式递增或递减的现象),比如活体细胞内部的温度梯度。 《科技日报》(2013-06-15 三版)

  • 量子理论!

    量子理论是一项科学的杰作,但物理学家至今仍不知道该如何来理解它。一个世纪似乎还不够整整一百年前,第一届国际物理学会议在比利时布鲁塞尔举行。会议的议题是讨论如何认识新奇的量子理论并把它同我们的日常生活经验联系起来,以期给我们一个对世界清晰自洽的描述。然而,这个问题现在依然困扰着物理学家。微观粒子所具有的一些性质实在是出乎寻常,比如原子和分子就具有可以在不同地方同时出现的神奇能力,可以同时顺时针和逆时针旋转,或者即使相隔半个宇宙也可瞬间影响到对方。问题是,我们人也是分子和原子组成的,为什么我们就没有上述性质呢?“量子力学的应用立足于何处?”牛津大学的科学哲学家哈维•布朗这样问道。尽管最终答案还未出现,人类探寻的努力还是有回报的。比如,一个已经引起高科技产业和情报机构注意的全新领域已经诞生。这就是量子信息学。量子信息学可以让我们从一个崭新的角度来探索物理终极理论,它或许还可以告诉我们宇宙的起源。对于一个被量子理论的怀疑者——阿尔伯特•爱因斯坦——嗤之为让优秀物理学家沉睡不醒的“柔软枕头”的理论来说,这已经算是硕果颇丰了。出乎爱因斯坦所料,量子理论如今已经成为一项杰作。迄今尚无实验与量子理论所做的预言相抵触,并且人们相信它可以在微观尺度上很好地描述宇宙规律。这就导致了最后一个问题:量子理论意味着什么?物理学家是用“诠释”——一种和实验完全相符的对量子理论本质的哲学思考,来试着回答这个问题的。“现在我们有一大堆诠释。”在牛津大学和新加坡量子技术中心同时任职的弗拉托克•维德勒如是说。没有一种科学理论可以像量子力学这样可以从这么多角度来理解。为什么会有这样的情况?这么多的诠释中有没有一种可以胜过其他的?举个现在被称为哥本哈根诠释的量子论诠释作为例子,它是由丹麦物理学家尼尔斯•波尔提出的。该诠释的一个观点是说,任何不通过测量来谈论电子在原子中的位置的尝试都是无意义的。只有当我们用一个非量子的或“经典的”仪器去观察的时候,它才会显示出我们称之为物理性质的属性,进而才会成为现实的一部分。接着我们还有“多世界诠释”,在该体系中量子奇异性可以通过任何事物在无数平行宇宙的多重存在性得到解释。也许你更喜好“德布罗意-玻姆诠释”,在这里量子理论被认为是不完备的:我们还缺少一些隐藏属性,如果知道它们,我们就能理解所有东西。还有许多其他的诠释,比如吉亚尔迪-里米尼-韦伯诠释,交易诠释(这其中有逆时间而行的粒子),罗杰•彭罗斯的引力诱导坍缩诠释,模态诠释……在过去的一百年里,量子世界已经变得拥挤而热闹。撇开这些熙攘热闹的景象,对大多数物理学家来说,只有少数解释至关重要。美妙的哥本哈根最受欢迎的诠释莫过于波尔的哥本哈根诠释了。它之所以受欢迎,是得益于大多数物理学家不想费神去考虑哲学问题。类似于“到底什么构成了测量”或者“为什么它可能导致现实的改变”这样的问题是可以被忽略的——物理学家只想从量子理论中得到有用的结论。这就是为什么被不加怀疑而使用的哥本哈根诠释有时也被叫做“闭嘴,乖乖计算”诠释。“考虑到大多数物理学家只是想做计算并将所得结果应用于实际,他们中的绝大多数都是站在‘闭嘴,乖乖计算’这一边的。”维德勒说。然而这种方式也有不足之处。首先它不会告诉我们任何关于实在的根本性质。那需要通过去寻找量子理论可能失效的地方来获得,而不是成功的地方。(New Scientist, 26 June 2010, p 34)“如果真要有什么新的理论出现的话,我不认为它会来自大多数物理学家工作的固体物理学领域。” 维德勒说。其次,作茧自缚式的研究也意味着不大可能出现量子理论的新的应用。我们对量子理论可以采取的多方面的视角正是新想法产生的催化剂。“如果你正在解决不同的问题,那么用不同的诠释来思考会有好处。” 维德勒说。没有其他的领域能比量子信息学更明显地表明这一点了。“如果人们没有担忧过量子物理的基础,量子信息学这个领域甚至不会存在。”奥地利维也纳大学的安东•蔡林格说。这个领域的核心是量子纠缠现象——一部分粒子的性质的信息被全体粒子所共有。这就导致了被爱因斯坦称为“幽灵般的超距作用”,即测量一个粒子的性质会瞬间影响到另一个和它纠缠的同伴的性质,不管它们之间距离有多远。当纠缠现象第一次在量子理论的方程中被发现时,它被当作过于奇怪的想法,以至于爱尔兰物理学家约翰•贝尔创造了一个思想实验来表明纠缠现象无法在真实世界中显现。而当真的可以做出这个实验真的之后,它证明了贝尔是错的,并且告诉物理学家有关量子测量的大量细节。它还为量子计算奠定了基础,通过量子计算,以前对粒子进行成千上万的并行测量才能得到的结果,现在单个的测量就可以告诉你答案。此外的应用还有量子密码学,通过利用量子测量的特殊性质来保护信息安全。不难理解,所有这些技术吸引了政府和渴望最高端技术的工业界的关注——同时防止它们落入敌手。然而物理学家更感兴趣的是这些现象可以告诉我们哪些自然界的本质规律。量子信息实验暗含的一个结论是说微观粒子包含的信息是实在的根源。哥本哈根诠释的支持者诸如蔡林格,把量子系统看作信息的载体,而用经典仪器进行的测量不过是记录和显示系统所包含的信息的过程。“测量是在更新信息。”蔡林格说。这个把信息作为实在的基本组成的新观点导致了有人猜测宇宙本身或许就是一台巨大的量子计算机。尽管哥本哈根诠释在大踏步前进,仍然有不少物理学家盯着它的弱点不放。这在很大程度上是由于哥本哈根诠释要求微观量子系统和对它的测量的经典仪器或观察者,二者必须人为区分开。例如,维德勒曾经探寻过量子力学在生物中所扮演的角色:细胞中各种各样的过程和机制本质上都是量子的,比如光和作用和光线感知系统(New Scientist, 27 November, p 42)。“我们发现世界上越来越多的东西可以用量子力学来描述——我并不认为在‘量子’和‘经典’之间有明确的界限。”他说。以宇宙的尺度来考虑事物的本性也给哥本哈根诠释的批评者提供了弹药。如果经典观察者的测量过程对于创造我们观察到的实在是必不可少的,那么是谁的观测使得现有宇宙得以存在?“你确实需要一个在系统外的观察者才能让哥本哈根诠释是合理的——但根据定义,宇宙外没有任何东西。”布朗说。这就是为什么,布朗说,宇宙学家更倾向于赞同由普林斯顿的物理学家休•埃弗里特在上世纪50年代晚期创立的诠释。他的“多世界诠释”宣称实在并不受限于测量概念。作为替代的是,量子系统固有的无限可能性在它们自身的宇宙各自显现。大卫•多伊奇,牛津大学的物理学家并曾经为第一台量子计算机拟定蓝图,说他现在只能用平行宇宙的概念来考虑计算机的运行。对他来说,其他的诠释都是无意义的。并不是说多世界诠释就没有受到批评——事实恰恰相反。新泽西罗格斯大学的科学哲学家蒂姆•莫德林很赞同放弃把测量这一概念当作一个特殊过程。但同时,他也不相信多世界诠释可以提供一个很好的框架来解释为什么一些量子结果要比其他的更有可能出现。当量子理论预言一个测量的结果出现的可能性要高十倍于另一个,反复的实验可以证明这一点。依照莫德林所说,多世界诠释认为由于世界的多重性,所有的可能都会发生,但它并没有解释为什么观察者看到的总是(通过计算算出的)最可能出现的结果。“这里有个深层问题需要解决。”他说。多伊奇说这些问题在这一两年内已经被解决。“埃弗里特处理概率的方式是有缺陷的,但这几年里多世界诠释的理论家们已经清除掉了这些缺陷——问题已经解决了。”他说。然而多伊奇的论证太玄奥了以至于并不是每个人都承认他的说法。更难回答的问题还有被多世界诠释支持者称为“怀疑眼神的反对”。多世界诠释一个明显的推论是说宇宙中有很多你的复制品——比如,猫王现在仍然在另一个宇宙中的拉斯维加斯进行表演。很少有人能接受这种想法。这个问题只有靠时间来解决了,布朗认为。“人们普遍难以接受存在许多你和其他人的复制品这种想法,”他说,“但这只是人们能否逐渐习惯的问题。”多伊奇认为当量子世界奇怪方面可以用到现实技术中时,人们将能接受多世界的概念。一旦量子计算机可以实现在同一时间在不同的状态来处理任务,我们将不会认为这些多重的世界不是物理层面的事实。“到时候人们将会很难坚持说多世界的想法只是嘴上说说而已。” 多伊奇说。他和布朗都宣称多世界的概念已经得到宇宙学家的支持。来自弦论、宇宙学和观测天文学的论证已经让宇宙学家猜测我们生活在多重的宇宙中。去年,加州大学圣克鲁兹分校的安东尼•阿奎尔,麻省理工的马克斯•蒂格马克以及哈佛大学的大卫•莱泽完成了把宇宙学和多世界的想法联系起来的大致方案。但多世界诠释并不是引起宇宙学家注意的唯一的诠释。在2008年,伦敦帝国理工的安东尼•瓦伦蒂尼指出在大爆炸之后就充满宇宙的宇宙微波背景辐射或许能支持德布罗意-玻姆诠释。在这个方案下,微观粒子具有未被发现的被称为“隐变量”的性质。(

  • 美科学家造出全新量子物质形态

    中国科技网讯 据物理学家组织网6月7日(北京时间)报道,美国斯坦福大学上周宣布,他们用金属镝(dysprosium)造出世界上第一个双极量子费米子气体。研究人员认为,该费米子气体兼具晶体和超流液二者看似矛盾的特征,是一种全新的量子物质形态。这标志着人们在理解费米子系统性质,将凝聚物质物理学中的超自然现象引入现实应用等方面,迈出了重要一步。相关论文发表在上周的《物理评论快报》上。 如果让量子效应出现在宏观世界,将有很多不可思议的现象,水会向上流、导线没有电阻、电流的磁浮作用消失等。这些现象都和传统的理论背道而驰,但在开发未来技术方面却有着巨大前景。 量子气体是迄今人类已知的最冷物质,它们的黏度为零,是一种和超流液一样的超导体。几十年来,费米子的量子效应一直难以理解。但如果能造出一种量子费米子气体,那些通常只在纳米水平才能观察到的现象,就会变得明显可见。 研究中最大的两个困难是造出64纳开的极端低温和生成强相关量子气体。研究人员在坩埚中把粒子加热到约1300摄氏度,发射到强真空中,然后用世界上最强的持续波蓝激光致冷,将粒子冷却到千分之一绝对零度。再通过激光和蒸发冷却过程,最终让气体温度降到实验所需的64纳开。一般情况下,以这种方式制冷的物质只有2个或3个能级,而镝却有140多个。 他们还将制冷技术用于磁性气体,解决蒸发制冷过程中费米子不相关的问题,使得费米子间可相互碰撞,将高能粒子撞出系统。论文领导作者、斯坦福大学应用物理学教授本杰明·列夫说,镝在周期表中是磁性最强的元素,这次所用的镝的一种费米子同位素,其磁能量比以前的冷却气体要大440倍。镝原子间超强的双磁极作用使其能通过远程碰撞而冷却到临界温度。 研究人员指出,这种费米子气体有望带来量子液晶,也就是那些构成大部分显示器所用液晶的量子力学版;或者带来一种超级固体,这是一种假设的物质态,理论上这种固体具有超流液的特征。 目前,他们正在利用这种双极量子气体的独特性质,开发一种“低温原子芯片显微镜”。这是一种磁性探测仪,能以前所未有的灵敏度和分辨率检测磁场。这种探测仪使用外部量子材料来处理信息,能让量子计算更稳定。此外,该研究还为物理学家提供了理解非传统量子效应的新目标。(记者 常丽君) 总编辑圈点 相比于传统物理学对人类物质生活的改善,量子力学对物质本源的探究则包含了更多的哲学思考和精神内涵。因此,相比于具体的产品应用,这一研究所提供的方法和模型更加重要——制造出足够多和稳定的研究对象是开展直观量子力学研究的基础。文中提到的量子液晶等只是基础研究的副产品,我们不能从传统物理学视角来功利地看待量子力学,它带来的将不只是工业产品的革新,而是翻天覆地超乎想象的变化,甚至生命形态也随之改变,所有的“超自然”都将成为“自然”。 《科技日报》(2012-06-08 一版)

  • 【分享】量子论与原子结构

    【分享】量子论与原子结构

    量子论与原子结构[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=15189]量子论与原子结构[/url]理论物理第二卷量子论与原子结构吴大猷, 1977目录:甲部:1 黑体辐射2 爱因斯坦之光量子理论与波-质点之二象性3 固体比热与量子论4 氢原子的Bohr理论5 Bohr理论之改进(Sommerfeld理论)6 空间量子化与Zeeman效应7 对应原理8 古典力学对于量子论之应用9 爱因斯坦的跃迁理论10 分子的振动-转动光谱11 Boltzmann, Bose-Einstein与Fermi-Dirac统计:在量子论的应用乙部:1 原子光谱的经验结果2 电子自旋3 自旋-轨道交互作用与光谱线的精细结构4 Zeeman效应:弱磁场与强磁场5 Pauli原理与元素周期表6 多电子组态的原子能级7 超精细结构与核矩8 Stark效应9 原子与离子之Thomas-Fermi电位10 单电子原子:非Coulomb场之能量11 X-射线光谱12 量子论所遭遇的困难 [img]http://ng1.17img.cn/bbsfiles/images/2008/09/200809010253_106589_1611921_3.jpg[/img]

  • 量子物理或可“操纵”过去事件

    科技日报 2012年04月25日 星期三 本报讯(记者张巍巍)据物理学家组织网4月24日(北京时间)报道,维也纳大学量子光学和量子信息学院以及维也纳量子科学与技术中心的研究人员首次在实验中证明,有关两个粒子是否处于纠缠或分离的量子状态,或可由这些粒子被测量后和不再存在时来决定,从而实现对过去事件的模拟、操纵。相关研究结果将发表在最新一期的《自然—物理学》杂志上。 作为奥地利理论物理学家和量子力学的奠基人之一,埃尔温·薛定谔曾表示纠缠是量子力学的特殊性质,其也是新兴的量子密码学和量子计算等量子信息技术的关键资源。 纠缠的粒子所表现出的相关性,比经典物理学定律所允许的更强大也更复杂。如果两个粒子处于纠缠的量子态,它们就能完全地定义共同属性,并以损失自己的个体特性为代价。这就像两个原本没有方向的骰子,在处于纠缠态时,它们将随机显示出同样的朝向;相反,如果它们处于分离的量子态时,其中每一个都将显示出自己明确的朝向,因为每个粒子都有自己的特性。通常,我们会认为无论骰子是否纠缠,量子态的性质至少应是现实的客观事实,物理学家安东·塞林格教授所带领的研究团队现在却可在实验中证明,情况并非一直如此。 他们实现了名为“延迟选择纠缠交换”的“思想实验”,这项实验由亚瑟·佩雷斯于2000年提出。在实验中,两对纠缠的光子可被生成,每对中的一个光子将被发送至“维克多”一方。剩下的两个光子,一个被发送至“爱丽丝”处,一个被发送至“鲍勃”处。“维克多”现在能在两种测量中选择,如果他决定以被迫的纠缠态方式测量自己的两个光子,随后“爱丽丝”和“鲍勃”的光子对也将变为纠缠态;如果“维克多”选择单独测量自己的每一个粒子,“爱丽丝”和“鲍勃”的光子对也将以分离态收尾。 而现在的量子光学技术能支持研究团队推迟“维克多”的选择和测量,并以“爱丽丝”和“鲍勃”对于自身光子的行为作为参考。此次研究的主要作者马晓松(音译)解释说,借助高速的可调谐双态分析器和量子随机数生成器,无论“爱丽丝”和“鲍勃”的光子是否处于纠缠态并显示出量子关联,或是处于分离态并显示出传统关联,都可以在它们被测量后再做出决定。 根据爱因斯坦的名言,量子纠缠效应将呈现出“鬼魅似的远距作用”。而这一实验又向前迈进了一步,依照传统的观念,量子力学甚至可模拟对过去事件的未来影响,实现量子对于过去的“操纵”。 总编辑圈点: 和我们熟悉的宏观世界相比,无论是那只著名的薛定谔猫,还是两个相距遥远却存在“心灵感应”的粒子,量子世界的种种现象(假设)总是容易颠覆一些人们既定的认识。本文的研究看似很复杂,但说不定反而更容易让人理解——特别是对于那些福尔摩斯和波洛的拥趸,以及穿越剧的粉丝们。不过,相较而言,量子纠缠对过去事件的再现应该更加类似于神探对犯罪现场的精准还原,而远没有穿越剧的编剧、导演肆意派一位现代人改变历史那般厉害。

  • 加利用量子纠缠开发超精密测量技术

    科技日报多伦多6月6日电 (记者冯卫东)加拿大物理学家们首次利用量子力学克服了测量科学中的一个重大挑战。新开发的多探测器方法可测量出纠缠态的光子,实验装置使用光纤带收集光子并将其发送到由11个探测器组成的阵列。此项研究为使用量子纠缠态开发下一代超精密测量技术铺平了道路。 研究报告主要作者之一、多伦多大学物理系量子光学研究小组博士生罗泽马·李称,新技术能利用光子以经典物理学无法达到的精度进行测量。此项研究成果在线发表在《物理评论快报》上。 现存最灵敏的测量技术,从超精确原子钟到世界上最大的望远镜,均依赖于检测波之间的干涉,这种干涉发生于两个或更多个光束在相同空间的碰撞。罗泽马及其同事使用的量子纠缠态包含N个光子,它们在干涉仪中均被保证采取同样的路径,即N个光子要么全部采取左手路径,要么全部采用右手路径。 干涉效应可用干涉仪进行测量。干涉装置的测量精度可通过发送更多的光子加以改善。当使用经典光束时,光子数目(光的强度)增加100倍,干涉仪的测量精度可提高10倍,但是,如果将光子预先设置在一个量子纠缠态,干涉仪在同等条件下的测量精度则同步增长100倍。 科学界虽已了解到测量精度可通过使用纠缠光子加以改善,但随着纠缠光子数的上升,所有的光子同时到达相同检测器的可能性微乎其微,因此该技术在实践中几无用处。罗泽马及其同事于是开发出一种使用多个探测器来测量纠缠态光子的新方法。他们设计了一种使用“光纤带”的实验装置,用以收集光子并将其发送到11个单光子探测器组成的阵列。 这使研究人员能够捕捉到几乎所有最初发送的多光子。罗泽马称,同时将单光子以及两个、三个和四个纠缠光子送入检测设备,测量精度可得到显著提高。 研究人员表示,两个光子好于一个光子,探测器阵列的效果则远远好于两个。随着技术的进步,采用高效探测器阵列和按需纠缠的光子源,此项技术可被用于以更高精度测量更多的光子。《物理评论快报》的评论指出,该项技术为提高成像和光刻系统的精度提供了一种行之有效的新途径。 总编辑圈点 光子纠缠态,早已经不再拘束于当初爱因斯坦等人提出的玄妙理论,而被应用到如量子光刻、量子图像学等技术领域。也正是这些应用,让抽象的量子力学概念能较为实在地体现在人们面前。本文中研究者以超越经典物理学的精度测量出纠缠态光子,这种高分辨率的量子态测量,不仅能带动以上应用领域的发展,亦将有助于实现相关物理参数的高精度。来源:中国科技网-科技日报 2014年06月07日

  • 嬉皮士的量子心灵

    嬉皮士的量子心灵文·李 泳http://www.wokeji.com/jbsj/sb_4440/201406/W020140628076446615405.jpg 戴维·凯泽 著李月华 张武寿 译湖南科学技术出版社■乐享悦读 10年前的人间四月天里,维也纳实现了用量子密码进行银行转账。有趣的是,量子密码的渊源,不在什么学术或政治或经济或军事的权威机构,而在40年前的一伙“嬉皮士”同学——麻省理工学院物理学教授凯泽(David Kaiser)的新书How the Hippies Saved Physics,就讲述了那段另类的物理学史。最近,它的中译本《嬉皮士救了物理学》从三月的烟花里走出来了。 原书有个严肃的副标题:“科学、反主流文化与量子复兴”,译本具体为“读心、禅和量子”,更生动、更“非主流”也更契合 “嬉皮士”的名字。 嬉皮士是“后垮掉的一代”的青年文化的代表,50多年前开始在美国西海岸流行,当时的加州州长里根嘲笑他们邋遢如一窝野人,人猿泰山的亲戚。嬉皮士与物理学风马牛不相及,但书中的几个同学却一边赶嬉皮士的潮流一边发扬物理学的传统,竟在有意无意之间引来了量子信息时代。 嬉皮士们的时代,是从大萧条到世界大战到冷战的时代,“垮掉的一代”老了,“新时代运动”来了,连物理学也“反传统”地皈依了“超级实用主义”。物理学家关心“实际的”问题,物理课讲计算的技巧,没人在乎方程背后的趣味和意义。学生遇到量子力学的哲学问题时,几乎不知斤两和深浅。那会儿的口头禅是,“别说话,多计算”。就在那样的年代,几个嬉皮士同学,从不同地方和岗位七拐八弯地聚到伯克利,借劳伦斯(Lawrence)实验室的一间教室成立了一个开放的讨论班,名曰“基础物理小组”(FFG)。 FFG复活了物理学的哲学传统,把爱因斯坦、玻尔和海森伯们做物理的模式偷偷带回了(smuggle)他们的日常生活。他们玩儿迷幻药、超感觉、UFO和东方神秘主义,仿佛与爱因斯坦玩儿小提琴玻尔玩儿太极图和费曼玩儿桑巴鼓有着奇妙的“一点灵犀”。前辈从哲学感悟物理,他们借物理解释灵魂。他们周末聚会,从教室谈到校园附近的披萨店或啤酒屋…… 也许因为对生命和“灵魂”的兴趣,他们吸引了不少慷慨而特殊的赞助人,有中央情报局(CIA),也有“人类潜能运动”的导师艾哈德(Werner Erhard)。后来,FFG从小组发展成了“集团”,叫“物理/意识研究‘集团’”(PCRG)——他们正式向加州政府注册了一家“免税非盈利公司”。公司“章程”写着:支持新研究,发表科学著作,向大众宣扬与物理法则有关的意识本质的研究。公司“以富有想象力的交流形式”向大众宣讲现代物理学的惊险和刺激,他们编科幻剧,写《时间旅行指南》,借流行语解释相对论的时空图,用甲壳虫的歌曲说明经典与量子的区别…… 嬉皮士们最了不起的物理,是激活了北爱尔兰物理学家贝尔(John Stewart Bell)多年前提出的“定理”。“贝尔定理”虽然后来热火朝天,当年却冷清清寂寞无人管。定理的“非定域性”(nonlocality)和“纠缠”(entanglement),令人联想到超距作用、心灵感应、神秘主义……这些东西恰好迎合了嬉皮伙伴们的口味——他们正可以借量子纠缠去解开心灵感应的秘密。 尽管伙伴们的物理角色很边缘,动机也“别有用心”,却开拓了贝尔定理的乐土。那期间,美国发表的研究贝尔定理的文章,有四分之三来自FFG,而其他作者也多少接受过他们的影响和帮助。虽然他们没能如愿证明心灵感应,却意外发现了“不可克隆定理”(no-cloning theorem)——不可能将一个量子态复制(克隆)得一模一样。如果用量子态来做密码,那就不可能破解它了——犹如水中的波,当你舀一碗水来探究那波时,波已经消失了。量子信息论就这样在一群嬉皮伙伴的新潮游戏中诞生了,于是才有了10年前维也纳的那一幕。 FFG伙伴们的故事,为现代物理学史增添了一抹奇趣色彩,也为正在彷徨或失落的学士硕士博士同学们树立了一个另类的“创业”榜样——不创“实业”而创思想。他们很潮,却不是弄潮儿,只是被大潮卷起的浪花;但因为内心独立刚强,所以浪花没有破碎。他们颓废的外表下藏着探索的灵魂——为灵魂寻求物理学的依归。这也是他们与量子的前定的姻缘。 他们的物理是非主流的,却以“新物理学家”的面目在各种媒体露脸,不但有加州当地的,也有《时代》和《新闻周刊》。“垮掉的一代”的作家戈尔德在回忆同样“垮掉的”大诗人金斯堡时,也把大风头让给了更具个性的FFG的伙伴。他们的游戏与他们的职业和思想成就了一个“矛盾的”传奇。 在那个特殊的年代里,他们的专业平台那么卑微,而他们的智力追求那么高远。哈佛大学心理学教授里瑞(Timothy Leary)说:“可能有成千上万的年轻人,在60年代展开他们的神经系统研究,今天在科学上已经功成名就了……我们期待新潮的数学家、物理学家和天文学家们能更好用他们活跃的神经系统来建立新的心理和科学的关系。”这话既概括了前辈,也在启迪读者。来源:中国科技网-科技日报 2014年06月28日

  • 中国科大率先实现高精度量子测量术

    精度可达到纳米量级2013年04月19日 来源: 中国科技网 作者: 吴长锋 杨保国 最新发现与创新 中国科技网讯 记者从中国科大获悉,该校郭光灿院士领导的中科院量子信息重点实验室孙方稳研究组,在国际上首次利用量子统计测量技术实现不受传统光学散射极限限制的相邻发光物体的测量和分辨,其精度可以达到纳米量级。研究成果近日发表在国际权威刊物《物理评论快报》上。 如何提高测量精度,数百年来一直是科学研究的主要课题和技术发展的主要追求目标。因此,新型的测量技术不断被开发,而其中最有吸引力的就是利用量子力学基本原理实现的量子测量方法。随着量子力学的发展以及相关量子信息技术的开发和应用,量子测量一方面可以实现超过经典测量极限的高精度测量,另一方面可以实现经典方式无法完成的各种测量。 孙方稳研究组利用物体发光的量子统计属性,设计并实验实现了不受经典光学散射极限限制的量子统计测量技术,其精度可达纳米量级。实验中,他们用氮原子取代金刚石材料中的一个碳原子,与近邻的空穴形成氮—空穴色心——一种极其微小的发光体。然后,他们巧妙地利用简单的光学收集装置,通过探测色心所发出的光子数,基于它们的量子统计属性,成功实现了两个相距8.5纳米的氮—空穴色心独立成像和分辨,同时测量了每个色心的结构,测量精度达2.4纳米。如果通过增加收集光子数,可以把精度提高到1纳米以内。实验中所需的光路简单,测量系统稳定,不受量子消相干效应的影响。 量子统计测量技术除了适用于相邻物体的光学成像,还可以测量和分辨发光体的其他光学属性,如发光寿命、波长等。同时,该测量技术可实时测量近邻物体的动力学演化以及它们之间的相互作用,为实现进一步的量子信息技术提供了新的测量技术,也将在化学、材料、生物医学等方向得到应用。(记者吴长锋 通讯员杨保国) 《科技日报》(2013-04-19 一版)

  • 我成功验证星地之间安全量子信道可行性

    实现全球化量子网络奠定了技术基础 2013年05月03日 来源: 科技日报 作者: 吴长锋 最新发现与创新 科技日报合肥5月2日电(记者吴长锋)中科院量子科技先导专项协同创新团队,在国际上首次成功实现星地量子密钥分发的全方位地面验证,为未来我国通过发射量子科学实验卫星,实现基于星地量子通信的全球化量子网络,对大尺度量子理论基础检验,以及探索如何融合量子理论与爱因斯坦广义相对论,奠定了必要的技术基础。 相关成果5月1日发表在国际权威学术期刊《自然·光子学》上。这是该专项继去年实验实现拓扑量子纠错和百公里自由空间量子态隐形传输与纠缠分发后,取得的又一阶段性重要突破,也是量子信息与量子科技前沿协同创新中心的最新重要成果。 量子密钥分发是最先有望实用化的量子信息技术,可以带来绝对安全的信息传输方式。而实现全球化量子密钥分发网络,需要突破距离限制。目前,由于光纤损耗和探测器的不完美性等因素,以光纤为信道的量子密钥分发距离已接近极限;而由于地球曲率和远距可视等条件的限制,地面间自由空间的量子密钥分发也很难实现突破。要实现更远距离、甚至是全球任意两点的量子密钥分发,基于低轨道卫星的量子密钥分发是最具潜力和可行性的方案。但这需要克服大气层传输损耗、量子信道效率、背景噪音等问题。尤其是低轨卫星和地面站始终处于高速相对运动中,存在角速度、角加速度、随机振动等情况,如何在这些情况下建立起高效稳定的量子信道,保持信道效率及降低量子密钥误码率,成为基于低轨道卫星平台实现量子密钥分发面临的关键。 协同创新团队由中国科学技术大学潘建伟院士和同事彭承志等、中科院上海技术物理研究所王建宇、光电技术研究所黄永梅等组成。 为攻克星地量子密钥分发的上述难题,创新团队进行了多年合作攻关,自主研制了高速诱骗态量子密钥分发光源和轻便收发整机,自主发展高精度跟瞄、高精度同步和高衰减链路下的高信噪比及低误码率单光子探测等关键技术。在此基础上,利用旋转平台模拟低轨道卫星的角速度和角加速度;利用热气球来模拟随机振动和卫星姿态;利用百公里地面自由空间信道来模拟星地之间高衰减链路信道,成功地验证了星地之间安全量子信道的可行性。 《科技日报》2013-05-03(一版)

  • 科学家首次用相机拍下量子纠缠图像

    中国科技网讯 据物理学家组织网8月9日(北京时间)报道,英国格拉斯哥大学、赫瑞-瓦特大学以及加拿大渥太华大学的研究人员携手合作,首次利用照相机拍摄到量子纠缠的图像。量子加密通信、量子计算等技术的发展都需要依靠量子纠缠的物理特性,最新研究成果朝着开发这类应用迈进了一步。相关论文发表在《自然·通讯》杂志上。 量子纠缠是一种量子力学现象,处于纠缠态的两个粒子即使距离遥远,也保持着特别的关联性,对一个粒子的操作会影响到另一个粒子。简单来说就是,当其中一个粒子被测量或者观测到,另一个粒子也随之在瞬间发生相应的状态改变。这种仿佛心有灵犀一般的一致行动超出了经典物理学规则的解释范畴,被爱因斯坦形容为“鬼魅似的远距作用”。 在此次实验中,研究小组使用了一个具有高灵敏度的照相机来测量光子的高维空间纠缠。光子的纠缠态是用一种特殊的晶体将一个单光子一分为二来创建的。通过给这些光子对拍照,研究人员可以对光子位置之间的关联进行测量,这是经典物理学所无法实现的。借助201×201像素阵列,照相机可在同一时刻观察到量子光场的全景,研究小组也得以看到多达2500种不同的纠缠态。 参与该项研究的格拉斯哥大学物理学和天文学学院教授迈尔斯·帕吉特说:“一张图片胜过千言万语,这句格言用在此处再恰当不过了。每个像素都含有自己的信息,从而可能给量子加密通信的数据容量带来革新。” 他表示:“这项研究是朝着未来量子技术迈进的重要一步,同时也显示了照相机的一个重要新功能,那就是在量子信息科学方面的应用。”(记者 陈丹) 总编辑圈点 在量子世界中,与奇怪的定理相联系的是许多奇怪的现象,比如测不准原理,比如薛定谔的猫,再比如这个爱因斯坦的“幽灵”——量子纠缠。一副万物皆可能有默契的样子,让人无论站在人文还是科学的高度上,仅靠言语都难于描述一二。幸好,现在科学家把它拍下来了,当嘴巴因无力选择缄默时,我们还可以靠眼睛,直观的对视那无比奇妙的微观世界,期盼着从中窥探更多的可用信息,以完成宏观世界中对量子通信及量子计算的建设。 《科技日报》(2012-8-10 一版)

  • “量子力学在哪?你正沉浸其中”——看量子力学在真实世界中的10大应用

    新视野 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20120820/081345461188203_change_chd2882_b.jpghttp://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20120820/081345461188218_change_chd2883_b.jpg 数千年来,人类一直依靠天生的直觉来认识自然界运行的原理。虽然这种方式让我们在很多方面误入歧途——譬如,曾一度坚信地球是平的。但从总体上来说,我们所得到的真理和知识,远远大过谬误。正是在这种过程虽缓慢、成效却十分积极的积累中,人们逐渐摸索总结出了运动定律、热力学原理等知识,自身所处的世界变得不再那么神秘。于是,直觉的价值,更加得到肯定。但这一切,截止到量子力学的出现。 这是被爱因斯坦和玻尔用“上帝跟宇宙玩掷骰子”来形容的学科,也是研究“极度微观领域物质”的物理学分支,它带来了许许多多令人震惊不已的结论——例如科学家们发现,电子的行为同时带有波和粒子的双重特征(波粒二象性),但仅仅是加入了人类的观察活动,就足以立刻改变它们的特性;此外还有相隔千里的粒子可以瞬间联系(量子纠缠):不确定的光子可以同时去向两个方向(海森堡测不准原理);更别提那只理论假设的猫既死了又活着(薛定谔的猫)…… 诸如以上,这些研究结果往往是颠覆性的,因为它们基本与人们习惯的逻辑思维相违背。以至于爱因斯坦不得不感叹道:“量子力学越是取得成功,它自身就越显得荒诞。” 直到现在,与一个世纪之前人类刚刚涉足量子领域的时候相比,爱因斯坦的观点似乎得到了更为广泛的共鸣。量子力学越是在数理上不断得到完美评分,就越显得我们的本能直觉竟是如此粗陋不堪。人们不得不承认,虽然它依然看起来奇异而陌生,但量子力学在过去的一百年里,已经为人类带来了太多革命性的发明创造。正像詹姆斯·卡卡廖斯在《量子力学的奇妙故事》一书引言中的所述:“量子力学在哪?你不正沉浸于其中吗。” 一、陌生的量子,不陌生的晶体管 美国《探索》杂志在线版给出的真实世界中量子力学的一大应用,就是人们早已不陌生的晶体管。 1945年的秋天,美国军方成功地制造出世界上第一台真空管计算机ENIAC。据当时的记载,这台庞然大物总重量超过30吨,占地面积接近一个小型住宅,总花费高达100万美元。如此巨额的投入,注定了真空管这种能源和空间消耗大户,在计算机的发展史中只能是一个过客。因为彼时,贝尔实验室的科学家们已在加紧研制足以替代真空管的新发明——晶体管。 晶体管的优势在于它能够同时扮演电子信号放大器和转换器的角色。这几乎是所有现代电子设备最基本的功能需求。但晶体管的出现,首先必须要感谢的就是量子力学。 正是在量子力学基础研究领域获得的突破,斯坦福大学的研究者尤金·瓦格纳及其学生弗里德里希·塞茨得以在1930年发现半导体的性质——同时作为导体和绝缘体而存在。在晶体管上加电压能实现门的功能,控制管中电流的导通或者截止,利用这个原理便能实现信息编码,以至于编写一种1和0的语言来操作它们。此后的十年中,贝尔实验室的科学家制作和改良了世界首枚晶体管。到1954年,美国军方成功制造出世界首台晶体管计算机TRIDAC。与之前动辄楼房般臃肿的不靠谱的真空管计算机前辈们相比,TRIDAC只有3立方英尺大,耗电不过100瓦特。今天,英特尔和AMD的尖端芯片上,已经能够摆放数十亿个微处理器。而这一切都必须归功于量子力学。 二、量子干涉“搞定”能量回收 无论怎样心怀尊敬,对于我们来说,不太容易能把量子力学代表的理论和它带来的成果联系在一起,因为他们听起来就是完全不相干的两件事。而此“能量回收”就是个例子。 每次驾车出行,人们都会不可避免地做一件负面的事情——浪费能量。因为在引擎点燃燃料以产生推动车身前进的驱动力同时,相当一部分能量以热量的形式散失,或者直白地说,浪费在空气当中。对于这种情况,亚利桑那大学的研究人员试图借助量子力学中的量子干涉原理来解决这一问题。 量子干涉描述了同一个量子系统若干个不同态叠加成一个纯态的情况,这听起来让人完全不知所谓,但研究人员利用它研制了一种分子温差电材料,能够有效的将热量转化为电能。更重要的是,这种材料的厚度仅仅只有百万分之一英尺,在其发挥功效时,不需要再额外安装其他外部运动部件,也不会产生任何污染。研究团队表示,如果用这种材料将汽车的排气系统包裹起来的话,车辆因此将获得足以点亮200枚100瓦灯泡的电能——尽管理论让人茫然,这数字可是清楚明白。 该团队因此对新型材料的前途充满信心,确定在其他存在热量损失的领域,该材料同样能够发挥作用,将热能转变为电能,比如光伏太阳能板。而我们只需知道,这都是量子干涉“搞定”的。 三、不确定的量子,极其确定的时钟 作为普通人, 一般是不会介意自己的手表是快了半分钟,还是慢了十几秒。但是,如果是像美国海军气象天文台那样为一个国家的时间负责,那么这半分半秒的误差都是不被允许的。好在这些重要的组织单位都能够依靠原子钟来保持时间的精准无误。这些原子钟比之前所有存在过的钟表都要精确。其中最强悍的是一台铯原子钟,能够在2000万年之后,依然保持误差不超过1秒。 看到这种精确的能让人紊乱的钟表后,你也许会疑惑难道真的有什么人或者什么场合会用到它们?答案是肯定的,确实有人需要。比如航天工程师在计算宇宙飞船的飞行轨迹时,必须清楚地了解目的地的位置。不管是恒星还是小行星,它们都时刻处在运动当中。同时距离也是必须考虑的因素。一旦将来我们飞出了所在星系的范围,留给误差的边际范围将会越来越小。 那么,量子力学又与这些有什么关系呢?对于这些极度精准的原子钟来说,导致误差产生的最大敌人,是量子噪声。它们能够消减原子钟测量原子振动的能力。现在,来自德国大学的两位研究人员已经开发出,通过调整铯原子的能量层级来抑制量子噪声程度的方法。它们目前正在试图将这一方法应用到所有原子钟上去。毕竟科技越发达,对准时的要求就越高。 四、量子密码之战无不胜篇 斯巴达人一向以战斗中的勇敢与凶猛闻名于世,但是人们并不能因此而轻视他们在谋略方面的才干。为了防止敌人事先得知自己的军事行动,斯巴达人使用一种被称作密码棒的东西来为机密信息加密和解密。他们先将一张羊皮纸裹在一根柱状物上,然后在上面书写信息,最后再将羊皮纸取下。借助这种方式,斯巴达的军官能够发出一条敌人看起来显得语无伦次的命令。而己方人员只需再次将羊皮纸裹在同等尺寸的柱状物上,就能够阅读真正的命令。 斯巴达人朴素的技巧,仅仅是密码学漫长历史的开端。如今,依靠微观物质一些奇异特性的量子密码学,已经公开宣称自己无解。它是一种利用量子纠缠效应、基于单光子偏振态的全新信息传输方式。其安全之处在于,每当有人闯入传输网络,光子束就会出现紊乱,每个结点的探测器就会指出错误等级的增加,从而发出受袭警报;发送与接收双方也会随机选取键值的子集进行比较,全部匹配才认为没有人窃听。换句话说,黑客无法闯入一个量子系统同时不留下干扰痕迹,因为仅仅尝试解码这一举动,就会导致量子密码系统改变自己的状态。相应的,即便有黑客成功拦截获得了一组密码信息的解码钥匙,那他在完成这一举动的同一时刻,也导致了密钥的变化。因而当合法的信息接收者检查钥匙时,就会轻易发现倪端,进而更换新的密钥。 量子密码的出现一直被视为“绝对安全”的回归,不过,天下没有不透风的墙。拥有1000多年前那部维京时代海盗史的挪威人,已经打破了量子密码无解的神话。借助误导读取密码信息的设备,他们在不尝试解码的条件下,就获得了信息。但他们承认,这只是利用了现存技术上的一个漏洞,在量子密码术完善后即可趋避。http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20120821/00241d8fef0e119d09d706.jpghttp://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20120821/00241d8fef0e119d09d707.jpg 五、随机数发生器:上帝的“量子骰子” 所谓的随机数发生器,并不是老派肥皂剧中那些奇幻神秘的玩意。它们借助量子力学,能够召唤出真正的随机数。不过,科学家们为什么要不辞劳苦地深入量子世界来寻找随机数,而不是简单轻松地抛下硬币、掷个骰子?答案在于:真正的随机性只存在于量子层级。实际上只要科学家们收集到关于掷骰子的足够信息,那么他们便能够提前对结果做出预测。这对于轮盘赌博、彩票甚至计算机得出的开奖结果等等,统统有效。 然而,在量子世界,所有的一切都是

  • 时间旅行可在量子尺度上实现

    科学家首次用光子模拟时间旅行证实时间旅行可在量子尺度上实现http://www.wokeji.com/shouye/zbjqd/201406/W020140625080681152943.jpg 科技日报讯 (记者刘霞)如果一名时间旅行者回到过去,破坏其祖父母之间的结合,那么,他是否也就不会出生呢?这是经典的“祖父悖论”的核心问题所在,“祖父悖论”常被人拿来论证时间旅行不可能存在,但有些科学家则不这么认为。 据英国《每日邮报》网站6月24日(北京时间)报道,澳大利亚昆士兰大学的科学家首次使用两个光量子(光子)模拟了量子粒子在时间中的旅行并对其“一举一动”进行了研究,结果表明,至少在量子尺度上,时间旅行是可以实现的。研究发表在最新一期的《自然·通讯》杂志上。 科学家们使用光子(光的单个粒子)来模拟回到过去的量子粒子并对其行为进行了研究。在实验中,他们对一个进行时间旅行的光子可能产生的两种结果进行了考察。第一种结果是:“1号光子”会通过虫洞进入过去并同以前的自己相互作用。第二种结果是:“2号光子”会在正常的时空内行进,但会通过虫洞同一颗卡在时间旅行环—封闭类时曲线(CTC,是物质粒子于时空中的一种世界线,其为“封闭”,亦即会返回起始点)内的光子相互作用。模拟“2号光子”的行为使“1号光子”的行为也能被研究,结果表明,时间旅行在量子尺度上可以实现。 该研究的主要作者、数学和物理学院的博士生马丁·瑞巴尔说:“时间旅行问题是阐释恒星、星系等大尺度世界的基本运行原理的爱因斯坦广义相对论和描述原子、分子等微小尺度世界运行原理的量子力学这两大最成功但最不兼容理论的交界点。” 爱因斯坦的理论认为,或许可以通过一条时空通道,回到时间上更早的空间上的起始点,但这种可能性让物理学家和哲学家们困惑不已,因为这似乎会导致一些悖论,比如经典的“祖父悖论”。 昆士兰大学的蒂莫西·拉尔夫表示,1991年,有科学家预测,量子世界发生的时间旅行或许可以避免这些悖论。拉尔夫说:“量子粒子的属性含糊且不确定,这或许给了它们足够的摆动空间,来避免前后矛盾的时间旅行环境。” 科学家们表示,尽管同样的模拟是否能证明更大的粒子(比如原子)或一群粒子可以进行时间旅行还是个未知数,但最新研究有助于他们更好地理解广义相对论和量子力学理论之间的相互关联。 左图 在模拟实验中,一个被卡在封闭类时曲线的光子被发现能与在正常的时空内行进的光子相互作用。 总编辑圈点 爱因斯坦的相对论不否定时空穿越——质量造成两处时空弯曲,若交汇于一点,就生出一条“虫洞”,我们由之穿越到七千万年前的仙女座星云,不是不可能——但“虫洞”只是假想,前提是广义相对论完全正确。我们的世界有时间旅行者吗?有科学家编写了软件,在网络上搜寻“未来客”存在的迹象,至今尚未找到。几年前还有科学家用光子做实验,让它携带信息到过去改变自己,结果失败了。如此看来,诸多幻想似乎只能停留在小说里。但科学家不会放过穿越主题,它至少是个很好玩的思想游戏。来源:中国科技网-科技日报 2014年06月25日

  • 科学家在量子气体中观察到“第二声”

    证实了70年前朗道提出的温度波理论2013年05月17日 来源: 科技日报 作者: 常丽君 科技日报讯(记者常丽君)“第二声”也叫温度波或熵波,是一种量子力学现象,目前只在超流液氦中才能观察到。据物理学家组织网5月16日(北京时间)报道,最近,奥地利因斯布鲁克大学和意大利特兰托大学物理学家合作实验,在量子气体中也观察到了这种温度波的传播,证实了列夫·朗道70年前假设的理论。相关论文发表在《自然》杂志上。 在低于临界温度时,一些液体会变成超流体而失去摩擦力。此外,超流状态下液体的导热性能极高,会以一种完全不同的温度波的形式来传输能量。由于这种波很像声波,因此也被称为“第二声”。为了解释超流体的性质,物理学家列夫·朗道1941年发展了双流体力学理论,他假设低温下的液体包含超流液和普通液体两部分,后者随着温度下降而逐渐消失。 迄今为止,人们只能在液氦和超冷量子气体中观察到超流动性。另一种超流系统是中子星,在原子核中也发现有超流现象的证据。超流性与超导性密切相关,后者是在低温下表现的零电阻现象。 超冷量子气体是把几十万个原子在真空容器中冷却到接近绝对零度(零下273.15摄氏度)获得的,利用激光能够对此状态下的粒子进行高精度地控制和操纵,因此是观察量子力学现象,如超流动性的理想模型系统。“十多年来,虽然这一领域已有大量研究,但要在量子气体中探测到第二声现象还很困难。”因斯布鲁克大学实验物理学院、奥地利科学院量子光学与量子信息研究所的鲁道夫·格里姆说,“然而到最后,证明它却容易得让人惊讶。” 在实验室中,格里姆的量子物理学家小组准备了由30万个锂原子构成的量子气体,用调制激光束给雪茄烟形的粒子云加热,然后观察到了温度波的传播。“虽然在超流氦里只产生了一个熵波,但我们的费米子气体也显出了一些热膨胀,由此形成了可检测的密度波。”格里姆解释说,这也是研究人员第一次在量子气体中检测到超流体的不同部分。“在我们之前还无人做到这一点,这填补了费米子气体研究中的一个基本缺口。” 该研究是因斯布鲁克物理学家与意大利科学家长期合作的成果。特兰托大学玻瑟—爱因斯坦凝聚中心小组领导之一是列夫·皮塔伊夫斯基,他也是列夫·朗道的学生。他们修改了朗道关于第二声理论的描述,使之与实验中近乎一维的几何波形更加适应。鲁道夫·格里姆说:“利用这一模型,解释实验的检测结果变得更加容易。这一成果代表了我们合作的顶峰。” 总编辑圈点 这是一种完全缺乏黏性的物质状态,如果将其放置于环状的容器中,由于没有摩擦力,它可以永无止尽地流动。它能以零阻力通过微管,甚至能从碗中向上“滴”出而逃逸。这种超流状态下的液体,导热性能极高,会以“第二声”的形式来传输能量。尽管探测“第二声”非常困难,但证明它却相当容易。此次在量子气体中观察到它,是否意味着,这种神奇的超流体现象离我们的生活越来越近了呢? 《科技日报》 2013-5-17 (一版)

  • 人造钻石创室温量子比特存储时间新纪录

    科技日报 2012年06月09日 星期六 本报华盛顿6月7日电 (记者毛黎)全球著名的人造钻石超材料生产商六元素公司(Element Six)7日表示,美国哈佛大学和加州工学院以及德国马普光量子研究所合作,利用该公司获得的单晶体人造钻石,创下了室温量子比特存储时间超过1秒钟的新纪录。这是人类首次实现用一种材料在常温下将量子比特存储如此长时间。 研究人员认为,人造钻石系统的多能性、稳定性和潜在的延展性有望让其在量子信息科学和量子传感器领域开拓新的应用。六元素公司位于英国阿斯科特的人造钻石研发小组用化学气相沉积技术开发出新的人造钻石生长工艺。公司创新主任斯蒂芬·库伊表示,人造钻石科学领域发展迅速,新钻石合成工艺能将杂质控制在兆分之几,这是真正的纳米工程化学气相沉积钻石合成技术。 参与合作的哈佛大学物理学教授海尔·鲁金表示,六元素公司独特的人造钻石材料是研究获得进展的核心,常温下单个量子比特存储时间超过1秒是一项十分令人兴奋的成果,它是初始化、存储、控制和测量4项需求的结合。新发现有望帮助人们开发新的量子通信和技术,在近期则有助于研发新的量子传感器。 量子信息处理涉及操纵人造钻石中单个原子尺寸的杂质和探讨单个电子自旋量子特性,新的研究成果代表着量子信息处理的最新发展。在量子力学中,电子量子自旋(量子比特)可以同时是0和1,此特性提供了量子计算的框架,同时也提出了更直接的应用,如新的磁传感技术。 总编辑圈点 谁会对1秒钟锱铢必究呢?但从量子的标准来看,这算是很长一段时间了。在量子计算的构建过程中,长期以来人们都只能局限在数公里的范围内利用量子点传输量子信息,而如果一种材料能做到捕捉、较长时间的稳定存储住继而转发信息,也就意味着扩大了量子网产生作用的区域。更何况,很多物质的量子态都要求接近绝对零度,能在室温下操作量子比特,尤显珍贵。

  • 【转帖】量子点的“战争”不可避免

    量子点的“战争”不可避免随着现在一种被称为量子点的纳米材料越来越多地受到电子以及生命科学产业的重视,分析人士担心在量子点技术领域复杂的专利权问题将引发一场昂贵且没有赢家的法律战争。 纽约市雷克斯研究公司的副总裁Matthew Nordan认为,“在未来三年内很有可能会发生一场针对量子点技术的法律大战。” 然而,有专家称,也许有方法可以避免这些无谓的法律战争。 Stephen Maebius是美国华盛顿纳米科技行业法律顾问公司Foley & Lardner公司的主席,他表示“研究量子点的那些公司可以通过专利交换的方式来避免由诉讼引起的干扰,把原本花在长达数年官司的百万美元投入到研究中去。” 量子点是半导体纳米微晶体,大小只有十亿分之一米,仅仅由10个原子组成。这种材料在吸收了少量的光线后能够发出明亮的荧光。科学家们能够改变量子点吸收的光线颜色,然后再对量子点的体积和结构进行调整就能让这种材料散发出颜色极为精确的荧光。例如,直径大于6纳米的硒化镉量子点能够发出红色的荧光,而直径小于3纳米的硒化镉量子点则会发出绿色的荧光。 量子点能够帮助科学家们对细胞和器官的行为成像,而成像细节级别在价值5亿美元的全球生物探测试剂市场中是前所未有的。生命科学研究中所使用的传统的光燃料分子是作为分子标签使用,帮助科学家们监测细胞与器官生长、发展,而它们通常在几秒钟内就会失去发光能力。而量子点的发光时间却更长,让研究者们能够实时监测细胞与器官在死亡与健康情况下的表现。 美国加利福尼亚州海达德地区的Quantum Dot(量子点)公司刚成立不久,它已经和诸如Genentech,, Roche 和GlaxoSmithKline几个业界巨头开始合作。 量子点还能够通过吸收光线产生电子。美国科罗拉多州戈尔登地区的国家可再生能源实验室的研究人员在五月份一期的《纳米快讯》中解释说,这将使新的太阳能系统性能提高到现有最好的太阳能电池性能的两倍。目前我们生产的太阳能电池吸收光线中的一个光子,然后,最多把它转换成一个电子,而剩下的能源就被白白浪费掉。而量子点能够将太阳光中的单个高能量光子转换成多达三个电子。这意味着,理论上来说基于量子点的太阳能电池能够将太阳能中65%的能量转换成为电能,而今天最好的电池也只能够达到33%。 纳米技术法律与商业周刊的一位编辑John Miller解释说:“现在一些公司注册的专利含盖范围很广,几乎包括了所有的半导体纳米晶体,有的公司甚至在专利申请书上仅仅描述像硒化镉这样特殊的材料。” 和Quantum Dot公司一样,另一家位于加利福尼亚州帕洛阿尔托地区的Nanosys公司声称,拥有量子点领域中除Quantum Dot独家关键专利外的所有专利。 Quantum Dot公司的执行总裁 George Dunbar表示,“如果有人阻止我们获得知识产权,那我们一定会把他们揪出来。” 然而,几家研究量子电的公司针对这些排他主义性宣言已经想出了几个对策。 纽约州托伊地区Evident科技公司的总裁Clinton Ballinger说:“我们并没有看到有关专利重叠的声明,我们感觉每向前迈进一步,都好像是跨进了新的领域。虽然花费了很多时间在这片雷区探索,但是我们觉得手中好像有一份地图在指引我们前进。在那里我们几乎没有束缚。” 例如,Evident公司发布了第一个利用非重金属制成的量子点。 “日本和欧洲都十分反对使用镉,而大多数的量子点都是由镉或铅制” Ballinger说,他还指出美国很快也会开始限制这些金属的使用。 Nordan强调说“在量子点技术领域,人们谈论最多的就是诉讼,而不是专利授权。这就像是笼罩在这一领域上空的一片黑云一样,而在诸如富勒烯这类的领域中,你所听到的大多是竭尽全力的诉讼大战,而不是专利交换授权,和平相处。正确的解决办法是专利交换授权,专利交换在信息产业领域的运行非常成功,但是你必须把自己的骄傲抛在脑后。” 虽然以生命科学应用为目的出售量子点是明显的事实,但是Ballinger认为针对量子点技术的法律大战并不会出现。他说“我们完全接受专利授权,这是理智之选。” Dunbar并没有排除采用专利交换解决问题的可能性,但是他认为:“只有和那些财务状况稳定的公司进行交易时,专利交换才有用。而据我所知,目前达到这一标准的公司并不多。” 转载出处:中国科技信息网

  • 【分享】量子物理百年回顾

    20世纪最有影响的科学进展应当包含广义相对论、量子力学、宇宙大爆炸、遗传密码的破译、生物进化理论和其他一些读者喜欢的课题。在这些进展当中,量子力学深层次的根本属性使得它处在一个最为独特的位置。它迫使物理学家们改造他们关于实在的观念;迫使他们重新审视事物最深层次的本性;迫使他们修正位置和速度的概念以及原因和结果的定义。  尽管量子力学是为描述远离我们的日常生活经验的抽象原子世界而创立的,但它对我们日常生活的影响无比巨大。没有量子力学作为工具,就不可能有化学、生物、医学以及其他每一个关键学科的引人入胜的进展。没有量子力学就没有全球经济可言,因为作为量子力学的产物的电子学革命将我们带入了计算机时代。同时,光子学的革命也将我们带入信息时代。量子物理的杰作改变了我们的世界,科学革命为这个世界带来了的福音,也带来了潜在的威胁。  量子力学既不象广义相对论那样来自于对引力与几何关系的光辉洞察力,也不象DNA的破译那样揭开了生物学一个新的世界的神秘面纱,它的起源不是一步到位的,是历史上少有的天才荟萃在一起共同创造了它。量子的概念如此的令人困惑以至于在引入它以后的20年中几乎没有什么根本性的进展,后来一小撮物理学家花了三年时间创立了量子力学。这些科学家为自己所做的事情所困扰,甚至有时对自己的所作所为感到失望。  或许用下面的一段观察资料能最好地描述这个至关重要但又难以捉摸的理论的独特地位:量子理论是科学史上能最精确地被实验检验的理论,是科学史上最成功的理论。量子力学深深地困扰了它的创立者,然而,直到它本质上被表述成通用形式75年后的今天,一些科学界的精英们尽管承认它强大的威力,却仍然对它的基础和基本阐释不满意。  今年是马克斯• 普朗克(Max Planck)提出量子概念100周年。在他关于热辐射的经典论文中,普朗克假定振动系统的总能量不能连续改变,而是以不连续的能量子形式从一个值跳到另一个值。能量子的概念太激进了,普朗克后来将它搁置下来。随后,爱因斯坦在1905年(这一年对他来说是非凡的一年)认识到光量子化的潜在意义。不过量子的观念太离奇了,后来几乎没有根本性的进展。现代量子理论的创立则是斩新的一代物理学家花了20多年时间的结晶。  您只要看一下量子理论诞生以前的物理学就能体会到量子物理的革命性影响。1890年到1900年间的物理期刊论文基本上是关于原子光谱和物质其他一些基本的可以测量的属性的文章,如粘性、弹性、电导率、热导率、膨胀系数、折射系数以及热弹性系数等。由于维多利亚型的工作机制和精巧的实验方法的发展的刺激,知识以巨大的速度累积。  然而,在同时代人看来最显著的事情是对于物质属性的简明描述基本上是经验性的。成千上万页的光谱数据罗列了大量元素波长的精确值,但是谁都不知光谱线为何会出现,更不知道它们所传递的信息。对热导率和电导率的模型解释仅符合大约半数的事实。虽有不计其数的经验定律,但都很难令人满意。比如说,Dulong-Petit定律建立了比热和物质的原子重量的简单关系,但是它有时好使,有时不好使。在多数情况下同体积气体的质量比满足简单的整数关系。元素周期表尽管为化学的繁荣提供了关键的组织规则,但也无任何理论基础。  在众多的伟大的革命性进展中,量子力学提供了一种定量的物质理论。现在,我们原则上可以理解原子结构的每一个细节;周期表也能简单自然地加以解释;巨额的光谱排列也纳入了一个优雅的理论框架。量子力学为定量的理解分子,流体和固体,导体和半导体提供了便利。它能解释诸如超流体和超导体等怪异现象,能解释诸如中子星和玻色-爱因斯坦凝聚(在这种现象里气体中所有原子的行为象一个单一的超大原子)等奇异的物质聚集形式。量子力学为所有的科学分支和每一项高技术提供了关键的工具。  量子物理实际上包含两个方面。一个是原子层次的物质理论:量子力学;正是它我们才能理解和操纵物质世界。另一个是量子场论,它在科学中起到一个完全不同的作用,稍后我们再回到它上面来。 旧量子论  量子革命的导火线不是对物质的研究,而是辐射问题。具体的挑战是理解黑体(即某种热的物体)辐射的光谱。烤过火的人都很熟悉这样一种现象:热的物体发光,越热发出的光越明亮。光谱的范围很广,当温度升高时,光谱的峰值从红线向黄线移动,然后又向蓝线移动(这些不是我们能直接看见的)。  结合热力学和电磁学的概念似乎可以对光谱的形状作出解释,不过所有的尝试均以失败告终。然而,普朗克假定振动电子辐射的光的能量是量子化的,从而得到一个表达式,与实验符合得相当完美。但是他也充分认识到,理论本身是很荒唐的,就像他后来所说的那样:“量子化只不过是一个走投无路的做法”。  普朗克将他的量子假设应用到辐射体表面振子的能量上,如果没有新秀阿尔伯特• 爱因斯坦(Albert Einstein),量子物理恐怕要至此结束。1905年,他毫不犹豫的断定:如果振子的能量是量子化的,那么产生光的电磁场的能量也应该是量子化的。尽管麦克斯韦理论以及一个多世纪的权威性实验都表明光具有波动性,爱因斯坦的理论还是蕴含了光的粒子性行为。随后十多年的光电效应实验显示仅当光的能量到达一些离散的量值时才能被吸收,这些能量就像是被一个个粒子携带着一样。光的波粒二象性取决于你观察问题的着眼点,这是始终贯穿于量子物理且令人头痛的实例之一,它成为接下来20年中理论上的难题。  辐射难题促成了通往量子理论的第一步,物质悖论则促成了第二步。众所周知,原子包含正负两种电荷的粒子,异号电荷相互吸引。根据电磁理论,正负电荷彼此将螺旋式的靠近,辐射出光谱范围宽广的光,直到原子坍塌为止。  接着,又是一个新秀尼尔斯• 玻尔(Niels Bohr)迈出了决定性的一步。1913年,玻尔提出了一个激进的假设:原子中的电子只能处于包含基态在内的定态上,电子在两个定态之间跃迁而改变它的能量,同时辐射出一定波长的光,光的波长取决于定态之间的能量差。结合已知的定律和这一离奇的假设,玻尔扫清了原子稳定性的问题。玻尔的理论充满了矛盾,但是为氢原子光谱提供了定量的描述。他认识到他的模型的成功之处和缺陷。凭借惊人的预见力,他聚集了一批物理学家创立了新的物理学。一代年轻的物理学家花了12年时间终于实现了他的梦想。  开始时,发展玻尔量子论(习惯上称为旧量子论)的尝试遭受了一次又一次的失败。接着一系列的进展完全改变了思想的进程。

  • 请教,有人用荧光光度计做量子点的测定吗?

    我看见我同学在用荧光光度计做量子点的测定,我想问一下,什么叫量子点?好像这个名词很时髦,还有为什么荧光可以用来测定量子点?另外我看见她扫描的时候,横坐标是波长,纵坐标是强度,那么这个强度是什么强度?那个同学说,随着激发次数的增加,纵坐标的强度应该是减小的,可是为什么会是每次扫描以后强度都是上升的呢?我很想得到大家的一些看法和探讨,谢谢大家了。

  • 科学家拍摄量子电影展现复杂分子物质波

    科技日报 2012年03月27日 星期二 本报讯(记者常丽君)据美国物理学家组织网3月26日(北京时间)报道,最近,一个由奥地利维也纳大学、以色列特拉维夫大学等机构研究人员组成的国际小组,成功地为一种染料分子拍摄了一段量子电影,揭示了分子物质波相干图案逐渐增强的形成过程,将物质的波动性和粒子性、随机性和决定性、定域性和非定域性形象化地展现出来。相关论文发表在3月25日的《自然·纳米技术》上。 按照量子物理学理论,复杂粒子也具有波动性。物理学家理查德·费曼曾提出,物质波也会带来相干效应。人们已经能观察到一些电子、中子、原子和分子的物质波相干。 新实验中结合了最先进的分子裁切和纳米成像技术,瑞士巴塞尔大学提供了特制的染料分子,是一种高荧光染料酞菁(phthalocyanine)及其衍生物分子,原子量分别为514(AMU)和1298(AMU)。以色列特拉维夫纳米技术小组用聚焦离子束将氮化硅切成仅10纳米的薄膜(约50层氮化硅)作为分子栅。 他们利用激光控制微蒸发源,按照所需的密度和相干性产生了一束染料分子,并让染料分子穿过氮化硅分子栅,以减小分子间范德华力的影响,当分子随机打在探测屏幕上,便可实时拍摄下每个分子的量子相干图案逐渐加强的过程。实验中所用的广域荧光显微镜空间分辨率达到10纳米,能显示出每个分子的位置和确定的整体相干图案。 研究人员指出,他们的实验中结合了显微技术,可用于分子束的产生、衍射和探测,有助于将量子干涉实验拓展到更多更复杂的分子、甚至原子干涉仪。对物理教学而言,该实验也具有重要意义,它以肉眼可见的方式,形象地揭示了单个粒子复杂的量子衍射图,让人们实时地看到这些图案在屏幕上出现,并持续几个小时。在实际应用方面,有助于深入了解固体表面分子性质,为将来研究原子薄膜衍射提供了一种新方法。 总编辑圈点: 如果您和我一样,看完第一段就晕了,不用泄气,大多数人感受类似。对于量子论,您可以八卦下爱因斯坦与玻尔那场伟大争辩,也可以打探下它和经典力学的世纪缠绵,但实在不用知道酞菁分子和氮化硅怎么就拍下了量子相干图。不过,我虽敢打赌这和绝大多数人没啥直接关系,却不敢小觑其意义——照论文中的说法,其无疑是在直观的展现量子学传奇,如波粒二象性,以及探讨经典物理的边界。而我只希望,我现在的困惑抵得上80年前爱因斯坦所经历过的万分之一。

  • 【求助】F-7000测量荧光量子效率的问题

    不知道怎么做固体的荧光量子效率。照说明书做了一下,量子产率不是0就是负数。校正的部分先不管了。测量的部分 method部分不知道选 emission还是exctitation,激发波长啊,范围啊,也不知道有什么讲究。重点是这么设定后,出来的光谱除了激发光有一个峰,其他荧光峰一个也没有,也不知道是哪里出了问题。只好来求教大家了。坛子里搜了搜,资料有一些,基本上手头都有了,只不过是英文的。测荧光量子效率的时候要先测一个标准物质,然后再测一个试样,之后导入数据进行计算。 我的问题是用发射光谱还是激发光谱来做测试有什么区别吗?有做过的人能详细写一下步骤就好了。感谢。

  • 量子力学的核心问题——测量问题是否已经解决?

    [b]量子力学的核心问题——测量问题是否已经解决?[/b] 在我们的印象中,神秘的量子力学似乎很难与肉眼观测联系起来,更不用说是普通的大学物理实验了。然而,一群科学家正尝试通过双缝干涉实验,让观测者用肉眼验证量子叠加态。更令人激动的是,他们的实验还可能为量子力学的一个核心问题——测量问题找出答案。 Paul Kwiat要求志愿者们坐在一间黑暗的小屋里。在他们的眼睛逐渐适应黑暗环境时,每一位志愿者就像验光时一样,将头支撑在一个支架上,用一只眼睛盯着一个很暗的红十字看。在十字的两边各有一根光纤,可以将单个光子从十字左边或右边射入志愿者的眼中。 Kwiat是伊利诺伊大学香槟分校的实验量子物理学家,在验证了人眼探测单个光子的能力后,他和同事有着更高的目标:根据他们上个月在预印本网站arXiv上提交的论文,他们想要用人眼去验证量子力学的基本假设。[b] [/b]他们并不是简单地将一个光子通过左边或者右边的光纤送入志愿者眼中,而是输送一个同时处于左边和右边的量子叠加态的光子。人们会看到什么不一样的现象吗?根据标准量子力学,答案应该是“不能”。但迄今为止,还没有人做过这类测试。如果Kwiat团队的最终结果和理论预言不同,就会动摇我们对量子世界的现有理解,人们也将尝试通过一些其他理论来解释量子力学。[color=rgba(57, 99, 158, 0.972549)]这些理论对自然的看法与现有的完全不同,它们预言现实的存在与观测行为和观测者无关。[/color]如果成立,我们对量子力学的现有解释将被彻底推翻。Rebecca Holmes是Kwiat以前的学生,现在在洛斯阿拉莫斯国家实验室工作,他设计了这套实验装置。他说:“这可能成为超出标准量子力学的现象存在的证据。”[b] [/b]为了探究人眼是否能直接观测到单个光子,近一个世纪的物理学家做了大量努力。1941年,哥伦比亚大学的研究人员在Science上发文称,即使一束光中只有五个光子落在视网膜上,人眼也能看到。30多年后,当时在加州大学伯克利分校的生物物理学家Barbara Sakitt通过实验似乎验证了人眼可以看见单个光子。不过,这些实验远远不能给出确定的结果。Holmes说:“这些实验的问题在于它们都试图使用‘经典’光源”,但我们无法确定经典光源发出的到底是不是单个光子。也就是说,我们甚至不能保证那些早期实验都只用了单个光子。 直到2012年,人们有了确凿的证据,发现青蛙眼中的光感受器,或称视杆细胞,可以探测到单个光子。新加坡科技研究局的Leonid Krivitsky和同事从成年青蛙的眼中提取了视杆细胞,随后通过实验证实这些细胞对单个光子有反应。Kwiat说,现在“毫无疑问单个光感受器是可以对单个光子有反应的。”不过,这并不意味着视杆细胞在活体青蛙或者人体中有着相同的效果。因此,Kwiat和他在伊利诺伊的同事Anthony Leggett等人开始计划用单光子光源测试人类的视觉。很快,Kwiat团队开始了实验。现在,Holmes也加入了团队,负责实验操控。但是“我们当时失败了。”Holmes说。 2016年,当时在维也纳大学的生物物理学家Alipasha Vaziri领导的研究团队报告称,他们用单光子光源证实了“人眼可以探测到单光子事件,而且探测到的概率很高,这显然不是巧合。”[b]双缝实验解决测量问题?[/b] Kwiat团队对这个结果有些怀疑,他们想要用更多志愿者、做更多实验以提高数据的确信度。他们担心的核心问题是眼睛探测光子时的低效。入射光子必须首先经过眼球最外面一层透明的角膜,这会反射掉一部分光。接下来光子进入晶状体,晶状体和角膜共同将光汇聚在眼球后部的视网膜上。而在视网膜和晶状体之间,凝胶状的玻璃体也会吸收或散射光子。最终,抵达角膜的光子中,只有不到10%能出现在视网膜上的视杆细胞中,进而产生神经信号,神经信号传送到大脑就形成了视觉。所以,得到可以在统计学上排除偶然性的显著性差异,是一项令人生畏的挑战。Kwiat说:“我们希望在未来六个月得到确定的答案。” 这并没有使他们停止设计新的实验。在标准设计中,一面半涂银面镜会让光子进入左边或右边的光纤,然后落在左眼或右眼的视网膜上,志愿者就会敲击键盘来表示他们看到的方向。但是,研究者也可以很容易地利用量子光学技术制造出叠加态的光子,使其同时进入两条光纤,然后同时出现在左右双眼的视网膜上。接下来光子到底发生了什么,取决于你相信光子发生了什么。 物理学家用一种叫做波函数的数学抽象概念来描述光子的量子态。在叠加态的光子打在视网膜上之前,波函数会弥散出去,这时光子在左边和右边被发现的概率相同。光子和视觉系统的作用是一种观测,而人们认为观测会使波函数“坍缩”,于是光子最终会处于其中任意一边,就像抛出去的硬币最终朝上的会是正反面中的任意一面。当人眼接收到叠加态的光子时,出现在左右两侧的光子数目会有差异吗?Kwiat说:“如果你相信量子力学,那就没什么区别。”但是如果他们的实验发现了无法驳斥的显著性差异,那就说明量子力学一定存在什么问题。他补充说:“这将会是一个大发现,一个惊天动地的结果。” 这样的结果预示着人们可能会解决量子力学的一个核心问题:[color=rgba(57, 99, 158, 0.972549)]测量问题[/color]。假如波函数真的因为测量而坍缩,量子力学理论并没有表明这种坍缩是如何发生的。测量的仪器应该有多大?以眼睛为例,一个视杆细胞够大吗?还是需要整个视网膜?又是否需要角膜?是否需要有一个有意识的观测者呢?[b]坍缩与观测[/b] 一些候选理论通过使坍缩完全独立于观测者和测量仪器,来解决这个潜在问题。例如“[color=rgba(57, 99, 158, 0.972549)]GRW”坍缩模型[/color](以理论物理学家Giancarlo Ghirardi,Alberto Rimini和Tullio Weber命名)。GRW模型及其变型都[color=rgba(57, 99, 158, 0.972549)]假设波函数是自发坍缩的[/color]。处于叠加态的物体质量越大,坍缩就越快。这个理论的结果之一是,单个粒子可以无限长时间地处于叠加态,但是宏观物体就不行。所以,在GRW理论中,著名的薛定谔的猫是无法处于活与死的叠加态的。像GRW这样的理论被称为“无关观测者”的现实模型。 如果像GRW这样的理论对自然的描述是正确的,我们这一个世纪以来想要证明的想法就完全错了。我们一直都认为观测和测量是构成现实世界的中心要素。关键是,当处于叠加态的光子落在视网膜上时,[color=rgba(57, 99, 158, 0.972549)]GRW理论预言的两边的光子计数将和标准量子力学存在一些细微的差别。[/color]这是因为在光子的传输过程中会和不同大小的系统发生作用,比如两个视杆细胞中的两个感光蛋白是一个系统,两个视杆细胞及相应神经的组合又是一个系统,光子在和这两个系统作用时会表现出不同的自发坍缩速率。尽管Kwiat和Holmes都强调在他们的实验中不太可能会看到什么不同,但他们也承认,如果发现了任何与经典理论的差别,就可能预示着GRW这类理论是正确的。 Michael Hall是澳大利亚国立大学的理论量子物理学家,他并没有参与这项研究。Michael同意GRW预言的光子计数和经典理论会出现很小的差别,但是他说这样的差别太小,已经提出的实验是无法探测到的。然而,他认为光子计数上任何的异常现象都值得关注。他说:“这很值得认真思考。我觉得这种偏差出现的概率极小,但是还是有可能。这非常有意思。” Kwiat也想了解量子态和经典态的主观感知差异。他问道:“人在直接观测量子事件时会感受到差异吗?答案‘很可能不会’,但是我们确实不知道。你永远得不到答案,除非你为人的视觉系统建立一个量子力学级别的完备模型,或者,通过实验进行观测。我们无法建立这样的模型,所以就只能去做实验了。” Robert Prevedel在2016年是Vaziri研究团队中的一员,现在在德国的欧洲分子生物学实验室工作。他更感兴趣的是在一系列事件中找出波函数坍缩的具体位置。坍缩是发生在最初光子打到视杆细胞上时?还是在神经信号产生和传递的中间过程中出现?或者是最后信号使人产生视觉时?他提议将视网膜提取出来,再向其发射处于叠加态的光子,记录不同阶段的视觉处理过程(比如记录视杆细胞,或是组成视网膜的其他感光细胞的信息)来看看叠加态到底持续多久。 Prevedel认为视杆细胞对光的吸收会使得叠加态消失。但是他说:“如果我们看到量子(叠加态)存在于光子接触视杆细胞后的任何一个阶段,不论是在视网膜内不同细胞层中,还是在之后的神经回路中,都将是真正的突破。这将是一个非常惊人的发现。” 还有一个大家常常故意视而不见的问题:人类的意识。意识能造成量子态坍缩,让光子最终只在一边出现吗?但Prevedel却对意识与测量、坍缩之间是否真的存在关联持怀疑态度。 Prevedel说:“意识是人脑中细胞和神经元的共同作用的结果,这些细胞和神经元很多,没有几十亿也有几百万。如果意识在量子叠加态的探测中起到了作用,那么这个过程就会牵扯到尺寸和大脑相当的宏观物体,例如组成生物细胞的大量原子和电子的集合。但根据我们已有的知识,这种宏观物体是无法保持量子叠加态的。”

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制