当前位置: 仪器信息网 > 行业主题 > >

碳纳米管薄膜

仪器信息网碳纳米管薄膜专题为您整合碳纳米管薄膜相关的最新文章,在碳纳米管薄膜专题,您不仅可以免费浏览碳纳米管薄膜的资讯, 同时您还可以浏览碳纳米管薄膜的相关资料、解决方案,参与社区碳纳米管薄膜话题讨论。

碳纳米管薄膜相关的论坛

  • 在硅片上电泳沉积的碳纳米管薄膜,做sem之前要怎么清洗?

    沉积完后的薄膜跟基底结合力不是很好,用手用力刮一下就会下来,但致密度、均匀度都挺好的,所以我猜想是不是别人做得碳纳米管薄膜也是这样的?一般做sem前样品都要超声清洗的,但这类沉积薄膜一超声就从基底上脱落了。想问一下拿去做sem之前把样品薄膜在酒精里泡一会儿算不算清洗?

  • 【转】单壁碳纳米管拉曼光谱的理论研究

    单壁碳纳米管拉曼光谱的理论研究(这是楼主在本科做SRTP时,在老师的帮助下利用计算机模拟碳纳米管的振动模式)碳纳米管的应用前景碳纳米管的导电性能与结构有关,不同结构的碳纳米管有可能是金属性的也有可能是半导体性的。电子在一维尺寸上表现出输运特性,其最为突出的特性可以归纳为以下三点:(1)纳米尺度形成的细微结构。一般单壁碳纳米管的直径在0.4~2nm,长度则可达数微米至数毫米,因而具有很大的长径比,是准一维的量子线。(2)纳米结构造就的特殊电学性质。碳纳米管的电学性质中最为特别的有5点:管的能隙(禁带宽度)随螺旋结构、直径变化;电子在管中形成无散射的弹道输运;电阻振幅随磁场变化的AB效应;低温下具有库仑阻塞效应和吸附气体对能带结构的影响。(3)碳碳键构筑的超高力学性能。碳纳米管的基本网格和石墨烯一样,是由自然界最强的价键之一,sp2杂化形成的C=C共价键组成,因此碳纳米管是所有已知最结实、刚度最高的材料之一。其轴向弹性模量目前从理论估计和实验测定均接近甚至超过石墨烯片。碳纳米管的强度极高,其独特的电学、力学和化学特性使它在下列方面具有广阔的应用前景。

  • 发现利用碳纳米管新发电现象

    美国麻省理工学院(MIT)宣布,发现了利用碳纳米管的新发电现象——“热力波”(Thermopower Wave)(英文发布资料)。麻省理工学院在《自然—材料学》([i]Nature Materials[/i])上发表了有关详细内容。发现这一现象的麻省理工学院化学工程副教授Michael Strano称,热力波是一种当热波在碳纳米管上高速传播时,会同时搬运电子或空穴(Hole)的现象。比如用环三次甲基三硝铵(RDX,塑料炸弹的主要材料)对多层碳纳米管(MWCNT)进行涂层,并在其一端通过激光器半导体点“火”。热波就会像导火线似的在多层碳纳米管上高速移动。其移动速度在2860K温度下超过2m/s,“是普通化学反应速度的1万倍”(麻省理工学院)。Strano等人发现,在这种波传递的同时能够形成非常大的电力。论文中的输出密度为7kW/kg。麻省理工学院表示,“论文发表之后开发工作仍在继续,现在已经实现了相当于锂离子充电电池100倍的输出密度”。Strano称,这种现象无法通过在热电转换元件中广为人知的“塞贝克效应”(Seebeck Effect)进行合理解释。“虽然被称作‘燃烧波’(Combustion Wave)的现象从100多年前就已经能够从理论上加以解释,但在碳纳米管上产生燃烧波、而且燃烧波还会产生电流,却是此前一直不为人知的现象”(Strano)。虽然利用这种现象的具体应用实例尚未出现,不过Strano表示“有望用于米粒大小的超小型传感器和可嵌入体内的电子产品等,或是散布在空气中使用的环境传感器”。上述现象为不可逆反应,因此无法用于充电电池,不过Strano表示“能够制造出不漏电不放电、可半永久性保存的(一次)电池”。资料来源:[url]http://paper.sciencenet.cn//htmlpaper/20104231042214218903.shtm[/url]

  • 碳纳米管消解仪器问题

    需求是测定碳纳米管中Fe和Ni的含量,但是碳纳米管常规方法无法消解,请问各位老师有没有什么好方法或者仪器可以做到?

  • 碳纳米管“鱼叉”能捕获单个脑细胞信号

    科技日报讯(记者常丽君)据美国物理学家组织网6月20日(北京时间)报道,美国杜克大学科学家开发出一种碳纳米管制成的“鱼叉”,可用于捕获单个脑细胞发出的信号。相关论文发表在6月19日的《公共科学图书馆·综合》上。 目前用于记录脑细胞信号的电极主要有两种:金属和玻璃。金属电极可用在活动物中,记录脑细胞群体活动峰值及其工作情况;玻璃电极既可用于检测峰值,也能检测单个细胞活动,但却脆弱易碎。以往实验中曾用过碳纳米管探针,但那种电极要么太厚会造成组织损伤;要么太短而限制了电极穿透深度,无法探测到内部的神经元。 最新研制出的碳纳米管“鱼叉”只有一毫米长、几纳米宽,可利用碳纳米管卓越的机电性能来捕获单个脑细胞的电信号。杜克大学神经生物学家理查德·穆尼和该校计算机科学与生物化学教授布鲁斯·唐纳德5年前开始合作,研究用纳米材料来缩小机械并改良探针。他们先以电化技术处理过的钨丝为基础,用自缠多壁碳纳米管延长它,制成了一毫米长的小棒,然后用聚焦离子束将纳米管磨锋利,使其一端逐渐变细到只有一根碳纳米管粗细,就像微小的“鱼叉”。杜克大学神经生物学家迈克尔·普拉特说:“这种碳纳米管‘鱼叉’结合了金属和玻璃电极的优点,无论是在脑细胞内外,它们都能记录良好,非常灵活而且不会碎,可以用来记录活动物的单个脑细胞信号。” 在穆尼的实验室,他们把“鱼叉”分别刺入小鼠脑组织切片和麻醉小鼠大脑中来实验,结果显示探针能传输脑信号,而且有时比传统的玻璃电极效果更好,信号中断的可能性更小。 新探针还能刺穿单个神经元,记录单个细胞的信号,而不是附近的一群神经元。唐纳德强调,这被称为细胞内记录,应是人们首次用碳纳米管在脑切片或完整脊椎动物大脑中记录单个神经元信号。 总编辑圈点 碳纳米管可用于研究单个神经细胞发出的信号,如今的成果就是极好的理论证明。这种对单个神经元信号及神经元之间相互作用的进一步挖掘,将会帮助我们更好地理解大脑的计算功能,从而弥补人类对自身“司令部”认知上的缺陷。从另一个角度看,杜克大学此次所采用的探针技术也十分有前途,可在多领域——包括从基础科学到人脑计算接口、脑组织假体等等方面都有着广泛应用,亦因此其进一步开发备受业界期待。 《科技日报》(2013-06-21 三版)

  • 【原创大赛】碳纳米管经过酸化后表面官能团的变化

    【原创大赛】碳纳米管经过酸化后表面官能团的变化

    1. 研究背景碳纳米管因为其优异的导电性而常被作为催化剂的载体,然而碳纳米管一般石墨化程度比较高,纳米粒子在其表面不太容易负载而容易发生团聚问题。所以,要对碳纳米管进行预处理以提高催化剂在其表面的分散性。通常碳纳米管预处理方式有有机酸处理,有机物处理使其接上有机物链状结构,或者是采用酸处理。酸处理对于碳纳米管来说是比较简便易行的方式,然而酸的选择对于不同石墨化程度的碳纳米管而言是非常重要的,酸化程度过高,会导致碳纳米管表面接上太多的含氧官能团而导致亲水性太好难以分离,而酸化程度不够又难以达到预期的效果,所以本研究对碳纳米管进行不同混酸体积比的处理,通过红外研究其酸化程度。2. 实验部分对碳纳米管用不同体积比的硝酸和硫酸进行了酸化处理,通过红外光谱验证碳纳米管表面官能团的变化。3. 仪器说明仪器型号:Nicoiet 8700, Thermo Fisher。4. 结果与讨论 下图为不同硝酸与硫酸体积比处理的碳纳米管的傅里叶红外光谱变换图,从图中可以看到明显的C-C的伸缩振动峰。除此之外,在3500 cm-1 左右以及170 cm-1左右代表羟基以及羧基的振动峰,而众所周知,碳纳米管上羧基含量的多少代表这碳纳米管表面的酸化程度,所以主要关注这两个峰的变化。从图中可以看到,随着硫酸体积的增加,对应的羟基以及羧基的振动峰逐渐加强,说明碳纳米管表面酸化程度逐渐加剧。而从实验现象分析,碳纳米管在这个过程中都没有出现难以分离的现象,所以对于实验所用碳纳米管,在硫酸体积比为4:1的时候酸化程度较好。http://ng1.17img.cn/bbsfiles/images/2015/08/201508262132_563072_2257998_3.jpg5. 结论从上边的分析可以看到,随着硫酸含量的增加,碳纳米管表面羧基以及羟基官能团的量逐渐增加,说明其对应的碳纳米管酸化程度逐渐增加。这一结果对于提高碳纳米管的负载等实验很有借鉴意义。

  • 【求助】碳纳米管 纯化

    准备做碳纳米管修饰电极,求关于碳纳米管纯化的经典文章!看到很多人引用Tsang S. C. 在 Nature上发的文章,好像不止一篇。可惜我找不到原文,各位大侠能否帮忙找到原文?不胜感激!

  • 碳纳米管的若干生物医学应用

    过去人们一直关注碳纳米管,特别是其电学和力学特性以及在未来半导体工业中的应用前景。但是,碳纳米管还有另一种诱人的应用没有被人们广泛的认识——这就是碳纳米管的生物医学应用。在生物上的应用,在于碳纳米管是碳材料所以碳纳米管具有生物亲和性,从而和人体的组织器官形成友好的界面。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=23727]碳纳米管的若干生物医学应用[/url]

  • 碳纳米管如何消解完全

    各位亲,目前有一个[color=#3333ff]碳纳米管[/color]的样品需要进行[color=#3333ff]微波消解[/color],尝试了①王水的微波消解,200℃ 保持50min,不完全;②6mL 硝酸+3mL硫酸 直接加热,也消解不了。哪位大神可以提供帮助,感谢!!

  • 【资料】单壁碳纳米管 分离方法 重要进展

    SWCNTs 单壁碳纳米管的前期制备无法来保证单一的管径和光学性质,很大程度上限制了其在进一步的药物输送和催化剂方面的应用,附件文档是采用超速离心技术分离不同管径的单壁碳纳米管,采用NanoLog 红外[color=#bb005f][size=4]3D荧光[/size][/color]来进行分离结果的验证。是单壁碳纳米管应用技术的一个重要的进展。

  • 电子与碳纳米管间存在内在自旋—机械耦合

    中国科技网讯 在高精度磁感应探测、量子计算机等方面,电子自旋都发挥着重要作用。据物理学家组织网近日报道,德国康斯坦茨大学科学家从理论上研究了将电子自旋和碳纳米管量子点耦合在一起的可能性,结果显示,碳纳米管机械振动会极大影响它所捕获电子的自旋状态,而碳纳米管本身也会受到电子自旋的影响。研究人员指出,发现这种内在的强自旋—机械耦合对研究磁性与物质纳米传感器、量子计算及其他纳米应用设备具有重要意义。相关论文发表在近日出版的《物理评论快报》上。 研究人员从理论上让自旋轨道和碳纳米管量子点耦合在一起。在论文中,他们设想把一段碳纳米管悬置在一个沟槽上,让纳米管发挥声子腔的功能。而后通过一种类似于天线的形式从外部接近共振器来促发共振,将电荷和碳纳米管耦合在一起,碳纳米管由于固有的硬度而按照自身频率振动起来。通过检测其振幅,就能检测出代表耦合的理想自旋态。 该校物理系教授盖多·博卡德解释说,即使接近绝对零度(-273.15摄氏度),温度也会对系统行为造成影响。此外,系统退相干还受声子放射(一种量子化的声波放射)的影响,使自旋松弛。在原子—光量子系统中,自旋松弛就像是自发放出一个光子,但原子自发放射可以用光腔来抑制,光腔具有强耦合机制,能让光子在消失之前,在足够长的光腔中被吸收、放射许多次。 “这就是纳米机械共振的概念。”博卡德解释说,“在我们的研究中,碳纳米管作为声子腔能产生与此类似的效应。如果共振器模型与自旋反转所需的塞曼能量相共振,量子信息就会在自旋和声子之间来回转移;如果不共振,自旋量子比特的寿命就会得到延长。而后者也是量子信息处理器所要研究的。” 该研究的重要影响还在于它能提高纳米管在传感应用方面的性能。博卡德说,磁感应是以电子自旋对外部磁场的敏感度为基础的。当电子自旋和机械共振器(比如振动碳纳米管,通过对电子的限定而携带一个电荷)耦合时,可以用电学方法读取这一信号。反之,当一个小物体放在共振器上时,其共振频率会发生变化,频率变化又会影响自旋,可以通过一种自旋感应电传检测设备读取。物质感应探测就是利用了这种频率变化。 研究人员表示,他们正在考虑下一步把该研究用于量子信息处理过程,让自旋发挥量子比特作用。“量子力学的一个基本问题是它能适用于多大的物体,让该物体保持在量子叠加状态。我们知道,电子和单个原子有量子性质,而我们日常生活中的宏观物体却没有。问题是我们能在多大程度上应用量子法则。”博卡德说,“我们的研究是在单个电子自旋和一个较大物体的机械运动之间生成量子纠缠,这一结果有望在自旋读取研究、新的量子相干、自旋—自旋耦合机制等方面打开新的大门。”(常丽君) 《科技日报》(2012-05-31 二版)

  • 以碳纳米管为基础的全晶片数字电路首次研制成功

    中国科技网讯 据物理学家组织网6月15日(北京时间)报道,最近,美国斯坦福和南加州大学工程师开发出一种设计碳纳米管线路的新方法,首次能生产出一种以碳纳米管为基础的全晶片数字电路,即使在许多纳米管发生扭曲偏向的情况下,整个线路仍能工作。 碳纳米管(CNTs)超越了传统的硅技术,在能效方面有望比硅基线路提高10倍。第一个初级纳米管晶体管诞生于1998年,人们期望这将开启一个高能效、先进计算设备新时代,但受制于碳纳米管本身固有的缺点,这一愿景一直未能实现。 “作为未来的密集型高能效集成电路,碳纳米晶体管极具吸引力。然而当人们想把它们用在微电子领域时,却遭遇到巨大的障碍。最主要的就是它们的位置和电属性的变化。”IBM托马斯·瓦特森研究中心物理科学部主管苏布拉迪克·高华说。 在碳纳米管能变成一种有现实影响力的技术之前,至少还要克服两大障碍:第一,研究已证明,要造出具有“完美”直线型的纳米管是不可能的,而扭曲错位的纳米管会导致线路出错,以致功能紊乱;第二,迄今还没有一种技术能生产出完全一致的半导体纳米管,如果线路中出现了金属碳纳米管,会导致短路、漏电、脆弱易受干扰。 针对这两大难题,研究人员设计了一种独特的“缺陷-免疫”模式,生产出第一个全晶片级的数字逻辑装置,能不受碳纳米管线向错误和位置错误的影响。此外,他们还发明了一种能从线路中清除那些不必要元素的方法,从而解决了金属碳纳米管的问题。他们的设计方法有两个突出特点,首先是没有牺牲碳纳米管能效,其次还能与现有的制造方法和设施兼容,很容易实现商业化应用。 他们的研究最近还被作为国际电子设备大会(IEDM)的邀请论文,以及美国电器与电子工程师协会(IEEE)会报集成线路与系统计算机辅助设计方面的“主题论文”。 下一步,研究人员将尝试造出数字集成系统的基本组件:计算线路与序列存储,以及首个高度一体化的整体三维集成电路。(记者 常丽君) 总编辑圈点 在表兄弟石墨烯“出生”之前,碳纳米管一直是纳米材料界最炙手可热的宠儿。它在力学、导电、传热等方面独特而优异的性能,让科学家们对它充满各种奇思妙想,甚至认为它是制备科幻小说里“太空电梯”的理想材料。相比较那些仅停留在理论上的用途,碳纳米管在集成电路上的使用无疑要现实可行得多。如今,科学家们突破了碳纳米管在微电子领域应用的瓶颈,恐怕摩尔大叔是最欣慰的人之一——摩尔定律神奇的魔力还将会持续下去。 《科技日报》(2012-06-16 一版)

  • 碳纳米管消解问题

    由于碳纳米管十分难以消解,是否可以通过燃烧法,测定气体元素含量,然后和灰分一起算出其中的微量金属含量?

  • 【求助】用EBSD研究碳纳米管/高分子复合材料合适吗

    所里准备要买一个扫描电镜, 我们目前是做碳纳米管/高分子符合材料的。老板对EBSD很感兴趣, 想通过EBSD观察碳纳米管在高分子基体中的排列,取向情况。考虑到碳纳米管虽然算晶体,有规则晶格排布。但是尺寸太小了啊。用EBSD能获得碳纳米管的相关信息吗。另一个问题还有高分的结晶程度通常很低, 所以EBSD对它的作用应该不大把。看了很多资料,EBSD通常用于陶瓷, 金属的, 因为他们都有规则的晶体结构, 能得到好的结果。但是很少有用在高分子上的。而且找了半天的资料, 也没有EBSD在研究碳纳米管上的应用。这里请教达人,用EBSD研究碳纳米管/高分子复合材料 合适吗。下周要给老板回话, 告诉他要不要买这个EBSD 探头, 着急啊,谢谢了

  • 多壁/单壁碳纳米管的紫外光谱

    [color=#444444]多壁/单壁碳纳米管在水中的分散性不好,如何配置标准溶液,有具体的实验参数吗?测试其在632nm波长下的紫外光谱?以此确定未知CNT溶液的浓度。谢谢[/color]

  • 关于碳纳米管的问题

    请问各位高手,单壁碳纳米管在PBS中有没有特征峰?有的话,大概在哪个位置。还有在循环伏安法中的cv扫描,如果用的电极不同,但底液检测物等都相同,那么对同一种物质的检测,其氧化还原峰还会大概在同一位置吗?新手上路,请多多指教,谢谢了!

  • 碳纳米管的Raman光谱实验请教

    我们研究小组新近涉及碳纳米管的领域。由于纳米管的Raman信号很弱,就是要重复不断的测试才能在1600cm-1的附近得到峰。请问具体操作条件应该怎么选。如laser的功率,解析度,扫描数scannumber等等,我们用的Raman仪器是(Brucker, RFS-100/S)。谢谢指教!

  • 【原创大赛】扫描电镜下的碳纳米管纳米铜等修饰的铂丝电极

    【原创大赛】扫描电镜下的碳纳米管纳米铜等修饰的铂丝电极

    http://ng1.17img.cn/bbsfiles/images/2012/01/201201010057_343495_1705310_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/10/2012010100001162_01_0_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/12/201112312356_343459_1705310_3.jpg拍摄时间:2011年12月样品名称:扫描电镜下的碳纳米管纳米铜等修饰的铂丝电极所使用的显微镜:扫描电镜以及数码相机的生产厂家和型号:日立S4800物镜及目镜放大倍数:如图中所示照明方式:明场

  • 碳纳米管拉曼光谱求助

    碳纳米管拉曼光谱求助

    用CVD方法制备的碳纳米管拉曼谱图见附件,请高手指点,1686cm-1左右的峰是什么峰?有没有文献提到过这个峰?谢谢!http://ng1.17img.cn/bbsfiles/images/2012/03/201203080748_353170_1671589_3.jpg

  • 请问碳纳米管负载了Au,如何溶样?

    催化剂是Au负载在碳纳米管上,用王水溶样,但发现Au并不能完全溶解下来,本来估计可以有1 ppm的浓度,可测试下来只有30多ppb。具体过程:1. 标样配置(0,0.5,1,5,10 ppm),加王水 4mL/50mL2. 溶样过程为:按1 ppm的量称量催化剂,而后加4 mL新鲜配置的王水,超声30 min,放置48 hr后稀释到刻度,对滤液分析。3. 催化剂是千分之二的重量负载比,称了25 mg左右来溶样。个人分析可能跟碳纳米管是疏水的,而王水是亲水的有关。虽然我超声了半个小时,可仍然无法完全使王水完全接触到Au颗粒。请问各位,这种特殊材料是否有特殊的溶样技巧?还是我的王水用量太少了?多谢!

  • 【分享】科学家研制新型含碳纳米管电池 寿命提高十倍

    【分享】科学家研制新型含碳纳米管电池 寿命提高十倍

    [img]http://simg.instrument.com.cn/bbs/images/brow/em09501.gif[/img][size=5]科学家研制新型含碳纳米管电池 寿命提高十倍[i]麻省理工学院科学家制造新手机电池的原材料——含碳纳米管[img]http://ng1.17img.cn/bbsfiles/images/2010/07/201007012132_228250_1638489_3.jpg[/img][/i][/size]

  • 【原创大赛】碳纳米管表面负载后官能团红外振动峰的变化

    【原创大赛】碳纳米管表面负载后官能团红外振动峰的变化

    实验目的: 研究酸化后的碳纳米管表面负载金属粒子后表面官能团的振动峰的强弱是否会有变化。实验背景:金属粒子催化剂一般具有比较好的催化性能,例如燃料电池催化剂,水电解催化剂等,但是金属纳米粒子在制备过程中如果不分散,它的表面积会减小,影响对应的催化活性,所以提高他的分散性对于保证催化剂粒子的催化活性就很重要。一般来说,通过将纳米粒子负载于碳载体上,例如炭黑或者碳纳米管上,可以保证纳米粒子的分散性,保证它具有比较大的比表面积。然而,纳米粒子在未处理的碳载体上还是会发生团聚,现在研究表明,对碳载体进行酸化可以减少团聚,然而对于酸化碳纳米管上究竟什么样的官能团对于提高分散性有帮助,进行的红外光谱的研究。实验所用的测试手段:傅里叶变换红外光谱(BRUKER EQUINOX55)推测结果:经过负载后的碳纳米管表面官能团红外振动峰减弱。分析: 通过下图红外光谱分析结果可以看到,在3500和1250 cm-1位置对应的羟基以及碳氧双键的振动峰并没有发生明显的改变,但是位于1730 cm-1位置处对应的羧基的伸缩振动峰在负载之后却明显的减弱,这一实验结果说明,对于酸化后的碳纳米管,其金属离子主要负载于羧基官能团处,而且因为金属粒子的负载,使得碳纳米管表面的羧基的振动峰减弱,即会对其表面官能团有影响。http://ng1.17img.cn/bbsfiles/images/2015/08/201508252229_562842_2257998_3.jpg结论:经过酸化后的碳纳米管表面负载金属粒子后表面官能团的振动峰会减弱,主要是在羧基的位置上进行负载来提高分散性。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制