当前位置: 仪器信息网 > 行业主题 > >

碳纳米管膜

仪器信息网碳纳米管膜专题为您整合碳纳米管膜相关的最新文章,在碳纳米管膜专题,您不仅可以免费浏览碳纳米管膜的资讯, 同时您还可以浏览碳纳米管膜的相关资料、解决方案,参与社区碳纳米管膜话题讨论。

碳纳米管膜相关的资讯

  • 首个10纳米以下碳纳米管晶体管问世
    据美国物理学家组织网2月2日(北京时间)报道,来自IBM、苏黎世理工学院和美国普渡大学的工程师近日表示,他们构建出了首个10纳米以下的碳纳米管(CNT)晶体管,而这种尺寸正是未来十年计算技术所需的。这种微型晶体管能有效控制电流,在极低的工作电压下,仍能保持出众的电流密度,甚至可超过同尺寸性能最好的硅晶体管的表现。相关研究报告发表在最新一期的《纳米快报》杂志上。  很多科研小组都致力研发小尺寸的晶体管,以切合未来计算技术对于更小、更密集的集成电路的需要。但现有的硅基晶体管一旦尺寸缩小,就会失去有效控制电流的能力,即产生所谓的“短沟道效应”。  在新研究中,科研人员舍弃硅改用单壁碳纳米管进行实验。碳纳米管具有出色的电气性能和仅为直径1纳米至2纳米的超薄“身躯”,这使其在极短的通道长度内也能保持对电流的闸门控制,避免“短沟道效应”的生成。而IBM团队研制的10纳米以下碳纳米管晶体管首次证明了这些优势。  科学家表示,理论曾预测超薄的碳纳米管将失去对于电流的闸门控制,或减少输出时的漏极电流饱和,而这都会导致性能的降低。此次研究的最大意义在于,证明了10纳米以下的碳纳米管晶体管也能表现良好,且优于同等长度性能最佳的硅基晶体管,这标志着碳纳米管可成为规模化生产晶体管的可行备选。  工程师在同一个纳米管上制造出若干个独立的晶体管,其中最小一个的通道长度仅为9纳米,而这个晶体管也表现出了极好的转换行为和漏极电流饱和,打破了理论的预言。当与性能最佳,但设计和直径不同的10纳米以下硅基晶体管进行对比时,9纳米的碳纳米管晶体管具有的直径归一化(漏)电流密度,可达到硅晶体管的4倍以上。而且其所处的工作电压仅为0.5伏,这对于降低能耗十分重要。此外,超薄碳纳米管晶体管的极高效能也显示出了其在未来计算技术中大规模使用的潜力。  总编辑圈点  没人不爱便携。所以电子元件抗拒不了“越缩越小”的命运。但对于碳纳米管晶体管,性能和尺寸却在“闹矛盾”:既往理论认为,如果缩到了15纳米以下的长度,那载体有效质量相对于其它半导体来说,就太小了,从而非常容易就隧穿和渗入设备——不受控制,这是身为电子元件所最不被看好的。不过,现在工程师们搞定了它,据其论文讲,问题发生在碳纳米管金属触点的物理模型有所不足,而此前的研究均忽视了这一点,没人仔细观察电子在通过那小小交界处时发生了什么。
  • 碳纳米管:个性十足的神奇材料
    p style="text-indent: 2em text-align: justify "近日,中国科学技术大学化学与材料学院杜平武教授课题组,首次利用纳米管稠环封端“帽子”模板,构建出纵向切割的纳米管弯曲片段。这种通过三个弯曲型分子连接两个石墨烯单元的方法,可直接得到纳米笼状结构,为构建封端锯齿型碳纳米管提供了新思路。相关研究成果发表在最新一期《德国应用化学》上。/pp style="text-indent: 2em text-align: justify "无独有偶。几乎在同时,以研制出世界上第一颗原子弹而闻名于世的洛斯阿拉莫斯实验室的研究人员,使用功能化碳纳米管生产出首个能在室温下使用通信波长发射单光子的碳纳米管材料。神奇材料碳纳米管,为何如此受各国科学家追捧?/pp style="text-indent: 2em text-align: justify "空间结构像“挖空的足球”/pp style="text-indent: 2em text-align: justify "1985年,“足球”结构的C60一经发现即吸引了全世界的目光。将“足球”挖空,保持表面的五角和六角网格结构,再沿着一个方向扩展六角网格,并赋予平面网格以碳—碳原子和共价键,就形成了具有中空圆柱状结构的碳纳米管。/pp style="text-indent: 2em text-align: justify "碳纳米管是一种具有特殊结构的一维量子材料。其主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管,层与层之间保持固定的距离,约0.34纳米,直径一般为2—20纳米。/pp style="text-indent: 2em text-align: justify "“可以将碳纳米管联想为头发丝,而实际上它的直径只有头发丝的几万分之一,即几万根碳纳米管并排起来才与一根头发丝相当。”杜平武教授告诉科技日报记者,作为典型的一维纳米结构,单层碳原子和多层碳原子网格卷曲而成的单壁与多壁碳纳米管,直径通常为0.8—2纳米和5—20纳米,目前报道的最细碳纳米管直径可小至0.4纳米。/pp style="text-indent: 2em text-align: justify "杜平武告诉记者,碳纳米管可以看做是石墨烯片层卷曲而成,因此按照石墨烯片的层数可分为:单壁碳纳米管和多壁碳纳米管。若依其结构特征,碳纳米管则可分为扶手椅形纳米管和锯齿形纳米管等几种类型。/pp style="text-indent: 2em text-align: justify "制备方法是挑战/pp style="text-indent: 2em text-align: justify "“通常的碳纳米管制备方法主要有电弧放电法、激光烧蚀法、化学气相沉积法、固相热解法、辉光放电法、气体燃烧法以及聚合反应合成法等。”杜平武告诉记者,电弧放电法是生产碳纳米管的主要方法。1991年日本物理学家饭岛澄男就是从电弧放电法生产的碳纤维中首次发现的碳纳米管。“这种方法比较简单,但很难得到纯度较高的碳纳米管,并且得到的往往都是多层碳纳米管,而实际研究中人们往往需要的是单层碳纳米管。”/pp style="text-indent: 2em text-align: justify "“随后科研人员又发展出了化学气相沉积法,在一定程度上克服了电弧放电法的缺陷,得到的碳纳米管纯度比较高,但管径不整齐,形状不规则。”杜平武说,后续逐步发展起来的固相热解法等,均受限于环境和条件。/pp style="text-indent: 2em text-align: justify "“碳纳米管的制备过程与有机合成反应类似,其副反应复杂多样,很难保证同一炉碳纳米管均为扶手椅形纳米管或锯齿形纳米管。”杜平武说,在强酸、超声波作用下,碳纳米管可以先断裂为几段,再在一定纳米尺度催化剂颗粒作用下增殖延伸,而延伸后所得的碳纳米管与模板的卷曲方式相同。/pp style="text-indent: 2em text-align: justify "“如果通过类似于DNA扩增的方式对碳纳米管进行增殖,那么只需找到少量的扶手椅形纳米管或锯齿形纳米管,便可在短时间内复制、扩增出数量几百万倍于模板数量的、同类型的碳纳米管。”杜平武说,这可能会成为制备高纯度碳纳米管的新方式。/pp style="text-indent: 2em text-align: justify "性能及尺寸超越硅基材料/pp style="text-indent: 2em text-align: justify "“碳纳米管具有完美的一维管式结构,碳原子以碳—碳共价键结合,形成自然界中最强的化学键之一,因此轴向具有很高的强度和韧性。此外六角平面蜂窝结构围成的管壁侧面没有悬挂键,所以碳纳米管具有稳定的化学特性。”杜平武说,碳纳米管优异的性能表现在电学、热学和光学等方面,具有超越传统的导电、导热特性等等。/pp style="text-indent: 2em text-align: justify "2013年,斯坦福大学科学家制备了由平行排列的单壁碳纳米管为主要元器件的世界上最小“计算机”。近两年,碳纳米管电子器件的性能及尺寸又一次次被突破,势在超越并最终取代目前商用的硅基器件。/pp style="text-indent: 2em text-align: justify "碳纳米管还可以制成透明导电的薄膜,用作触摸屏的替代材料。且原料是甲烷、乙烯、乙炔等碳氢气体,不受稀有矿产资源的限制。碳纳米管触摸屏具有柔性、抗干扰、防水、耐敲击与刮擦等特性,可以做成曲面,已在可穿戴装置、智能家具等领域得到应用。/pp style="text-indent: 2em text-align: justify "碳纳米管还给物理学家提供了研究毛细现象的最细毛细管,给化学家提供了进行纳米化学反应的最细试管,科学家甚至研制出能称量单个原子的“纳米秤”。“我国在碳纳米管材料的基础研究方面处于领先地位,结构均一性的控制方法和理论不断创新,控制指标也逐年刷新。”杜平武说。/p
  • 苏州纳米所在大载流、高导电碳纳米管复合薄膜研究方面获进展
    导体材料是信息交互、电能传输和力、热、光、电、磁等能量转换的基础性材料,在航空航天、新能源汽车、电力线路等领域具有重要应用价值。随着大功率器件的发展,对轻量化、大载流、高导电性材料的需求越来越迫切。单根单壁碳纳米管(SWCNT)拥有极高的载流能力和电导率,载流能力比传统金属铜高出2~3个数量级,电导率更是银的1000倍以上。然而,当SWCNT组装成宏观薄膜的时候,由于碳管间电子/声子散射的影响,载流能力和电导率会显著降低,从而制约SWCNT薄膜在大功率器件领域的应用。 针对上述问题,中国科学院苏州纳米技术与纳米仿生研究所研究员康黎星等提出并研制了新型大载流、高导电碳纳米管复合薄膜材料。研究团队采用化学气相输运法将CuI均匀高效地填充到SWCNT管腔中,制备出CuI@SWCNT一维同轴异质结。SWCNT对CuI具有保护作用,保持了CuI的电化学活性,使其能够在恶劣的酸性环境和长期电化学循环下保持稳定性。研究通过电学测量发现,CuI@SWCNT薄膜相较于SWCNT薄膜具有更优的电导率和更强的载流能力,其载流能力提升4倍,达到2.04×107 A/cm2,电导率提升8倍,达31.67 kS/m。  SWCNT填充CuI后,SWCNT中电子流向CuI,导致SWCNT的费米能级降低;同时,CuI@SWCNT一维范德华异质结中SWCNT的结构未被破坏,载流子依然保持高效的传递速率,进而使得CuI@SWCNT薄膜具有更高的导电性和载流能力。CuI@SWCNT复合薄膜在未来高功率电子器件、大电流传输等应用中具有潜力。 相关研究成果以CuI Encapsulated within Single-Walled Carbon Nanotube Networks with High Current Carrying Capacity and Excellent Conductivity为题,发表在《先进功能材料》(Advanced Functional Materials)上。研究工作得到国家重点研发计划和国家自然科学基金等的支持。
  • 高性能碳纳米管透明导电薄膜研究取得进展
    p style="text-indent: 2em "透明导电薄膜是触控屏、平板显示器、光伏电池、有机发光二极管等电子和光电子器件的重要组成部件。氧化铟锡(ITO)是当前应用最为广泛的透明导电薄膜材料,但ITO不具有柔性且铟资源稀缺,难以满足柔性电子器件等的发展需求。单壁碳纳米管(SWCNT)相互搭接形成的二维网络结构具有柔韧、透明、导电等特点,是构建柔性透明导电薄膜的理想材料。但已报道SWCNT薄膜的透明导电性能仍与ITO材料有较大差距。/pp style="text-indent: 2em "因此,进一步提高SWCNT薄膜的透明导电特性是实现其器件应用的关键。分析表明,SWCNT透明导电薄膜中的管间接触电阻和管束聚集效应是制约其性能提高的主要瓶颈。一方面,由于SWCNT之间的接触面积小且存在肖特基势垒,载流子在搭接处的隧穿效应较弱,使得管间接触电阻远高于SWCNT的自身电阻;另一方面,虽然SWCNT的直径一般仅为1-2nm,但由于范德华力的作用其通常聚集成直径几十、上百纳米的管束以降低表面能;管束内部的SWCNT会吸光而降低薄膜的透光率,但对薄膜的电导几乎没有贡献。因此,研制高性能SWCNT柔性透明导电薄膜的关键是获得单根分散、低接触电阻的SWCNT网络结构。/pp style="text-indent: 2em "最近,中国科学院金属研究所与上海科技大学物质学院联合培养的博士研究生蒋松在金属所先进炭材料研究部的导师指导下与合作者采用浮动催化剂化学气相沉积法制备出具有“碳焊”结构、单根分散的SWCNT透明导电薄膜(图1A)。 /pp style="text-indent: 2em text-align: center "span style="text-align: center text-indent: 0em "img src="http://img1.17img.cn/17img/images/201805/insimg/d1a3d102-e0c5-4683-b29e-cc493258961c.jpg" title="1 高性能碳纳米管透明导电薄膜研究取得进展 仪器信息网.jpg"/ /span/pp style="text-align: center text-indent: 2em "span style="color: rgb(127, 127, 127) font-size: 14px "图1. 单根分散、具有碳焊结构的SWCNT网络。/span/pp style="text-indent: 2em text-align: center "span style="color: rgb(127, 127, 127) font-size: 14px "(A)典型TEM照片;(B)单根SWCNT的百分含量统计;/span/pp style="text-indent: 2em text-align: center "span style="color: rgb(127, 127, 127) font-size: 14px "(C-D)无碳焊结构的金属性-半导体性SWCNT的I-V传输特性;/span/pp style="text-indent: 2em text-align: center "span style="color: rgb(127, 127, 127) font-size: 14px "(E-F)有碳焊结构的金属性-半导体性SWCNT的I-V传输特性。/span/pp style="text-indent: 2em "通过控制SWCNT的形核浓度,所得薄膜中约85%的碳管以单根形式存在(图1B),其余主要为由2-3根SWCNT构成的小管束。进而,通过调控反应区内的碳源浓度,在SWCNT网络的交叉节点处形成了“碳焊”结构(图1A)。/pp style="text-indent: 2em "研究表明该碳焊结构可使金属性-半导体性SWCNT间的肖特基接触转变为近欧姆接触(图1C-F),从而显著降低管间接触电阻。由于具有以上独特的结构特征,所得SWCNT薄膜在90%透光率下的方块电阻仅为41Ω □-1;经硝酸掺杂处理后,其方块电阻进一步降低至25Ω □-1,比已报道碳纳米管透明导电薄膜的性能提高2倍以上,并优于柔性基底上的ITO(图2A-B)。利用这种高性能SWCNT透明导电薄膜构建了柔性有机发光二极管(OLED)原型器件,其电流效率达到已报道SWCNT OLED器件最高值的7.5 倍(图2C-D),并具有优异的柔性和稳定性。/pp style="text-align: center text-indent: 2em "img src="http://img1.17img.cn/17img/images/201805/insimg/31a1c88d-964d-4fda-af47-d5b192bb42f2.jpg" title="2高性能碳纳米管透明导电薄膜研究取得进展 仪器信息网.jpg"//pp style="text-align: center text-indent: 2em "span style="font-size: 14px color: rgb(127, 127, 127) "图2. SWCNT 柔性透明导电薄膜和SWNCT 有机发光二极管。/span/pp style="text-indent: 2em "span style="font-size: 14px color: rgb(127, 127, 127) "(A-B)SWCNT 柔性透明导电薄膜的光学照片及其透明导电性能对比;(C-D)SWCNT 有机发光二极管原型器件的光学照片及其光电性能对比。/span/pp style="text-indent: 2em "该研究从SWCNT网络结构的设计与调控出发,有效解决了限制其透明导电性能提高的关键问题,获得了具有优异柔性和透明导电特性的SWCNT薄膜,可望推动SWCNT在柔性电子及光电子器件中的实际应用。主要研究结果于5月4日在Science Advances在线发表(Sci. Adv. 4, eaap9264 (2018),DOI: 10.1126/sciadv.aap9264)。该研究工作得到了科技部、基金委、中科院等部署的相关项目的支持。/p
  • 超长碳纳米管,具有超耐疲劳性
    p超强超韧和超耐疲劳性能的材料在航空航天、军事装备、防弹衣、大型桥梁、运动器材、人造肌肉等众多领域都面临巨大的需求。碳纳米管是典型的一维纳米材料,也是目前已知的力学强度最高和韧性最好的材料,其宏观强度和韧性均比目前广泛使用的碳纤维和芳纶等材料高出一个数量级以上。然而,由于其小尺寸特性以及难以被测试的特点,单根碳纳米管的疲劳行为以及疲劳破坏机制研究是该领域长期未能搞清楚的难题。由于疲劳可以在应力水平远低于静态断裂强度的情况下发生,探究疲劳行为和潜在的破坏机制对于新材料的应用和长期可靠性评估具有重要意义。/pp清华大学化工系魏飞教授和张如范副教授团队首次以实验形式测试了厘米级长度单根超长碳纳米管的耐疲劳性。相关成果以《超耐久性的超长碳纳米管》Super-durable Ultralong Carbon Nanotubes为题,于北京时间8月28日在线发表在Science上。论文通讯作者为清华大学化工系魏飞教授和张如范副教授,第一作者为清华大学化工系2016级博士生白云祥,其他参与研究的作者包括清华大学化工系硕士生岳鸿杰、博士生申博渊、孙斯磊,清华大学航天航空学院李喜德教授、徐志平教授、王海东副教授以及博士生王进、王识君。/pp为开展单根厘米级长度碳纳米管的疲劳力学行为测试,研究团队设计搭建了一个非接触式声学共振测试系统(non-contact acoustic-resonance-test,ART)。与基于电子显微镜的纳米材料测试系统相比,ART系统具有多方面优势,该系统不仅避免了电子束导致的样品损伤,也使得厘米长度的一维纳米材料的疲劳测试成为可能,同时还解决了小尺寸样品夹持以及高周次循环载荷的施加问题。/ppimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/707985f2-b550-4548-8fd2-93d9b63b7f67.jpg" title="WPS图片-修改尺寸.png" alt="WPS图片-修改尺寸.png"//pp图1. 超长碳纳米管的结构和疲劳测试方案/pp研究人员发现,碳纳米管具有十分优异的耐疲劳性。碳纳米管的耐疲劳性受到温度的影响,随着温度的升高而下降。/ppimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/03f5233e-64b7-445d-b109-463ad187bb7a.jpg" title="WPS图片-修改尺寸(1).png" alt="WPS图片-修改尺寸(1).png"//pp图2. 室温下的超长碳纳米管的耐疲劳性/pp同时,研究人员还对疲劳破坏的机制进行了探究。结果发现,与一般传统材料的疲劳损伤累积机制不同,其疲劳破坏呈现出整体破坏性,未发现损伤累积过程,初始缺陷的生成对碳纳米管的疲劳寿命起主导作用。/ppimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/0fc5bc6f-f72c-4bfc-bf5a-71ce4dd46051.jpg" title="WPS图片-修改尺寸(2).png" alt="WPS图片-修改尺寸(2).png"//pp图 3. 不同温度下的碳纳米管耐疲劳性/pp这项工作揭示了超长碳纳米管用于制造超强超耐疲劳纤维的光明前景,同时为碳纳米管各领域相关应用的寿命等设计提供了参考依据。/ppbr//p
  • 单一手性碳纳米管高通量宏量分离
    单一手性碳纳米管的宏量制备是构建高速、低功耗碳基电子、光电子器件的前提和关键。碳纳米管由于其极高的载流子迁移率、结构可调的带隙和纳米级的尺寸,被认为是后摩尔时代制备高性能电子器件的理想材料。然而前期的研究表明,不同碳纳米管即使微小的结构差异(比如相同直径,不同手性角)也会导致其巨大的光、电性质差异(Nat. Commun., 2023, 14, 1672 Adv. Funct. Mater. 2022, 32, 2107489),而且不同结构碳纳米管之间还会发生光电耦合效应(Nano Res., 2023, 16, 1820 Nano Res2020, 13, 1149)。生长制备的不同结构碳纳米管混合物严重阻碍了其性质研究及器件应用。因此,单一手性碳纳米管规模化制备是碳纳米管领域一直以来追求的目标。然而目前为止,无论是生长还是分离,单一手性碳纳米管的规模化制备仍然面临着巨大的挑战。中国科学院物理研究所/北京凝聚态物理国家研究中心先进材料与结构分析实验室A05组刘华平研究员团队长期致力于单一手性碳纳米管的分离制备。早在2011年他们首次将凝胶色谱法应用于单一手性碳纳米管的分离制备 (Nat. Commun. 2011, 2, 309),随后他们发展了多种分子调控技术,实现了20余种单一手性碳纳米管甚至镜像体的分离 (Adv. Sci. 2022, 9, 2200054 Nano Lett. 2014, 14, 6237;Nano Lett., 2013, 13, 1996)。近年他们通过二元表面活性剂体系与温度协同调控,实现了多种近锯齿型单一手性碳纳米管次毫克量级分离 (Sci. Adv., 2021, 7, eabe0084)。然而这样的产量仍然无法满足碳纳米管的实际应用需求。最近,该团队博士后杨德华在刘华平研究员指导下,发现凝胶色谱法分离碳纳米管手性结构的过程中,增加碳纳米管浓度,有利于促进其从流动相输运到凝胶表面,增强其在凝胶上的吸附,进而增加碳纳米管的分离效率和分离产量。然而利用传统的分散方法很难制备高浓度单分散碳纳米管溶液。为了解决这一关键科学问题,他们发展了一种再分散技术,通过超声分散-离心除杂-再分散过程,将单分散碳纳米管溶液的浓度从0.19毫克/毫升增加到了约1毫克/毫升。利用高浓度碳纳米管的分散液作为母液,单一手性碳纳米管的分离效率和产量提高6倍以上,实现了(6, 4), (6, 5), (11, 1), (7, 5), (7, 6), (8, 3), (8, 4) 以及(9, 1)等多种单一手性碳纳米管毫克量级分离。该技术同样适用于低成本的碳纳米管/石墨烯杂化物原材料。利用这种原材料的高浓度分散溶液,单一手性碳纳米管的分离产量提高一个数量级以上,达到次毫克量级。通过生命周期和技术经济评估,利用高浓度单分散碳纳米管溶液作为母液分离单一手性碳纳米管,在能耗和成本方面可以减少80-90%。因此目前的分散和分离策略为单一手性碳纳米管产业化分离提供了重要途径。以上研究成果以“Preparing high-concentration individualized carbon nanotubes for industrial separation of multiple single-chirality species”为题,于4月29日在Nature Communications (Nat. Commun. 2023, 14, 2491)期刊发表。中科院物理所周维亚研究员和魏小均副研究员参与了该项工作。清华大学魏飞教授提供了碳纳米管/石墨烯杂化物原材料。研究生李林海、刘玉敏参与了部分分离工作,李潇、席薇、张月娟参与了光谱、电镜等的表征工作。该工作还曾得到已故解思深院士的支持和指导。上述研究工作得到了国家重点研发计划项目(grant nos. 2020YFA0714700 and 2018YFA0208402)、国家自然科学基金项目(grant nos. 51820105002, 51872320, 51472264,11634014, and 52172060)、以及中科院项目(grant no. XDB33030100, QYZDBSSW-SYS028, and 2020005)的支持。
  • 妙手偶得的碳纳米管物理分离法
    一位小朋友摸到静电球的球壳,头发立刻像刺猬般根根直竖,这是科技馆里很常见的场景。如果一个碳纳米管束被人为附加上足够的电荷,又会是怎样一幅景象呢?  当碳纳米管束带的电荷达到一定程度时,在电子显微镜下,它会形成一种独特、新奇的像树一样的放射状格局。不仅如此,这些呈树枝状分离的碳纳米管还具有较小的直径(3纳米),有的甚至是单根的碳纳米管。这是国家纳米科学中心研究员孙连峰与中国科学院物理所解思深院士等人合作研究的最新成果。这项工作得到了国家自然科学基金和中国科学院“百人计划”等的资助。相关成果发表在最新一期的《纳米快报》上。  遭遇瓶颈的化学分离方法  单壁碳纳米管是一种具有战略意义的新兴材料,它在复合材料、平板显示器、真空电子器材、生物探测器、抗电磁干扰材料等方面有广泛的应用。  目前,科研人员已经能够根据需要大量制备单壁碳纳米管。“但是,由于单壁碳纳米管结构独特,性质奇异,管与管之间存在比较大的相互吸引力,科学家所制备的碳纳米管往往相互纠缠,形成碳纳米管束。”孙连峰说,“如果不能有效地分离出单根碳纳米管,就意味着无法对单根碳纳米管器件的制备及其物理特性展开相关研究。因此,如何将碳纳米管分离是需要研究解决的重要问题。”  电泳分离法和层离法是现在最常用的碳纳米管束分离方法。孙连峰指出,这些现在常用的分离方法大多是化学方法。这些方法往往涉及到多种化学试剂(如表面活性剂)的使用,并且需要经过多步物理、化学过程才能完成。这些化学方法虽然可以有效地分离出单根碳纳米管,但由于存在掺杂效应,可能改变了碳纳米管本身的固有性质,而且得到的单壁管长度也大都不理想。  比如说,电泳分离法就首先要使用表面活性剂对碳纳米管束进行处理,然后使用超声波冲击,最后在电泳池里分离。“这就产生了许多问题,碳纳米管有可能吸附表面活性剂分子从而改变自身的物理特性,从而使原来呈现的金属性或者是半导体性发生改变 另外,超生波的冲击还可能会破坏碳纳米管的结构,即便最后能够获得结构完整的管,一般来说长度也只有200纳米左右。”孙连峰说,“这给后续研究造成了诸多不便。因此,探索全新的、避免化学修饰的分离方法,是单壁碳纳米管以及器件研究的一个重要问题。”  意外发现的物理分离方法  “发现静电对碳纳米管束的分离作用纯属偶然。”孙连峰笑道,“一开始我们并没有计划要用电流来分离碳纳米管束,只是进行另一个实验的时候,意外发现了当碳纳米管束带有大量电荷的时候会产生‘爆炸’现象。”  这种碳纳米管束意外分离的现象当然引起了他们的关注,为了寻找“爆炸”的原因,他们进行了大量实验。  孙连峰解释说:“这种分离方法实际上利用的是最基本的同种电荷相互排斥的原理,让一束单壁碳纳米管带上同种电荷,当电荷之间的排斥力大于管之间的相互吸引力时,‘爆炸’就发生了。”  孙连峰把这种全新的碳纳米管物理分离方法命名为库仑爆炸法。相互分离的碳纳米管形成的那种独特、新奇的放射状格局,非常类似于科技馆里小朋友触摸静电球后怒发冲冠的样子,于是它被称为“纳米树”(nanotree)。纳米树的树枝大小和长度不一,有的树枝可能就是单根的单壁碳纳米管,长度则可以达到5微米以上。  为了确认库仑爆炸法并没有破坏分离后的碳纳米管的结构,孙连峰研究组进行了大量的验证工作。  通过原子力显微镜(AFM)、拉曼光谱(Raman)等实验证明,库仑爆炸法并不会破坏碳纳米管本身的结构。  另外,孙连峰研究组还利用碳纳米管均匀带电模型,对发生库仑爆炸所需的理论电压进行了计算,结果与实验数值十分接近。  不过,孙连峰对库仑爆炸法还是表示了谨慎的乐观。他指出,由于用于分离的碳纳米管束形状和结构不一,库仑爆炸法的可控性还不是很理想。  接下来,孙连峰准备在库仑爆炸法分离出来的纳米树上,测试单壁碳纳米管的物理特性,以及分离后单壁碳纳米管加上电极后会有什么有趣的事情发生。  “虽然每个纳米树的形状可能都不一样,但如果只是选取一个三端或者是四端结构的话,实际上我们已经制备出了多端器件的雏形,希望我们接下来的工作能够将多端器件研究向前推进一大步。”孙连峰说。
  • 人体内首次检测出碳纳米管
    科技日报北京10月22日电 法国研究人员从居住在巴黎的儿童肺部发现了碳纳米管,这是碳纳米管首次在人体内被检测出来。  由于具有超强韧性、重量轻和导电性能佳等特性,碳纳米管在诸如计算机、服装、医疗保健等领域显示出了巨大的应用潜力。但是,小鼠实验表明,注入碳纳米管可引起类似于由石棉引发的免疫反应,这让人们对碳纳米管的使用产生了一些疑虑。  为此,巴黎萨克莱大学的法特希穆萨及其同事展开了研究。据《新科学家》杂志网站20日报道,他们分析了64个哮喘患儿气管中体液的样本,在所有样本中都发现了碳纳米管 而在取自另外5名儿童肺部的巨噬细胞中,也有碳纳米管存在。  目前尚不清楚这些儿童肺部的碳纳米管含量水平以及它们的来源,虽然该研究小组在巴黎采集的灰尘和汽车尾气样本中也发现了类似的结构。  穆萨指出,即使碳纳米管没有直接毒性,但它们的表面积较大,其他分子易于黏附,因而可能有助于污染物质深入到肺部并穿过细胞膜。他说,虽然他们的研究目的并不是要找出肺部存在碳纳米管与这些儿童的疾病之间有什么关联,但哮喘病人可能会因碳纳米管的存在而显得特别脆弱,因为他们的巨噬细胞清除“垃圾”的能力受损了。  美国北卡罗莱纳州立大学的詹姆斯邦纳表示,应该谨慎对待碳纳米管被检测出一事,因为多年来针对空气污染的其他研究并没有发现碳纳米管。在他看来,这些结构,尤其是患者肺部细胞中的物质到底是什么,还存在很大的不确定性。  至于潜在的健康影响,英国伦敦大学玛丽女王学院的乔纳森格里格认为,碳纳米管不可能具有像石棉纤维那样的致癌潜力,因为石棉纤维更大,容易被困在肺部组织内。他指出,即使人们吸入了碳纳米管,这也没什么新鲜的,化石燃料中可能就有碳纳米管,对此肯定还需要开展更多的研究。
  • 天津率先实现碳纳米管触控屏产业化
    记者日前在天津开发区了解到,天津富纳源创科技有限公司通过产学研结合,成功的实现了全球首个碳纳米管触控屏的产业化,目前已生产碳纳米管触控屏700万片,月产规模达到150万片,成功的为华为、酷派、中兴等手机配套。  上世纪九十年代碳纳米管的发现,让世界掀起了一股碳纳米管研究热。由于技术和工艺的复杂性这一技术至今绝大部分还处于实验室阶段。中科院院士、清华大学教授范守善告诉记者,碳纳米管技术是目前世界最前端技术之一,由于碳纳米管材料具有许多传统材料难以达到的特性,一直是各国科学家竞相研究课题。  据介绍,富纳源创采用碳纳米管导电膜生产触控屏幕,与传统氧化铟锡膜(ITO)比较,有四大优势:一是原材料是碳,不用稀有金属铟,材料成本低 二是可挠曲、高抗弯折、耐敲击与刮擦性 三是具导电异向性,可设计新原理触控屏幕,避免其他厂商专利诉讼 四是生产工艺简单、耗能低、污染低,满足节能环保的要求。  据了解,这一技术成功实现产业化是清华大学范守善院士领导的团队与富士康集团长期合作的结果。早在1995年范守善院士开始从事碳纳米管的研究,2000年富士康集团与清华大学合作成立了纳米科技研究中心。而后他们相继在碳纳米管基础研究和技术装备领域取得了一系列突破,依靠自身力量开发出超薄电容式碳纳米管触控屏幕和多点电容式碳纳米管触控屏幕。目前他们生产的触控屏幕尺寸从1.52英寸至10英寸均已实现量产,围绕这一产品获取授权专利107项。
  • 北京大学碳纳米管光电器件研究取得新进展
    北京大学信息科学技术学院博士研究生杨雷静与王胜副研究员作为共同第一作者所撰写的论文Efficient photovoltage multiplication in carbon nanotubes,于2011年11月1日在《自然》子刊《自然?光子学》(Nature Photonics, 2011, 5, PP.672-676)上发表。该论文报道了碳纳米管光电器件研究的重要突破,也是电子学系彭练矛教授研究组在碳纳米管器件研究领域所取得的最新进展。  在地球资源日益匮乏的今天,太阳能作为重要的替代能源具有很多不可超越的优势。基于纳米尺度新材料的太阳能光伏器件研究是当前国际太阳能光伏领域研究的热点。碳纳米管是直接带隙材料,一直被认为可能在构建下一代太阳能电池中发挥重要影响。并且,半导体的单壁碳管具有独特的能带结构,以及很好的紫外到近红外的宽谱光吸收特性,可以充分地吸收利用太阳光。先前的研究已证明,碳管材料构建的光伏器件具有光生载流子倍增效应,利用这种效应构建的太阳能电池可能超越理论上预计的单个太阳能电池效率极限。但是大多数典型半导体碳管器件的光电压一般小于0.2V,对于实际应用而言小得难以满足需要。如何非常高效地级联碳管太阳能电池以获得高的光电压输出,就成为碳管光伏器件领域富有挑战性的工作之一。  碳管级联太阳能电池模块示意图  彭练矛研究组提出采用虚电极对接触方法,无需传统的掺杂工艺即可有效地使器件的光电压产生倍增,具体说来,在一根10μm长的碳管上级联5个电池单元,就可以获得大于1V的光电压。这项工作是在彭练矛研究组一系列前期研究的基础上实现的。2008年,研究组提出采用非对称接触电极的方法实现无需掺杂制备碳纳米管二极管,研究结果发表在《先进材料》(Advanced Materials, 2008, 20, 3258)上。 在此基础上,采用近乎同样但经过改进的工艺,又于今年实现了第一个真正意义上的碳管红外发光二极管(LED),其研究论文发表在《纳米快讯》(Nano Letters, 2011, 11, 23)上。  这项研究得到了国家重大科学研究计划和国家自然科学基金委员会的资助。
  • 碳纳米管技术首次检测出太赫兹光子
    光有X光、红外线、紫外线等很多种类,其中最受科学家关注的是“太赫兹光”。太赫兹光不仅能够观察无法看见的分子的运动,还可以用于癌症检查等,用途十分广泛。但迄今为止,人类对太赫兹光的检测以及产生这种光源都非常困难,属于未知领域。  光具有波和粒子两重特性。2006年日本理化学研究所石桥研究小组利用“碳纳米管”的微小结构在世界上首次检测出太赫兹光子。  在天然原子中,围绕原子核的电子具有分散的能量。把电子封闭在直径数纳米的碳纳米管内,电子就会像在天然原子中一样具有能量,与所藏身的碳纳米管一起形成“人工原子”。改变纳米管的长度,电子能量的间隔会随之发生自由变化。  研究小组向“碳纳米管人工原子”照射太赫兹光,在液态氦温度环境下检测出了人工原子内的电子吸收太赫兹光等现象。这与爱因斯坦的“光电效果”是同一原理。  太赫兹波介于电磁波粒子特性极强的光和强电波之间的周波带,有利于生物体检测和环境诊断。目前对太赫兹波的光源和检测器的开发仍处于落后状态,这一研究成果对利用太赫兹波开发高敏感度检测仪器具有重要意义。同时,对碳纳米管新功能量子纳米级设备的开发提供了新的手段。
  • 等离子体修饰碳纳米管在污染物处理方面取得进展
    低温等离子改性接枝是一种处理时间短、不产生化学污染、不破坏材料的整体体积结构、仅仅改变材料表面性能的处理技术。近年来,等离子体所“低温等离子体应用研究室”陈长伦、邵大冬、胡君、王祥科等所在的课题组利用低温等离子体技术对碳纳米管进行表面修饰改性组装,克服了碳纳米管的难溶性带来的制约等问题,大为提高了其实际应用程度。  该课题组在用低温等离子体技术对碳纳米管进行改性组装后,将其应用于环境污染物检测和治理研究方面,取得了一系列成果。  一是分别利用Ar/H2O,Ar/NH3,Ar/O2微波等离子体对碳纳米管进行表面处理,使其表面引入含氧、含氨基等功能基团,提高了碳纳米管的亲水性和分散性,使其可制备纳米溶液。这些经过处理的(表面修饰的)功能化材料对改善碳纳米管在生物、环境污染物吸附等方面,具有很好的应用前景。部分研究结果发表在Applied Physics Letter (2010, 96, 131504) Carbon (2010, 48, 939-948) The Journal of Physical Chemistry C (2009, 113, 7659-7665) Diamond & Related Materials (in press) 并受邀请在国际会议上做2次口头报告。  二是利用N2射频等离子体对碳纳米管表面进行活化处理,然后接枝上有机单体和天然高分子材料,制备碳纳米管/有机物复合材料。等离子体制备的复合材料表面具有各种功能基团,这些功能基团对持久性有机污染物(POPs)、有毒有害的重金属离子、放射性核素具有强的吸附、络合能力,因而提高了复合材料对污染物的吸附能力。部分研究结果发表在The Journal of Physical Chemistry B (2009, 113, 860-864) Chemosphere (2010, 79, 679-685) Plasma Processes and Polymers (in press,并被选为封面)。  三是碳纳米管由于尺度小,使其在吸附处理有机/无机污染物后,在回收和循环利用纳米材料方面具有很大的难度。采用传统的离心法需要高的转速,过滤法易导致过滤膜堵塞,如果吸附污染物的碳纳米管进入环境,会产生二次污染。针对上述问题,该课题组采用溶胶—凝胶法,首先在碳纳米管上组装上铁氧化物,然后利用N2射频等离子体对碳纳米管/铁氧化物表面进行活化处理,接枝上有机单体和天然大分子材料,制备出磁性多重复合纳米材料,该磁性复合纳米材料不仅具有高的吸附性能,且磁分离技术可以简单方便地把磁性复合纳米材料从溶液中分离出来,解决了固液分离的难题,同时可以大量的应用到实际工作中。部分相关研究成果发表在Environmental Science and Technology (2009,43,2362-2367) Journal of Hazard Material (2009,164, 923-928) Journal of Physical Chemistry B (jp-2009-11424k)。  该工作得到了国家自然科学基金,科技部973重大研究计划“面向持久性有毒污染物痕量检测与治理的纳米材料应用基础”,中科院合肥物质科学研究院重大项目,合肥研究院人才项目和火花项目,中科院新型薄膜太阳能电池重点实验室基金等经费的支持。
  • 科学家研制新型含碳纳米管电池 寿命提高十倍
    麻省理工学院科学家制造新手机电池的原材料-----含碳纳米管  随着智能手机在功能性方面的不断进步,电池续航能力及寿命却越来越无法满足用户的需求。智能手机用户抱怨称,手机耗电能力就像孩子消耗糖果一样的迅速。目前,一种全新的便携式电子产品可充电电池制造科技为解决这一问题带来曙光,根据新制造科技制造出来的电池蓄电力为目前电池的十倍。  麻省理工学院科学家发现在电池一端电极使用含碳纳米管可以比现在的锂电池蓄存更多的电力。科学家们在实验室中使用多层含碳纳米管制造电池的正极,同时使用锂钛氧化物制造电池的负极。这种电池充电效率及蓄电能力远比目前最高端的锂电池更优良。为验证含碳纳米管电池在使用寿命方面的表现,科学家对新研发的含碳纳米管电池进行1000次充放电实验。结果在经历1000次充放电后,含碳纳米管电池内的物质属性变化极微,电池蓄电力丝毫未见减少。这也就证明,含碳纳米管电池拥有比锂电池更长的使用寿命。  对于使用智能手机及其他便携式电子产品的用户来说,这无疑是一个好消息。但目前这种含碳纳米管电池仍仅处于实验室研发阶段。制约这种新型电池普及的主要原因在于,含碳纳米管基板在制成电池电极之前需要在两种不同的电池溶解液中浸泡,而这一过程极其费时。麻省理工学院化学工程系教授保拉-哈蒙德(Paula Hammond)宣称,她的研究团队目前正在努力寻找解决这一问题的方法。目前提出的最可行解决方法为通过向含碳纳米管基板喷洒可替代性物质取代其在电池溶解液中浸泡的耗时过程。  相信这种含碳纳米管制成的电池在不久的未来即可上市,届时使用智能手机的用户将不再需要为手机电量不够等问题而费神。
  • 化学所与索尼公司合作实现单壁碳纳米管选择性分离/富集
    自单壁碳纳米管被发现以来,其优异的电学性能引起了广泛的关注。但是,现有方法制备的单壁碳纳米管都是金属性管和半导体性管的混合物,两种管的互相影响会降低彼此的器件性能。为使金属性管和半导体性管各尽其用,而不是互相影响进而降低彼此的器件性能,单壁碳纳米管的分离/富集就显得尤为重要,并成为本领域一个亟待解决的瓶颈问题。  化学所有机固体院重点实验室与日本索尼公司先进材料实验室的科研人员合作,在单壁碳纳米管分离/富集领域取得了新进展,有关研究成果申请了发明专利并发表在近期的《先进材料》(Adv. Mater., 2009, 21, 813-816)上。  他们采用实验室常用的化学气相沉积装置(图1),在400摄氏度的高温下通入刻蚀性气体,从而实现了单壁管的选择性分离/富集。与当前广泛报导的溶液分离方法选择性反应(刻蚀)金属性碳管不同,这种气相刻蚀的方法选择性刻蚀半导体性单壁管(图2),被刻蚀的碳管转化为二氧化碳气体排出装置外,而金属性单壁管则被保留在了装置内。本方法对于不同直径范围的半导体管均有选择性刻蚀作用,尤其是对于直径小于1.18 nm半导体管,刻蚀效率高达90%。此外,本方法还具有成本低廉,操作方便,易于规模化及对金属性碳管破坏性小等优点,为大规模富集金属性单壁碳纳米管提供了一个新的思路。北京大学物理系相关教授还利用密度泛函法对选择性刻蚀进行了理论计算。     图1 用于气相刻蚀的电炉装置     图2 选择性分离前后碳管样品的Raman 光谱(a,b),及紫外可见近红外光谱(c,d)
  • 上海交大联合MIT打造最黑碳纳米管——光学检测的艺术
    p  strong仪器信息网讯/strong 目前,世界最黑的物质是由英国Surrey Nanosystems公司制造的”Vantablack(梵塔黑)”。然而,上海交通大学的崔可航和麻省理工学院的布莱恩· 沃德尔(Brian Wardle)发表在ACS Applied Materials & Interfaces上的文章《Breakdown of Native Oxide Enables Multifunctional, Free-Form Carbon Nanotube–Metal Hierarchical Architectures》打破了这一最黑的记录。他们通过a href="https://www.instrument.com.cn/list/sort/2.shtml" target="_self"近红外-紫外-可见分光光度计/a测量各种可能角度的反射光量,发现它比梵塔黑反射的光还要少十倍。/pp  这种材料由垂直排布的碳纳米管阵列组成。研究人员将铝箔在盐水中除去氧化层,然后在无氧环境下利用化学气相沉积(CVD)在铝的表面生长成碳纳米管阵列。使用这种方法使得需求温度降低了约100℃,并通过碳纳米管与铝的结合显著提高了材料的热学和电学性能。/pp  该项技术已经被申请专利,研究人员称,未来计划让所有的艺术家都可以免费使用这项技术进行非商业性质的艺术创作。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 411px " src="https://img1.17img.cn/17img/images/201909/uepic/382d4df2-b3bd-4d0b-bf38-5aa7f974bc0c.jpg" title="宝石.png" alt="宝石.png" width="600" height="411" border="0" vspace="0"//pp style="text-align: center "  strong虚荣的救赎(the Redemption of Vanity)/strong/pp  这颗名为“虚荣的救赎”的艺术品,是由麻省理工学院艺术、科学和技术中心(MIT Center for Art,Science,and Technology Artist in Residence Diemut Strebe)与沃德尔及其实验室合作创作的。照片左侧是来自 LJ West Diamonds 的 16.78 克拉重、估价约为 200 万美元的天然黄色钻石,图右则是用这种迄今为止最黑的新款碳纳米管基材料涂覆在钻石表面呈现出的艺术效果。/pp  天体物理学家、诺贝尔物理学奖得主约翰· 马瑟(John Mather)正着手探索用这种最黑的材料作为宽场红外巡天望远镜(WFIRST)上“遮星伞(Star Shade)”装置,用于防眩光和抗冲击。宽场红外巡天望远镜是美国宇航局(NASA)正在开发的红外空间望远镜,将用于对近红外天空进行宽场成像和调查。其主要任务是要解决暗能量、系外行星和红外天体物理学领域的基本问题。而遮星伞装置是一个巨大的黑色遮盖物,可以保护太空望远镜免受杂散光的影响。/ppbr//p
  • 新碳纳米管装置可检测血液中癌细胞
    微流体装置中这些由碳纳米管做成的微型柱头,能够捕捉任何流经装置的癌细胞或其他细小物质。每个柱头直径为30微米。  一个由哈佛大学和麻省理工学院(MIT)组成的研究小组近日设计出一种小型装置,可检测出血液样本中的癌细胞,这项成果有望帮助医生快速判断癌症是否存在扩散迹象。研究报告发表在近期的Small期刊上。  这种微流体装置只有一枚硬币大小,但可以检测到包括艾滋病病毒在内的多种病毒。据领导该项研究的哈佛大学医学院生物医学工程教授梅米特托纳(Mehmet Toner)表示,这种装置的早期版本诞生于四年前,当时研究小组用硅制成一种微型柱头,将抗体涂在其表面,当病人血液流经这种硅柱,任何接触到柱头的癌细胞便能被抗体捕获。不过在当时,仍有一些细胞完全没有触碰到硅柱。  通过与MIT副教授Brian Wardle的合作,托纳的研究小组用碳纳米管代替硅,在这种装置中置入不同几何形状的碳纳米管簇(nanotube forest),并且每根纳米管的表面都涂满可识别癌细胞的多种抗体,由于碳纳米管的优良吸附性能,使得含有癌细胞的血液样本能充分流经该装置,最终,这种经过改良的装置捕获癌细胞的能力相比之前提高了8倍。  使用碳纳米管的另一个好处还在于,研究人员可以通过改变纳米管的几何结构使这种装置能够捕捉不同大小的物质——大到癌细胞,小至病毒。  在因癌症死亡的人中,有90%是由于癌症扩散最终导致死亡的,而扩散中的癌细胞通常很难被检测到,这种微流体装置或有望改变这种现状。  目前,托纳的小组正在致力于对该装置进行设计调整,以期能检测出艾滋病病毒。(科学网 张笑/编译)  相关仪器:共焦显微镜 荧光显微镜  完成人:梅米特托纳课题组  实验室:美国麻省总医院生物微机电系统资源中心 麻省理工学院航空航天系
  • Science | 林志伟教授等利用DNA首次实现碳纳米管可控有序修饰
    可控有序修饰的单壁碳纳米管。研究团队 供图记者日前从华南理工大学获悉,该校前沿软物质学院林志伟教授与美国国家标准与技术研究院(NIST)研究员Ming Zheng,利用DNA首次实现了单壁碳纳米管(SWCNTs)的可控有序修饰。相关研究发表于Science。审稿人对相关研究成果给予了高度评价,认为该工作完成了过去很多研究者尝试但收效甚微的宏大目标,是该领域的重大进展。据介绍,该论文发表后引起了较大反响,国内外多家媒体对该工作进行了亮点报道。Science刊载了一篇Perspective对该工作进行评述:“本论文所设计的材料,为实现室温超导材料迈出了重要一步,是里程碑式的发现。”该研究工作通过简单的DNA序列设计和精密的结构表征,为SWCNTs可控化学修饰开辟了一个全新的思路。华南理工大学为该论文合作单位,林志伟为第一作者兼通讯作者,博士生李依浓为论文的分子模拟和彩图设计做出了重要贡献;Ming Zheng 为共同通讯作者,NIST为主要通讯单位。SWCNTs是由单层碳原子组成的一维管状纳米材料,具有优异的光学、电学、力学、热学等方面性能,被广泛应用于包括电子器件、光学仪器、疾病检测等诸多领域。SWCNTs的化学修饰可以改变其晶格结构,进而改变电学和光学性能,对发展新型材料如有机超导材料、量子材料意义重大,是国际前沿的研究方向。但由于SWCNTs中所有碳原子的化学环境相同,SWCNTs的可控化学修饰是该领域长期存在的一项重大挑战。林志伟表示,“精确可控的修饰方法,使得科学家有望像服装设计师一样,按自己的想法 ‘可定制化’地设计SWCNTs化学结构,以实现特殊的性能,例如超导性能和量子性能等,进而实现在航空航天、量子计算机、量子通信、新一代生物医疗等领域的前沿应用。”具体来说,作者将含有鸟嘌呤碱基(Guanine,G)的DNA序列,缠绕至多种单手性SWCNTs的表面,通过调控SWCNTs种类、DNA序列和构象,实现预先定制反应位点。在525 nm光照下激发玫瑰红(Rose Bengal)产生单线态氧,进而引发G与SWCNTs发生反应。之后利用吸收光谱、光致发光光谱(PL)、拉曼光谱对产物结构进行表征。SWCNTs与DNA的反应示意图和光谱表征。研究团队 供图为了深入研究反应机理以及反应后SWCNTs晶格中反应位点的空间分布,研究人员设计了一系列有相同G含量,但G相对位置不同的DNA(2G-n),出乎意料地发现C3GC7GC3(2G-7)和(8,3)SWCNTs的反应产物,在拉曼、荧光光谱中与SWCNTs晶格缺陷相关的峰强出现了极小值,表明在SWCNTs中形成了有序排列的晶格缺陷,即有序排列的反应位点。利用冷冻电镜(Cryo-EM)对C3GC7GC3-(8,3)的结构进行表征和重构,证实了有序的DNA螺旋结构。通过计算机模拟所构筑的理论模型与冷冻电镜的重构模型相互验证,清楚地揭示了反应机理,并进一步证明了晶格缺陷(G反应位点)在SWCNTs表面等间距的有序排列。基于精确可控的SWCNTs修饰方法,有望实现按可定制化的方式,重塑SWCNTs原有的晶格结构和光电性能,为发展有机超导材料、拓扑材料等变革性材料提供重要的理论和实验依据。美国《Science Daily》对该研究成果进行了专题报道,文中指出:“科学家利用DNA克服了之前几乎无法逾越的障碍,设计出有望给电子产品带来革命性影响的材料。”相关论文信息: https://www.science.org/doi/10.1126/science.abo4628 【近期会议推荐】仪器信息网将于2022年8月30-31日举办第五届纳米材料表征与检测技术网络会议,开设“能源与环境纳米材料”、“生物医用纳米材料”“纳米材料表征技术与设备研发(上)”、“纳米材料表征技术与设备研发(下)”4个专场,邀请20余位国内知名科研院所、高等院校、仪器企业的专家学者做精彩报告,内容涉及冷冻电镜、透射电镜、扫描电镜、扫描隧道能谱、X射线光电子能谱仪、纳米粒度及Zeta电位仪、超分辨荧光成像、表面等离子体耦合发射、荧光单分子单粒子光谱磁纳米粒子成像、拉曼光谱、X射线三维成像等多种表征与分析技术。报名听会1、扫描下方二维码进入会议官网,点击“立即报名”:2、复制下方链接在浏览器中打开,进入会议官网后点击“立即报名”https://www.instrument.com.cn/webinar/meetings/nano2022/
  • 清华大学魏飞团队实现一步法制备纯度99.9999%半导体碳纳米管阵列
    本文授权转载自:清华大学头条新闻,转载请联系出处。10月2日,清华大学化学工程系魏飞教授团队在《自然通讯》(Nature Communications)上在线发表题为“超纯半导体性碳纳米管的速率选择生长”(Rate selected growth of the ultrapure semiconducting carbon nanotube arrays)的论文。该论文研究指出,碳纳米管在生长过程中的原子组装速率与其带隙相互锁定,金属管数量随长度的指数衰减速率比半导体管高出数量级,在长度达到154mm后可实现99.9999%超长半导体管阵列的一步法制备,这一方法为制备结构完美、高纯半导体管水平阵列这一世界性难题提供了一项全新的技术路线,对新一代碳基电子材料的可控制备具有重要价值。研究背景随着信息技术的高速发展,半导体芯片已成为数字经济和国家安全的重要基础。近年来,以硅基材料为核心的摩尔定律即将走到终点,在众多替代材料中,碳纳米管凭借纳米级尺寸和优异的电子空穴高迁移率成为新一代芯片电子的理想候选材料。美国国防高级研究计划局宣布投资15亿美元推进“电子复兴计划”,用于开发微型化、高性能碳纳米管芯片。斯坦福大学和麻省理工学院相继研发出碳纳米管计算机和基于1.4万个碳纳米管晶体管构筑的16位微处理器,充分展现了碳纳米管在后硅时代的发展潜力。我国在碳纳米管电子器件及材料制备的工程应用领域具有显著优势,特别是在单根碳纳米管晶体管无掺杂制备及小碳纳米管器件领域做出了众多原创性贡献。在碳纳米管宏量制备领域,也已率先实现世界高、千吨级产量聚团状和垂直阵列状碳纳米管的批量制备,并在动力电池领域规模化应用。然而,碳纳米管的结构缺陷、手性结构控制仍然是制约高性能碳基芯片应用的关键问题。研究过程基于以上问题,魏飞教授团队专注结构完美超长碳纳米管的研发10余年,发现超长碳纳米管在分米级长度上的结构一致性,率先制备出世界上长的550mm碳纳米管,并验证了碳纳米管的数量随长度呈现指数衰减的Schulz-Flory分布规律。进一步研究发现,金属和半导体管的数量也各自满足Schulz-Flory分布,但半导体管的半衰期长度是金属管的10倍以上。拉曼散射、瑞利散射光学表征及同位素标记的生长速度测试表明,金属与半导体管的半衰期长度差异源于碳纳米管自身带隙锁定的生长速度。缩小非均相催化中外扩散与毒化过程的活化能差异,从而提高碳纳米管的长度,是实现具有窄带隙分布的半导体管阵列可控制备的关键。据此,该团队设计层流方形反应器,精准控制气流场和温度场并优化恒温区结构,将催化剂失活几率降至百亿分之一,成功实现了超长水平阵列碳纳米管在7片4英寸硅晶圆表面的大面积生长,长长度650mm,单位反应位点转化数达到1.53×106 s-1。用154mm处的碳纳米管阵列作为沟道材料制作的晶体管器件,开关比为108,迁移率4000cm2/Vs以上,电流密度14A/m,展现了超长碳纳米管在阵列水平的优异电学性能。高纯度半导体性碳纳米管阵列的速率选择生长研究结果这种利用带隙锁定生长速度实现高纯半导体管可控制备的方法,为原位自发提纯半导体材料提供了一种全新路线,为发展新一代高性能碳基集成电子器件奠定了坚实的基础。该工作是魏飞教授团队继实现半米长碳纳米管可控制备及原位卷绕成大面积、单手性碳纳米管线团后的又一创新性工作,为实现碳纳米管在高端电子产品及柔性电子器件中的应用,推动国家微电子行业发展提供了可行的路线。论文直达文章通讯作者为魏飞教授,作者为清华大学化工系2015级博士生朱振兴,芬兰阿尔托大学应用物理系博士后魏楠、清华大学微电子系许军教授及2016级博士生程为军、清华大学化工系王垚副教授、张如范助理教授、博士生申博渊、孙斯磊、高俊参与了该工作。本项研究工作受到国家重点基础研究发展计划、国家自然科学基金委及北京市科学技术委员会等项目的资助。论文链接:https://www.nature.com/articles/s41467-019-12519-5 点击查看更多往期精彩文章 严峻环境下的自救——探寻端气候下的生命存续 | 前沿应用【上篇】发现生命的轨迹——化石中的碳元素分析 | 前沿应用地底深处的生命探索——矿物中的化学反应分析 | 前沿应用【下篇】复旦巧用增强拉曼“识”雾霾 | 前沿用户报道瞪你一眼,就能“看透”你 | 用户动态青岛能源所实现毫秒级单细胞拉曼分选,"后液滴"设计功不可没|前沿用户报道表面增强共振拉曼光谱探究细胞色素c在活性界面上的电子转移新型荧光探针——细胞膜脂变化无所遁形!1+1≥3,AFM-Raman 材料表征新技术!——附新相关论文 免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载,文章版权、数据及所述观点归原作者原出处所有。HORIBA Scientific 发布及转载目的在于传递更多信息,以供读者阅读、自行参考及评述,并不代表本网赞同其观点和对其真实性负责。如果您认为本文存在侵权之处,请与我们取得联系,我们会及进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。点击下方“阅读原文”查看新闻。
  • 世界首次:清华大学成功制备超长碳纳米管管束
    p style="text-indent: 2em "在国家重点研发计划“纳米科技”重点专项的支持下,清华大学魏飞教授团队与李喜德教授团队合作研究,在超强碳纳米管纤维领域取得突破,在世界上首次报道了接近单根碳纳米管理论强度的超长碳纳米管管束的制备。/pp style="text-indent: 2em "碳纳米管被认为是目前人类发现的强度最高的几种材料之一,其杨氏模量高达1 TPa以上,拉伸强度高达100 GPa以上(比强度更是高达62.5 GPa/(g/cm3)),超过T1000碳纤维强度10倍以上。理论计算表明,碳纳米管是目前唯一有可能帮助我们实现太空电梯梦想的材料。span style="text-indent: 2em " /span/pp style="text-indent: 2em "如何将一根根碳纳米管组装后仍保持其单根的优异力学性能是制备超强纤维必须首先解决的问题。然而,目前已报道的碳纳米管纤维的强度只有0.5~8.8 GPa,远低于碳纳米管理论强度( 100 GPa)。主要原因是形成纤维的碳纳米管长度较短,单元体之间以范德华力相互搭接,在拉力作用下极易发生相互滑移,无法充分利用碳纳米管固有的本征高强度。/pp style="text-indent: 2em "此外,碳纳米管内的结构缺陷、杂乱的取向等都会导致纤维强度的下降。相比之下,超长碳纳米管具有厘米甚至分米以上的长度并且具有完美的结构、一致的取向和接近理论极限的力学性能,在制备超强纤维方面具有巨大的优势。/pp style="text-indent: 2em "魏教授与李教授研究团队通过采用原位气流聚焦的方法,可控地制备了具有确定组成、结构完美且平行排列的厘米级连续超长碳纳米管管束,巧妙避免了上述的限制因素。通过制备含有不同数量单元的超长碳纳米管管束,定量分析其组成和结构对超长碳纳米管管束力学性能的影响,建立了确定的物理/数学模型。提出了一种“同步张弛”的策略,通过纳米操纵来释放管束中碳纳米管的初始应力,使其处于一个较窄的分布范围,进而可将碳纳米管管束的拉伸强度提高到80 GPa以上,接近单根碳纳米管的拉伸强度。所报道的超长碳纳米管管束拉伸强度优于目前发现的所有其他纤维材料。/pp style="text-indent: 2em "这项工作揭示了超长碳纳米管用于制造超强纤维的光明前景,同时为发展新型超强纤维指明了方向和方法。相关成果于2018年5月14日在线发表于《自然—纳米技术》(Nature Nanotechnology)上。/p
  • 管内填充磁性碳纳米管固相萃取-气相色谱/质谱法测定环境样品中多环芳烃
    采用原位反应法在碳纳米管(CNTs)的管内合成CoFe2O4纳米颗粒,制备了管内填充磁性碳纳米管(IF-MCNTs),建立了管内填充磁性碳纳米管/磁性固相萃取-气相色谱/质谱法(IF-MCNTs/MSPEGC/M S)测定土壤和水藻样品中7种多环芳烃(PAHs)的分析方法。通过透射电镜(TEM)、X射线衍射仪(XRD)、傅立叶变换红外光谱(FT-IR)等研究了IF-MCNTs的结构性能。考察了萃取条件对萃取性能的影响。研究表明,在最佳实验条件下,IF-MCNTs能够有效富集萘(NAP)、苊(ANE)、芴(FLU)、菲(PHE)、荧蒽(FLA)、芘(PYR)和苯并荧蒽(B(b) FL),对应饱和萃取容量分别为197.2,247.8,293.5,387.1,488.5,504.2和43.6 ng/mg。方法线性范围为5.0~500 ng/L,检出限在1.7~3.1 ng/L之间,相对标准偏差(RSD)小于6.8%。将所建方法应用于分析实际环境样品中7种PAHs,加标回收率在73.5%~97.2%之间,RSDs为3.4%~9.5%。方法可用于环境样品中多环芳烃的检测。管内填充磁性碳纳米管固相萃取_气_省略_谱_质谱法测定环境样品中多环芳烃_周婵媛.pdf
  • 苏州市计量测试学会立项《碳纳米管纤维及丝束 电导率的测定》两团体标准
    各有关单位:根据《苏州市计量测试学会团体标准管理办法(试行)》的有关规定,学会对中国科学院苏州纳米技术与纳米仿生研究所申报的《碳纳米管纤维及丝束 电导率的测定》、《碳纳米管纤维及丝束 拉伸性能试验方法》两项团体标准组织了立项评审会议,经专家评审,符合立项要求,现予以立项。特此公告!请标准起草单位严格按照相关要求,广泛听取意见,对标准质量严格把关,切实提高标准编制的质量和水平,增强标准的适用性和有效性,并按计划递交标准征求意见稿。 联系人及电话:胡学刚 0512-66587060电 子 邮 箱:huxg@szjl.com.cn 苏州市计量测试学会关于《碳纳米管纤维及丝束 电导率的测定》两团体标准立项的.PDF
  • 无需任何抗体 碳纳米管传感器可快速检测新冠病毒
    美国麻省理工学院工程师使用专门的碳纳米管设计了一种新型传感器,可在没有任何抗体的情况下检测新冠病毒,并在几分钟内给出结果。新传感器基于可快速准确诊断的技术,不仅适用于新冠疫情,还适用于未来的流行病。麻省理工学院化学工程教授、研究资深作者迈克尔斯特拉诺说,“快速测试意味着可以在未来的大疫情中更早地开放旅行。可以对下飞机的人进行筛查,并确定他们是否应该隔离,也可对进入工作场所的人员进行筛查。”在该项目开始后大约10天,研究人员就为新冠病毒的核衣壳和刺突蛋白确定了准确的传感器。在此期间,他们还能够将传感器集成到带有光纤尖端的原型设备中,该设备可实时检测生物流体样本的荧光变化。这消除了将样本送到实验室的需要,而这是新冠PCR诊断测试所必需的。研究人员将传感器整合到一个带有光纤尖端的原型中,该光纤尖端可以检测测试样品中荧光的变化。图片来源:美国麻省理工学院该设备在大约5分钟内产生结果,并且可检测低至每毫升样品2.4皮克病毒蛋白的浓度。在这篇论文提交后最新进行的实验中,研究人员实现了比现在商业上可用的快速测试更低的检测限值。该设备还可检测溶解在唾液中的新冠病毒核衣壳蛋白(但不能检测到刺突蛋白)。检测唾液中的病毒蛋白通常很困难,因为唾液中含有黏性碳水化合物和消化酶分子,会干扰蛋白质检测,这就是为什么大多数新冠诊断需要鼻拭子的原因。研究人员表示,即使没有任何抗体和受体设计,该传感器也显示出最高范围的检测限值、响应时间和唾液兼容性。这种分子识别方案的一个独特之处在于,可进行快速设计和测试,而不受传统抗体或酶受体的开发时间和供应链要求的阻碍。斯特拉诺说,研究人员开发工作原型的速度表明,这种方法可证明对在未来疫情大流行期间更快地开发诊断方法是有用的。
  • 中美科学家实现“可定制化裁剪”单壁碳纳米管,或催生室温下的超导体,为量子计算机和量子通信带来广阔前景
    在北京化工大学、和美国阿克伦大学读完本硕博之后,林志伟历经三站博士后研究。除第一站过渡性博士后仍在阿克伦大学,其余两站分别在美国哥伦比亚大学、美国国家标准与技术研究院(NIST,National Institute of Standards and Technology)完成。2022 年 1 月,林志伟回国加入华南理工大学前沿软物质学院担任教授。▲图 | 林志伟(来源:林志伟)时隔数月,其担任第一兼通讯作者的论文,发表在 Science 上。研究中,他利用 DNA 首次实现了单壁碳纳米管的可控有序修饰。对于发展超导材料和量子材料,将起到重要的推进作用。据介绍,超导材料、量子材料等性能独特的变革性材料,被认为具备解决人类当前面临的信息、能源、量子计算等重大问题的可能,甚至有望推动下一次产业革命。正如美国马里兰大学化学与生物化学系教授 YuHuang Wang教授在同期 Science 评论文章所指出的:美国物理学家威廉雷透(William A. Little)在 50 年前提出了经典的室温超导材料的分子模型(即 Little 模型)。然而,经过几十年的努力,人们一直无法在实验上设计出符合 Little 模型的超导分子。而该成果为实现 Little 模型迈出了重要一步,是里程碑式的发现。量子材料,是指由于其自身电子的量子力学特征,而产生奇异物理特性的材料。在发展变革性的数据存储、数据处理、通讯、以及计算机相关技术上具备巨大潜力,并可能产生惊人的经济效益。2016 年,美国能源部确立以量子材料为优先发展方向的变革性能源相关技术。由于具有独特性能,单壁碳纳米管可用于构建一维量子材料,但其缺点是量子产率较低。通过化学修饰,在sp2结构的单壁碳纳米管中引入缺陷构筑量子缺陷,可大大提高量子产率,这让单壁碳纳米管成为很好量子发光材料。可以预见,其将在量子计算机、量子通信等领域拥有广阔的应用前景。像服装设计师一样,"裁剪"单壁碳纳米管的化学结构超导材料,是指电阻为零的材料。在传输电流的时候,既不损失能量也不会产生热量。目前的超导材料都需要在很低的温度下(-100℃ 以下)才能产生超导性能。若发展出室温的超导材料,则有望用于制备超快计算机、超小的电子设备、高速磁悬浮列车等。如前所述,威廉雷透(William A. Little)曾首次提出室温超导体的分子模型——Little 模型。过去 50 年,学界已开展大量实验,但一直未能设计出其设想的超导分子。直到 2016 年,科学家提出碳纳米管或有望实现 Little 室温超导材料,但是得对碳纳米管的结构进行精确可控的化学修饰。可以说,这又是一项难于逾越的重大难题。碳纳米管(Carbon Nanotubes,CNTs),于 1991 年由日本物理学家饭岛澄男(Sumio Iijima)发现。据维基百科介绍,"碳纳米管是一种管状的碳分子,管上每个碳原子采取 sp2杂化,相互之间以碳-碳 σ 键结合起来,形成由六边形组成的蜂窝状结构,以作为纳米碳管的骨架。"按照管子的层数不同,碳纳米管可分为单壁碳纳米管(SWCNT,Single-walled carbon nanotubes)和多壁碳纳米管(MWCNTs,Multi-walled carbon nanotubes)。单壁碳纳米管的结构简单,均匀一致性好,而且缺陷少、 性质稳定,受到的关注更多。鉴于此,自碳纳米管被发现以来,一直是热点研究材料。▲图 1 | 单壁碳纳米管(来源林志伟)凭借优异的光学、电学、力学、热学等性能,单壁碳纳米管已被广泛用于电子器件、光学仪器、锂离子电池、航空航天材料、疾病检测等领域。对单壁碳纳米管进行化学修饰,可以改变它的晶格结构电学性能和光学性能也会随之改变。这一手段对于发展有机超导材料、量子材料等新型材料具有重大意义。然而,在单壁碳纳米管中,所有碳原子的化学环境均为一致,存在着 sp2 杂化(sp2hybridization),即"一个原子同一电子层内由一个 n s 轨道和两个 n p 轨道发生杂化的过程"。因此,对单壁碳纳米管实现可控化学修饰,是领域内长期存在的一项重大挑战。针对此,林志伟与 NIST 的 Ming Zheng研究员,借助 DNA 让单壁碳纳米管,得以实现可控的有序修饰(图 2)。林志伟指出:"精确可控的修饰方法,让科学家有望像服装设计师一样,按自己的想法 ‘可定制化’地设计单壁碳纳米管化学结构,以实现特殊的性能(例如超导性能和量子性能等),进而实现在航空航天、量子计算机、量子通信、新一代生物医疗等领域的前沿应用。"▲图 2 | 有序可控修饰的单壁碳纳米管(来源:林志伟)近日,相关论文以《DNA 指导的碳纳米管晶格重构》(DNA-guided lattice remodeling of carbon nanotubes)为题,发表在 Science 上。林志伟兼任第一和通讯作者,Ming Zheng 研究员为共同通讯作者。(来源:Science)其中一位审稿人认为,该工作实现了一个宏大目标。此前,很多学者反复尝试却无功而返。因此,此次成果是领域内的重大进展。另一位审稿人指出,常温超导材料是无数科学家长期追寻的远大目标。该论文提出了有序可控地修饰单壁碳纳米管的方法,为制备常温超导材料提供了一种潜在解决方案。心情"忐忑"地给美国科学院院士发邮件据介绍,参与此次合作的 Ming Zheng 团队,长期致力于 DNA-碳纳米管复合材料方面的研究,尤其在 DNA 分离高纯度碳纳米管方面有着深厚积累。但是对于碳纳米管的化学修饰,团队的经验稍有不足。在加入 NIST 之前,林志伟本人并没有碳纳米管领域的工作经验,但在大分子精确合成、特别是在富勒烯(英文名为 Fullerene,又名C60)的精确修饰上,已经积累多年经验。C60是一种由 60 个碳原子组成的球型分子,它和碳纳米管同属于碳纳米材料的同素异形体。两者在结构和性能上,有一定的相似性。当有学科背景互补的人在一起讨论,很容易碰出"火花"。结合 NIST 团队在 DNA-碳纳米管复合材料、以及林志伟 C60 精确合成方面的背景,他们很快在科研想法上达成共识,提出了利用 DNA 来调控碳纳米管化学修饰的思路,并借此解决碳纳米管有序可控修饰的艰巨任务。接下来便是正式立项和开展实验。确定研究思路之后,如何选择 DNA 的序列、碳纳米管的种类,以及如何发展高效的化学修饰方法,成为新的工作重点。基于前期积累,该团队选取含有鸟嘌呤碱基(Guanine,G)的 DNA 序列,将其缠绕到多种单手性单壁碳纳米管的表面,通过调控单壁碳纳米管种类、DNA 序列和构象,实现了预先定制的反应位点。在 525nm 光照下,名为玫瑰红(Rose Bengal)的光敏剂得以激发,借此产生了单线态氧,进而引发鸟嘌呤碱基与单壁碳纳米管发生反应。之后,课题组利用吸收光谱、光致发光光谱、拉曼光谱,对产物结构进行表征(图 3)。▲图 3 | 单壁碳纳米管与 DNA 的反应示意图和光谱表征(来源:Science)为了研究反应机理,以及反应之后单壁碳纳米管晶格中的反应位点的空间分布,该团队设计出一系列鸟嘌呤碱基含量相同、鸟嘌呤碱基相对位置不同的 DNA(2G-n)。结果发现,在拉曼、荧光光谱中与单壁碳纳米管晶格缺陷相关的峰强里,C3GC7GC3(2G-7)和(8,3)单壁碳纳米管的反应产物出现了极小值。这表明,单壁碳纳米管中形成了有序排列的晶格缺陷,即有序排列的反应位点(图 4)。▲图 4 | 筛选 DNA 序列并在单壁碳纳米管中构筑有序的反应位点(来源:Science)紧接着便是寻求合作和交叉验证。虽然通过上述光谱分析,该团队首次证实了有序可控修饰的单壁碳纳米管结构。但是这一结论太过重要,他们反复告诫自己必须非常谨慎对待,在论文发表前务必借助多渠道,对结论进行交叉验证。因此,课题组怀着"忐忑"的心情给美国科学院院士、弗吉尼亚大学哈里森生物化学和分子遗传学系的爱德华H埃格尔曼(Edward H. Egelman)教授写信,以寻求合作。埃格尔曼教授是冷冻电镜方面(cryo-EM,Cryogenic electron microscopy)的顶尖学者,在利用冷冻电镜解析 DNA-蛋白质等复杂生物分子结构方面有着深入研究。之所以怀着"忐忑"心情,是因为该团队之前和埃格尔曼教授并未有交集,而且后者的主要研究兴趣在生物学,很少涉及材料科学。那么,对方是否愿意合作?课题组表示比较担心。不过,令人激动的是埃格尔曼教授表现出极大的兴趣。双方很快就定下合作方式和目标,即利用冷冻电镜进一步验证有序可控的碳纳米管的结构。有了冷冻电镜的结果之后(图 5),课题组满怀信心地把论文投到 Science,并获得期刊主编和审稿人的高度赞赏。论文接收后,埃格尔曼教授接受 Science Daily 的采访时表示:"虽然我们经常使用物理学中的工具和技术来研究生物学,但是我们这次的工作表明,生物学中开发的方法实际上也可以用于解决物理学和工程学中的问题。科学研究常常会产生预料之外的结果,这正是科学令人着迷的原因所在。"▲图 5 | 冷冻电镜重构有序修饰的单壁碳纳米管结构及反应机理示意图(来源:Science)力争在有机超导和新型量子材料上,实现相关应用和很多在新冠大流行中完成的科研成果一样,如果没有疫情,论文或将更早面世。2019 年 9 月,研究正式启动。2020 年 1 月的一天,林志伟正在做实验,被临时要求必须马上离开实验室,整个马里兰州(NIST 所在的州)进入紧急隔离状态。临走时他和同事聊天,以为最多两个星期。两周很快过去,实验室并未解除隔离。之后进入漫长的等待。1 个月、2 个月、6 个月...... 幸运的是,实验室重新开放后,课题进展得很快。尽管此次研究诞生了符合 Little 模型的超导分子。但是,其超导方面的性能尚未得到真正的验证。针对这些新型单壁碳纳米管材料的性能表征,并揭示材料结构与性能关系,是该团队的后续重点。另一方面,他们还计划将含有不同结构和功能的化学官能团,通过有序可有的修饰方法,引入到单壁碳纳米管中,从而设计出结构更精确、性能更多样的单壁碳纳米管,力争在有机超导和新型量子材料上实现相关应用。目前,林志伟课题组主要围绕高分子、DNA、碳纳米管,致力于新型复合与杂化功能材料的精确设计、精准组装和先进应用等方面的研究。课题组常年招募博士后、博士和硕士研究生。
  • 【HORIBA学术简讯】锂电池、材料、发光材料、碳纳米管领域 | 2021年第35期
    “学术简讯”栏目旨在帮助光谱技术使用者时时掌握新发表的科学研究前沿资讯。我们将每周给您推送新增学术论文:包括但不限于主流期刊Nature index、ACS、RSC、Wiley、Elsevier等。帮助您了解全球范围用户使用 HORIBA 光谱技术的新动态,为您的科学研究提供新思路,激发学术灵感。如您对本栏目有任何建议,欢迎留言。本周我们推荐5篇前沿学术成果,针对锂电池、材料、发光材料、碳纳米管领域,涉及拉曼、荧光、TERS技术。锂电池材料发光材料碳纳米管更多光学光谱文献,欢迎访问Wikispectra 文献库。
  • HORIBA 用户动态 | 基于电子拉曼散射谱的金属性单壁碳纳米管手性结构测定
    撰者:张达奇拉曼光谱是探测单壁碳纳米管性质的重要手段。通过G模的峰型判定碳管的导电性(金属或半导体)和通过RBM模的拉曼频移计算碳管管径,是碳管拉曼光谱的两大主要应用。但是要通过分析拉曼光谱精确获得碳管的手性指数(n,m)仍然具有挑战,尤其是在仅有少波长激发的情况下。北京大学化学与分子工程学院李彦教授-杨娟副教授团队利用实验中观察到的金属管两个电子拉曼散射峰(ERS),发展了一种便捷、精确的金属管(n,m)指认方法。利用此方法,研究者可以只通过单一波长激发的拉曼光谱精确指认出金属管的(n,m),从而进一步建立起金属管光学、电学性质的手性结构依赖性。两个ERS峰的发现实验中作者首先对悬空的单根金属管进行了透射光谱测试以确定其电子跃迁能(Mii)的数值。在同一根碳管的拉曼光谱中可以分辨出分别位于M11+和M11-的两个ERS峰(图1a),这是对单根金属管两个ERS峰的报道。该峰源于金属管费米能级附件的电子对光生激子的非弹性散射作用,并在Mii处发生共振增强(图1b)。图1. (a)单根(13,7)碳管的拉曼光谱(红线:激发波长633 nm;绿线:激发波长532 nm)和透射光谱(黑线)。(b)碳管的声子拉曼散射(紫色箭头)和电子拉曼散射(蓝色与红色箭头)过程示意图。18种不同手性碳管Mii数值的获得基于以上发现,作者对不同(n,m)的碳管进行了测试。利用HORIBA Aramis拉曼光谱仪自动线mapping功能可以对悬挂于镂空沟槽上的碳管进行有效的定位和光谱测试。实验中一共得到了18种不同(n,m)的Mii数值,并拟合得到了定量关系式,为今后金属管指认提供了重要参考数据。此外,作者收集了11个(12,9)碳管的数据,发现管束、积碳等因素对碳管拉曼光谱有较为显著的影响。统计获得的ωRBM和M11波动差标示在图2b中。虽然M11受环境影响较大,但是M11的裂分值(即M11+- M11-)受环境影响的变化仅有±4meV。图2 (a)2n+m=33金属管的拉曼光谱,激发波长633 nm。蓝色虚线表示对ERS峰的拟合。(b)通过ERS指认的18个金属管(红色数据点)。基于ERS的拉曼光谱的优势相比于现有的瑞利散射光谱、偏振吸收光谱、可调激光拉曼等适用于单根碳管测试的谱学方法,基于ERS的拉曼光谱拥有以下三大优势:1仪器需求简单,测试便捷在该工作中,作者使用了HORIBA Aramis拉曼光谱仪,配备532nm、633nm、785nm三个常见的激发波长,通过仪器全自动切换,即可测试得到1.4-2.3 eV范围内的跃迁能数值。类似的显微拉曼光谱仪还有HORIBA XploRA, LabRAMHR Evolution型光谱仪,均可以满足相关研究者的需求,测试不再依赖于复杂的仪器搭建和调试。2测试精度高得益于HORIBA拉曼光谱仪的高分辨率和良好的噪声抑制水平,通过ERS测定Mii的误差仅为±1meV,远优于常见的瑞利散射光谱等电子光谱学手段~10 meV的误差。 3样品适用范围广针对硅基底上、表面活性剂包裹的、管束中的碳管作者在实验中均能测试得到ERS峰。图3 (a)单根(12,9)碳管(黑线)及含有(12,9)碳管的管束(绿线)的拉曼光谱,激发波长633 nm。(b)同一根金属管在悬空部分(黑线)和硅基底上部分(红线)的拉曼光谱,激发波长633 nm。此项研究工作得到了国家自然科学基金会和科技部的支持。相关工作发表在《Physical Review B》和《ACS Nano》上:Daqi Zhang, Juan Yang, EddwiHasdeo, Can Liu, Kaihui Liu, Riichiro Saito, Yan Li, Multiple electronic Raman scatterings in a single metallic carbon nanotube. Phys. Rev. B, 93, 245428 (2016).Daqi Zhang, Juan Yang, Meihui Li, Yan Li, (n,m) Assignments of Metallic Single-Walled Carbon Nanotubes by Raman Spectroscopy: The Importance of Electronic Raman Scattering. ACS Nano, 10, 10789–10797 (2016). HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 单颗粒ICP-MS应用:纳米管分析
    随着纳米技术的应用日益频繁,各种纳米材料广泛应用于各类产品当中。碳纳米管(CNT)是使用最广泛的纳米材料之一,其年生产量高达上千吨。其生产过程通常会用到金属催化剂,因此碳纳米管表面可能残留金属纳米粒子。碳纳米管的透射电子显微镜(TEM)图像,深色区域为金属颗粒,附着在无定形石墨材料和长单壁碳纳米管上测量碳纳米管上的金属含量是一项极大的挑战。XRF 最大的缺陷是它测量的是样品的金属总量,而不是单根或若干根碳纳米管上的金属。TEM 可以测量单根碳纳米管上的金属或纳米粒子,但过程十分缓慢冗长,一天之内只能测量少数几个碳纳米管样品。传统的 ICP-OES 和 ICP-MS 分析缺陷是它们需要完全消解碳纳米管,而鉴于其化学惰性,这将是一项巨大的挑战。单颗粒 ICP-MS(SP-ICP-MS),无需样品消解,通过监测瞬态金属信号即可实现金属量的半定量测量。SP-ICP-MS 还可以在一分钟之内分别对上千根碳纳米管进行快速测量,从而预估粒子的个数和含量。本文介绍了单壁碳纳米管(SWCNT)中钇(Y)(一种常用催化剂)的 SP-ICP-MS 测定方法。样品单壁碳纳米管是从溶液(Riverside,CA)中获取的,为粉末状。仪器NexION 2000 ICP-MS 实验结果图2 显示了 Y 的 SP-ICP-MS 信号,其中每个信号峰代表一根单壁碳纳米管的 Y 信号。随着过滤孔径的越来越小,越来越少的碳纳米管可以通过滤膜,因此 Y 信号越来越小。这说明 Y 纳米粒子与碳纳米管结合在一起,当碳纳米管出现时,可以观察到 Y 信号,当碳纳米管被滤除时,Y 信号消失。使用 Syngisitx 操作软件纳米模块,可自动计算分析中的峰数,显示本底脉冲和 Y 所生成脉冲的强度均值和中值。信号积分则反映出了单壁碳纳米管中的金属总量。该数值同使用酸消解后的样品信号,是一致的。结论使用SP-ICP-MS技术,可在无需消解碳纳米管(一个冗长繁琐的过程)的情况下准确量化碳纳米管中的金属杂质。使用金属杂质的含量可以推测单壁碳纳米管的计数浓度,有效拓展了 ICP-MS 在纳米材料领域的应用。想要了解更多详情,请扫描二维码下载完整的应用报告。
  • 活细胞及血液中纳米管追踪新技术问世
    美国普渡大学的研究人员发明了一种追踪活体细胞和血液中碳纳米管的成像新技术,使得纳米管在生物医学研究和临床医学的应用趋于完美。相关研究论文在线发表于11月4日的《自然—纳米技术》杂志上。  纳米管目前有两种,它们在药物输送和癌症研究成像中具有潜在应用价值;然而至今没有一种技术可以在活体细胞和血液中观察到它们。此次发明的技术叫做“瞬间吸收成像系统”,利用脉冲近红外激光将能量送入纳米管,之后再由第二束激光探测。该技术不需要用染料来标记纳米管,使得其在科研和医药应用上具潜在的实用价值。此外,科学家们通过使信号由不同的“通道”经过红细胞和纳米管,从而消除勒红细胞的背景干扰。  该研究领导者、华人科学家Ji-Xin Cheng表示,该技术可以实时观测纳米管在血液中的循环,可以为研究者提供相关信息,从而了解如何完美地在研究和临床上应用纳米管。(科学网 任春晓/编译)  相关仪器及方法:瞬间吸收成像系统  完成人:Ji-Xin Cheng课题组  实验室:美国普渡大学化学系/韦尔登生物医学工程学院/医学化学与分子药物学系/物理系/伯奇纳米中心  更多阅读  《自然—纳米技术》发表论文摘要(英文)
  • 我国碳纳米X射线成像技术获进展
    成像装置图  日前,由中科院深圳先进技术研究院承担的国家科技支撑计划“基于碳纳米X射线发射源的CT系统研发”课题团队利用自主研发的碳纳米管薄膜,成功地获取首张X射线二维成像图。专家组认为这是我国在碳纳米管X射线源成像研究方面取得的突破性进展和成果。  据介绍,碳纳米管X射线源是近几年发展起来的,被认为是具有革命性的新型X射线源。碳纳米管X射线源创新性地用碳纳米管场发射阴极取代热阴极,从而使该X射线源具有可控发射、高时间分辨、低功耗且易于集成等诸多优势。这些优势将给X射线CT带来结构上的突破。其中,最具潜力的方向之一即基于碳纳米管X射线源阵列的静态扫描CT。该CT以电子式的扫描取代传统的机械转动来获取不同角度的图像,可消除机械转动带来的成像伪影,缩短扫描时间,从而减少病人的辐射剂量,提高CT扫描的图像精度。  经过近两年的技术攻关,中科院深圳先进院医工所劳特伯医学成像中心研究团队制备出性能优异的碳纳米管薄膜并研制了基于新光源的X射线成像系统。自主研发的碳纳米管薄膜发射电流密度已达到国际先进水平,研制的X射线源成像系统获得了首张X射线二维成像图。团队目前正在进一步提高阴极稳定性、优化射线源结构,以期开展CT的三维成像。
  • HORIBA 用户动态|硅基底表面单壁碳纳米管的手性指认和含量测定
    撰文:张达奇拉曼光谱学方法是一种无损、便捷的测试方式,是目前广泛被用于基底表面碳管分析的谱学手段,但是在之前的绝大多数应用中,并未涉及到精确的碳管手性指认和含量分析问题。单一结构手性的碳管在高性能的纳电子器件、生物成像等领域具有广阔的应用前景。因而如何可控地制备并表征碳管手性结构的均匀性已经成为研究者目前为关注的问题之一。令人振奋的是,北京大学化学与分子工程学院李彦教授-杨娟副教授团队近年来在碳管手性结构可控制备方面取得了突破性进展,在实验上获得了单一手性碳管高度富集的样品。针对此类样品,他们开发出基于拉曼光谱的碳管手性指认和含量测定方法。这其中horiba拉曼光谱仪又一次大显身手。ωrbm-dt关系式的得出 为了建立拉曼谱峰与碳管结构的对应关系,作者首先选择了低密度的硅基底表面碳管样品(2-6根/100 μm2),以确保聚焦光斑测试范围内只有单根碳管的信号。使用horiba aramis拉曼光谱仪的自动mapping功能测量碳管的g模和rbm模,可以精确定位出单根碳管所在位置,并移动到相应位置采集得到高信噪比的光谱(如图1a)。通过详细分析拉曼谱峰特征,作者建立了适用于硅基底上碳管的rbm模振动频率(ωrbm)与碳管直径(dt)间的数学依赖关系。图1 (a)四个硅基底上单根碳管的拉曼光谱,展示了rbm区间和g模区间,激发波长532 nm。(b)拟合28个碳管的拉曼光谱数据得到的ωrbm-dt关系式。手性含量定量方法的建立由于单一激发波长只能共振激发很小比例的碳管,为了获取更多不同手性碳管的信息,作者使用了六个不同的激发波长对样品进行了测试,总计可以覆盖~85%的碳管手性。在这里需要特别指出,通过使用duoscan大光斑+自动平台扫描模式,可以在相对短的时间内获得较大面积的碳管统计结果。在经过校正碳管密度和共振激发比例后,得到样品中为富集的手性(12,6)含量为93%,该数值与吸收光谱等手段测得的含量相吻合。图2 (a)1330个分布于193.5–198.5 cm-1范围内的rbm被指认为(12,6)。(b)样品中主要(n,m)的含量。该方法的建立为单一手性碳管制备提供了有力的表征工具,提出的ωrbm-dt关系式也为硅基底上碳管样品的直径测量提供了重要参考,可以让研究者更加精确地获得样品的直径分布和手性含量,从而推进手性结构可控制备等研究。 本工作使用的aramis型拉曼光谱仪,新替代型号为xplora plus和labram hr evolution等拉曼光谱仪。此项研究工作得到了国家自然科学基金委员会、科技部、北京高等学校青年英才计划项目和北京市科学技术委员会的支持。相关成果发表于《nanoscale》上:daqi zhang, juan yang, feng yang, ruoming li, meihui li, dong ji, yan li, (n,m) assignments and quantification for single-walled carbon nanotubes on sio2/si substrates by resonant raman spectroscopy. nanoscale, 7, 10719-10727 (2015).相关背景还可参见作者撰写的综述文章:daqi zhang, juan yang, yan li. spectroscopic characterization of the chiral structure of individual single-walled carbon nanotubes and the edge structure of isolated graphenenanoribbons. small 9, 1284-1304 (2013).北京大学化学与分子工程学院简介:始于1910年成立的京师大学堂格致科化学门,是国立大学中早设立的化学系,1994年更名为化学与分子工程学院(以下简称化学学院)。北京大学化学学科是国家一级重点学科和“国家理科基础科学研究和教学人才培养基地”;在历次教育部全国高校一级学科评估中均名列榜首;在全球高校化学院(系)的相关学科评估与排名中位列15名左右。化学学院始终以培养具有独立思辨能力和国际竞争力的杰出人才为使命;针对化学中的关键科学问题开展研究;同时注重与生命和材料等学科的交叉融合。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 jobin yvon 光学光谱技术,horiba scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天horiba 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 新型生物纳米电子晶体管构建成功
    5月13日,美国劳伦斯利弗莫尔国家实验室的科学家 建造了可由三磷酸腺苷(ATP)驱动和控制的生物纳米电子混合晶体管 。他们称,新型晶体管是首个整合的生物电子系统,其将为义肢等电子修复设备与人体的融合提供重要途径。相关研究发布在近期出版的《纳米快报》(Nano Letters)上。  三磷酸腺苷可作为细胞内能量传递的“分子通货”,储存和传递化学能,为人体新陈代谢提供所需能量;其在核酸合成中亦具有重要作用。  该实验室的研究人员亚历山大诺伊表示,离子泵蛋白是新型晶体管装置中最核心的部分。此次开发的晶体管由处于两个电极之间的碳纳米管组成,起半导体的作用。纳米管的末端附有绝缘聚合物涂层,而整个系统则包裹于双层油脂膜之中,与活体细胞膜的原理相似。当科学家将电压加在电极之上时,含有三磷酸腺苷、钾离子和钠离子的溶液便会倾泻而出,覆盖在晶体管装置表面,并引发电极之间电流的流动。使用的三磷酸腺苷越多,产生的电流也越强烈。  科学家解释说,之所以会产生如此效果,是由于双层油脂膜内的蛋白质在接触三磷酸腺苷时会表现得如同“离子泵”一般。在每个周期中,蛋白质会往一个方向抽送3个钠离子,并向相反方向抽送2个钾离子,致使1个电荷在“离子泵”的作用下越过双层油脂膜抵达纳米管之中。随着离子的不断累积,其将在纳米管中部的周围产生电场,从而提升纳米晶体管的传导性。  耶路撒冷希伯来大学的伊特玛维尔纳表示,这一生物电子系统通过离子运动将纳米层级的机械能转化为了电能,从而为晶体管的运行提供了支持。在这种情况下,晶体管可被用于制造由生物信号驱动和控制的电子设备。例如,这一进展能使电子仪器不需电池或其他外界电力供给便可永存于体内,而义肢等人体修复器械也有望直接与人体 神经系统 “连线”。诺伊希望,这种技术将来能被用于建设无缝生物电子界面之中,以实现生物体和机器的更好沟通。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制