当前位置: 仪器信息网 > 行业主题 > >

碳酸钙微粒粒度分布

仪器信息网碳酸钙微粒粒度分布专题为您整合碳酸钙微粒粒度分布相关的最新文章,在碳酸钙微粒粒度分布专题,您不仅可以免费浏览碳酸钙微粒粒度分布的资讯, 同时您还可以浏览碳酸钙微粒粒度分布的相关资料、解决方案,参与社区碳酸钙微粒粒度分布话题讨论。

碳酸钙微粒粒度分布相关的资讯

  • “好的仪器,用在刀刃上!”——Topsizer在纳米碳酸钙测试中的应用
    纳米碳酸钙又称超微细碳酸钙,是碳酸钙行业中的高端明星产品,其应用最成熟的行业是塑料工业,主要应用于塑料制品,可改善塑料母料的流变性,提高其成型性。另外,纳米碳酸钙用于油墨产品中体现出了优异的分散性、透明性和极好的光泽、及优异的油墨吸收性、高干燥性等优点。还有涂料、日化、造纸等行业,对纳米碳酸钙的应用需求也迅速发展。纳米碳酸钙的粒度检测,不但需要科学的检测方案(针对团聚的有效处理),更需要性能优异、分辨能力出众的高端激光粒度仪。近年来,欧美克仪器在纳米碳酸钙客户中,积累了连州凯恩斯、江西九峰、湖北科迈、湖北凯龙等行业典型客户,靠得就是Topsizer型激光粒度仪在检测亚微米、纳米颗粒的表现以及一套行之有效的检测方案。纳米碳酸钙的生产过程中,碳化后的碳酸钙浆料,在经过脱水、烘干、活化等工序后形成最终碳酸钙粉体产品,其粒径分布将影响后续其在塑料、橡胶、油墨等产业的填加量和最终产品性能,因此,粒径分布是纳米碳酸钙生产企业十分关注的,作为产品质控的一个重要参数。其中,在纳米碳酸钙的生产中,通过加入适当的分散改性剂进行改性,增强了碳酸钙粉的分散性、减少团聚,在许多应用领域展现了更好的使用性能,在纳米碳酸钙的生产中,改性几乎成了标准的选择,不同改性剂种类和用量和改性工艺所生产产品质量各有异同,如何通过检测纳米碳酸钙在不同分散条件下的粒径分布情况,以协助调整碳化沉淀工艺并预测产品的应用效果,是近年来热议的课题。欧美克仪器深耕碳酸钙行业二十余载的岁月里,欧美克的仪器质量和品牌口碑,不断得到行业客户们的一致认可,行业仪器占有率高。Topsizer激光粒度分析仪采用国际先进的红蓝双光源设计,红光主光源为进口氦-氖激光器,波长0.6328μm,并有蓝光辅助半导体光源,波长0.466μm,弥补了常规设计散射光角度的盲区,极大地提高了对纳米级颗粒及少量大颗粒的分辨力。其具有量程宽(0.02-2000微米)、重复性好、精度高、测试结果真实、自动化程度高等诸多优点,是纳米碳酸钙粒度检测的不二之选。Topsizer型激光粒度仪(湿法)纳米碳酸钙的检测方案与检测重钙、一般轻钙的主要区别是颗粒团聚的处理,若以检测一般改性轻钙的方法(制样时使用十二烷基苯磺酸钠SDBS作为分散试剂,外置超声10分钟),纳米碳酸钙的原生颗粒很难被分散出来,得出的结果是团聚后的二次粒径,如图:测试结果基本是稳定的,但粒径分布只有普通重钙的级别,在进样器开始内置超声后,部分团聚体逐步解聚,测试结果如下:由于纳米钙的改性程度要远远超越一般的轻钙、重钙,采用一般的分散剂(如六偏磷酸钠、-SDBS、酒精等),难以达到充分的分散效果以了解样品一次粒径情况(或接近一次粒径的稳定结果)。欧美克仪器测试人员,经过多年的探索和不断尝试,最终选着了一种含有OM7超细轻钙专用分散剂的复配分散剂对样品进行前处理,并伴随超声处理,结果如下:测试结果有明显的改善,但仍未符合纳米碳酸钙的粒径预期。纳米碳酸钙属于超细粉体,不易分散彻底,因此在加入分散解聚剂后以传统进样器内置超声外,同时进行了细胞粉碎机的大功率的超声分散15分钟,以纯净水作为测量介质,并以“通用模式”进行粒度分析,结果如下:针对于该广西某公司生产的纳米碳酸钙样品,仍然有部分的硬团聚体的存在,导致结果出现了第二个大颗粒小峰,但结果的稳定性和粒径分布是基本符合预期的。采用同样的测试方案,同样的Topsizer型激光粒度仪,我司在早两年测试某进口的纳米碳酸钙样品,其结果是完全符合纳米碳酸钙的粒径分布要求的,如下。在我司多年来接触的一般国产纳米碳酸钙中,或多或少是会出来粒度分布的“双峰”状态,D90大概在1-2微米间,这主要可能是在生产工艺中,碳化或活化没有完全做好,导致大量硬团聚体的产生,影响了整体粒径分布。这些硬团聚体在使用中难以被分散开,会影响纳米钙的使用性能,因此,对于硬团聚体含量的检测,是纳米碳酸钙产品质量控管的关键所在,同时对于激光粒度仪的检测性能也是较为苛刻的要求。对纳米碳酸钙的粒度测试,到底是将其彻底分散到最小粒径的结果可靠,还是选择与下游生产的分散程度相近地分散样品,进行二次粒径粒度分布测试更可靠,一直是一个有争论的问题。但如果要对纳米碳酸钙生产工艺进行监控,就需要更关注生产流程中碳化沉淀的一次粒径情况。同时通过对硬团聚体二次粒径的严格控制,以使最终产品能满足高端行业(如油墨等)的应用要求。技术进步,以人为本,欧美克仪器的检测技术和应用开发,是和碳酸钙行业同步发展、偕同并进的。欧美克仪器专业服务于客户纳米碳酸钙的检测需求,为客户生产出优质的纳米碳酸钙产品保驾护航!参考文献1. 沈兴志、吴瑾. 轻钙、活性钙、纳米钙产品激光粒度测试分析探讨.2. 纳米碳酸钙.百度百科.
  • 治理塑料污染,碳酸钙如何乘借“可降解塑料”的东风?
    近日,国家发展改革委、生态环境部、工业和信息化部、住房城乡建设部、农业农村部、商务部、文化和旅游部、市场监管总局、供销合作总社等9部门联合印发《关于扎实推进塑料污染治理工作的通知》,明确禁限不可降解塑料袋、一次性塑料餐具、一次性塑料吸管等一次性塑料制品的政策边界和执行要求,对疫情防控等突发事件期间用于应急保障的一次性塑料制品予以豁免。相比2008年“限塑令”主要是针对于流通使用环节,这次的“禁塑令”不仅聚焦于使用环节,也关注到了生产、流通、使用、回收、处置的全过程。在政策方面,“禁塑令”没有不顾实际情况搞“一刀切”,指出用于盛装散装生鲜食品、熟食、面食等商品的塑料预包装袋、连卷袋、保鲜袋等,不在禁止之列 “禁塑令”扩大到“餐饮打包外卖服务以及各类展会活动”。从技术角度看,环保替代塑料吸管有多种选择,而可降解塑料抗摔性、耐热性、防腐性等方面的提升空间是另一个问题。这也意味着我国可降解塑料将迎来发展机遇。到2030年,预计我国可降解塑料需求量可到428万吨,市场规模可达855亿元。2020年底“禁塑令”工作目标从材料与环保协调发展角度看, 使用源于自然并可回归于自然的无机矿物作为填料部分取代高分子材料生产塑料制品是目前的可行方案之一。近年研究表明,碳酸钙等无机粉体材料在制造环境友好塑料材料方面发挥了重要作用。实现了提高塑料制品尺寸的稳定性、提高塑料制品的硬度和刚性、改善塑料加工性能、提高塑料制品的耐热性、改进塑料的散光性、降低塑料制品成本等多重优势。碳酸钙有利于塑料材料的降解,聚乙烯(PE)薄膜中有碳酸钙粉末时,在填埋后碳酸钙有可能与CO2和H2O反应,生成溶于水的Ca(HCO3)2而离开薄膜。留下的微孔,将增大聚乙烯塑料接触周围空气和微生物的面积,从而有利于进一步降解。同时,填加碳酸钙有利于PE焚烧。燃烧时,塑料溶化容易形成黏壁现象,无机粉体加入能够使得这一问题得到极大改善。在PE塑料材料中添加了大量碳酸钙,其效果不仅体现在塑料材料的减量上,且焚烧时可减少对大气污染,减少尾气中有害气体的排放量, 特别是与焚烧热氧降解剂配合使用,对遏止二恶英产生有十分重要意义。近几年日本等国开发了可焚烧PE塑料薄膜袋用来作为盛放焚烧垃圾发电专用袋。随着中国禁塑行动的进行,超细重质碳酸钙、轻质碳酸钙和纳米碳酸钙由于价格相对低廉,又可促进塑料降解,环境友好,在可降解塑料中的添加比例会越来越大,市场前景会越来越广阔。广西贺州是全国的重钙粉体生产基地和人造岗石生产基地,被授予中国“重钙之都”和“岗石之都”称号。目前,贺州市年产重质碳酸钙粉体达800万吨,产品市场占有量达到60%以上。广西贺州也是珠海欧美克仪器用户最集中的区域之一,在深耕非矿行业二十余载的岁月里,欧美克的仪器质量和品牌口碑不断得到贺州“钙帮”老板们一致认可。Topsizer 激光粒度分析仪碳酸钙根据品种不同有多种不同的粒径和不同的表面涂层特性。欧美克Topsizer激光粒度仪应用于测试碳酸钙微粉,在短短几分钟的时间内就可以完成覆盖从纳米到毫米级别范围的测量。可以实现生产过程中以及最终产品的质量中对碳酸钙的粒度的监测和控制。其次,通过优化的产品设计,Topsizer可以为客户提供高准确性、高重复性和高重现性的数据。图3和表2显示了同一GCC(立磨)样品分成三等份样品的重复性结果,由同一台Topsizer仪器测量。图4和表3显示了三台不同的Topsizer仪器所测量的同一批次的重复性粒度分布。图3:方法重复性:同一台Topsizer仪器测量同一批GCC中三种不同样品的粒度分布表2:同一台Topziser仪器测量同一批GCC的三等份试样的粒度分布图4:系统重现性:用三台不同的Topsizer仪器测量同一批GCC的粒度分布表3:用三台不同的Topsizer仪器测量同一批GCC的粒径分布最重要的是,激光粒度仪测试过程比较简单,很容易掌握测试方法,对测试人员的要求不高,从样品制备到测试可以在几分钟内完成质控把关。随着后疫情时期的经济反弹,广大碳酸钙企业在这一难得机遇面前,可以通过增加碳酸钙与塑料的亲合性的活化处理及采用粒度仪进行良好的粒径控制,开发出可降解塑料用高填充比例高制品性能的碳酸钙专用产品,提高碳酸钙产品附加值,促进碳酸钙产业的发展。欧美克仪器也在仪器性能和日常维护上为广大碳酸钙企业提供及时全面的技术支持,例如针对行业集中区域客户的免费上门回访维护等系列售后增值服务活动(点击文字了解相关活动),以及多场碳酸钙行业专场直播课程等。扫描二维码报名专题直播课始终坚持“以客户为中心”的服务宗旨,欧美克作为国内最著名的颗粒测量仪器制造商、高新技术企业及广东省工程技术研究中心,始终致力于粉体行业粒度检测与控制技术的不断提高,为客户提供先进的物超所值的粒度测量仪器,服务及整体解决方案,为粉体行业创新发展提供强有力的支撑!参考资料:1. 欧美克仪器.《碳酸钙的激光衍射粒度分析报告》2. 腾讯新闻.《从“纸上谈兵”到“落地有声” “禁塑令”要突破两大难点》;3. 矿材网.《后疫情下,中国禁塑行动为碳酸钙行业带来大机遇!》
  • 欧美克仪器亮相2021年第七届国际碳酸钙产业博览会
    11月5日,以“聚焦精品碳酸钙产业促进工业高质量发展”为主题的2021年第七届国际碳酸钙产业博览会暨碳酸钙研发高端学术论坛在南宁开幕。本届会议邀请了中国科学院、中国地质大学、中国冶金地质总局、中国煤炭地质总局等权威机构领导嘉宾到场,共115家来自广东、四川、山东、江苏、福建、安徽、广西等地的企业带来了橡胶塑料、新型建材、密封材料等碳酸钙产业链上高附加值产品参展。作为国内颗粒测量仪器制造商,珠海欧美克仪器有限公司携LS-609全自动型激光粒度仪应邀参加了本次会议,展望行业高质量发展,助力广西精品碳酸钙产业集群“把脉问诊”。随着广西人民政府印发《广西战略性新兴产业发展“十四五”规划》和《广西战略性新兴产业发展三年行动方案(2021—2023年)》,将重点发展精品碳酸钙等先进新材料,建设碳酸钙产业创新平台。纳米碳酸钙作为碳酸钙行业的转型产品,也成为现场讨论的主要议题。纳米碳酸钙也称为超微细碳酸钙,其粒度介于0.01-0.1μm之间。纳米碳酸钙粒子超细化,其晶体结构和表面电子结构发生变化,与普通碳酸钙相比,具有优良的小尺寸效应、量子尺寸效应、宏观量子效应、表面效应等,被广泛应用在塑料、橡胶、胶粘剂、涂料、油墨、造纸、建材、化妆品等产品的制造领域,可以改善和提高产品的综合性能。纳米碳酸钙的粒径分布成为生产企业产品质控的一个重要参数。珠海欧美克仪器有限公司成立以来,一直服务于碳酸钙行业,从初代的LS-POP(3)到新一代明星产品LS-609,再到针对活性碳酸钙、纳米碳酸钙等亚微米、纳米颗粒检测的不二之选——Topsizer高端激光粒度仪,欧美克产品质量持久耐用,测试重复性高、精度高等诸多优点深受“钙帮”老板们的青睐。纳米碳酸钙的测试,除了需要科学、有效的样品前分散处理外,更需要一台测试性能优异、分辨能力高、重现性能好、测试范围涵括纳米、亚微米及微米级别的高性能激光粒度分析仪。近年来,欧美克仪器在纳米碳酸钙客户中,积累了连州凯恩斯、江西九峰、湖北科迈、湖北凯龙等行业典型客户,靠得就是Topsizer型激光粒度仪在检测亚微米、纳米颗粒的优异表现以及一套行之有效的检测方案。 Topsizer激光粒度分析仪采用国际先进的红蓝双光源设计,红光主光源为进口氦-氖激光器,并有蓝光辅助半导体光源,弥补了常规设计散射光角度的盲区,极大地提高了对纳米级颗粒及少量大颗粒的分辨力。同时具有量程宽、重复性好、精度高、测试结果真实、自动化程度高等诸多优点,是纳米碳酸钙粒度检测的优选激光粒度仪。【可详见《“好的仪器,用在刀刃上!”——Topsizer在纳米碳酸钙测试中的应用》】欧美克仪器作为粒度检测与控制技术专家,将继续服务于不断发展中的碳酸钙产业,与钙帮们携手并进,为精品碳酸钙产业的高质量发展贡献一份绵薄之力!
  • 迎难而上!碳酸钙粉体标样制定工作正式启动
    p style="text-align: justify text-indent: 2em "strong仪器信息网讯/strong 2019年10月17日,碳酸钙粉体标样启动仪式于IPB2019的“三新”峰会期间隆重举行。仪式由广东省建筑材料行业协会碳酸钙镁分会秘书长刘平主持,马尔文帕纳科中国区总经理梁东,新帕泰克中国区首席代表耿建芳,珠海欧美克销售总监吴汉平、售后服务经理黄俊峰,江西广源化工有限责任公司研发中心主任张晓明等参与了启动仪式的座谈。/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/201910/uepic/d3554021-ef86-469d-822a-bc9cef8e8882.jpg" title="IMG_4564.JPG" alt="IMG_4564.JPG" width="600" height="400" border="0" vspace="0"//pp style="text-align: center "strong广东省建筑材料行业协会碳酸钙镁分会秘书长刘平/strong/pp style="text-align: justify text-indent: 2em "粉体的标样至关重要,本次会议拟正式启动制定工作的《碳酸钙粉体标样》由广东省建筑材料行业协会碳酸钙镁分会、中山大学化学学院作为主制单位,目前的参制单位除了上述的马尔文帕纳科、珠海欧美克、新帕泰克、江西广源外,还有广西汇宾钙业有限责任公司、江西奥特科技(集团)有限公司、耐驰(上海)机械仪器有限公司、东莞市五全机械有限公司等。/pp style="text-align: justify text-indent: 2em "我国的碳酸钙行业一直存在着方法混乱、标准不统一等不足,有鉴于此,广东省建筑材料行业协会碳酸钙镁分会此前已完成纳米碳酸钙和重质碳酸钙的团体标准的制定,并且已经对外公示。为了进一步推动碳酸钙行业高质量、规范化地发展,拟于近日正式启动《碳酸钙粉体标样》的制定工作。/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 600px height: 822px " src="https://img1.17img.cn/17img/images/201910/uepic/bce859bd-2208-4c44-8916-314ed2f84cf3.jpg" title="initpintu_副本.jpg" alt="initpintu_副本.jpg" width="600" height="822" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "座谈中,几位专家就碳酸钙标样制定的重要性、上下游一致性、供需点、切入点等问题进行了深入探讨,并对标养制定过程中可能遇到的困难与需求展开交流,并给予了建设性建议。/pp style="text-align: justify text-indent: 2em "刘平强调,基于目前中国碳酸钙行业管理、申报机制的繁复性、碳酸钙原料来源及加工检测设备的复杂性,碳酸钙粉体标样的制定工作难度很大。但是难度大重要性更大,主制单位将在上下游企业和高等院校等多方资源的大力支持下,坚定地致力于实现这一目标,为满足时下国内碳酸钙精细化发展的需要,为我国的碳酸钙行业的前进与发展做出贡献。/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 600px height: 324px " src="https://img1.17img.cn/17img/images/201910/uepic/0e5e9d10-0d5a-4862-8606-e58d4159fa86.jpg" title="IMG_4597_看图王(1).JPG" alt="IMG_4597_看图王(1).JPG" width="600" height="324" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "随着参会专家合影的定格,碳酸钙粉体标样制定工作正式启动。据了解,标样制定组将于2019年11月中旬召开第一次研讨会议。后续也将继续招纳碳酸钙产业链上的重要企业参与到标样的制作工作中来,群策群力,促进工作的全方位考量和全面落实。/p
  • 一文了解领先的意大利西姆沉淀碳酸钙生产工艺
    p style="text-indent: 2em "span style="font-family: 宋体 line-height: 1.75em text-indent: 28px "沉淀碳酸钙是将石灰石等原料煅烧生成石灰和二氧化碳,再加水消化生成石灰乳,然后再通入二氧化碳碳化石灰乳生成碳酸钙沉淀,根据用途可进行碳酸钙粒子表面改性处理,最后经脱水、干燥粉碎而制得。/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal text-align: center "img src="http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_422477_newsimg_news.png" style="border: 0px margin-left: -3em !important "/br//pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "沉淀碳酸钙是重要的无机粉体填料之一,用途十分广泛。据了解目前中国已经发展成为世界沉淀碳酸钙第一大生产与消费国,但是就生产而言,与国外同行业相比差距仍然较大。如企业规模普遍较小,设备陈旧、水平低、产品品种单一、质量差等问题都急需解决。/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "意大利西姆作为领先的沉淀碳酸钙生产工艺设计制造工程公司,其提供的技术、工艺和设备具有一定的先进性,对国内企业的生产具有一定的借鉴作用。/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "strong意大利西姆介绍/strong/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "1967年,意大利西姆诞生于欧洲第二个工业大省——意大利贝加莫,贝加莫是一个具有悠久历史和生产石灰、水泥和磨细碳酸盐的地区。/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px " /spanimg src="http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_459162_newsimg_news.gif" style="border: 0px margin-left: -3em !important "//pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "西姆最初供应单轴石灰窑,三阶段水合物和包装机等,随后通过扩大其技术范围,继续引进回转窑等设备。目前已成为世界著名的提供石灰工业有关技术、设备与工程的工程公司。/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "strong西姆在世界/strong/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "西姆主要业务包括双筒蓄能活性石灰窑,干式消石灰生产装置,PCC工厂建造等。截止2017年10月,西姆足迹遍及5大洲60个国家,共229个石灰窑、169个水化设备??/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px "strong全球西姆业务分布图/strong/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px " /spanimg src="http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_490464_newsimg_news.png" width="400" height="300" border="0" vspace="0" title="" alt="" style="border: 0px margin-left: -3em !important width: 400px height: 300px "//pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px "strong各地区西姆设备分布图/strong/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal text-align: center "img src="http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_568358_newsimg_news.jpg" width="400" height="300" style="border: 0px margin-left: -3em !important "/br//pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "strong229个石灰窑:/strong/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px "北美国+欧洲94个/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px "南美国+中欧/东欧23个/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px "AFTRIC+中东27个/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px "亚洲+大洋洲85个/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "strong style="line-height: 1.75em "169个水化设备:/strong/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px "北美国+欧洲103个/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px "南美国+中欧/东欧30个/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px "AFTRIC+中东16个/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px "亚洲+大洋洲20个/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "strong西姆沉淀碳酸钙工艺/strong/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px "strong西姆沉淀碳酸钙生产线/strong/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px " /spanimg src="http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_578396_newsimg_news.png" width="557" height="472" style="border: 0px margin-left: -3em !important width: 557px height: 472px "//pol class=" list-paddingleft-2" style="padding: 0px list-style-position: initial list-style-image: initial font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal "lip style="padding: 0px margin-top: 0px margin-bottom: 0px line-height: 1.75em "span style="font-size: 16px "石灰煅烧/span/p/li/olp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "西姆石灰的煅烧采用全自动双筒蓄能气烧石灰窑,燃烧介质为天然气或煤气,体积分数在25%左右,入窑石灰石块度小,可降低石灰石的损耗,并可以生产高活性的轻烧石灰石,(相比国内机制窑活性300 ml(4NHCl))蓄能窑的活性可达370ml(4NHCl)。高活性石灰对消化工序与碳化工序设计运行有直接影响,机理上对 PCC 粒子晶型确定,成核,晶体成长,以及粒径分布有积极作用。/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "2.石灰消化/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "PCC生产中,西姆采用的三级消化技术,厢式连续搅拌消化机,消化能力大,出渣量小,设备占地面积小,Ca(OH)2浓度是浓度 8-16%。消化后过旋液分离器和振动筛,采用二级制冷,一级采用工艺水制冷入口温度74° C ,出口温度34° C;二级冷冻水制冷入口温度34° C,出口温度调到25° C以下。/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "3.碳化工艺/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px "strong西姆的碳化示意图/strong/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px " /spanimg src="http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_757857_newsimg_news.png" style="border: 0px margin-left: -3em !important "//pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "西姆的碳化采用两级碳化工艺。一级碳化为大气液比连续碳化塔,碳化过程连续进料,以便快速形成晶核。也称为晶核预成器。Ca(OH)2和CO2进行连续碳化反应。/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "二级碳化采用了大容积、搅拌式鼓泡碳化方式,调整pH在7以下。能够提供20、27、40、57m3等4个规格的碳化器。碳化器采用双叶轮搅拌器,碳化反应时间为60-90分钟一塔。/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px "strong造纸微米钙和橡塑纳米钙的碳化/strong/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "img src="http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_779250_newsimg_news.png" style="border: 0px margin-left: -3em !important "//pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "4.包覆工艺/span/pul class=" list-paddingleft-2" style="padding: 0px list-style-position: initial list-style-image: initial font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal "lip style="padding: 0px margin-top: 0px margin-bottom: 0px line-height: 1.75em "span style="font-size: 16px "?皂化/span/p/li/ulp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "皂化采用30立方的皂化釜,硬脂酸与氢氧化钠高温皂化形成硬脂酸钠,皂化温度控制在80-85℃。/span/pul class=" list-paddingleft-2" style="padding: 0px list-style-position: initial list-style-image: initial font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal "lip style="padding: 0px margin-top: 0px margin-bottom: 0px line-height: 1.75em "span style="font-size: 16px "?活化/span/p/li/ulp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "活化采用体积50m3,直径3.5m的活化釜,高温、高转速、高剪切搅拌活化,温度控制在80-85℃。加入皂化液后,搅拌2小时进行包覆,与碳酸钙表面结合。/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "5.干燥粉碎/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "一般的沉淀碳酸钙产品不需要粉碎可以直接包装,如果认为细粉含量低,仍有团聚,可以另外加解聚装置,采用日本细川公司生产的针形磨,进一步粉碎降低团聚体和吸油值。/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "对于纳米碳酸钙来说,其干燥被国内专家称为国内 PCC 技术的“瓶颈”。西姆的技术采用英国阿碎得(ATRITOR)干燥粉磨机,同时完成轻质碳酸钙PCC生产中的干燥和解聚工序,是生产高等级超细钙和纳米轻质碳酸钙的重要设备。/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px " /spanimg src="http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_789796_newsimg_news.png" width="509" height="295" style="border: 0px margin-left: -3em !important width: 509px height: 295px "//pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "strong西姆产品特点与指标/strong/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em "span style="font-size: 16px "平均粒径尺寸(20-70nm);比表面积(70-18 m2/g);形状规则,粒径分布小;表面包覆硬脂酸,用量1.9-4%,纯度高。/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px "strong西姆的SC纳米碳酸钙指标/strong/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal text-align: center "img src="http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_823374_newsimg_news.png" style="border: 0px margin-left: -3em !important "//pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "span style="font-size: 16px "strong西姆的造纸钙指标/strong/span/pp style="padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center "img src="http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_839392_newsimg_news.png" style="border: 0px margin-left: -3em !important "//p
  • 【标准解读】扫描电子显微术测量纳米颗粒粒度及形状分布
    纳米颗粒因尺度效应而具有传统大颗粒所不具备的独特性能,被广泛应用于生物医药、化工、日用品、润滑产品、新能源等领域。而纳米颗粒的粒度形状分布,直接关系到相应产品的性能质量及安全性,需要进行准确的测量表征。扫描电子显微镜(SEM)作为最直观、准确的显微测量仪器之一,在纳米颗粒测量表征中不可或缺。本标准等同采用ISO 19749:2021《Nanotechnologies — Measurements of particle size and shape distributions by scanning electron microscopy》,从很大程度上完善和补充国内现有标准的不足,给出较为完整的颗粒粒径测量的分析评价方法,对于采用不同扫描电子显微镜(SEM)得到的颗粒测量结果一致性评判,具有重要的参考价值。视具体需求以及仪器性能而定,本标准中涉及到的方法,也适用于更大尺寸的颗粒测量。一、背景纳米颗粒形态多种多样,很多情况下也会存在聚集、团聚的现象,这为SEM的观测与分析带来了较大的挑战。由于不同设备、不同人员的操作习惯以及采用不同分析策略所引起的粒度粒形测量结果的一致性问题也十分值得探讨。现行的相关国家标准大多关注采用SEM手段对特定被测对象的特征进行测量、表征、区分、定义等,具有较强的针对性,但缺乏系统性,特别是对设备性能的计量评定、样品处理及制样过程、图像处理的依据、测量结果的准确性与统计性等技术内容并未给出更为充分的、本质的、系统的说明。二、规范性引用文件本标准在制定过程中,在符合等同采用国际标准的要求的基础上,充分参照了现行相关国家标准中的相关术语及技术内容的表述,包括计量学、粒度分析、数理统计、微束分析、颗粒表征、纳米科技等各个专业领域;同时,在一些习惯性表达上,也充分征求了行业专家、资深从业者、用户的意见和建议,力求做到专业、通俗、易懂。三、制定过程本标准涉及的专业领域较为广泛,因此集合了国内相关领域的一批权威代表性机构和企业合作完成。牵头单位为中国计量科学研究院,主要参加单位包括国家纳米科学中心、北京市科学技术研究院分析测试研究所(北京理化分析测试中心)、山东省计量科学研究院、卡尔蔡司(上海)管理有限公司、北京海岸鸿蒙标准物质技术有限责任公司、中国检验检疫科学研究院、北京粉体技术协会等。对于标准中的重要技术内容,如SEM性能验证方法、典型样品(宽窄分布颗粒样品)制样方法、比对报告中涉及的颗粒测试及统计方法(算法)等均进行了方法学验证,验证了标准中相关技术操作的可行性。修正了ISO 19749:2021中的一些编辑性错误。四、适用范围本标准适用于各类纳米颗粒及其团聚、聚集体,甚至更大尺寸颗粒的粒度及形状分布测量。前提应将SEM作为一个测量系统进行评定,以确定所用SEM的性能范围,这包括设备自身的扫描分辨力、漂移、洁净度等特性。同时,也取决于观测者所需要的测量准确性。高的测量准确性需要高性能的SEM设备+高精度校准+洁净的样品前处理+匹配的测试参数+足够多的被测颗粒数量+合适的阈值算法,其中每一步都会影响最终的测试结果。因此,根据实际工作中对测试结果准确性、重复性和一致性的需求,可对上述环节进行不同程度的限定。五、主要内容本标准涉及的主要内容覆盖SEM测量颗粒粒度及形状分布的全流程,从一般原理到设备校准,样品制备到测试参数选用,图像采集到数据处理,均给出了较为详细的阐述,并在附录中给出了实用的案例。术语及定义:包括纳米技术的通用术语,图像分析、统计学和计量学专业核心术语、SEM核心术语等。一般原理:概括性地介绍了SEM成像原理及粒度、粒形测量原理。样品制备:较为系统地介绍了典型的粉末及悬浮液从取样、制样到分散的过程,并重点阐述了颗粒在硅基底和TEM栅网上的沉积方法。可根据需求,采用几种不同层次的硅片清洗与处理方法,一方面确保硅片的洁净,另一方面可使其表面带有正电或负电的捕获分子层,以确保颗粒在硅片上的有效分散。必要时采用TEM栅网,可提高颗粒与背底的对比度。考虑样本颗粒数量时,一般而言假设颗粒是对数正态分布的,本标准给出了一个颗粒数与误差和置信区间的计算公式可供参考。SEM设备的评价方法:给出了SEM成像能力的影响因素,包括空间分辨率、漂移、污染、水平垂直范围及线性度、噪声等,具体的验证方法在附件中有较为详细的描述,此外也可依照其他相关的技术规范或标准定期进行校准。图像采集:重点给出了不同粒度测量时放大倍率和像素分辨率的选择策略,取决于实际的测量需求。测量者需要充分考虑要求的误差和放大倍率来计算所需的像素分辨率,当颗粒分布较宽时可能有必要在不同放大倍率下进行拍摄,以兼顾颗粒的测量效率及测量精度。颗粒分析方法:手动分析可能准确率很高,能较好地界定测量区域以及筛选合格的颗粒(例如单分散颗粒体系中去除黏连颗粒),但采用软件自动处理往往更为高效。采用软件处理时,阈值的设定会对颗粒的筛选、粒度的大小产生较为关键的影响,必要的时候可以采用自动处理与手动处理相结合的方式。数据分析:给出了筛选数据可采用的统计学方法(方差分析、成对方差分析、双变量分析等方法)、模型拟合方法的参考,重点讲解了不确定度的来源与计算。结合60 nm颗粒测量结果,阐述了典型的不确定度来源。在上述基础上,给出了测量报告的信息及内容。本文作者: 黄鹭 副研究员; 中国计量科学研究院 前沿计量科学中心 Email:huangl@nim.ac.cn常怀秋 高级工程师; 国家纳米科学中心 技术发展部 Email:changhq@nanoctr.cn
  • “移情别恋” 这5种粉体已投向激光粒度仪怀抱
    p style="text-indent: 2em "随着科学技术的发展和工业工艺精细化程度的不断提升,产品呼唤的质量及性能要求日益提升,粉体材料的热度不断上升,同时对粉体粒度检测的要求也越来越高。在众多粒度检测方法中,激光粒度仪在各行各业的粒度检测中都有着广泛的应用,适用的粉体多如繁星,能力也在不断升级,成为了当下最受宠的粒度检测方法之一。在化工和矿业等领域,很多粉体的粒度检测本来是常用筛分法、沉降法等方法,但良禽择木而栖,现在也都渐渐走向了激光粒度仪的怀抱。仪器信息网选取了上述行业中5种常用的粉体进行探讨,它们移情别恋的故事这就为您奉上。/pp style="text-indent: 2em "(1)铝粉/pp style="text-indent: 2em "氧化铝是一种应用最广泛的催化剂载体,价格便宜,能够通过改变条件来制备各种催化反应所要求的不同的晶相、比表面积和孔分布的载体。铝粉作为生产氧化铝载体的重要原料,其规格对氧化铝载体的最终性能有重要影响。/pp style="text-indent: 2em "铝粉的粒径正是衡量铝粉质量的一项重要指标:粒径过小,合成溶胶反应较剧烈,反应温度不易控制且存在安全隐患;粒径过大,反应不易完全,会造成溶胶铝含量偏低而影响产品性能,而且使粒子间的空隙变大,接触点变小,填充密度随之减少,强度也随之降低。检测铝粉粒度的传统方法是筛分法,但速度慢,精度差,重复性低。相比之下,激光光散射法突破了筛层数的限制,测量范围大幅扩大,且为连续分布。具有较好的测量重复性,结果准确,可满足铝粉粒度的测定要求。/pp style="text-indent: 2em "不过需要注意的是,用激光粒度仪,通过测定散射光能的分布计算出被测样品的粒径大小,其中散射光的强度和空间分布与被测颗粒的大小和含量有关。因此,确保粉体能均匀分散在分散介质中,粒子不团聚,不与分散介质发生化学反应是准确测定样品粒度的前提。/pp style="text-indent: 2em "对于铝粉的粒度检测方法,筛分法和激光极度以检测方法都有相应的行业标准出台,分别是YS/T 617.6-2007《铝、镁及其合金粉理化性能测定方法 第6部分:粒度分布的测定 筛分法》和YS/T 617.7-2007《铝、镁及其合金粉理化性能测定方法 第7部分:粒度分布的测定 激光散射/衍射法》。/pp style="text-indent: 2em "(2)钛白粉/pp style="text-indent: 2em "钛白粉是塑料中是重要的添加剂,粒度大小和粒度分布对钛白粉的白度、光泽度、耐候性等性能有重要影响。6、70年代,国内外一些钛白粉厂多采用沉降法和电子显微镜法测定钛白粉粒度分布 。沉降法影响因素较多, 测定结果有很大差别 电子显微镜法测定粒度分布, 必须借助大量统计工具, 才能得到较为接近实际情况的粒度分布, 否则有局限性。相比之下,激光粒度仪法简捷 、快速 、准确度高、重现性好,对钛白粉粒度分布的测定适用性极好 ,有利于指导钛白生产和成品质量评定。使用激光粒度仪测量钛白粉最好的方法是先确定分散剂 、分散剂浓度及分散时间等影响因素,并建立稳定的测量体系。目前钛白粉的粒度检测尚无相关的标准出台。/pp style="text-indent: 2em "(3)硅粉/pp style="text-indent: 2em "硅粉是合成甲基氯硅烷的主要原料之一,硅粉粒径的大小直接影响到甲基氯硅烷的选择性及收率,故在甲基氯硅烷生产过程中必须对硅粉的粒度及分布情况进行测定。目前,常用的硅粉检测方法为筛分法,但该法噪声大,粉尘污染严重,且会在检测过程中造成样品损失,回收率低,在潮湿环境下硅粉易受潮,也会使测试结果产生偏差。/pp style="text-indent: 2em "激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。其测试速度快、重复性好、操作简单,已被应用于硅粉的粒度测试上。激光粒度仪测定硅粉的较佳仪器条件为: 遮光率 15%,超声时间 3 min,当搅拌速度为 1 500 r/min 时,获得的检测结果准确可靠。与钛白粉一样,化工用硅粉的粒度检测也尚无相关的标准出台。/pp style="text-indent: 2em "(4)碳酸钙粉/pp style="text-indent: 2em "碳酸钙( CaCO3 )粉主要存在于天然矿石中,目前是一种应用较广泛的环保型钻井液加重材料。在钻井钻进储层段时,钻完井液会侵入油层中,而小于孔喉直径的钻井液材料则会进入油层造成伤害,颗粒愈小,侵入深度愈大。固相颗粒的伤害对裂缝油藏更为突出。因此,对固相颗粒的控制,减少钻井液中固相含量,特别是超细钻井液材料的颗粒含量,使/pp style="text-indent: 2em "它们保持一个合理的级配,是减少钻井液固相对油层伤害的重要措施。/pp style="text-indent: 2em "过去通常采用沉降法测定碳酸钙粉末粒度,但沉降法的实验步骤繁琐,且重复性较低。当前随着激光衍射技术的不断更新,使用激光粒度分析仪已经完全可以代替传统的筛析和沉降方法,激光粒度分析仪具有较好的数据采集和处理系统,测试过程结束后,直接计算分析出实验数据所需结果并可以分类保存、一键打印实验结果,样品测试时间仅为数分钟 ,远远低于沉降法测量,大大缩短了测量周期。/pp style="text-indent: 2em "针对碳酸钙粉,目前已有国标GB/T 15057.11-1994《化工用石灰石粒度的测定》出台。但所规定的方法也仅为筛分法。/pp style="text-indent: 2em "(5)细精粉/pp style="text-indent: 2em "粒度是衡量铁矿石质量的一项重要指标 , 在铁矿石贸易合同中 ,贸易双方对粒度指标的要求都比较严格 ,粒度分布直接关系到铁矿石价格 。而细精粉是铁矿石中价格最贵的品种之一 , 而最能表现其质量除了铁品位就是它的目级粒度。通常目级粒度的测试是用筛分仪进行测试。筛分作为一种古老的方法, 它最大的优点在于廉价, 所以适用于矿业中较大颗粒粒度测试 。目前进口铁矿中粒度测试都采用网筛进行筛分,但是也有许多的缺点 :①干式条件下测量小于 1mm的矿石比较困难 ②干式条件下测量粘性较大或成团的矿石比较困难 ③筛分时间长短受人为因素控制 ,可比性、可靠性下降。/pp style="text-indent: 2em "随着科学技术的发展,激光光衍射 (或称小角激光光散射)等 ,已成为粒度测试的首选方法,不需要对照标准来校准仪器 很宽的动态范围 灵活性高 可以直接测量干粉 具有高度的再现性 可以测量整个样品 测量方法是非破坏性和非侵入性的 速度较快 分辨率高。不过细精粉的粒度分布均匀, 都在 1mm以下 ,而激光粒度仪的测试范围在 0.02 ~ 2mm, 因此,激光粒度仪在细精粉粒度检测中的应用有一定的范围条件:当测试时间 20s、泵速2 500r/min时,激光粒度仪可适用于铁矿石目级粒度的测定,而且结果比机筛的结果更加真实。/pp style="text-indent: 2em "在细精粉等铁矿石粉体的粒度检测标准中,目前针对筛分法已有国标GB/T 10322.7-2016,《铁矿石和直接还原铁 粒度分布的筛分测定》出台。另有商业检测标准,SN/T 4844-2017《铁矿石安全卫生检验技术规范 第7部分:质量评价 粒度分布》现行,但尚无相关的激光散射/衍射法粒度检测标准出台。/pp style="text-indent: 2em "上述5大粉体的粒度检测都已经或正在展现出对激光粒度仪的青睐,但铝粉外,似乎并无相应的激光散射/衍射法粒度检测标准出台,这对于各激光粒度仪厂商也不失为一种参与行业建设的机遇。/p
  • 梅特勒托利多:用于测定颗粒粒度分布的筛分易巧称量件上市
    梅特勒托利多:用于测定颗粒粒度分布的筛分易巧称量件上市 -- One Click&trade 一键称量筛分分析解决方案 筛分易巧称量件是可放置在精密天平秤盘上的选配件,用于固定筛堆安全放置在天平正确的位置。 完整的One Click&trade 一键称量筛分分析解决方案 使用天平触摸屏上的One Click&trade 快捷键即可方便的启动方法。使用自动称量侦测,无需接触任何按键,筛子就能被连续称量。LabX在天平上提供了清晰的一步一步的指令,自动保存数据并进行计算。完整的解决方案专为您的流程需求而度身定制。12345一键启动任务筛分回称结果记录存档 通过触摸屏输入样品ID。通过SmartTrac&trade 指导样品称量。声音信号提示下一步筛分。显示分布的百分比。所有数据被自动记录下来。无需任何按键,称量所有空筛。暂停任务,在筛分震动器上完成筛分。自动计算出每个筛子所占质量的权重。更多计算出的结果,例如尺寸d50网格筛子。可随时打印定制的有图形曲线的报告。 详细信息,请访问梅特勒托利多网站:http://cn.mt.com/cn/zh/home/products/Laboratory_Weighing_Solutions/oneclick-weigh/OneClick_Sieve.html
  • 欧美克激光粒度仪助力养殖业饲料用粮的减量增效
    3月15日,农业农村部畜牧兽医局发布关于推进玉米豆粕减量替代工作的通知,重点下达了《饲料中玉米豆粕减量替代工作方案》,最主要目的是推进料中玉米豆粕减量替代,促进料粮保供稳市。这是基于粮食安全背景下的饲料粮替代方案的细则。2020年我国粮食进口创历史新高,累计进口超1.4亿吨,其中将近80%的农产品进口用于发展养殖业的饲料。有数据表面,饲料成本占据了养猪业成本的70~80%。提高农产品的生物利用率,从而减少粮食消耗,降低养殖成本的现代化精细化管理势在必行。 与谷物粮食的生物利用率有关的因素包括畜禽的种质,饲养方式,饲料配方组成等等。饲料中多种原料的颗粒的尺寸控制亦是其中一个重要环节。激光粒度仪作为传统筛分的高效替代解决方案,以其测试范围宽广、分析速度快、结果准确且受操作者影响小、重现性好、需要样品量少等优点,在饲料配方开发中的应用日益普及开来。饲料粒度如何影响饲料效率和养分利用?通过增加单位饲料体积的总表面积,达到饲料颗粒尺寸将提高养分的消化率。其原理是消化酶可作用于饲料中的营养物质更多的表面积,因此畜禽的消化系统会更好地消化饲料。蛋白质、能量和其他营养物质的消化率一般随着饲料颗粒尺寸的优化而提高,提高消化率一般能提高饲料转化率。同时,达到粒径配比可以影响饲料混合的均匀性,并减少向动物输送饲料时出现的营养成份分离。如果在饲料的生产过程中没有采取适当的颗粒粒径分布质控措施,提供均衡饮食的好处可能会丧失。 有研究表明1,不同粒径的玉米和高粱在生猪养殖的一个阶段(初始7~8kg养至23kg)单位重量产出的饲料的消耗量与饲料研磨粒径有关,如下图。粒径越大,养殖利用效率越低。每超过100微米,每头猪的饲料成本将增加约14元。如果生产商将饲料粒度从1000微米到700微米,每头猪养殖在该阶段可节省约40元。当然,饲料的粒度也并不是越细越好,一方面太细的研磨或碾碎会增加能源消耗,另一方面饲料颗粒过细会增加贮藏和喂食器设计的难度,甚至还可能增加育肥猪的溃疡发病率及呼吸困难。相比传统的筛网,激光粒度仪可以快速地分析饲料尺寸,对于多种不同类型饲料研磨加工的多工艺参数调整提供及时的指导,不仅可以提供颗粒尺寸的整体信息,还可以提供不同粒径上的颗粒含量信息(与饲料的混匀性相关),从而提高饲料品质。除此以外,有研究2指出,饲料的粒径不仅与畜禽的采食量、料重比及健康有关,也直接影响到畜禽的采食速度。如下图所示,在该研究中,鸡饲料的粒径在2~2.83mm显示出料重比,同时粒径越小,鸡的采食时间越长,采食速度越慢。 除此以外,畜禽饲养中使用到的必不可少的各种营养添加剂和药品,例如碳酸钙粉、膨润土粉、海泡石粉、脱脂骨粉、花生壳粉等,其中粒径分布与有效成份的生物利用度和代谢时间都是息息相关的。欧美克Topsizer Plus激光粒度仪引入了国际先进的光学设计,结合欧美克近30年的技术积累,采用全球化的供应链体系,保持了Topsizer量程宽、重复性好、分辨力高、真实测试性能强和智能化程度高等优点,拥有0.01~3600um超宽广范围内快速准确的饲料颗粒粒径分析能力,正在为我国饲料用粮食的减量增效提供应有的贡献。 参考:1.Ohh S.J., Allee G., Behnke K.C., Deyoe C.W. Effect of particle size of corn and sorghum grain on performance and digestibility of nutrients for weaned pigs. Journal of Animal Science. 57:2602.田中智夫等。鶏の採食行動に及ぼす飼料粒度の影響。家畜の管理3.https://www.sohu.com/a/456221289_120122479
  • “小贝开讲”之如何快速实现悬浮液、粉体颗粒粒度分布的准确分析
    时间:2018年12月12日 14:00 - 15:00内容简介:作为应用领域最广的粒度分析设备,激光衍射粒度仪有着其它粒度分析设备没有的更宽的测量范围,更高的重复性,更快的测量速度以及更简便的操作。但我们所测样品种类繁多,粒度分布极广,所以如何确保仪器上下限粒度的极限测量?如何确保快速准确区分单峰、多峰样品?如何简化并规范操作流程?这些都是我们关注的焦点。 本讲座将通过对样品的前处理探讨,以及测试过程中对激光粒度仪LS 13 320 XR软硬件设计的详细剖析,为您快速获知任何所测样品的准确粒度分布提供有力保障。主讲人简介:史艳轻产品应用技术专家 贝克曼库尔特生命科学市场部 在粉体制备、颗粒表征以及颗粒特性产品应用领域工作多年,有着丰富的样品颗粒分析和检测经验,现为贝克曼库尔特公司颗粒特性和计数产品专员,负责颗粒产品的技术和应用开发等相关工作。美国贝克曼库尔特公司于1997年由贝克曼公司和库尔特公司合并成立,现已成为世界著名的颗粒分析仪器公司。作为颗粒特性分析领域的先驱和领导者,贝克曼库尔特专注于为全球用户创造卓越的价值。众多应用领域如食品、制药、化工等和国际组织如美国ASTM,国家航空航天局 (NASA)等均将贝克曼库尔特的技术和产品定为标准方法或质量控制的专用仪器。秉承“为全球客户提供富于创新和值得信赖的科学解决方案”的使命,贝克曼库尔特不忘初心,不断创新,致力于为客户提供完整领先的颗粒表征及粒度分析解决方案。
  • 【好书推荐】《颗粒粒度测量技术及应用》(第2版)出版
    自然界中很多物质属于颗粒,例如黏土、沙子和灰尘;人类的食物也往往是颗粒,例如谷粒、豆子、盐和蔗糖;很多加工物,例如煤炭、催化剂、水泥、化肥、颜料、药物和炸药也大多属于粉体或颗粒。颗粒学是一门多交叉学科,由多基础科学和大量相关的应用技术组成,涉及化学、物理、数学、生物、医学、材料等若干基础科学,与工艺、工程应用技术密切相关。颗粒(包括固体颗粒、液滴、气泡)与能源、 动力、环境、机械、医药、化工、轻工、冶金、材料、食品、集成电路、气象等行业密切相关,同时也会影响到人们的日常生活。据文献介绍,70% 以上的工业产品都涉及颗粒,近年来经常出现的沙尘暴、冬季大范围的浓雾等都与空气中的颗粒物有关。颗粒粒径和形貌是颗粒的最重要参数。上海理工大学颗粒与两相流测量研究所所长蔡小舒教授及课题组成员长期从事颗粒粒度测量方面的研究和教学工作,先后得到国家自然科学基金重点项目和面上项目、国家 863计划项目、国家 973计划项目、上海市“科技创新行动计划”纳米科技项目等多个项目的支持,开展光散射理论、基于光散射原理的多种颗粒测量方法、基于超声的多种颗粒测量方法、纳米颗粒测量方法、图像法、颗粒在线测量等方面的研究,在颗粒测量基础理论和测量方法及技术方面取得多项成果。《颗粒粒度测量技术及应用》(第一版)左图:蔡小舒教授;右图:《颗粒粒度测量技术及应用》(第一版)《颗粒粒度测量技术及应用》(第一版)是蔡小舒教授等从 20 世纪 80 年代到 2010 年二十多年在颗粒测量理论、方法、技术和应用研究的总结,反映了我国和国际上当时颗粒测量的技术水平。第一版系统介绍了颗粒的基础知识以及颗粒粒径分布的表征方法,全面系统地讨论了有关光散射颗粒粒径测量方面的基础知识,归纳总结基于散射光能测量和透射光能测量的多种颗粒测量方法、纳米颗粒粒度的测量方法以及蔡小舒教授等开展在线颗粒测量应用研究的具体例子。成为从事颗粒测量技术研究和仪器开发的研究人员和工程技术人员的最主要参考书,也是众多涉及颗粒制备与应用的科技人员的重要参考书。时任中国颗粒学会名誉理事长的郭慕孙院士对该书的出版表示肯定,并为该书作序,推荐给从事颗粒研究、加工、应用的科技人员。随着科技的发展,颗粒测量技术也在不断迎来新的挑战、迈向新的高度。颗粒测量方法、技术和仪器有了很大的发展进步,出现了不少新的技术和仪器,远心镜头、液体变焦镜头、各种新型激光光源和发光二极管(LED)光源等光电子技术和计算机技术等硬件技术的发展,以及金属氧化物半导体器件(CMOS)技术的发展推动了各种数字相机技术的飞速发展。颗粒粒度涉及的范围也越来越广泛:▪ 大气环境污染,雾霾使得 PM2.5 成为家喻户晓的名词,新冠病毒的传播更使气溶胶这样的专业词汇得到普及。▪ 纳米颗粒、生物颗粒、微泡、药物颗粒、能源颗粒等新的颗粒应用以及越来越广泛的在线测试需求促进了颗粒测试技术的快速发展。高浓度纳米颗粒粒度测量探针▪ 大数据分析、人工智能算法等手段被引入到测量数据的处理中。众多领域对颗粒测试的需求、软硬件技术的发展等诸多因素,催生出许多新的颗粒测量方法和技术手段。例如,图像测量方法不再局限于对微米级以上颗粒的成像测量,也应用于纳米颗粒的粒度测试;又如,将图像测量方法与光散射等其他方法融合,形成了多种包括气溶胶等在内的在线颗粒测量新方法。纳米颗粒粒度仪 很显然,颗粒测量技术的飞速发展使得 2010 年出版的《颗粒粒度测量技术及应用》一书已不能满足当前颗粒研究者的需要,内容亟需更新。经典再版 全面更新为此,在化学工业出版社的支持下和国家科学技术学术著作出版基金的再次资助下,第二版图书于2023年1月正式出版了。第二版图书在保持上一版结构框架的基础上,对图书内容进行了重新撰写,主要体现在以下几方面:▪ 对部分章节结构作了调整,如将原第 7 章“纳米颗粒的测量”中,有关动态光散射原理的纳米颗粒测量内容并入第 5 章“动态光散射法纳米颗粒测量技术”,有关超声纳米颗粒测量的内容并入第 6 章“超声法颗粒测量技术”,将第 7 章改写成“图像法颗粒粒度测量技术”。▪ 补充了作者团队自第一版出版后 12 年来在光散射理论及测量、超声理论及测量、图像法测量、纳米颗粒测量、多方法融合测量、在线测量等技术及应用的研究成果。▪ 补充修订了与颗粒测量相关的国际标准和国家标准目录等内容。▪ 本书不仅可作为从事颗粒相关研究和应用的科研与工程技术人员的主要参考书,也可供相关专业研究生学习和参考。本书作者深深感谢郭慕孙先生生前的支持和鼓励,谨以本书第二版出版纪念郭慕孙先生逝世10周年。《颗粒粒度测量技术及应用》(第二版)「聚焦颗粒测量技术」「注重技术发展与应用」蔡小舒 苏明旭 沈建琪 等著责任编辑:李晓红书号:978-7-122-42009-1定价:198.00元▲ 长按识别 即可优惠购买本书图书分为四部分。第一部分介绍了颗粒粒度的基本知识;第二部分系统介绍了光散射理论、超声散射理论和图像处理理论等,以及基于上述理论发展的各种颗粒测量技术,其粒度测量范围覆盖了在科学研究及各领域和行业应用涉及的从纳米到毫米粒度范围;第三部分介绍了颗粒粒度测量仪器和应用,并引入其它颗粒测量技术作为补充;第四部分为作者多年来收集的大量物质的折射率和其它物性参数,以及国际和国内有关颗粒测量的标准等资料。本书适合从事颗粒科学研究与应用的科研人员和工程技术人员参考,也可作为高等学校相关学科教师和研究生的教材或参考书。# 目录预览 #第1章 颗粒基本知识 / 0011.1 概述 / 0011.2 颗粒的几何特性 / 0021.2.1 颗粒的形状 / 0021.2.2 颗粒的比表面积 / 0031.2.3 颗粒的密度 / 0031.3 颗粒粒度及粒度分布 / 0041.3.1 单个颗粒的粒度 / 0041.3.2 颗粒群的粒径分布 / 0061.3.3 颗粒群的平均粒度 / 0111.4 标准颗粒和颗粒测量标准 / 0131.4.1 标准颗粒 / 0131.4.2 颗粒测量标准 / 0171.5 颗粒测量中的样品分散与制备 / 0171.5.1 颗粒分散方法 / 0171.5.2 颗粒样品制备 / 0191.5.3 常见测量问题讨论 / 020参考文献 / 022第2章 光散射理论基础 / 0232.1 衍射散射基本理论 / 0232.1.1 惠更斯-菲涅耳原理 / 0232.1.2 巴比涅原理 / 0252.1.3 衍射的分类 / 0262.1.4 夫琅和费单缝衍射 / 0262.1.5 夫琅和费圆孔衍射 / 0282.2 光散射基本理论 / 0302.2.1 光散射概述 / 0302.2.2 光散射基本知识 / 0322.2.3 经典Mie光散射理论 / 0352.2.4 Mie散射的德拜级数展开 / 0522.3 几何光学对散射的描述 / 0562.3.1 概述 / 0562.3.2 几何光学近似方法 / 0572.4 非平面波的散射理论 / 0642.4.1 广义Mie理论 / 0642.4.2 波束因子的区域近似计算 / 0692.4.3 高斯波束照射 / 0702.4.4 角谱展开法 / 071参考文献 / 076第3章 散射光能颗粒测量技术 / 0813.1 概述 / 0813.2 基于衍射理论的激光粒度仪 / 0843.2.1 衍射散射式激光粒度仪的基本原理 / 0843.2.2 多元光电探测器各环的光能分布 / 0863.2.3 衍射散射法的数据处理方法 / 0893.3 基于Mie散射理论的激光粒度仪 / 0933.3.1 基于Mie理论激光粒度仪的基本原理 / 0933.3.2 粒径与光能变化关系的反常现象 / 0963.4 影响激光粒度仪测量精度的几个因素 / 0993.4.1 接收透镜焦距的合理选择 / 0993.4.2 被测试样的浓度 / 1003.4.3 被测试样轴向位置的影响 / 1023.4.4 被测试样折射率的影响 / 1043.4.5 光电探测器对中不良的影响 / 1043.4.6 非球形颗粒的测量 / 1063.4.7 仪器的检验 / 1063.5 激光粒度仪测量下限的延伸 / 1063.5.1 倒置傅里叶变换光学系统 / 1083.5.2 双镜头技术 / 1093.5.3 双光源技术 / 1103.5.4 偏振光散射强度差(PIDS)技术 / 1113.5.5 全方位多角度技术 / 1123.5.6 激光粒度仪的测量上限 / 1143.5.7 国产激光粒度仪的新发展 / 1153.6 角散射颗粒测量技术 / 1203.6.1 角散射式颗粒计数器的工作原理 / 1213.6.2 角散射式颗粒计数器的散射光能与粒径曲线 / 1223.6.3 角散射式颗粒计数器F-D曲线的讨论 / 1243.6.4 角散射式颗粒计数器的测量区及其定义 / 1283.6.5 角散射式颗粒计数器的计数效率 / 1323.6.6 角散射式颗粒计数器的主要技术性能指标 / 1323.7 彩虹测量技术 / 1353.7.1 彩虹技术的原理 / 1363.7.2 彩虹法液滴测量 / 1373.8 干涉粒子成像技术 / 1413.8.1 干涉粒子成像技术介绍 / 1413.8.2 干涉粒子成像法颗粒测量 / 1423.9 数字全息技术及其应用 / 1443.9.1 数字全息技术介绍 / 1443.9.2 数字全息技术的应用 / 146参考文献 / 151第4章 透射光能颗粒测量技术 / 1584.1 消光法 / 1584.1.1 概述 / 1584.1.2 消光法测量原理 / 1584.1.3 消光系数 / 1604.1.4 消光法数据处理方法 / 1634.1.5 消光法颗粒浓度测量 / 1704.1.6 消光法粒径测量范围及影响测量精度的因素 / 1704.1.7 消光法颗粒测量装置和仪器 / 1724.2 光脉动法颗粒测量技术 / 1744.2.1 光脉动法的基本原理 / 1754.2.2 光脉动法测量颗粒粒径分布 / 1784.2.3 光脉动法测量的影响因素 / 1834.3 消光起伏频谱法 / 1854.3.1 数学模型 / 1854.3.2 测量方法和测量原理 / 1884.3.3 消光起伏频谱法的发展现状 / 197参考文献 / 198第5章 动态光散射法纳米颗粒测量技术 / 2025.1 概述 / 2025.2 纳米颗粒动态光散射测量基本原理 / 2045.2.1 动态光散射基本原理 / 2045.2.2 动态光散射纳米颗粒粒度测量技术的基本概念和关系式 / 2075.2.3 动态光散射纳米颗粒测量典型装置 / 2115.2.4 数据处理方法 / 2135.3 图像动态光散射测量 / 2205.3.1 图像动态光散射测量方法(IDLS) / 2205.3.2 超快图像动态光散射测量方法(UIDLS) / 2225.3.3 偏振图像动态光散射法测量非球形纳米颗粒 / 2245.4 纳米颗粒跟踪测量法(PTA) / 2295.5 高浓度纳米颗粒测量 / 231参考文献 / 234第6章 超声法颗粒测量技术 / 2376.1 声和超声 / 2376.1.1 声和超声的产生 / 2376.1.2 超声波特征量 / 2386.2 超声法颗粒测量基本概念 / 2426.2.1 声衰减、声速及声阻抗测量 / 2446.2.2 能量损失机理 / 2486.3 超声法颗粒测量理论 / 2506.3.1 ECAH 理论模型 / 2516.3.2 ECAH理论模型的拓展和简化 / 2626.3.3 耦合相模型 / 2776.3.4 蒙特卡罗方法 / 2836.4 超声法颗粒测量过程和应用 / 2886.4.1 颗粒粒径及分布测量过程 / 2886.4.2 在线测量 / 2986.4.3 基于电声学理论的Zeta电势测量 / 2996.5 超声法颗粒检测技术注意事项 / 3006.6 总结 / 301参考文献 / 301第7章 图像法颗粒粒度测量技术 / 3047.1 图像法概述 / 3047.2 成像系统 / 3057.2.1 光学镜头 / 3057.2.2 图像传感器 / 3087.2.3 照明光源 / 3107.3 显微镜 / 3117.4 动态颗粒图像测量 / 3177.5 颗粒图像处理与分析 / 3187.5.1 图像类型及转换 / 3187.5.2 常用的几种图像处理方法 / 3207.5.3 颗粒图像分析处理流程 / 3237.5.4 颗粒粒径分析结果表示 / 3237.6 图像法与光散射结合的颗粒测量技术 / 3277.6.1 侧向散射成像法颗粒测量 / 3277.6.2 后向散射成像法颗粒测量 / 3307.6.3 多波段消光成像法颗粒测量 / 3317.7 彩色颗粒图像的识别 / 3347.7.1 彩色图像的色彩空间及变换 / 3347.7.2 彩色颗粒图像的分割 / 3367.8 总结 / 338参考文献 / 339第8章 反演算法 / 3418.1 反演问题的积分方程离散化 / 3418.2 约束算法 / 3438.2.1 颗粒粒径求解的一般讨论 / 3438.2.2 约束算法在光散射颗粒测量中的应用 / 3458.2.3 约束算法在超声颗粒测量中的应用 / 3548.3 非约束算法 / 3628.3.1 非约束算法的一般讨论 / 3628.3.2 Chahine算法及其改进 / 3658.3.3 投影算法 / 3678.3.4 松弛算法 / 3688.3.5 Chahine算法和松弛算法计算实例 / 371参考文献 / 372第9章 电感应法(库尔特法)和沉降法颗粒测量技术 / 3759.1 电感应法(库尔特法) / 3759.1.1 电感应法的基本原理 / 3769.1.2 仪器的配置与使用 / 3779.1.3 测量误差 / 3809.1.4 小结 / 3839.2 沉降法 / 3849.2.1 颗粒在液体中沉降的Stokes公式 / 3849.2.2 颗粒达到最终沉降速度所需的时间 / 3869.2.3 临界直径及测量上限 / 3879.2.4 布朗运动及测量下限 / 3889.2.5 Stokes公式的其它影响因素 / 3899.2.6 测量方法及仪器类型 / 3919.2.7 沉降天平 / 3949.2.8 光透沉降法 / 396参考文献 / 399第10章 工业应用及在线测量 / 40110.1 喷雾液滴在线测量 / 40110.1.1 激光前向散射法测量 / 40210.1.2 消光起伏频谱法测量 / 40410.1.3 图像法测量 / 40510.1.4 彩虹法测量 / 40610.1.5 其它散射法测量 / 40810.2 乳浊液中液体颗粒大小的测量 / 41010.3 汽轮机湿蒸汽在线测量 / 41110.4 烟气轮机入口颗粒在线测量 / 41410.5 烟雾在线测量探针 / 41510.6 动态图像法测量快速流动颗粒 / 41710.7 粉体颗粒粒度、浓度和速度在线测量 / 41910.7.1 电厂气力输送煤粉粒径、浓度和速度在线测量 / 41910.7.2 水泥在线测量 / 42110.8 超细颗粒折射率测量 / 42310.9 超声测量高浓度水煤浆 / 42410.10 结晶过程颗粒超声在线测量 / 42510.11 含气泡气液两相流超声测量 / 42610.12 排放和环境颗粒测量 / 42810.12.1 PM2.5测量 / 42810.12.2 图像后向散射法无组织排放烟尘浓度遥测 / 43010.12.3 图像侧向散射法餐饮油烟排放监测 / 43210.13 图像动态光散射测量纳米颗粒 / 43510.13.1 纳米颗粒合成制备过程原位在线测量 / 43510.13.2 非球形纳米颗粒形貌拟球形度Ω测量 / 43810.13.3 纳米气泡测量 / 439参考文献 / 440附录 / 443附录1 国内外主要颗粒仪器生产厂商 / 443附录2 颗粒表征国家标准和国际标准 / 445附录3 国内外标准颗粒主要生产厂商 / 453附录4 液体的黏度和折射率 / 455附录5 固体化合物的折射率 / 458附录6 分散剂类别 / 473
  • 农药减量增效的关键在于“粒度分布及其控制”——访中农立华农药应用研发中心主任张小军
    农药是重要的农业生产资料,在有效防治病虫草害,保障粮食产量、安全方面发挥重要作用。但是农药利用率低下,大部分通过径流、渗漏、飘移等流失,对环境、生物及人体健康构成威胁。为降低农药使用量同时提高利用率,自2015年以来,农业农村部深入开展化肥农药使用量零增长行动,推进化肥农药减量增效。研究发现,农药制剂有效成分在喷施后形成的微粒粒度是影响药效的关键因素之一,合理控制粒度可充分发挥农药的药效潜能。为探究制剂粒度对农药施用效果的影响,近日,仪器信息网走进中农立华生物科技股份有限公司农药应用研发中心,与中心主任张小军博士进行了深入交流。中农立华农药应用研发中心主任 张小军博士10年间,中农立华生物科技股份有限公司从不足10亿元发展到66.4亿元,从原药、联销、分装,延伸到制剂研发、应用技术、农药出口、植保机械… … 2019年,公司十周年高峰论坛上,面对环保高压、新《农药管理条例》、供给侧结构改革等给农化行业发展带来巨大的影响,中农立华确立打造“科技立华、服务立华、绿色立华”以更好地服务三农。为落实科技创新战略,2020年10月,中农立华农药应用研发中心实验室落成,研发中心设有制剂研发、产品化学检测、残留化学检测实验室三个区域,致力于制剂技术、植物保护产品及分析检测技术的研究和应用,将进一步促进公司各业务板块协同发展,为公司和行业提供更多技术支持与服务。中农立华农药应用研发中心主任 张小军博士主要从事农药制剂研发、分析及应用技术工作,从业经历近20年,为国务院政府特殊津贴获得者。农药减量增效的关键在于“粒度分布及其控制”诺贝尔奖获得者、世界著名小麦科学家Noman K. Borlang曾说过:“没有农药,人类将面临饥饿的危险。”据美国农业部和世界粮农组织测算,停止使用农药将导致作物产量降低30%,农产品价格提高50%-70%;农药使用可挽回全世界农作物总产量30%~40%的损失。农药是国家稳定和经济发展的重要战略物质,在当下及未来很长一段时间内不可或缺。我国为农药原料药生产大国,但原料药并不能直接使用,消费者终端实际使用的是制剂,农药制剂行业的发展受到越来越多关注;近15~20年来,中国在环境友好的农药制剂方面的进步很大。中农立华自主研发30%二甲戊灵悬浮剂、46%氟啶∙啶虫脒水分散粒剂等产品深耕市场多年,获得良好口碑,先后获得国家发明专利授权,取得了良好的经济和社会效益,这些成绩的背后离不开产品性能的精细化控制;此外,2020年6月由中农立华农药应用研发中心与天津立华牵头起草的《30%二甲戊灵悬浮剂》团体标准正式通过“CCPIA标准”委员会专家组评审,标准编号为T/CCPIA 046-2020。回顾我国农药发展历程,张小军说到:“我国农药研发及产业化取得了明显进展,与发达国家的差距正在缩小,已成为继欧美、日本后,为数不多的具备农药创制能力的国家。聚焦农药制剂,研发水平进步则更快,我刚入行时,从业人员规模区区几百人,如今已超过5000人,为我国农药制剂发展奠定了良好基础;近年来,我国在水基化环境友好型农药制剂,如悬浮剂、悬乳剂、水乳剂以及水分散粒剂等都取得了显著的成绩,尤其在干悬浮剂、可分散油悬浮剂等新剂型方面积累了大量经验和应用案例。当然,行业快速发展的同时也存在一些短板,如研发体系不健全,精细化程度不够,系统研究人员欠缺,难以组建完整的研发团队等,这些都是我们今后需要完善的。”“我在全国制剂大会中提出,可控粒径对于制剂研发至关重要,也是衡量研发水平的重要体现。当前国家出台相关政策,提倡农药减量增效,大家开始关注制剂稀释后的界面性能,其实,液液、固液分散体系中有效成分的粒度对于制剂应用效果的影响也很大,粒度控制越小,比表面积越大,接触生物靶标越充分,防治效果越好。此外,针对一些低熔点化合物的制剂,粒度分布是判断其研发成功与否的关键。粒度控制可助力农药减量增效,也是未来农药制剂的发展方向之一。”张小军继续讲到。10多年的农药制剂研发检测和评价实践——静态光散射与图像颗粒分析技术粒径控制离不开粒度分析仪器的助力。张小军十余年间,先后使用过3台激光粒度仪和1台粒度粒形分析仪,均购自丹东百特仪器有限公司,目前实验室正在运行的是去年新购置的Bettersize2600激光粒度仪与BT-1600静态图像颗粒分析系统。据张小军介绍,他用过的这3台激光粒度仪体积逐渐减小,性能则不断提升;期间还到访过百特两次,见证了这家国产仪器厂商的成长,感触最深的是企业近十年的发展之快,近日,百特12台顶级激光粒度分布仪批量出口德国,性能得到国外用户的充分认可,更为其国际化进程增添了浓墨重彩的一笔。农药制剂行业以应用技术为主,当初选购激光粒度仪时,操作人员比较关注仪器的重现性、数据可靠性、操作便利性、性价比几个重要指标。“同行交流是我们调研的主渠道,实践是检验仪器水平的重要标准。”张小军告诉笔者,“同大多数行业一样,在农药制剂细分领域,实验室在采购仪器时都会优先考虑进口品牌,但粒度分析产品不然。国产激光粒度仪在此领域占有率很高,尤其是百特的产品性价比高、售后服务到位、口碑好,所以值得信赖。另外,激光粒度仪的测试范围与准确度,以及不同剂型的通用性或者共用性,一台设备能否同时测定水溶性和油溶性的制剂、微米和纳米级的制剂等,都是研发人员关注的信息。经测试,百特的仪器可以满足我们的需求,还可以提供专业的解决方案。在日常使用过程中,针对不同粒径的悬浮剂、可分散油悬浮剂,百特的激光粒度仪都能测定出科学可靠的数据,满足我们的评价要求;尤其结合图像分析仪,在评价低熔点、水溶性活性成分体系,以及颗粒长大、结晶等方面都能做出很好的判断,是农药制剂研发检测和评价中的利器。”实验人员正在操作Bettersize2600激光粒度仪(图左)与BT-1600静态图像颗粒分析系统(图右)好仪器是用户和仪器企业一起“用”出来的除激光粒度仪及部分实验室常用设备外,实验室鲜见国产品牌的影子,张小军对此感慨良多:“好仪器是用出来的。百特成立26年之久,但发展最快的阶段是近十年,因为其仪器使用者越来越多,反馈与建议随之增多,促使仪器性能反复改进并优化。同样,各行业要给予其他国产仪器试错的机会,帮助其成长。”采访最后,谈及对百特产品和服务的改进建议,张小军坚定地说:“几乎没有,他们已经做的很好了”,他沉思片刻又说:“既然有这样一个问题,我就提一点,希望百特能深入农药制剂研发和生产检测单位,实地调研交流,线上线下联动,加强与客户之间的互动,收集客户在仪器使用过程中遇到的问题或建议,及时了解并满足其最新需求,如此,百特的产品才能在农药制剂行业始终保持领先。”“百特是典型的‘专精特新’企业,小而精。专业的人做专业的事情,百特在董青云总经理的带领下取得了很多靓丽的成绩,他们有一支专业的队伍,其激光粒度仪在国内销量稳居第一。我相信国内其他检测仪器设备也会取得如此突破,解决一系列‘卡脖子’的问题。我从百特身上看到了希望,这就是民族制造业的希望和代表。”后记应用研发是整个农药研发中重要的一环,但技术研发枯燥、充满不确定性,张小军何以坚持如今?他告诉笔者,一是对这份工作的热爱,取得成绩的喜悦与满足感只是动力,内心的喜欢才是坚持的源泉;二是拥有优秀的平台和团队,团队的融洽相处与共同的荣誉感是研发成功的保障;三是要有视野,不断学习、借鉴、思考、总结才能持续提升与进步。这也是一位研发人员的基本素养。
  • 《中国药典》粒度和粒度分布测定法增订动态光散射法、光阻法
    目前《中国药典》0982 粒度和粒度分布测定法仅收载了激光光散射法测定样品中的粒度分布,尚未收载动态光散射法和光阻法。各国药典均已收载动态光散射法和光阻法,且在《中国药典》丙泊酚乳状注射液、脂肪乳注射液(C14~24)等品种标准中已有应用。为此,《中国药典》增订上述两种方法,将进一步满足相关品种质量控制的需要。2023年12月12日,国家药典委员会将拟修订的《中国药典》0982粒度和粒度分布测定法第三法动态光散射法、第四法光阻法公示征求社会各界意见(详见附件),公示期自发布之日起三个月。第三法(光散射法)新增动态光散射法、新增第四法光阻法;第三法用于测定原料药、辅料和药物制剂粉末或颗粒的粒度分布,第四法用于测定乳状液体或混悬液的微米级粒子数量、粒度分布及体积占比。国家药典委员会截图本次标准草案的公示意味着动态光散射粒度仪(俗称纳米粒度仪)与光阻法颗粒计数器将被写进《中国药典》。动态光散射法当溶液或悬浮液中颗粒做布朗运动并被单色激光照射时,颗粒散射光强度的波动与颗粒的扩散系数有关。依据斯托克斯-爱因斯坦方程,通过分析检测到的散射光强度波动可以计算出颗粒的平均流体动力学粒径和粒度分布。平均流体动力学粒径反映粒度分布中值的流体动力学直径。平均粒径直接测定,既可以不计算粒度分布,也可以从光强加权分布、体积加权分布或数量加权分布,以及拟合(转换)的密度函数中计算得到。动态光散射的原始信号为光强加权光散射信号,得到光强加权调和平均粒径。很多仪器可通过对光强加权光散射信号的分析计算得到体积加权或数量加权的粒径结果。 在动态光散射的数据分析中,假设颗粒是均匀和球形的。本法测量范围为 1~1000nm。光阻法单色光束照射到颗粒后会由于光阻而产生光消减现象。应用基于光阻或光消减原理的单粒子光学传感技术进行测定。应用单粒子光学传感技术时,当单个粒子通过狭窄的光感区域阻挡了一部分入射光线,引起光强度瞬间降低,此信号的衰减幅度理论上与粒子横截面(假设横截面积小于传感区域的宽度),即粒子直径的平方成比例。用系列不同粒径的标准粒子与光消减信号之间建立校正曲线,当样品中颗粒通过光感区产生信号消减,可根据已建立的校正曲线计算出颗粒的粒度大小和加权体积。本法测量范围一般为 0.5~400μm,使用具有单粒子光学传感技术的仪器时,需知道重合限和最佳流速。重合限为传感器允许的最大微粒浓度(个/mL)。 上述两种方法的内容包括对仪器的一般要求和测定法,详见附件。附件 0982 粒度和粒度分布测定法第三法动态光散射法、第四法光阻法草案公示稿(第一次).pdf
  • 纳米粒度分析仪的原理及应用
    梓梦科技纳米粒度仪是应用很广泛的一种科学仪器,使用多角度动态光散射技术测量颗粒粒度分布 。动态光散射(DLS)法原理 :当激光照射到分散于液体介质中的微小颗粒时,由于颗粒的布朗 运动引起散射光的频率偏移,导致散射光信号随时间发生动态变化,该变化的大小与颗粒的布朗运动速度有关,而颗粒的布朗运动速度又取决于颗粒粒径的大小,颗粒大布朗运动速度低,反之颗粒小布朗运动速度高,因此动态光散射技术是分析样品颗粒的散射光强随时间的涨落规律,使用光子探测器在固定的角度采集散射光,通过相关器进行自相关运算得到相关函数,再经过数学反演获得颗粒粒径信息。纳米粒度仪的应用领域: 纳米材料:用于研究纳米金属氧化物、纳米金属粉、纳米陶瓷材料的粒度对材料性能的影响。 生物医药:分析蛋白质、DNA、RNA、病毒,以及各种抗原抗体的粒度。 精细化工: 用于寻找纳米催化剂的最佳粒度分布,以降低化学反应温度,提高反应速度。 油漆涂料:用于测量油漆、涂料、硅胶、聚合物胶乳、颜料、 油墨、水/油乳液、调色剂、化妆品等材料中纳米颗粒物的粒径。 食品药品:药物表面包覆纳米微粒可使其高效缓释,并可以制成靶向药物,可用来测量包覆物粒度的大小,以便更好地发挥药物的疗效。 航空航天 纳米金属粉添加到火箭固体推进剂中,可以显著改进推进剂的燃烧性能,可用于研究金属粉的最佳粒度分布。 国防科技:纳米材料增加电磁能转化为热能的效率,从而提高对电磁波的吸收性能,可以制成电磁波吸波材料。不同粒径纳米材料具有不同的光学特性,可用于研究吸波材料的性能。
  • 布鲁克海文沉降粒度仪在碳黑粒径分布测量中的应用
    p  strongTesta Analytical Solutions注册公司发布了一份技术报告,描述了如何使用他们的BI系列圆盘式离心/沉降粒度仪精确测量碳黑样品的粒径。/strong/pp style="text-align: center "strongimg src="http://img1.17img.cn/17img/images/201806/insimg/d966dc87-88fd-44fd-852a-876a29b9fb20.jpg" title="BI-DCP圆盘式离心-沉降粒度仪.jpg" width="500" height="340" border="0" hspace="0" vspace="0" style="width: 500px height: 340px "//strong/pp  碳黑作为耐磨填料被span style="color: rgb(255, 0, 0) "广泛应用于轮胎制造业,以及许多其他橡胶材料的生产中/span。碳黑还被span style="color: rgb(255, 0, 0) "用作涂层、涂料、塑料、印刷油墨和黑色着色剂中的颜料/span。/pp  由于碳黑聚合物的粒径分布(PSD)与分散体的热学及力学性能关系紧密,碳黑PSD的测量成为其质量控制的重要组成部分。span style="color: rgb(255, 0, 0) "尽管谱图上经常只出现单个峰,但非团聚态碳黑的典型粒径分布范围却十分宽泛,可从10nm到500nm以上。/span/pp  作者介绍了使用圆盘式离心/沉降粒度仪测量粒径的原理,他们证明了为获取更精确测量的消光修正的重要性。/pp  给出了ASTM系列碳黑参比材料(A4-F4)的结果,并比较了不同参比材料的差异。讨论了不同样品制备方式,给出了这些制备方式随时间的稳定性。/pp  该报告的结论是,考虑到小粒径尺寸及典型分布的幅度,BI系列圆盘式离心/沉降粒度仪是测量碳黑粒径的优选仪器。BI系列圆盘式离心/沉降粒度仪不仅是一个坚固的仪器,且它的工作原理发展良好。如果进行了所有的修正,使用BI系列圆盘式离心/沉降粒度仪对碳黑样品粒径分布测量的精确性是非常卓越的。/p
  • 喜讯!微纳公司通过纳米颗粒粒度测试能力的认证!
    根据行业需求,我司参与了“中国合格评定国家认可委员会(CNAS)”与北京粉体技术协会联合组织开展的“纳米颗粒的粒度分析”能力认证项目,我司在全国及国外各大实验室中脱颖而出,在颗粒的粒度分析检测项目中获得中国合格评定国家认可委员会(CNAS)的能力认证。 这次能力认证的成功,证明了我司在纳米颗粒粒度检测方面达到国际先进水平。
  • 蔡小舒教授:颗粒粒度及气溶胶在线测量的图像魔法
    p style="text-align: justify text-indent: 2em "说起图像法,大家很自然会联想到相机。对,图像法就是用相机作为传感器测量颗粒粒度。其实,图像法并不是一种新的测量方法,这是一种已有很多年历史的测量方法。早期的相机采用胶片作为传感器,记录被测物体的影像,然后将影像投影到工具投影仪上,在投影仪上用标尺或后期发展的坐标传感器量出被测物体的大小。下图是一种显微投影仪的照片,显微物镜把胶片上的图像投影到屏幕上,在屏幕上量出物体图像的尺寸。对于颗粒样品,则可以直接在显微镜下进行观测测量。很显然,在用胶片作为传感器的时期,图像法是不可能用于在线测量的。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/21f18409-d7be-4568-a7cb-255a0d29561b.jpg" title="图片1.jpg" alt="图片1.jpg"//pp style="text-align: center text-indent: 0em "strong显微投影仪/strong/pp style="text-indent: 0em text-align: center "span style="color: rgb(255, 0, 0) "(友情提示:移动端用户下方点击阅读全文,/span/pp style="text-indent: 0em text-align: center "span style="color: rgb(255, 0, 0) "再点击取消即可阅读全文,也欢迎下载APP体验阅读新感受)/span/pp style="text-align: justify text-indent: 2em "图像法作为颗粒粒度测量,尤其是颗粒粒度在线测量的新方法再次出现并得到日益广泛的应用,得益于CCD和CMOS的发明,数码相机的飞速发展,以及光学镜头、光源、计算机技术以及图像处理算法的飞速发展。数码相机的核心是CCD/CMOS传感器,尤其是近年来CMOS技术的发展使其性能得到很大提高,几乎占据了绝大部分的数字传感器。下图是CMOS传感器的照片。在CCD/CMOS传感器中,代替胶片中感光粒子的是按矩阵排列的像素。如果在每个像素前按规律设置红(R),绿(G)和蓝(B)三色滤色片,则可以得到彩色图像。这样CCD/CMOS就将图像自然分解成了成可以用计算机处理的离散信号。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/fc747ae3-b89b-426c-8014-114e41854faa.jpg" title="图像2.png" alt="图像2.png"//pp style="text-align: justify text-indent: 2em "图像法在线测量装置主要包括:相机、镜头、光源、取样装置等。其中相机是最关键的设备。为得到清晰的被测颗粒的影像边缘,一般在在线测量中采用逆光(背光)照明方式,相机在测量区一侧,光源在测量区另一侧,如图所示。span style="color: rgb(0, 176, 240) "strong由于光的穿透能力不强,因此图像法不能用于高浓度颗粒的直接在线测量(in-line)。对于高浓度颗粒,必须采用取样方式测量(on-line)/strong/span。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/fc188c81-6aa1-4737-96b1-bf330735261e.jpg" title="图片3.jpg" alt="图片3.jpg"//pp style="text-align: center text-indent: 0em "strong图像法在线测量原理示意图/strong/pp style="text-align: justify text-indent: 2em "与图像法静态测量要求不同,在图像法在线测量中,被测颗粒不是静止不动的,而是在运动的,甚至运动速度很高。为得到清晰的颗粒图像,就要“冻结”运动颗粒的影像,这就要求图像的曝光时间要与被测颗粒的运动速度相匹配。对于高速运动的颗粒,要求的曝光时间要短,低速的可以稍长。 曝光时间还与拍摄图像时所用镜头的放大倍率有关,放大倍率大,要求的曝光时间就短,放大倍率小,曝光时间就可以长一些。 曝光时间可以由相机的快门控制,也可以由光源的脉冲宽度控制。目前工业相机的电子快门时间最短可以到1微秒,而作为照明光源的脉冲激光的脉冲宽度可以达到几个纳秒。曝光时间越短,需要的光源强度就越大,这就给光源提出了高的要求。工业相机的电子快门分成滚动快门(rolling shutter)和全局快门(global shutter)2类。span style="color: rgb(0, 176, 240) "为保证曝光时运动颗粒图像不发生畸变,在图像法在线测量中必须采用全局快门/span。/pp style="text-align: justify text-indent: 2em "作为在线测量,图像法装置不能像显微镜那样通过更换不同放大倍率的显微物镜来适应不同大小颗粒的测量,这就希望像素尺寸尽量小,以得到高的图像分辨率。通常,滚动快门的CMOS的像素小于全局快门,目前滚动快门的CMOS的最小像素已达到1.5微米,而全局快门的最小的像素是3.8微米。/pp style="text-align: justify text-indent: 2em "在图像法测量中,相机镜头是关键的设备。图像法能进行在线颗粒测量,很大程度上是依赖于strongspan style="color: rgb(0, 176, 240) "远心镜头/span/strong的发明和发展。用相机拍摄物体,通常图像存在远小近大的现象。而在线测量不能控制被测颗粒一定会处于镜头的焦平面位置,这就会造成颗粒的影像大小与颗粒的真实尺寸不同。远心镜头的出现,很好解决了这个问题。被测颗粒处于不同位置时,远心镜头获得的颗粒图像大小并不会随位置变化而变化。这就使得图像法可以用于颗粒的在线测量。远心镜头有定倍率和工作距离,以及可变放大倍率和工作距离2类,可以根据需要采用其中一种。/pp style="text-align: justify text-indent: 2em "在图像法在线测量中最大问题是被测颗粒不仅存在于测量区中,有些还处于离焦位置,颗粒图像是不清晰的。下图中就同时存在清晰颗粒、离焦程度不大和离焦尺度大的模糊颗粒影像。strongspan style="color: rgb(0, 176, 240) "对于离焦颗粒图像,可以有2种处理方法/span/strong,对于离焦程度大的模糊影像,直接剔除,不予处理。对于离焦程度不大的模糊图像,可以采用图像处理算法来恢复,得到颗粒的粒度。/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "在图像法在线测量中,一般都需要用取样装置将被测粉体样品从生产工业管路中去出,在取样时,必须采取措施防止颗粒样品发生团聚,如用无油无水的压缩空气分散样品颗粒。下面3个图给出了在在线测量取样中没有对颗粒采取分散措施,分散不足和充分分散后的颗粒图像。可以明显看出充分分散的重要性。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/59590f06-6860-4880-955a-367e24cc5746.jpg" title="图像4.png" alt="图像4.png"//pp style="text-align: justify text-indent: 2em "图像法在线测量不仅可以给出被测颗粒的粒度,还可以得到被测颗粒的形貌参数,这是其它颗粒测量方法不能做到的。/pp style="text-align: justify text-indent: 2em "strong图像法与RGB三波段消光法融合在线测量/strong/pp style="text-align: justify text-indent: 2em "受光学原理和硬件的限制,strongspan style="color: rgb(0, 176, 240) "图像法在线测量下限一般在2-3微米/span/strong。但在工业过程中存在着大量亚微米颗粒中同时存在有少量较大颗粒,并都需要测量其粒度的情况。这时可以strongspan style="color: rgb(0, 176, 240) "将图像法与多波长消光法相结合,用图像法测量较大颗粒的粒度,而用多波长消光法测量亚微米颗粒的粒度/span/strong。/pp style="text-align: justify text-indent: 2em "彩色相机中的CMOS传感器可以认为是RGB三个波段光探测器件,当采用白光作为光源,对获得的图像可以分别用图像处理算法处理其中的大颗粒影像,用多波长消光法处理背景图像中的RGB信息来分别获得大颗粒和亚微米颗粒的粒度。如下图是用彩色相机获得的高速流动中的湿蒸汽两相流图像,其中高速流动的较大水滴的轨迹宽度对应其粒度,而长度对应其速度,背景是较高浓度的小水滴,无法用图像识别。此时,可以分别对如圆圈中的大水滴影像用图像处理算法处理,得到其粒度和速度,而对矩形框内的亚微米颗粒用RGB三波段消光法进行数据处理,得到小水滴的粒度及分布。/pp style="text-align: justify text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/009bf84a-9554-447d-945d-c6bdbe8cb4f2.jpg" title="图片5.jpg" alt="图片5.jpg"//pp style="text-align: center text-indent: 0em "strong同时存在大小颗粒的图像/strong/pp style="text-align: center text-indent: 0em "strong图像法与后向光散射融合测量大气颗粒和排放烟尘浓度/strong/pp style="text-align: justify text-indent: 2em "图像法不仅可以测量成像的颗粒的粒度,还可以strongspan style="color: rgb(0, 176, 240) "与光散射结合测量无法成像的大气中气溶胶颗粒的浓度和排放烟尘的浓度/span/strong。气溶胶是空气中悬浮颗粒与大气构成的体系,悬浮颗粒包括固体颗粒,液体颗粒,生物颗粒等。由于气溶胶颗粒粒度很小,受气流和布朗运动的作用,会在大气中长时间扩散传播,PM2.5就属于气溶胶范畴。下图分别是室内和大空间悬浮的气溶胶颗粒在激光照射下的散射光。strongspan style="color: rgb(0, 176, 240) "该散射光强与悬浮颗粒的粒度、浓度和测量散射角度有关/span/strong。用相机作为传感器,将相机聚焦于激光照射的要测量区域,得到气溶胶后向散射强度后,用米散射理论和相关数学模型进行数据处理,可以得到空间的气溶胶浓度。该方法可以用于烟囱排放烟尘浓度的远距离遥测。如果同时用多个波长的激光进行测量,还可能可以得到悬浮颗粒的平均粒度和分布。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/2f6469fd-9884-41c8-9b57-af11b16bc8b0.jpg" title="图像6.png" alt="图像6.png"//pp style="text-align: justify text-indent: 2em "strongimg style="max-width: 100% max-height: 100% float: left width: 125px height: 125px " src="https://img1.17img.cn/17img/images/202002/uepic/01e065bd-c5ef-4e1a-9570-1808f883e70a.jpg" title="蔡小舒_.jpg" alt="蔡小舒_.jpg" width="125" height="125" border="0" vspace="0"/span style="color: rgb(0, 176, 240) "作/spanspan style="color: rgb(0, 176, 240) "者简介:/span/strong曾任中国颗粒学会、中国计量测试学会、中国工程热物理学会、中国动力工程学会、上海颗粒学会等学术组织的副理事长、常务理事、理事、理事长等,是《Proceedings of IMechE Part A: Journal of Power and Energy》、《Particuology》、《KONA Powder and Particle Journal》、《Frontiers in Energy》等SCI刊物和一些国内学术刊物的编委,多个国际学术会议的名誉主席,主席等。/p
  • 中科院过程所杨超/张庆华:乳液聚合过程中乳胶粒度分布的测定方法
    在乳液聚合过程中,聚合产物粒度分布的演变过程反映了乳液聚合反应的进行程度,对实验的关键现象、聚合机理以及最终产物的性能均有很大影响。本文综述了乳液聚合过程中粒度分布的测量方法,包括现有的离线(off-line)、半在线(on-line)和在线测量(in-line)方法。对比分析了各种测量方法的原理、分辨率、性能、优缺点等。此外,还探讨了在线测量技术的困难和挑战,并给出了几种原理上可行的发展方向或解决方案。乳液聚合颗粒粒径一般小于500 nm,并且为了满足产品性能需求粒径分布可能会出现多峰,因此对测量方法的分辨率有较高要求;同时为满足生产过程中的实时调控,对粒径分布的测量时间提出更严格要求。为了缩短测量粒度分布的时间,开发了半在线和在线测量方法。离线测量方法需要手动采样等准备工作,它们主要包括(但不限于)光散射技术(例如,动态光散射,DLS)、显微镜技术(例如,扫描电子显微镜,SEM)和分离技术(例如,毛细管流体动力学分级,CHDF)。在所有的粒径分布测量方法中,尽管离线测量技术需要诸如采样等耗时的分析准备工作,其仍是使用最广泛的技术,但它不能实时反映乳胶的粒径分布。电子显微镜测量作为一种典型的离线测量方法,其测量结果是绝对且准确的,因此可以用作参考标准。目前,成熟的工业光学显微镜(例如共聚焦光学显微镜)的分辨率可以达到亚微米级(100 nm),其可以在一定的测量范围内代替电子显微镜进行离线粒径分布测量。以DLS为代表的光散射技术是一种相对方便的技术,在离线测量方法中测量时间最短,但不适用于测量多分散性体系。分离技术操作相对简单,适用于几乎所有的多分散体系,但是某些分离测量技术必须使用校准曲线。对于多分散体系,可以先使用分离技术将它们分为几个单分散组,然后再使用DLS技术进行精确测量。由于离线测量方法需要进行手动取样等准备工作,所以其非常耗时;为了缩短测量粒度分布的时间,开发了半在线和在线测量方法。与仅需要一个分析仪器的离线测量方法不同,半在线和在线测量方法通常需要一组设备来构成分析系统。半在线测量是将离线测量仪器连接到反应器以完成自动采样,稀释和其他准备工作。“自动连续在线监测聚合反应(ACOMP)”是一个具有代表性的半在线测量粒径分布系统。半在线测量在一定程度上缩短了测量时间,但仍然无法避免采样和其他准备步骤。在线测量技术不进行采样,其直接使用光学原理等技术来实时监测反应器中的乳液聚合过程以获取粒度分布。由于在线测量技术避免采样等耗时的准备工作,其测量时间进一步缩短;然而,乳液聚合过程中粒度分布的在线测量并不是一种“完善的”测量技术。目前,仅有少数报道尝试探索这种方法用于特定的乳液聚合体系,并且现在还没有成熟的商业应用工具。主要原因是现有仪器缺乏测量精度,无法在高浓度的多相系统中处理来自不同粒子相的重叠信号,或无法捕获运动粒子的清晰图像。论文给出了乳液聚合颗粒粒径分布在线测量的几种可行的发展方向和解决方案,如:(1)直接使用光学原理进行实时测量粒度分布,例如光散射技术。光源发出的激光直接与反应器中的聚合物颗粒相互作用,然后检测器接收光信号并完成光电转换,最后使用特定的算法对光电信号进行分析,以获得粒度分布。该方法的困难在于光散射技术的原理是基于单散射理论,因此对粒子浓度有特殊要求。如果使用此技术实时监控聚合物颗粒的粒度分布,则需修改反应配方以降低聚合物颗粒的浓度,以便消除来自不同颗粒的重叠信号。(2)使用光学显微镜对反应器中的胶乳直接成像并用高速相机拍摄,然后使用图像分析技术进行实时分析,从而实现在线监测粒度分布的演变。电子显微镜分析过程中样品不能含水,因此使用电子显微镜基本上不可能进行在线测量。高分辨率光学显微镜(例如共聚焦显微镜)对样品的要求比电子显微镜要少,因此有可能实现在线测量粒度分布。该测量方案的难点在于高速相机是否可以快速捕获高速移动的纳米级聚合物颗粒。同时,该方案的局限性在于它只能实时监测焦平面中的聚合物颗粒,并且对反应器有很高的要求(例如高透光率)。(3)尽管一些学者认为在线测量应该避免经验模型,但是软传感器技术是一种很有前景的在线测量技术。然而,这种方法的困难在于缺乏精确的在线测量设备去验证模型。一种可行的方法是全面且多方位研究特定乳液聚合反应体系以获得足够的粒度分布数据,然后与大数据或人工智能技术相结合,以预测或计算在新的工作条件下的粒度分布。作者及团队介绍张庆华,男,1980年12月生,中国科学院过程工程研究所副研究员、硕士生导师,中国科学院大学授课教师,中国化工学会过程强化委员会青年委员,中国化工学会混合与搅拌专业委员会委员。2005-2009年中国科学院过程工程研究所攻读博士学位,2019.2—2020.2美国Iowa State University访问学者(美国李氏基金资助),合作导师为国际著名多相流专家Rodney O Fox教授。主持或参加多项国家自然科学基金、863项目、国家重点研发计划等项目。发表论文30多篇,申请专利10余项,撰写专著一章(多相反应器模拟、放大和过程强化,第三章)。长期从事聚合反应工程、多相流的在线测量和数值模拟等研究工作。 杨超,男,1971年8月生,江苏睢宁人。研究员、博士生导师。2010年获国家杰出青年科学基金。科技部“中青年科技创新领军人才”。中国科学院绿色过程与工程重点实验室常务副主任、绿色化学工程研究部主任。1993年南京化工学院化工系毕业后硕博连读,1998年获博士学位(导师为时钧院士和徐南平院士)。1998—2000年中国科学院化工冶金研究所博士后,在陈家镛院士和毛在砂研究员指导下,从事多相过程数值模拟和反应工程研究。2005—2006年美国康奈尔大学高访(美国李氏基金资助)。2019年获国家科技进步二等奖,2016年获何梁何利基金科学与技术创新奖,2015年获国家技术发明二等奖,2014年获中国工程院光华工程科技奖-青年奖,2013年获中国化学会-巴斯夫公司青年知识创新奖,2012年获日本化学工学会亚洲研究奖(SCEJ Asia Research Award),2011年获中国青年科技奖、中国科学院青年科学家奖,2010年获茅以升科学技术奖——北京青年科技奖,2009年获国家自然科学二等奖。2012年被评为全国优秀科技工作者,2015年获评中国科学院先进工作者。已发表SCI论文150余篇,出版英文专著1本,申请专利60余件,计算软件著作权29项。 研究团队多年以来一直应用多相流体力学、传递原理、反应工程等多学科方法,依据机理及验证实验、理论分析、数学模型和数值计算方法,开展多相搅拌反应器、聚合反应器和结晶反应器等的流动、传递、反应和传热的实验和数值模拟相关研究,在计算流体力学和计算传递学新方法、多相传递和反应耦合数学模型和数值模拟、多相体系的测量方法以及搅拌釜反应器内新型桨和内构件设计等方面有丰富的工作积累。获得2009 年的国家自然科学二等奖、2015年的国家技术发明二等奖和2019年国家科技进步二等奖。
  • 粒度与粒度分布如何影响粉末涂料的生产和应用
    近年来,粉末涂料以其固含量高、无挥发性有机物、生产过程能耗低、涂饰质量好等优点深受市场青睐。本文聚焦粉末涂料的生产和应用过程,探究粒度及粒度分布对产品性能的影响。粉末涂料生产过程的第一步是填料和树脂的熔融与混合,要求填料和树脂混和均匀又不发生局部固化反应。要实现这个要求,填料的粒径和粒度分布很重要。图1是两种不同粒度的二氧化钛填料。图1 二氧化钛A(x 50K)图1 二氧化钛B(x 200K)从图1看,填料A 的粒径明显大于B的粒径。理论上粒径小的填料B更容易混合均匀。然而,事实恰恰相反,是粒径大的填料A更容易混合均匀。为了探究出现这种反常现象的原因,本文利用丹东百特仪器公司的Bettersize2600 激光粒度分析仪来测试填料A和B的粒度分布。图2 Bettersize2600激光粒度分析仪图3 二氧化钛A和二氧化钛B的粒度分布如图3所示,填料B 的粒度分布很宽,既有少量微米甚至10微米级颗粒,又有大量亚微米甚至纳米级颗粒。这些亚微米和纳米颗粒导致填料B的比表面积很大,颗粒间相互作用力很强,导致内部团聚现象加剧。从图4的SEM图像可以看出,填料B的这些大颗粒是由小颗粒团聚而形成,树脂很难进到团聚的大颗粒中,这就是填料B反而更难混合均匀的原因。而填料A的粒径大部分在0.4-1微米之间,分布很窄且不团聚,树脂很容易分散在颗粒之间,所以更容易混合均匀。图4 二氧化钛A(x 5K)、二氧化钛B(x 50K)的SEM图像填料和树脂熔融混合之后,下一道工序是粉碎和分级。粉末涂料的粒径受到磨机、进料速度、气流条件和分级等影响。图5显示了不同的粉碎分级工艺(A和B)对产品粒度分布的影响。图5 工艺A(上)和工艺B(下)制得的样品的质量分数在图5中,工艺A为一次分级效果,粉末涂料主要由0 - 20 μm和20 - 80 μm的颗粒组成;工艺B为二次分级效果,粉末涂料几乎全部由20 – 80 μm的颗粒组成。说明二次分级能够有效降低粗端颗粒( 80 μm)和细端颗粒( 20 μm)的占比,得到粒度分布更窄的粉末涂料产品。为什么粉末涂料要求窄的粒度分布?因为在喷涂过程中,较大的颗粒速度快,率先落到工件表面,较小的颗粒运动速度慢,后落在涂层缝隙,两者恰到好处会形成优势互补,两者差距太大将影响喷涂质量,并且,粒径过细还容易吸湿成团,堵住喷枪,也容易漂浮在涂膜上产生气泡和针孔,影响成膜效果。结论高质量的粉末涂料与填料粒度分布密切相关,通过激光粒度分析仪能有效监测和控制填料的粒度分布,从而保证粉末涂料的性能和质量。
  • 钴酸锂的“前世今生”
    钴是具有钢灰色和金属光泽的硬质金属,钴(Co)原子序数为27,位于元素周期表第八族,原子量为58.93,它的主要物理、化学参数与铁、镍接近,属铁族元素。钴是一种高熔点和稳定性良好的磁性硬金属。它是制造耐热合金、硬质合金、防腐合金、磁性合金和各种钴盐的重要原料,广泛用于航空、航天、电器、机械制造、化学和陶瓷工业。因此,它是一种重要的战略物资。 钴产业链主要由上游钴矿石的开采、选矿,中游冶炼加工以及下游终端应用组成。下游消费方面,虽然钴应用领域广泛,高温合金、硬质合金和磁性材料等领域都有钴的身影,但有约60% 的钴用在电池领域。 上游钴矿:单独钴矿床一般分为砷化钴矿床、硫化钴矿床和钴土矿矿床三类。钴除单独矿床外,大量分散在夕卡岩型铁矿、钒钛磁铁矿、热液多金属矿、各种类型铜矿、沉积钴锰矿、硫化铜镍矿、硅酸镍矿等矿床中,其品位虽低,但规模往往较大,是提取钴的主要来源。我国钴资源主要分布在甘肃、山东、云南、青海、河北及山西。 中游冶炼:钴中游冶炼的一大特点是中游冶炼产品众多,存在多条加工链条,如“钴精矿-硫酸钴 -四氧化三钴”、“ 钴精矿-氯化钴-四氧化三钴”、“钴精矿-氯化钴-碳酸钴-四氧化三钴”、“钴精矿-氯化钴-碳酸钴-钴粉”和“钴精矿-氯化钴-草酸钴-钴粉”等。这些钴产品中,硫酸钴和氯化钴是最为重要的中间品。其中,硫酸钴亦可直接应用于生产 3C 使用的钴酸锂电池。四氧化三钴则是最为重要的偏下游产品主要用于锂电池正极材料和磁性材料,用于新能源汽车的锂动力电池 。钴产品工艺流程图 电池级氧化钴主要用于锂离子电池正极材料钴酸锂的生产,其性能对钴酸锂材料性能,继而对电池的充放容量、使用寿命等有重要影响。用于电池的氧化钴除了严格的化学成分要求外,对物理指标,特别是粒度组成与分布和松装密度,有特别的要求。以碳酸盐沉淀制备前驱体,氧化煅烧后制备氧化钴的合成工艺为例: 试验结果表明,不同钴量与碳酸盐配比、晶型改变剂的选择、温度、反应时间、钴溶液浓度等都会对碳酸钴的粒度、形貌产生影响。除此之外,现有研究认为,钴盐前驱体颗粒形貌决定着钴粉颗粒形貌,后者对前者有很大的依赖性和继承性。图一:碳酸钴低倍(左)和高倍(右)表面形貌 扫描电镜作为材料表征利器,可以很好的用来观察碳酸钴颗粒粒度和表面特征;如图一所示,采用赛默飞Apreo2场发射扫描电镜拍摄。 Apreo 2具有业内最强的低电压超高分辨性能,分辨率可达到0.8nm(1kV),可以呈现材料最表面的真实形貌衬度,同时兼具高质量成像和多功能分析性能于一体,是科研和生产质控必不可少的理想分析平台。利用Apreo 2仓室内ETD探头,统计碳酸钴粒径,并获得其颗粒形态呈球形;同时在低电压800V条件下,利用镜筒内高分辨形貌探测器T2观察到碳酸钴表面呈不规则的台阶状。 再经过高温煅烧、干燥,即可获得电池级氧化钴原料。同样利用Apreo 2进行观察,发现氧化钴粒径大小近似于碳酸钴,如图二-a;进一步放大,其呈不规则分布,且表面光滑,如图二-b;Apreo 2镜筒内可同时放置3个探测器,再分别利用镜筒内成分探测器T1和形貌探测器T2观察样品表面,如图二-c和图二-d,获得氧化钴成分分布和一次颗粒表面特征。图二:不同探测下氧化钴形貌特征图 氧化钴作为重要的原材料,主要用来合成电池正极材料钴酸锂。钴酸锂(LiCoO2)是开发最早,应用最广的正极材料,其具备生产工艺难度低、工作电压高、释放电流稳定、循环寿命长的优点,但在高电压下LiCoO2晶格内部应力增大,引起结构坍塌和剧烈的界面副反应会导致电池性能不可逆恶化,因此需要对钴酸锂材料进行改性以提高其电化学性能。 表面包覆改性是通过表层包覆一层其他材料,从而能够抑制材料表层产生缺陷,提高材料结构的稳定性,改善在高电压下钴酸锂材料由于相变产生缺陷影响材料结构和电池性能的改性方法,其中大部分种类氧化物、各种导电石墨材料、无机酸盐中的磷酸盐和钛酸盐等都是被大量研究的包覆材料。 对于钴酸锂正极表面包覆物的观察,是分析改性后材料性能优劣的重要方法。利用Apreo 2在低电压下优异的表现能力,结合高灵敏度T1探测器,清晰观察到颗粒表面的包覆物分布状态,如下图三;而T2探测器主要用于观察颗粒表面形貌细节。图三:钴酸锂成分分布(左)和形貌特征图(右) 电池材料是钴的最主要消费材料之一,中国电池行业金属钴的消费量占中国金属钴总消费的60%左右。在电池材料生产中,用钴量大的主要是锂离子电池材料正极材料钴酸锂和三元材料,其他使用分别用在储氢合金、球镍等。虽然钴酸锂在电池行业正极材料中有被替代的风险,但是新能源汽车带动锂电池的需求增长和三元材料的使用,使钴在锂离子电池行业的需求量将会继续上升。参考文献1.钴产业链介绍--兴业经济研究咨询股份有限公司,20172.刘诚.电池级氧化钴的研制[J].有色金属,20023.董贵有 韩厚坤 王朝安 张志平 曲鹏.碳酸钴原料粒度对钴粉形貌影响的研究[J].硬质合金,20214.刘巧云 祁秀秀 郝卫强.锂电池用正极材料钴酸锂改性研究进展[J].电源技术,20225.徐爱东、杨晓菲. 全球钴市场现状[J].中国钴业分会报,20106.全球钴市场开启“扫货”模式[J].现代矿业,20187.钴产业链全景图-粉体网,2021
  • 负极材料粒度分布对锂离子电池性能的影响
    负极材料作为锂离子电池的核心材料,对锂离子电池的能量密度、充放电性能、循环性能、生产工艺等起着至关重要的作用。负极材料的主要技术指标包括粒度、比表面积、振实密度、真密度、灰分、pH值等。其中,粒度分布作为负极材料的重要技术指标,它还影响比表面积和振实密度,从而影响锂离子电池的生产工艺和综合性能。一、粒度分布对锂离子电池性能的影响负极材料的粒度分布主要从以下几个方面影响锂离子电池的生产工艺和性能:1、粒度分布影响体积能量密度负极材料的颗粒大小应当具有合适的粒度分布,体系中的小颗粒能够填充在大颗粒的空隙中,有助于增加极片的压实密度,从而提高电池的体积能量密度。2、粒度分布影响充放电性能负极材料的颗粒越小,锂离子嵌入时所需要克服的范德华力也就越小,嵌入越容易进行,而且颗粒越小,锂离子嵌入和脱出的通道越短,越有利于快速达到充分嵌锂状态,从而具有更好的充放电性能。3、粒度分布影响循环性能实验表明,颗粒越小的石墨负极有较大的初次容量,但不可逆容量也较大;随着粒径增大,初次充放电容量降低,不可逆容量减少。同时,石墨颗粒越小,与电解液接触的比表面积越大,初次充放电过程中形成的SEI膜所消耗的电荷就越多,不可逆容量损失也就越大。因此,合理的粒度分布不仅能够提升锂离子电池的初次容量和初次效率,而且能够提升锂离子电池的循环性能。4、粒度分布影响生产工艺负极材料的粒度分布会直接影响电池的制浆和涂布工艺。在相同的体积填充份数情况下,材料的粒径越大,粒度分布越宽,浆料的黏度就越小,这有利于提高固含量,减小涂布难度。颗粒的粒径以及分布宽度对浆料黏度的影响二、负极材料对粒度的要求在负极材料相关的标准中,对材料颗粒的粒度分布提出明确的要求,具体如下:三、欧美克高性能激光粒度分析仪如何满足锂离子电池材料粒度检测要求负极材料的研发、生产及来料检验普遍采用激光粒度分析仪进行粒度检测,选择高性能的激光粒度仪是获得准确粒度分布信息的重要保证。对于一款高性能的激光粒度分析仪,往往采用合理的光学结构、高性能的光电元器件以及科学的反演模型,从而体现出良好的重复性、重现性、真实性、分辨率等测试性能。珠海欧美克仪器有限公司从1993年开始从事激光粒度分析仪的研发、生产和应用,积累了丰富的激光粒度分析仪研发、生产和应用经验。从1999年开始,欧美克激光粒度分析仪系列产品在锂离子电池研发、生产领域逐步获得行业认可。下面,从几个小案例管中窥豹,看看欧美克如何匠心智造每一款产品,又是如何站在行业应用的角度为用户提供粒度解决方案的。1、大角散射光的球面接收技术(DAS)的应用确保散射光能信息的准确获取对少量的大/小颗粒及样品各个粒径组分的准确识别,需要仪器制造商在无盲区光学设计、高精度元器件、装配工艺、算法及软件智能控制上不断优化,提高产品分辨能力。例如早先的激光粒度仪将多个光电转换元件探测通道放置在一块或两块平面上,然而傅立叶透镜的聚焦面通常呈弧形分布,平面布置的探测器很难将所有角度的散射光能信息都准确地聚焦获取。以欧美克LS-609型激光粒度分析仪为例,在散射光能探测器的设计时,将常见的失焦影响较大的多个大角探测器通道以分个独立的方式放置在与其散射角相对应的傅立叶透镜焦点位置,保证所有散射光角度的信号都是无混杂的,提高了散射光分布角度分辨能力。与此同时,各个独立的探测器有利于在探测器上布置杂散光屏蔽装置,同时也防止了散射光在不同探测器上的相互干扰,进一步降低系统的噪声,提高细微差异的分辨能力。大角散射光的球面接收技术(DAS)2、优良的测试性能准确反映出测试样品的细微差别(1)Topsizer对粉体材料的大、小颗粒具有高超的分辨能力欧美克Topsizer激光粒度分析仪测试含有少量大颗粒的石墨原材料的粒度分布图和粒度分布表如下图所示,可以看到对于体积含量在0.5%以下的极少量60-100μm的颗粒,以及体积含量在1%左右的2μm以下颗粒,均能够灵敏的检测出来其详尽的粒度分布。显示了Topsizer对粉体材料的大、小颗粒具有高超的分辨能力,对于电池产品的安全性能和容量性能有更准确的指导意义。如果对于对少量小颗粒特别关注,在软件上,甚至可以采用数量分布替代体积分布的计算方法,进一步放大小颗粒的权重,对小颗粒数量上的变化进行更易识别的测试和生产质控。但需要注意的是,对于分布较宽的样品,由于大小颗粒在尺寸上差异本身就很大,同样体积的大小颗粒的数量相差将会异常大,取样和分散测量上的少许波动会导致测试结果数量分布上较大的偏差。下图是应用欧美克Topsizer激光粒度仪对D50为0.1μm左右的超细隔膜材料氧化铝的粒度测试粒度分布图。(2)LS-609激光粒度仪具有优良的重现性下图是欧美克LS-609激光粒度仪对磷酸亚铁锂3次取样分散测试粒度分布的叠加图,及特征粒径的统计结果,显示该仪器对磷酸亚铁锂的测试拥有优良的重现性。 此外,不同使用环境还可以选配不同的进样器,分析软件还具有用户分级、权限管理、数据完整性及可追溯功能,欧美克激光粒度分析仪真正做到了性能可靠、操作简单、维护量少,是值得信赖的高性能激光粒度分析仪。参考文献【1】沈兴志,珠海欧美克仪器有限公司,高性能激光粒度分析仪在电池材料测试中的应用【2】珠海欧美克仪器有限公司,激光粒度分析仪在锂离子电池行业中的应用【3】苏玉长,刘建永,禹萍,邹启凡,中南大学材料与工程学院,粒度对石墨材料电化学性能的影响【4】旺材料锂电,锂离子电池负极材料标准最全解读【5】中国粉体网,粒度对负极材料有什么影响?
  • 谈国内外激光粒度仪技术现状及行业亟需解决的问题——珠海真理光学仪器有限公司董事长张福根
    在进入主题之前,我首先要澄清一下,这里的“激光粒度仪”是指基于静态光散射或衍射原理的粒度分析仪器, 测量范围从大约100纳米到几毫米。与之容易混淆的还有另一种也是以激光作为照明光源的粒度分析仪器——动态光散射粒度仪,在国内通常叫作纳米粒度分析仪。本文探讨的产品是指前者。 一提起高端的科学仪器,大多数国人都认为进口的国外仪器比国产仪器先进。但是,对激光粒度仪,我可以很负责任地说,总体上国产仪器与进口仪器水平相当,有些国产品牌甚至领先于世界同行。国外产品的价格确实高,但是技术性能一点都不高。所以,某些国家如果想在激光粒度仪上卡中国的脖子,不仅对中国的粒度仪应用产业丝毫无损,而且还会自行断送国外品牌在中国的市场,对中国的上下游产业发展只有好处,没有坏处。 能不能制造出高水平的科技产品,关键点有三:一是产品的设计,二是供应链(配套原材料),三是制程管理。 就原料供应来说,国内国外的粒度仪厂商都是全球采购的,相互之间没什么差别。具体来说,集成电路和部分电子元件大多是国外生产的,机械零件和光学镜头大多是中国生产的,有些国外品牌甚至连整机都是在中国境内、由中国工人完成组装调试的。某些国产品牌为了宣传自己的粒度仪“高大上”,声称光学镜头是某发达国家生产的,不知真假?但愿是假的;如果是真的,那真要为之惋惜了。其实,国产光学镜头完全能够满足激光粒度仪的使用需求。就连某些著名的进口品牌的镜头都是中国产的,说明国外同行早就认可中国镜头的质量。你又何必花高价到国外采购呢?要说卡脖子,电子元器件真是国产科学仪器“脆弱的要害部位”。激光粒度仪要用到的激光二极管,一些模拟集成电路,单片机等,都需要进口。但这不是我们激光粒度仪的厂商能够解决的。 至于制程管理,需要经验的积累和精益求精的态度。国产品牌或者其主要负责人,进入激光粒度仪行业都已超过20年,而且有些人曾长期在国外同行企业工作,再笨也学会该如何管理了,更何况中国人还是挺聪明的,至少不会在智力上输给西方人。对产品质量的态度,我认为几家主要的国产品牌都是很认真的。或许是激烈竞争的原因,大家都迫切地希望用户使用自己的产品时有良好的体验:精确、稳定、可靠。说到用户体验,我要提一句提外话:目前进口产品在售后服务上给用户的感觉都不太好:不仅服务不及时,态度不友好,而且收费巨贵。在这一点上,国外品牌就大大比不上国产品牌了。 最后一点就是激光粒度仪的设计了,这是硬核技术,也是本文要谈的重点。在供应链和制程管理不相上下的情况下,设计水平的高低决定了激光粒度仪的技术性能的高下。 下面将正式展开对国内外激光粒度仪的认知和设计水平的比较。表述听起来可能比较“学究”,请读者诸君谅解。这是因为不用专业的表达,就无法把其中的要点说清楚,就会显得模棱两可,给人留下质疑的空间。但是我会尽量表达得通俗一点。1. 激光粒度仪的光学模型及简要历史回顾 粒度仪器有多种原理,但大多数都把被测量的颗粒看成一个理想的圆球。尽管实际的颗粒很少是理想圆球,有的甚至远远偏离圆球,但是由于颗粒的数量太大,形状也是千变万化,如果连形状都要考虑进去,是一件无法完成的工作,所以只能把颗粒当作圆球来处理。激光粒度仪也是把颗粒当成理想圆球来处理,全世界的品牌都一样。 1.1 光散射的模型 光是电磁波。在均匀的介质中,光是沿着直线传播的。如果光在传播的途中遇到一个颗粒,光和颗粒就会发生相互作用,光波一部分可能被颗粒吸收,一部分则偏离原来的方向继续传播,后者就称为“光的散射”。这种相互作用遵循电磁波理论,即麦克斯韦方程组。只要颗粒尺寸远大于原子尺度,并且没有原子激发辐射(荧光)现象发生,那么,电磁波理论的正确性是不容置疑的。平面电磁波遇到圆球颗粒后发生的散射现象,可以有严格的数学解,称作“Mie散射理论”。不过这个解在数学形式上非常复杂、计算量庞大,物理意义很抽象。在颗粒直径远大于光波长时,散射现象可以用几何光学近似理论解释,这样物理意义就变得很直观了。 请看图1。在颗粒远大于光波长的情况下,颗粒对光的散射,可以分成两个部分:衍射和几何散射。从无限远(远场)的位置观察,衍射光的偏离角度只跟颗粒在观察面上的投影的大小有关,颗粒越小,衍射角越大,这部分信息可以用来分析颗粒的大小。几何散射光是指光线投射到颗粒表面以后,一部分发生反射,另一部分经过折射进入颗粒内部,又在另一个界面上发生折射(到介质)和反射的现象。散射光场是这两部分光的叠加。图1中只画出了衍射光和一次折射光。从远场看,几何散射光的相对强度分布与颗粒大小无关,只与颗粒的折射率与吸收系数有关。另外,当颗粒很大时,衍射光的分布范围远远小于几何散射光的分布范围,但是由于两种散射光的总能量相同,所以从小角度看,衍射光的强度要远远大于几何散射光的强度。这也是在小角度范围内观察大颗粒的散射光时,可以只考虑衍射光的原因。图1 光散射模型的几何光学近似 激光粒度仪在上世纪70年代初刚出现时,只考虑衍射光,所以颗粒可以看成一个不透光的圆片,见图2。根据光学上著名的巴比涅互补原理,一个不透光的圆片所产生的衍射场与同直径的圆孔所产生的衍射场只在位相上差180°,振幅则完全相同。激光粒度仪直接测量的是光强的分布,它是振幅的模的平方,跟位相没关系,所以一个直径为D的颗粒所产生的衍射光强的分布可以用等直径的圆孔产生的光强分布来代替。图2 从圆球散射到圆孔衍射的简化圆孔的衍射在19世纪末就有解析形式的理论表达。远场的衍射理论称为“夫朗和费衍射理论”。图2还表示出了观察远场衍射的经典装置:在圆孔后放置一个光学透镜,在透镜的焦平面上放置观察屏,这样在屏上看到的图像就是远场衍射光斑。衍射角度为的衍射光落在屏上的位置到屏的中心的距离为( 是透镜的焦距)。顺便科普一个光学名词:如果透镜是对焦平面消像差的,该透镜就称为“傅里叶透镜”。从图2可以看到,远场的衍射光斑由中心亮斑和一系列同心圆环组成,被称为“爱里斑”。理论上可以证明,爱里斑的第一个暗环内包含了大约84%的衍射总光能,所以习惯上把第一个暗环所对应的衍射角称为爱里斑的(角)半径。爱里斑的半径与圆孔直径、也就是颗粒的直径近似成反比,因此屏上的光强分布与颗粒大小之间有一一对应关系。激光粒度仪就是根据这个原理分析颗粒大小的。 1.2 国内外激光粒度仪的发展史 一个10微米的颗粒,如果用0.633微米(红光he-Ne激光波长)的光去照射,那么衍射角就是4.4°;100微米的颗粒,衍射角就是0.44°了。世界上第一台激光粒度仪直到1970年前后(准确的年份有几种说法)才出现,就是因为它首先需要一种单色性、方向性都足够高、强度足够强的光源,这就是激光。所以它只能出现在激光器问世(1961年)之后。另外,探测衍射光场的分布需要硅光电探测器阵列,需要用到集成电路制作工艺;把衍射光的分布转换成粒度分布需要台式计算机,这些条件都是1960年以后才出现的。国内最早开始激光粒度仪研制的是天津大学的张以谟团队,当时是承接了国家科委的六五(1981年到1985年)科技攻关项目。项目于1989年通过了国家科委的技术鉴定。产品名称当时叫做“激光滴谱仪”,设定的应用对象是液体雾滴的粒度测量。比天津大学略晚开展激光粒度仪研制的单位还有上海机械学院(后改名“上海理工大学”)、山东建材学院(后并入济南大学)、四川省轻工业研究院、重庆大学和辽宁(丹东)仪器仪表研究所。从上面的介绍可以看出,国产激光粒度仪的出现时间比世界上最早的同类产品晚了大约20年。早期国产仪器的落后,首先就是因为起步的时间晚。起步晚的原因有这么几个:(1)国外开始研发激光粒度仪的时间正好是中国的文革时期,闭关锁国,国内的科研人员不太了解国外的动态,一直到1970年代末改革开放后,国外的产品卖到中国,以及国内的科研人员到国外进修,才知道有这么一种产品。(2)激光粒度仪的应用对象是从事粉体、浆料、乳液、胶体以及喷雾的科研和生产单位,当时中国在生产和科研两个方面都大幅落后于国外。国内的应用需求对该产品的研发的拉动不强烈。(3)在改革开放前以及改革开放后的很长一段时间,科研由高校和研究机构做,而生产由工厂做。科研单位感受不到应用的需求,而生产单位即使知道有需求,也没有能力设计一款光、机、电和计算机一体化的产品。(4)激光粒度仪作为当时的高精尖产品,需要激光器、电脑、形硅光电池阵列、半导体芯片等元器件和设备的配套,在上世纪六、七十年代,中国很难获得这些东西。目前国内的情况已经完全改观:一是国内需求拉动强烈,二是各种电子元件、计算机软硬件等都能在全球采购,三是国内的研发人员理论基础雄厚,创新意识强,能开展基础理论研究和技术创新。经过30多年的进步,国产激光粒度仪的技术已经能和全球同行并驾齐驱,并有一部分实现了超越。1.3 当前各种品牌对光学模型的应用从1.1节的讨论可以看到,如果只考虑远大于光波长的颗粒,并且只测量小角度的散射光(例如小于5°)的话,用衍射理论基本可以满足粒度测量的要求。衍射理论的优势在于数值计算相对简单,也不需要知道颗粒的光学参数(折射率和吸收系数)。但是如果想把粒度测量下限扩展到接近或小于光的波长,那么就不得不考虑更大角度范围的散射光了。现在的粒度仪测量下限可以达到光波长的1/10左右。图3表示出几种亚微米颗粒的散射光强分布。从图上可以看出,对小颗粒来说,不同粒径散射光强度分布的差别,主要在大角度上,甚至大到180°。这就需要仪器的光学系统能测量0°到180°全角范围的散射光,光学模型也必须用Mie散射理论了。图3 对数极坐标下亚微米颗粒的散射光强分布图中的坐标系是对数极坐标,方位角就是散射角,辐射线的长度是散射光强度的对数。(a)(d)分别表示1µm、0.5µm、0.25µm和0.12 µm的颗粒的散射光强分布。 目前国内国外的厂商,大多数采用复杂但严谨的Mie理论,但也有个别国外厂商还在用衍射理论。从所采用的光学模型来看,国内厂商与国外的主流厂商是同步的。相反,个别国外厂商还在用夫朗和费衍射理论,就显得抱残守缺了。1.4 对光学模型研究的新发现 激光粒度测试技术的研究者和厂商都隐藏着一个困惑:激光粒度仪无法正常测量3微米左右的聚苯乙烯微球。这是为什么? 国内厂商——珠海真理光学仪器有限公司与天津大学的联合团队发现了造成这个困惑的根源:爱里斑的反常变化(ACAD)。通常我们都认为颗粒越小,爱里斑越大,于是颗粒大小与爱里斑大小之间有一一对应关系,所以粒度仪能够根据散射光的分布推算粒度分布。但事实上在有的粒径区间,会出现违反上述规律的情况:颗粒越小,爱里斑也越小。我们把这样的粒径区间叫做“反常区”。图4是根据Mie散射理论用数值计算的方法模拟出的聚苯乙烯微球的爱里斑的变化。图中粒径从3微米到3.5微米的爱里斑尺寸的变化就属于反常变化。对聚苯乙烯微球来说,3微米左右正好是在反常区,所以测量出现异常。研究论文发表于2017年。 图4 爱里斑的反常变化现象 该研究揭示出,任何无吸收或弱吸收的颗粒的光散射都存在反常现象。如果颗粒无吸收,则存在无限多个反常区。对粒度测量有影响的主要是第一反常区,其所处的粒径区间大约在0.5微米到10微米,具体位置跟颗粒与分散介质的折射率以及光波长有关。颗粒折射率越大,反常区中心对应的粒径越小。被测颗粒的粒径落在第一个反常区的话,通常的反演算法就难以根据散射光的分布计算出正确的粒度分布。反常现象对激光粒度测量的影响是普遍存在的,这将在第3节继续讨论。 爱里斑反常变化现象的发现与研究,是国内厂商与研究机构对激光粒度测试技术的创造性贡献,当然是世界范围内独一无二的,是领先于世界的。 2. 各种仪器的散射光接收系统 粒度仪的散射光接收系统决定了仪器能否获得充分的颗粒散射光信息,从而准确计算出被测颗粒的粒度分布。它是激光粒度仪的关键技术之一。 亚微米颗粒的散射光能分布见图5,其中假设了探测器的面积与散射角成正比,照明光是线偏振光,偏振方向垂直于散射面。其中图(a)表示全角范围内完整的散射光能分布。从中可以看出,垂直偏振散射光是分布在0°到180°的全角范围内的,对0.3微米以细的颗粒来说,散射光能的主峰分布处在40°到90°的前向大角度上。由于光能分布的主峰位置(如果有)与粒径之间有最显著的特异性,因此获取40°以上的散射光信息对亚微米颗粒测量至关重要。图5 亚微米颗粒的散射光能分布曲线(a) 全角范围的光能分布,(b) 正入射平板玻璃窗口得到的;(c) 斜置梯形玻璃窗口得到的 图6是当前国内外比较有影响力的几种品牌的激光粒度仪的散射光接收系统的光路图。其中图 (a)称为经典光路,又称正傅里叶变化光路。是激光粒度仪发展的早期就开始采用的光路。其特点是用平行激光束垂直入射到测量窗(池),相同角度的散射光通过傅里叶镜头后被聚焦到探测器的一个点上。其缺点是系统能接收的最大散射角受傅里叶镜头的孔径限制。目前能达到的最大孔径角是45°。如果颗粒分散在水介质中,那么对应的最大散射角是32°。这样的系统能测量的最小粒径约为0.4微米。图6 各种散射光接收系统原理图 图6(b)是一种逆(反)傅里叶变换系统。它用会聚光垂直照射到测量池。在小散射角上也能会聚同角度的散射光。但是大角度的聚焦不良,不过可以在光学模型的数值计算上对此进行补偿,并不影响对散射光分布的测量。它的好处是最大接收角不受透镜孔径限制。空气中的最大接收角可达60°或更大,对应于水介质中的散射角为41°以上。如果前向散射角继续增大,大于49°时,就会受到全反射规律的约束,无法出射到空气中,该以上角度称为“全反射盲区”。盲区内的散射光也就无法被探测器接收。这将丢失0.3微米及以细颗粒的散射光能主峰信息,见图5(b)。这种系统一般还设置后向探测器,能接收大于139°的散射光。对0.1左右的颗粒测量有帮助。 图6(c)是一种是多光束方案,是为突破全反射的限制而专门设计的。它用一束光作为主光束,正入射到测量池,用另外一束或两束光作为辅助光束,斜入射到测量池。如果设置后向探测器,则只需一束辅助光。。通常,为了尽量扩大仪器的测量范围,主光束用红色激光,而辅助光束用蓝色LED光源。假设辅助光的对测量池的入射角为45°,那么在该辅助光的配合下,测量盲区可以减小32°。如果只有主光束时散射角测量上限为41°,那么现在的测量上限可达73°。但是它的缺点是,主光束照明情况下的散射光测量和辅助光照明下的测量(如果两束辅助光,也要分别测量)必须分开进行,两次测量的数据拼接,不是一件容易做好的事情。如果辅助光和主光用不同的波长,还需要同时获取两种波长所对应的折射率。有时要得到一种波长的折射率都有困难,两种更难了。 图6(d)称为偏振光强度差(PIDS)方案(该图取自许人良博士未出版的书稿)。其特征是除了正入射的主光束以及配套的双镜头散射光接收系统外,另外串联了一个测量池,并在照明光行进路径的侧面设置对应不同散射角的探测系统。利用90°散射角周围垂直偏振的散射光与平行偏振的散射光的分布差异,分析亚微米颗粒的大小。存在的问题是: (1)主光束获得的信息与PIDS窗口获得的信息之间如何拼接?(2)PIDS测量利用了多种波长的照明光,要想获得多种波长的折射率是非常困难的。 图6(e)称为“斜置平行窗口”方案或“照明光斜入射”方案。作者最早于2010年提出该方案(专利)。它的优点是用一束照明光就可以突破全反射的限制,却没有多光束方案的数据拼接难题。比如说斜置20,被接收的最大散射角就可以增加到60°。但是要完全消除全反射的影响,必须斜置70°。此时入射光在探测平面上不能良好聚焦,从而影响了大颗粒的测量。这是作者没有在真理光学的产品中采用这种方案的原因,但有其他国产品牌在用这种方案。 图6(f)是真理光学在用的“斜置梯形窗口”光学系统。它只需一束照明光。测量池整体倾斜10°,不影响入射光的聚焦,测量池右侧的玻璃做成梯形,让接近或大于全反射临界角的散射光从梯形的斜面出射。这种方案能让前向最大散射角达到80°,使系统能够接收所有亚微米颗粒的散射光能分布的主峰信息,见图5(c)。这是目前前向散射接收角最大的光学系统,而且还只用了一束照明光,没有数据拼接问题。是一种世界领先的方案。3. 反演算法与粒度测试结果的真实性 反演算法就是把仪器测量得到的被测颗粒的散射光分布,结合事先根据光学模型的数值计算得到的预设的各种粒径颗粒的散射光能分布(组成“散射矩阵”),反向计算出被测颗粒的粒度分布的计算机程序。粒度分布是激光粒度仪输出的最终结果,它能否真实反映被测颗粒的粒度,是激光粒度仪性能的最终体现。3.1 获得真实的粒度测试结果的基本条件 能否获得好的粒度分布数据由以下三点决定: (A)充分的被测颗粒的散射光分布信息,最好含有光能分布的主峰(如果有); (B)利用光学模型计算得到的散射光分布与粒度分布之间存在一一对应关系; (C)合理的算法。 各厂商的算法是技术秘密,外人无从知晓与评价。但是可以确定的是,如果条件(A)和(B)有缺失,一定会影响最终的粒度分布结果。从第2节的叙述我们已经看到,现有的各种散射光的接收方案都不能百分之百获得0到180°的散射光信息,但是有的方案好一些,比如图6(f)的方案;有的则有较大的信息缺口,比如图6(a)和(b)所示的方案。作者在第1节中谈到过,真理光学团队发现的爱里斑的反常变化,将导致在被测颗粒是透明的条件下,对于粒径落在第1反常区内的颗粒,条件(B)不能满足。 相对来说,国产的真理光学做得比较好。对条件(A),前向最大散射角(介质中)的接收能力达到80°,能捕获所有颗粒的光能分布主峰,并且只用一束照明光,避免了不同照明光的数据拼接。对条件(B),基于对爱里斑反常变化的原创发现和规律的深入研究,通过软硬件的结合,基本上解决了爱里斑反常变化对粒度分析的影响。 现在国内外各厂商都宣称自己的仪器能测量小到100纳米以细,大到数千微米,全量程无死角的粒度分布,但是上述条件(A) 和(B)的缺失,从客观上限制了这些仪器的测量能力,使得它们宣称的性能难以实现。3.2 国外某仪器有多种反演计算模式,不同模式会给出不同的粒度分析结果 有些国外仪器有多种反演计算模式。同样的被测样品,选不同的模式就会输出不同的结果。图7 国外某仪器不同反演模式输出不同结果的案例 图7是该仪器的实测案例。图7(a)是标称D50为150纳米的聚苯乙烯微球标样的测量结果。选“通用”模式时,D50为121纳米,与样品标称值相差较远,且分布曲线明显展宽;选”单峰窄分布”模式时,D50为148纳米,与样品标称值相符。图7(b)是标称D50为3微米的标样的测量结果。选“通用”模式时,结果呈现多峰,与样品的单分散特征完全不符;选“单峰窄分布”模式时,与样品形态特征及标称值相符。图7(c) 是一个人工配制的3个峰的SiO2 微球。选“通用”模式时,结果只有1个峰,完全失真;选“多峰窄分布”模式时,曲线呈现2个峰,结果比“通用”模式接近真实,但还是有失真。 从使用经验看,该仪器在测量颗粒标准样品时只能用“单峰窄分布”模式去分析。因为颗粒标准物质就是单峰窄分布的,所以这种做法颇有“量身定做”的意味。如果用 “通用”模式分析标准微球时,则经常出错。人们难免要问:“通用”模式连最容易测量的颗粒标准物质都给不出正确的结果,如何保证一般样品的测量结果是正确的?还有一个疑问是:一种仪器的不同模式给出不同的结果,究竟哪一个是正确的结果? 上述问题如果没有合理的解答,那么从基本的科学逻辑出发,我们就可以得出这样的结论:一种仪器有多种分析模式是仪器性能不完善的表现。国产的真理光学的仪器就完全没有这样的问题。它只有一个统一的反演模式,不论测什么样品,都用同样的算法。图8是上述3个样品用国产真理光学仪器测量的结果:150纳米和3微米标样的D50值和分布形态完全符合预期,实际样品的3个峰也能得到正确的体现。图8 国产真理光学的激光粒度仪对三个样品的测量结果3.3 国内外仪器对爱里斑反常现象的处理 爱里斑的反常变化会导致一种散射光能分布对应多种粒度分布的可能性,从而使粒度仪得不到正确的粒度分布结果。图7(b)所示的3微米标样在某国外仪器“通用”模式下给出的完全失真的结果,就是因为3微米标样的构成材料是聚苯乙烯微球,这个粒径正好处在这种材料颗粒的第1个反常区。该国外仪器没能解决这个问题,所以在“通用”模式下得不到正确结果,而只能选用“单峰窄分布”这种量身定做的模式进行“特殊处理”。如果是普通的待测样品,由于事先无法知道被测颗粒的粒度分布特征,不知如何去“特殊”,就难以给出正确的结果。 目前除了真理光学以外,国内外的激光粒度仪厂家的通行做法是,在计算散射矩阵(光学模型)时,即使被测颗粒是透明的,也要人为加一个吸收系数,最常见的数值是0.1。这样在光学模型中就不会出现反常现象,从而使反演结果稳定,或者看上去比较正常。问题在于实际颗粒是无吸收的,人为加吸收必然使测量结果失真。 图9是一个碳酸钙样品的粒度测量结果。该样品经过沉降法的分离,去除了2微米以细的颗粒(可通过显微镜验证)。碳酸钙的折射率是1.69,无吸收。图9(a)是真理光学仪器的测量结果,2微米以细的颗粒含量几乎为零,与预期的一致。图9(b)是在光学模型中加了0.1的吸收系数后的反演结果:在2微米后拖了一个长长的尾巴。我们知道真实的粒度分布中,这个尾巴是不存在的,这是人为加吸收系数所引起的错误结果。有些国外仪器为了避免假尾巴的出现,人为地在1到3微米之间减去一定比例的颗粒含量。这种人为主观的处理会引起新的不良后果:如果在该粒径区域真实存在颗粒,也会被人为减少其含量甚至清零。图8(c)所示的SiO2样品在1微米到3微米之间有一个小峰,但是用该进口仪器测量的结果如图7(c)所示:无论用什么模式分析,这个真实存在的小峰都消失了。图9 在光学模型中给透明颗粒加吸收系数的后果(a)实际的粒度分布 (b)光学模型中加0.1吸收系数后得到的结果 可见,当透明颗粒的粒度分布处在反常区时,通过人为加吸收系数的方法无论怎么做,都有问题。目前国产的真理光学是世界上唯一解决了爱里斑反常变化困扰的厂家。3.4 国内外激光粒度仪对亚微米颗粒的测量能力的比较 采用图6(b)所示的散射光接收系统的仪器是国外品牌,在中国占有很可观的市场份额。然而这种结构由于丢失了0.3微米以细颗粒的光能分布主峰的信息(见图5(b)),从而注定了难以很好地测量0.3微米以细的实际样品(有别于标样,因此通常都用“通用”模式)。图10 某进口仪器和国产真理光学仪器测量纳米硅碳颗粒样品结果的比较 图10是某进口仪器和国产真理光学仪器测量纳米硅碳颗粒样品结果的比较。图10(a)是国外仪器的结果,图10(b)是真理光学的测量结果。两张图中的上图是粒度分布,下图是拟合光能分布与实测光能分布的对比。比较两种结果,可判断真理光学的结果更加真实、可靠。理由是: (A)真理光学的结果拟合残差只有0.43%,而进口仪器的拟合残差高达5.25%。前者拟合更好。 (B)真理光学给出的粒度分布曲线是单峰的,而进口仪器的结果是多峰的。经验告诉我们,正常制造出来的样品极少出现多峰的情况. (C)从光能拟合曲线看,进口仪器在第40单元后测量值(绿线)和拟合值(红线)之间出现较大的偏离,而国产仪器的两条曲线非常一致。 类似的0.3微米以细颗粒的测量案例还有很多。 4. 激光粒度仪行业的未来发展问题 前面三节从激光粒度仪的光学模型、散射光接收系统和反演算法及实际测量能力等三项硬核技术方面对比了国内外激光粒度仪的技术水平和测试性能,表明国产激光粒度仪不会逊色于国外同类产品。真理光学团队发现的爱里斑反常变化现象及规律、独创的斜置梯形窗口克服前向超大角测量盲区以及统一的反演算法等技术,则领先于世界同行。但是,对于激光粒度仪整个行业来说,还存在需要改进甚至急需改进的地方。我的建议如下:(1)国内外的厂家都应正视粒度测量数据对比困难的问题 目前,全球范围内激光粒度仪测量实际样品时给出的数据经常是不可比的。对同一颗粒样品,不同品牌的仪器的测量结果不可比;同一厂家生产的仪器,不同型号之间的结果不可比;更绝的是同一台仪器不同反演模式给出的结果也不可比。到目前为止,对这三个“不可比”,都没有人拿出令人信服的、符合科学的解释。 作者尝试分析一下原因。从理论上说,大家测量相同的样品,使用相同原理的仪器,应该得到相同的结果(在合理的误差范围内)。两个结果如有不同,那么至少有一个结果是错的,甚至两个结果都是错的。这就说明当前国内外的各种激光粒度仪还存在不完善的地方。这些不完善包括:(A)光散射模型上,有的仪器还在使用夫朗和费衍射理论;(B)光的全反射现象的制约,或者大角与小角散射光数据拼接的困难,导致有的仪器没有获得或者没有准确获得大角散光的信息,影响了0.3微米以细颗粒测量的准确性;(C)爱里斑的反常变化引起粒径与散射光分布之间一一对应关系的破坏,除了真理光学,其他品牌都采用人为地在光学模型中给颗粒添加吸收系数的方法来敷衍性地解决,但是没有真正解决,导致结果失真;(D)一种仪器有多种反演算法,从逻辑上就可断定这样的算法是不完善的,而根据作者分析,这个不完善又和不完善点(B)和(C)有关。(E)仪器厂商为了迎合客户的偏好,对原始的粒度分析结果进行了失实的修饰,比如把多峰分布改为单峰分布,把粒度分布中粗、细方向的展宽改窄等等。 仪器技术上的不完善,需要国内外厂家去正视问题,然后改正原先的不足。(2)国内用户应破除对进口仪器的迷信心理 国内很多用户都认为进口仪器就是比国产仪器好。国内用户要是遇到进口仪器的测量结果与国产仪器数据不一致的情况,第一反应就是国产仪器错了。我在前面分析过,进口仪器不比国产仪器好,请用户客观判断。 另一方面,国内有的仪器厂家也拿自己的仪器结果能和国外的结果相一致,来证明自己的高水平。这是自我矮化行为,当然也表明该厂家对自己制造的仪器没有信心。但是国内厂家的这种行为会助长用户原本就有的认为国产仪器水平低的心理。(3)激光粒度仪测量数据的正确运用问题 激光粒度测试报告的核心内容是体积粒度分布。形式上可以是表格或者曲线。有时为了简洁起见,用特征粒径来表示粒度分布。最常见的是D10、D50和D90三个数。其中D50表示样品颗粒的平均粒径(与之并行的也可用D[4,3])),而D10和D90分别表示粒度分布往小粒径和大粒径方向延伸的宽度。在大多数情况下,一个粉体样品的平均粒径和分布宽度(或者均匀性)确定了,其粒度特征也就基本确定了。激光粒度仪国家标准(GB/T 19077-2016/ISO 13320:2009)中明确规定,不允许用D100的数值。这是因为从概率论分析,D100的数值是不稳定的,另外D100实际上并不代表颗粒样品中的最大粒直径。如果把这个值作为最大粒,可能会引发严重的应用后果。 然而在有些激光粒度仪的应用行业,例如电池的正负极材料行业,其国家标准中就把激光粒度仪的Dmax(即D100)作为控制指标。该行业内上下游间的粒度控制指标中,不仅包含了D100,还包还可了D0和Dn10,这些都是误导性的应用。(4) 激光粒度仪的测量下限和上限被严重夸大的问题 目前激光粒度仪的测量范围动辄下限10纳米,上限5000微米以上。这显然被严重夸大了。这会误导客户,扰乱市场。需要行业自律。国家相关组织也要加强督导的力度。
  • 激光粒度分析仪在锂离子电池行业中的应用
    锂离子电池产业作为我国“十二五”和“十三五”期间重点发展的新材料、新能源、新能源汽车三大产业中的交叉产业,国家出台了一系列支持锂离子电池产业发展的支持政策,直接带动了我国锂离子电池行业的持续高速增长。为了规范锂离子电池行业的健康稳健发展,国家相关部门先后制订了涉及到锂离子电池全产业链的相关行业标准,而相关电池材料的粒度分布检测就是其中一项重要检测指标。下面,我们看一看这些行业标准对粒度分布的相关规定。锂离子电池材料粒度分布要求电池材料的粒度分布影响电池材料的物理性能及电化学性能,进而影响锂离子电池的容量、能量密度、充放电性能、循环性能及安全性能等。在锂离子电池材料中,需要检测粒度的粉体材料主要有正极材料及原材料、负极材料及原材料、导电添加剂、电解质、隔膜涂覆材料。正负极材料正极材料颗粒的粒径越小,越有利于Li+的嵌入和脱嵌,有利于提升锂离子电池的倍率性能;同时,粒径越小的材料首次容量越高。但是,粒径越小的材料比表面积越大,颗粒表面能升高,易团聚并与电解液发生副反应,电池内阻升高,充放过程中会积聚过多能量,温度升高,从而导致安全隐患;同时,粒径越小的材料不可逆容量增加,降低电池的循环性能。如果材料中混入少数超大颗粒,会导致在极片生产过程中出现划痕、断带现象,严重影响产品质量。粒径较小的负极材料具有较大的首次容量,但不可逆容量也较大;随着粒径增大,首次充放电容量降低,不可逆容量减少。同时,粒径越小的颗粒,越有利于Li+的嵌入和脱嵌,有利于提升电池的倍率性能。如果材料中混入少数超大颗粒,会导致在极片生产过程中出现划痕、断带现象,严重影响产品质量。正极材料和负极材料原料的颗粒的粒径大小影响到正极材料和负极材料的生产工艺控制及成品性能。比如,三元前驱体的粒度影响三元材料的煅烧时间及晶粒大小一致性。粒径越小的前驱体煅烧时间越短;粒径分布越窄的前驱体,煅烧时热量从材料表面传导到材料中心的时间一致性越高,晶粒生长时间一致性越高,晶粒大小一致性也越高。碳酸锂作为正极材料的锂源材料,粒度大小对正极材料的生产工艺和性能也有着重大影响。导电添加剂导电添加剂颗粒的粒径太小,容易发生团聚,不能与活性物质充分接触,导致导电作用降低;如果粒径太大,导电添加剂颗粒不能嵌入到活性物质中,同样会降低导电添加剂的导电作用。如果材料中混入少数超大颗粒,会导致在极片生产过程中出现划痕、断带现象,严重影响产品质量。对于电解液的电解质来说,电解质颗粒大小越均匀,电解液性能的一致性越好。电解液作为锂离子电池的血液,承担着运输锂离子的重任,质量的好坏直接影响锂离子电池的电化学性能,并很大程度上影响锂离子电池的安全性能。涂覆隔膜涂覆隔膜是在基膜的单面或双面涂覆一层氧化铝、二氧化硅等粉体无机材料,从而提升隔膜的高温性能、穿刺强度、亲液性能等。涂覆材料粒度大小及分布对涂覆隔膜的性能起着决定性的作用。以最常用的氧化铝涂覆隔膜为例,一般采用亚微米级别的α相氧化铝材料,颗粒大小适中且粒度均匀的氧化铝能很好地粘接到隔膜表面,不会堵塞膜孔,成孔均匀,能够提高隔膜的耐高温性能和热收缩率,能够改善隔膜对电解液的亲和性,同时保持较好的机械性能,从而提高锂电池的安全性能。氧化铝涂层的粒径越大,隔膜的厚度会增加,隔膜的化学性能会迅速下降。综上所述,粒度分布测试已成为提升锂离子电池性能的重要检测手段,选择一款高性能的激光粒度分析仪就成为了研发机构、材料生产厂家、电芯生产厂家的共同需求。一款好的激光粒度分析仪应该具备良好的测试结果的真实性、重现性、分辩能力、易操作性等。测试结果的真实性是指测试结果能够反映颗粒的真实大小,尽管粒度测量不宜引用“准确性”这一指标,但这并不意味着测量结果可以漫无边际地乱给。测试结果的真实性是激光粒度分析仪最根本的分析性能,如果没有测试结果的真实性做基础,仪器的重复性、重现性等其它性能就失去了讨论的意义。测试结果的重现性是指将同一批样品多次取样的测试结果的重复误差,误差越小,表示重现性越好。重现性的好坏取决于仪器获取光能分布数据的稳定性、对杂散光的控制能力、对中精确度、光源和背景的稳定性、进样器的分散性能等。只有具备良好重现性的仪器才能对测试样品的粒度分布进行可靠的评价,有利于用于多个样品之间差异的准确识别。激光粒度分析仪的分辨能力指的是仪器对样品不同粒径颗粒的测量分辨能力以及对给定粒度等级中颗粒含量的微小变化识别的灵敏程度。一般来说,除了影响重现性的因素外,散射光能分布角度和光强的获取,低背景噪声的光学电子设计,高精度的模数转换及反演计算水平都对仪器的分辨能力有较大影响。只有高分辩能力的仪器才能准确识别测试样品的细微粒径变化。激光粒度分析仪的原理结构激光粒度分析仪的易操作性是指操作简单、故障率低、易于日常维护保养。如果仪器的易操作性不高,即便有良好的测试性能,也不能高效满足用户的测试需求。Topsizer激光粒度分析仪和Topsizer Pus激光粒分析仪就是这样两款在锂离子电池行业被广泛应用的高性能激光粒度分析仪。量程宽、重现性好、分辨能力强、自动化程度高、故障率低等优异性能保证了测试结果和分析能力,而且与国内外、行业上下游黄金标准保持一致,不仅为用户节省了方法开发和方法转移上的时间和成本,更重要的是可以避免粒径检测不准带来的经济损失和风险,无论在产品研发、过程控制还是质量控制上,都能够为用户带来真正的价值。● 测试范围:0.02-2000μm(湿法),0.1-2000μm(干法)● 重复性:≤0.5%(标样D50偏差)● 准确性:≤±1%(标样D50偏差)● 测量速度:常温测量10秒内完成欧美克Topsizer激光粒度分析仪Topsizer激光粒度分析仪是珠海欧美克仪器有限公司于2010年被英国思百吉集团全资收购后,利用思百吉集团的全球资源全新打造的旗舰产品,具有量程宽、重现性好、精度高、测试结果真实、自动化程度高等诸多优点,真正站在了当前粒度检测领域的前沿。● 测试范围:0.01-3600μm(湿法),0.1-3600μm(干法)● 重复性:≤0.5%(标样D50偏差)● 准确性:≤±0.6%(标样D50偏差)● 测量速度:常温测量10秒内完成欧美克Topsizer Plus激光粒度分析仪Topsizer Plus激光粒度分析仪是继广受赞誉的Topsizer 后,作为马尔文帕纳科的全资子公司,珠海欧美克仪器有限公司推出的又一款高端粒度分析仪器。该仪器引入了国际先进的光学设计,结合欧美克近30年的技术积累,采用全球化的供应链体系,使激光衍射法的测试范围达0.01-3600um。Topsizer Plus保持了Topsizer量程宽、重复性好、分辨力高、真实测试性能强和智能化程度高等优点,通过进一步提升光学设计、硬件和反演算法,拓展了其测试范围以及实际测试性能,代表了当前国产激光粒度仪的技术水平。
  • LSST-01正压法泄漏与密封强度测试仪在碳酸饮料与非碳酸饮料瓶盖检测中的应用差异
    LSST-01正压法泄漏与密封强度测试仪是一种专业的设备,用于检测饮料瓶盖的密封性能。这种测试仪通过模拟瓶盖在实际使用过程中可能遇到的各种压力条件,来评估其密封性能是否符合标准。对于碳酸饮料和非碳酸饮料,由于其内部压力和化学成分的差异,检测时的压力设定可能会有所不同。碳酸饮料与非碳酸饮料的区别:内部压力:碳酸饮料含有溶解的二氧化碳,在密封状态下会产生较高的内部压力。非碳酸饮料通常不含或含少量气体,因此其内部压力较低。化学成分:碳酸饮料中的酸性物质可能会对瓶盖材料产生腐蚀作用,而非碳酸饮料的化学成分通常较为温和。检测时的考虑因素:压力设定:碳酸饮料的测试可能需要更高的压力设定,以模拟其在储存和运输过程中可能遇到的高压环境。密封性能:碳酸饮料的瓶盖需要具备更强的密封性能,以防止气体泄漏和保持产品的碳酸化状态。材料兼容性:测试时还需考虑瓶盖材料与饮料成分的兼容性,确保长时间接触不会影响密封性能。LSST-01测试仪的应用:正压检测:LSST-01测试仪能够通过正压法检测瓶盖的密封性能,确保在设定的压力下无泄漏发生。强度测试:除了泄漏检测,该设备还能测试瓶盖的抗压力,评估其在高压力下的密封强度。模拟环境:可以模拟不同的温度和湿度条件,以评估瓶盖在不同环境下的密封性能。结论:虽然LSST-01正压法泄漏与密封强度测试仪可以用于检测碳酸饮料和非碳酸饮料的瓶盖密封性能,但由于两者在内部压力和化学成分上的差异,检测时的压力设定和测试条件可能会有所不同。碳酸饮料的瓶盖通常需要更高的密封性能和更强的抗压力,因此在进行测试时需要特别考虑这些因素,以确保瓶盖能够满足产品的质量和安全要求。
  • 美国PSS发布AccuSizer 780 A2000 SIS 不溶性微粒检测仪新品
    AccuSizer780系列仪器揭示出了不同于以往的粒径分布数据。 应用单颗粒传感技术(SPOS)的AccuSizer 780系列仪器更加稳定和灵敏,一次只允许一个粒子通过检测器,可以避免错过任何一个粒子。粒子灵敏度 ≤10PPT粒径准确度在 ≤2%粒子计数准确度 ≤10%近期独立试验证明:在检测离群值(尾部大颗粒)时,单颗粒传感技术(SPOS)比光散射法和声学法敏感1,500到25,000倍。AccuSizer780系列仪器可以清晰准确地呈现粒径分布,而粒径分布往往是直接与材料物性相关联的。从研发到生产,全球各大实验室均已应用并验证了AccuSizer 780系列仪器可以用作重塑产品品质的强有力工具。AccuSizer 780APS全自动颗粒计数粒径检测仪 AccuSizer 780APS 集自动进样、自动稀释、自动检测、数据处理以及自动清洗等全自动检测功能于一身,为用户提供可方便、快捷、高效、可靠的粒径分析。其使用了适用于高浓度样品的二次自动稀释系统,能稀释最高浓度为50%(固含量)的样品。只需通过鼠标的单击操作,喜用即能自动完成所有操作,使用户获得重要准确的粒径分布和颗粒数目的信息。所以AccuSizer 780APS 成为实验室微粒粒径分析及质量监控最理想的仪器。APS由于具有可以检测离平均粒径只有几个标准偏差的极低水平的聚合物的能力,被很多客户称为万能探测器(bolder detector),因为这些聚合物的存在与否往往决定着产品的好与坏。独立试验显示APS在电化学抛光法(CMP)过程所使用的磨料浆(slurry)中对大颗粒的检测要比一般的激光散射法其灵敏度要高1,500到25,000倍。同样,此款仪器可以应用在墨水、颜料、色素、药物乳剂等行业,这些应用中极少的“尾部”大颗粒是判断一个产品成功或者失败的重要标准。创新点:AccuSizer 780 A2000 SIS不溶性微粒检测仪集自动进样、自动检测、数据处理以及自动清洗等全自动检测功能于一身,为注射剂检测提供安全、快捷、高效、可靠的不溶性微粒分析解决方案。其搭载的系列传感器采用先进的半导体用光阻法单颗粒光学传感技术(SPOS),更额外加载了光散传感器,除覆盖传统的光阻法检测范围1.5 μ m – 400 μ m外,更可下探到0.5μ m的极限值。AccuSizer 780 A2000 SIS 不溶性微粒检测仪内置各国药典的检测标准,更可通过自定义检测标准符合多种应用场景,也可以避免后续药典标准升级之虞。AccuSizer 780 A2000 SIS不溶性微粒检测仪搭载的AccuSizer软件完全符合US 21CFR Part11要求,具有数据自动备份,审计追踪,权限分级,电子签名,以及可连接Lims系统等多项功能,具有50uL的微量进样能力,是检测大小注射液、蛋白注射液、混悬液、口服液、滴眼液等液体制剂及无菌粉末和无菌原料药的不二选择。AccuSizer 780 A2000 SIS 不溶性微粒检测仪
  • 塑料工业少不了钛白粉 粒度分布影响关键指标
    p style="text-indent: 2em "近几年,塑料工业与钛白粉可谓焦不离孟。在世界范围内超过500家的钛白粉牌号中,专属于塑料用的就超过50个,而高达6%的年均增长率,也让塑料工业成为使用钛白粉增速最快的领域,并“荣膺”钛白粉的第二大用户。有材料应用的地方自然就有相配套的指标、参数考衡,粒径粒度分布和颗粒形状就显著影响着塑料用钛白粉的关键指标。而塑料用钛白粉的粒径恰好处于激光粒度仪大展身手的范围内,因此对于钛白粉在塑料工业中的应用,业内人士不妨给予更多的瞩目。/pp style="text-indent: 2em text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/5a1cc424-4105-479d-975f-1e95fbaa5764.jpg" title="激光粒度仪 钛白粉.jpg"//pp style="text-indent: 2em "众所周知,钛白粉的学名是二氧化钛,具备优良的白色性能,高遮盖力和高消色力,被广泛应用油墨、造纸、涂料、油漆等行业,享有“白色之王”的美誉,这正是钛白粉在塑料制品中得以应用的重要原因,即钛白粉可以决定浅色或白色塑料制品的外观。当然钛白粉于塑料还有很多其他好处,比如提高塑料制品的耐热、耐光、耐候性能,使塑料制品免受UV光的侵袭,改善塑料制品的机械性能和电性能等。几乎所有热固性和热塑性的塑料中都会使用钛白粉,它们既可以与树脂干粉混合,也可以与含增塑剂的液体相混合,用量一般在3-5%左右,聚烯烃类(主要是低密度的聚乙烯)、聚苯乙烯、ABS、聚氯乙烯等莫不如是。/pp style="text-indent: 2em "在塑料工业中衡量钛白粉的质量主要有四大指标——遮盖力、分散性、耐候性和白度。钛白的遮盖力越好,生产出的塑料制品就越轻薄;分散性则影响塑料制品生产成本,钛白粉的分散性越好,塑料制品的光滑度和光亮度就会越高;具备良好耐候性的钛白粉,则对室外使用的塑料制品以及塑料门窗是必不可少的。/pp style="text-indent: 2em "最后一大指标就是白度了,所谓白度是指距离理想白色的程度。影响钛白粉白度因素主要有以下几点。第一点是杂质,在钛白粉工艺中,尤其是硫酸法钛白粉工艺,大部分的作业是为了除去产品中的杂质,因为杂质严重影响钛白粉的应用性能,特别是白度。显色金属氧化物杂质在极低的含量下就能影响白度,这些元素有铁、锰、铬、铜等,这些杂质本身就带有颜色,在白色的钛白粉中极易显色。/pp style="text-indent: 2em "第二点就是粒径和粒度的分布了,他们主要是通过钛白粉颗粒对光的反射、散射等现象影响其白度的。钛白粉的粒径越小,白度值越高,这主要是由于钛白粉粒径越小,表面积增大,光的反射、漫反射增强。根据光波的特性,当颜料粒子的粒径小于光波的一半时可以获得对该波长的色光的最大散射,经分析,对波长蓝色光散射最好的粒径在0.2μm左右,波长较长的红色光散射最大的粒径在0.35μm左右,因此,小粒径的钛白粉的散射光呈蓝相,而透过光则为蓝色的补色红黄相,反之,大粒径的钛白粉散射光为红相,透过光为蓝相。通常涂料用钛白粉的粒径为0.2~0.4μm,而大多数塑料用钛白粉粒径都较细,粒径为0.15~0.3μm,因为这样可以获得兰色底相,对大多数带黄相的树脂或易泛黄的树脂有遮蔽作用。/pp style="text-indent: 2em "此外,颗粒形状、钛含量、包膜剂对钛白粉的白度都有一定影响。其中,粒形对白度的影响比较小,一般来说,层状钛白粉的白度略低,球状和杆状的白度略高。而二氧化钛含量的升高,钛白粉白度值也升高,铝、硅、锆等包膜剂含量升高,钛白粉白度值下降。/pp style="text-indent: 2em "值得一提的是,在塑料色母粒的生产工艺中,钛白粉的白度也是一项重要质量指标,塑料色母粒是一种高浓缩、高效能的颜色配置品,即颜料以超常浓度均匀分布在载体树脂中,并形成一定粒径的颗粒。它主要由核心层(颜料)、偶联层(偶联剂或表面活性剂)、分散层(润滑剂或分散剂)、增混层(载体树脂)等组成,在塑料中作为染色剂使用,广泛用于吹膜、注塑、热压、注塑等塑料制品的生产,色母粒着色效果优越,使用方便,节约能源,使用时无粉尘和污水,因此备受用户的青睐。色母粒是作为工业原料,性能优劣通常是在后续产品应用中表现出来(如吹膜或注塑),因此,钛白在色目粒中的性能也主要体现在色母粒的应用过程中。钛白的着色能力、分散性、加工性能、白度都会对色母粒的应用产生重大影响,顺理成章地,也少不了对钛白粉粒度分布的检测。/pp style="text-indent: 2em "strong结语:/strong激光粒度仪作为目前最流行的粒度测量仪器,已在粉体工艺中发挥着越来越重要的作用,随着米氏散射理论在各品牌激光粒度仪中的应用越来越广泛,已经对亚微米级的塑料用钛白粉有充足的适配性。随着钛白粉在塑料工业中的需求越来越大,对这一市场大蛋糕的进一步经营和开拓,或许值得激光粒度仪的厂商们好好思考。/p
  • 用户说|农药减量增效的关键在于“粒度分布及其控制”——访中农立华农药应用研发中心主任张小军
    导读:丹东百特有多台激光粒度仪服役于中农立华农药应用研发中心,为农业制剂研究贡献百特力量。近日,某仪器相关媒体走进中农立华农药应用研发中心,与中心主任张小军博士进行了深入交流,一起来看看百特用户的真实体验。中农立华农药应用研发中心主任 张小军博士农药是重要的农业生产资料,在有效防治病虫草害,保障粮食产量、安全方面发挥重要作用。但是农药利用率低下,大部分通过径流、渗漏、飘移等流失,对环境、生物及人体健康构成威胁。为降低农药使用量同时提高利用率,自2015年以来,农业农村部深入开展化肥农药使用量零增长行动,推进化肥农药减量增效。研究发现,农药制剂有效成分在喷施后形成的微粒粒度是影响药效的关键因素之一,合理控制粒度可充分发挥农药的药效潜能。为探究制剂粒度对农药施用效果的影响,近日,某仪器相关媒体走进中农立华生物科技股份有限公司农药应用研发中心,与中心主任张小军博士进行了深入交流。10年间,中农立华生物科技股份有限公司从不足10亿元发展到66.4亿元,从原药、联销、分装,延伸到制剂研发、应用技术、农药出口、植保机械… … 2019年,公司十周年高峰论坛上,面对环保高压、新《农药管理条例》、供给侧结构改革等给农化行业发展带来巨大的影响,中农立华确立打造“科技立华、服务立华、绿色立华”以更好地服务三农。为落实科技创新战略,2020年10月,中农立华农药应用研发中心实验室落成,研发中心设有制剂研发、产品化学检测、残留化学检测实验室三个区域,致力于制剂技术、植物保护产品及分析检测技术的研究和应用,将进一步促进公司各业务板块协同发展,为公司和行业提供更多技术支持与服务。中农立华农药应用研发中心主任 张小军博士主要从事农药制剂研发、分析及应用技术工作,从业经历近20年,为国务院政府特殊津贴获得者。农药减量增效的关键在于“粒度分布及其控制”诺贝尔奖获得者、世界著名小麦科学家Noman K. Borlang曾说过:“没有农药,人类将面临饥饿的危险。”据美国农业部和世界粮农组织测算,停止使用农药将导致作物产量降低30%,农产品价格提高50%-70%;农药使用可挽回全世界农作物总产量30%~40%的损失。农药是国家稳定和经济发展的重要战略物质,在当下及未来很长一段时间内不可或缺。我国为农药原料药生产大国,但原料药并不能直接使用,消费者终端实际使用的是制剂,农药制剂行业的发展受到越来越多关注;近15~20年来,中国在环境友好的农药制剂方面的进步很大。中农立华自主研发30%二甲戊灵悬浮剂、46%氟啶∙啶虫脒水分散粒剂等产品深耕市场多年,获得良好口碑,先后获得国家发明专利授权,取得了良好的经济和社会效益,这些成绩的背后离不开产品性能的精细化控制;此外,2020年6月由中农立华农药应用研发中心与天津立华牵头起草的《30%二甲戊灵悬浮剂》团体标准正式通过“CCPIA标准”委员会专家组评审,标准编号为T/CCPIA 046-2020。回顾我国农药发展历程,张小军说到:“我国农药研发及产业化取得了明显进展,与发达国家的差距正在缩小,已成为继欧美、日本后,为数不多的具备农药创制能力的国家。聚焦农药制剂,研发水平进步则更快,我刚入行时,从业人员规模区区几百人,如今已超过5000人,为我国农药制剂发展奠定了良好基础;近年来,我国在水基化环境友好型农药制剂,如悬浮剂、悬乳剂、水乳剂以及水分散粒剂等都取得了显著的成绩,尤其在干悬浮剂、可分散油悬浮剂等新剂型方面积累了大量经验和应用案例。当然,行业快速发展的同时也存在一些短板,如研发体系不健全,精细化程度不够,系统研究人员欠缺,难以组建完整的研发团队等,这些都是我们今后需要完善的。”“我在全国制剂大会中提出,可控粒径对于制剂研发至关重要,也是衡量研发水平的重要体现。当前国家出台相关政策,提倡农药减量增效,大家开始关注制剂稀释后的界面性能,其实,液液、固液分散体系中有效成分的粒度对于制剂应用效果的影响也很大,粒度控制越小,比表面积越大,接触生物靶标越充分,防治效果越好。此外,针对一些低熔点化合物的制剂,粒度分布是判断其研发成功与否的关键。粒度控制可助力农药减量增效,也是未来农药制剂的发展方向之一。”张小军继续讲到。10多年的农药制剂研发检测和评价实践——静态光散射与图像颗粒分析技术粒径控制离不开粒度分析仪器的助力。张小军十余年间,先后使用过3台激光粒度仪和1台粒度粒形分析仪,均购自丹东百特仪器有限公司,目前实验室正在运行的是去年新购置的Bettersize2600激光粒度仪与BT-1600静态图像颗粒分析系统。据张小军介绍,他用过的这3台激光粒度仪体积逐渐减小,性能则不断提升;期间还到访过百特两次,见证了这家国产仪器厂商的成长,感触最深的是企业近十年的发展之快,近日,百特12台顶级激光粒度分布仪批量出口德国,性能得到国外用户的充分认可,更为其国际化进程增添了浓墨重彩的一笔。农药制剂行业以应用技术为主,当初选购激光粒度仪时,操作人员比较关注仪器的重现性、数据可靠性、操作便利性、性价比几个重要指标。“同行交流是我们调研的主渠道,实践是检验仪器水平的重要标准。”张小军告诉笔者,“同大多数行业一样,在农药制剂细分领域,实验室在采购仪器时都会优先考虑进口品牌,但粒度分析产品不然。国产激光粒度仪在此领域占有率很高,尤其是百特的产品性价比高、售后服务到位、口碑好,所以值得信赖。另外,激光粒度仪的测试范围与准确度,以及不同剂型的通用性或者共用性,一台设备能否同时测定水溶性和油溶性的制剂、微米和纳米级的制剂等,都是研发人员关注的信息。经测试,百特的仪器可以满足我们的需求,还可以提供专业的解决方案。在日常使用过程中,针对不同粒径的悬浮剂、可分散油悬浮剂,百特的激光粒度仪都能测定出科学可靠的数据,满足我们的评价要求;尤其结合图像分析仪,在评价低熔点、水溶性活性成分体系,以及颗粒长大、结晶等方面都能做出很好的判断,是农药制剂研发检测和评价中的利器。”实验人员正在操作Bettersize2600激光粒度仪(图左)与BT-1600静态图像颗粒分析系统(图右)好仪器是用户和仪器企业一起“用”出来的除激光粒度仪及部分实验室常用设备外,实验室鲜见国产品牌的影子,张小军对此感慨良多:“好仪器是用出来的。百特成立26年之久,但发展最快的阶段是近十年,因为其仪器使用者越来越多,反馈与建议随之增多,促使仪器性能反复改进并优化。同样,各行业要给予其他国产仪器试错的机会,帮助其成长。”采访最后,谈及对百特产品和服务的改进建议,张小军坚定地说:“几乎没有,他们已经做的很好了”,他沉思片刻又说:“既然有这样一个问题,我就提一点,希望百特能深入农药制剂研发和生产检测单位,实地调研交流,线上线下联动,加强与客户之间的互动,收集客户在仪器使用过程中遇到的问题或建议,及时了解并满足其新需求,如此,百特的产品才能在农药制剂行业始终保持领先。”“百特是典型的‘专精特新’企业,小而精。专业的人做专业的事情,百特在董青云总经理的带领下取得了很多靓丽的成绩,他们有一支专业的队伍,其激光粒度仪在国内销量稳居第一。我相信国内其他检测仪器设备也会取得如此突破,解决一系列‘卡脖子’的问题。我从百特身上看到了希望,这就是民族制造业的希望和代表。”后记应用研发是整个农药研发中重要的一环,但技术研发枯燥、充满不确定性,张小军何以坚持如今?他告诉笔者,一是对这份工作的热爱,取得成绩的喜悦与满足感只是动力,内心的喜欢才是坚持的源泉;二是拥有优秀的平台和团队,团队的融洽相处与共同的荣誉感是研发成功的保障;三是要有视野,不断学习、借鉴、思考、总结才能持续提升与进步。这也是一位研发人员的基本素养。
  • 用户说|农药减量增效的关键在于“粒度分布及其控制”——访中农立华农药应用研发中心主任张小军
    导读:丹东百特有多台激光粒度仪服役于中农立华农药应用研发中心,为农业制剂研究贡献百特力量。近日,某仪器相关媒体走进中农立华农药应用研发中心,与中心主任张小军博士进行了深入交流,一起来看看百特用户的真实体验。中农立华农药应用研发中心主任 张小军博士农药是重要的农业生产资料,在有效防治病虫草害,保障粮食产量、安全方面发挥重要作用。但是农药利用率低下,大部分通过径流、渗漏、飘移等流失,对环境、生物及人体健康构成威胁。为降低农药使用量同时提高利用率,自2015年以来,农业农村部深入开展化肥农药使用量零增长行动,推进化肥农药减量增效。研究发现,农药制剂有效成分在喷施后形成的微粒粒度是影响药效的关键因素之一,合理控制粒度可充分发挥农药的药效潜能。为探究制剂粒度对农药施用效果的影响,近日,某仪器相关媒体走进中农立华生物科技股份有限公司农药应用研发中心,与中心主任张小军博士进行了深入交流。10年间,中农立华生物科技股份有限公司从不足10亿元发展到66.4亿元,从原药、联销、分装,延伸到制剂研发、应用技术、农药出口、植保机械… … 2019年,公司十周年高峰论坛上,面对环保高压、新《农药管理条例》、供给侧结构改革等给农化行业发展带来巨大的影响,中农立华确立打造“科技立华、服务立华、绿色立华”以更好地服务三农。为落实科技创新战略,2020年10月,中农立华农药应用研发中心实验室落成,研发中心设有制剂研发、产品化学检测、残留化学检测实验室三个区域,致力于制剂技术、植物保护产品及分析检测技术的研究和应用,将进一步促进公司各业务板块协同发展,为公司和行业提供更多技术支持与服务。中农立华农药应用研发中心主任 张小军博士主要从事农药制剂研发、分析及应用技术工作,从业经历近20年,为国务院政府特殊津贴获得者。农药减量增效的关键在于“粒度分布及其控制”诺贝尔奖获得者、世界著名小麦科学家Noman K. Borlang曾说过:“没有农药,人类将面临饥饿的危险。”据美国农业部和世界粮农组织测算,停止使用农药将导致作物产量降低30%,农产品价格提高50%-70%;农药使用可挽回全世界农作物总产量30%~40%的损失。农药是国家稳定和经济发展的重要战略物质,在当下及未来很长一段时间内不可或缺。我国为农药原料药生产大国,但原料药并不能直接使用,消费者终端实际使用的是制剂,农药制剂行业的发展受到越来越多关注;近15~20年来,中国在环境友好的农药制剂方面的进步很大。中农立华自主研发30%二甲戊灵悬浮剂、46%氟啶∙啶虫脒水分散粒剂等产品深耕市场多年,获得良好口碑,先后获得国家发明专利授权,取得了良好的经济和社会效益,这些成绩的背后离不开产品性能的精细化控制;此外,2020年6月由中农立华农药应用研发中心与天津立华牵头起草的《30%二甲戊灵悬浮剂》团体标准正式通过“CCPIA标准”委员会专家组评审,标准编号为T/CCPIA 046-2020。回顾我国农药发展历程,张小军说到:“我国农药研发及产业化取得了明显进展,与发达国家的差距正在缩小,已成为继欧美、日本后,为数不多的具备农药创制能力的国家。聚焦农药制剂,研发水平进步则更快,我刚入行时,从业人员规模区区几百人,如今已超过5000人,为我国农药制剂发展奠定了良好基础;近年来,我国在水基化环境友好型农药制剂,如悬浮剂、悬乳剂、水乳剂以及水分散粒剂等都取得了显著的成绩,尤其在干悬浮剂、可分散油悬浮剂等新剂型方面积累了大量经验和应用案例。当然,行业快速发展的同时也存在一些短板,如研发体系不健全,精细化程度不够,系统研究人员欠缺,难以组建完整的研发团队等,这些都是我们今后需要完善的。”“我在全国制剂大会中提出,可控粒径对于制剂研发至关重要,也是衡量研发水平的重要体现。当前国家出台相关政策,提倡农药减量增效,大家开始关注制剂稀释后的界面性能,其实,液液、固液分散体系中有效成分的粒度对于制剂应用效果的影响也很大,粒度控制越小,比表面积越大,接触生物靶标越充分,防治效果越好。此外,针对一些低熔点化合物的制剂,粒度分布是判断其研发成功与否的关键。粒度控制可助力农药减量增效,也是未来农药制剂的发展方向之一。”张小军继续讲到。10多年的农药制剂研发检测和评价实践——静态光散射与图像颗粒分析技术粒径控制离不开粒度分析仪器的助力。张小军十余年间,先后使用过3台激光粒度仪和1台粒度粒形分析仪,均购自丹东百特仪器有限公司,目前实验室正在运行的是去年新购置的Bettersize2600激光粒度仪与BT-1600静态图像颗粒分析系统。据张小军介绍,他用过的这3台激光粒度仪体积逐渐减小,性能则不断提升;期间还到访过百特两次,见证了这家国产仪器厂商的成长,感触最深的是企业近十年的发展之快,近日,百特12台顶级激光粒度分布仪批量出口德国,性能得到国外用户的充分认可,更为其国际化进程增添了浓墨重彩的一笔。农药制剂行业以应用技术为主,当初选购激光粒度仪时,操作人员比较关注仪器的重现性、数据可靠性、操作便利性、性价比几个重要指标。“同行交流是我们调研的主渠道,实践是检验仪器水平的重要标准。”张小军告诉笔者,“同大多数行业一样,在农药制剂细分领域,实验室在采购仪器时都会优先考虑进口品牌,但粒度分析产品不然。国产激光粒度仪在此领域占有率很高,尤其是百特的产品性价比高、售后服务到位、口碑好,所以值得信赖。另外,激光粒度仪的测试范围与准确度,以及不同剂型的通用性或者共用性,一台设备能否同时测定水溶性和油溶性的制剂、微米和纳米级的制剂等,都是研发人员关注的信息。经测试,百特的仪器可以满足我们的需求,还可以提供专业的解决方案。在日常使用过程中,针对不同粒径的悬浮剂、可分散油悬浮剂,百特的激光粒度仪都能测定出科学可靠的数据,满足我们的评价要求;尤其结合图像分析仪,在评价低熔点、水溶性活性成分体系,以及颗粒长大、结晶等方面都能做出很好的判断,是农药制剂研发检测和评价中的利器。”实验人员正在操作Bettersize2600激光粒度仪(图左)与BT-1600静态图像颗粒分析系统(图右)好仪器是用户和仪器企业一起“用”出来的除激光粒度仪及部分实验室常用设备外,实验室鲜见国产品牌的影子,张小军对此感慨良多:“好仪器是用出来的。百特成立26年之久,但发展最快的阶段是近十年,因为其仪器使用者越来越多,反馈与建议随之增多,促使仪器性能反复改进并优化。同样,各行业要给予其他国产仪器试错的机会,帮助其成长。”采访最后,谈及对百特产品和服务的改进建议,张小军坚定地说:“几乎没有,他们已经做的很好了”,他沉思片刻又说:“既然有这样一个问题,我就提一点,希望百特能深入农药制剂研发和生产检测单位,实地调研交流,线上线下联动,加强与客户之间的互动,收集客户在仪器使用过程中遇到的问题或建议,及时了解并满足其新需求,如此,百特的产品才能在农药制剂行业始终保持领先。”“百特是典型的‘专精特新’企业,小而精。专业的人做专业的事情,百特在董青云总经理的带领下取得了很多靓丽的成绩,他们有一支专业的队伍,其激光粒度仪在国内销量稳居第一。我相信国内其他检测仪器设备也会取得如此突破,解决一系列‘卡脖子’的问题。我从百特身上看到了希望,这就是民族制造业的希望和代表。”后记应用研发是整个农药研发中重要的一环,但技术研发枯燥、充满不确定性,张小军何以坚持如今?他告诉笔者,一是对这份工作的热爱,取得成绩的喜悦与满足感只是动力,内心的喜欢才是坚持的源泉;二是拥有优秀的平台和团队,团队的融洽相处与共同的荣誉感是研发成功的保障;三是要有视野,不断学习、借鉴、思考、总结才能持续提升与进步。这也是一位研发人员的基本素养。
  • 《化学工程研究与设计》2022年度“颗粒技术”主题的优秀论文
    信息来源:《化学工程研究与设计》Chemical Engineering Research and Design期刊《化学工程研究与设计》Chemical Engineering Research and Design,是一本以工程技术-工程:化工综合研究为特色的国际期刊。该刊由ELSEVIER出版商创刊于1983年,刊期Monthly。该刊已被国际重要权威数据库SCIE、SCI收录。期刊聚焦工程技术-工程:化工领域的重点研究和前沿进展,及时刊载和报道该领域的研究成果,致力于成为该领域同行进行快速学术交流的信息窗口与平台。《化学工程研究与设计》Chemical Engineering Research and Design在2022年的影响因子为3.9,Cite Score指数值为6.50。在该刊物2023年3月30日优选出的“颗粒技术主题”的5篇论文中,其中有2篇论文是该技术研究中最受关注、影响力最高的。其中一篇是由大连理工大学化工学院副院长、博士生导师姜晓滨教授等共同发表的论文《膜结晶:通过微尺度界面技术设计结晶》《Membrane crystallization:Engineering the crystallization via microscale interfacial technology》。文章中提到:高度可控、高效的结晶工艺是超纯固体产品和绿色工艺工程的迫切要求。特别是,微尺度成核的精确调控和晶体生长的强化是多学科、多尺度的课题,引起了许多研究者的关注。本文将系统地讨论膜结晶作为一种新型的微尺度界面技术,在混合过程中对界面过饱和度的控制、成核、颗粒运动和生长的原理进行综述。然后重点介绍了基于膜界面微尺度孔隙和通道的调控理论以及基于膜结晶技术的进一步应用。最后,概述了膜结晶作为一项新兴技术,对先进结晶工程的发展前景和重点研究方向进行了概述。论文原文地址,请复制到浏览器阅读 ↓ https://www.sciencedirect.com/science/article/abs/pii/S0263876221005670?via%3Dihub另一篇论文是由LUT大学化学工程学院Soheil Aghajanian教授、LUT大学能源与系统学院Vesa Ruuskanen教授、芬兰Pixact公司Markus Honkanen博士共同发表的《通过在线过程成像技术实时监测和洞察微米级碳酸钙的结晶过程》《Real-time monitoring and insights into process control of micron-sized calcium carbonate crystallization by an in-line digital microscope Camera》。论文中介绍了芬兰Pixact公司的PCM结晶监测系统及1-10μm的碳酸钙结晶反应过程的在线监测结果。实验证明:芬兰Pixact公司的PCM结晶监测系统可以很好地表征Dv10=3μm、Dv90=10μm的碳酸钙颗粒的颗粒度,并与实验室激光粒度仪的颗粒度表征结果吻合。在线过程成像技术解决了如何更好地对颗粒的成核、运动和生长过程进行监测和控制的难题。图1 在线过程成像技术的颗粒表征 Fig. 1. I11ustration of particle characterization from a microscope image. 图2 碳酸钙结晶过程中图像分析的PI控制器示意图和实验设备图Fig. 2 Schematics of the image analysis-based PI controller during the calcium carbonate reactive crystallization process and a photograph of the experimental equipment 图4 PCM结晶监测系统的在线粒度与实验室激光粒度仪的粒度结果的比较Fig. 4 Comparison of particle size distribution obtained by the in-line image analysis-based probe and the offline laser diffraction measurement论文原文地址,请复制到浏览器阅读 ↓ https://www.sciencedirect.com/science/article/pii/S0263876221005025?via%3Dihub
  • 孰优孰劣?纳米粉体粒度检测方法大PK
    p style="text-indent: 2em "编者按:纳米粉体堪称纳米科学技术的奠基石,是介于原子、分子等微观物质与宏观物体之间的一种固体颗粒,又称超微粒子。作为一种亚稳态中间物质,纳米粉体的粒度指标对其性能影响巨大,表面效应、小尺寸效应、量子效应、宏观量子隧道效应等无不受粒度的影响。从粒度划分的角度,纳米粉体一般在1-100nm之间。测量其粒径的方法也多种多样,透射电镜观察法、X射线衍射法、BET比表面测试法,动态光散射法等都很是常见。那么哪种方法才是测量纳米粉体粒度的最优选择呢?国家特种矿物材料材料工工程技术研究中心的秦海青老师等专家对此进行了探讨。/pp style="text-indent: 2em "strong专家观点:/strong/pp style="text-indent: 2em "在观测纳米粉体粒度的几种方法中,透射电镜透射电镜观察法的缺点主要是由于观察用的粉末极少 ,使得测量结果缺乏统计性,不能全面的表征样品的粒度及分布;而沉降法由于目前技术上的原因而无法准确测量到纳米尺度。因此这里仅通过纳米硅粉的粒度表征,对X射线衍射法、BET比表面测试法,动态光散射法三种方法进行探讨。/pp style="text-indent: 2em "动态光散射法是一种激光粒度仪法,是利用光子相关谱法以及PCS的基本原理,由激光器发出的激光经透镜聚焦后照射到颗粒样品上,在某一固定的散射角下,颗粒的散射光经透镜聚焦后进入光探测器(一般用光电倍增管)。光探测器输出的光子信号经放大和甄别后成为等幅的串行脉冲,再经随后的数字相关器做相关运算,求出光强的自相关函数。根据自相关函数中所包含的颗粒粒度信息,微机即可算出粒度分布。用这种方法测得的粒度值比较接近实际值。/pp style="text-indent: 2em "BET法是通过测定单位质量粉体的表面积并根据相应公式计算出纳米粉体颗粒的平均粒径,用这种方法测量的粒度值与激光粒度仪法所测得的粒度相比略小,这是由于BET法是根据吸附的气体量来表征比表面积的,测量结果与颗粒的的表面状态有关,颗粒的表面缺陷越多吸附的气体越多,从而测量值要小于实际值,由于纳米颗粒表面都不太完整,所以测量值都偏小一些。/pp style="text-indent: 2em "X射线衍射法测量纳米硅粉颗粒尺寸主要是根据谢乐公式。用 X 射线衍射法测量的晶粒尺寸得到的结果是粉体样品中颗粒尺寸最小且不可分的粒子,其平均尺寸的大小即为晶粒度 (以化学键结合的最小粒子),当颗粒为单晶时,测量结果就是颗粒粒度,当颗粒为多晶时,测量结果是组成颗粒的单个晶粒的平均粒度,此时,测量值小于实际值。/pp style="text-indent: 2em "综上所述,BET法与X射线衍射法测试的粒径比激光粒度仪法测试的粒径要偏小。不过每种测试方法都有优缺点,针对不同类型的纳米粉体的种类,要选择与之适合的测试方法,使测试结果更加接近粉体的实际粒度值。/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制