当前位置: 仪器信息网 > 行业主题 > >

碳纤维增强聚合物

仪器信息网碳纤维增强聚合物专题为您整合碳纤维增强聚合物相关的最新文章,在碳纤维增强聚合物专题,您不仅可以免费浏览碳纤维增强聚合物的资讯, 同时您还可以浏览碳纤维增强聚合物的相关资料、解决方案,参与社区碳纤维增强聚合物话题讨论。

碳纤维增强聚合物相关的资讯

  • CSTM发布《纤维增强聚合物基复合材料 超低温力学性能试验方法》团体标准
    近日,中国材料与试验团体标准委员会(CSTM标准委员会)批准发布T/CSTM 00653—2022《纤维增强聚合物基复合材料 超低温力学性能试验方法》团体标准,并将于2022年8月27日起正式实施。该团体标准规定了纤维增强聚合物基复合材料超低温力学性能试验的试验原理、试验设备、试样、试验步骤、试验结果和试验报告;适用于连续纤维增强聚合物基复合材料在-183 ℃~-269 ℃超低温下进行拉伸、面内压缩、弯曲和剪切等力学性能试验,超出上述温度范围及树脂浇铸体和塑料的超低温力学性能试验可参照使用。该标准起草人:渠成兵、肖红梅、黄传军、刘玉、付绍云、刘德博、张健、左小彪、史汉桥、李元庆、矫维成、杨帆、蔡浩鹏、张红菊、陈超。起草单位:中国科学院理化技术研究所、北京玻璃钢研究设计院有限公司、北京宇航系统工程研究所、航天材料及工艺研究所、重庆大学、哈尔滨工业大学、武汉理工大学、国标(北京)检验认证有限公司、山东省标准化研究院。标准文本:标准下载链接:https://www.instrument.com.cn/download/shtml/1091668.shtml
  • 岛津微焦点CT系统助力碳纤维增强复合材料(CFRP)制孔加工新技术
    引 言碳纤维增强复合材料(CFRP:Carbon Fiber Reinforced Plastics)因其高比强度、高比刚性和良好的耐腐蚀性而广泛用于航空航天、国防工业和其他领域。然而CFRP属于典型难加工材料,尤其是制孔加工,CFRP构件为了与其他零部件装配通常要对其进行大量的制孔,传统制孔加工技术难以满足要求,这成为CFRP推广应用的瓶颈。 为了研发高效高质量、低成本的CFRP制孔技术,南方科技大学吴勇波讲席教授团队的汪强博士后研究员等人利用岛津公司的inspeXio SMX-225CT FPD HR微焦点X射线CT系统,观察新技术斜螺旋铣削法(THM)和传统螺旋铣削法(CHM)所获得CFRP制孔加工质量。通过inspeXio SMX-225CT FPD HR微焦点X射线CT系统对两种不同方法CFRP制孔加工样品进行扫描成像,再使用VG软件对其数据进行比较分析,发现利用CHM获得孔的表面出现明显毛刺,而使用THM获得孔的表面非常光滑。这验证了斜螺旋铣削法这一新技术相比传统螺旋铣削法更有利于CFRP高质量制孔加工。论文链接:https://doi.org/10.1007/s00170-018-2995-5图1 基于CHM和THM的加工孔的3D扫描图图2 inspeXio SMX-225CT FPD HR微焦点X射线CT系统外观图 图1是通过微焦点CT扫描后的三维立体图像。无需特殊前处理,直接把样品放进inspeXio SMX-225CT FPD HR CT设备中直接扫描,测试速度快,短短几分钟就可以得出清晰的图像。岛津公司inspeXio SMX-225CT FPD HR是一款高性能微焦点X射线CT系统(图2)。特点是检出器动态范围大,相当于1400万像素的输入分辨率,加之进一步改良过的高输出微焦点X射线发生器,完全颠覆了“无法在高电压输出设备上获得轻质材料的高清晰高对比度的图像”这一常识,能够获得大视野范围、高分辨率、高对比度的断面图像。无论是在研发的复合材料(GFRP、CFRTP),还是大型铝合金压铸件产品,这款仪器能够完成各种样品所需要的研究、开发和检查的实验。 图3 基于CHM和THM加工孔的3D扫描图(图片版权归Int J Adv Manuf Technol所有) 图3分别显示了CHM(θ=0°)和THM(θ=5°)加工孔的CT放大扫描结果。图像表明,CHM孔口处存在大量的毛刺,而在THM孔入口处很少出现毛刺现象,从而抑制了THM孔口的撕裂。使用CHM加工时,孔表面在90°α180°时特别粗糙;与之形成对比的是,THM中所有孔表面都是光滑的。 图4 拟合CHM和THM加工孔的扫描3D图(图片版权归Int J Adv ManufTechnol所有)图5 CHM和THM加工孔CT横截面图 (图片版权归Int J Adv ManufTechnol所有) 通过CT扫描CHM(θ= 0°)和THM(θ= 5°)获得的加工孔横截面(图5)。在CHM加工孔的入口和出口表面都发现了分层,这与THM加工的没有观察到分层的孔形成鲜明的对比。THM加工孔表面要比CHM好得多,这归功于在THM加工中,孔的出口加工是分阶段形成:在第一阶段,会生成直径小于所需直径的孔出口,随着加工进行,孔出口直径逐渐扩大到所需直径,从而完成第二阶段的孔出口加工。在这个过程中,第一阶段形成的孔出口分层可以在第二阶段孔加工中消除,从而实现孔出口的高质量加工。 图6 CHM和THM加工孔CT横截面图 (图片版权归Int J Adv Manuf Technol所有) 图7 THM加工孔CT展开图(a)和SEM图(b) (图片版权归Int J Adv Manuf Technol所有) 在图6和图7中,通过CT扫描后用专用图像处理软件把孔内表面展开,可以清晰的观察CHM(θ=0°)和THM(θ=5°)的孔内表面形貌。这一分析手段有利于观察分析被测物体内部结构,是本公司产品的优势之一。在CHM中,当90°α180°时,可以看到粗糙的表面缺陷位于α=135°附近。但是在THM中,所有α角度的钻孔表面都是光滑的。最后通过SEM扫描验证缺陷位置。 SMX-225CT FPD HR微焦点X射线CT系统扫描结果协助研究者验证了THM加工方法在CFRP制孔加工中显著优于CHM,为后续研究提供了准确的数据。
  • 卓祥科技参加“第十届先进纤维与聚合物材料国际会议”并做演讲
    10月17日,杭州卓祥科技有限公司赴上海富悦酒店参加第十届先进纤维与聚合物材料国际会议。会议现场先进纤维与聚合物材料国际会议(ICAFPM)由东华大学发起举办并主办,每两年举行一次,已成为世界上以“纤维”为主题的规模巨大的学术盛会之一。会议期间,来自海内外的800余名专家学者围绕“纤维让世界更美好”这一主题,聚焦先进纤维和聚合物材料相关领域的基础理论研究和进展,面向世界性共同重大需求,深度把握国际学术前沿,积极拓展纤维研究领域,开展深入而广泛的学术研讨交流。演讲现场解答疑问
  • 安捷伦宣布收购聚合物标准品公司PSS
    安捷伦本周二表示收购了聚合物标准品制造商Polymer Standards Service(PSS),交易的财务条款未披露。  PSS公司是全球知名的凝胶渗透色谱 (GPC) 和尺寸排阻色谱 (SEC)高品质标准品制造商之一,可提供从小型实验室规模(1克)到量产级别(5千克或更多)的聚合物标准品、特制聚合物、聚合物颗粒、聚合物网络等产品,专注用于表征分子结构的构建和修饰的硬件和软件解决方案。  此次收购拓宽和扩展了安捷伦的产品组合和客户服务范围,特别是在化学和生物制药行业,用于分析核酸、蛋白质、单克隆抗体、多糖和合成塑料等天然和合成聚合物。  据悉,安捷伦还将添加一个关键软件组件,以补充其凝胶渗透色谱/尺寸排除色谱产品组合。  同时,安捷伦覆盖全球的业务范围也将助力用户更广泛地使用PSS产品和专业知识。  安捷伦生命科学和应用市场集团总裁 Jacob Thaysen 表示:“我们非常高兴PSS团队加入安捷伦,帮助我们扩大在液相色谱和 GPC/SEC 市场的领导地位。即将添加到安捷伦产品组合中的先进的 PSS 硬件、软件、色谱柱和参比材料,将增强我们的产品,并确保我们提供客户重视的广泛的液相色谱设备、GPC/SEC 分析以及软件。”  PSS 董事总经理 Thorsten Hofe 表示:“这对 PSS 和安捷伦来说都是非常具有战略意义的举措。我们可以一起为客户提供全系列的 GPC 和 LC 产品,并将 PSS 产品的覆盖范围扩展到快速增长的新市场。对于 PSS 团队来说,这是一个激动人心的时刻。”
  • NIR-II半导体聚合物点:链堆积调节和深部组织中的高对比度血管成像
    研究内容:近红外二区(NIR-II)窗口的荧光成像在研究血管结构和血管生成方面引起了人们的极大兴趣,为早期疾病的精确诊断提供了有价值的信息。然而,由于荧光团的强光子散射和低荧光亮度,对深层组织中的小血管成像仍然具有挑战性。本文描述了作者在荧光探针设计和图像算法开发方面的共同努力。首先,使用聚合物共混策略来调节大型刚性NIR-II半导体聚合物的链堆积行为,以产生紧凑明亮的聚合物点(Pdots),这是小血管体内荧光成像的先决条件。进一步开发了一种稳健的Hessian矩阵方法来增强血管结构的图像对比度,特别是小血管和弱荧光血管。与原始图像相比,在全身小鼠成像中获得的增强的血管图像在信噪比(SBR)方面表现出超过一个数量级的改善。利用明亮的Pdots和Hessian矩阵方法,作者最终进行了颅骨NIR-II荧光成像,并在携带脑肿瘤的小鼠和大鼠模型中获得了高对比度的脑血管系统。Pdots探针开发和成像算法增强的研究为深层组织的NIR-II荧光血管成像提供了一种很有前景的方法。图1.(a)NIR-II半导体聚合物的分子结构。(b)由纯NIR-II半导体聚合物制备的聚集体或线状聚合物纳米结构的TEM图像。(c)通过将短刚性半导体聚合物与NIR-II半导体聚合物共混得到小球形Pdots的TEM图像。首先,作者研究了由两组氟取代的半导体聚合物制备的NIR-II Pdots的大小和形态,单纯的NIR-II聚合物纳米颗粒是通过再沉淀法制备的,透射电子显微镜(TEM)观察纳米粒子呈现大尺寸和线状形态。通过混合NIR-II聚合物和CN-PPV获得的Pdots的大小和形态发生了显著变化。从TEM图像可以看出,所有六种类型的混合Pdots均表现出小尺寸和球形形态,与纯CN-PPV Pdots相似。CN- PPV聚合物在Pdots形成过程中具有协同效应,迫使大的刚性聚合物主链折叠并扭曲NIR-II聚合物的链堆积,从而形成小尺寸的球形形态。这表明混合具有小共轭长度的传统半导体聚合物是制备小尺寸球形NIR-II Pdots的可靠策略。图2. m-PBTQ4F Pdots与不同比例的(a)PSMA聚合物、(b) PS-PEG-COOH聚合物和(c) CN-PPV聚合物混合的TEM图像。实验证实,只有共轭聚合物,才能有效调节NIR-II半导体聚合物的链堆积行为,产生小球形的Pdots。作者研究了不同质量分数的NIR-II聚合物m-PBTQ4F分别与PSMA、PS-PEG-COOH和CN-PPV共混制得的纳米粒子的形态变化。对于PSMA和PS-PEG-COOH,所得到的大多数纳米颗粒都呈短丝状形态。虽然通过共混(1:1比例)可以减小粒子的尺寸,但粒子的尺寸分布很大,在透射电子显微镜中仍观察到部分椭圆形的纳米粒子。相反,当m-PBTQ4F与CN-PPV混合时,随着CN-PPV分数的增加,观察到了向单分散球形Pdots的明显形态演变。这些结果表明,共混刚性共轭聚合物可以有效调节NIR-II半导体聚合物的链堆积,得到致密的球形Pdots,而柔性两亲聚合物没有类似的效果。图3. (a)聚乙二醇化CN-PPV Pdots、m-PBTQ4F Pdots和 (b) 聚乙二醇化m-PBTQ4F/CN-PPV混合Pdots的吸收和发射光谱。(c)聚乙二醇化m-PBTQ4F/CN-PPV Pdots的流体动力学直径和TEM图像。(d)在808 nm连续辐射下ICG和Pdots在相同质量浓度的水中的光稳定性。为了使Pdots具有更长的血液循环时间,将m-PBTQ4F和CN-PPV聚合物组成的小尺寸Pdots进一步用两亲性PS-PEG-COOH官能化。观察三种类型Pdots的吸收和发射光谱,发现混合Pdots的吸收光谱与纯m-PBTQ4F和CN-PPV Pdots的吸收光谱一致。此外,混合的Pdots在可见光和NIR-II区域显示出双发射峰。动态光散射(DLS)测量和TEM结果显示,混合的Pdots呈球形,流体动力学直径约为20 nm。以临床批准的染料ICG为对照,对Pdots的光稳定性进行了表征,在808 nm激光持续照射2 h下,Pdots的荧光保持接近原始强度的88%,而ICG在10 min内完全光漂白,表明Pdots具有优异的光稳定性。与不同浓度的Pdots孵育24小时后的细胞存活率测定显示,Pdots的细胞毒性最小,静态溶血试验结果显示,Pdots的溶血活性可忽略不计。此外,在注射Pdots的小鼠的主要器官的苏木精和伊红(H&E)染色图像中未观察到明显异常。总之,这些结果表明聚乙二醇化m-PBTQ4F/CN-PPV Pdots是具有高亮度、光稳定性和生物相容性的小尺寸探针,有望用于体内成像应用。图4. (a)用于血管图像分割的Hessian矩阵方法示意图。(b)俯卧位采集的小鼠NIR-II荧光图像与(c)横截面强度分布。(d)仰卧位采集的小鼠NIR-II荧光图像与(e)横截面强度分布。首先进行预处理以抑制图像中的背景信号并增强血管的几何特征。进一步估计一系列的尺度因子,构造了平滑的高斯核,然后与图像进行卷积,得到Hessian矩阵的元素。然后,考虑管状结构的具体情况,推导出Hessian矩阵的特征值,最终得到血管增强图像。作者通过使用Pdots探针和Hessian矩阵方法展示了活小鼠的高对比度全身血管成像。。在静脉注射Pdots探针的小鼠的NIR-II荧光图像中,虽然注射的Pdots属于最亮的荧光团,但原始图像中几乎无法将荧光信号较弱的小血管与周围背景区分开,经Hessian矩阵法处理后,原始图像中的许多小直径血管和模糊血管均得到明显增强。从仰卧位的同一只小鼠的原始图像和增强图像中,血管结构明显增强,而来自肝脏的信号受到抑制,因为该方法只能提取具有管状结构的目标。图像处理后两条小血管的SBR较原图像增强了约13倍,说明Hessian矩阵算法对于提高全身荧光血管成像中弱小荧光血管的SBR有很强的效果。图5. 颅骨和头皮完整的小鼠的脑脉管系统的体内NIR-II荧光图像。(a)野生型C57BL/6小鼠和ND2:SmoA1小鼠的脑脉管系统NIR-II荧光图像以及(b)放大图像。(c)使用血管分割和量化算法,对野生型和荷瘤小鼠的脑血管系统中的血管长度和血管分支进行定量比较。接下来,作者使用NIR-II Pdots和Hessian矩阵法探索了小鼠脑深部组织血管成像。对正常小鼠和携带脑肿瘤的转基因ND2:SmoA1小鼠进行了头皮和颅骨脑部成像。与野生型动物相比,由于肿瘤的发展,ND2:SmoA1小鼠显示出更扭曲和紊乱的脑脉管系统,从原始荧光图像中很难识别横窦和小直径血管的轮廓,经Hessian矩阵法图像处理后,原始图像中多条小血管明显增强,横窦结构清晰。为了评估肿瘤生长中的血管形态,还定量分析了血管长度和血管分支,这些在原始图像中是无法获得的,因为它们的图像对比度低。从增强图像中提取的血管长度和血管分支统计分析表明,转基因脑肿瘤小鼠的这两个参数均显著高于野生型小鼠。血管形态的定量评估为研究肿瘤血管生成和诊断肿瘤恶性提供了一种有效方法。图6. 切除肝脏中血管的离体成像。(a)注射NIR-II Pdots期间肝脏中血管树的原始和增强图像以及(b)放大图像。(c)切除肝脏的照片。(d)从Pdots注射整个过程的NIR-II图像中获得的血管长度和(e)血管分支。(f)沿(b)中白色虚线标记的位置强度分布。接下来,进一步证明了使用NIR-II Pdots和Hessian矩阵方法在体外可视化大鼠肝脏血管结构的可行性。由于肝组织的强散射和吸收以及肝血管的复杂结构,肝血管成像是一项复杂的任务。原始图像在高度混浊的肝组织中显示出非常弱的荧光信号,而Hessian-matrix增强图像显示出高得多的SBR,肝血管成像中SBR的20倍以上增强。这些结果验证了Hessian矩阵用于血管成像的有效性,并为研究肝脏疾病中血管结构的发展提供了工具。图7. (a)颅骨完整的SD大鼠的脑脉管系统的体内NIR-II荧光图像和Hessian基质增强图像与(b)横截面强度分布。(c)大鼠切除的脑组织的亮场和荧光图像。(d) H&E染色图像。(e)健康大鼠和荷瘤大鼠脑切片荧光图像。最后,作者探索了大鼠模型中原位成胶质细胞瘤的颅骨内脑血管成像。由于颅骨更厚且光子散射更强,因此将大鼠脑可视化比将小鼠脑可视化更具挑战性。图像经Hessian矩阵法处理后,原始图像中的小直径血管明显增强,脑血管结构更加清晰可见且增强图像中的SBR有明显改善,与小鼠脑和肝血管成像结果一致。此外,进行离体NIR-II荧光成像,在来自不同组的切除的脑器官的亮场和荧光图像中,模型组肿瘤部位可见亮荧光,而对照组和假组未检测到明显信号。该结果表明,由于渗透性和滞留性增强(EPR)效应,Pdots在脑肿瘤中有效蓄积。对照组和荷瘤组脑切片的H&E染色图像,证实了脑中肿瘤的发展。除了链式堆积调制时,CN-PPV聚合物的混合也赋予Pdots橙色发射,从而能够通过常规共焦成像对组织切片进行显微镜检查,脑切片的共焦荧光图像表明Pdots在脑肿瘤中明显积聚。总之,这些结果证明了使用NIR-II荧光Pdots和Hessian矩阵法进行的大鼠脑高对比度颅骨血管成像。总结:作者设计了荧光Pdots并且开发了一种图像算法,用于小动物的高对比度血管成像。作者提出了一种聚合物共混策略,该策略可以有效地调节大的刚性NIR-II半导体聚合物的链堆积行为,产生用于小血管体内荧光成像的致密明亮的Pdots。此外,作者开发了一种有效的Hessian矩阵方法来增强血管结构的图像对比度,特别是小的和弱荧光的血管。在全身小鼠成像中,与原始图像相比,增强的血管图像在SBR中表现出超过一个数量级的改善。进一步证明了使用NIR-II Pdots和Hessian矩阵法离体可视化大鼠肝脏血管结构的可行性。原始图像显示高度混浊的肝组织的血管网络非常模糊,而Hessian矩阵图像在肝血管成像中显示SBR增强20倍以上。利用明亮的Pdots和Hessian矩阵法,最终进行了颅骨内荧光成像,并在荷脑肿瘤的小鼠和大鼠模型中获得了高对比度的脑脉管系统。本研究将成像算法与NIR-II荧光Pdots相结合,显示出其在体内促进肿瘤血管生成及其他微循环相关疾病定量成像与研究的潜力。参考文献Chen, D. Qi, W. Liu, Y. Yang, Y. Shi, T. Wang, Y. Fang, X. Wang, Y. Xi, L. Wu, C., Near-Infrared II Semiconducting Polymer Dots: Chain Packing Modulation and High-Contrast Vascular Imaging in Deep Tissues. ACS Nano 2023, 17 (17), 17082-17094.⭐ ️ ⭐ ️ ⭐ ️ 近红外二区小动物活体荧光成像系统 - MARS NIR-II in vivo imaging system高灵敏度 - 采用Princeton Instruments深制冷相机,活体穿透深度高于15mm高分辨率 - 定制高分辨大光圈红外镜头,空间分辨率优于3um荧光寿命 - 分辨率优于 5us高速采集 - 速度优于1000fps (帧每秒)多模态系统 - 可扩展X射线辐照、荧光寿命、一区荧光成像、原位成像光谱,CT等显微镜 - 近红外二区高分辨显微系统,兼容成像型光谱仪 有不同型号的样机可以测试,请联系:艾中凯(博士)132 6299 1861⭐ ️ ⭐ ️ ⭐ ️ 恒光智影 上海恒光智影医疗科技有限公司,被评为“国家高新技术企业”,上海市“科技创新行动计划”科学仪器领域立项单位。 恒光智影,致力于为生物医学、临床前和临床应用等相关领域的研究提供先进的、一体化的成像解决方案。 与基于可见光/近红外一区的传统荧光成像技术相比,我们的技术侧重于近红外二区范围并整合CT, X-ray,超声,光声成像技术。 可为肿瘤药理、神经药理、心血管药理、大分子药代动力学等一系列学科的科研人员提供清晰的成像效果,为用户提供前沿的生物医药与科学仪器服务。⭐ ️ ⭐ ️ ⭐ ️ 上海恒光智影医疗科技有限公司地址:上海市浦东新区张江高科碧波路456号 B403-3室网址:www.atmsii.com邮箱:ai@atmsii.com电话:132 6299 1861 (同微信)
  • 美科学家制成聚合物纳米纤维反应器
    美国研究人员已开发出一种仅用大约1000个分子即可进行化学反应的新型化学合成方法,该新系统利用的是聚合物纳米纤维相互交织后所产生的微弱的化学反应,该方法已被证明可用于新型药物和工业原料的快速筛选。  研究人员称,这种新工艺还可用于对新的蛋白或DNA识别标签进行高通量测试,以改进目前用于测序的蛋白或DNA识别标签;或用于检测罕见的生物分子,如癌症或其他疾病早期阶段的微量蛋白特性。  目前,研究人员一般使用微流体系统来进行小规模的化学反应,即在一个芯片上通过由微型管路和泵组成的网络来传递化学物质。而美国博林格林州立大学化学家帕维尔安祯贝切尔开发的这个新系统则完全不同,反应在悬浮于干燥的聚合物纳米纤维中进行,且只在纤维相遇时才会相互发生反应。  研究人员使用静电技术研制出了这个纤维反应器。他们将液体聚氨酯装入配有细针的注射器,在针尖处形成一个微小的液滴,然后给针尖施加电压。电荷相斥驱动液滴形成细长的聚合物纤维,每条的直径约在100纳米至300纳米之间。研究人员认为,利用含有少量反应物的聚氨酯溶液所产生的静电,就可编制出一个液态纤维网,这样就创建出了反应器。经向的纤维包含一种反应物,纬向的纤维则包含另一种反应物。当施以微热使这些纤维融合时,结合处的化学物质就混合在一起发生反应。通过荧光成像和质谱等各种方法,这些生成物就可被鉴别出来。  在最近一期《自然化学》杂志上,研究人员介绍了利用该微型反应器对4种不同反应所做的测试。这些反应只发生在具有zepto-mole(10的负21次方摩尔)量级的大约1000个分子间。其中两种反应可用来测试与荧光染料分子相关的方法,这些分子只在经向与纬向相互交织的线上碰到相似的目标分子时才会发光。安祯贝切尔的研究领域之一便是开发可检测特定蛋白片段或DNA碱基的染料,目前他正在开发attoliter(一万亿分之一升)级的反应器纤维,以对这些染料进行高通量筛选。该系统加以改进后就可使用非常小的样本来研究数千个蛋白的相互反应。  研究人员表示,这种纤维反应器的最大优势在于比其他技术费用低廉,低反应量在测试那些目前尚未知晓的物质之间的新反应时也具有优势。更重要的是,反应和生成物仅限于纤维内,它们不会蒸发和泄露,因而更为安全。
  • 钱义祥——高分子物理与聚合物热分析
    高分子物理与聚合物热分析热分析老人钱义祥2018-05-10  « 高分子物理» 、« 高分子物理的近代研究方法» 、« 新编高聚物的结构与性能» 、« 聚合物结构分析» 、« 聚合物量热测定» 、« 热分析与量热学» 手册、« 高聚物与复合材料的动态力学热分析» 等专著中,论述了高分子物理理论和近代研究方法。聚合物热分析是高分子物理的近代研究方法之一,高分子物理是高聚物热分析的理论基础,用高分子物理的概念解析热分析曲线,探索聚合物结构与性能的关系。  一、高分子物理与聚合物热分析  1.聚合物热分析  热分析是在程序控温(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术。热分析是研究物质变化和变化规律及调控变化的近代研究方法。聚合物热分析的研究对象是高聚物。聚合物热分析最常用的热分析方法是差示扫描量热仪DSC和动态热机械分析DMA。在特别情况下,也采用热机械分析(TMA)和热分析联用技术(TG/气体分析)。差示扫描量热仪DSC是在程序控温(和一定气氛)下,测量输入给试样和参比物之间的热流速率或加热功率(差)与温度或时间关系的技术。DSC在高聚物研究中的应用有:  研究结构及动态变化   表征玻璃化转变和熔融行为   分析多组分高聚物体系的组成   研究高聚物链缠结及化学交联   研究高聚物的结晶行为   表征高聚物的微相结构   研究高聚物共混相溶性   反映共混高聚物中组分间的相互作用   研究聚合物的热历史和处理条件对高聚物结构的影响。  动态热机械分析DMA是用来测量样品在周期交变应力作用下,其动态力学性能与时间、温度、频率等函数关系的一种仪器。动态力学热分析测定高分子材料(非晶高聚物、结晶聚合物、交联聚合物、共混高聚物)在一定条件(温度、频率、应力或应变水平、气氛和湿度)下的刚度与阻尼 测定材料的刚度与阻尼随温度、频率或时间的变化,得到高聚物的温度谱、频率谱和时间谱。用高分子物理理论解读DMA的温度谱、频率谱和时间谱,获得与材料的结构、分子运动、加工与应用有关的特征参数。  聚合物热分析是高分子物理的近代研究方法之一,是近几十年中热分析发展最活跃的领域。它已经应用到聚合物结构与性能研究的几乎所有领域。运用聚合物热分析研究(测试)聚合物的非晶态(玻璃化转变及ΔTg) 聚合物的结晶态(结晶-熔融过程、熔点和熔融晗ΔH、结晶温度和结晶晗、温度对结晶速度的影响、结晶温度对熔点的影响、、高分子的链结构对熔点的影响、共聚物的熔点、杂质对聚合物熔点的影响、结晶度测定) 聚合物液晶态 高分子共混物的相容性、嵌段共聚物的微相分离、聚合物的高弹性与黏弹性(聚合物的力学松弛-蠕变、应力松弛、滞后现象、力学损耗、黏弹性与时间、温度的关系-时温等效)、表征力学松弛和分子运动对温度和频率的依赖性等。上述热分析研究的问题都是高分子物理所关注的问题。  热分析是高分子物理的近代研究方法,它辅以其它近代研究方法,如光谱、波谱、色谱、激光光散射、X射线和电子显微技术等方法,运用高分子物理理论,弄清高聚物的一级、二级和聚集态结构,并研究结构与材料功能和性能之间的关系。由此合成具有预定性能的高分子材料,或根据需要通过物理和化学方法改性合成高聚物或天然高分子以创建新的材料。同时,研究高聚物结构对材料加工流动性的影响,确定材料加工成型工艺。研究高聚物分子运动,弄清材料的力学性能、流变性、电学性能。由此,在高分子物理指导下不断制备出预期的高分子材料。  热分析方法是在不断发展的。如示差扫描量热仪DSC技术,自20世纪60年代以来,DSC技术的快速发展使其成为高分子物理尤其是高分子结晶学相关问题研究的常规实验手段。然而随着对高分子结晶和熔融研究的进一步深入,研究者们对DSC的温度扫描速率提出了更高的要求。首先,对于结晶速率较快的半结晶高分子而言,在不够快的冷却速率条件下从熔体降温至较低温度的过程总是能够发生结晶成核,从而干扰了在较低温度区域对高分子结晶成核行为的研究。  其次,高分子材料在诸如注射、吹拉膜和纺丝等实际加工过程中发生结晶时的冷却速率均大于常规DSC所能提供的降温速率,因此很难利用常规DSC模拟研究高分子在实际加工过程中所经历的结晶环境。第三,大多数半结晶高分子折叠链片晶都处于亚稳状态。在常规DSC的升温扫描过程中将不可避免地伴随高分子片晶由亚稳态向更稳定状态的转变,从而干扰最终的熔融实验结果,使得我们难以获得最初的高分子晶体内部聚集态结构相关信息。  近年来,出现了商业化的闪速示差扫描量热仪FlashDSC。推动了高分子结晶研究的进展。因为高分子结晶与熔融问题的研究不仅对高分子科学的发展至关重要,与高分子材料在生产生活中的实际应用也密切相关。随着对相关问题的深入研究,高分子结晶与熔融行为的表征对实验手段提出了新的、更高水平的要求。闪速示差扫描量热仪FlashDSC所具备的快速升降温能力、超高的时间分辨率、易于操作等特点,在高分子结晶与熔融问题的研究上已经得到了广泛的应用。  FlashDSC在高分子的结晶方面的应用有:FlashDSC可以实现对熔体降温过程中结晶成核和生长的精确控制,甚至可以得到大多数半结晶高分子的无定形态,从而为大过冷度下高分子等温结晶的研究创造了有利条件。同时,FlashDSC所具备的超快速降温能力可与加工过程中的冷却速率相匹配,这为加工过程中结晶行为的模拟研究提供了更多的可能。  FlashDSC研究高分子结晶问题的实例有:等温总结晶动力学 等温晶体成核动力学 非等温结晶峰比较 成核剂和填料对结晶行为的影响 共聚单元对高分子结晶的影响。  FlashDSC用于高分子晶体的熔融研究:快速升温可精确地判断高分子晶体的升温退火行为,并且时间窗口与分子模拟相互衔接,在一定程度上可了解亚稳态原生高分子晶体的信息。通过进一步的应用与拓展,诸如多尺度下高分子晶体的熔融行为和极性大分子热降解温度之上的熔融行为都可以得到有益的探讨。  FlashDSC研究高分子晶体熔融问题的实例有:升温扫描过程中多重熔融峰的鉴别 高分子片晶不可逆熔融 高分子片晶可逆熔融 极性大分子晶体的熔融。  总之,FlashDSC在高分子结晶和熔融行为相关问题的研究上有望发挥更加重要的作用,有助于推动高分子结晶学相关基础理论的进一步深化与完善。[1]  2.高分子物理  高分子物理物理学是探讨物质的结构和运动基本规律的学科。高分子物理属于物理学的一个分支。高分子物理从分子运动的观点阐明高分子的结构和性能的关系。通过分子运动揭示分子结构与材料性能之间的内在联系及基本规律。  高分子物理的内容主要由三个方面组成。第一方面是高分子的结构,包括单个分子的结构和凝聚态结构。结构对材料的性能有着决定性性的影响。第二方面是高分子材料的性能,其中主要是黏弹性,这是高分子材料最可贵之处,也是低分子材料所缺乏的性能。研究黏弹性可以借助于力学方法(DMA方法)。结构和性能之间又是通过什么内在因素而连接起来的呢?这就是分子运动。因为高分子是如此庞大,结构又如此复杂,它的运动形式千变万化,用经典力学研究高分子的运动有着难以克服的困难,只有用统计力学的方法才能描述高分子的运动。通过分子运动的规律,把微观的分子结构与宏观的物理性能联系起来。因此,分子运动的统计学是高分子物理的第三个方面。  高分子结构、高分子材料的性能和分子运动统计学三部分组成高分子物理。高分子物理涉及高聚物结构表征、分子运动、物理改性及理论研究。在高分子科学的发展历程中,高分子化学是基础。高分子化学研究高分子化合物的分子设计、合成及改性,它担负着高分子科学研究提供新化合物、新材料及合成方法的任务。高分子物理是高分子科学的理论基础,它指导着高分子化合物的分子设计和高聚物作为材料的合理使用。高分子物理涉及高分子及其凝聚态结构、性能、表征,以及结构与性能、结构与外场力的影响之间的相互关系。另一方面高分子工程研究涉及聚合反应工程、高分子成型工艺及聚合物作为塑料、纤维、橡胶、薄膜、涂料等材料使用时加工成型过程中的物理、化学变化及以此为基础而形成的高分子成型理论、成型新方法等内容。当前的高分子科学已形成高分子化学、高分子物理、高分子工程三个分支领域互相交融、互相促进的整体学科。[2]  高分子科学是一门新兴科学。它经历了漫长的历程才艰难诞生。高分子物理也就在这个过程产生,并且为高分子科学的诞生和发展起了重要作用。高分子科学领域诺贝尔奖获得者H.Staudinger(1953年),Ziegler和Natta(1963年)、P.J.Flory(1974年)、A.J.Heeger,GacDiarrnid及H.Shirakawa(2000年)的重大贡献主要是建立在可靠的高分子表征基础上。我国老一辈高分子科学家钱人元、唐敖庆、冯新德、钱保功、徐僖、程镕时等均具有坚实的高分子物理理论基础,他们为高分子科学与教育事业的发展做出了巨大贡献。[3]  3.高分子物理与聚合物热分析  高分子物理的基本理论、研究领域及研究方法是高分子物理的基本内容。聚合物热分析研究对象辖于高分子,是高分子物理的近代研究方法之一。聚合物热分析的研究领域和高分子物理的研究领域常常是相叠的,热分析研究的问题常常就是高分子物理所关注的问题。下面从四个方面讨论高分子物理与聚合物热分析的关系。  1)« 高分子物理» 关于高分子物理的研究方法的论述  何曼君编著的« 高分子物理» 一书的内容提要中,特别指出该书较为系统全面地介绍了高分子物理的基本理论及研究方法。表明高分子物理的基本理论及研究方法是高分子物理的基本内容。  « 高分子物理近代研究方法» 一书基于高分子物理基本原理和理论,介绍了如何测定和研究高聚物的近代研究方法。高分子物理近代研究方法很多,热分析是高分子物理近代研究方法之一。  2)高分子物理是一门理论和实验结合的精确科学  高分子物理是一门理论和实验结合的精确科学。为了有效地研究和开发高聚物新材料,常常运用高分子物理和近代研究方法(热分析)研究聚合物结构与性能和功能的关系。  3)高分子物理理论解析热分析曲线  热分析是高分子近代物理研究方法之一。热分析实验得到高聚物的热分析曲线,仅显示真理,却不证明真理。高分子物理是聚合物热分析的理论基础。只有用高分子物理理论对热分析曲线进行解析才能阐明高分子的性能与结构之间的关系。  用热分析方法研究新材料,通常步骤是:材料的热分析测试—用高分子物理理论解析热分析曲线—改进后的材料再进行热分析测试和热分析曲线解析。如此循环往复直至开发得到性能优异的新材料。当然,研发过程中辅以其它近代研究方法是必不可少的。  4)运用高分子物理和近代研究方法研发新材料  新材料的研发是建立在可靠的表征上。高分子物理在高分子科学中的地位体现在运用近代研究方法(热分析)表征高聚物的结构与性能,研究高分子结构与功能和性能之间的关系,在高分子物理指导下制备出预期的高分子材料。表征高聚物结构与性能和功能关系的近代研究方法有光谱、波谱、激光光散射、X射线、电子显微技术和热分析。热分析是表征高聚物结构、性能和功能的重要方法之一。运用高分子物理近代研究方法(热分析)研究高分子结构和性质的关系离不开高分子物理理论的指导。  由上表明:高分子物理的基本理论及研究方法是高分子物理的基本内容。高分子物理与聚合物热分析的关系是:热分析是高分子物理的近代研究方法,高分子物理是高聚物热分析的理论基础。运用高分子物理理论解析热分析曲线,关联转变与高聚物结构与性能的关系。高分子物理与热分析是相辅相佐的学科。许多学者进行两栖跨界研究。如中科院长春应化所刘振海长期从事高分子物理和热分析工作。编著了十八本热分析著作。他师从唐敖庆、冯之榴,在高分子物理方面也很有建树。1962年,在中科院长春应化所举办的全国高分子学术论文报告会上,发表的论文“聚丁二烯吸氧动力学”评为优秀论文 在上世纪60年代初,从苏联杂志“高分子化合物”翻译的译文,有关聚丁二烯结构与性能的文章发表在« 化学通报» 上,另外,还有多篇有关高分子物理的译文发表在四川主办的一份快报上。  在上世纪50年代末60年代初,常常是利用手头现有的设备亲自动手制备线膨胀仪、应力松弛仪等,为实现自动记录,迫切需要将变量转换成电信号,这其中的关键部件就是差动变压器。刘振海最先绕制了零点低、对称性好的差动变压器,这在当年的科学报上曾有过报道。北京航天航空大学过梅丽跨界高分子物理和热分析两个领域,既教授« 高分子物理» 课程,又从事热分析,特别是DMA的实验研究。她编著了« 高分子物理» 、« 高聚物与复合材料的动态力学热分析» 的著作。  南京大学胡文兵编著了« 高分子物理» ,参加翻译出版了斯特罗伯著的高分子物理教材。他的最新研究是高分子结晶和熔融行为的FlashDSC研究。在张建军教授承办的中国化学会第四届全国热分析动力学与热动力学学术会议上发表了FlashDSC研究聚丙烯的结晶和熔融行为的论文。陆立明:1985年就读华东理工大学获得聚合物材料工学硕士,后又前往德国柏林技术大学攻读高分子物理三年。在上海市合成树脂研究所工作期间,从事聚合物开发研究,运用热分析等近代研究方法表征高分子塑料合金的特性和特征。2009年,陆立明等人编译出版热分析应用手册丛书,这套丛书汇集梅特勒-托利多公司瑞士总部和梅特勒-托利多(中国)公司科技人员的智慧而潜心编著的。有热塑性聚合物、热固性树脂、弹性体、热重-逸出气体分析、食品和药物、无机物、化学品、认证等分册。其中塑性聚合物、热固性树脂、弹性体等分册通过大量实例深入地介绍和讨论了热分析在聚合物方面的应用,并用高分子物理解析聚合物的热分析曲线。  4.用高分子物理解析高聚物热分析曲线  论述« 热分析曲线解析» 的文章初见于2006年的热分析专业会议上。十多年过去了,热分析曲线解析的现状还是像« 热分析法与药物分析» 一书中所说的那样,至今还没有一本通用的专著可查考,也没有一套完整的解析方法可借鉴,各种物质的热分析表征散见于有关学术期刊与著作中。聚合物热分析曲线解析的现状亦如此。  下面说说用高分子物理解析高聚物热分析曲线的问题。在科学研究中,实验和解析是认知学中的两个元素。用高分子物理解析高聚物热分析曲线具有探索性和研讨性。热分析曲线是热变化时物理量变化的轨迹。解析热分析曲线就是循着物理量变化的轨迹逆向追溯热变化的物理-化学归属。用高分子物理理论解析高聚物的热分析曲线,探索结构与材料功能和性能之间的关系,是热分析曲线的价值体现。用实验的真实数据作图得到热分析曲线。物质变化的现象在热分析曲线上显现是对事物本质和规律反映的一种形象,是显性信息。显性信息显示真理,却不证明真理。简单地说出曲线的变化情况,即看图说话而缺乏深度分析,它是不能揭示变化规律的。唯有用高分子物理理论对高聚物的热分析曲线进行解析,曲线才具有价值。  用高分子物理理论对热分析曲线进行解析,进行分子运动-高聚物结构-性能与加工之间的关联 解析热分析曲线时,既要解析显性信息,还要解析隐性信息,如变化的规律性、与热变化同时发生的结构变化及蕴含在曲线内的曲线(如DMA曲线中隐藏的李萨如曲线),追问曲线的内涵,诠释曲线,揭示变化的本质和规律,对曲线进行深层次的探索和关联,这就是热分析曲线的解释学。用高分子物理理论解析热分析曲线完成了“存在→价值”的转换过程。热分析曲线是存在,当热分析曲线同你的研究(需要)发生联系时,曲线便产生了价值!愿你踏上解析热分析曲线的实践活动之旅,使热分析曲线由存在转变为价值的曲线。  为了要解析高聚物的热分析曲线,热分析工作者要通晓高分子物理,要像物理学家那样思考高分子物理问题。用高分子物理理论解析热分析曲线就是将高聚物的转变与高聚物结构-性能-加工进行关联的过程。关联是一种受经验、知识、理论支配的活动,不同的人由于其具备的经验、知识、理论的背景不同,关联的深度和宽度不尽相同。  下面列举一个用高分子物理解析典型非晶态聚合物的DMA曲线实例:高分子材料黏弹性是高分子物理研究的主要内容,通常选用动态热机械分析DMA来研究高分子材料黏弹性(动态模量和力学损耗)。典型非晶态聚合物的DMA曲线(温度谱)如图所示:典型非晶态聚合物的DMA曲线(温度谱)  由图可以看到,随温度升高,模量逐渐下降,并有若干段阶梯形转折,Tanδ在谱图上出现若干个突变的峰,模量跌落与Tanδ峰的温度范围基本对应。温度谱按模量和内耗峰可以分成几个区域,不同区域反映材料处于不同的分子运动状态。转折的区域称为转变,分主转变和次级转变。这些转变和较小的运动单元的运动状态有关,各种聚合物材料由于分子结构与聚集态结构不同,分子运动单元不同,因而各种转变所对应的温度不同。玻璃态与高弹态之间的转变为玻璃化转变,转变温度用Tg表示 高弹态与黏流态之间的转变为流动转变,转变温度用Tf表示。  玻璃化转变反映了聚合物中链段由冻结到自由运动的转变,这个转变称为主转变或α转变,这段模量急趋下降外,Tanδ急剧增大并出现极大值后再迅速下降。在玻璃态,虽然链段运动已被冻结,但是比链段小的运动单元(局部侧基、端基、极短的链节等)仍可能有一定程度的运动,并在一定的温度范围发生由冻结到相对自由的转变,所以在DMA温度谱的低温区,E’-T曲线上可能出现数个较小的台阶,同时在E”-T和Tanδ曲线上有数个较小的峰,这些转变称为次级转变,从高温到低温依次命名为β、γ、δ转变,对应的温度分别记为Tβ、Tγ、Tδ。每一种次级转变对应于哪一种运动单元,则随聚合物分子链的结构不同而不同,需根据具体情况进行分析。据文献报道,β转变常与杂链高分子中包含杂原子的部分(如聚碳酸脂主链上的-O-CO-0-、聚酰胺主链上的-CO-NH-、聚砜主链上的-SO2-)的局部运动,较大的侧基(如聚甲基丙烯酸甲酯上的侧酯基)的局部运动,主链上3个或4个以上亚甲基链的曲柄运动有关。γ转变往往与那些与主链相连体积较小的基团如α-甲基的局部内旋转有关。δ转变则与另一些侧基(如聚苯乙烯中的苯基、聚甲基丙烯酸甲酯中酯基内的甲基)的局部扭振运动有关。  当温度超过Tf时,非晶聚合物进入黏流态,储能模量和动态黏度急剧下降,Tanδ急剧上升,趋向于无穷大,熔体的动态黏度范围为10~106Pa.s。从DMA温度谱上得到的各种转变温度在聚合物材料的加工与使用中具有重要的实际意义:对非晶态热塑性塑料来说,Tg是它们的最高使用温度以及加工中模具温度的上限 Tf是它们以流动态加工成型(如注塑成型、挤出成型、吹塑成型等)时熔体稳定的下限 Tg~Tf是它们以高弹态成型(如真空吸塑成型)的温度范围。对于未硫化橡胶来说,Tf是它们与各种配合剂混合和加工成型的温度下限。此外,凡是具有强度较高或温度范围较宽的β转变的非晶态热塑性塑料,一般在Tβ~Tg的温度范围内能实现屈服冷拉,具有较好的冲击韧性,如聚碳酸脂、聚芳砜等。在Tβ以下,塑料变脆。因此,Tβ也是这类材料的韧-脆转变温度。另一方面,正是由于在Tβ~Tg温度范围内,高分子链段仍有一定程度的活动能力,所以能通过分子链段的重排而导致自由体积的进一步收缩,这正是所谓物理老化的本质。[4]  以上实例说明,动态力学热分析是研究材料黏弹性的重要手段,非晶态聚合物的玻璃化转变和次级转变准确地反映了聚合物分子运动的状态,每一特定的运动单元发生“冻结”?自由转变(α、β、γ、δ)时,均会在动态力学热分析的温度谱和频率谱上出现一个模量突变的台阶和内耗峰。高分子物理从分子运动的观点出发解析非晶态聚合物的DMA曲线,揭示材料结构与材料性能之间的内在联系及基本规律。  二.高分子物理著作  五十年代未,高分子物理学基本形成。自六十年代以来,高分子研究重点转移到高分子物理方面,并出版了很多高分子物理的著作。何平笙所著的« 新编高聚物的结构与性能» 书未的附录详细地介绍了有关高分子物理的教学参考书。本文特将此附录列于文后,供参考。并把其中几本高分子物理的著作做一简单的介绍。  1.胡文兵« 高分子物理» 英文版Amolecularviewonthefundamentalissuesinpolymerphysicsisprovidedwithanaimatstudentsinchemistry,chemicalengineering,condensedmatterphysicsandmaterialsciencecourses.Anupdatedtranslationbytheauthor,arenownedChinesechemist,ithasbeenproventobeaneffectivesourceoflearningformanyyears.Up-to-datedevelopmentsarereflectedthroughouttheworkinthisconcisepresentationofthetopic.Theauthoraimsatpresentingthesubjectinanefficientmanner,whichmakesthisparticularlysuitableforteachingpolymerphysicsinsettingswheretimeislimited,withouthavingtosacrificetheextensivescopethatthistopicdemands.  该书受欢迎程度继续位列2017斯普林格出版社电子图书的前四分之一。胡文兵教授的另一本高分子物理译作是:  StroblG.1997.ThePhysicsofPolymers.2ndEd.Berlin:Springer  这是一本近十年来有影响的高分子物理教材,Strobl本人多次来国内讲授有关他提出的高聚物结晶的理论,中文译本是斯特罗伯著,胡文兵,蒋世春,门永锋,王笃金译《高分子物理学》,北京:科学出版社,2009。  胡文兵教授最新研究:高分子结晶和熔融行为的FlashDSC研究。  2.何平笙编著« 新编高聚物的结构与性能» 科学出版社2009前言  自中国科学技术大学1958年成立高分子化学和高分子物理系以来,由已故的钱人元院士开设的" 高聚物结构与性能" 课程已50余年了,根据钱先生讲课笔记整理出版的《高聚物的结构与性能》一书(科学出版引,1981年第二版)被许多高校选做教材。近10年来、编者不但在授课时添加了高分子物理的新成果、新发现,更重要的是对课程进行了深入的教学研究,加深了对已有体系、知识点的全新理解,深受学生好评,因而在2005年获得安徽省教学成果奖一等奖和国家级教学成果奖二等奖,“高聚物结构与性能”也被评为国家级精品课程。本书就是在上述教学研究的基础上新编而成的。  高分子科学由高分子化学、高分子物理和高分子加工三大部分组成。高分子化学主要是研究如何从小分子单体合成(聚合)得到高分子化合物——高聚物,高分子加工则是研究如何把高聚物制成实用的制品,而高分子物理则包含有以高聚为对象的全部物理内容。  作为大学本科生的课程,“高分子物理”实在难以承担这个“包含有以高聚物为对象的全部物理内容”的重任。这一方面是由于“高分子物理”目前还达不到通常物理学各分支的成熟程度,另一方面是由于仍隶属于化学大框架下的高分子专业学生也难以接受更多、更深的物理和数学知识。事实上,“高分子物理”目前还主要是讲述高聚物材料的结构与性能,以及它们之间的相互关系,因此,我们仍然采用“新编高聚物的结构与性能”作为书名。依据相对分子质量的大小,高分子化合物大致可分为低聚物和高聚物,但作为材料来使用的大多是相对分子质量很高的高聚物。低聚物主要用作黏合剂、高能燃料等,不包含在本书的范围之内。因此,全书仍然使用“高聚物”这个名称。  本课程的基本任务就是探求高聚物的结构与性能,揭示结构与性能之间的内在联系及其基本规律,以期对高聚物材料的合成、加工、测试、选材和开发提供理论依据。编者认为,高聚物结构与性能的关系有三个层次,即通过分子运动联系“分子结构与材料性能”关系、通过产品设计联系“凝聚态结构与制品性能”关系和通过凝聚态物理知识联系“电子态结构与材料功能”关系。由于历史的原因,无论是国内教材,还是国外教材大都只涉及上述的第一个结构层次,内容基本上只是“分子结构与材料性能”的关系,要详细理解第二和第三个结构层次,需要开设正规的“流变学”和“凝聚态物理”的专门课程,尽管这已经超出了本书的范围,但上述高聚物结构与性能关系三个层次的理念,已牢牢树立在编者心中,并力求在本书编写中体现出来。  值得指出的是,我国高分子物理学家以高分子链单元间的相互作用,特别是从链单元间的相互吸引在凝聚态形成过程中的作用这一国际上独创的观点出发,纵观高聚物的全部相态——高聚物溶液、非晶态、晶态和液晶态中存在的问题,开展了深入系统的研究工作、取得了若干国际前沿性的研究成果。在高分子物理领域提出了一些新概念,形成了有我国特色的高分子物理学派,还独创了全新的电磁振动塑化挤出加工方法等,编者都尽量在本书中反映这些成果。此外,本书还增添了高聚物宏观单晶体、可能的二维橡胶态等新内容,指出了不同结晶方式(先聚合、后结晶,还是先结晶、后聚合)会得到完全不同的高聚物晶体、重新考虑了Williams-Landel-Ferry(WLF)方程的意义,认为它是高聚物特有分子运动所服从的特殊温度依赖关系等,全面介绍了编者对已有体系和知识点的新理解。  如前辈所言,编书如造园,取他山之石,引他池之水,但一山一水如何排布却彰显造园者的构思。书中引用了众多国内外公开出版的教材和专著中的论述或研究成果,谨向所有作者致以深切的谢意,不及面询允肯,敬请海涵。感谢朱平平教授、杨海洋副教授对书稿所提的宝贵意见,感谢李春娥高工为本书打录和校订文稿 本书内容在中国科学技术大学高分子科学与工程系连年讲授,也在中国科学院长春应用化学研究所讲授过7次,校、所多届学生对课程内容和安排都提过不少好的建议,在此一并表示感谢。书后附录中列出了有关高分子物理详细的教材和参考书目录,以供读者查询和进一步阅读。附录中还列出了编者近十年来公开发表的三十余篇有关高分子物理教学研究论文的目录,读者可参考阅读并分享编者教学研究的心得。由于编者水平有限,书中难免存在缺漏和不足之处,敬请读者和专家不吝批评、斧正。  何平笙2009年4月内容简介  本书是国家级精品课程“高聚物的结构与性能”的新编教材,是2005年“全面提升高分子物理重点课程的教学质量”国家级教学成果奖二等奖内容的全面体现。全书系统讲述高聚物的近程、远程和凝聚态结构,以及高聚物的力学、电学、光学、磁学、热学、流变和溶液性能,通过分子运动揭示“分子结构与材料性能”之间的内在联系及基本规律,更进一步提出包括“凝聚态结构与制品性能”关系和“电子态结构与材料功能”关系在内的三个层次的结构与性能关系理念,以期对高聚物材料的合成、加工、测试、选材、使用和开发提供理论依据。全书还介绍了我国学者的研究成果及编者多年教学研究的心得和对已有体系、知识点的新理解、新认识。  本书可作为高等学校理科化学类、化工、轻工纺织、塑料、纤维、橡胶、复合材料等工科材料类本科学生的教材,也可作为有关专业研究生的参考教材、对从事高聚物材料工作的有关工程技术人员和科研人员也是一本有用的参考书。  3.何曼君张红东陈维孝等.« 高分子物理» 第三版复旦大学出版社2007  是国内有代表性的高分子物理教材,为多所高校所选用。序  本书自1983年出版以来,是国内高分子物理教学的首选用书,虽在1990年作了修订,到现在也达十多年了。为了反映高分子科学的飞速发展,需要更新。编者们结合多年来的教学经验,参考了大量的国内外新教材和有关文献,删繁就简,推陈出新,将本书重新编写,使之更能符合当前教学和科研的需要。相信本书会得到广大教师和学生们的欢迎。当然,还会有不尽完善的地方,欢迎使用者对编者提出宝贵意见与建议。  于同隐  2006年10月1990年修订版序  高分子科学的发展,以20世纪30年代H.Staudinger建立高分子学说为开端。此后高分子的化学,特别是高分子的合成方面,有了飞跃的发展,现代的大型高分子合成材料工业,大都肇始于这一时期的研究。其中最突出的成就,是W.H.Carothers的缩合聚合,K.Ziegler和G.Natta的定向聚合,对理论和生产都是巨大的贡献。与此同时,高分子物理化学也有相应的发展,主要是研究高分子的溶液,为测定高分子的分子量莫定了基础。  60年代以来,研究重点转移到高分子物理方面,逐渐阐明了高分子结构和性质的关系,为高分子的理论和实际应用建立了新的桥梁。这一时期的著名代表是P.J.Flory,他对高分子物理化学和高分子物理都作出了很多贡献。Staudinger,Ziegler,Natta和Flory都因此获得诺贝尔化学奖金。  本书的内容主要从分子运动的观点,来阐明高分子的结构和性能,着重在力学性质和电学性质方面,同时也兼顾到物理化学和近代的研究方法,可以供大专学校作为教材,也可供有关的高分子工作者参考。  本书由何曼君、陈维孝、董西侠编写,于同隐校订。最初以油印讲义的形式,在复旦大学试用,得到南京大学、四川大学、中国科技大学、交通大学、兰州大学、厦门大学、黑龙江大学、南开大学、华南工学院等单位有关同志的鼓励,特别是顾振军、王源身、史观一等同志提出宝贵意见,在此表示衷心的感谢。复旦大学高分子教研室的许多同志和复旦大学出版社协助本书的出版,也一并表示感谢。  由于高分子物理正处在蓬勃发展的阶段,本书内容有很多值得商讨的地方 加上编者的水平和技术上的原因,本书还存在很多错误,望读者不吝指正。  于同隐第三版前言  本书是为高等学校理科高分子专业高年级本科生编写的,也适用于低年级研究生和其他与高分子相关专业的学生。本书的内容涉及面较宽,阐述深入浅出,便于自学,还附有习题和详细的参考资料,也可供广大科技工作者阅读和参考。  建国初期,我国高分子方面的工作起步较晚,由于钱人元等老一辈科学家纷纷回国,在国内开创了高分子的教学和科研事业,在他们的带领下,少数高校中建立了课题小组或科研组,开始培养高分子方面的人才,并为教育事业打下扎实的基础,一批批的优秀人才脱颖而出,其中有些人已晋升为院士。  随着时代的前进、科技的进步,尤其是改革开放以来、高等教育突飞猛进,大部分商校都设有高分子专业,有的已发展成为一个系甚至一个学院,并设立了很多相关的专业,它们大都把高分子物理作为必修的课程。1983年我和陈维孝、董西侠合编的《高分子物理》一书编印出版,并在1990年作了修订,该书在国内被广泛采用,当时满足了广大师生的需求,得到了好评。此书曾获得国家教委颁发的优秀教材奖。然而,高分子物理这门学科近年来有较大的进展,理论在发展,观念在更新,国内外新的专著也很多。自从我翻阅了2005年全国高分子学术年会的论文后,更加感觉到,我们需要将这些新的内容介绍给读者。为此,本人特邀请陈维孝和董西侠两位抽出时间来和我一起在1990版教材的基础上,重新编写此书,同时还邀请了复旦大学在第一线从事教学工作的张红东教授参加本书的编写。  首先,在本书内加入“第一章概论”。使初学者对高分子物理有一初步的认识,并将相对分子质量及其分布的内容也写入这一章内 在第二章中引入了Kuhn链段的概念,并在高分子构象中介绍了末端距的概率分布函数的另一种推导方法 在第三章的高分子溶液性质中增加了deGennes的标度概念、θ温度以下链的塌陷,以及溶液浓度和温度对高分子链尺寸的影响等 在新增加的第四章高分子多组分体系中,介绍共混聚合物和嵌段共聚物的相分离和界面 关于高分子的凝聚态分设为非晶态和晶态两章,在非晶态章中删去了与高分子成型加工课程中有重复的部分,并在其黏流态中介绍了高分子链运动的蛇行理论 原先聚合物的力学性质内容较多,现也分设为第七、第八两章,在第八章中增加了高弹性的分子理论 在第九章中除了介绍聚合物的电学性能外,还介绍了聚合物的光学性质、透气性以及高分子的表面和界面等 在本书的最后一章中,除原先介绍的近代研究方法和有关的一些仪器、它们的原理和应用实例外,还介绍了各种仪器的近代发展情况,如测相对分子质量及其分布的绝对方法——飞行时间质谱,小角中子散射、激光共聚焦显微镜、原子力显微镜等。  本书的分工是:第一章由董西侠编写,本人修改 第二章由张红东编写,本人修改 第三、四、九、十章由我和张红东合编 第五、六、七、八章由陈维孝编写,本人修改 全书由我主审并定稿。  在编写此书时,我总是怀念起老一辈科学家们对我的教导和指点,谨以此书表示对他们的敬意和怀念。在编写过程中还得到了不少专家和学生们的支持和帮助,在此表示感谢。  何曼君  2006平10月1日内容提要  本书于1983年首次出版,1990年出版了修订版,曾获得过国家教委颁发的“优秀教材奖”等奖项、二十多年来一直是国内高分子物理教学的首选用书。为了反映高分子科学的飞速发展,编者们结合了多年的教学与科研经验,参考了大量的国内外新教材和有关文献,删繁就简,推陈出新、重新编写了本书,使之更能符合当前教学和科研的需要。  全书较为系统全面地介绍了高分子物理的基本理论及研究方法。共分十章,包括高分子的链结构,高分子的溶液性质,高分子的聚集态结构,高分子多组分体系,聚合物的结晶态、非晶态,聚合物的力学、电学、光学等性质,以及聚合物的分析与研究方法等等。从分子运动的观点出发,阐述高分子的性能与结构之间的关系。  本书内容涉及面较宽,阐述深入浅出,还附有详细的参考资料,适合作为高等学校高分子专业的教材某些较深入的内容可供教师参考和学有余力的学生阅读,也可供广大科技工作者和研究人员参考。  4.过梅丽赵得禄主编« 高分子物理» 北京航空航天大学2005序  处于知识爆炸时代,信息如原子裂变一样快速增长:处于改革年代,人们有更多的选择与机会。  与20世纪50年代我国高分子物理专业初创时期缺乏教材的情况不同,目前仅国内出版的《高分子物理》教材就已有多个版本。不论深浅,全都包括高聚物结构、分子运动及性能三大部分。但作为业基础课教材,各编者又自然而然地按所在专业后续课程的需要选择了具体内容,各具特色。  自我国改革开放以来,北京航空航天大学的高分子物理课程经历了较大的变更,1987年以前,与大多数工科院校一样,该课程定位为高分子材料专业的专业基础课,课堂教学约80学时,自1987年起,该校材料科学工程系在拓宽专业面的思想指导下,率先开设了全系公共专业基础课程——材料科学与工程导论。它以金属物理和高分子物理的部分内容为主,综述了金属、陶瓷和高分子材料在结构和性能上的共性与特性。与此同时,相应削减了高分子材料专业中高分子物理的教学时数。此后,随着教改的深人,不断调整教学计划。在2000年制定的教学计划中,高分子物理(54学时)与高分子化学、金属物理、电化学原理及近代测试技术等课程一起,被定位为材料科学与工程大类专业的公共基础课。  本教材就是在上述背景下,根据高分子物理在大类专业中的地位、作用和具体要求编写的。与国内大多数高分子物理教材相比,本教材的主要特点如下:  普及与提高相结合。全书由基础部分和提高部分(带*号)两大模块组成。在基础部分,主要通过与金属、陶瓷材料的对比,阐明高聚物在结构、分子运动和性能方面的基本特点、内在联系及基本研究方法 在提高部分,适度引进了理论推导、研究新方法与最新进展,为有兴趣深入高分子材料领域的学生提供必要的基础知识。  紧密结合高分子材料及成型加工的实践与应用,重点放在高聚物的凝聚态结构、力学状态、高弹性、粘弹性和熔体流变性方面 除结合热塑性高分子材料以外、较多地涉及热固性树脂体系与复合材料 除结合通用高分子材料以外,较多地涉及航空航天用高分子材料 此外,适当涉及功能材料的功能性。适当结合高分子科学发展史引入概念。简化已在其他课程中涉及的基础知识和基本研究方法,如晶体结构与研究方法、相图分析、波谱分析原理与方法及一般力学性能等。  本书所涉及量的名称和单位符合国标规定,但有下列例外:  聚合物的分子量:按照国标,应该用相对分子质量替换传统名称分子量。但由于聚合物的相对分子质量范围可以很宽,不像小分子物质那样有一个确定的值 对于一个具体的聚合物样品,其相对分子质量又具有多分散性,须用各种统计平均值表示,如数均相对分子质量、重均相对分子质量等 在聚合物-性能关系中,还涉及临界相对分子质量等。为简明起见,本书仍沿用分子量这一名称。  高分子溶液浓度按照国标,应该用溶液中溶质的摩尔分数表示。但在未知聚合物样品确切的平均分子量之前,无法从溶质质量计算其摩尔分数,因此,通常多以溶液中溶质的质量百分数表示浓度。本书也采用这一习惯表示法。  温度按照国标,T代表热力学温度,单位为K。但在本书引用的插图中,有相当一部分都以摄氏度为坐标,如果改为热力学温度,可能会改变曲线形状,为读者参考原文带来不便 如果用t代表摄氏温度,则又有悖于高分子物理中以T x表示各种特征温度的规则。为此,本书同时采用了T/K和T/℃这两种表示温度的方法。  本教材第2、9章由过梅丽和赵得禄(中国科学院化学研究所高分子物理和化学国家重点实验室研究员)合作编写。其他章由过梅丽编写。  在本教材编写过程中,还得到北京化工大学高分子材料系华幼卿教授的热情帮助,在此表示诚挚感谢。同时也非常感谢北京航空航天大学材料科学与工程学院高分子材料系杨继萍副教授在教材整理中的细致工作和良好建议。  编者希望本教材更适用于材料科学和工程大类专业。效果如何,尚待实践检验。诚请老前辈、同仁和学生们提出批评和建议。  编者  2005年3月14日内容简介  本书系统地介绍高分子物理的基本理论,即高聚物的结构、分子运动与性能和行为之间的关系,突出高聚物区别于金属、陶瓷和其他低分子物质的特点。内容涉及力、热、电及光学等性能,但从航空航天材料科学与工程的需要出发,以力学性能为主,兼顾其他性能。本书由基础和提高(带*号)两大部分构成,以适应不同层次专业对高分子物理的教学要求。基础部分重在基本概念、基本理论及基本研究方法 提高部分涉及一些理论推导。  本书可作材料科学和工程类专业的教材,也可供高分子材料科学与工程技术人员参考。  5.过梅丽« 高聚物与复合材料的动态力学热分析» 化工出版社2002,是一本很好的有关高聚物东台力学测试的著作。前言  著名高分子物理学家A.Tobolsky曾说过:“如果对一种聚合物样品只允许你做一次实验,那么所做的选择应该是一个固体试样在宽阔温度范围内的动态力学试验(Ifyouareallowedtorunonlyonetestonapolymersample,thechoiceshouldbeadynamicmechanicaltestofasolidsampleoverawidetemperaturerange)”。  材料的动态力学行为是指材料在振动条件下,即在交变应力(或交变应变)作用下做出的响应。它不同于材料的静态力学行为,后者是指材料在恒定或单调递增应力(或应变)作用下的行为。材料的疲劳行为也属动态力学行为之一,但疲劳测试通常是在较高的应力水平(例如在材料断裂强度的5O%以上)下进行的,而本书所述的动态力学分析则一般在很低的应力水平(远低于材料的屈服强度)下进行,所得到的基本性能参数是材料的动态刚度与阻尼。  测定材料在一定温度范围内动态力学性能的变化就是所谓的动态力学热分析(dynamicmechanicalthermalanalysis}简称DM-TA)。动态力学热分析是研究材料粘弹性的重要手段。在20世纪50~60年代,由于缺乏商品仪器,大多数实验室都用自行研制的设备进行研究。70年代以来,商品仪器一一问世,迅速更新换代。仪器的功能、控制与测试的精度、数据采集与处理的速度不断提高,在材料研究特别在高聚物与复合材料的研究中应用越来越广泛。  推动动态力学热分析技术迅速发展的根本动力无疑是该项技术在材料科学与工程中的重要意义。具体地说,主要表现在以下几方面。  ①于任何材料,不论结构材料或功能材料,力学性能总是最基本的性能。对于在振动条件下使用的材料或制品,它们的动态力学性能比静态力学性能更能反映实际使用条件下的性能。  ②聚物及其复合材料是典型的粘弹性材料。动态力学试验能同时提供材料的弹性与粘性性能。  ③态力学热分析通常只需要用很小的试样就能在宽阔的温度和/或频率范围内进行连续测试,因而可以在较短的时间内获得材料的刚度与阻尼随温度、频率和/或时间的变化。这些信息对检验原材料的质量、确定材料的加工条件与使用条件、评价材料或构件的减振特性等都具有重要的实用价值。  ④态力学热分析在测定高分子材料的玻璃化转变和次级转变方面,灵敏度比传统的热分析技术如DTA、DSC之类的高得多,因而在评价材料的耐热性与耐寒性、共混高聚物的相容性与混溶性、树脂-固化剂体系的固化过程、复合材料中的界面特性和高分子的运动机理等方面具有非常重要的实用与理论意义。  目前,先进的动态力学热分析仪已拓展到能兼测材料的静态粘弹性,如蠕变、应力松弛等。  但是,与静态力学测试技术和传统的热分析技术相比,动态力学热分析技术的发展历史毕竟较短,因而人们对它的原理与应用潜力还认识不足。虽然在国内已出版过一些有关动态力学分析的译著,但一方面,其中所涉及的数学与物理理论较深,另一方面,所涉及的仪器已明显跟不上动态力学热分析仪蓬勃发展的趋势。而在有关热分析的著作中,则对动态力学分析技术的介绍一般都相对单薄。  笔者所在的北京航空航天大学高分子物理实验室,于20世纪70年代学习、仿制并改进了振簧仪和悬线式动态粘弾谱仪,从此开始了动态力学热分析技术的应用研究。80年代引进了杜邦公司的DuPontDMA982/1090B,在多项研究工作的基础上,汇集了数十幅DMA温度谱,纳入《高分子材料热分析曲线集》,由科学出版社于1990年正式出版。同时,也开展了超声传播法测定各向异性复合材料动态刚度的研究。但是上述动态力学试验法均主要适用于刚性材料,且不便于测定材料的动态力学性能频率谱。为适应品种繁多、性能范围宽阔、试样形式多样和应用目标各异的高分子材料与复合材料的研究,本实验室于90年代引进了RheometricScientificDMTAⅣ,并在研究工作的基础上,编制了中华人民共和国航空工业标准《塑料与复合材料动态力学性能的强迫非共振型试验方法》(HB7655~1999)。在近30年的实践中,笔者对动态力学热分析技术及其应用有了一些体会,也获得了一些经验,遂萌生了总结一下的想法,以便与同行交流共勉。  动态力学热分析是一门理论性和应用性都很强的科学与技术。但对大多数同行而言,更侧重于应用。因此,本书撰写的指导思想是实用。目的是阐明几个普遍关注的问题。  动态力学热分析能提供哪些信息?  这些信息的物理意义是什么?  如何处理与应用这些信息了?  为此在撰文中坚持下列几项原则。避免过于深奥的理论与数学推导重点阐明物理概念。  在全面阐述自由衰减振动法、强迫共振法、强迫非共振法和声波传播法的基础上,介绍目前应用越来越广泛的强迫非共振法。紧密结合最新的ISO和ASTM标准讨论试验方法。结合典型实例(但无意作文献综述〉阐明动态力学热分析的应用性突出在新材料与新工艺中的应用。结合实践讨论动态力学热分析数据的相对性与绝对性。提供较多图谱,提高直观性与可读性。但不同于手册,不求全。原理部分,给出示意图谱实例部分,给出实测图谱。  但是,囿于本实验室的仪器类型有限,笔者只可能主要围绕所使用过的仪器进行讨论,难免有挂一漏万之嫌。所幸者,目前国际上许多先进的商品动态力学热分析仪,尤其是强迫非共振仪,尽管在结构、外形上各具特色,规范、明细上略有差异,但它们的基本原理与功能正日趋一致。因此,相信“解剖麻雀”的哲学思想定会被同行所理解与接受。  在本实验室动态力学热分析技术的建设与发展中,刘士昕先生曾做出重要贡献,虽然他目前不再从事该项工作。在本书撰写过程中,得到了他的热忱支持,并获得他的同意,引用我们曾经的合作成果,在此谨表示诚挚的感谢。  在动态力学热分析技术的应用与推广中,笔者的研究生孙永明、刘贵春、阳芳、王志、范欣愉、汪少敏和董伟等做了许多实验工作,笔者深切地体会到师生合作、教学相长的愉悦。  在本书撰写过程中,美国RheometricScientific有限公司及其中国总代理北京瑞特恩科技公司在提供资料、联络同行专家、养护设备等方面都给予了大力支持,在此一并感谢。  在本书图谱绘制过程中,笔者的丈夫,陈寿祜先生,以惊人的毅力和耐心,帮助笔者完成了细致繁琐的工作,笔者的感激之情难于言表。鉴于笔者水平有限,书中难免有误,诚请读者批评指正。  内容提要  本书分三角部分。介绍了动态力学热分析的基本原理、试验方法及其在高分子材料、工艺研究中的应用。在原理部分,介绍了高分子材料的粘弹性在动态力学行为上的反映、主要参数的物理意义及时-温叠加原理。在式验方法中,结合ISO、ASTM和GB试验标准,全面介绍了自由衰减振动法、强迫共振法、强迫非共振法和超声传播法的仪器与计算分析,并以强迫非共振法为重点,详细讨论了形变模式与试验模式的选择原则、可能获得的信息及影响试验结果的因素。在应用部分,列举了大量研究实例,说明动态力学热分析技术在塑料、橡胶、纤维、复合材料的评价、设计和工艺研究中的实用性,还给出了数十幅典型材料(包括部分金属材料在内)的典型动态力学性能温度谱,或频率谱,或时间谱。本书可供大专院校的学生和研究测试人员参考。  6.朱诚身« 聚合物结构分析» 科学出版社2010该书用101页的篇幅介绍了热分析方法。第一版序  聚合物是重要的结构与功能材料。随着当代科学的发展,合成高分子材料在工农业生产、国防建设和日常生活的各个领域发挥着日益重要的作用,21世纪将成为高分子的世纪。以前那种仅停留在研究合成方法、测试其性能、改善加工技术、开发新用途的模式已远不能适应现代科学技术对聚合物材料发展的需要,而代之以通过研究合成反应与结构、结构与性能、性能与加工之间的各种关系,得出大量实验数据,从而找出内在规律,进而按照事先指定的性能进行材料设计,并提出所需的合成方法与加工条件。在此研究循环中,对聚合物结构分析提出了越来越高的要求,从而使之成为高分子科学各个领域中必不可少的研究手段。因此聚合物结构分析已成为高分子材料科学与工程学科的重要组成部分,熟练掌握高聚物结构分析技术不仅对学术研究至为重要,也将为生产实际提供必要的技术保证。  由华夏英才基金资助、郑州大学朱诚身教授主编的《聚合物结构分析》一书,正是为从事高分子材料科学与工程研究的学者、教师、学生、工程技术人员提供的一本有关聚合物分析方面的专著与参考书。本书主要内容是关于现代仪器分析技术在聚合物结构分析中的应用,以及结构分析中所涉及的理论、思维方式、实验方法等。有关材料来源于最新出版的学术专著、学术期刊中的有关论文,以及作者多年从事该领域研究的成果与经验。  与目前已出版的国内外同类著作相比,本书具有以下特点:①内容全面。本书是目前已出版著作中内容相对最完备,介绍方法最多的著作 ②操作与思维方法并重。本书一改同类著作中仅介绍方法原理与操作方法的传统,通过对各种方法发展历史、现状与展望,全面介绍其发展历程与趋势,在方法介绍的同时使读者学到系统的思维方法,使之从发展的角度掌握各种研究方法,指出了创新之路 ③应用性强。通过对各种应用实例,特别是作者亲自研究体会的介绍,使读者能更容易掌握各种结构分析方法的应用。因此本书是一本内容完整,体例新颖,富有特色的学术著作。  相信本书的出版,将对我国高分子材料科学与工程学科的发展做出积极的贡献。  程镕时  中国科学院院士第一版前言  随着高分子材料科学与工程的迅猛发展,对高聚物结构的认识愈加深人和全面的同时,对聚合物结构分析提出了更为繁重的任务,掌握现代分析技术,测定高分子各层次的结构,探讨结构与性能之间的关系,已成为每位从事高分子科学与工程工作、研究与学习的人士必备的基本功。本书正是为从事高分子物理、高分子化学、高分子材料、高分子合成、高分子加工等领域的学者、教师、学生、工程技术人员等提供的一本有关聚合物结构分析方面的专著与参考书。  本书是在作者多年来从事高分子科学研究,并吸取该领域最新研究成果的基础上集体完成的。其中第一章绪论由朱诚身执笔 第二章振动光谱与电子光谱由王红英、孙宏执笔 第三章核磁共振由孙宏、王红英执笔 第四章热分析由朱诚身、任志勇、何素芹执笔 第五章动态热力分析与介电分析由何索芹、朱诚身执笔 第六章气相色谱与凝胶色谱由汤克勇执笔 第七章裂解色谱与色质联用由汤克勇执笔 第八章透射电镜与扫描电镜由何家芹、朱诚身执笔 第九章广角X射线衍射和小角X射线散射由毛陆原、李铁生执笔 第十章液态与固态激光光散射由李铁生、毛陆原执笔。全书由朱诚身统稿。  本书的出版得到了华夏英才基金的资助,以及北京化工大学金日光教授、四川大学吴大诚教授的热情推荐。在此表示衷心的感谢。在编辑过程中,本书责任编辑、科学出版社杨震先生给予多方指导,杨向萍女士在立项过程中给予热情帮助 在撰写过程中郑州大学材料工程学院王经武教授、曹少魁教授对本书内容的确定提供了宝贵意见!郑州大学材料学专业硕士生陈红、张泉秋、刘京龙、历留柱在文字打印和插图绘制等方面作了许多具体工作,在此一并表示衷心地感谢。  特别要感谢中国科学院院士程镕时先生,百忙中为本书写序,给予热情推介。最后还要感谢作者的家人,在事业与写作方面给予的理解与支持。  由于作者学识、经验方面的局限,和学科方面的飞速发展,本书内容与行文方面难免存在欠妥之处,敬请读者不吝赐教。  朱诚身第二版前言  本书自2004年出版以来,受到读者的欢迎与支持,很快被第二次印刷、被许多学校选做教材和考研参考书,并在2007年获得河南省科技进步三等奖。由于近年来高分子科学的飞速发展,聚合物结构分析方面的研究对象日益增多,深度与广度越来越大,研究方法与手段日新月异,因此在本书库存几乎告罄之际,责任编辑杨震先生建议作者修订再版,就有了本书,即《聚合物结构分析》的第二版。  参加第一版撰写的作者,除王红英不幸英年早逝,任志勇、孙红因其他工作没有参加编写外,其余都参加了修订 刘文涛、申小清、郑学晶、周映霞、朱路也参加了修订工作。  与第一版相比,第二版主要删除了每种研究方法中一些较老、目前已不采用的研究内容与制样手段,补充了最新的研究成果和每种研究方法的最新发展趋势。每章参考文献删除了一些较早文献,补充了最新研究文献。  修订较大的章节有:  第四章热分析。删除了部分由仪器本身误差造成的影响,增加了近年来受关注的操作条件影响因素 增加了若干近年来出现的新型仪器,以及新近出现的各种仪器之间的联用技术。  第八章考虑到涉及的各种分析方法,将题目由。“透射电镜与扫描电镜”改为“显微分析” 删除了透射电镜制样技术,增加了电子能谱和扫描隧道显微镜的内容。  第十章在第一版中的体例与其他章有些不一致,第二版中第九、十两章作了较大的调整:第九章题目由“广角X射线衍射和小角X射线散射”改为“广角X射线衍射” 原来小角X射线散射的内容调到第十章,该章题目由“液态与固态激光光散射”改为“小角激光散射和小角X射线散射”。  全书由朱诚身策划,其中第一章绪论由朱诚身执笔 第二章振动光谱与电子光谱由刘文涛、申小清、周映霞执笔 第三章核磁共振与顺磁共振由毛陆原、申小清、郑学晶执笔 第四章热分析由申小清、刘文涛、朱诚身执笔 第五章动态热机械分析与介电分析由何素芹、申小清、刘文涛执笔 第六章气相色谱与凝胶色谱由汤克勇、郑学晶、朱诚身执笔 第七章裂解色谱与色质联用由郑学晶、汤克勇、周映霞执笔 第八章显微分析由何素芹、刘文涛、朱诚身执笔 第九章广角X射线衍射由毛陆原、朱路、李铁生执笔 第十章小角激光散射和小角X射线散射由李铁生、朱路、毛陆原执笔,全书由朱诚身统稿。  本书责任编辑科学出版社杨霞、周强先生在修订过程中给予多方指导,在此表示衷心地感谢。  鉴于学科方面的发展之迷,而作者见闻之携、本书桀误之处势所难免,尚请读者不吝赐教。  朱诚身  2009年7月16日内容简介  本书系统介绍了现代仪器分析技术在高聚物结构分析中的应用以及结构分析中所涉及的理论、思维方式、实验方法等。内容包括:振动光谱、电子光谱、核磁共振、顺磁共振、热分析、动态热机械分析、动态介电分析、气相色谱、凝胶色谱、裂解色谱、色质联用、显微分析、广角X射线衍射、小角激光散射、小角X射线散射等方法的基本原理、仪器结构、发展历史、发展趋势,在聚合物结构分析中的应用实例及解析方法等。  本书可供高分子科学与工程专业本科生、硕士生、博士生以及从事有关高分子物理、高分子化学、高分子材料合成与加工研究和生产方面的专家、学者和工程技术人员参考。  7.现代高分子物理学(上、下册)殷敬华莫志深主编科学出版社2001内容简介:  本书为中国科学院研究生教学丛书之一。本书全面介绍高分子物理的主要发展领域和现代高分子物理的主要研究方法和手段。全书共二十六章,分上、下两册出版,上册,主要介绍高分子物理的主要研究领域包括高分子链结构和聚集态结构、高分子的形态学、晶体结构和液晶态、高分子杂化材料、导电高分子和生物降解高分子结构特点和应用、高聚物共混体系的界面和增容及统计热力学、高聚物的物理和化学改性等。下册主要介绍现代高分子物理的主要研究方法和手段,包括原子力显微镜、X射线衍射、质谱学基础、电子显微镜、热分析、表面能谱、顺磁共振、电子自旋共振波谱、振动光谱和光学显微镜等的基本原理及其在高聚物中的应用。各章既有基础理论、基本原理深入浅出的介绍,也有翔实的应用实例。本书可作为高等院校和研究院所攻读高分子科学硕士和博士学位研究生的教学用书,也可供从事高分子科学研究和高分子材料生产的研究人员、工程技术人员参考。  8.张俐娜薛奇莫志深金熹高编著« 高分子物理的近代研究方法» 武汉大学出版社2003该书的第五章高聚物热分析和热-力分析,详细介绍了热分析在高聚物研究中的应用。DSC在高聚物研究中的应用研究结构及动态变化表征玻璃化转变和熔融行为分析多组分高聚物体系的组成研究高聚物链缠结及化学交联研究高聚物的结晶行为表征高聚物的微相结构研究高聚物共混相溶性反映共混高聚物中组分间的相互作用研究热历史和处理条件对高聚物结构的影响DMA动态力学分析在高聚物研究中的应用评价高聚物材料的使用性能研究材料结构与性能的关系表征高聚物材料的微相结构研究高聚物的相互作用表征高聚物的共混相容性研究高聚物的溶液-凝胶转变行为。  序言  高分子化学是一门迅速发展起来的基础和应用科学,并且高聚物材料及产品的迅速增长已经对世界经济产生了巨大影响。进入21世纪后高分子科学与技术将发生更大变革和突破,而且对人类生存、健康与发展起更大作用。为适应高分子科学的发展,要求在该领域的工作者对高分子物理的理论、实验方法和原理以及实际应用有足够的了解和认识。尤其对于很多高分子科学工作者而言,他们需要知道运用哪些高分子物理近代仪器和方法以及如何得到可靠的数据和信息采指导他们的科研。  同时,为了培养一大批从事高分子科学与技术的高级科技人才,必须全面提高研究生培养的质量。研究生教材建设是提高研究生培养质量的重要工作之一,为此武汉大学研究生院组织了国内一批在高分子物理前沿工作而且又具有丰富教学经验的教授和科学家以及该校青年教师编写《高分子物理近代研究方法》一书。环顾近年高分子化学与物理方面的教科书及专著,都力求包含最新成果,因而内容越来越广,深度越来越深,篇幅也越来越长。为此,这本书采用了创新的格式把研究生必修的内容用简明的语言和图表阐明,同时列举大量的最新研究成果作为实例帮助读者理解、记忆和正确运用高分子物理理论和方法。因此,这本书具有简单、明确、知识新和学习效率高的特点。我衷心祝愿新一代高分子学子能从书中受益,并为我国高分子科学发展作出重大贡献。  中国科学院院士  南京大学教授  2002年5月内容简介  本书基于高分子物理基本原理和理论,简要介绍了如何测定和研究高聚物的分子量及其分布、链构象、化学结构及其组成、结晶度及取向、熔点、玻璃化转变温度、分子运动及力学松弛、热性能、界面及表面、复合物粘接、力学性能、电学性能及生物降解性等方面的先进方法,以及光谱、波谱、色谱、激光光散射、X射线和电子显微技术。本书收集了大量具有创新思想和科学价值的实例,以指导读者更有效地应用先进仪器和方法从事高分子科学与技术的基础研究和应用开发。全书共收集约400篇参考文献,内容丰富、新颖、简明易懂,是一本较全面、深入的高分子物理教材,适合高分子化学和物理、橡胶、塑料及高聚物材料工程等方面的研究生、教师、科技人员及企业管理人员参考。  9.刘振海« 聚合物量热测定» 化工出版社2002前言  自1963年差示扫描最热法(differentialscanningcalorimetry,DSC)产生以来,在高分子材料的研究和表征中这种方法一直扮演着重要角色,虽然DSC仅是诸多热分析方法中的一种,可从近年高分子热分析的发展趋向来看,DSC这种方法构成了高分子热分析的主要组成部分。近年高分子科学出现了一系列以DSC为主或仅基于此种方法的学术著作,诸如《聚合物材料的热表征》(E.A.Turied.ThermalCharacterizationofPolymericMaterials.NewYork:AcademicPress,1981 2ndEdition,1997),该书由第1版的970页发展到第2版的2420页《热分析基础及其在聚合物科学中的应用》(T.Hatakeyama,F.X.Quin,ThermalAnalysisFundamentalsandApplicationstoPolymerScience,Chichester:JohnWiley&Sons,19942ndEdition,1999) 《高分子DSC》(V.A.Bershtein,V.M.Egorov.DifferentialScanningCalorimetryofPolymers.NewYork:EllisHorwood,1994) 国际刊物JournalofThermalAnalysisandCalorimetry于2000年第1期出版专辑AdvancesinThermalCharacterizationofpolymericMaterials。  尤应注意到,就在近年(1992年)在DSC的基础上推出一种更新的热分析方法——调制式差示扫描量热法(temperaturemodulateddifferentialscanningcalorimetry,TMDSC),这种方法一出现,就引起了人们的极大兴趣,就1998年的不完全统计已有300多篇论文发表,并很快出版了专辑【JThermAnal,1998,54(2)】。预计这种调制技术可用于各种热分析方法,将引起热分析技术一系列新变革。  作者长期从事高分子热分析科研、教学和学会工作,近年还各自主持了一段学术期刊工作,我们有着几乎完全相同的业务经历。我们合著有中、英文版《热分析手册》(中文版,北京化学工业出版社,1999 英文版,Chichester:JohnWiley&Sons,1998)。并分别出版了《热分析导论》(北京:化学工业出版社,1991)与" ThermalAnalysisFundamentalsandApplicationstoPolymerScience" (详见上述),主编《应用热分析》(东京:日刊工业新闻社,1996)。我们合著这本《聚合物量热测定》,连同上述著作,望能描绘出热分析一个较为完整的轮廓。  这本书系统介绍高分子DSC的基础(如热力学基础,DSC和MDSC的基本原理及其产生与发展,高分子的结晶、熔融和玻璃化转变等及由此而引申的各项应用,如相图、单体纯度的测定),及其在该领域在国内外取得的最新成就(如高分子合金的相容性、液晶的多重转变、水在聚合物中的存在形式及其相互作用、联用技术等)。热力学和量热学分别是热分析的理论与技术基础,Wunderlich教授所著由AcademicPress(NewYork)出版的学术专著:MacromolecularPhysicsVol3CrystalMelting(1980),ThermalAnalysis(1990)和ThermalCharacterizationofPolymericMaterials(2ndEdn,TuriEDed,1997)一书的第二章对热分析的热力学基础做了十分精辟和系统的论述 G.W.H.Hohne,W.Hemminger,H.J.Flammersheim所著DifferentialScanningCalorimetryAnIntroductionforPractitioners(Berlin:Springer,1996)堪称在阐述量热学(量热仪的传热过程)方面的佳作。作为国际热分析协会教育委员,我们愿将上述著作的有关内容介绍给国内的广大读者,本书基础部分——第一、三章和第二章的编写,分别参考了上述著作,以飨读者。  本书的第一、二、三章及附表由刘振海参考上述学术专著编写,第四、六、七、十章由畠山立子(T.Hatakeyama)编写,第五章由刘振海、陈学思、宋默编写,第八章由刘振海、陈学思编写,第九章由张利华编写。  借此机会,对于此书撰写和出版过程中给予我们鼎力相助的热分析与量热学杂志主编J.Simon教授、国际热分析协会教育委员会主席E.A.Turi教授、福井工业大学畠山兵衞教授、中科院长春应用化学研究所黄葆同院士、汪尔康院士、中科院长春分院黄长泉研究员、吉林大学陈欣方教授、中科院长春应用化学研究所王利祥研究员、唐涛研究员、化学工业出版社任惠敏编审、杜进祥编辑,以及对给予出版资助的国家科学技术学术著作出版基金委员会和精工电子有限公司一并表示衷心感谢。  受篇幅所限,本书侧重于原理的叙述,而对于浩如烟海的大量文献资料未能充分收入,日后如有机会出增订版,乐于做进一步的增补。也因时间仓促,本书定有许多疏漏,望读者不吝指正。  刘振海(长春)畠山立子(东京)2001年9月内容提要  本书系统地介绍了聚合物材料量热分析的基本原理和各类应用,着重介绍差示扫描量热法和近年出现的调制式差示扫描量热法,突出反映了该领域国内外最新成果与研究进展。全书分为两部分,共10章:第1-3章为基础部分,介绍热分析的热力学基础知识、差示扫描量热法、调制式差示扫描量热法以及结晶聚合物的熔融与结晶过程 第4~9章介绍DSC在聚合物分析方面的应用,包括在聚合物的玻璃化转变、热焓松弛、多相聚合物体系、液晶性质、水与高分子的作用、高分子合成、聚合物辐射效应等方面的研究与应用 第10章介绍热分析与其他分析方法的联用技术。  本书资料翔实,内容丰富,语言精炼,可供从事聚合物热分析、高分子材料研究及其相关专业技术人员学习参考。  近年来,国内又出版了几本新的高分子物理著作,如马德柱主编« 聚合物结构与性能» (结构篇、性能篇)科学出版社2013。华幼卿金日光2013,« 高分子物理» ,第四版,北京:化学工业出版社  焦剑主编2015高分子物理西北工业大学出版社  本文编撰过程中,参阅了上述高分子物理著作并作为文献引用,在此表示感谢!  参考文献  [1]« 高分子结晶和熔融行为的FlashDSC研究进展» 李照磊1,2周东山1胡文兵1  [2]何曼君张红东陈维孝.« 高分子物理» 第三版复旦大学出版社2007  [3]张俐娜薛奇莫志深金熹高编著« 高分子物理的近代研究方法» 武汉大学出版社2003  [4]朱诚身« 聚合物结构分析» 科学出版社2010  [5]何平笙编著« 新编高聚物的结构与性能» 科学出版社2009  附录  有关高分子物理的教学参考书(按出版时代排列)  Alfrey.1948.MechanicalPropertiesofHighPolymers.NewYork:IntersciencePublishers  是早期有关高聚物力学性能的专著、至今仍有参考价值。  FloryPJ.1953.PrincipleofPolymerChemistry.Ithaca:CornellUniversityPress  是高分子科学的经典教材,被誉为高分子科学的”圣经”,一直到现在仍被美国众多大学选为教材,Flory也是高分子界获得诺贝尔化学奖的科学家。  钱人元,1958,高聚物的分子量测定,北京:科学出版社  是我国科学家自己的科研成果和撰写的有关专著,被翻译成英文和俄文出版,至今仍有现实的参考价值。  柯培可ⅡⅡ,1958,非晶态物质。钱人元,钱保功等译,北京:科学出版社  介绍原苏联学者的研究成果和观点,对我国有相当影响。  MasonP.WookeyN.1958.TheRheologyofElastomers.Paris:PergamonPress  是为数不多专门讲授弹性体力学性能的著作。  徐僖,1960,高分子物化学原理。北京:化学工业出版社  为国内高校工科院校早期的高分子专业教科书,有一定影响。  TobolskyAV.1960.PropertiesandStructureofPolymers.NewYork:JohnWiley&Sonslnc  是一本比较经典的高分子物理教材性质的书,对我国高分子物理教学有相当的影响。其中有关化学应力松弛的内容仍然具有权威性。  TanfordC.1961.PhysicalChemistryofMacromolecules.NewYork:JohnWiley&SonsInc  是一本在高分子溶液方面写得较好的教材。  卡尔金,斯洛尼姆斯基,1962。聚合物物理化学概论、郝伯林等译。北京:科学出版牡  是前苏联学者的一本著作,对我国高分子物理起步有较大影响。  BuecheF.1962.PhysicalPropertiesofPolymers.NewYork:IntersciencePublishers  是一本比较经典的高分子物理教材性质的书,对我国高分子物理教学有相当的影响。  NielsenL.E.1962.MechanicalPropertiesofPolymers.NewYork:ReinholdPublishingCorporation  也是一本比较经典的高分子物理教材性质的书,对我国高分子物理教学有较大的影响,有中文翻译本,即1965年冯之榴等译《高聚物的力学性能》,上海科学技术出版社。  VolkensteinMV.1963.ConfigutationalStatisticsofPolymericChains.NewYork:Interscience  是原苏联学者的专著,俄丈原书系1959年莫斯科苏联科学院出版社出版· 有很高价值,  卡尔金等,1964,高分子物理进展(论文集),钱人元等译,北京:科学出版社  是一本较全面介绍原苏联学者成果的书。  高分子学会,1965,レオロジーハンドブック(流变学手册),东京:丸善株式会社  有很多早期的实验教据图。  MandelkernL.1965.CrystallizationofPolymers.NewYork:McGraw-HillBookCompany  AndrewsE.H.1968.FractureinPolymers.Edinburgh:Oliver&Boyd  是有关高聚物断裂和强度的专著,因为是文革期同出的书,国内图书馆较少有收藏。  AlexanderLE.1970.X-rayDiffractionMethodsinPolymerScience.NewYork:JohnWiley&.SonsInc  和田八三久.1971.高分子的固体物性,东京:培风馆  日本学者撰写的内容比较深的高分子物理著作。国内没有流行。  BillmeyerFW.1971.TextbookofPolymerScience.NewYork,:WileyInierscienceInc  这是一本在西方影响很大的教材,但一直没有再版,  PeebolsJJH.1971.MolecularWeightDistributionsinPolymers.NewYork,:JohnWiley&SonsInc  有不少关于聚合反应动力学统计理论的内容,  TobolskyAV,MarkHF.1971.PolymerScienceandMaterials.NewYork,:WileyInterscience  有中文译本,即1977年托博尔斯基AV,马克HF编,聚合物科学与材料翻译译组译《聚合物科学与材料》,北京:科学出版社。  KakudoM.KasaiN.1972.X-rayDiffractionMethodsinPolymerScience.NewYork:WileyInterscience  JenkinsAD.1972.PolymerScience,Amaterialssciencehandbook,1and2.Amsterdam:North-HollandPublishingCompany  这是一本上下两册大部头著作,内容极为丰富。  TreloarLRG.1958.ThePhysicsofRubberElasticity.3rdEd.Oxford:UniversityPress  一本最详细介绍有关橡胶高弹性的专著。国内有中文译本,20世纪60年代的第一版就翻译成中文,第三版由王梦蛟,王培国,薛广智译,吴人洁校,北京:化学工业出版社,1982。  高分子学会,1972,高分子的分子设计3:分子设计和高分子材料的展望,东京:培风馆  论述通过分子设计来制备高分子材料的设想· 在当时有相当的影响。  小野木重治,1973,高分子材料科学,东京:诚文堂新光社  是来自日本的一本教材,也有一定影响,  KauschHH,HassellJA,JaffeeRI.1973.DeformationandFractureofHighPolymers,NewYork:PlenumPress  内容较专一。  HawardRN.1973.ThePhysicsofGlassyPolymers.London:AppliedSciencePublishersLtd  对玻璃态高聚物的力学性能有详细介绍,  晨光化工厂,1973,塑料测试,北京:燃料化学工业出版社  这是一本有管高聚物性能测试早期的著作,当时有相当的影响。  WunderlichB.1973.MacromolecularPhysics.Vol.Ⅰ,Ⅱ,Ⅲ.NewYork:AcademicPress  三卷的大著,专门讲述高聚物的结晶行为,很有参考价值。  SamuelsRJ.1974.StructuredPolymerProperties.NewYork:WileyInterscience  莫特N等.1975.材料——微观结构及物理性能的概述.中国科学技术大学《材料》翻译组译,  北京:科学出版社  该书有关“高聚物材料的本质" 和' ' 复合材料的本质”两章有很好的参考价值,其中Mark提出的提高高聚物性能的三角形原理有参考价值。  ArridgeRGC.1975.MechanicsofPolymers.Oxford:ClarendonPress  是一本从力学观点讲述的高聚物力学性能的专著。  TagerA.1978.PhysicalChemistryofPolymers.Moscow:MIPPublisher  是一本由原苏联学者撰写的高分子物理教材,用英文出版,从中可了解不少原苏联学者的科研成果。  AndrewsEH.1979.DevelopmentsinpolymerFracture-1.London:AppliedSciencePublishers  是Andrews又一本关于高聚物断裂和强度的编著,有相当参考价值。  TadokoroH.1979.StructureofCrystllinePolymers.NewYork:JohnWiley&.SonsInc  BlytheAR1979.ElectricalPropertiesofPolymers.Cambridge:CambridgeUniversityPress  是剑桥大学" CambridgeSolidStateScienceSeries" 系列中的一本书。  中国科学院上海有机化学研究所十二室,1980,压电高聚物,上海:上海科学技术文献出版社  CherryBW.1980.PolymerSurfaceCambridge:CambridgeUniversityPress  是剑桥大学”CambridgeSolidStateScienceSeries”系列中的一本书。  WilliamsJG.1980.StressAnalysisofPolymers.2ndEd.NewYork:JohnWiley&SonsInc  是一本从力学观点讲述的专著,书中数学内容较深。  FerryJD.1980.ViscoelasticPropertiesofPolymers.NewYork:JohnWiley&SonsInc  是一本高聚物黏弹性的专著,有很好的参考价值。  林尚安,陆耘,粱兆熙,1980,高分子化学,北京:科学出版社  由于全书既有高分子化学又有高分子物理内容,不便使用,影响不大。  施良和,1980,凝胶色谱法,北京:科学出版社  对普及凝胶色谱法有很好作用。  BaileyRT,NorthAM,PethrickRA.1981.MolecularMotioninHighpolymers.Oxford:Clar-  endonPress  YoungRJ.1981.IntroductiontoPolymers.London:ChapmanandHall  这是一本非常简明的高分子教材,其中有不少有关作者本人的研究成果,如聚双炔类宏观单晶体的结构与性能。英文也非常通顺易读。  BassettDC.]981.PrinciplesofPolymerMorphology,Cambridge:CambridgeUniversitypress  是剑桥大学”CambridgeSolidStateScienceSeries”系列中的一本书。有中文译本,即1987  年巴西特著,张国耀,梨书樨译《聚合物形态学原理》,北京:科学出版社。  潘鉴元,席世平,黄少慧.1981.高分子物理,广州:广东科技出版社  该书介绍的有关形变-温度曲线的论述仍有参考价值。  彼得· 赫得维格,1981,聚合物的介电谱,第一机械工业部桂林电器科学研究所译,北京:机械工业出版社  范克雷维伦DW.1981.聚合物的性质:性质的估算及其与化学结构的关系,许元泽,赵得禄,吴大诚译,北京:科学出版社  至今仍有参考价值。  尼尔生LE.1981,高分子和复合材料的力学性能.丁佳鼎译,北京:轻工业出版杜  赵华山,姜胶东,吴大诚等,1982,高分子物理学,北京:纺织工业出版社  是为化学纤维专业写的教材。  沈得言.1982、红外光谱法在高分子研究中的应用.北京科学出版社  是我国学者写的较早的有关高分子物理的专著。  SeanorDA.1982.ElectricalPropertiesofPolymers.NewYork:AcademicPress  WardIM.1982.DevelopmentsinOrientedPolymers.London:AppliedSciencePublishers  BohdaneckyM,Ková rJ.1982.ViscosityofPolymerSolutions.NewYork:ElsevierScientific  BurchardW,PattersonGD.1983.LightcatteringfromPolymers.NewYork:Springer-Verlag  尼尔生LE.1983,聚合物流变学。范庆荣,宋家琪译,北京:科学出版社。  WilliamsDJ.1983.NonlinearOpticalPropertiesofOrganicandPolymericMaterials.WashingtonD.C.:AmericanChemicalSociety  是一本以编著形式撰写的书。  WardIM1983.MechanicalPropertiesofSolidPolymers.2ndEd.NewYork:Wiley-Interscience  这是一本Ward写的英国研究生教材,国内曾前后两次把它的第一版和第二版翻译成中文出版,即1988年沃德著,徐懋,漆宗能等译校《固体高聚物的力学性能》,第二版,北京:科学出版社。仍有相当的参考价值。  斯坦RS.1983.散射和双折射方法在高聚物织态研究中的应用,徐懋等译.北京:科学出版社  KinlochAJ,YoungRJ.1983.FractureBehaviorofPolymers.London:AppliedSciencePublishers  内容比较全面的有关高聚物断裂的专著。  北京大学化学系高分子化学教研室,1983,高分子物理实验,北京:北京大学出版社  WilliamsJG.1984.FractureMechanicsofPolymers.NewYork:JohnWiley&Sonslnc  塞缪尔斯RJ.1984.结晶高聚物的性质,徐振森译。北京:科学出版社  EliasHG.1984.MacromoleculesI,structureandProperties.2ndEd.NewYork:PlenumPress  韩CD、1985.聚合物加工流变学、徐僖,吴大诚等译,北京:科学出版社  AklonisJ.MacKnightWJ.1972.MinchelShen,IntroductiontoPolymerViscoelasticity.NewYork:Wiley-Interscience  这是一本很好的有关高聚物黏弹性的入门书,1983年第二版,并由吴立衡翻译为中文,即吴立衡译,徐懋校《聚合物粘弹性引论》,北京:科学出版社,1986。可惜的是作者之一的华人科学家沈明琦英年早逝,没有能参加这第二版的写作。位沈明琦1979年在复旦大学讲课为后来出版的《高聚物的粘弹性》一书打下了基础,即于同隐,何曼君,卜海山,胡加聪,张炜编著《高聚物的粘弹牲》,上海:上海科学技术出版社,1986。  冯新德,唐敖庆,钱人元等,1984,高分子化学与物理专论,广东:中山大学出版社  其中钱人元和于同隐有关高分子凝聚态基本物理问题和玻璃化转变的章节很有参考价值。奥戈凯威斯RM.1986,热塑性塑料的性能和设计,何平笙等译,北京:科学出版社  是钱人无院士推荐翻译的有关材料性能与制品关系的专著,是高聚物结构与性能的进一步深入。  吴大诚,1985,高分子构象统计理论导引,成都:四川教育出版社  可供有关专业研究生阅读。  唐敖庆等,1985,高分子反应统计理论,北京:科学出版社  卓启疆,1986,聚合物自由体积,成郁:成都科技大学出版社  是一本专门讲述高聚物中自由体积的小册子。  钱保功,许观藩,余赋生等,1986,高聚物的转变与松弛,北京:科学出版社  是中国科学院长春应用化学研究所多年工作的总结,有大量的实验数据。  考夫曼HS,法尔西塔JJ.1986,聚合物科学与工艺学引论,吴景诚,钱文藻,杨淑兰译,北京:科学出版社  郑昌仁,1986,高聚物分子量及其分布,北京:化学工业出版社  DoiM,EdwardsSF.1986.TheTheoryofPolymerDynamics.Clarendon:OxfordUniversity  Press  有机玻璃疲劳和断口图谱编委会.1987,有机玻璃疲劳和断口图谱,北京:科学出版社  夏炎.1987.高分子科学简明教程,北京:科学出版社  是为师范生写的教材。  拉贝克JF.1987,高分子科学实验方法,物理原理与应用,吴世康,漆宗能等译,北京:化学工业出版社  提供大量的高分子实验,是一本高分子实验方面的权威性著作。  何家骏,1987,高分子溶液理论导论,兰州:兰州大学出版社  斯珀林LH.1987,互穿聚合物网络和有关材料,黄宏慈,欧玉春译,佟振合校、北京:科学出版社  吴大诚,1987~1989,现代高分子科学丛书,成都:四川教育出版社  共十本书,其中与高分子物理有关的是:  (1)孙鑫,《高聚物中的孤子和极化子》,1987。  (2)吕锡慈,《高分子材料的强度与破坏》,1988。  (3)吴大诚,谢新光,徐建军,《高分子液晶》,1988。  (4)许元泽,(高分子结构流变学》,1988。  (5)古大治。《高分子流体动力学》,1988。  (6)江明,《高分子合金的物理化学》,1988。  (7)赵得禄,吴大诚,《高分子科学中的MonteCarlo方法》,1988。  (8)吴大诚,HsuSL,《高分子的标度和蛇行理论》,1989。  日本纤维机械学会,纤维工学出版委员会,1988,纤维的形成、结构及性能、丁亦平译,北京:纺织工业出版社  朱永群,1988,高分子物理基本概念与问题,北京:科学出版社  是第一本有关高分子物理习题的书。  鲁丁JA.1988,聚合物科学与工程学原理,徐支祥译,北京:科学出版社  潘道成,鲍其鼎,于同隐,1988,高聚物及其共混物的力学性能,上海:上海科学技术出版社  朱善农等,1988,高分子材料的剖析,北京:科学出版社  穆腊亚马,1988,聚合物材料的动态力学分析,福特译,北京:轻工业出版社  李斌才,1989,高聚物的结构与物理性质,北京:科学出版社  周贵恩,1989,聚合物X射线衍射、合肥:中国科学技术大学出版社  CampbellD,WhiteJR1989.PolymerCharacterization:PhysicalTechniques.London:Chapman&Hall  国内少有人拥有此书。  王正熙,1989,聚合物红外光谱分析和鉴定,成都:四川大学出版社  林师沛,1989,塑料加工流变学,成都:成都科技大学出版社  雀部博之,1989,导电高分子材料,曹镛,叶成,朱道本译,北京:科学出版社  克里斯坦森RM.1990,粘弹性力学引论,郝松林,老亮译,北京:科学出版社  杨挺青,1990,粘弹性力学,武汉:华中理工大学出版社  胡徳,1990,高分子物理与机械性质(上、下册),台北:渤海堂文化公司  是我国台湾学者编写的高分子物理教材,内容偏重高聚物本体的性能,不涉及凝聚态以及溶液和相对分子质量等。  FujitaH.1990.PolymerSolutions.Amsterdam:Elsevier  SchmitzKS.1990.AnIntroductiontoDynamicLightScatteringbyMacromolecules.SanDiego,AcademicPress  弗洛里PJ.1990,链状分子的统计力学,吴大诚,高玉书,许元泽等译,吴大诚校,成都:四川科学技术出版社  是弗洛里又一本大著,是高分予理论最重要的经典著作之一。  朱锡雄,朱国瑞,1992,高分子材料强度学,杭州:浙江大学出版社  JoachimDE.1992,RelaxationandThermodynamicsinPolymersGlassTransition.Berlin:AkademieVerlag  郑武城,安连生,韩娅娟等,1993,光学塑料及其应用.北京:地质出版社  周其凤,王新久,1994,液晶高分子,北京:科学出版社  有不少作者自己的研究成果。  GrosbergAY,KhokhlovAR.1994.StatisticalPhysicsofMacromolecules.Woodbury:AIPPress  黄维垣,闻建勋,1994,高技术有机高分子材料进展,北京:化学工业出版社  是当年的一本进展性质的汇编。  左渠,1994,激光光散射原理及在高分子科学中的应用,郑州:河南科学技术出版社  谢缅诺维奇,赫拉莫娃,1995,聚合物物理化学手册,闫家宾,张玉昆译,北京:中国石化出版社  薛奇,1995,高分子结构研究中的光谱方法,北京:高等教育出版社  GeddeUW.1995.PolymerPhysics.London:Chapman&Hall  叶成,习斯J.1996,分子非线性光学的理论与实践,北京:化学工业出版社  大柳康,1996,实用高分子合金,吴忠文等译,长春:吉林科学技术出版社  周光泉,刘孝敏,1996,粘弹性理论,合肥:中国科学技术大学出版社  这是一本由力学专家写的书,对数学的推导有独特之处。  吴培熙,张留成,1996,聚合物共混改性,北京:中国轻工业出版社  朱善农等,1996,高分子链结构,北京:科学出版社  DoiM.1996.IntroductiontoPolymerPhysics.Clarendon:OxfordUniversityPress  复旦大学高分子科学系,高分子科学研究所,1996,高分子实验控术,修订版,上海:复旦大学出版社  已出第二版。  Hans-GeorgE.1997,AnIntroductiontoPolymerScience.NewYork:VCHPress  刘凤歧,汤心颐,1997,高分子物理,北京:高等教育出版社  2004年出了第二版。  何天白,胡汉杰,1997,海外高分子科学的新进展,北京:化学工业出版社  StroblG.1997.ThePhysicsofPolymers.2ndEd.Berlin:Springer  这是一本近十年来有影响的高分子物理教材,Strobl本人多次来国内讲授有关他提出的高聚物结晶的理论,中文译本是斯特罗伯著,胡文兵,蒋世春,门永锋,王笃金译《高分子物理学》,北京:科学出版社,2009。  ShiLH,ZhuDB.1997.PolymersandOrganicSolids,Beijing:SciencePress  这是为纪念钱人元院士80寿辰而汇编的文集,由国内外著名学者介绍当今最新科技成果,钱人元,1998,无规与有序——高分子凝聚态的基本物理问题研究,长沙:湖南科学技术出版社  是钱人元院士带领开展的国家攀登项目“高分子凝聚态的基本物理问题研究”的研究成果的通俗介绍,我国很多科学家对高分子物理的贡献都有深入浅出的论述。  蔡忠龙,冼杏娟,1997,超高模量聚乙烯纤维增强材料,北京:科学出版社  该书中有关聚乙烯热学性能的介绍很有参考价值。  邵毓芳,嵇根定,1998,高分子物理实验,南京:南京大学出版社  江明,府寿宽,1998,高分子科学的近代论题,上海:复旦大学出版社  是纪念于同隐教授和钱人元院士80寿辰而汇编的文集,由国内外著名学者介绍当今最新科技成果。  吴人洁等,1998,高聚物的表面与界面,北京:科学出版社  吴培熙,张留成,1998,聚合物共混改性,北京:中国轻工业出版社  沈家瑞,贾德民,1999,聚合物共混物与合金,广州:华南理工大学出版社  托马斯EL.1999,聚合物的结构与性能,北京:科学出版社  是一本详细介绍高分子物理近年成果的专著,适合作为进一步深造的参考书。  朱道本,王佛松,1999,有机固体,上海:上海科学技术出版社  介绍导电高聚物的专著,有许多我国科学家的研究成果。  王国全,王秀芬等,2000,聚合物改性,北京:中国轻工业出版社  梁伯润,屈凤珍等,2000,高分子物理学,北京:中国纺织出版社  是为合成纤维专门化的学生写的教材。  顾国芳,浦鸿汀,2000,聚合物流变学基础,上海:同济大学出版社  金日光,华幼卿,2000,高分子物理,第二版,北京:化学工业出版社  工科院校所用教材,2007年已出第三版。  闻建勋,2001,诺贝尔百年鉴——奇妙的软物质,上海:上海科学教育出版社  是一本有关高分子学界诺贝尔奖获得者的通俗介绍,对了解高分子科学的发展轨迹有启发。  杨玉良,胡汉杰,2001,跨世纪的高分子科学丛书——高分子物理(分册),北京:化学工业出版社  何天白,胡汉杰,2001,功能高分子与新技术,北京:化学工业出版社  平郑骅,汪长春,2001,高分子世界,上海:复旦大学出版社  是一本有关高分子科学的高级通俗读本。  SperlingLH.2001.IntroductionofPhysicalPolymerScience.3rdEd.NewYork:Wiley  布里格,2001,聚合物表面分析,曹立礼,邓宗武译,北京:化学工业出版社  殷敬华,莫志深,2001,现代高分子物理学(上、下册),北京:科学出版社  名为研究生教材,实际上是一本很好的进展性专著。  韩哲文,张得震,杨全兴等,2001,高分子科学教程,上海:华东理工大学出版社  既有高分子化学内容也有高分子物理内容。  BowerDI.2002.AnIntroductiontoPolymerPhysics.Cambridge:CambridgeUniversityPress  化学工业出版社2004年以”国外名校名著”系列影印出版了该书。  刘振海,2002,聚合物量热测定,北京:化学工业出版社  杨小震,2002,分子模拟与高分子材料,北京:科学出版社  附有软件光盘,很实用,其软件可利用来开设高分子物理实验。  过梅丽,2002,高聚物与复合材料的动态力学热分析,北京:化学工业出版社  是一本很好的有关高聚物动态力学测试的著作。  吴其晔,巫静安,2002,高分子材料流变学、北京:高等教育出版社  是一本详细介绍聚合物流变学的研究生教材。内容详尽,很有参考价值。  QianRY(钱人元),2002.PerspectivesontheMacromolecularCondensedState.Singapore:WorldScientific  这是钱人元院士把自己在' ' 高分子凝聚态物理中若干基本问题”国家攀登项目中的成果介绍给世人的一本专著,包括很多我国科学家对高分子物理的贡献。  ColbyRB.2002.PolymerPhysics.Oxford:OxfordUniversityPress  TeraokaI.2002.PolymerSolutions:AnIntroductiontoPhysicalProperties.NewYork:John  Wiley&SonsInc  非常好的有关高分子溶液的专著,内容较深。  张祖德,朱平平等,2001,中国科学院一中国科学技术大学硕士研究生入学考试化学类科目考试纲要,合肥:中国科学技术大学出版社  是中国科学院各研究所和中国科大研究生必读参考书,2002第二版。  deGennes.1979.ScalingConceptsinPolymerPhysics.Ithaca:CornellUniversityPressGennes  Gennes是又一位高分子界获得诺贝尔奖的科学家,他把理论物理中的许多概念用在了高分子科学上,创立了高分子物理中著名的“标度理论“。该书已由吴大诚等翻译成中文、即德让  摘自« 新编高聚物的结构与性能» 何平笙编著科学出版社
  • 关于使用偏光显微镜观察聚合物结晶形态
    聚合物作为一种重要的材料在工业、生活中得到了广泛的应用。而聚合物的结晶形态对其性能有着至关重要的影响,如何使用偏光显微镜观察聚合物结晶形态呢?用偏光显微镜研究聚合物的结晶形态是目前在实验室中较为简便而实用的方法,结晶条件的不同聚合物的结晶可以具有不同的形态,如单晶、球晶、纤维晶及伸直链晶体等。使用偏光显微镜的主要原理是利用光学现象中的偏振现象来观察样品,结晶聚合物的实际使用性能与材料内部的结晶形态、晶粒大小及完善程度有密切关系,如:光学透明性、冲击强度等。在偏光显微镜下观察聚合物结晶可以得到更为清晰、详细的结晶形态信息。对于聚合物结晶形态的研究具有重要的理论和实际意义。使用偏光显微镜观察聚合物结晶的步骤如下:第一步,制备好样品。将聚合物样品制成薄片,并保持其在室温下的结晶状态。如果需要观察样品在不同温度下的结晶形态,可以通过加热或冷却的方式来控制温度。第二步,将样品放置在偏光显微镜的样品台上,调整偏光器和偏振镜的方向,使其符合要求。第三步,通过调节偏光显微镜的焦距和放大倍数,将聚合物结晶的形态清晰地展现出来。通过偏光显微镜观察聚合物结晶形态,可以快速得到非常精确的结晶信息。例如聚合物结晶的晶体方向、晶粒大小、晶界等细节信息。同时,偏光显微镜还可以观察到聚合物的各种缺陷,如晶格缺陷、晶体缺陷等,从而提高对聚合物结晶的理解和认识。偏光显微镜是一种非常重要的观察聚合物结晶形态的工具。通过偏光显微镜的使用,可以得到更为准确、详细的结晶信息,从而帮助研究人员更好地理解和应用聚合物材料。以下是使用偏光显微镜观察的实拍效果图:深圳偏光显微镜、偏光显微镜价格、矿相偏光显微镜、偏光显微镜供应、偏光显微镜成像单偏光镜下观察,左侧是没加偏光,右侧是加偏光的偏光显微镜型号:NP900系列(科研级可定制型)MHPL1500(可选透射照明,落射照明或者透反射照明)MHPL3200(透/反射偏光)MHPL3230(透反射偏光)如果您需要研究与检验地质、化工、医疗、药品等领域,进行液态高分子材料,生物聚合物及液晶材料的晶相观察,我们为您提供一整套显微系统方案,可连接数码相机构成数码偏光显微镜,通过计算机屏幕显示测量电脑来观察图片,对图片进行保存、编辑和打印。
  • 使用超高效聚合物色谱系统对低分子量聚合物进行快速高分辨率分析
    使用超高效聚合物色谱(APC)系统对低分子量聚合物进行快速高分辨率分析Mia Summers和Michael O&rsquo Leary沃特世公司(美国马萨诸塞州米尔福德)应用优势■ 既能对聚合物进行快速表征又不会降低性能水平■ 与常规GPC分析相比,可提高对低分子量低聚物的分辨率■ 与常规GPC分析相比,可提高校准水平并由此对低分子量低聚物进行更准确的测定■ 可对聚合物进行快速监测,从而能提早发现产品开发过程中出现的变化 沃特世提供的解决方案ACQUITY 超高效聚合物色谱(APC&trade )系统ACQUITY APC XT色谱柱沃特世聚合物标准品带有GPC选项的Empower 3色谱数据软件关键词聚合物、SEC、GPC、APC、聚合物表征、低分子量聚合物、低聚物、环氧树脂 引言凝胶渗透色谱(GPC)是一种广泛认可并行之有效的聚合物表征方法。然而,尽管使用此技术可获得大量信息,但这类分析本身仍存在缺陷。色谱柱通常填充苯乙烯-二乙烯基苯,同时需要进行适当老化并应在低背压下运行以确保其长期稳定。填充颗粒通常较大(&ge 5 &mu m),分辨率一般会因此而受影响。填充较小颗粒(5 &mu m)的色谱柱已投放市场,并能提高GPC分离速度,但分离速度会因色谱柱本身的最大工作压力偏低而受限。此外,常规GPC仪器的系统体积较大,这需要使用较大直径的色谱柱以减缓可能导致分辨率降低的系统峰展宽。沃特世ACQUITY超高效聚合物色谱(APC)系统与亚3 &mu m杂化颗粒色谱柱相结合,可增强系统稳定性并能在更高压力下确保流速准确性。此外,APC系统的总体扩散度低,能显著提升分辨率,在分析低分子量低聚物时尤为明显。提高分离低分子量低聚物的分辨率并缩短运行时间能对聚合物工艺开发进行快速监测,提早检测出新的聚合物类型并从总体上加快聚合物新产品的上市进程。这篇应用纪要将基于ACQUITY APC系统的分离与基于常规GPC的分离进行了比较。本文将会说明使用一种采用亚3 &mu m杂化颗粒技术色谱柱的低扩散系统能加快分析速度,提高分辨率并有助于对低分子量低聚物进行校正。综合使用这些技术能够更稳定、更精确地测定低分子量聚合物样品的分子量参数。提早识别某种聚合物所出现的甚至比较细微的改变都能明显加快化学和生物材料应用中聚合物的开发速度。 实验Alliance GPC系统条件检测器: 2414 RI (示差折光检测器)RI流通池: 35 ℃流动相: THF流速: 1mL/min色谱柱: Styragel 4e,2和0.5,7.8 x 300 mm(3根串联)柱温: 35 ℃样品稀释剂: THF进样量: 20 &mu LACQUITY APC系统条件检测器: ACQUITY RI(示差折光检测器)RI流通池: 35 ℃流动相: THF流速: 1 mL/min色谱柱: ACQUITY APC XT 200 Å 柱和两根45 Å 柱,4.6 x 150 mm(3根柱串联)柱温: 35 ℃样品稀释剂: THF进样量: 20 &mu L数据管理Empower 3色谱数据软件样品1 mg/mL的沃特世聚苯乙烯标准品(100K、10K和1K)环氧树脂(2 mg/mL)结果与讨论为了使用SEC对聚合物进行适当表征,重要的是要使用适当的标准品生成一条校准曲线以确定当前所用色谱柱的分离范围。使用常规GPC分析标准品和样品相当耗时,运行时间可长达1小时(或更长)。由于样品所产生的数据将与经校准的标准品进行比较以确定分子量,因此标准品分析结果的准确度对获得关于聚合物样品的准确结果而言具有至关重要的作用。除了GPC本身的运行时间较长之外,常规GPC系统的额外柱体积较大也会导致峰展宽,从而降低分辨率并由此降低校准数据点的准确度。与常规GPC系统相比,ACQUITY APC系统的扩散度更低,因此产生的峰展宽就更少,并且窄分布标准品的色谱峰也明显更清晰,如图1所示。此外,低扩散性APC系统与支持更高流速和背压的稳定的亚3 &mu m APC色谱柱柱技术相结合也能提高对1K聚苯乙烯标准品的分辨率,并使分析时间缩短至原来的1/5。图1. 比较在常规GPC系统和ACQUITY APC系统中分析聚苯乙烯标准品(Mp:100K、10K和1K)的运行时间和分辨率使用APC系统所提高的分辨率为确定1K聚苯乙烯标准品分子量增添了更多可识别的色谱峰。如图2所示,通过使用标准品供应商提供的数值或根据外部方法得出的标准品测定值而确定的分子量信息,更多的数据点由此可被添加到校准曲线上,从而为根据这条曲线所计算出的样品结果增加了可信度。图2. 使用ACQUITY APC系统时,因对1K低分子量标准品的分辨率提高而在校准曲线上得出关于聚苯乙烯标准品(100K、10K和1K)的更多数据点一般说来,需要运行一系列标准品以得出用来生成校准曲线的数据点。使用常规GPC时,平衡、配制并分析每种标准品可能需要数小时至数天的时间。因此,通常不进行校准并根据原有校准曲线确定分析结果。ACQUITY APC系统因其系统滞留体积低而使平衡速度明显加快,并且因在更高流速下使用更小的颗粒而使运行时间明显缩短。运行时间的缩短使得平衡和校准操作可在一小时内轻松完成。最后,得益于分辨率的提高,可能只需要配制并进样检测更少的标准品,就能获得一条可用来进行校准的稳定曲线。分析样品时,校准操作的稳定性提高使得对低分子量低聚物的分子量测定具有更高的可信度。图3显示出一份环氧树脂样品相对于用聚苯乙烯标准品校准的分析结果。该结果表明使用三根ACQUITY APC XT 4.6 x 150 mm串联柱可在不到5分钟的运行时间内分辨出不同低聚物。图3. 使用配有ACQUITY RI检测器的三根ACQUITY APC XT 4.6 x 150 mm串联柱对溶于四氢呋喃的一份环氧树脂样品进行分析。低分子量低聚物(显示为峰尖分子量)可在不到5分钟的时间内被分辨开来。APC可缩短运行时间的特点有助于在工艺开发过程中进行反应监测。分辨率提高能够促进对合成应用或降解研究中可能出现的聚合物改变进行更快速的鉴别。通过监测各种分子量而提早发现工艺改变有助于更好地了解聚合物及其预期属性,从而可促进新型聚合物的开发并加快产品上市进程。结论由于超高效聚合物色谱系统的扩散度更低并能承受更高的背压以允许使用更小的杂化颗粒,因此该系统明显优于常规GPC系统。通过与最新的色谱柱技术相结合,APC系统与常规GPC相比也提高了对低分子量低聚物的分辨率。APC在性能方面的优点包括校准结果更可靠,这对生成用于聚合物表征的准确测定值而言是必不可少的。低分子量聚合物检测速度和分辨率的同时提高可在开发过程中实现对聚合物的快速且可靠的表征,从而促进对新型聚合物进行密切的上市跟踪。
  • 高分子表征技术专题——透射电子显微镜在聚合物不同层次结构研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读.期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献.借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!透射电子显微镜在聚合物不同层次结构研究中的应用ApplicationsofTransmissionElectronMicroscopyinStudyofMultiscaleStructuresofPolymers作者:王绍娟,辛瑞,扈健,张昊,闫寿科作者机构:青岛科技大学橡塑材料与工程省部共建教育部重点实验室,青岛,266042 北京化工大学材料科学与工程学院化工资源有效利用国家重点实验室,北京,100029作者简介:辛瑞,女,1990年生.青岛科技大学高分子科学与工程学院副教授,2018年在北京化工大学获得博士学位,2014~2018年在中国科学院化学研究所进行联合培养,2018~2020年在青岛科技大学从事博士后研究并留校任教.获“国家青年科学基金”资助.主要研究方向是多晶型聚合物的晶型调控与相转变研究.摘要聚合物材料的性能与功能取决于各级结构,其中化学结构决定材料的基本功能与性能,而不同层次聚集态结构能够改变材料的性能和赋予材料特殊功能,如高取向超高分子量聚乙烯的模量比相应非取向样品提高3个数量级,聚偏氟乙烯的β和γ结晶结构则能赋予其压电、铁电等特殊功能.因此,明确聚合物不同层次聚集态结构的形成机制、实现各层次结构的精准调控和建立结构-性能关联具有非常重要的意义,致使对聚合物各级结构及其构效关系的研究成为高分子物理学的一个重要领域.本文将着重介绍透射电子显微镜在聚合物不同层次结构研究中的应用,内容包括仪器的工作原理、样品的制备方法、获得高质量实验数据的仪器操作技巧、实验结果的正确分析以及能够提供的相应结构信息.AbstractTheperformanceandfunctionalityofpolymericmaterialsdependstronglyonthemultiscalestructures.Whilethechemicalstructureofapolymerdeterminesitsbasicpropertyandfunctionality,thestructuresatdifferentscalesinsolidstatecanchangetheperformanceandevenenablethepolymerspecialfunctions.Forexample,themodulusofhighlyorientedultrahighmolecularweightpolyethyleneisthreeordersofmagnitudehigherthanthatofitsnon-orientedcounterpart.Forthepolymorphicpoly(vinylidenefluoride),specialpiezoelectricandferroelectricfunctionscanbeendowedbycrystallizingitintheβandγcrystalmodifications.Therefore,itisofgreatsignificancetodisclosethestructureformationmechanismofpolymersatalllevels,torealizethepreciseregulationofthemandtocorrelatethemwiththeirperformance.Thisleadstothestudyofpolymerstructureatvariedscalesandtherelatedstructure-propertyrelationshipaveryimportantresearchfieldofpolymerphysics.Hereinthispaper,wewillfocusontheapplicationoftransmissionelectronmicroscopyinthestudyofdifferenthierarchstructuresofpolymers,includingabriefintroductionoftheworkingprincipleoftransmissionelectronmicroscopy,specialtechniquesusedforsamplepreparationandforinstrumentoperationtogethigh-qualityexperimentaldata,analysisoftheresultsandcorrelationofthemtodifferentstructures.关键词聚合物  透射电子显微镜  样品制备  仪器操作  结构解释KeywordsPolymer  Transmissionelectronmicroscopy  Samplepreparation  Instrumentoperation  Structureexplanation 聚合物是一类重要的材料,其市场需求日益增长,说明聚合物材料能够满足使用要求的领域越来越广,这应归因于聚合物材料性能和功能的各级结构依赖性.首先,包括组成成分、链结构及构型、分子量及分布等的化学结构决定材料的基本性能和功能.例如:高密度聚乙烯(即直链型聚乙烯)的热稳定和机械性能明显优于低密度聚乙烯(支化型聚乙烯),而分子链的共轭双键结构则能赋予聚合物导电能力[1~5].对化学结构固定的同一聚合物材料而言,不同形态结构可以展示出完全不同的物理、机械性能.以超高分子量聚乙烯为例,其非取向样品的模量与强度分别为90MPa和10MPa,分子链高度取向后,模量增加到90GPa,增幅为3个数量级,强度(3GPa)也增加了近300%[6].另外,有机光电材料的性能也与分子链排列方式密切相关[7~12].对结晶性聚合物材料而言,聚集态结构调控不仅影响性能,而且可以实现特殊功能,如常规加工获得的α相聚偏氟乙烯属于普通塑料,特殊控制形成的β或γ相聚偏氟乙烯则具有压电、铁电等功能[13~20].由此可见,揭示聚合物不同层次聚集态结构的形成机制,明确各级结构的影响因素,发展聚合物多层次聚集态结构的可控方法,对发掘聚合物材料的特殊功能和提高性能进而拓展其应用领域具有十分重要意义,致使对聚合物各级结构及其构效关系的研究一直是高分子物理学的一个重要领域.高分子不同层次结构既与高分子的链结构有关,又与加工过程有关.因此,高分子形态结构的研究内容十分丰富,且对形态结构的研究不仅是深入理解聚合物结构-性能的基础,而且能为聚合物加工过程结构控制提供依据.经过长期研究积累,目前已经发展了针对聚合物不同层次聚集态结构表征的多种成熟技术手段,如光谱技术[21~28]、散射与衍射技术[29~37]、显微技术[38~50]以及理论计算模拟[51]等,这些方法在聚合物聚集态结构表征中各有优势.如光谱技术的长处在于表征高分子链结构、晶区与非晶区的链取向和晶态中分子链相互作用等.散射和衍射可用于表征聚合物的结晶态结构、结晶程度与取向和微区结构尺寸等.相对于光谱、散射和衍射技术,显微术的优势在于能够直观地展示微观尺度结构,如光学显微镜用来展示聚合物的微米尺度结构、跟踪球晶的原位生长过程等[38,39],而原子力显微镜能显示纳米尺度结构及片晶的生长行为,甚至给出聚合物的单链结构信息[42].当然,大多数情况下,需不同技术相结合来准确揭示一些聚合物的不同层次结构[52~59].例如:聚(3-己基噻吩)(P3HT)因其b-轴(0.775nm)和c-轴(0.777nm)的晶面间距基本相同,无法用衍射技术精准确定其分子链取向,而衍射与偏振红外光谱结合可以明确其晶体取向[54].透射电子显微镜(本文中简称为电镜)是集明场(BF)和暗场(DF)显微术以及电子衍射(ED)技术于一体的设备,能够直接关联各类晶体的不同形态结构[60].例如:对聚乙烯单晶的电镜研究[61~63],证明了片晶仅有十几个纳米厚,但分子链沿厚度方向排列,根据这一电镜结果提出了高分子结晶的链折叠模型,对推动结晶理论的迅速发展做出了巨大贡献.然而,电镜对观察样品要求苛刻,且样品在高压电子束轰击下不稳定,导致电镜研究高分子形态结构具有很大挑战性.针对电镜研究高分子形态结构面临的挑战,本文将着重介绍电镜在聚合物不同层次结构研究应用中的一些技巧,主要内容包括电镜的工作原理、不同类型样品的制备方法以及稳定手段、获得高质量实验数据的仪器操作技术、实验结果的正确分析,并结合具体示例解释相关数据对应的聚合物结构信息.1电镜工作原理显微术是将微小物体放大实现肉眼观察的技术.实际上,人们常用放大镜对细小物体的直接观察就是一种最原始的显微手段,只是受限于放大能力仅能实现对几百微米以上物体的观察.为观察更细小物体,人们通过透镜组合来提高放大能力,从而诞生了光学显微镜.如图1所示,光学显微镜是通过对中间像的投影放大提升了放大本领,其两块透镜组合的放大能力是两块透镜的放大率之积.基于这一原理,增加透镜数目可进一步提高光学显微镜的放大能力,而透镜本身缺陷造成的求差、色差、象散、彗差、畸变等象差会使图像随透镜数目增加变得不清晰.另外,考虑到人眼的分辨本领大概为0.1mm,而光学显微镜的极限分辨率为0.2μm,500倍是光学显微镜有效放大倍率,即500倍就能使一个尺寸为0.2μm放大到人眼能分辨的0.1mm.由此可见,要观察更细微结构需要提高显微镜的分辨率.根据瑞利准则,光学显微镜的分辨本领可表示为:Fig.1Sketchillustratingtheworkingprincipleofopticalmicroscope.其中,λ为光源的波长,NA为数值孔径,其值是透镜与样品间的介质折射率(n)与入射孔径角(α)正弦的乘积,即NA=nsinα.可见,减少波长能有效提高光学显微镜的分辨能力,例如以紫外光为光源的显微镜分辨率可提高到0.1μm,欲进一步提高显微镜分辨能力须选择波长更短的光源.电子波的波长与加速电压(V)相关,可用λ=12.26×V−−√式表示,根据该公式,100kV和200kV电压加速电子束的波长分别为0.00387nm和0.00274nm,经相对论修正后变为0.0037nm和0.00251nm,如以高压加速电子束为光源,能使显微镜的分辨率得到埃的量级,这就促使了电子显微镜的开发.如图2所示,电子显微镜工作原理与光学显微镜相似,只是使用高压技术的电子束为光源,而相应的玻璃聚光镜(condenser)、物镜(objectivelens)以及投影镜(projectionlens)均由磁透镜替代了光学显微镜的玻璃透镜.另外,电子束能与样品中原子发生多种不同作用(图3),除部分电子束被样品吸收生热外,还产生不同种类的电子,如透过电子、弹性和非弹性散射电子、背散射电子、X-射线、俄歇电子以及二次电子等,采用不同特征的电子成像就产生了不同类型的电子显微镜.例如:扫描电子显微镜用二次电子和背散射电子成像,透射电子显微镜用弹性和非弹性散射电子成像,借助具有能量特征的X-射线或具有电子能量损失特征非弹性散射电子可使扫描电子显微镜或透射电子显微镜具备材料成分分析功能.Fig.2Sketchillustratingtheworkingprincipleofelectronmicroscope.Fig.3Sketchshowsdifferentelectronsgeneratedafterinteractionoftheincidentelectronswiththeatomsinthesample.2样品制备由于电子的穿透能力非常差,只能穿透几毫米的空气或约1µm的水.因此,要求电镜观察用样品非常薄,在200nm以内,最好控制在30~50nm.用于高分辨成像的样品需更薄,最好为10nm左右.因此,电镜样品的制备十分困难但非常重要,需要一定的技巧性.一方面,要求样品足够薄,能使电子束透过成像;另一方面,要确保制备过程不破坏样品的内在微细结构.另外,尽管电镜样品用不同目数的铜网支撑(通常为400目),如此薄的样品在上百万伏电压加速的电子束下并不稳定,如电子束轰击破碎、电子束下抖动等,从而需进一步加固样品.基于需观察材料的品性和形态不同,甚至是同一种材料因不同的研究目的,制样方法也各不相同,从而发展了各种各样的制样方法.下面将重点介绍一些常用的不同类型聚合物材料的电镜样品制备方法.2.1支撑膜制备支撑膜在电镜实验中十分常用,在纳米胶囊与颗粒等本身无法成膜样品的形态结构观察时,是必须使用的.支撑膜的厚度一般为10nm左右,要求稳定且无结构,常用的支撑膜有硝化纤维素(又称火棉胶)、聚乙烯醇缩甲醛和真空蒸涂的无定型碳,针对这些常用材料的薄膜制备方法如下.2.1.1硝化纤维素支撑膜制备硝化纤维素支撑膜可通过沉降和滤纸捞膜2种方法获得.沉降制膜法相对简单,初学者容易实现.如图4(a)所示,用一个制膜器,在底部放置网格,将电镜铜网置于网格上方,然后注入蒸馏水,在蒸馏水表面滴加硝化纤维素的乙酸戊酯溶液,待乙酸戊酯溶液挥发成膜后,打开底部阀门排尽蒸馏水,硝化纤维素支撑膜便覆盖在铜网上,由此得到的带有硝化纤维素支持膜的铜网烘箱中50~60℃干燥后便可投入使用.根据所需膜的厚度要求,硝化纤维素的乙酸戊酯溶液浓度可设定在0.5wt%~1.5wt%范围内.对有经验的学者而言,滤纸捞膜法更简洁.如图4(b)所示,用浓度为0.5wt%~1.5wt%的硝化纤维素乙酸戊酯溶液直接浇注在蒸馏水表面成膜后,将铜网整齐地放置在膜上,然后用滤纸平放在硝化纤维素膜的上面,并快速反转捞起带有硝化纤维素支撑膜的铜网,干燥后即可备用.Fig.4Sketchillustratingthewaysforpreparingnitrocellulose(NC)supportingmembraneusedinelectronmicroscopyexperiments.(a)SedimentationoftheNCmembraneoncoppergrids.(b)FilterpaperfishingofcoppergridssupportedbytheNCmembrane.2.1.2聚乙烯醇缩甲醛支撑膜制备硝化纤维素支撑膜制备方法也同样适用于聚乙烯醇缩甲醛(PVF)支撑膜的制备,但考虑到PVF的溶剂为氯仿,挥发速率很快,还可以通过玻片蘸取的方法获得.如图5(a)所示,将沉浸于0.1wt%~0.2wt%PVF氯仿溶液中的表面光洁的载玻片(图5(a)左半部分)缓慢提起,并在充满这种溶液饱和气体的气氛中干燥(图5(a)右半部分),干燥后用刀片将载玻片边缘的PVF薄膜划破,通过漂浮的方法将PVF薄膜转移到蒸馏水表面(图5(b)),放置铜网后用滤纸捞起干燥即可获得含PVF薄层支撑膜的铜网.Fig.5AdiagramillustratingthepreparationofPVFsupportfilmthroughdippingacleanglassslideintoitschloroformsolution(a)andthenfloatingthethinPVFlayerontothesurfaceofdistilledwater(b).2.1.3无定型碳支撑膜制备上述硝化纤维素和聚乙烯醇缩甲醛支撑膜的制备方法无需专用设备,但在后续的聚合物样品制备过程中会有困难.例如:需要高温处理的样品,高温处理过程会破坏支撑膜,即便是常温下聚合物溶液的沉积过程中,若所用溶剂为共溶剂,支撑膜也会被破坏.因此,最理想、最常用的支撑膜是无定型碳膜,它具有耐高温、耐溶剂、高模量等优点.用无定型碳固定聚合物薄膜的最简单办法是直接对要观察的聚合物样品表面真空沉积薄层碳,以确保聚合物样品在电子束下稳定.需要指出的是,由此获得的聚合物样品不适用于需进一步处理样品,原因是直接表面沉积的碳膜对聚合物的结构有固定能力,如表面沉积碳膜的取向聚合物薄膜熔融重结晶仍保持原有取向结构[64~67].实际上,制备碳支撑膜的简单方法是在硝化纤维素和聚乙烯醇缩甲醛支撑膜表面真空沉积薄层碳,以此获得支撑膜可直接使用,也可以溶解除去硝化纤维素和聚乙烯醇缩甲醛后使用.当然,无定型碳支撑膜的传统制法是在光洁的载玻片或新剥离的云母表面真空沉积无定型碳,获得连续的无定型碳膜后,用刀片将其分割成3mm×3mm的小片,通过图5(b)所示的方式漂浮转移到蒸馏水表面,然后用镊子夹住铜网自下而上捞起即可用作支撑膜.2.2聚合物样品制备2.2.1微粒材料的电镜样品制备方法用电镜研究微粒状材料的结构、形状、尺寸和分散状态时,根据微粒材料的分散状况,主要有如下几种电镜样品的制备方法.(a)悬浮法.对在液体里分散均匀、沉降速度慢且无丝毫溶解能力的微粒,可制备浓度适当的均匀分散悬浮液,用微量滴管将悬浮液滴到有支撑膜的铜网上,干燥后使用.(b)微量喷雾法.用悬浮法将悬浮液直接滴在支撑膜上,在干燥过程中可能会引起微粒间的聚集.为避免这种情况,可将悬浮液装入微量喷雾器,利用洁净的压缩气体使其产生极细雾滴,直接喷到带支撑膜的铜网上.微量喷雾法能获得单分子分散的样品,是研究聚合物单分子结晶行为理想制样方法.(c)干撒法.对在干燥状态,相互间凝聚力不强且无磁性的微粒材料,可直接撒在带硝化纤维素或聚乙烯醇缩甲醛支撑膜的铜网上,用吸耳球吹掉未很好附着的微粒后即可使用.(d)空中沉积法.将浮游性好的微粒材料置于真空罩的放气阀处,通过注入大气使其猛烈飞溅而雾化,这样微粒便能缓慢、均匀地沉降到预先放在底部带硝化纤维素或聚乙烯醇缩甲醛支撑膜的铜网上,用吸耳球吹掉未很好附着的微粒后即可使用.(e)硝化纤维素包埋法.将适量的微粒混合在1.5wt%的硝化纤维素溶液中,使其分散均匀,然后浇注在蒸馏水表面,当溶液向周围展开时,颗粒也随之分布于膜层内,所成膜转移到铜网上便可用于电镜观察.(f)糊状法.对处于油脂等介质中的微粒,可以取其少许糊状物轻涂于有支持膜的铜网上,用适当的溶剂逐渐清洗糊状物,将含适量糊状物的铜网干燥后用于电镜观察.2.2.2块状材料的电镜样品制备方法在加工条件-形态结构-性能关系的研究中,对块状高分子制品材料微观结构的电镜观察通常是借助超薄切片获得电子束能够穿透的薄片样品,颗粒状样品也可以通过环氧树脂包埋后进行超薄切片.对块状高分子材料表面微观结构的研究还可以采用复型法制备样品,包括一次和二次复型法.如图6(a)所示,一次复型是首先对需观察的块状样品表面进行重金属投影,然后真空蒸涂一层15~25nm厚的碳膜,再将聚丙烯酸的水溶液涂在碳膜上,待聚丙烯酸的水溶液干燥后,将聚丙烯酸膜从样品表面剥离并反向(即与样品的接触面朝上)置于蒸馏水表面,反复几次更换蒸馏水将聚丙烯酸完全溶解掉后,捞在铜网上即可用电镜观察.二次复型,如图6(b)所示,是在刻蚀处理过的块状样品表面滴上适量的丙酮溶剂,使其均匀铺开并及时将略大于样品的醋酸纤维素(AC)薄膜粘贴到样品表面,借助溶剂使AC薄膜软化,轻压AC薄膜记录样品的微细结构,待溶剂完全挥发后,将AC薄膜剥离样品,在印痕面投影重金属和蒸涂碳膜,然后用丁酮将AC薄膜完全溶除,即可得到与样品表面结构完全一致的碳复型膜.Fig.6Sketchesshowingthesingle(a)anddouble(b)duplicationprocessesforrecordingsurfacemicrostructuresofbigblockmaterialsusedinelectronmicroscopyexperiments.2.2.3高分子薄膜的直接制备方法可溶性高分子材料,特别是样品拥有量很少时,可采用稀溶液制样.其中,稀溶液结晶是获得高分子单晶的常用方法,通常是高温配置聚合物的极稀溶液(~0.1wt%),降至适合温度静置结晶,然后用铜网在溶液中捞取单晶进行观察.为高效获取聚合物单晶,人们经常采用自晶种(self-seeding)技术[68,69],即将高温配置的聚合物极稀溶液降至室温,获得大量聚合物晶体,再次加热到适当温度溶解大部分晶体后降至适合温度静置,这样借助残留晶核诱导结晶能够获得大尺寸高分子单晶.聚合物超薄膜可用溶液浇铸(solutioncastfilm)或甩膜(spincoating)等方法直接获得,即将浓度合适的聚合物稀溶液滴在液面(如甘油或磷酸),静止或快速转动基体表面(如载玻片或新剥离的云母)蒸发成膜.甩膜法是最常用制样方法,广为人知,此处不再赘述.溶液浇铸制样的过程如下,使用甘油或磷酸浴,加热至合适温度,将盛满洁净甘油或磷酸的烧杯置于高温浴中,待温度平衡后,将聚合物液滴滴在烧杯中的甘油或磷酸表面成膜,用滤纸沿烧杯壁插入甘油或磷酸中,缓慢倾斜提起聚合物膜,然后将捞取聚合物薄膜的滤纸平放在蒸馏水表面冲洗净甘油或磷酸,由此获得的聚合物薄膜转移至铜网后即可用于电镜观察.以此获得聚合物膜的厚度由溶液浓度控制,聚合物稀溶液的浓度通常在0.3wt%~0.5wt%范围内.成膜质量及聚合物的形态结构与成膜温度和溶剂性质及其挥发速度有关.确定最佳温度的最有效方法是先将甘油或磷酸浴加热到一定温度,在停止加热的缓慢冷却过程中,不断重复上述的浇注过程,直至获得理想的聚合物薄膜,此时的油浴温度即是最佳成膜温度.实验表明,全同聚丙烯(iPP)的最佳成膜条件为0.3wt%二甲苯稀溶液在110℃左右的甘油表面浇注成膜[70].高分子的取向薄膜可以通过熔体拉伸(melt-drawtechnique)[71]、摩擦成膜(frictiontransfertechnique)[72,73]或固相拉伸[74]等方法获得.如图7(a)所示,熔体拉伸法是将聚合物溶液均匀浇注在预热的玻璃板上,待溶剂挥发后,用转动的滚筒将玻璃板上的聚合物熔体拉起,图7(a)下侧是由此获得的高取向聚乙烯(PE)的电镜明场像和电子衍射图,薄膜厚度取决于溶液浓度和拉伸速率,取向程度及结构由拉伸速率和温度控制.摩擦成膜法是一定压力下将块状聚合物材料在预热的玻璃板上快速滑动(图7(b)),在玻璃表面留下高取向聚合物超薄膜,由此制得的聚合物膜可直接采用2.2.2节中描述的聚丙烯酸脱膜法从玻璃表面脱落,转移到铜网上进行电镜观察.图7(b)中给出了聚四氟乙烯(PTFE)摩擦高取向膜的电镜明场像和电子衍射图,其优点是无需溶剂,缺点是需要样品量比较大.固相拉伸方法是将聚合物溶液浇注在韧性好的聚合物载体上,待溶剂挥发后,拉伸聚合物载体至一定延伸率后,溶去载体聚合物即可得到取向的聚合物薄膜.另外,我们发展了聚丙烯酸辅助的聚合物超薄膜拉伸技术,具体操作是在聚合物超薄膜表面浇注聚丙烯酸水溶液,待聚丙烯酸水溶液凝固到能够拉伸的程度进行不同程度的拉伸.以高取向见同聚丙烯(sPP)超薄膜(50~60nm)的拉伸形变过程电镜跟踪研究为例[74,75],研究表明sPP存在多种晶型,如图8(a)和8(b)所示的晶型I和晶型Ⅲ,固相拉伸导致晶型I向晶型Ⅲ转变,高温(~100℃)退火则可实现晶型Ⅲ向晶型I的转变‍.利用我们发明的方法,成功实现了sPP超薄膜拉伸过程晶型I-Ⅲ转变的电镜跟踪研究.结果表明,拉伸50%时(图8(c))部分晶型I转变为晶型Ⅲ,进一步拉伸至100%时,晶型I和Ⅲ依然共存(图8(d)),但晶型Ⅱ的含量明显高于晶型I,在拉伸150%时,晶型I的衍射点消失(图8(e)),说明应变λ为2.5时,sPP完成晶型I-Ⅲ转变.Fig.7Sketchesillustratingthemelt-draw(a)andfriction-transfer(b)techniquesforpreparinghighlyorientedpolymerultrathinfilms,andthecorrespondingBFimagesandelectrondiffractionpatternsoftheresultantPEthinfilms.Thewhitearrowsindicatethedrawandslidingdirectionsduringfilmpreparation.Fig.8ElectrondiffractionpatternsofhighlyorientedformI(a)andformⅢ(b)syndiotacticpolypropyleneultrathinfilms(50-60nminthickness).ThebottompanelshowsitsI-Ⅲphasetransitionduringstretchingoftheultrathinfilmwiththehelpofincompletelysolidifiedpoly(acrylicacid)todifferentdrawratiosof(c)1.5,(d)2.0,and(e)2.5.Thewhitearrowindicatesthestretchingdirection.(ReprintedwithpermissionfromRef.‍[74] Copyright(2001)KluwerAcademicPublishers).2.2.4高分子薄膜热处理方法尽管上述方法制备的聚合物薄膜能够直接用于电镜实验,许多研究还需对所获膜做进一步处理,如研究结晶温度对聚合物形态结构影响时,需将聚合物薄膜在不同温度熔融重结晶.对聚合物薄膜熔融处理的一种简单、实用方法是对新剥离的云母片表面真空蒸涂薄层碳膜,将聚合物膜置于碳膜上进行相应处理,然后将云母边缘剪除,用图5(b)的方式漂膜后,转移到铜网表面用于电镜观察.图9是碳膜表面间同聚丁烯-1(sPB-1)膜60℃熔融15min30℃等温结晶几周后获得单晶的明场和电子衍射图[76].Fig.9BFelectronmicrograph(a)andcorrespondingelectrondiffractionpattern(b)ofansPB-1filmpreparedbycastingofa0.1wt%xylenesolutiononacarbon-coatedmicasurface,whichwasheat-treatedafterevaporationofthesolventat60℃for15minandthenisothermallycrystallizedat30℃forseveralweeks.(ReprintedwithpermissionfromRef.‍[76] Copyright(2001)AmericanChemicalSociety).2.2.5增加高分子薄膜衬度的方法透射电镜利用透过样品的弹性及非弹性散射电子成像,图像的衬度(又称反差)取决于试样对入射电子的散射过程.根据波动理论,入射电子波(也即电子束)经过试样后产生透过电子波和散射电子波,依靠波函数的振幅和相位传递样品的结构信息,因此能产生振幅衬度和相位衬度.在样品厚度大于10nm时,振幅衬度成像起主要作用.振幅衬度又分衍射衬度和质量厚度衬度,其中衍射衬度也称为Bragg衬度,只存在于晶体样品,是指当某晶面与入射电子束间夹角满足Bragg条件时,由于衍射现象使经过样品并通过物镜光阑的电子束强度降低而产生的反差.衍射衬度受限于聚合物晶体的辐照寿命,如图10所示,高取向PE薄膜晶体破坏前存在衍射反差(图10(a)),但晶体有序结构被电子束破坏后,全部衍射反差消失(图10(b)).质量厚度衬度也叫吸收衬度,起因是试样不同部位的质量厚度(即电子密度乘以样品厚度)差异,造成电子束通过物镜光阑到达像平面的强度不同,因此产生像的明暗差别.如图10所示,PE片晶区因质量厚度大而暗,质量厚度小的非晶区较片晶区明亮.Fig.10BFelectronmicrographsofhighlyorientedPEthinfilmbefore(a)andafter(b)destructionofthecrystals.Therectanglesdemonstratethesameplaceoftherecordedimages,whiletheellipsesillustratethedisappearanceofthediffractioncontrastafterdestructionofthecrystals.相位衬度是透过样品的散射与未散射电子波间的相位差在成像过程中的体现,当样品厚度小于10nm且被观察的结构细节小于2nm时,如高分辨电子显微成像,电子束经过样品后的振幅变化不大,相位衬度对成像起主要作用.由于肉眼对相位衬度完全不敏感,通常是将相位反差转变为振幅反差,实现肉眼辨别,这会在电镜观察技巧处详细介绍.从上述描述可以看到,电镜的成像衬度主要来自经样品后的振幅变化,聚合物材料的电子密度差异很小,致使聚合物样品的电镜明场像反差不够强,因此发展了一些增加聚合物样品衬度的方法,如染色和重金属投影等.染色是将电子密度高的重金属原子引入聚合物的某些区域,使这些区域的电子密度大幅度提高来增大衬度,在对生物大分子的电镜研究中经常使用.常用染色剂有四氧化锇(OsO4)和四氧化钌(RuO4)2种,其作用机制分别为化学反应和物理渗透.如图11(a)所示,四氧化锇染色是利用其与―C=C―双键、―OH以及―NH2基团间的化学反应,使被染色的聚合物材料中含有重金属锇,使样品的明场成像衬度明显提高.图11(b)是经四氧化锇染色的高抗冲聚苯乙烯(HIPS)样品的电镜明场像,基于四氧化锇与HIPS中接枝丁二烯链的反应,使重金属饿键接到丁二烯链上,因而清晰地区分了聚苯乙烯基体、分散的聚丁二烯微区以及聚丁二烯微区中的聚苯乙烯微区,呈现了蜂窝状的相中相结构,说分散在聚苯乙烯基体中的聚丁二烯微区中同样包含了聚苯乙烯更小微区.四氧化钌染色是利用其对不同聚合物或同一聚合物的不同部位(如晶区和非晶区)的不同渗透能力,使不同聚合物或同一聚合物的不同部位含有不同量的重金属钌,从而使图像的衬度提高.图11(c)和11(d)给出了iPP超薄膜四氧化钌染色前(图11(c))、后(图11(d))的电镜明场像[70],因为四氧化钌渗入iPP非晶区的能力强,导致染色前后iPP片晶结构的衬度反转,即染色前的iPP黑色片晶,染色后变为白色线条.Fig.11(a)thereactionbetween―C=C―doublebondsandOsO4.(b)AnelectronmicrographofHIPSthinfilmstainedbyOsO4,whichshowsthehoneycombstructuresofpolybutadienedomainsdispersedinthepolystyrenematrix.TheBFelectronmicrographsofiPPthinfilmbefore(c)andafter(d)RuO4staining.(Part(c)isreprintedwithpermissionfromRef.‍[70] Copyright(2013)ElsevierScienceLtd.).重金属投影在复型法制备聚合物样品时必须使用(2.2.2节),目的也是增加反差.其原理如图12(a)所示,利用样品的表面起伏,通过小角度(15°~30°)溅射铂金(Pt)或金(Au),使样品凸起部位的电子密度显著增加,而处于凹陷部位的阴影区电子密度保持不变,以此突显样品的微细结构.图12(b)和12(c)分别是Pt投影和非投影间同丙烯-丁烯-1共聚物(sPPBu)单晶的电镜明场像[77,78],显然Pt投影的图像更清晰,除平躺(flat-on)单晶外,还展示了一些侧立(edge-on)微细片晶结构.Fig.12AsketchshowsthePtorAushadowingprocess(a)andtheBFelectronmicrographsofsPPBusinglecrystalswith(b)andwithout(c)Ptshadowing(Part(c)isreprintedwithpermissionfromRef.‍[77] Copyright(2002)AmericanChemicalSociety).3电镜观察技术电镜观察聚合物样品的最大挑战是聚合物超薄膜的稳定性差,如高压电子束轰击造成的样品抖动及破碎、晶体结构破坏等,因此使用电镜观察聚合物样品需要一些特殊技术.本节将简要介绍电镜观察聚合物样品的一些常用技巧.3.1明暗场观察与成像电镜能够结合明场像、暗场像和电子衍射结果诠释聚合物结构.其中,电子衍射与X-射线衍射原理完全一致,只是所用的电子束光源波长(100kV加速电压时为0.0037nm,200kV加速电压时为0.00251nm)比X-射线的波长(0.154nm)短很多,感兴趣的读者可参阅该系列专辑的X-射线衍射一文[79].明、暗场像利用不同的透过光成像获取,如图13(a)所示,直接利用透过样品的弹性和非弹性散射电子成像即可获得明场像.暗场像只能通过选取满足某晶面衍射的特定光成像而获得,常用的操作方法如下:在衍射模式下,获取样品的电子衍射图,确定想了解的某个晶面结构信息后,加入物镜光阑,通过偏移物镜光阑到只能观察到感兴趣的晶面衍射点时(图13(b)),退出衍射光阑,即可获得相应晶面的暗场像.在保持物镜光阑居中的情况下,也可以通过倾斜入射电子束,使感兴趣晶面的衍射点呈现在物镜光阑的中心位置(图13(c)),退出衍射光阑获得相应晶面的暗场像.对设有特殊物镜光阑的电镜设备,通过狭缝物镜光阑选择拟观察的晶面衍射点或衍射环(图13(d)),能够在不倾斜入射光和偏置物镜光阑的前提下直接获得暗场像.无论采取何种方式暗场观察,设置成像条件后,移动样品寻找到理想的位置迅速取图便可得到高质量的暗场像.Fig.13SketchesshowingBFimaging(a)andDFimagingbyoffsetobjectiveaperture(b),tiltingofincidentlight(c),oruseofspecialobjectiveaperture(d).3.2防止样品抖动及破碎电镜观察聚合物样品的最大挑战是聚合物超薄膜的稳定性差,如高压电子束轰击造成的样品抖动及破碎、晶体结构破坏等,因此使用电镜观察聚合物样品需要一些特殊技术.避免样品破碎的办法是使用支撑膜,2.1节描述的所有支撑膜对防止聚合物超薄膜破碎均有很好效果,但防止样品抖动最好采用高模量无定型碳支撑膜.在无支撑膜的条件下,选择大目数四方孔铜网制备样品,观察铜网角落部位的样品区域也能够一定程度的降低抖动和避免破碎.3.3邻位聚焦技术聚合物晶体在电子束下的存活寿命非常短,通常只有几秒钟,也给记录聚合物晶态样品的真实形态结构带来困难,解决这一问题的常用方法是低剂量电子束下观察.正常条件下观察时,人们发展了邻位聚焦技术.操作程序是先在低放大倍数、低光照剂量下选择适合观察的样品区域,然后在所需放大倍率、正常光照条件进行聚焦,尽管聚焦过程破坏了样品的原有结构(图14(a)),将样品移动到邻近的位置,并迅速拍摄图像即可清晰记录样品的固有结构,如图14(b)所示.图14(c)给出了取向聚乙烯薄膜横跨聚焦区及其临近区域的电子显微镜暗场像,由于晶体结构在聚焦过程被破坏,聚焦区未显示任何结构信息,邻近区域却很好展示了平行排列的取向片晶结构.Fig.14BFelectronmicrographsofasolutioncastiPPthinfilmrecordedattheareausedforfocusing(a)andanadjacentfresharea(b).(c)ADFelectronmicrographofamelt-drawnPEorientedthinfilmtakenattheboundarybetweentheareausedforfocusingandanadjacentfresharea.3.4欠焦成像技术因聚合物样品的成像衬度很低,发展了染色和重金属投影增加聚合物样品衬度的方法,但2种方法均有存在一些问题.例如:重金属投影需要相应设备,且使样品制备过程繁琐,而染色剂对人体有害,因此建议慎用.实际上,在电镜观察聚合物样品时,也有提高聚合物样品成像衬度的技巧,也就是此处要阐述的欠焦成像技术.2.2.5节提到,电子显微像的衬度包括振幅衬度和相位衬度,但肉眼对相位衬度不敏感,需要将相位反差转变为振幅反差才能实现肉眼辨别,这种由相位变化引起的振幅反差称为“位相反差”(简称相差),在电镜观察过程中,相差可通过欠焦成像技术实现.图15给出了取向PE薄膜同一位置在不同聚焦程度下拍摄的明场电子显微像.由图15可以看到,正焦条件拍摄的图像(图15(a))最不清晰,离焦(欠焦:图15(b),过焦:图15(c))状态成像的反差反而好,且适当欠焦时图像(图15(b))清晰度最好.造成这一现象的原因是离焦状态在样品质量密度突变区域的周围会出现费涅耳环(Fresnelring),如图15的右下角样品空缺处所示,费涅耳环在欠焦和过焦时分别以亮、暗线勾画区域边缘,使图像更加清晰,因此欠焦成像提高反差的技术被有效利用.采用欠焦而非过焦成像的原因是:(1)基于人眼睛的马赫效应,即生理上的反差抑制习惯,费涅耳亮环可使图像更清晰;(2)过焦成像可能会产生假象,如图16所示.图16实际上给出是微纤样品不同聚焦程度的明场电子显微像,很明显,正焦时(图16(a))结构相对模糊,欠焦时(图16(b))结构变得清晰,虽然过焦时(图16(c))结构也很清晰,但因过焦量太大使真实的微纤结构变为管状结构,造成失真.在欠焦成像操作过程中,首先通过电镜的聚焦辅助功能(如摇摆聚焦功能)获得正交状态,然后逆时针旋转聚焦钮至所需的欠焦状态,并在此状态下进行图像记录.最佳欠焦程度取决于样品的结构尺寸,根据像传递理论,离焦量ρz产生的相差结构约为:d~(2λρz)1/2,也就是说,最佳欠焦量为ρz~d2/2λ,其中:d为样品结构空间距离,λ为电子束波长,由此确定的欠焦量通常为十几个微米.实际操作过程中,可选择合适的参照目标进行聚焦,如图15中的样品空白边缘和图16中箭头所指的杂质等,所选参照目标最清晰时即为最佳欠焦状态.Fig.15BFelectronmicrographsofahighlyorientedPEthinfilmtakeninthesameareaunder(a)focus,(b)defocus,and(c)overfocusconditions.Fig.16BFelectronmicrographsofmicrofibrilstakeninthesameareaasdemonstratedbythearrowsunder(a)focus,(b)defocus,and(c)overfocusconditions.透射电子显微镜不仅能通过明场和暗场像直观展示聚合物材料的微观结构,而且能结合电子衍射关联微细结构与相应的晶体结构与取向行为等.这一节扼要阐述利用透射电子显微镜能够获得的一些结构信息.4.1晶型分析大部分聚合物存在多种晶型,不同类型晶体具有不同的结晶习性,产生不同的形态结构,从而结合明场观察到的形态结构和电子衍射确定的晶体类型被广泛用于不同晶体的结晶行为研究.另外,聚合物的不同晶型间可以发生相转变,有时仅靠明场像无法获取晶体种类的信息.以iPB-1为例[80~91],它存在六方晶型I和I' ,四方晶型Ⅱ和正交晶型Ⅲ,正常情况下结晶首先形成亚稳态晶型Ⅱ,然后室温自发、缓慢地固相转变为晶型I.由于固相转变过程不改变形态结构,电镜明场像在任何时间均给出相似的微观结构,然而电子衍射跟踪不同时刻样品的晶体结构表明,晶型Ⅱ-I固相转变在不断发生.对95℃等温结晶iPB样品的电子衍射研究发现,其晶型Ⅱ-I固相转变可持续近3个月,因此能够获得晶型Ⅱ和I共存的电子衍射图(参见文献[89]的图2(a)).通过对相应电子衍射图的分析发现,转变前后晶型Ⅱ与晶型I拥有相同的(110)衍射方向,说明iPB的相转变沿晶型Ⅱ的(110)晶面发生,从而分子水平揭示了晶型Ⅱ-I转变机理,也为晶型Ⅱ单晶转变晶型I孪晶提供了合理解释.另外,明场观察到的晶型Ⅱ板条状结构和超薄膜高温结晶直接获得的晶型I的六边形结构很好说明了iPB-1晶型Ⅱ和I因晶格对称性不同造成的不同结晶习性.4.2晶体暴露面分析在获取聚合物形态和晶体结构信息的基础上,如需知道聚合物晶体最快生长轴以及聚合物间的特殊相互作用面,还要确定聚合物晶态薄膜的暴露面,即薄膜样品表面对应的晶面.如图17所示,以正交晶型为例,如果所有晶体的结晶学b-和c-轴在膜平面内,a-轴则垂直于bc面,在这种情况下,晶态聚合物薄膜具有固定暴露面,即为(100)晶面(图17(a)).假如所有晶体的结晶学b-或c-轴垂直于膜平面,则可确定其(010)或(001)为固定暴露面(见图17(b)和17(c)).由于聚合物薄膜通常由大量微晶聚集构成,存在每个微晶的结晶学a-、b-和c-轴指向不同的现象.例如:聚合物纤维,其分子链(即结晶学c-轴)沿纤维轴高度取向,但结晶学a-或b-轴在垂直于c-轴的平面任意取向,聚合物薄膜的类似结构(图17(d))说明其没有固定暴露面.聚合物晶态薄膜的暴露面可通过对相应电子衍射结果分析来获取[88],具体做法如图18所示,在相应的电子衍射图中,任意选取2个不应出现在同一方向的衍射点,用2个衍射点的米勒指数(Millerindex),即h、k和l,构成一个三维矩阵,矩阵的第一行为h、k和l,第二、三行分别为两个衍射点对应的h、k和l值,用h1、k1、l1和h2、k2、l2表示,移除该矩阵的第一行(即h、k、l行)以及h(或k或l)对应的列后产生3个独立的二维矩阵,这些二维矩阵的绝对值约化后便是暴露面的h(或k或l)值,即暴露面米勒指数.以溶液浇注iPP薄膜为例,图19是其明场和电子衍射图[92],从明场图可观察到支化的片晶结构,而电子衍射图出现了(001)、(101)和(200)衍射点,这3个衍射点不会出现在同一方向,均可用来确定其晶体的暴露面,根据图18描述的过程,选择任意2个衍射点都会得到暴露面为(010)晶面,也就是说其a-和c-轴在膜平面内,b-轴垂直于膜平面.考虑到聚合物超薄膜结晶,结晶学c-轴和其最快生长轴通常在膜平面内,由此得出iPP最快生长轴为a-轴的结论.对具有诱导附生结晶能力的聚合物体系,根据暴露面分析结果,能够确定2种聚合物的实际接触面[93,94].如iPP与全同聚苯乙烯(iPS)附生结晶的有利相互作用面分别是iPP的(100)和iPS的(110)晶面[95].Fig.17Diagramillustraxposurelatticeplaneofpolymercrystalsinthinfilmsample.Fig.18Diagramillustratingthedeterminationprocessofexposureplaneofpolymerthinfilms.Fig.19Aphasecontrastbrightfieldtransmissionelectronmicrograph(a),itscorrespondingelectrondiffractionpattern(b)andasketchofitwithindexingofthereflectionspots(c)ofasolutioncastiPPthinfilm(ReprintedwithpermissionfromRef.‍[92] Copyright(2013)ChineseChemicalSociety).4.3晶体取向分析电子衍射能够提供聚合物晶体取向的准确信息[95~99].图20(a)和20(b)分别给出了表面蒸涂碳膜的熔体拉伸PE膜及其150℃熔融15min后128℃重结晶2h的明场像和电子衍射图,从明场像可以看到热处理前后并未改变平行排列的、高度取向的片晶结构,热处理前后的电子衍射图却非常不同,用4.2节描述确定晶体暴露面的方法分析图20(a)和20(b)中的衍射图发现,热处理前,选择图20(a)中所标注的不同衍射点会得出的不同结论.例如:(002)和(110)衍射点确定的暴露面为(110),(002)和(200)衍射点确定的暴露面为(100),(002)和(200)衍射点给出的暴露面是(010)晶面.然而,热处理后,选择图20(b)中任何2个标定的衍射点得到的暴露面均为(100)晶面.上述结果似乎难以理解,但实际上它准确给出了热处理前后PE熔体拉伸膜的不同晶体取向结构.热处理前的衍射结果说明熔体拉伸制备的PE膜为单轴取向结构(又称为纤维取向结构),分子链(c-轴)沿拉伸方向取向,但a-轴和b-轴在垂直于c-轴的平面内无规取向.热处理后的衍射结果证明表面蒸涂碳膜固定了熔体拉伸PE膜的原有分子链取向,但熔融重结晶过程中其最快生长轴(b-轴)落于膜平面内,从而产生c-轴和b-轴均在膜平面内且c-轴沿拉伸方向排列的双轴取向结构.Fig.20ElectronmicrographsandcorrespondingelectrondiffractionpatternsofvacuumcarboncoatedPEmelt-drawnfilms(a)aspreparedand(b)aftermeltingat150℃for15minandthenrecrystallizedat128℃for2h.Arrowsindicatethedrawingdirectionduringfilmpreparation.为精准确定晶体取向结构,有时需要通过单轴或双轴倾斜样品获取转轴电子衍射图[100,101].样品倾转首先需要确定绕那个轴旋转,并使旋转轴沿样品杆轴取向.例如:欲绕c-轴旋转,需将c-轴调整到与样品杆轴平行状态,然后单轴旋转样品杆即可改变a-和b-轴的取向,使不同晶面满足Bragg衍射条件,从而产生衍射,如b-轴在膜平面时出现相应的(0kl),而a-轴在膜平面时出现相应的(h0l).同理,双轴倾转需要先经单轴倾斜调整好垂直于样品杆轴另一个方向的旋转轴后才能进行另一个方向倾转,使要观察的晶面满足Bragg衍射条件.由于大尺寸聚合物单晶不易获得,且晶体在电子束轰击稳定性极差,获取聚合物转轴电子衍射比较困难,特别是双轴倾转,需要很强的操作技巧.4.4晶体缺陷分析图21给出了sPP和sPB-1不同晶型的晶胞结构示意图,可以看出sPP晶型I属于面心晶胞结构(图21(a)),而sPB-1晶型I为体心晶胞结构(图21(d)),sPP晶型Ⅱ具有与sPB-1晶型I类似的体心晶胞结构(图21(b)),sPB-1晶型I' 则采取与sPP晶型I类似的堆砌方式(图21(c)).由于晶体中sPP与sPB-1的分子链均呈反式-反式-旁式-旁式(ttgg)螺旋链构象结构,sPP和sPB-1能够共晶,即sPP和sPB-1分子链均可排入对方的晶胞中.因此,我们对sPP、sPB-1和及其共聚物sPPBu的单晶结构进行了研究.结果发现,如图22所示,纯sPP(图22(a))[77]和sPB-1(图22(f))[76,102]单晶均为其相应的晶型I结构.sPPBu共聚物的单晶结构取决于2个组分的共聚比[77,78],含少量丁烯-1组分(sPPBu具有与sPP完全相同的堆砌结构(图22(b)),当丁烯-1组分含量为9.9mol%时,sPPBu单晶的衍射与sPP单晶类似(图22(c)),但在h20衍射层(相对于sPB-1为h10层)出现衍射条带,该衍射条带在丁烯-1组分含量为34.7mol%时更加明显(图22(d)),在丁烯-1组分超过90mol%后,sPPBu采取与sPB-1相同的结晶方式堆砌(图22(e)).衍射条带的出现说明sPPBu单晶有结构缺陷[103],根据其出现位置(sPP的h20衍射层或sPB-1的h10层)能够明确缺陷的存在形式和给出合理解释[104].如图23所示,图中分别用A、B、C、D描绘了sPP的晶型I、Ⅱ以及sPBu的晶型I' 和I晶胞结构,富含丙烯的sPPBu结晶倾向于形成sPP的晶型I结构(A),但其某一排分子链沿b-轴方向的b/4位移后产生sPP的晶型Ⅱ结构(B)或sPBu的晶型I结构(C).对富含丁烯的sPPBu而言,易于形成sPBu的晶型I结构(C),此时的b-轴方向b/2位移则导致sPP的晶型I结构(A)或sPBu的晶型I' 结构(D)的产生.在同一个单晶中上述不同晶体结构类型的存在表现为单晶的缺陷,使其电子衍射出现条带结构.Fig.21ChainpackingmodelsofformIsPP(a),formⅡsPP(b),formI' sPB-1(c)andformIsPB-1(d).Inpart(c),thesymbolR/LindicatestheexistenceofstructuredisorderinformI' sPB-1withright(R)andleft(L)handedhelices,thatis,therightandlefthandedchainscanbefoundwiththesameprobabilityineachsiteofunitcell.(ReprintedwithpermissionfromRef.[78] Copyright(2010)AmericanChemicalSociety).Fig.22ElectrondiffractionpatternsofsPPBusinglecrystalscontaining0mol%(a),2.6mol%(b),9.9mol%(c),34.7mol%(d),98.6mol%(e)and100mol%1-butenecomponent(f)(ReprintedwithpermissionfromRefs.[77,78] Copyright(2002,2010)AmericanChemicalSociety).Fig.23sPPBuchainpackingmodelsasafunctionofbutane-1concentration.TheunitcellsoftheB-centeredformIofsPP(A),theC-centeredisochiralformⅡofsPP(B),theC-centeredisochiralformIofsPB-1(C)andB-centeredformI' ofsPB-1(D)areindicated.Forpropene-richcopolymersb/4shiftdefectsproducelocalarrangementofchainsasintheC-centeredformⅡofsPP(B)orformIsPB-1(C)inaprevailingmodeofpackingoftheB-centeredformIofsPP(A).Athighbutenecontent,b/4shiftdefectsproducelocalarrangementofchainsasintheB-centeredformI(A)ofsPPandformI' ofsPB-1(D)inaprevailingmodeofpackingoftheC-centeredformIofsPB-1(C)andformⅡofsPP(B).(ReprintedwithpermissionfromRef.‍[78] Copyright(2010)AmericanChemicalSociety).5总结与展望透射电子显微镜集明、暗场观察以及电子衍射技术于一体,能直观展示样品的微细结构与形态,并准确关联晶态结构和晶体取向,是材料微观结构表征不可或缺的仪器设备.由于电子束的弱穿透能力,只能观察厚度在几十纳米的样品,聚合物超薄膜因电子束轰击下不稳定和非常低的结构反差给电镜研究聚合物样品带来很大困难.因此,经长期的研究探索与发展,开发了系列电镜用于聚合物结构研究的技术手段,包括制样方法、观察技巧等.针对聚合物超薄膜电子束轰击抖动和破碎等不稳定问题,人们发掘了用硝化纤维素、聚乙烯醇缩甲醛和真空蒸涂无定型碳等薄膜支撑样品的方法,特别是在样品表面直接真空沉积的高模量无定型碳膜能够确保样品不抖动、不破碎,但该方法不能用于需进一步处理样品的固定.当然,在不使用支撑膜的条件下,采用大目数四方孔铜网制备样品,选择铜网角落部位的样品观察,对降低样品抖动和避免样品破碎也有较好效果.针对电子束轰击聚合物超薄膜真实结构破坏问题,如聚合物晶体在电子束下的寿命仅有几秒钟,常用的解决方法是低剂量电子束下观察.在正常条件观察时,人们巧妙地发展了邻位聚焦技巧.即在需观察部位的邻近处完成聚焦、亮度和成像时间等的调整,然后移至观察部位迅速记录图像.针对聚合物材料非常低的结构反差,人们在制样方面发明了钌酸和锇酸染色以及铂金或金重金属投影等提高聚合物样品衬度的办法,在观察技巧方面发展了欠焦成像技术.上述各种特殊技术的发展,使电镜在聚合物微观结构研究中得到了广泛应用.电镜除能直观展示聚合物的微细结构外,结合暗场和电子衍射技术能够准确关联相关微观结构中晶体结构、晶体取向以及晶体缺陷存在方式等,已经对高分子科学领域的发展做出了重要贡献,如聚乙烯单晶的电镜研究结果为高分子结晶折叠链模型的建立提供了坚实依据,推动了高分子结晶理论的快速发展.基于电镜在聚合物微观结构研究中的重要作用,电镜仪器本身也得到了不断发展,如超低温样品室和低剂量辐照模式的使用为聚合物材料的高分辨成像提供了条件[105,106],样品倾转和三维结构重构技术的结合拓展了电镜在聚合物三维微观结构研究方面的应用[107,108].聚合物电子显微术在其本身低辐照损伤、高精度原位观察以及与其他技术联用(如光谱技术)等方面的进一步发展无疑会对高分子科学领域的快速发展做出更大的贡献.作者简介:闫寿科,男,1963年生.1996年中国科学院长春应用化学研究所获得博士学位.1997~2001年德国多特蒙德大学从事科研工作.2001~2008年中国科学院化学研究所,研究员.2008年至今北京化工大学,教授.2018年至今青岛科技大学,教授.曾获“中国科学院百人计划”、“国家杰出青年科学基金”资助.主要研究方向是高分子材料多层次结构和结构调控及其结构-性能关系.参考文献1LiuY,LiC,RenZ,YanS,BryceMR.NatRevMater,2018,3(4):18020.doi:10.1038/natrevmats.2018.202MemonWA,LiJ,FangQ,RenZ,YanS,SunX.JPhysChemB,2019,123(33):7233-7239.doi:10.1021/acs.jpcb.9b035223WangJ,LiuY,HuaL,WangT,DongH,LiH,SunX,RenZ,YanS.ACSApplPolymMater,2021,3(4):2098-2108.doi:10.1021/acsapm.1c001444Deng,LF,ZhangXX,ZhouD,TangJH,LeiJ,LiJF,LiZM.ChineseJPolymSci,2020,38(7):715-729.doi:10.1007/s10118-020-2397-75HuaLei(华磊),YanShouke(闫寿科),RenZhongjie(任忠杰).ActaPolymericaSinica(高分子学报),2020,51(5):457-468.doi:10.11777/j.issn1000-3304.2020.192246SmithP,LemstraPJ.MaterSci,1980,15(2):505-514.doi:10.1007/bf023968027LovingerAJ.Science,1983,220(4602):1115-1121.doi:10.1126/science.220.4602.11158DongH,LiH,WangE,YanS,ZhangJ,YangC,TakahashiI,NakashimaH,TorimitsuK,HuW.JPhysChemB,2009,113(13):4176-4180.doi:10.1021/jp811374h9DongH,LiH,WangE,WeiZ,XuW,HuW,YanS.Langmuir,2008,24(23):13241-13244.doi:10.1021/la802609410LiuL,RenZ,XiaoC,DongD,YanS,HuW,WangZ.OrgElectron,2016,35:186-192.doi:10.1016/j.orgel.2016.05.01711LiuL,RenZ,XiaoC,HeB,DongH,YanS,HuW,WangZ.ChemCommun,2016,52(27):4902-4905.doi:10.1039/c6cc01148a12SunD,LiY,RenZ,BryceMR,LiH,YanS.ChemSci,2014,5(8):3240-3245.doi:10.1039/c4sc01068j13ZhaoC,HongY,ChuX,DongY,HuZ,SunX,YanS.MaterTodayEnergy,2021,20(2):100678.doi:10.1016/j.mtener.2021.10067814WangM,WangS,HuJ,LiH,RenZ,SunX,WangH,YanS.Macromolecules,2020,53(14):5971-5979.doi:10.1021/acs.macromol.0c0110615LiuJ,ZhaoQ,DongY,SunX,HuZ,DongH,HuW,YanS.ACSApplMaterInterfaces,2020:12(26):29818-29825.doi:10.1021/acsami.0c0680916TangZ,YangS,WangH,SunX,RenZ,LiH,YanS.Polymer,2020,194(24):122409.doi:10.1016/j.polymer.2020.12240917SongT,WangS,WangH,SunX,LiH,YanS.IndEngChemRes,2020,59(8):3438-3445.doi:10.1021/acs.iecr.9b0643218MiC,GaoN,LiH,LiuJ,SunX,YanS.ACSApplPolymMater,2019,1(8):1971-1978.doi:10.1021/acsapm.9b0006019MiC,RenZ,LiH,YanS,SunX.IndEngChemRes,2019,58(17):7389-7396.doi:10.1021/acs.iecr.8b0554520ElyashevichGK,KuryndinIS,DmitrievIY,LavrentyevVK,SaprykinaNN,BukošekV.ChineseJPolymSci,2019,37(12):1283-1289.doi:10.1007/s10118-019-2284-221MenY,RiegerJ,HomeyerJ.Macromolecules,2004,37(25):9481-9488.doi:10.1021/ma048274k22DuanY,ZhangJ,ShenD,YanS.Macromolecules,2003,36(13):4874-4879.doi:10.1021/ma034008f23ZhangY,LuY,DuanY,ZhangJ,YanS,ShenD.JPolymSciPhysEd,2004,42(24):4440-4447.doi:10.1002/polb.2030624ZhangJ,DuanY,ShenD,YanS,NodaI,OzakiY.Macromolecules,2004,37(9):3292-3298.doi:10.1021/ma049910h25SunX,PiF,ZhangJ,TakahashiI,Wang,F,YanS,OzakiY.JPhysChemB,2011,115(9):1950-1957.doi:10.1021/jp110003m26HuJ,HanL,ZhangT,DuanY,ZhangJ.ChineseJPolymSci,2019,37(3):253-257.doi:10.1007/s10118-019-2184-527LiH,HouL,WuP.ChineseJPolymSci,2021,39(8):975-983.doi:10.1007/s10118-021-2571-628LiH,RussellT,WangD.ChineseJPolymSci,2021,39(6):651-658.doi:10.1007/s10118-021-2567-229WangY,JiangZ,FuL,LuY,MenY.Macromolecules,2013,46(19):7874-7879.doi:10.1021/ma401326g30LinY,LiX,MengL,ChenX,LvF,ZhangQ,ZhangR,LiL.Macromolecules,2018,51(7):2690-2705.doi:10.1021/acs.macromol.8b0025531WanR,SunX,RenZ,LiH,YanS.Materials,2020,13(24):5655.doi:10.3390/ma1324565532SunX,GuoL,SatoH,OzakiY,YanS,TakahashiI.Polymer,2011,52(17):3865-3870.doi:10.1016/j.polymer.2011.06.02433SuR,WangK,ZhaoP,ZhangQ,DuR,FuQ,LiL,LiL.Polymer,2007,48(15):4529-4536.doi:10.1016/j.polymer.2007.06.00134ZhuH,LvY,ShiD,LiYG,MiaoWJ,WangZB.ChineseJPolymSci,2020,38(9):1015-1024.doi:10.1007/s10118-020-2427-535KangXW,LiuD,ZhangP,KangM,ChenF,YuanQX,ZhaoXL,SongYZ,SongLX.ChineseJPolymSci,2020,38(9):1006-1014.doi:10.1007/s10118-020-2402-136ChenP,ZhaoH,XiaZ,ZhangQ,WangD,MengL,ChenW.ChineseJPolymSci,2021,39(1):102-112.doi:10.1007/s10118-020-2458-y37AleksandrovAI,AleksandrovIA,ShevchenkoVG,OzerinAN.ChineseJPolymSci,2021,39(5):601-609.doi:10.1007/s10118-021-2511-538GaoM,RenZ,YanS,SunJ,ChenX.JPhysChemB,2012,116(32):9832-9837.doi:10.1021/jp304137839LiL,ZhangS,XueM,SunX,RenZ,LiH,HuangQ,YanS.Langmuir,2019,35(34):11167-11174.doi:10.1021/acs.langmuir.9b0181440HuJ,XinR,HouC,YanS,LiuJ.ChineseJPolymSci,2019,37(7):693-699.doi:10.1007/s10118-019-2226-z41SunX,LiH,ZhangX,WangD,SchultzJM,YanS.Macromolecules,2010,43(1):561-564.doi:10.1021/ma901978442StockerW,SchumacherM,GraffS,LangJ,WittmannJC,LovingerAJ,LotzB.Macromolecules,1994,27(23):6948-6955.doi:10.1021/ma00101a03643JiangS,DuanY,LiL,YanD,YanS.Polymer,2004,45(18):6365-6374.doi:http://202.98.16.49/handle/322003/1510944LiH,LiuD,BuX,ZhouZ,RenZ,SunX,ReiterR,YanS,ReiterG.Macromolecules,2020,53(1):346-354.doi:10.1021/acs.macromol.9b0202145LiL,HuJ,LiY,HuangQ,SunX,YanS.Macromolecules,2020,53(5):1745-1751.doi:10.1021/acs.macromol.9b0259846WangH,SchultzJM,YanS.Polymer,2007,48(12):3530-3539.doi:10.1016/j.polymer.2007.03.07947LiL,XinR,LiH,SunX,RenZ,HuangQ,YanS.Macromolecules,2020,53(19):8487-8493.doi:10.1021/acs.macromol.0c0145648HouC,WanR,SunX,RenZ,LiH,YanS.PolymCryst,2020,3(5):e10157.doi:10.1002/pcr2.1015749LiH,SunX,YanS,SchultzJM.Macromolecules,2008,41(13):5062-5064.doi:10.1021/ma702725g50ZhangLL,MiaoWK,RenLJ,YanYK,WangW.ChineseJPolymSci,2021,39(6):716-724.doi:10.1007/s10118-021-2520-451NieY,GaoH,YuM,HuZ,ReiterG,HuW.Polymer,54(13):2013,3402-340752LiJ,LiH,YanS,SunX.ACSApplMaterInterfaces,2021,13(2):2944-2951.doi:10.1021/acsami.0c1919953DuanY,LiuJ,SatoH,ZhangJ,TsujiH,OzakiY,YanS.Biomacromolecules,2006,7(10):2728-2735.doi:10.1021/bm060043t54ZhouH,JiangS,YanS.JPhysChemB,2011,115(46):13449-13454.doi:10.1021/jp205755r55ChangH,ZhangJ,LiL,WangZ,YangC,TakahashiI,OzakiY,YanS.Macromolecules,2010,43(1):362-366.doi:10.1021/ma902235f56XinR,WangS,ZengC,JiA,ZhangJ,RenZ,JiangW,WangZ,YanS.ACSOmega,2020,5(1):843-850.doi:10.1021/acsomega.9b0367557JiangT,WanP,RenZ,YanS.ACSApplMaterInterfaces,2019,11(41):38169-38176.doi:10.1021/acsami.9b1333658LiuJ,WangJ,LiH,ShenD,ZhangJ,OzakiY,YanS.JPhysChemB,2006,110(2):738-742.doi:10.1021/jp053369p59ChuXiao(初笑),YanShouke(闫寿科),SunXiaoli(孙晓丽).ActaPolymericaSinica(高分子学报),2021,52(6):634-646.doi:10.11777/j.issn1000-3304.2021.2103660ZhouW,WengX,JinS,RastogiS,LovingerAJ,LotzB,ChengSZD.Macromolecules,2003,36(25):9485-9491.doi:10.1021/ma030312x61KellerA.PhilosophicalMagazine,1957,2(21):1171-1175.doi:10.1080/1478643570824274662FischerEWZ.Naturforsch,1957,12a:753-754.doi:10.1021/ac60131a71063TillPHJ.JPolymSci,1957,24(106):301-306.doi:10.1002/pol.1957.120241061664YanS.Macromolecules,2003,36(2):339-345.doi:10.1021/ma021387o65MaL,ZhouZ,ZhangJ,SunX,LiH,ZhangJ,YanS.Macromolecules,2017,50(9):3582-3589.doi:10.1021/acs.macromol.7b0029966MaL,ZhangJ,MemonMA,SunX,LiH,YanS.PolymChem,2015,6(43):7524-7532.doi:10.1039/c5py01083g67YanS,PetermannJ.Polymer,2000,41(17):6679-668163.doi:10.1016/s0032-3861(00)00109-968LiuX,WeiQS,ChaiLG,ZhouJJ,HuoH,YanDD,YanSK,XuJ,LiL.ChineseJPolymSci,2017,35(1):78-86.doi:10.1007/s10118-017-1872-269ChaiLG,LiuX,SunXL,LiL,YanSK.PolymChem,2016,7(10):1892-1898.doi:10.1039/c5py02037a70LiuQ,SunX,LiH,YanS.Polymer,2013,54(17):4404-4421.doi:10.1016/j.polymer.2013.04.06671HuJ,XinR,HouC,YanS.MacromolChemPhys,2019,220(5):1800478.doi:10.1002/macp.20180047872WittmannJC,SmithP.Nature,1991,352(6334):414-417.doi:10.1038/352414a073ChaiL,ZhouH,SunX,LiH,YanS.ChineseJPolymSci,2016,34(4):513-522.doi:10.1007/s10118-016-1770-z74BonnetM,YanS,PetermannJ,ZhangB,YangD.JMaterSci,2001,36(2):635-641.doi:10.1023/a:100486832028775LoosJ,SchauwienoldAM,YanS,PetermannJ.PolymBull,1997,38(2):185-189.doi:10.1007/s00289005003676ZhangB,YangD,DeRosaC,YanS.PetermannJ.Macromolecules,2001,34(15):5221-5223.doi:10.1021/ma010036r77ZhangB,YangD,DeRosaC,YanS.Macromolecules,2002,35(12):4646-4652.doi:10.1021/ma011975m78JiangS,LiH,DeRosaC,AuriemmaF,YanS.Macromolecules,2010,43(3):1449-1454.doi:10.1021/ma902389479HuJian(扈健),WangMengfan(王梦梵),WuJinghua(吴婧华).ActaPolymericaSinica(高分子学报),2021,52(10):1390-1405.doi:10.11777/j.issn1000-3304.2020.2025880QiaoY,MenY.Macromolecules,2017,50(14):5490-5497.doi:10.1021/acs.macromol.7b0077181QiaoY,WangQ,MenY.Macromolecules,2016,49(14):5126-5136.doi:10.1021/acs.macromol.6b0086282QiaoY,WangH,MenY.Macromolecules,2018,51(6):2232-2239.doi:10.1021/acs.macromol.7b0248183LiuP,MenY.Macromolecules,2021,54(2):858-865.doi:10.1021/acs.macromol.0c0217184XinR,WangS,GuoZ,LiY,HuJ,SunX,XueM,ZhangJ,YanS.Macromolecules,2020,53(8):3090-3096.doi:10.1021/acs.macromol.0c0041485XinR,GuoZ,LiY,SunX,XueM,ZhangJ,YanS.Macromolecules,2019,52(19):7175-7182.doi:10.1021/acs.macromol.9b0157486XinR,ZhangJ,SunX,LiH,RenZ,YanS.Polymers,2018,10(5):556.doi:10.3390/polym1005055687SuF,LiX,ZhouW,ZhuS,JiY,WangZ,QiZ,LiL.Macromolecules,2013,46(18):7399-7405.doi:10.1021/ma400952r88ZhangB,YangD,YanS.JPolymSciPhysEd,2002,40(23):2641-2645.doi:10.1002/polb.1032789QiuX,AzharU,LiJ,HuangD,JiangS.ChineseJPolymSci,2019,37(7):633-636.doi:10.1007/s10118-019-2273-590MaYP,ZhengWP,LiuCG,ShaoHF,NieHR,HeAH.ChineseJPolymSci,2020,38(2):164-173.doi:10.1007/s10118-020-2337-691ZhangZ,ChenX,ZhangC,Liu,CT,WangZ,LiuYP.ChineseJPolymSci,2020,38(8):888-897.doi:10.1007/s10118-020-2409-792WuJ,ZhouH,LiuQ,YanS.ChineseJPolymSci,2013,31(6):841-852.doi:10.1007/s10118-013-1269-993WangJ,LiuY,ZouD,RenZ,LinJ,LiuX,YanS.Macromolecules,2021,54(9):4342-4350.doi:10.1021/acs.macromol.0c0281594LiY,GuoZ,XueM,YanS.Macromolecules,2019,52(11):4232-4239.doi:10.1021/acs.macromol.9b0062795GuoZ,YuanC,SongC,XinR,HouC,HuJ,LiH,SunX,RenZ,YanS.Macromolecules,2021,54(16):7564-7571.doi:10.1021/acs.macromol.1c0142996WangJ,LiuY,LiH,YanS,SunX,TuD,GuoX,RenZ.MaterChemFront,2020,4(2):661-668.doi:10.1039/c9qm00684b97GuoZ,XinR,HuJ,LiY,SunX,YanS.Macromolecules,2019,52(24):9657-9664.doi:10.1021/acs.macromol.9b0202398LiJ,XueM,XueN,LiH,ZhangL,RenZ,YanS,SunX.Langmuir,2019,35(24):7841-7847.doi:10.1021/acs.langmuir.9b0040299GuoZ,LiS,LiuX,ZhangJ,LiH,SunX,RenZ,YanS.JPhysChemB,2018,122(40):9425-9433.doi:10.1021/acs.jpcb.8b08193100LotzB.Macromolecules,2014,47(21):7612-7624.doi:10.1021/ma5009868101LiC,JinS,WengX,GeJ,ZhangD,BaiF,HarrisF,ChengS,YanD,HeT,LotzB,ChienL.Macromolecules,2002,35(14):5475-5482.doi:10.1021/ma0204453102GuanG,ZhangJ,SunX,LiH,YanS,LotzB.MacromolRapidCommun,2018,39(20):1800353.doi:10.1002/marc.201800353103LovingerAJ,DavisDD,LotzB.Macromolecules,1991,24(2):552-560.doi:10.1021/ma00002a033104LovingerAJ.JApplPhys,1981,52(10):5934-5938.doi:10.1063/1.328522105BrinkmannM,RannouP.Macromolecules,2009,42(4):1125-1130.doi:10.6342/NTU.2009.02410106TosakaM,KamijoT,TsujiM,KohjiyaS,OgawaT,IsodaS,KobayashiT.Macromolecules,2000,33(26):9666-9672.doi:10.1021/ma001495f107JinnaiH,SpontakRJ,NishiT.Macromolecules,2010,43(4):1675-1688.doi:10.1021/ma902035p108JinnaiH,NishikawaY,IkeharaT,ToshioN.AdvPolymSci,2004,170:115-167.doi:10.1007/12_2006_102原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21251&lang=zh《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304DOI:10.11777/j.issn1000-3304.2021.21251
  • Nature Communications:纳米红外研究无机纳米颗粒-聚合物复合材料界面效应
    Nature Communications:纳米红外研究无机纳米颗粒-聚合物复合材料界面效应布鲁克纳米表面事业部 魏琳琳 博士英文题目:Nature Communications: Unraveling bilayer interfacial features and their effects in polar polymer nanocomposites摘要以聚合物为基体,无机纳米粒子为填料的聚合物纳米复合材料具有优异的力学、电学和热学性能。纳米颗粒和聚合物之间的界面效应通常被认为是实现这些性能增强的关键因素。然而,如何理解界面效应以及界面微区的结构与性能是聚合物纳米复合材料领域长期面临的基础性难题。近期,来自武汉理工大学、清华大学、伍伦贡大学等学校的科学家们将Bruker的光热诱导纳米红外技术与其他先进技术相结合,直接探索纳米颗粒-聚合物纳米级界面区域。研究发现无机纳米颗粒与聚合物基体的界面存在强极性构型的“双界面层”结构,包括10纳米厚的内层和大于100纳米的外层界面。分子动力学及相场模拟结果表明纳米颗粒表面电势以及颗粒间距的协同作用是形成界面极性构型的关键作用机制。这项研究的结果有助于阐明界面处的相互作用机制,并为制备纳米复合材料以获得最佳性能提供有价值的见解。利用无机纳米粒子/聚合物复合材料的高极性“双界面层”行为,科学家们在具有超低无机填料含量的纳米复合材料中获得了显著增强的介电及压电性能。相关研究成果以Unraveling bilayer interfacial features and their effects in polar polymer nanocomposites为题,发表在Nature Communications上。实验内容实验选择典型的铁电聚合物PVDF作为基体,填充TiO2纳米颗粒。其中PVDF膜层的厚度低于纳米颗粒的直径,使TiO2能够暴露在膜层表面(图1 a)。图1b,c 样品表面和横截面的SEM图像显示颗粒表面存在约10nm的包裹层。HADDF和碳成像图(图1d,f)进一步表明10nm的结合层富含碳元素,为有机碳链键合在纳米颗粒表面。采用布鲁克nanoIR3纳米红外系统进一步研究了界面区域的化学结构(图1 e f)。采用PVDF极性构象的波数(866cm-1)和非极性构象的吸收波数(766cm-1)进行红外成像,分别对应图1f中图和右图。红外成像图显示纳米颗粒周围存在100nm以上强极性构象区域。压电力显微镜(PFM)采集平行于膜平面和垂直于膜平面的L-PFM图像及面外V-PFM图像,结果显示颗粒的L-PFM呈现一半亮一半暗的结构,V-PFM呈现全亮的结构。表明纳米颗粒/聚合物的内层界面区域内偶极子的极化方向垂直于纳米颗粒表面。综合以上的观测结果,作者揭示了无机纳米颗粒与聚合物基体的界面存在强极性构型的“双界面层”结构, 由10nm的极性偶极子内层界面的和100nm强极性构象的外层界面组成。 图1 直接观测无机纳米颗粒与聚合物基体的“双界面层”结构作者采用nanoIR3纳米红外系统进一步研究了纳米颗粒的间距对界面效应的影响(图2)。距离较远的纳米颗粒会形成强极性构象结构界面(图2 b左图);距离相对较近的纳米颗粒,其界面区域相互重叠,将抑制极性构象的形成(图2 b中图);纳米颗粒相互连接时,界面区域也倾向于相互合并(图2 b右图)。FTIR检测不同TiO2纳米颗粒含量的宏观材料中极性构象的比例(840 cm&minus 1/766 cm&minus 1及 1279 cm&minus 1/766 cm&minus 1峰强比),TiO2纳米颗粒含量0.35%时极性构象最多,继续增加纳米颗粒含量,由于纳米颗粒间距变小,界面区域相互重叠使极性构象含量降低。分子动力学及相场模拟表明极性构象界面的形成取决于纳米颗粒表面电势以及颗粒间距的协同作用。图2 纳米颗粒/聚合物复合材料界面极性区域采用纳米叠层设计(Al2O3/PVDF/ Al2O3)表征单一界面层的贡献。纳米叠层纳米复合材料的介电常数εr与PVDF的膜厚具有很大的相关性,并随着PVDF膜厚的减小而增加。由于界面极性层的影响,纳米叠层纳米复合材料显示出比Al2O3(εr~9.8)和PVDF(εr~7.8)更高的εr。而Al2O3 (15 nm)/PVDF (10 nm)/Al2O3 (15 nm)/PVDF (10 nm)/Al2O3 (15 nm),包含两层内层界面层结构,表现出86 J/cm3的超高介电能量密度,远高于文献报道的纳米复合材料的介电能量密度。同时具有76%的能量效率,与大多数介电聚合物或纳米复合材料相当。图3 内层界面层增强复合材料介电性能 总结借助于布鲁克纳米红外系统,直接观测到纳米颗粒-聚合物复合材料的极性界面构象,并研究了颗粒间距对极性构象的影响。结合其他科学工具的结果,本文的工作促进了对聚合物纳米复合材料中界面基础科学问题的理解,可为高性能极性聚合物复合材料的设计与开发提供指导,并推动介电储能、电卡制冷、柔性压电传感等高新前沿技术领域的发展。 本文相关链接:Unraveling bilayer interfacial features and their effects in polar polymer nanocomposites [J] Nature Communications volume 14, Article number: 5707 (2023)https://www.nature.com/articles/s41467-023-41479-0
  • 循丝探理│碳纤维取向度如何测?
    导 读碳纤维作为高性能纤维的翘楚,具有耐高温、抗摩擦、导电、导热及耐腐蚀等特性,并且沿纤维轴方向有很高的强度和模量,其外形呈纤维状、柔软、可加工成各种织物,一直以来,是航空航天、风电叶片、汽车、压力容器等高端应用场景的核心材料之一。 老话常说:心往一处想,劲儿往一处使。其实说的就是“方向一致进而形成强大的合力”。类似,对纤维材料而言,其分子链、微晶在拉伸等加工过程中产生的方向效应,即取向效应,亦对纤维的机械性能有着直接影响。岛津XRD(X射线衍射仪),配有纤维取向度专用附件,可方便、迅捷的对聚合物等纤维材料取向程度进行测定。 什么是纤维取向度?定义:表示纤维的晶体轴沿着纤维长度方向排列的平行程度或择优取向程度。 先来看两张示意图:左图给各位看官直观的感觉是不是就像一群散兵游勇? 而右图则是整齐队列的既视感?整齐划一、万众一心、众志成城!!! 是的,合成纤维等线形聚合物在未发生取向时,大分子链或链段、微晶的排列是随机的、无序的;而在纺丝、拉伸等加工过程中,大分子链或链段、微晶受到外力的作用,则会表现出不同程度的取向效应。 发生取向后,由于在取向方向上原子之间的作用力以化学键为主,而在与之垂直的方向上,原子间的作用力以较弱的范德华力为主,因而纤维取向度越高,则纤维长度方向上的机械强度、弹性模量等机械性能越好。 XRD测试纤维取向度原理 XRD作为材料结构分析的典型手段,可对纤维材料取向度进行有效表征。图1 纤维取向度测试时光路示意图 在正交透射模式下(图1),将纤维束置于子午线方向,保持光管、样品位置固定不动,探测器作2θ扫描收集衍射信号,此过程称为子午扫描。将纤维束置于赤道线方向,重复上述过程,即为赤道扫描;存在高度取向的纤维,赤道扫描与子午扫描谱图差异较大。 选取某特征衍射峰,将探测器固定于该特征峰峰位处,纤维束在垂直于入射X射线的平面内旋转(图1),测得β-I角度-强度分布曲线,此过程称之为方位角扫描,并采用以下经验公式即可计算纤维取向度π。 式中:π—纤维取向度 H—方位角扫描谱峰半峰宽(单位°) 岛津解决方案 针对纤维取向度测试,岛津XRD开发有纤维取向度专用附件,纤维专用样品架(图2)可保证纤维束平直拉紧,旋转样品台(图3)可实现正交透射模式及平面内旋转,以及数据处理模块“Preferred Orientation”可一键给出纤维样品取向度。 以某碳纤维样品实际测试为例,其赤道扫描及子午扫描谱图叠加见图4;显然,纤维束在两种方向放置测试,测得谱图差异十分明显,例如黑色箭头标示处,赤道扫描,该衍射峰强度非常高,而在子午扫描时该处基本未出峰,这表明该碳纤维存在很强的取向。 图4 碳纤维样品赤道扫描与子午扫描谱图叠加 利用岛津分析软件“Basic Process”模块,对赤道扫描谱图进行处理,读取最强峰衍射角2θ=25.69°,将探测器固定在25.69°进行方位角扫描,测得的强度分布曲线如图5所示。 图5 碳纤维样品方位角扫描谱图 利用岛津分析软件“Basic Process”模块,对方位角扫描谱图进行平滑、扣除背底、寻峰等操作后,利用岛津分析软件“Preferred Orientation”模块即可直接计算出碳纤维样品取向度为83.7%。 结语 纤维取向度对纤维的机械强度、弹性模量及其它机械性能有着直接影响,因此对纤维取向度进行测定有着非常重要的实际意义。类似的测试可拓展用于不同批次、不同工艺下纤维产品的对比,进而指导工艺优化。 撰稿人:崔会杰 *本文内容非商业广告,仅供专业人士参考。
  • 南京大学胡文兵教授课题组Polymer:应力松弛在聚合物取向结晶过程中的作用
    在纤维纺丝、薄膜拉伸和塑料注塑成型加工过程中,聚合物结晶一般都发生在高速取向变形过程中,这一过程还伴随着聚合物的应力松弛。因此聚合物结晶、取向和松弛这三种非平衡动力学过程相互竞争,对应的调控因素例如加工温度、应变速率和拉伸应力就共同决定着聚合物材料制品最终的半结晶织态结构及其综合性能。在国家自然科学基金委的项目支持下,南京大学胡文兵课题组在采用动态蒙特卡洛分子模拟研究应变诱导聚合物结晶微观机理方面近年来取得了一系列的进展。分子模拟结果揭示了应变诱导结晶成核阶段所存在的分子内链折叠成核和分子间缨状微束成核之间的竞争关系(Polymer, 2013, 54, 3402)以及结晶成核、晶体生长和后生长三个阶段不同的链折叠变化趋势及其微观机理(Polymer, 2014, 55, 1267);研究还推广到双链长分布聚合物(Chin. J. Polym. Sci., 2014, 32, 1218),无规共聚物(Soft Matter, 2014, 10, 343 Eur. Polym. J., 2016, 81, 34 Polymer, 2016, 98, 282),溶液聚合物(J. Phys. Chem. B, 2016, 120, 6890),结晶/非晶共混物(J. Phys. Chem. B, 2016, 120, 12988),外消旋共混物(J. Phys. Chem. B, 2018, 122, 10928)和短链支化聚合物(Polym. Int., 2019, 68, 225)等复杂多组分体系。最近,他们将麦克斯韦应力松弛模型引入到每条高分子链中。分子模拟结果揭示了非晶聚合物应力松弛的熵势垒微观机制(Chin. J. Polym. Sci., 2021, 39, 906)以及聚合物重复单元结构间各种局部相互作用对链扩散势垒的贡献(Polymer, 2021, 224, 123740),他们甚至还发现了低温区非晶聚合物非线性粘弹性的微观发生机制(Chin. J. Polym. Sci., 2021, 39, 1496)。他们进一步对比了引入和不引入应力松弛的聚合物拉伸结晶过程,如图1所示,发现应力松弛在结晶成核、晶体生长和后生长阶段三个阶段都发挥了独特的作用。图1:没有应力松弛(Strain-induced)和引入应力松弛(Stress-induced)的聚合物应变诱导结晶对比示意图。在结晶成核阶段,聚合物的取向变形减小了构象熵,提升了聚合物的平衡熔点,导致结晶成核的过冷度,即热力学驱动力增强,于是结晶的起始应变随温度升高而变大。增大应变速率,聚合物链内调整这一动力学效应将推迟结晶成核的发生,结晶的起始应变也相应变大。一开始他们合理地猜想应力松弛将削弱聚合物的取向变形程度,给热力学上带来不利于结晶成核的作用。由于在高速拉伸过程中应力松弛的时间窗口很小,对聚合物取向变形程度的影响较为有限,实际的模拟结果显示这一热力学效应并不明显。实际上引入应力松弛对结晶起始应变的影响与增大应变速率的效果相似,即在高温区都不改变结晶的起始应变,说明聚合物来得及链内调整;在低温区都增大了结晶的起始应变,说明应力松弛对结晶主要起到了动力学阻滞效应,而不是预期的热力学削弱效应。在晶体生长阶段,由于折叠链片晶生长动力学主要由链内次级成核机理所控制,应力松弛同样在动力学上阻滞晶体生长。于是,应力松弛显著减缓了拉伸过程中结晶度随应变增大而提高的动力学过程,导致在相同应变程度下,引入应力松弛的结晶过程所能达到的结晶度相对较低。在后生长阶段,聚合物晶体发生应变诱导的熔融重结晶过程。在这一过程中晶体的折叠链被迫打开转变为伸直链,片晶转化为纤维晶,对应于半结晶聚合物冷拉的细颈化过程。分子模拟观察到熔融重结晶带来显著的应力松弛加速现象,证明外力做功迫使折叠链晶体熔化,然后以重结晶生成伸直链纤维晶的形式将外界冲击能转化为热能耗散到周边的环境中去,从而使得半结晶聚合物表现出优异的韧性特点,不同于金属和陶瓷材料。这一阶段应力松弛与增大应变速率对结晶形态的影响有所不同:在其它条件相同时,应力松弛显著减少晶粒的数目,而增大应变速率显著减小晶粒的尺寸,如图2所示。图2:不同拉伸速率下应变诱导与应力诱导结晶的晶区形貌快照,20000对应于相对慢速的拉伸应变过程,5000对应于中速应变。这项工作揭示了聚合物应力松弛、拉伸变形和结晶这三个非平衡过程之间在聚合物取向结晶过程中的微观相互竞争机理,有助于更好地理解实际聚合物高速取向加工成型过程中的高分子结晶行为以及各种加工因素对半结晶聚合物制品内部结构和性能的调控机制。相关成果发表在Polymer(2021, 235, 124306)。论文的第一作者是博士生罗文。文章链接:https://doi.org/10.1016/j.polymer.2021.124306
  • SurPASS 3 | 聚合物的表面电荷
    Zeta电位是一个检测聚合物表面活化作用和污染非常灵敏的指示。聚合物在现代工业的多个领域起着一个主导作用。它们的应用范围从塑料瓶和塑料袋、包装材料、容器、汽车行业、人造纤维到薄膜、生物材料和电子器件。通常,任一个未经处理的聚合物薄膜表面是憎水的,也就是所谓的疏水性。聚合物表面性质影响着表面电荷构成机理。高分子表面的疏水性会吸附氢氧根(OH-)和水合氢离子(H3O+),而优先吸附OH-,这使得中性pH下得到负的界面电荷。任何这种类聚合物特性行为均可以体现在基于流动电流和流动电势测试zeta电位上的变化。随着pH降低,惰性聚合物表面如聚甲基丙烯酸甲酯PMMA和聚对苯二甲酸乙二酯PET的负的zeta电位减小并且零电位点IEP在pH 4处。对检测经表面处理过的聚合物的活性和污染来说,这项非常灵敏的测试技术具有独特性。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 苏州纳米所报道长循环高电压聚合物基固态锂金属电池
    锂金属因具有高理论容量(~3860 mAh g-1)和低氧化还原电位(相对于标准氢电极为-3.04 V),是颇有前景的锂电池电极材料之一。然而,锂枝晶的生长将会顶穿隔膜,引起电池短路热失控,甚至引燃电解液等,存在安全隐患。使用具有高机械强度的固态电解质代替电解液,可以有效阻止锂枝晶生长,从而提高锂金属电池(LMBs)安全性。相比无机电解质较高的界面接触阻抗,聚合物电解质(SPEs)可与电极形成紧密的物理接触而备受关注。   然而,用于导锂的含氧极性官能团容易被氧化,成为限制电化学稳定性的瓶颈。虽然通过开环聚合消除弱键、引入含氟官能团等策略可拓宽电化学窗口(ESW),但宽ESW难以直接转化为长循环LMBs的高截止电压。一方面,测试ESW的线性扫描伏安法使用的阻塞电极通常是平坦的不锈钢,与具有高表面积碳导电剂的实际电极相比,显示出较低的反应活性,易高估ESW;另一方面,具有过渡金属的正极材料较强的催化活性,易加剧氧化。目前,适用于截止电压为4.5V或更高的长循环LMBs的聚合物电解质有待证明。   近日,中国科学院苏州纳米技术与纳米仿生研究所应用多氟化交联剂来增强聚合物电解质的抗氧化性。交联网络有助于传递多氟化链段的吸电子效应,并具有普适性。进一步通过组分优化后,基于多氟交联剂的聚合物电解质同时表现出宽ESW、高电导率和高机械强度。组装的Li||NCM523全电池在0.5C和4.5 V的截止电压,获得了~164.19 mAh g-1的高放电比容量,并在200次循环后容量保持率90%,是当前领域报道的最佳循环稳定性之一。   相关研究成果以Polyfluorinated crosslinker-based solid polymer electrolytes for long-cycling 4.5 V lithium metal batteries为题,发表在《自然-通讯》(Nature Communications)上。研究工作得到国家重点研发计划、国家自然科学基金、中科院稳定支持基础研究领域青年团队计划、江苏省碳达峰碳中和科技创新专项等的资助,并获得苏州纳米所纳米真空互联实验站(Nano-X)的技术支持。新加坡南洋理工大学科研人员参与研究。图1.SPE的制备图2.SPE的ESW。a.Li|PVEC/P(IL-OFHDODA-VEC)|C的LSV曲线;b.PIL、POFHDODA、PVEC、P(IL-OFHDODA)、P(IL-VEC)和P(OFHDODA-VEC)的ESW。图3.Li|P(IL-OFHDODA-VEC)|NCM523全电池的电化学性能。a.Li|P(IL-OFHDODA-VEC)|NCM523全电池在0.5 C下的循环性能;b.Li|P(IL-OFHDODA-VEC)|NCM523全电池的第1-200次充放电曲线;c.Li|P(IL-OFHDODA-VEC)|NCM523全电池的倍率性能;d-f.充满电的Li|P(IL-OFHDODA-VEC)|NCM523软包电池在折叠前(d)和折叠后(e)或切割后(f)点亮LED灯的照片。
  • 南科大开发高亮度聚合物点探针实现三维多色超分辨成像应用
    近日,南方科技大学生物医学工程系教授吴长锋课题组成功开发了一系列高亮度聚合物点荧光探针,通过荧光探针功能化和扩展成像技术,在普通荧光显微镜上可以观察到精细的亚细胞结构,分辨率高达30 nm。相关成果发表在材料领域知名期刊Advanced Materials。超分辨光学成像因其能够提供低于衍射极限的分辨率而获得了2014年诺贝尔化学奖,当前超分辨技术主要分为两类:基于激发光调制的超分辨成像和基于单分子定位的超分辨成像。扩展显微成像采用了截然不同的思路:通过将样本膨胀扩大,使得原本在衍射极限范围内的相邻分子由于距离变大而变得清晰可辨。该方法不依赖于复杂的成像系统,用普通共聚焦显微镜可以获得纳米级分辨率,但样本扩展过程中由化学猝灭及密度稀释导致的荧光亮度衰减是该方法进一步发展的难题。针对这一问题,研究团队开发了适用多色扩展显微成像的聚合物点荧光探针。相比于商用的荧光染料,聚合物点的荧光标记亮度可以提高6倍。由于聚合物点的高亮度标记,细胞骨架微管蛋白的三维空间构象、网格蛋白有被小泡以及神经元突触结构等,都能够在普通荧光显微镜上解析出来(图1a-c)。课题组进一步将聚合物点探针、扩展成像技术、和光学涨落超分辨技术结合起来,在普通宽场显微镜上实现了约30 nm的超高分辨率成像,更加真实地还原出微管蛋白尺寸以及线粒体中空膜结构等细节信息(图1d-j)。这些发现展示了高亮度聚合物点在生物光学成像的应用潜力。 图1三维超分辨扩展-光学涨落联合成像解析亚细胞精细结构图2 全自动细胞免疫荧光标记平台南方科技大学-香港浸会大学联合培养博士生刘洁为本文第一作者,南方科技大学为该论文的通讯单位。以上研究得到了国家自然科学基金、国家重点研发计划、深圳市科技创新委员会资助项目等的支持。
  • 美国聚合物泡沫需求将增至86亿磅
    美国商用通讯公司最新研究称,美国聚合物泡沫需求将从2010年的56亿磅增至2015年时的86亿磅,复合年增长率为2.5%。  其中,最大市场为聚氨酯,预计2015年市场需求将达到44亿磅,2010年为39亿磅,复合年增长率为2.6% 聚苯乙烯泡沫需求将从2010年的22亿磅增至2015年的25亿磅,复合年增长率为2.1%。
  • 三思聚焦碳纤维材料科学最前沿
    2016年4月15日,“第二届碳纤维及其复合材料技术与应用研讨会”在深圳召开,此次应用研讨会以“构建中国绿色碳纤维产业链”为主题,行业内近三百家企业将齐聚此次研讨会,共同讨论解决我国目前碳纤维发展问题及部分解决方案。 会议现场,国家973项目首席科学家、东华大学纤维材料改性国家重点实验室副主任余木火教授、碳纤维及复合材料研究所党部支书记赵冬林教授等人针对纤维行业发展、碳纤维复合材料在工业领域应用的产业化之路等问题进行了深刻的探讨。 作为中国领先的材料试验设备和材料,碳纤维行业内举足轻重的试验解决方案的服务商,三思纵横接受主办方邀请,携三思独家研创的新品“风暴”系列电子万能试验机和自主研发碳纤维专用夹具全力聚焦该会议,现场分享碳纤维及其复合材料测试方面的最前沿科技。三思纵横致力于为建立有中国特色的碳纤维制备及应用产业链结构,实现碳纤维在交通运输、能源、建筑、航天航空兵器核等领域的应用完全自主贡献一份民族试验机龙头企业的力量。 碳纤维材料是典型的高科技领域中的新型工业材料,是发展国防、军工与国民经济的重要战略物资,碳纤维复合材料具有轻而强、轻而刚、耐高温、耐腐蚀、耐疲劳、结构尺寸稳定性好以及设计性好、可大面积整体成型等特点,已在航空航天、国防军工和民用工业的各个领域得到广泛应用。在要求高温,物理稳定性高的场合,碳纤维复合材料具备不可替代的优势,碳纤维碳材料已在军事及民用工业的各个领域取得广泛应用。高性能碳纤维材料还是制造先进复合材料最重要的增强材料。 既坚如磐石,又韧如发丝。它是自古以来人类在材料领域孜孜以求的品质,也是三思在前进发展道路上追求的品格。
  • 这个电镜太酷了!5 kV低电压设计,聚合物/高分子材料无需染色,可快速完成筛样,换样仅3分钟!
    5 kV低电压设计,聚合物/高分子材料无需染色操作简单换样快捷,换样仅需3 min成本低廉 无需冷却水无需专业实验室维护成本低新一代超小型台式透射电子显微镜LVEM 5 聚合物/高分子是一类重要的材料,且随着应用领域越来越广泛,全也在投入更多的精力对其进行研究。透射电子显微镜集形貌观察以及电子衍射技术于一体,能直观展示样品的细微结构与形态,并准确关联晶态结构和晶体取向,是聚合物/高分子材料微观结构表征不可或缺的仪器设备。但是,由于聚合物/高分子材料因高压电子束轰击下不稳定和非常低的结构反差给电镜研究带来很大困难。为此,美国Delong Instrument公司推出新一代LVEM5超小型多功能低电压台式透射电镜,以实现这一功能。LVEM5采用5 kV低电压设计,能有效降低聚合物/高分子材料样品因高能电子束辐射产生的损伤,防止高压电子束轰击造成的样品抖动及破碎、晶体结构破坏等。 同时,由于聚合物/高分子材料大多由C、H、O等轻元素组成,传统的制样过程一般会采用类似于生物样品的重金属染色方法。利用电子散射能力较强的金属制剂对样品进行染色来提高的图像的衬度。然而,使用这种方法需要人为的加入样品以外的成分,这样做往往会破坏样品原始的特性。现在,使用LVEM5台式透射电镜,即使在不使用染色剂的情况下,利用低电压新型成像技术,也可以有效地提升图像衬度,展现样品的本征形貌。 除此之外,LVEM5超小型多功能台式透射电镜还能满足科研工作者繁重的样品筛选工作,其更多的优点如下:操作简单,换样快捷,成本低廉 LVEM5直观的用户界面、简便的控制台设计,用户仅需少的培训,即可轻松操作,让用户在使用时感觉更加舒适。不同于传统透射电镜每次更换样品后需要长时间抽真空,LVEM5更换样品仅需3分钟,可节省大量时间。LVEM5次购置费用远低于传统透射电镜。LVEM5特的设计优势,在使用中无需冷却水等外设,无需安装在特殊实验室,维持成本低。台式设计:体积小巧,灵活性高 传统透射电子显微镜体积庞大,对放置环境有严格的要求,并且需要水冷机等外置设备。通常会占据整间实验室。LVEM5从根本上区别于传统电镜,尺寸较传统电镜缩小了90%,对放置环境无严格要求,无需任何外置冷却设备,可以安装在用户所需的任意实验室或办公室桌面。TEM-ED-SEM-STEM四种成像模式 LVEM5是新一代电子显微镜,不仅具有传统透射电镜功能,同时集成了扫描电镜功能,在一台电镜上即可实现TEM-ED-SEM-STEM四种成像模式。通过控制软件,LVEM5可以在四种模式间快速切换。研究人员可以获取同一样品、同一区域的不同模式图像,更加方便多方位深入的研究样品。电子光学-光学两图像放大 LVEM5电子光学系统采用倒置设计,场发射电子枪位于显微镜底端。电子枪发射出的高亮度电子束,经过加速、聚焦以及样品作用后,照射在高分辨率 YAG荧光屏上。荧光屏上的图像,包含了纳米的样品信息。YAG荧光屏将电子光学信号,转化成光学信号。采用光学显微镜对图像进一步进行放大。TEM模式下,放大倍数~20万倍(TEM Boost升版 ~50万倍)。而整个电镜体积,仅与光学显微镜相仿。5 kV低加速电压,有效提高轻元素样品成像质量,样品无需染色 LVEM5采用5 kV低电压设计。相比高电压,低压电子束同样品的作用更强,对密度和原子序数有很高的灵敏度,对于0.005 g/cm3的密度差别仍能得到很好的图像对比度。例如,对20 nm碳膜样品,5 kV电压下比100 kV电压下对比度提高10倍以上。而LVEM5的空间分辨率在低电压下仍能达到2 nm。 聚合物/高分子及生物样品的主要元素为C、H、O等轻元素,使用传统透射电镜观测时,需要使用重金属元素对样品进行染色,以增强对比度。 LVEM5观测样品时无需染色,避免了染色造成的样品污染和扭曲,展现样品的本征形貌。超小型多功能台式透射电镜LVEM5与传统透射电镜的对比:传统透射电镜LVEM放大倍数高,分辨率0.2 nm左右分辨率:1.5nm(LVEM5)1nm (LVEM25)进样速度慢,约15-30分钟进样速度快,约3分钟操作复杂:操作人员需经过长期的严格培训为保证设备正常运行,好是专门做电镜的研究生操作,人工成本高操作简单:半天培训即可立操作无需专人操作放置于一层或地下室,需要特殊处理的实验室,需防震处理,环境要求高可放置于任何位置,厂房、办公室、实验室需要动力电(不能断电)、需要水冷机、液氮等维护成本高无需特殊电源,无需水冷、液氮维护成本低超小型多功能台式透射电镜LVEM5新应用案例聚合物/高分子材料TEM模式SEM模式和STEM模式其他材料TEM模式SEM模式STEM模式和ED模式 用户评价LVEM5 User Profile: Dr. Betty Galarreta “While we were looking for an electron microscope, we knew we wanted to get one that did not require complicated and expensive maintenance. We also wanted equipment that was able to resolve details within the 1-2 nm range and that we could use to analyze not only metallic nanoparticles but also some biopolymers. The LVEM5 not only met our requirements but also made it possible to have sort of a 3 in 1 electron microscope, being able to characterize the same area in TEM, SEM and STEM mode.” "当我们在调研射电子显微镜时,我们想要一台不需要复杂和昂贵维护的设备。同时,我们还希望这台透射电子显微镜能够观察到1-2纳米尺度内的细节,而且这台电镜不仅可以用来分析金属纳米颗粒,还可以分析一些生物聚合物材料。LVEM5不仅满足了我们的要求,而且这台透射电子显微镜同时拥有三种功能,能够在TEM、SEM和STEM模式下对同一区域进行表征。" LVEM5 User Profile: Dr. Francesca Baldelli Bombelli “We are very satisfied with the instrument as it allows us to screen a high number of samples in a short time with a limited cost. It’s easy to use, without the need of a specific technician to run it, and with a low cost of maintenance. It allows the screening of a high number of samples in a quite short time. It is also quite good in the imaging of organic nanomaterials thanks to its low voltage which does not degrade them.” "我们非常满意这台透射电子显微镜,因为它允许我们在短时间内以有限的成本筛选大量的样品。这台设备很容易使用,不需要专门的技术人员来运行它,而且维护成本低。它可以在相当短的时间内筛选大量的样品。同时,归功于低电压操作模式,LVEM5非常擅长于有机纳米材料的成像,不会使它们发生降解。" LVEM5 User Profile: Dr. Fabrice Piazza “The most exciting moment was to find diffraction patterns of single bilayer graphene domain with AB stacking with LVEM5. The single bilayer graphene domain with AB stacking discriminates from AA counterpart by the three-fold symmetry of the spot intensity distribution on the inner ring of the diffraction patterns. This cannot be observed at 60–100 keV. Those observations confirmed the calculations of one of our collaborator at CEMES, Dr. Pascal Puech. Definitively, one of the greatest moments in my 22-year-long career. We have found that the advantages of using a LVEM go beyond cost issues. Indeed, by using LVEM to analyze 2D materials, in many cases, one can quickly obtain the number of layers and stacking sequence. Also, as we demonstrated the methodology is useful for materials other than graphene, such as transition metal dichalcogenides (TMD) which are nowadays very popular worldwide. Analyzing these materials in these ways is not possible using a conventional TEM operating at 60–100 keV.” "激动人心的时刻是用LVEM5衍射模式证明了单双层石墨烯域是以AB方式堆积的。具有AB堆积的单双层石墨烯域在衍射图像上与AA堆积的单双层石墨烯域的区别为,内环上的光斑强度分布的三倍对称性不同。这在60-100 KeV电压下是无法观察到的。这些观察结果证实了我们一位合作者的计算结果,来自CEMES的Pascal Puech博士。这肯定是我22年职业生涯中伟大的时刻之一。 我们已经发现,使用LVEM5已经远超出了其成本优势。事实上,通过使用LVEM5来分析二维材料,在许多情况下,人们可以快速获得层数和堆叠顺序。另外,正如我们所展示的,该方法对石墨烯以外的材料也是有用的,例如当今非常流行的过渡金属二氯化物(TMD)材料。对于使用60-100 keV电压操作的传统透射电子显微镜,这些材料是不能用这种方法分析的。"用户单位
  • 【瑞士步琦】聚合物中可萃取物的测定
    聚合物中可萃取物的测定聚合物中溶剂溶性添加剂的表征、鉴定和定量对于质量控制以及识别与食品或环境接触的迁移成分具有重要意义。聚合物中的添加剂包括稳定剂、增塑剂、润滑剂和阻燃剂,质量含量高达 50%。在此次应用中,使用 E-800 通过索氏热萃取方法,提取了几种聚酰胺 66 (PA66)样品。这些聚合物与不同的添加剂混合,再进行电子束交联,从而增加韧性和耐久性,因此可以应用于应力非常高的齿轮。为了监测这一过程,在以下三种不同的阶段进行提取聚合物:无处理的样品加添加剂的样品加添加剂后与电子束交联的样品需要考虑未经处理的聚合物可能含有低聚物和稳定剂,在电子束交联之前,添加剂没有与样品进行结合,因此可以再次提取。通过提取经电子束交联处理后的聚合物,考察了交联效率。典型的交联助剂是基于异氰尿酸三烯丙基(TAIC 基)的添加剂,例如 Evonik 的 TAICROS M 或 TAICROS M,其剂量通常在 2-5% 的范围内。这些物质的化学结构如表1所示:▲表1:TAICROS: R = -H TAICROS M: R = -CH3 supplier: Evonik [4]1设备分析天平(精度 ±0.1mg)真空干燥箱水分分析仪2化学试剂和材料试剂:HPLC 级甲醇 99.9%为了安全处理,请遵循相应的 MSDS 中提到的指导方针!样品:高分子量 PA66 级 交联剂 TAICROS M 2-3%标准 PA66 型 交联剂 TAICROS M 2 -3%商用 PA66 型,添加交联剂 TAICROS,含量未知所有样本被细分为:不含交联添加剂(仅限高分子和标准 PA66)含交联添加剂,无电子束交联含交联添加剂,经电子束交联的剂量为 100kGy如有必要,样品用 3mm 筛的切割机研磨。3实验步骤可萃取物含量的测定包括以下步骤:比色卡尔费休滴定法测定水分含量使用全频固液萃取仪 E-800 进行索氏热萃取提取物称重可萃取物含量的计算1. 含水率的测定水分含量根据标准测定,例如通过卡尔费休滴定法测定。2. 样品制备将玻璃样品管放入支架中。称取 5.0±0.5g 样品到玻璃样品管中。3. 使用固液萃取仪 E-800 进行索氏热萃取萃取实验条件如下:4. 干燥提取物将含有提取物的烧杯放在真空干燥箱中,在 40℃ 和 25mbar 的条件下干燥 3 小时,直到重量恒定。让烧杯在干燥箱中冷却到环境温度至少 1 小时,并记录重量。5. 计算按以下公式计算样品的可萃取物含量,结果为百分比。4实验结果在第一个实验中,确定了粒度的影响。因此,对于粒径小于 3mm 的颗粒,5 小时的萃取时间是最优的。对于粉碎的样品( 0.7 mm),提取时间可以减少到 3 小时,而不是根据 ISO 6427[5]。具体结果如表 2 所示。表2:E-800 测定颗粒和粉碎物料中的可萃取物样品提取5小时,重复分析。这些样本是切碎( 0.7 mm),除非另有说明。具体结果如表3所示。表3:E-800 测定聚合物中的可萃取物同时通过 FTIR 光谱对提取物进行进一步分析。结果表明:原始材料含有聚酰胺低聚物和稳定剂的证据,在电子束交联之前,添加剂/交联剂清晰可见,在 100kGy 的电子束交联之后,交联添加剂不再被识别,但更多的聚酰胺低聚物可见。这些可能是除交联反应外,电子辐照的副产物。5结论方法中对粒径 0.7mm 的样品的提取时间为 3 小时,测量不确定度为 5%。由于索氏热萃取法的积极作用,在长达 5 小时的提取时间内,也可以直接提取高达 3mm 的颗粒。可以避免额外的研磨步骤。为了监测这一过程,在不同的阶段提取聚合物:未经处理的样品,添加添加剂和经过电子束交联。未经处理的聚合物可能含有需要测定的低聚物和稳定剂。然后,分别通过提取电子束处理前后的聚合物样品来确定添加剂的用量和交联用添加剂的用量。使用全频固液萃取仪 E-800 对聚合物中可萃取物含量的测定提供了可靠和可重复性的结果。相对标准偏差(RSD)较低。关注瑞士步琦,为您在聚合物中可萃取物的测定提供完美解决方案。6参考文献Crompton, T. R. Chemical analysis of additives in plastics, Oxford, Pergamon Press Ltd, 1997.Gaw, S et al, Leaching and extraction of additives from plastic pollution to inform environmental risk: A multidisciplinary review of analytical approaches, Journal of Hazardous Materials, 414, 125571, 2021.Brocka-Krzeminska, Z., Werkstoff- und Einsatzpotential strahlenvernetzter Thermoplaste Dissertation, Lehrstuhl für Kunststofftechnik (LKT) der Universitä t Erlangen-Nürnberg (2008).https://functional-solutions.evonik.com/en/product/PR_52029178?name=TAICROS-(06.04.2023).ISO 6427: Plastics – Determination of matter extractable by organic solvents (conventional methods), International Standardisation Organisation, Geneva (2013).ISO 15512: Plastics – Determination of water content, International Standardisation Organisation, Geneva (2019).
  • 化学所可拉伸聚合物半导体研究获进展
    合物半导体在可穿戴设备、健康监测、疾病诊断等新型领域中颇具应用前景。基于聚合物半导体的柔性电子学是蕴含重大科学创新机遇的新领域。通常优异的电荷输运性能要求聚合物材料具有高结晶性,而强结晶性会导致材料拉伸力学性能低。因此,设计合成高迁移率可拉伸的聚合物半导体面临挑战。   近日,中国科学院化学研究所有机固体院重点实验室张德清课题组发展了在主链上引入中心不对称单元获得高迁移柔性聚合物半导体的新方法(图)。该策略实现了半导体性能和拉伸性能的协同调控,为柔性可穿戴设备提供可能的材料设计思路。   如图所示,螺芴单元的引入可以打破主链的对称性,降低薄膜中的晶畴尺寸,进而显著降低薄膜的拉伸模量;螺芴单元的引入还可以减少侧链长链烷基的含量,提升小尺寸晶畴中的短程有序度;通过调节螺芴单元上环形取代基大小还可以微调薄膜形貌。其中,P2在150%的形变后迁移率达3 cm2V-1s-1,在50%形变比例下循环拉伸1000次后迁移率仍保持在1.4 cm2V-1s-1以上,这是目前报道的可拉伸高分子半导体的最优性能。该工作为发展可用于柔性器件的可拉伸高分子半导体的设计提供了新策略。   研究工作得到国家自然科学基金委员会、科学技术部和中国科学院的支持。P1和P2的化学结构式以及薄膜的结晶性和力学性能对比
  • 赛默飞携多款聚合物解决方案亮相2013中国国际橡塑展
    中国上海,2013年5月20日 &mdash &mdash 今日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)携多款聚合物解决方案亮相广州2013中国国际橡塑展,展示了包括HAAKE Rheonaut 流变-红外联用测试单元、PROSIS红外传感器和Beta Plus传感器在内的最新产品和技术。凭借领先的分析技术,赛默飞旨在以全面、优质的产品服务和技术支持更好地贴近本地客户,为其提供从实验室到生产线的一站式聚合物解决方案。中国国际橡塑展是亚洲第一,全球第二的橡塑展。本着&ldquo 橡塑科技‧ 成就未来&rdquo 的主题,本届展会成为各厂商展示橡胶和塑料产品以及解决方案的绝佳平台,同时也为所有参观者呈现了塑料和橡胶在各行各业中超乎想象的应用及发展。会上,赛默飞以&ldquo 创新、可靠,便捷&rdquo 为主题,着重彰显了在聚合物领域的革命性成果&mdash &mdash 流变仪与红外光谱仪的完美结合,以及红外在线厚度分析传感器和穿透式定量传感器等多项技术突破和全新成果。这些解决方案能够为聚合物领域的客户提供操作简便、测量精准的分析体验,在保证高质量、高性能的前提下降低成本、节约原材料并提高生产效率。作为服务科学领域的领导者,赛默飞将一如既往地重视在橡塑行业的发展,以不断革新的技术和解决方案满足中国乃至全球橡塑市场的需求。请点击http://www.thermo.com.cn/chinaplas2013 了解更多赛默飞参展信息。革命性新技术&mdash &mdash HAAKE Rheonaut 流变-红外联用测试单元。这是一项在全球范围内极具革命性的全新联用技术。它有机结合了HAAKE MARS III 流变仪与Nicolet FTIR 红外光谱仪,可同时提供动态流变学的数据和结构变化的光谱数据,标志着流变学领域中的重大突破。模块化流变仪工作站 HAAKE MARS III是当今市场上模块化程度最高的纳牛米级流变仪,提供针对聚合物、化工、涂料油墨和化妆品等领域的整体解决方案。该设备更具完善的远程控制和诊断功能,满足用户对高端分析仪器的进一步需求。 Nicolet iS10 傅立叶变换红外(FT-IR)光谱仪专为实验室设计,适用于质量控制,并能够以最小的投资取得最优的测试能力,及时得到最可靠的样品分析结果,解决最具挑战性的难题业内性能最佳、测量范围最广&mdash &mdash PROSIS红外在线厚度分析传感器。该传感器提供了业内最佳的测量性能和最高的分辨率,更宽的光谱覆盖范围使其在实验室测试中比以往任何时候都能测量更多的材料。新款PROSIS 红外传感器更加易于使用和标定,对于测量单层和多层结构均有卓越性能。 最新传感器&mdash &mdash Beta Plus 系列穿透式定量传感器。这是赛默飞众多非金属测量解决方案中最新推出的一款传感器,在传感器功能上有了进一步的提升:增加了快速更换窗口,低放射曲线信号进一步增强,低噪声的测量;真正的开槽源几何结构;温度和压力补偿;高速数字电子组件。一系列的设计元素使其能提供卓越的传感器性能,实现最佳的测量和控制。节省成本的最佳方案&mdash &mdash 微型双螺杆挤出机 HAAKE Process 11。这款设备易于操作,仅需少量样品就能获得与生产条件相关的数据,使得研究人员可以以较少的成本和人力开展一系列试验。紧凑的单体设计最大程度地减少了实验室空间的占用,也降低了对实验室空间的需求,较少的成分消耗减少了环境污染和操作人员的暴露接触。高性价比、贴近本地客户需求&mdash &mdash Thermo Scientific iSystem在线测量系统。这是一款稳定可靠的总克重测量系统,在包括流延薄膜、片材挤出、辊涂、挤出涂布和无纺布等非金属应用领域可以提供一贯、精确和实时的定量测量。在降低客户成本、服务技术支持更加本地化的同时,该系统也保持了赛默飞全球高端产品的一贯标准。质量控制的发展趋势&mdash &mdash 模块化转矩流变仪 HAAKE PolyLab QC。作为一款测量用密炼机和挤出机系统,该仪器把最先进的软硬件与简单易用的界面相结合,简化用户使用体验。基于系统的兼容性,现有的密炼机和挤出机也可与之相连,并且实现软件自动识别。该设备有台式和落地式两种型号可供选择,能更好地适应实验室环境,使其在占地空间和重量上均具有很大的灵活性。 2013中国国际橡塑展-赛默飞展台 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com关于赛默飞中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2300名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国技术中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的维修服务中心,在全国有超过400名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • 纳米分辨傅里叶红外光谱与成像技术(nano-FTIR & neaSNOM)助力复合聚合物领域实现新突破
    背景简介聚合物纳米复合材料是以聚合物为基体连续相,以纳米填充物为分散相的一种复合材料,具有易加工、摩擦和磨损率小、表面硬度高以及成本低廉等特点,在工业中具有广泛应用,受到诸多科学家的关注。研究聚合物复合材料的内部结构是一种综合性认知材料聚集形态形成和物质组成分布的有效方法。通常,科学家通过透射电子显微镜(TEM)研究颗粒的内部结构及聚集形态。但是,电子显微镜并不能对轻质元素(C, H, N和O) 进行元素识别及表征,而这些元素正是水体系聚合物主链单元的主要组成元素。同时,电子显微镜对聚合物功能团的识别强烈依赖于选择性染色,需要将电子密度高的重金属离子引入聚合物链。因此,通过扫描透射电子显微镜-电子能量损失谱方法(STEM-EELS)或者TEM相衬度法来研究聚合物纳米材料的形态结构及元素分布仍然存在一些争议,特别是在研究水溶性主链的聚合物体系中染色带来的误差和衬度失真尤为严重。近年来,迅速发展的纳米分辨傅里叶红外光谱与超分辨光学成像技术(nano-FTIR & neaSNOM)能够实现在10 nm的空间分辨率下对材料的化学组成和结构进行表征。与电子显微镜与电子能谱结合的方法相比,光学探测技术具有无损伤、无需染色标记、快速且适用性广等优点,可以研究材料化学组分,微观结构、电学、力学、高分子取向与构象以及物质相互作用等信息。研究进展近期西班牙纳米科学研究中心的Rainer Hillenbrand团队通过nano-FTIR & neaSNOM对聚全氟辛基丙烯酸酯-基丙烯酸酯-丙烯酸丁酯(PMB)形成的纳米复合颗粒进行研究[1]:证明了颗粒内部形成了复杂的Core-Shell-Shell结构。进一步,通过nano-FTIR对全氟取代共聚物(POA)和丙烯酸共聚物(MMA/BA)在三层结构中的分布及比例进行定量研究,发现本该富集在Core部分的疏水POA在三层结构中都存在,并且在inner-Shell的比例高度达到了65%。结合聚合反应动力学研究,nano-FTIR & neaSNOM可以呈现复合聚合物颗粒Core-Shell-Shell结构在形成过程中各化学组分生成时间、相分离及迁移的具体路径以及疏水、亲水相互作用,有助于提升对纳米材料复杂高次结构的理解和设计。需要指出的是:由于不同的域(核,壳)显示出显着不同的机械性能和形貌(图1a),其他方法(例如PiFM和AFM-IR)得到的红外信息会跟局域的机械性能有一定关联,造成一些数据假象。而nano-FTIR对于这种材料系统的优点是部与样品之间的纯光学相互作用决定了信号,因而得到的信号与材料的机械性能无关。 精彩结果展示图1 PMB嵌段聚合物截面光学超分辨成像。(a)s-SNOM原理示意图。通过激发光(Einc)聚焦照射AFM探针,在针周围形成增强的局域近场,进一步AFM探针以Ω轻敲振动频率调制针散射(Esca)的近场信号,从而获取纳米尺度下聚合物截面的光学图像。(b)纯poly(POA) 与poly(MMA-co-BA)的nano-FTIR光谱,用作对比参考光谱。垂直的蓝色虚线表示记录在图(d)和(e)中的近场光学图像的红外频率。(c) PMB颗粒的拓扑结构成像。(d, e) 近场红外的相位图对应了样品分别在1250 cm−1 (d)和在1736 cm−1 (e)处的吸收。图像的积分时间为每个像素6 ms 图像获取时间为24 min。图2 nano-FTIR&neaSNOM对PMB单颗截面Core-Shell-Shell结构中POA/ARC(MMA-co-BA)的高光谱及纳米红外光谱研究(左);图3 对多个PMB聚合物颗粒化学组分的统计研究,定量给出了Core-Shell-Shell的比例分布(右)。结论作者展示了无需化学染色标记的一种纳米成像与纳米光谱表征方法(s-SNOM& nano-FTIR),该方法确认了PMB聚合物复合颗粒内部结构并证明了新型的核-壳-壳复杂结构的存在。进一步通过对参比样品光谱进行线性叠加拟合,定量的计算出核-壳-壳结构中各个组分的定量比例及分布。这种同时表征材料微观纳米结构与对应化学成分的方法是前所未见的,有助于帮助科学找到影响材料性能的关键参数以及终材料聚集形态形成的动力学路径,依此来设计和调控材料所需的宏观性能。 研究利器上述研究中的纳米分辨傅里叶红外光谱与成像技术(nano-FTIR & neaSNOM)是由德国Neaspec公司利用其有的散射型近场光学技术发展出来的,使纳米尺度化学鉴定和成像成为可能。这一技术综合了原子力显微镜的高空间分辨率和傅里叶红外光谱的高化学敏感度,可以在纳米尺度下实现对几乎所有材料的化学分辨。由此开启了现代化学分析的纳米新时代。该设备还具有高度的可靠性和可重复性,已成为纳米光学领域热点研究方向的重要科研设备!图4 neaspec纳米傅里叶红外光谱仪-Nano-FTIR 参考文献:[1]. Cross-Sectional Chemical Nanoimaging of Composite Polymer Nanoparticles by Infrared Nanospectroscopy, Macromolecules, 2021, 54 (2), 995-1005, DOI: 10.1021/acs.macromol.0c02287
  • 碳纤维复合材料的“试验员”
    引 言自进入21世纪以来,科学技术对材料提出了越来越高的要求,碳纤维复合材料(CFRP)因其重量轻、强度高、耐腐蚀性强、弹性优良等特点,广泛应用于航天航空、汽车、电子电器、体育器材等领域,促使碳纤维复合材料行业快速发展。一方面CFRP广泛使用助推产业结构优化升级,实现绿色发展;另一方面CFRP的研究深度和应用广度及其生产发展的速度和规模,已成为衡量一个国家科学技术先进!复合材料的应用场景 CFRP强度评估方法由各种ASTM标准规定。岛津试验机可以根据ASTM各种测试标准做出解决方案,例如符合“平面内剪切试验-双V形切口剪切法(ASTM D5379)的试验示例,以及符合各种标准的夹具。采用双V形切口试样进行平面内剪切试验,得到CFRP的平面内剪切强度、平面内剪切破坏应变和平面内剪切弹性模量。碳纤维复合材料的测试标准碳纤维复合材料(CFRP)目前主要应用于飞机与汽车制造业,其刚性是重要应用参考,岛津试验机可以根据JIS K 7074和JIS K7084标准提供静态三点弯曲试验和高速冲击试验方案,且能获得精确获得试验数据。碳纤维是碳纤维增强塑料(CFRP)的重要组成部分,碳纤维的力学性能(拉伸强度/弹性模量)对复合材料物理性能有重要影响,岛津试验机系统可以对碳纤维及其复合材料进行拉伸试验,也可以配合高速摄像机实现从高时间分辨率的角度研究碳纤维布的破坏过程的可视化观察。使用X射线CT系统可以对试样中纤维的取向和空隙进行无损观察。这使得在进行测试之前能够观察内部状态,从而获得测试结果与内部结构紧密相关的数据。 岛津试验机拥有一百多年的历史和丰富的产品线,不管是静态试验机还是动态试验机,可以满足各种客户的需求,且进行定制化的夹具设计。岛津公司提供了一系列用于分析、测试和检验评估的仪器和系统(从分析和测试预处理到数据分析),从而有助于解决从CFRP原材料开发到产品耐久性评估各个阶段的各种问题,为营造和谐绿色的发展做出贡献。
  • 青岛能源所全聚合物太阳能电池研究获进展
    全聚合物太阳能电池(APSC)具有优异的光/热稳定性及柔韧拉伸性能,被认为是柔性电源系统中最有潜力的应用之一。得益于非富勒烯受体材料的快速发展,高性能聚小分子受体被不断开发。相比而言,高性能聚合物给体的发展相对滞后。如何设计合成新型聚合物给体材料,并调控给/受体分子间堆积和取向,阐明给/受体分子间相互作用与光伏性能之间的关系,将有力助推高效全聚有机太阳能电池的发展。   近日,中国科学院青岛生物能源与过程研究所研究员包西昌带领的先进有机功能材料与器件研究组在该领域取得重要进展。研究通过降低给体材料主骨架之间的电荷转移态和醌类共振效应,设计合成全新的超宽带隙(Eopt = 2.24 eV)聚合物给体材料(图1)。该材料具有较高消光系数且吸收光谱完美覆盖最强太阳辐射范围,并与受体材料具有良好的混溶性和较强的分子间相互作用。该工作获得了效率为15.3%和17.1%的两组分和三组分APSC(与当下经典给体材料相媲美)。该研究为全聚有机太阳能电池给体材料的发展提供了新颖的设计理念和材料结构。相关成果发表在《先进功能材料》(Advanced Functional Materials)上。   此外,共轭聚合物之间的强链间缠结易形成较差的相分离、低混合熵,难以调控活性层的结晶和形貌,进而限制光伏性能的提升。对此,科研人员开发的具有良好混溶性的聚合物给体,可以有效渗透到给/受体(D/A)聚集域中,优化了全聚合物活性层内的分子堆积和相分离,实现了激子和载流子的高效利用(图2)。具有体异质结(BHJ)结构的三元APSC实现了17.64%的效率和高的厚膜耐受性。第三组分渗透可有效地促进更多混合相的形成,并独立地优化D/A有序堆积,在构建理想伪平面异质结(PPHJ)活性层方面显示出独特的优势。具有PPHJ结构的三元APSC获得了17.94%的效率并表现出优异的器件稳定性。利用良好混溶性第三组分独立诱导D/A有序堆积,在构建高性能APSC方面颇具潜力。相关成果发表在《能源与环境科学》(Energy & Environmental Science)上。   研究工作得到国家自然科学基金、科技部国际合作项目和山东能源研究院专项资金等的支持。 图1.新分子策略构筑高效聚合物给体材料图2.三元策略优化吸光层分子聚集
  • HORIBA前沿用户报道 | 了解低聚聚苯乙烯侧链分布排列对全聚合物太阳能电池性能的影响
    转自 | 材料人引 言近年来,共轭聚合物给体材料和受体材料的显著发展促使着研究人员在不断地开发更高性能的全聚合物太阳能电池器件。聚合物太阳能电池为有机太阳能电池中的一种,其光敏层主要由共轭聚合物和富勒烯及衍生物组成,而全聚合物太阳能电池则是将聚合物太阳能电池中的富勒烯材料换成聚合物材料,也就是说在光敏层中全部使用的是聚合物材料,这也使得全聚合物太阳能电池具有制造工艺简单,成本低,太阳能光谱覆盖良好,化学性质和形态稳定等诸多优点。许多全聚合物太阳能电池都具有较低的短路电流(JSC)和填充因子(FF),这是由聚合物的低载流子迁移率所引起的。因此,研究人员一直寻求在有机场效应晶体管器件测量下具有高电荷载流子迁移率的给体-受体(D-A)型共轭聚合物。成果简介近日,来自斯坦福大学的鲍哲南教授(通讯作者)团队在Advanced Eenergy Materials上发表了一篇题为“Understanding the Impact of Oligomeric Polystyrene Side Chain Arrangement on the All-Polymer Solar Cell Performance”的文章,文中报道了该研究团队有关光敏层中聚合物的分子形态对全聚合物太阳能电池性能影响的新研究成果。在该文中,低聚聚苯乙烯(PS)侧链引入共轭主链被证明可以增强半导体聚合物的加工性和电子性能。研究者制备两种具有不同摩尔百分比的PS侧链的给体和受体聚合物,以研究阐明它们的取代分布排列对于全聚合物太阳能电池性能的影响。当PS侧链在给体聚合物上被取代时,观察到的电池器件性能较低,当PS侧链在受体聚合物上被取代时,观察到的电池器件性能较高。研究表明,将PS侧链引入受体聚合物有助于共混聚合物膜中相分离畴尺寸的降低,然而减小的畴尺寸仍然比典型的激子扩散长度大一个数量级。详细的分子形态学研究以及原始PS、给体和受体聚合物的溶解度参数的估计显示,每个组分的溶解度的相对值主要对相分离结构域的纯度有正向作用,这强烈影响了光电流的的数量和太阳能电池的整体性能。图文导读图1D-PSX和A-PSX的合成路线合成D-PSX时,Pd(PPh3)4为催化剂;合成A-PSX时,Pd2(dba)3CHCl3为催化剂。图2电池性能表征(a)D-PSX/A-PSX全聚合物太阳能电池效率 (b)D-PSX/A-PSX全聚合物太阳能电池短路电流密度JSC(c)D-PSX/A-PSX全聚合物太阳能电池开路电压VOC(d)D-PSX/A-PSX全聚合物太阳能电池填充因子图3共混膜的RSoXS数据(a-c)PS侧链在受体聚合物中的数量分别为0%、5%和10%;(d-f)在给体聚合物中具有固定量的PS侧链的散射曲线。所有RSoXS数据是在287 eV下测试获得的,其中不同聚合物之间的散射对比度与不同量的PS侧链附着相似。图4共混膜的荧光猝灭行为(a-c)PS侧链在受体聚合物中的数量分别为0%、5%和10%;(d-f)不同PS侧链数量的给体聚合物的PL猝灭行为。补充内容图4共混膜荧光猝灭行为的表征是使用的HORIBA Fluorolog系列荧光光谱仪,具有超高灵敏度,特别适用于荧光强度逐渐降低的猝灭实验。利用荧光猝灭方法,可以有效确认相态分离结构与复合行为的关系。其中,通过测试共混膜的荧光猝灭谱,发现当PS侧链在给体聚合物上被取代时,发生更多复合;当PS侧链在受体聚合物上被取代时,发生更高效的激子解离。从而可以得到结论,共混膜中相分离结构域的纯度和粒径影响了光电流的的数量和太阳能电池的整体性能。 图5相互作用和溶解度参数确定D-PSX/A-PSX共混膜中相分离行为的示意图和各聚合物溶解度参数的假设顺序。小结在本文研究中,研究者使用活性阴离子聚合和缩合的组合制备了一系列具有不同数量的PS侧链的给体和受体聚合物。标准表征显示PS侧链对给体和受体聚合物的光吸收和能级特征的影响可以忽略不计。从全聚合物太阳能电池性能可以看出,在给体聚合物上引入PS侧链能导致JSC值和PEC的降低,而在受体聚合物上引入PS侧链可以增强电池性能。文献链接Understanding the Impact of Oligomeric Polystyrene Side Chain Arrangement on the All-Polymer Solar Cell Performance (Adv. Energy Mater, 2017, DOI: 10.1002/aenm.201701552)免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载。文章版权、数据及所述观点归原作者原出处所有,HORIBA Scientific 发布及转载目的在于传递更多信息及用于网络分享,供读者自行参考及评述。如果您认为本文存在侵权之处,请与我们取得联系,我们会及进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 赛默飞亮相2013德国K展,展示领先聚合物技术
    中国上海,2013年10月17日&mdash &mdash 科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)携领先的聚合物以及塑料解决方案亮相于2013德国杜塞尔多夫国际塑料及橡胶博览会(简称:K Show),展位号:10号厅B59。值此契机,赛默飞不仅推出了最新HAAKE MiniJet Pro注塑成型系统等全新产品,还向全球各地的参观者展示了赛默飞聚合物技术、产品以及应用解决方案,旨在助力解决在聚合物、塑料研发和生产方面的困难和挑战。 2013 K展于10月16-23日举行,是世界上最大的塑料和橡胶行业展会。今年,赛默飞以&ldquo 沟通、协作、解决&rdquo 为主题,充分展示了赛默飞在聚合物研究、测试、监测、量产等环节的完整解决方案。作为该领域的领军者,赛默飞能够帮助研究人员和企业提升产品质量和效果,同时减少原材料浪费,减少其循环周期。 &ldquo 从研发到生产,我们的创新和专长涵盖聚合物和塑料行业的整个产业链,我们的设计使客户能够获得卓越、精确的检测结果。&rdquo 赛默飞化学分析部门市场营销和产品开发副总裁Brian Davies表示,&ldquo 我们了解与聚合物相关的工艺参数和对效率起关键作用的决定因素,这些参数和决定因素使科学家和工程师考虑使用我们提供的方案来应对其面临的最大挑战。&rdquo 创新的材料表征解决方案和多功能光谱仪。赛默飞HAAKE MiniJet Pro是样品制备仪器系列中的新款机型,使材料科学家更快、更高效地开发小批量(仅2-13毫升)的注塑试样,同时节省时间和成本。赛默飞设计了活塞注塑成型系统,旨在大幅减小传统注塑成型机的机械和样品要求尺寸。材料科学家也可使用赛默飞HAAKE MARS流变仪平台的Rheonaut模块来同时进行流变学和傅立叶变换红外光谱测量。这种组合式方法让材料科学家能够在同一个样品上取得测量值,从而使数据得到完美的关联。由此可避免不同样品制备过程带来的不确定性以及采集数据所花费的时间。 赛默飞HAAKE MARS的Rheonaut模块与高度灵活的赛默飞Nicolet iS50傅立叶变换红外光谱仪相结合,后者可从简单的FT-IR工作台升级到采集从近红外到远红外光谱的全自动多光谱范围系统。多功能的Nicolet iS50也可一键式启动全新的ATR拉曼和近红外模块,使用户无需手动改变系统组件即可使用这些技术。赛默飞DXR拉曼显微镜展示出先进的拉曼显微镜如何能帮助科学家通过瞄准式和面分布测量来更好地了解样品。该仪器具有适用于包装和聚合物分析等应用的灵敏度和空间分辨率。赛默飞ARL PERFORM' X波长色散X射线荧光(WDXRF)分析仪提供了对样本中不均质的样品或缺陷进行小光斑分析和绘制面分布图的能力。赛默飞ARL OPTIM' X也采用WDXRF分析技术帮助以高分辨率测定多种液体和固体样品的元素组成。 小型挤出机。紧凑的独立式赛默飞Process 11双螺杆挤出机进行的是小型试验,但其坚固程度足以混合高性能的聚合物。由于赛默飞独立式混合系统拥有经过验证的可扩展性,研究人员能够方便地使用其测量结果来优化生产条件。在使用Process 11挤出机后,研究人员仅需少量材料即可进行一系列试验,从而节省材料和劳力成本。 高性能薄膜测厚。赛默飞PROSIS红外过程分析厚度传感器采用全光谱红外光分析在线材料,为薄膜测厚用户提供改善生产质量和减少废料的高精度多组分厚度数据。赛默飞PROSIS为制造商带来高精度的厚度和湿度数据、更大的原材料节省量和更高的生产率。该传感器用于多种应用,包括食品包装行业、保健和个人卫生市场中使用的无纺布、电子设备中使用的光学薄膜和金属线圈上的各种涂层。欲了解更多关于赛默飞K展的信息,敬请登录thermoscientific.com/k2013。 您可在以下时间段使用赛默飞DXR拉曼显微镜现场测试预登记的多层样品:2013年10月21日周一至2013年10月23日周三上午11时和下午3时。同时,欢迎将预先登记的样品带至赛默飞展台,亲自体验赛默飞传感器带来的不同体验。 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2400名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过400 名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • 高铁检测仪器发布聚合物PVT测试仪新品
    1 机台说明:PVT为分析聚合物在压力、体积、温度下的变化,利用固定的腔膜加温构造,让聚合物的体积固定,透过多段不同压力、温度下的体积密度变化,求出注射模朔型生产过程的工艺参数,使其加工中所产生的翘曲、收缩、气泡、缝合线的缺陷减少,进而减少报废率增加生产率,获得高质量的产品效能。2 原理: 将固定量的聚合物依所设定的温度加温或降温,并可选择使用速率式温度控制,更采用仿真量的气流冷却增加温度控制的准确性,利用伺服马达控制加压柱塞依所设定的压力保持恒压,再使用高精度光学尺感知聚合物温度变化时膨胀或收缩时的体积变化,得出密度、比容等数据,藉此分析相关数据。创新点:创新点:我司为国内外唯一的专门测试聚合物PVT性能的高精度仪器,专一精准。1.PVT-6000是模流分析必不可少工具,分析注射模塑生产过程的最佳工艺参数,使其加工中所产生的翘曲、收缩、气泡、缝合线的缺陷减少,提升产品质量。2.自主研发软件,设定最多10段不同压力进行数据测试分析。3.高精度流量阀控制气流冷却,降温稳定。聚合物PVT测试仪
  • 【瑞士步琦】SFC遇见SEC——三种模式应用于聚合物分离
    三种模式应用于聚合物分离 通常来讲,对于聚合物的分离,主要方法为体积排阻色谱(SEC)和液体吸附色谱(LAC),然而在这两个模式之间,存在着所谓的临界条件下液相吸附色谱法(LACCC)。原理上,对于所有的模式都是根据分子的特性来对聚合物进行分离。其实,在这三种模式中使用超临界 CO2 只是停留在早期的研究中,但是随着 SFC 领域的快速发展,又燃起了我们对于这些模式研究的希望!本篇文章,我们将会以聚乙二醇(PEG)为模型展示这三种模式下的分离状态。为了确定临界条件下的色谱参数,采用了质量设计(QbD)的方法来减少所需的实验。1聚合物分离的色谱原理超临界条件下体积排阻色谱scSEC临界条件下超临界流体吸附色谱SFACCC超临界流体吸附色谱SFAC大量的改性剂强溶剂聚合物与固定相无相互作用焓变强溶剂和弱溶剂的混合物焓和熵的效应是相等的二氧化碳含量高(弱溶剂)聚合物在固定相上的解吸与吸附基于流体动力体积的分离高分子量优先被洗脱不依靠分子量的聚合物共洗脱基于端基的分离基于相互作用强度的分离更高分子量的后洗脱表1. 超临界流体色谱法对聚合物不同分离方式的比较。哪种模式占主导地位取决于色谱条件,主要是溶剂强度。2实验材料与设备实验条件色谱柱250 mm x 20 mm, 5μm (制备柱)Reprosil SEC 200&angst (Dr. Maisch, Germany)150 mm x 2.1 mm, 1.9μm (分析柱)仪器分析型:Waters UPC2 with Acquity ELSD(Waters)制备型:Sepiatec SFC-250 with ELSD(Sepiatec)软件Fusion QbD software (S-Matrix Corp.)3SFACCC 中使用 QbD 对聚合物进行条件筛选与分离QbD 法确定关键色谱条件:在第一次筛选后,使用 QbD 方法以最少的实验确定关键色谱条件在较小的条件区域内,所有共洗脱的聚乙二醇都可以得到,图中用白色背景表示这一点通过实验得到了验证PEG-400 与聚多卡醇(端基为 C12-烷基的 PEG-400)在如下条件分离:名称目标下界上界颜色所有PEGs最大保留时间差最小0.030——红色聚多卡醇/PEG400保留时间差最大——0.100绿色▲图1.由 Fusion QbD 软件生成的方法设计;在临界色谱条件 T 中进行▲图2.在临界色谱条件:36% 甲醇和 56℃ 下,不同 PEG 的共洗脱(上图)和 PEG-400 与聚多卡醇的分离(下图)4在相同系统下采用 SEC 与吸附色谱对聚乙二醇进行实验实验条件色谱柱200 &angst 1.9μm背压调节阀1800psi(124bar)洗脱液CO2(A)/甲醇(B)流速1 mL/min温度40℃检测器ELSD▲图3.scSEC:等度模式;10/90(CO2/甲醇)▲图4.SFAC:梯度模式;十分钟之内 90/10 – 50/50(CO2/甲醇)▲5.SFAC:等度模式;90/10(CO2/甲醇)scSEC色谱法在亚临界条件下通过高比例的强溶剂进行等度洗脱,高分子量的 PEG 更早的洗脱出来。SFAC色谱法通过梯度洗脱模式对 20kDa – 200Da 分子量范围内的 PEG 进行洗脱。后续采用低比例改性剂的等度模式对可将 PEG-200 和 PEG-400 分散剂分解为其单分散组分。分子量的确认通过 SFC-MS 联用技术进行确认。SEC校准:将衍生化均匀聚合物与常规 PEGs 分散剂进行校准比较,以此来证明均匀聚合物的可用性。5制备分离 PEG-400 里均匀聚合物实验条件仪器Sepiatec SFC-250色谱柱200 &angst 5μm洗脱液CO2(A)/甲醇(B)= 93/7流速60 mL/min温度40℃检测器ELSD▲图6.通过 SFAC 色谱模式对 PEG-400 均匀聚合物进行分离效果图谱聚合物纯度验证:在分析层面上使用开发的 SFAC 色谱法对均匀聚合物的纯度进行检测,结果表明即使在不优化分离条件的情况下,所有聚合物的纯度都>99%。6结论通过改变 CO2 和甲醇的比例,三种模式均可在相同的系统中实现。除此之外,在实际应用中,通过将开发的分析方法顺利转移到制备规模中,对不同分子量的聚乙二醇进行分离纯化且得到了均匀的聚合物。
  • 液相干货分享 | 如何正确测量聚合物的分子量
    当我们从上游厂家买回一批聚合物样品时,测得的分子量却与厂家提供的不同,那这是怎么回事呢?在弄清楚原因之前,不妨先来一起学习下凝胶渗透色谱/体积排阻色谱( GPC/SEC )的基本原理和应用。GPC 色谱柱为多孔填料,当样品与填料无吸附、排斥等相互作用时,分子体积越大的组分能够穿过的孔越少,行走的路程越短,也就越早从色谱柱中洗脱出来。图为 Agilent Infinity II 多检测器 GPC 系统图为 Agilent 高温 GPC系统 PL220根据 GPC 应用的方向,通常可以归纳为以下三种:样品前处理(去除大分子基质)组分分离定量聚合物分子量/结构检测表1. GPC 三种应用方向对比使用 GPC 来测量聚合物分子量和分子量分布,除了将不同聚合度的组分分离之外,我们还需要另外两点信息:不同保留时间流出组分的浓度和分子量。浓度的信息可以通过浓度型检测器得到,如示差折光检测器和紫外检测器。各保留时间流出组分的分子量信息的得到却不是特别容易,常规 GPC 是选用一组不同分子量的窄分子量分布标准品,来对色谱柱进行标注,得到保留时间 - 分子量的曲线,再由校正曲线来计算样品的分子量。常用的标准品种类很少,如果标准品和样品的化学结构、拓扑结构不同,得到的样品分子量就不是样品的绝对分子量,而是相对于标准品的相对分子量。图为常规 GPC 分子量计算原理示意图由此看来,标准品的选择是造成计算结果差异的可能原因之一。为了解决这部分带来的差异,确认与上游产家使用相同的标准品类型。当然如果上游厂家与我们都能得到样品的准确分子量,也可以减小数据的差异,普适校正是一种方式。普适校正就是通过 Mark-Houwink 方程和 Flory 特性粘度理论,建立起分子量与分子体积的数学关系,从而建立保留时间 - 分子体积的曲线。说起来有些复杂,操作很简单,只需要在 GPC 软件输入样品和标样的两个参数 K,α 就可以了。但这种方法不适用于所有样品,比如不同支化程度的样品是无法查到其在不同溶剂/温度下的K,α。图为不同支化程度样品的合成(控制 AB2 单体加入量)还有一个更加直接得到绝对分子量的方式,就是使用静态激光光散射检测器,根据瑞利散射原理直接得到样品的绝对分子量;如果再搭配特性粘度检测器,可同时得到样品的特性粘度信息,建立 Mark-Houwink 曲线,用于判断样品的支化情况。图为不同支化程度样品通过 Agilent 激光光散射-示差-粘度三检测器联用 GPC 得到的 Mark-Houwink 曲线(蓝色、红色、绿色曲线对应样品的支化度依次增高) 除了标准品的选择以外,色谱柱的选择、校正曲线的拟合次数以及积分起终点的判断等都可能引起结果的差异。扫描下方二维码,关注“安捷伦视界”公众号,获取更多资讯。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制