当前位置: 仪器信息网 > 行业主题 > >

碳纤维增强聚合物

仪器信息网碳纤维增强聚合物专题为您整合碳纤维增强聚合物相关的最新文章,在碳纤维增强聚合物专题,您不仅可以免费浏览碳纤维增强聚合物的资讯, 同时您还可以浏览碳纤维增强聚合物的相关资料、解决方案,参与社区碳纤维增强聚合物话题讨论。

碳纤维增强聚合物相关的论坛

  • 【转帖】材料之王-----碳纤维

    材料之王-----碳纤维碳纤维--是由有机母体纤维(例如粘胶丝、聚丙烯腈或沥青)采用高温分解法在1000~3000度高温的惰性气体下制成的。其结果是除碳以外的所有元素都予以去除。碳纤维呈黑色,坚硬,具有强度高、重量轻等特点,是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa亦高于钢。因此CFRP的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。材料的比强度愈高,则构件自重愈小,比模量愈高,则构件的刚度愈大,从这个意义上已预示了碳纤维在工程的广阔应用前景,综观多种新兴的复合材料(如高分子复合材料、金属基复合材料、陶瓷基复合材料)的优异性能, 不少人预料,人类在材料应用上正从钢铁时代进入到一个复合材料广泛应用的时代。  碳纤维的用途主要是利用其"轻而强"和"轻而硬"的力学特性,广泛应用于航空、航天、军工、体育休闲等结构材料;利用其尺寸稳定性,应用于宇宙机械、电波望远镜和各种成型品;利用其耐疲劳性,应用于直升飞机的叶片;利用其振动衰减性,应用于音响器材;利用其耐高温性,应用于飞机刹车片和绝热材料;利用其耐药品性,应用于密封填料和滤材;利用其电气特性,应用于电极材料、电磁波屏蔽材料、防静电材料;利用其生体适应性,应用于人工骨、韧带;利用其 X-光透过性,应用于 X-光床板等。   此外,还可以活化成活性碳纤维,应用于各种吸附领域。具体应用例如:①钓鱼杆现年产量约1200万只,年碳纤维用量1200t;②高尔夫球杆随着轻量化和长尺寸化的要求,现已占碳纤维体育用品用途的50%,年碳纤维用量为2000t;③网球拍的年市场规模约为450万只,年碳纤维用量约500t;④飞机方面,小型商务机和直升飞机的复合材料用量已占70%一80%,军用机30%一40%,大型客机15%一20%;⑥人造卫星结构体、太阳能电池板和天线要用高模碳纤维,先进的运载火箭和导弹壳体、发射筒等要用800H和 T300碳纤维等;⑥土木建筑领域,已用于补修加工用片材、建筑部件、代钢筋材料、屋顶构架材料等;⑦能源领域,已用于汽车的压缩天然气罐和风车叶片(长达30-40m)、海底油田管道、升降机等;⑧交通运输方面,已应用于赛车、汽车传动轴、大型卡车车体等;⑨电子电器领域,已应用于增强热塑性树脂的挤出成型品,如抗静电 IC盘、笔记本电脑的筐体,具有电磁波屏蔽效果;⑩其它,还有X-射线盒、医用床板、印刷、制膜、造纸等用的各种滚轴、空气或氧气呼吸用压力容器等等。 碳纤维产业是由原丝(PAN)生产再到预浸料再到具体的终端产家这么一个产业链。目前, 原丝的售价是40元~50元/公斤,碳纤维为200元/公斤,预浸料为500元/公斤,每一级的深加工都有高幅度的增值。  我国碳纤维的生产和使用尚处于起步阶段, 国内碳纤维生产能力仅占世界高性能碳纤维总产量的0.4%左右,国内用量的90%以上靠进口。而PAN 原丝质量一直是制约我国碳纤维工业规模化生产的瓶颈。另外,碳纤维长期以来被视为战略物资,发达国家一直对外实行封锁。因此,有关专家认为,强化基础研究是创新之本, 是发展国内碳纤维工业的根本出路。 美国联合碳化物公司(UCC)于1959年开始最早生产粘胶基碳纤维,五六十年代是粘胶基碳纤维的鼎盛时期,虽然时期已开始衰退,但是它作为耐烧蚀材料至今仍占有一席之地。1959年,日本研究人员发明了用聚丙烯腈(PAN)原丝制造碳纤维的新方法。在此基础上,英国皇家航空研究院研制出了制造高性能PAN基碳纤维的技术流程,使其发展驶入了快车道,PAN基碳纤维成为当前碳纤维工业的主流,产量占世界总产量的90%左右。1974年,美国联合碳化物公司开妈了高性能中间相沥青基碳纤维Thornel-35的研制,并取得成功。目前Thornel-P系列高性能沥青碳纤维仍是最好的产品,这样就形成了PAN基、沥青基和粘胶基碳纤维的三大原料体系。   世界碳纤维的主要生产商为日本的东丽、东邦人造丝、三菱人造丝三大集团和美国的卓尔泰克(ZOLTEK)、阿克苏(AKZO)、阿尔迪拉(ALDILI)和德车的SGL公司等。其中日本三大集团占世界生产能力的75%。世界CT型碳纤维总生产能力为22100吨/年,LT型碳纤维总生产能力为9550吨/年;实际生产量约为7000吨/年。   在20世纪90年代中期以前,军事工业、航天与航空工业与体育休闲业一直是CT型碳纤维的主要市场。自1996年美国成功地将LT型碳纤维工为化以后,CT型碳纤维与LT型碳纤维竞争十分激烈。   当前世界上PAN基炭纤维正处于迅速增长的发展期:产品性能趋向于高性能化,T700S加快取代T300作通用级炭纤维;产量增加较快,1996~2000增长48.1%;航天航空和体育用品用量增加稳定,民用工业用量增幅较大,已超过前两者,特别是随着大丝束炭纤维的大规模生产,价格的降低,民用工业需求增加迅猛。

  • 【资料】“偏光显微镜法”观察“聚合物”球晶

    【资料】“偏光显微镜法”观察“聚合物”球晶

    聚合物的结晶受外界条件影响很大,而结晶聚合物的性能与其结晶形态等有密切的关系,所以对聚合物的结晶形态研究有着很重要的意义。聚合物在不同条件下形成不同的结晶,比如单晶、球晶、纤维晶等等,而其中球晶是聚合物结晶时最常见的一种形式。球晶可以长得比较大,直径甚至可以达到厘米数量级.球晶是从一个晶核在三维方向上一齐向外生长而形成的径向对称的结构,由于是各向异性的,就会产生双折射的性质。因此,普通的偏光显微镜就可以对球晶进行观察.因为聚合物球晶在偏光显微镜的正交偏振片之间呈现出特有的黑十字消光图形。偏光显微镜的最佳分辨率为200 nm,有效放大倍数超过500—1000倍,与电子显微镜、x射线衍射法结合可提供较全面的晶体结构信息。 球晶的基本结构单元是具有折叠链结构的片晶,球晶是从一个中心(晶核)在三维方向上一齐向外生长晶体而形成的径向对称的结构,即—个球状聚集体。 光是电磁波,也就是横波,它的传播方向与振动方向垂直。但对于自然光来说,它的振动方向均匀分布,没有任何方向占优势。但是自然光通过反射、折射或选择吸收后,可以转变为只在一个方向上振动的光波.即偏振光。—束自然光经过两片偏振片,如果两个偏振轴相互垂直,光线就无法通过了。光波在各向异性介质中传播时,其传播速度随振动方向不同而变化。折射率值也随之改变,一般都发生双折射,分解成振动方向相互垂直、传播速度不同、折射率不同的两条偏振光。而这两束偏振光通过第二个偏振片时。只有在与第二偏振轴平行方向的光线可以通过。而通过的两束光由于光程差将会发生干涉现象。 在正交偏光显微镜下观察,非晶体聚合物因为其各向同性,没有发生双折射现象,光线被正交的偏振镜阻碍,视场黑暗。球晶会呈现出特有的黑十字消光现象,黑十字的两臂分别平行于两偏振轴的方向。而除了偏振片的振动方向外,其余部分就出现了因折射而产生的光亮。如图2—1是共聚聚丙烯在145℃时的球晶照片。在偏振光条件下,还可以观察晶体的形态,测定晶粒大小和研究晶体的多色性等等。[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812011816_121451_1604910_3.jpg[/img]

  • 【求助】请帮忙找JIS K7071~K7091碳纤维检验方法标准

    希望有人能帮忙找到以下标准,感谢!!有中文版更好JIS K7071-1988 预浸碳纤维及环氯树脂试验方法 JIS K7072-1991 碳素纤维增强塑料板试样的制备 JIS K7073-1988 碳纤维增强塑料拉伸特性的试验方法 JIS K7074-1988 碳纤维增强塑料拉力试验方法 JIS K7075-1991 碳纤维增强塑料的碳纤维含量及空隙量的测试方法 JIS K7076-1991 碳素纤维增强塑料的压缩性试验方法 JIS K7077-1991 碳纤维增强塑料的摆式冲击强度的试验方法 JIS K7078-1991 碳素纤维增强塑料层间剪切强度的试验方法 JIS K7079-1991 加减45度拉伸法和双轨法测定碳纤维增强塑料面内剪切性能的试验方法 JIS K7080-1991 碳素纤维增强塑料支承强度试验方法 JIS K7081-1993 碳纤维增强塑料暴露在自然气候下的试验方法 JIS K7082-1993 碳纤维加强的塑料完全反向弯曲疲劳的试验方法 JIS K7083-1993 碳纤维增强塑料的定载振幅双向拉伸疲劳的试验方法 JIS K7084-1993 碳纤维加强的塑料通过三点仪弯曲冲击试验其冲击特性的试验方法 JIS K7085-1993 碳纤维增强塑料的多轴向冲击特性的试验方法 JIS K7086-1993 碳纤维加强的塑料的层间断裂强度的试验方法 JIS K7087-1996 碳纤维增强塑料的抗拉蠕变试验方法 JIS K7088-1996 碳纤维增强塑料的弯曲蠕变试验方法 JIS K7089-1996 碳纤维增强塑料冲击后的压缩试验方法 JIS K7090-1996 碳纤维增强塑料板的超音波脉冲回波技术试验方法 JIS K7091-1996 碳纤维增强塑料板的射线照相试验方法

  • 【求助】碳纤维在风机叶片中的应用

    【求助】碳纤维在风机叶片中的应用

    目前公司开发3.0M瓦风机叶片的研制,以前都是用玻璃纤维增强,此项目准备使用碳纤维。希望权威人士能给些有用的参考资料和相关信息。可包括叶片形状设计,纤维铺层设计,树脂和纤维材料的选择,以及各种检测方法等系列相关信息。不胜感谢!!!

  • 聚合物的分类

    按来源分类按来源可把高分子分成天然高分子和合成高分子两大类。按性能分类可把高分子分成塑料、橡胶和纤维三大类。塑料按其热熔性能又可分为热塑性塑料(如聚乙烯、聚氯乙烯等)和热固性塑料(如酚醛树脂、环氧树脂、不饱和聚酯树脂等)两大类。前者为线型结构的高分子,受热时可以软化和流动,可以反复多次塑化成型,次品和废品可以回收利用,再加工成产品。后者为体型结构的高分子,一经成型便发生固化,不能再加热软化,不能反复加工成型,因此,次品和废品没有回收利用的价值。塑料的共同特点是有较好的机械强度(尤其是体形结构的高分子),作结构材料使用。纤维又可分为天然纤维和化学纤维。后者又可分为人造纤维(如粘胶纤维、醋酸纤维等)和合成纤维(如尼龙、涤纶等)。人造纤维是用天然高分子(如短棉绒、竹、木、毛发等)经化学加工处理、抽丝而成的。合成纤维是用低分子原料合成的。纤维的特点是能抽丝成型,有较好的强度和挠曲性能,作纺织材料使用。橡胶包括天然橡胶和合成橡胶。橡胶的特点是具有良好的高弹性能,作弹性材料使用。按用途分类可分为通用高分子,工程材料高分子,功能高分子,仿生高分子,医用高分子,高分子药物,高分子试剂,高分子催化剂和生物高分子等。塑料中的“四烯”(聚乙烯、聚丙烯、聚氯乙烯和聚苯乙烯),纤维中的“四纶”(锦纶、涤纶、腈纶和维纶),橡胶中的“四胶”(丁苯橡胶、顺丁橡胶、异戊橡胶和乙丙橡胶)都是用途很广的高分子材料,为通用高分子。工程塑料是指具有特种性能(如耐高温、耐辐射等)的高分子材料。如聚甲醛、聚碳酸酯、聚砚、聚酰亚胺、聚芳醚、聚芳酰胺和含氟高分子、含硼高分子等都是较成熟的品种,已广泛用作工程材料。离子交换树脂、感光性高分子、高分子试剂和高分子催化剂等都属功能高分子。医用高分子、药用高分子在医药上和生理卫生上都有特殊要求,也可以看作是功能高分子。按主链结构分类可分为碳链高分子、杂链高分子、元素有机高分子和无机高分子四大类。碳链高分子的主链是由碳原子联结而成的。杂链高分子的主链除碳原子外,还含有氧、氮、硫等其他元素,如:如聚酯、聚酰胺、纤维素等。易水解。元素有机高分子主链由碳和氧、氮、硫等以外其他元素的原子组成,如硅、铝、钛、硼等元素,但侧基是有机基团,如聚硅氧烷等。无机高分子是主链和侧链基团均由无机元素或基团构成的。天然无机高分子如云母、水晶等,合成无机高分子如玻璃。高分子化合物的系统命名比较复杂,实际上很少使用,习惯上天然高分子常用俗名。合成高分子则通常按制备方法及原料名称来命名,如用加聚反应制得的高聚物,往往是在原料名称前面加个“聚”字来命名。例如,氯乙烯的聚合物称为聚氯乙烯,苯乙烯的聚合物称为聚苯乙烯等。如用缩聚反应制得的高聚物,则大多数是在简化后的原料名称后面加上“树脂”二字来命名。例如,酚醛树脂、环氧树脂等。加聚物在未制成制品前也常有“树脂”来称呼。例如,聚氯乙烯树脂,聚乙烯树脂等。此外,在商业上常给高分子物质以商品名称。例如,聚己内酰胺纤维称为尼龙-6,聚对苯二甲酸乙二酯纤维称为涤纶,聚丙烯腈纤维称为腈纶等。

  • 【原创大赛】pH 响应聚合物研究进展

    【原创大赛】pH 响应聚合物研究进展

    [font=宋体] pH [/font][font=宋体]响应聚合物研究进展[/font][font=宋体]1. pH [/font][font=宋体]响应聚合物概述[/font][font=宋体]一般而言,外界 pH 值的变化会导致生物大分子的水溶性或构象发生变化,因此具有类似结构的聚合物也能对环境的 pH 值变化做出相应的响应。该类聚合物具有 pH 响应的关键因素是一般主链上都含有大量对 pH 敏感的基团(弱电解质基团)如羧酸基、氨基、吡啶、咪唑基等。当外界环境的 pH 或离子浓度发生变化时,这些基团可以接受或释放质子来响应外界环境中 pH 的变化[76]。聚合物通过接受或给予质子导致其分子解离程度发生改变,造成聚合物分子的质子化或去质子化平衡发生移动,从而影响聚合物链的溶解性[77-78]。[/font][font=宋体]按照 pH 响应聚合物分子链中含有基团的性质 pH 响应聚合物可分为两大类:弱有机酸类和弱有机碱类[79]。弱有机酸类聚合物(如羧酸基)能在较低的 pH 值时接收质子呈正电性,而 pH 值较高时变成负电性,因为同种电荷间存在相互排斥作用使水与分子链之间的相互作用加强,进而提高了聚合物的亲水性,呈聚电解质状态,如聚甲基丙烯酸(PMAA)等[80-81];弱有机碱类聚合物则一般带有弱有机碱取代基,它能在低 pH 值件下得到质子变成亲水性基团,聚合物链之间因库仑排斥力而展开,而高 pH 条件下则是亲油性的,如聚甲基丙烯酸二甲氨基乙酯(PDMAEMA)、聚乙烯基吡啶等[82-84]。[/font][font=宋体]目前关于 pH 响应聚合物合成的研究不断被报道,其中大部分是利用含有乙烯基的单体为原料进行聚合。常见的聚合方法主要包括:自由基聚合、原子转移自由基聚合(ATRP)、基团转移聚合(GTP)、可逆加成-断裂链转移聚合(RAFT)等。自由基聚合是最常见的聚合方法,聚合产物通常为线性的高分子聚合物,相较于其它方法其合成条件相对简单,通常为一步反应,所得产物多为无规则共聚物。例如,Fan 等人[85]通过自由基聚合制备了一系列具有良好 pH 响应特性的聚合物,在低 pH 条件下,由于质子化叔胺单元的静电相互作用和亲水性,共聚物在水溶液中表现为溶解状态。而在高 pH 条件下,由于烷基上去质子化胺具有较强的疏水性,导致共聚物在水溶液中聚集沉淀。[/font][font=宋体]2 [/font][font=宋体]、pH 响应聚合物在分离富集领域的应用[/font][font=宋体]近年来,pH 响应聚合物在分离富集领域的应用潜力开始被众多研究者关注。基于pH 响应聚合物具有的溶解-沉淀 pH 响应特性,可以将目标物固定或吸附在 pH 响应聚合物上,通过调节环境的 pH 值使其形成共沉淀,实现对目标物的分离纯化。[/font][font=宋体]Bai [/font][font=宋体]等[86]开发了一种具有 pH 响应特性的聚合物,该聚合物是由 pH 反应型单体与糖基反应型单体共聚而成。所得的线性共聚物链与糖蛋白/糖肽样品在弱酸性 pH 条件下在水溶液中形成均相反应混合物,促进了聚合物基体与目标糖蛋白质/糖肽之间的偶联。只需降低体系 pH 值,即可使聚合物糖蛋白质/糖肽迅速自组装从溶液中析出大颗粒的团聚体,从而实现快速高效的样品回收。[/font][font=宋体]Ding[/font][font=宋体]等[87]以丙烯酸类化合物为功能单体通过自由基聚合制备了具有pH响应特性的聚合物,进一步将染料配基 Cibacron Blue 固定到聚合物上,利用 Cibacron Blue 和纤维素酶的亲和性使 pH 响应聚合物与纤维素酶共沉淀,实现了对纤维素酶的分离[/font]

  • 商用表面增强拉曼光谱传感器面世

    2012年11月22日 来源: 科技日报 作者: 何屹 本报讯 据每日科学网日前报道,新加坡研究人员利用黄金纳米阵列开发出适于商业应用的高性能表面增强拉曼光谱传感器。 表面增强拉曼光谱技术(SERS)是在印度科学家拉曼1928年发现拉曼散射现象的基础上发展起来的。利用拉曼光谱技术可以非常方便地鉴定物质成分,现已成为探测界面特性和分子间相互作用、表征表面分子吸附行为和分子结构的有效工具,广泛应用于癌症诊断和食品检测等领域。不过,由于很多分子直接通过拉曼光谱无法检测出信号,需要通过拉曼增强技术,将这些分子吸附在纳米金属表面,在特定波长的激光照射下,利用表面增强拉曼光谱传感器检测出待检物质。 新加坡科技研究院(A*STAR)材料工程研究所的研究人员制造出一种非常密集且有规律的黄金纳米阵列,在自组装和传感等方面具有独特的优点。此外,他们还成功将该纳米阵列置于光纤端头涂层中,使得该技术有望在遥感监测危险废弃物方面具有广泛的应用前景。 研究人员在涂有自聚物纳米粒子的表面进行纳米阵列的自组装,较小的黄金纳米粒子会自发附着。仅仅依靠涂层和吸附这些简单的过程,就可稳定高产地形成小于10纳米的纳米簇。通过调整聚合物的规模和密度等特征,研究人员可以调节纳米簇的大小和密度,使表面增强拉曼散射达到最大化。该技术的效率非常高:涂满100毫米直径的晶片,或200光纤端头,仅需要不超过10毫克的聚合物和100毫克的黄金纳米粒子,而聚合物和纳米粒子均可低成本大量生产。 由于纳米阵列的形成过程完全是自组装过程,因此该技术不需要专门的设备或特定的无尘室,非常适合低成本商业化生产。目前该技术已在新加坡、美国和中国申请了专利。(何屹)

  • 帝人与通用汽车公司联合开发先进碳纤维复合材料技术

    总部位于东京的帝人公司和总部设在底特律的通用汽车公司(GM)签署了一项协议,双方将共同开发先进碳纤维复合材料技术,这种技术可用于通用在全球的高容量汽车、卡车和交叉型车辆。  该协议包括使用帝人公司的专利碳纤维增强热塑性塑料(CFRTP)技术,与传统的利用热固树脂方法和需要更长成型时间相比,这是一种更快地生产碳纤维复合物的方法,直到现在,碳纤维只限于应用在高容量汽车领域。帝人报告,这种技术可以在不到一分钟时间之内大批量生产CFRTP 组件。  “帝人的创新CFRTP技术,有望实现更轻汽车车身结构的革命,在通用汽车主动将碳纤维组件带入主流车辆的过程中,它将发挥重要作用,“帝人资深董事总经理Norio Kamei 说:“ 我们相信,我们与通用汽车公司有远见的关系将会提高汽车行业绿色复合材料的利用。”  “我们与帝人的关系给汽车行业的碳纤维革命提供了一个机会,” 通用汽车公司副董事长Steve Girsky说:“这项技术有潜力成为行业游戏规则的改变者,它证明,通用汽车公司长期致力于技术创新。”  帝人公司将于2012年初在美国北部设立帝人合材料应用中心,与通用汽车公司更加紧密合作。这份协议可能为帝人扩大专业和高端汽车碳纤维应用之外的产品组合铺平道路。出处“中华纺织网”

  • 【求助】类似纤维状的聚合物用傅立叶变换红外光谱仪怎么测?

    [em0715] 刚入手红外分析的工作 遇到了很多问题,现在想请教一下各位大侠,像纤维状的聚合物要用什么方法测试红外谱图呢?样品的前处理需要怎么做,需要用什么附件?我用单次反射ATR测试过pps,但是有人说图不是很好,请教一下,有别的好方法吗?对了,测不出-OH的峰(水),因为别人说应该有的,可是我却测不出来,样品在干燥的环境下保存,会不会是因为这个原因,水被蒸干了呢?

  • 请问免费图谱查询中聚合物怎么查询

    http://www.aist.go.jp/RIODB/SDBS/这个网站查询方法毛毛斑竹以前讲过,但是聚合物查询很困难,一般只能用英文Compound Name查询,但是只能查到PVC,PS,聚乙烯醇,乙基纤维素这几个聚合物了。大家有没有查询出更多的?怎么查?

  • 聚合物改性

    通过共混 交联 增塑剂这些对聚合物进行改性最根本的基理是什么?

  • 聚合物用儀器定性?

    各位朋友,下午好,有两个关于关聚合物测试问题想请教:1. 是否有相关化学仪器可以给聚合物定性?比如供应商给我一包PC料,用什么仪器可以测试出此物料就是PC料呢?2. PC料是由单体双酚A(bisphenol A)和单体光气(碳酰氯)聚合而成,是否可以測試出此PC料中是否還有未反應的殘留單體?用什麼儀器測呢?謝謝!

  • 【求助】如何做聚合物的二维相关核磁?

    我合成了一个聚合物,在H谱上4.8-5.3ppm之间有一个宽的矮包无法归属。想做一下聚合物的二维谱,如gCOSY, gHSQC来确认一下结构。请问聚合物的二维核磁做法与小分子的检测方法一样吗,为了分辨率有什么需要注意的?谢谢指点!

  • 【转帖】必然流行趋势:全面自由的聚合物

    [url]http://plas.specialchem.com.cn/tc/articles/articleweek.aspx?lr=panl042&li=15668[/url]介绍聚合物使用的实际的背景有利于高度禁止经过验证的有害元素和分子或者根据“风险预防原则”而具有危害可能性的材料或混杂物。聚合物、添加剂以及增强材料都无法逃脱这一大体趋势。禁令可以依据一般法律、多少特定的规章、专业或私人规范以及甚至一些支持性的言论等等。最为熟知的规章有:REACH:是关于化学品的注册、评估、授权和限制制度。REACH要求生产商和进口商收集所有年产量或年进口量在1吨以上的产品性质的全面信息,并在欧洲化学品管理局的登记档案内提交必要信息以证明产品的使用安全性。注册失败将意味着产品无法在欧洲市场生产或进口到欧洲的市场。 欧洲RoHS和中国RoHS:是对有害物质的限制。欧洲RoHS指令对在电气、电子设备中通常使用的有害物质作了限制: 重金属,包括水银、镉、六价铬和铅,这些物质若在环境中广泛传播的话是有害的。 水银、Hg在催化剂中使用并通过矿物燃料和废弃物的燃烧而释放到环境中。有机汞化合物则会因为毒素富集作用而对神经系统造成影响。 镉、Cd是一种毒性累积的元素。 铬、Cr6+是一种存在在大气、水以及土壤中的毒性元素。 铅、Pb,会在生物体中聚积并会导致瘫痪、失明等行为变化。铅在特定的聚合物中用作固化催化剂或稳定剂。 有机系列 多溴联苯(Polybrominated biphenyls,PBBs)和多溴联苯醚(Polybrominated diphenyl ethers,PBDEs)。这些含溴的具有生物持久性的有机化合物用作塑料中的阻燃剂,例如用在电气设备的机架中。 一些其他的规章则是关于食品接触之类的特定领域的。在那些情况下,锑、砷、钡、镉、铬、铅、汞、硒以及其他化学元素的迁移现象是被禁止或有所限制的。最后,一些禁令是由商业联合会或公司非官方决定的。例如,IBM公司对它的供应商明确规定了“产品含量声明表”,要求在产品中不含某些在其他规章中禁止或可能未禁止的化学品;而Hewlett-Packard也制定了“环境通用规范”(General specification for the environment,GSE)。这些禁令或限定适用于具有功能的零件和可能与设备使用者皮肤有接触的情况下。一种明确的产品既可以在外部线材涂料中禁止使用,也可以在内部的零部件中获得认可而被允许使用。以下是一些被禁止使用或者被限定的物质的例子,但是并不能作为规则也没有穷尽所有的情况:石棉 RoHS中规定的物质 含氮的着色剂 联苯胺及其盐 甲醛 卤代芳烃 卤代二苯甲烷 六氯丁二烯 六氯乙烷 镉/镉的化合物 六价铬/涂料或塑料中的六价铬化合物 颜料,外部电缆、电线和帘线所用的PVC涂料,或塑料中的铅 汞/汞的化合物(灯除外) 延长的皮肤接触的外表面上的镍 外部用塑料中的聚氯乙烯(Polyvinyl Chloride,PVC) 耗臭氧物质(CFCs,HCFC,HBFCs,四氯化碳等等) 全氟碳化合物(PFCs) 全氟辛烷磺酰基化合物(PFOS) 多溴联苯(PBBs) 四溴双酚A(TBBB-A) 十溴二苯醚 多溴联苯醚(PBDEs) 多氯联苯(PCBs) 多氯三联苯(PCTs) 短链氯化石蜡 甲苯 三(2,3二溴苯基)磷酸盐 三-(氮丙啶基)-氧化膦 三丁基锡(TBT),三苯基锡(TPT),三丁基等等 关于要求:RoHS和不含卤素并不是具有相同意义的。例如,RoHS并没有禁止使用含有卤素的阻燃添加剂。

  • 聚合物基质色谱柱使用注意

    聚合物基质色谱柱在pH2~12范围内呈现出较高的化学稳定性,使其可以在碱性条件下被使用。较宽的pH范围还可以使用多碱性化合物在非带电形式下得到分析,减少了二次相互作用发生进而改善分析峰形。由于二次相互作用的降低, 聚合物基质的反相色谱柱大大改善了对肽和蛋白质的回收。  聚合物基质色谱柱在使用过程中易出现的问题和解决办法:  聚合物基质色谱柱在使用中zui常见的问题就是柱压升高,如果柱压是在长时间使用过程中缓慢增加,属于正常现象。但柱压在使用过程中突然升高(系统管路堵塞及压力传感器故障除外),以下列举了部分常见原因及解决办法:  (1)聚合物基质液相色谱柱头的过滤筛板堵塞或污染  解决方法:如确定是色谱柱头的过滤筛板被污染,可以将聚合物基质色谱柱反方向用甲醇冲洗至正常压力,或者卸下色谱柱头,将其放在10%的稀硝酸内超声清洗10分钟,后再用纯水超声10分钟,重新装入色谱柱。  (2)聚合物基质液相色谱柱头的填料被样品污染  解决方法:如确定色谱柱头的填料被污染,将柱头螺丝卸下,挖出柱内前段被污染的填料,用相同的柱填料重新填入,仔细修复后,重新安装上柱头螺丝。  (3)聚合物基质液相色谱柱内缓冲液中的盐遇到高浓度的甲醇或其他有机溶剂,形成结晶析出;解决方法:如确定定是盐结晶,用10%的甲醇/水冲洗色谱柱使柱内盐全部溶解,再换高浓度甲醇。  (4)流动相PH值过大或过小使固定相结构破坏或溶解。解决方法:如果因PH值使用不当,很难恢复。  所使用的流动相极性较强,通常为水、缓冲液与甲醇、乙腈等的混合物。样品流出色谱柱的顺序是极性较强的组分zui先被冲洗出,而极性弱的组分会在聚合物基质色谱柱上有更强的保留。

  • 醛的聚合物

    想问一下各位老师有没有遇到过醛的聚合物,要怎么判断这些聚合物呢。醛的聚合物特征离子是不是都是醛的特征离子。

  • 寻找牛人帮做聚合物PPTA Mw

    本人研究对位芳纶2纤维,现需要测试PPTA聚(对苯二胺对苯二甲酰胺)分子量和其分子量分布,此聚合物难溶于有机溶剂,只溶于浓硫酸或浓氯磺酸,普通色谱柱无法测试,希望有人能够提供相关的测试方法或设备。

  • 超支化聚合物在无盐染色中的应用

    超支化聚合物在无盐染色中的应用1棉织物活性染料无盐染色在棉织物活性染料传统染色工艺中,需加入大量的盐,以提高染料的上染率和固色率。盐的加入会导致水质恶化,破坏生态环境,因此,活性染料无盐和低盐染色成为印染工作者致力解决的热点问题之一。其中,棉纤维阳离子化,是一种比较有效的途径。即通过化学结合或物理吸附,使阳离子化合物固着在纤维上,以提高染料的竭染率和固色率,减少甚至不使用无机盐。端氨基超支化合物(HBP—NH2)是一种高度支化、含有丰富端氨基和亚胺基的水溶性多分散聚合物。该化合物可通过范德华力、氢键等作用力与棉纤维结合使棉织物的表面吸附部分端氨基超支化合物,提高染色性能,实现无盐染色。目前国内威海晨源提供超支化聚酯。张峰等采用HBP—HTC对棉织物进行阳离子改性,实现了棉织物活性染料的无盐染色。与传统棉织物活性染料染色相比,其K/S值、色牢度指标均令人满意。其中HBP—HTC中季铵盐质量摩尔浓度越高,对棉织物的改性效果越好,其最佳改性工艺条件为:4g/LHBP—HTC溶液,常温下浸渍处理30min。2、真丝织物活性染料无盐染色目前,真丝绸高牢度染色几乎都是采用活性染料染色。活性染料色谱齐全,色泽鲜艳,价格低廉,染色性能优良,受到人们的喜爱。但现有的活性染料的亲合力不高,为提高活性染料对真丝绸的上染率和固色率,必须加入大量无机盐来促染。大量无机盐的加入,提高了染料利用率,减少了废水中染料的含量,但无机盐对环境的影响日益严重。张德锁等对超支化聚合物进行端基改性,制备了端氨基超支化合物季铵盐(HBP-HTC )。利用HBP-HTC对真丝织物进行改性处理可以在无盐促染条件下有效提高活性染料的上染能力。与未改性真丝织物相比,HBP—HTC改性真丝织物个别色牢度略有降低,匀染性相当,色光略有变化。

  • 【求助】聚合物包覆纳米颗粒的样品

    TEM测试老师说不能做高分辨,说聚合物有污染。后来想了想,我们用的铜网上不是也先上聚合物,再喷碳,到底还是有聚合物啊。所以有些不解,请不吝赐教。谢谢!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制