当前位置: 仪器信息网 > 行业主题 > >

碳纤维增强塑料

仪器信息网碳纤维增强塑料专题为您整合碳纤维增强塑料相关的最新文章,在碳纤维增强塑料专题,您不仅可以免费浏览碳纤维增强塑料的资讯, 同时您还可以浏览碳纤维增强塑料的相关资料、解决方案,参与社区碳纤维增强塑料话题讨论。

碳纤维增强塑料相关的资讯

  • 碳纤维复合材料的“试验员”
    引 言自进入21世纪以来,科学技术对材料提出了越来越高的要求,碳纤维复合材料(CFRP)因其重量轻、强度高、耐腐蚀性强、弹性优良等特点,广泛应用于航天航空、汽车、电子电器、体育器材等领域,促使碳纤维复合材料行业快速发展。一方面CFRP广泛使用助推产业结构优化升级,实现绿色发展;另一方面CFRP的研究深度和应用广度及其生产发展的速度和规模,已成为衡量一个国家科学技术先进!复合材料的应用场景 CFRP强度评估方法由各种ASTM标准规定。岛津试验机可以根据ASTM各种测试标准做出解决方案,例如符合“平面内剪切试验-双V形切口剪切法(ASTM D5379)的试验示例,以及符合各种标准的夹具。采用双V形切口试样进行平面内剪切试验,得到CFRP的平面内剪切强度、平面内剪切破坏应变和平面内剪切弹性模量。碳纤维复合材料的测试标准碳纤维复合材料(CFRP)目前主要应用于飞机与汽车制造业,其刚性是重要应用参考,岛津试验机可以根据JIS K 7074和JIS K7084标准提供静态三点弯曲试验和高速冲击试验方案,且能获得精确获得试验数据。碳纤维是碳纤维增强塑料(CFRP)的重要组成部分,碳纤维的力学性能(拉伸强度/弹性模量)对复合材料物理性能有重要影响,岛津试验机系统可以对碳纤维及其复合材料进行拉伸试验,也可以配合高速摄像机实现从高时间分辨率的角度研究碳纤维布的破坏过程的可视化观察。使用X射线CT系统可以对试样中纤维的取向和空隙进行无损观察。这使得在进行测试之前能够观察内部状态,从而获得测试结果与内部结构紧密相关的数据。 岛津试验机拥有一百多年的历史和丰富的产品线,不管是静态试验机还是动态试验机,可以满足各种客户的需求,且进行定制化的夹具设计。岛津公司提供了一系列用于分析、测试和检验评估的仪器和系统(从分析和测试预处理到数据分析),从而有助于解决从CFRP原材料开发到产品耐久性评估各个阶段的各种问题,为营造和谐绿色的发展做出贡献。
  • 岛津微焦点CT系统助力碳纤维增强复合材料(CFRP)制孔加工新技术
    引 言碳纤维增强复合材料(CFRP:Carbon Fiber Reinforced Plastics)因其高比强度、高比刚性和良好的耐腐蚀性而广泛用于航空航天、国防工业和其他领域。然而CFRP属于典型难加工材料,尤其是制孔加工,CFRP构件为了与其他零部件装配通常要对其进行大量的制孔,传统制孔加工技术难以满足要求,这成为CFRP推广应用的瓶颈。 为了研发高效高质量、低成本的CFRP制孔技术,南方科技大学吴勇波讲席教授团队的汪强博士后研究员等人利用岛津公司的inspeXio SMX-225CT FPD HR微焦点X射线CT系统,观察新技术斜螺旋铣削法(THM)和传统螺旋铣削法(CHM)所获得CFRP制孔加工质量。通过inspeXio SMX-225CT FPD HR微焦点X射线CT系统对两种不同方法CFRP制孔加工样品进行扫描成像,再使用VG软件对其数据进行比较分析,发现利用CHM获得孔的表面出现明显毛刺,而使用THM获得孔的表面非常光滑。这验证了斜螺旋铣削法这一新技术相比传统螺旋铣削法更有利于CFRP高质量制孔加工。论文链接:https://doi.org/10.1007/s00170-018-2995-5图1 基于CHM和THM的加工孔的3D扫描图图2 inspeXio SMX-225CT FPD HR微焦点X射线CT系统外观图 图1是通过微焦点CT扫描后的三维立体图像。无需特殊前处理,直接把样品放进inspeXio SMX-225CT FPD HR CT设备中直接扫描,测试速度快,短短几分钟就可以得出清晰的图像。岛津公司inspeXio SMX-225CT FPD HR是一款高性能微焦点X射线CT系统(图2)。特点是检出器动态范围大,相当于1400万像素的输入分辨率,加之进一步改良过的高输出微焦点X射线发生器,完全颠覆了“无法在高电压输出设备上获得轻质材料的高清晰高对比度的图像”这一常识,能够获得大视野范围、高分辨率、高对比度的断面图像。无论是在研发的复合材料(GFRP、CFRTP),还是大型铝合金压铸件产品,这款仪器能够完成各种样品所需要的研究、开发和检查的实验。 图3 基于CHM和THM加工孔的3D扫描图(图片版权归Int J Adv Manuf Technol所有) 图3分别显示了CHM(θ=0°)和THM(θ=5°)加工孔的CT放大扫描结果。图像表明,CHM孔口处存在大量的毛刺,而在THM孔入口处很少出现毛刺现象,从而抑制了THM孔口的撕裂。使用CHM加工时,孔表面在90°α180°时特别粗糙;与之形成对比的是,THM中所有孔表面都是光滑的。 图4 拟合CHM和THM加工孔的扫描3D图(图片版权归Int J Adv ManufTechnol所有)图5 CHM和THM加工孔CT横截面图 (图片版权归Int J Adv ManufTechnol所有) 通过CT扫描CHM(θ= 0°)和THM(θ= 5°)获得的加工孔横截面(图5)。在CHM加工孔的入口和出口表面都发现了分层,这与THM加工的没有观察到分层的孔形成鲜明的对比。THM加工孔表面要比CHM好得多,这归功于在THM加工中,孔的出口加工是分阶段形成:在第一阶段,会生成直径小于所需直径的孔出口,随着加工进行,孔出口直径逐渐扩大到所需直径,从而完成第二阶段的孔出口加工。在这个过程中,第一阶段形成的孔出口分层可以在第二阶段孔加工中消除,从而实现孔出口的高质量加工。 图6 CHM和THM加工孔CT横截面图 (图片版权归Int J Adv Manuf Technol所有) 图7 THM加工孔CT展开图(a)和SEM图(b) (图片版权归Int J Adv Manuf Technol所有) 在图6和图7中,通过CT扫描后用专用图像处理软件把孔内表面展开,可以清晰的观察CHM(θ=0°)和THM(θ=5°)的孔内表面形貌。这一分析手段有利于观察分析被测物体内部结构,是本公司产品的优势之一。在CHM中,当90°α180°时,可以看到粗糙的表面缺陷位于α=135°附近。但是在THM中,所有α角度的钻孔表面都是光滑的。最后通过SEM扫描验证缺陷位置。 SMX-225CT FPD HR微焦点X射线CT系统扫描结果协助研究者验证了THM加工方法在CFRP制孔加工中显著优于CHM,为后续研究提供了准确的数据。
  • 基于V型纳米孔表面增强拉曼基底的微纳塑料检测
    微塑料通常被定义为尺寸小于5 mm的塑料碎片,在海洋、陆地、淡水系统中均有所发现,对环境安全和生物健康均有一定程度的影响。更令人担忧的是,微塑料通过机械磨损、光降解和生物降解等作用会进一步分解,形成尺寸更小的微塑料甚至是纳米塑料。它们的危害可能更大,因为它们可以穿过生物膜并容易在不同组织间转移,如果吸入空气中的微纳塑料甚至可以穿过肺组织。据已有的研究显示,应用在微塑料检测的传统技术仅能检测到10 μm 左右的大小,远远不能满足当前和未来研究的需要。因此,迫切需要开发适用于小尺寸微纳塑料的检测新方法。表面增强拉曼光谱(SERS)技术是一种强有力的基于拉曼光谱的原位分析技术。一般来说,分子的拉曼效应很弱。然而,当这些分子被吸附在贵金属(例如金和银)的粗糙表面时,分子的拉曼效应会大大提高。甚至可以在单分子水平上获得高灵敏度。在我们之前的研究工作中,首次报道利用SERS技术实现了环境纳米塑料的检测(EST, 2020, 54(24): 15594)。但是,采用的商业化Klarite基底的高昂成本使其不适宜广泛大规模的应用。因此,本研究利用一种低成本的具有大量有序的V型纳米孔阵列的阳极氧化铝(AAO)模板,通过磁控溅射或离子溅射将金纳米粒子沉积在模板上,开发得到用于小尺寸微纳塑料检测的 SERS 基底(AuNPs@V-shaped AAO SERS substrate)。由于AAO模板中纳米孔阵列特殊的V型结构以及有序规则的排列,使得AuNPs@V-shaped AAO SERS基底可以提供大量“热点”和额外的体积增强拉曼效应,在检测微塑料时表现出高 SERS 灵敏度。图1 摘要图本研究首先使用不同尺寸(1 μm、2 μm和5 μm)的聚苯乙烯(PS)和聚甲基丙烯酸甲酯(PMMA)两种标准样品在AuNPs@V-shaped AAO SERS基底和硅基底上进行检测,并计算相应的增强因子(图2、图3)。结果显示,单个PS和PMMA两种颗粒在硅基底上均不能检测到1 μm的尺寸大小,且其他尺寸的拉曼信号强度也相对较弱。而在AuNPs@V-shaped AAO SERS基底上,在相同的检测条件下,各尺寸的单个PS和PMMA颗粒的拉曼信号强度大大增强,且1 μm的PS和2 μm的PMMA都有拉曼信号检出。增强因子的计算结果显示,使用AuNPs@V-shaped AAO SERS基底检测单个微塑料颗粒可获得最大20倍的增强效果。此外,通过比较磁控溅射和离子溅射两种沉积方式所分别形成的基底检测微塑料的拉曼光谱结果和增强因子计算结果,我们可以得出磁控溅射所形成的基底具有更好的检测性能。这个结果可以联系到SERS基底的扫描电镜表征结果(图4)进行解释,磁控溅射所形成的金纳米层更加细腻平整,而离子溅射所形成的金纳米层出现了一定的团聚,导致形貌结构较为粗糙,因此信号强度有所减弱。图2:PS的拉曼检测。(a)不同尺寸的单个PS颗粒在硅基底上的拉曼光谱;(b)显微镜下不同尺寸的单个PS颗粒在硅基底上的形态分布;(c)不同尺寸的单个PS颗粒在离子溅射形成的SERS基底上的拉曼光谱;(d)不同尺寸的单个PS颗粒在磁控溅射形成的SERS基底上的拉曼光谱;(e)显微镜下不同尺寸的单个PS颗粒在磁控溅射形成的SERS基底上的形态分布;(f)显微镜下不同尺寸的单个PS颗粒在离子溅射形成的SERS基底上的形态分布;(g)增强因子的箱线图。图3:PMMA的拉曼检测。(a)不同尺寸的单个PMMA颗粒在硅基底上的拉曼光谱;(b)显微镜下不同尺寸的单个PMMA颗粒在硅基底上的形态分布;(c)不同尺寸的单个PMMA颗粒在离子溅射形成的SERS基底上的拉曼光谱;(d)不同尺寸的单个PMMA颗粒在磁控溅射形成的SERS基底上的拉曼光谱;(e)显微镜下不同尺寸的单个PMMA颗粒在磁控溅射形成的SERS基底上的形态分布;(f)显微镜下不同尺寸的单个PMMA颗粒在离子溅射形成的SERS基底上的形态分布;(g)增强因子的箱线图。图4:AAO模板和SERS基底的扫描电镜表征。(a)空白的AAO模板;(b)经过离子溅射形成的SERS基底;(c)经过磁控溅射形成的SERS基底;(d)(e)微塑料标准样品在基底上的形态分布。之后,本研究采集了雨水作为大气样品,对基底检测实际样品的能力进行了测试。采集到的雨水样品经过过滤、消解等前处理后,被滴加在基底上进行后续的拉曼检测,获得若干疑似微塑料的拉曼光谱。通过将这些采集到的拉曼光谱与标准微塑料样品的拉曼光谱进行比对,找到了雨水样品中所含有的微纳塑料颗粒,证实了大气中微塑料颗粒的存在以及基底检测实际样品的能力。图5:雨水样品的检测。(a)在基底上发现的疑似微塑料颗粒,尺寸约为2 μm × 2 μm;(b)疑似微塑料颗粒的拉曼光谱。该研究了提出了一种新型的适用于环境微纳塑料检测的低成本SERS基底,具备热点均一、增强效果好的优点,有望推广到环境各介质中微纳塑料的检测,为尺寸更小的纳米塑料检测分析提供了新方法。
  • 安捷伦推出用于微塑料分析的增强型激光红外成像系统
    安捷伦科技公司(纽约证交所:A)近日宣布,公司推出增强型 8700 LDIR 激光红外成像系统。该系统针对环境样品中的微塑料分析实施了进一步优化。这一新改进的系统方案包还包含了 Clarity 1.5 软件,这一重大升级可加快分析速度,增强光谱采集、转换和谱库匹配,并提供自动化工作流程,可直接分析滤膜上的微塑料。重新设计的创新样品支架能够更轻松地将滤膜上的样品递送至仪器,并且操作更加一致。   环境中广泛存在的微塑料成为全球日益关注的问题,这也促使政府更加重视微塑料污染,与此同时,环境机构也加强了对河流和海洋的监测。想要充分评估环境中的微塑料污染情况,研究人员就需要确定样品中塑料颗粒的粒径、形状和化学特性,但由于更小的颗粒往往具有更强的生物学相关性,因此该分析必须扩展到微米级的颗粒。   微塑料分析面临的主要挑战是分析周期长且操作复杂,阻碍了对现实系统的研究。此外,方法的差异性也限制了研究之间的可比性,因此难以评估微塑料污染趋势。FTIR 和显微拉曼成像技术等振动光谱提供了一种有用的替代方案,但由于分析时间长且方法过于复杂,这些方法都存在局限性。   VAgilent 8700 LDIR 使红外光谱分析兼具快速分析和易用性,并迅速成为微塑料颗粒分析的基准技术。该平台能够直接对滤膜上的颗粒进行分析,标志着速度和通量的又一次飞跃。测试量显著增加将使研究人员能够更好地了解环境中微塑料的污染程度,并有助于制定合理的标准和法规。   安捷伦副总裁兼分子光谱事业部总经理 Geoff Winkett表示:“当我与微塑料研究人员交谈时,一个反复提及的问题是如何使检测更快速、更简便。如果实际处理的样品数量有限,这可能会掩盖问题的真实本质。目前,其他可用的技术分析周期太长,并且无法捕获饮用水和环境水中大量的微塑料。一些快速且简便易用的分析方法,如 8700 LDIR,提供了一种重要且急需的替代方案,使研究人员能够在一定的区域或时间内采集更多样品,从而应对这些局限。”   作为食品与环境分析解决方案的优质供应商,安捷伦致力于为学术研究领域和商业检测公司提供能够改善用户结果的出色技术。增强型 8700 LDIR 的推出有望加强安捷伦在这一不断发展的市场中的前沿地位。   关于安捷伦科技公司   安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领军者,致力于提供敏锐洞察与创新,帮助提高生活质量。安捷伦提供涵盖仪器、软件、服务及专业技能的全方位解决方案,能够为客户挑战性的难题提供更可靠的答案。在 2021 财年,安捷伦的营业收入为 63.2 亿美元,全球员工数为 17000 人。
  • 三思聚焦碳纤维材料科学最前沿
    2016年4月15日,“第二届碳纤维及其复合材料技术与应用研讨会”在深圳召开,此次应用研讨会以“构建中国绿色碳纤维产业链”为主题,行业内近三百家企业将齐聚此次研讨会,共同讨论解决我国目前碳纤维发展问题及部分解决方案。 会议现场,国家973项目首席科学家、东华大学纤维材料改性国家重点实验室副主任余木火教授、碳纤维及复合材料研究所党部支书记赵冬林教授等人针对纤维行业发展、碳纤维复合材料在工业领域应用的产业化之路等问题进行了深刻的探讨。 作为中国领先的材料试验设备和材料,碳纤维行业内举足轻重的试验解决方案的服务商,三思纵横接受主办方邀请,携三思独家研创的新品“风暴”系列电子万能试验机和自主研发碳纤维专用夹具全力聚焦该会议,现场分享碳纤维及其复合材料测试方面的最前沿科技。三思纵横致力于为建立有中国特色的碳纤维制备及应用产业链结构,实现碳纤维在交通运输、能源、建筑、航天航空兵器核等领域的应用完全自主贡献一份民族试验机龙头企业的力量。 碳纤维材料是典型的高科技领域中的新型工业材料,是发展国防、军工与国民经济的重要战略物资,碳纤维复合材料具有轻而强、轻而刚、耐高温、耐腐蚀、耐疲劳、结构尺寸稳定性好以及设计性好、可大面积整体成型等特点,已在航空航天、国防军工和民用工业的各个领域得到广泛应用。在要求高温,物理稳定性高的场合,碳纤维复合材料具备不可替代的优势,碳纤维碳材料已在军事及民用工业的各个领域取得广泛应用。高性能碳纤维材料还是制造先进复合材料最重要的增强材料。 既坚如磐石,又韧如发丝。它是自古以来人类在材料领域孜孜以求的品质,也是三思在前进发展道路上追求的品格。
  • 使用表面增强拉曼光谱检测瓶装水中的聚对苯二甲酸乙二醇酯纳米塑料
    近日,挪威科技大学与南开大学合作在Environmental Science & Technology上发表了题为“Identification of Poly(ethylene terephthalate) Nanoplastics in Commercially Bottled Drinking Water Using Surface-Enhanced Raman Spectroscopy”的研究论文。研究合成了一种新型的表面拉曼增强光谱(SERS)衬底,该衬底可增强纳米颗粒的拉曼光谱信号,通过对不同粒径的聚苯乙烯(PS)纳米颗粒测试发现,粒径越小拉曼光谱信号增强因子越高。使用该SERS衬底,对经100 纳米滤膜过滤后瓶装水进行了检测,通过与标准谱图比对,发现瓶装水中的纳米塑料为聚对苯二甲酸乙二醇酯,浓度高达108 个/毫升。全文速览微纳塑料作为新型污染物,引起了全球范围的广泛关注。而作为微纳塑料研究的基石,检测分析方法一直是该领域的重点和难点,尤其是粒径更小的纳米塑料。本研究合成了一种新型三角孔隙阵列SERS衬底,该衬底可增强纳米塑料的拉曼信号。通过对不同粒径(50,200,500,1000 nm)的PS纳米塑料测试,发现粒径越小,拉曼光谱信号的增强因子越高。对于50 nm的PS纳米塑料检测限为0.001%,约为1.5×1011 个/毫升。使用该衬底,检测了市售的瓶装水,瓶装水经100 nm滤膜过滤后,滴加在衬底上,可直接检测到拉曼光谱信号,经过与标准谱图的比对,发现为聚对苯二甲酸乙二醇酯,该塑料主要为瓶身材质,浓度约为108 个/毫升。该研究提供了一种快速且灵敏的纳米塑料检测方法。引言微纳塑料由于其独特物化性质,分析检测一直是微纳塑料研究领域的重点和难点。拉曼增强由于其可对小分子有机化合物以及纳米颗粒的拉曼光谱信号进行增强,近年来也逐渐应用于纳米塑料的检测。但目前关于SERS测试纳米塑料多集中于实验室内的加标样品,对于实际样品的检测的研究仍然很少。本研究通过合成一种新型的三角孔隙阵列衬底,测试了其对PS纳米塑料的增强效果,并检测分析了市售瓶装水中纳米塑料的赋存。图文导读阵列合成Figure 1. A schematic illustration of fabrication process for the triangular cavity arrays (TCAs). First, close-packed polystyrene (PS) nanospheres are self-assembled on a silicon substrate (i). A thin silver (Ag) film is deposited over the nanospheres (ii), which are then tape stripped away, leaving Ag nanotriangle arrays (iii). A gold (Au) film is then deposited over the entire substrate (iv). An adhesive epoxy is applied on the top of Au and then peeled off, transferring two metals Ag and Au sitting in a complementary arrangement side-by-side on epoxy (v). Simply removing of the Ag parts using chemically etching, revealed gold triangular cavity arrays as shown in (vi).图1展示了该拉曼衬底的合成示意图,首先将一层500 nm的PS纳米微球平铺在硅胶板上,然后在表面添加一层Ag,去除掉纳米微球后,形成了Ag纳米三角阵列,再添加一层150 nm的Au薄膜,之后添加一层粘合剂环氧树脂,在紫外线照射下固化后剥离掉带着两层金属的环氧树脂,再去除孔隙中的Ag后,形成最终的三角阵列衬底。阵列表征Figure 2. Scanning electron micrographs (SEMs) of the corresponding processing steps in Figure 1 to fabricate gold TCAs substrate: (a) Close-packed PS nanospheres that corresponds to step i in Figure 1 (b) Ag triangle arrays after removing of PS nanospheres that corresponds to step iii in Figure 1 (c) Top-view of morphology after depositing Au layer that corresponds to step iv in Figure 1 (d) Au TCAs arrays after removing of Ag parts that corresponds to step vi in Figure 1. Scale bar in a-d: 250 nm. (e) Patterned gold TCAs over large area, scale bar in e: 1 µm.图2为经过图1合成的衬底的扫描电镜图,分别表示了衬底在不同合成阶段的扫描电镜图。从图中可清楚的表明于实际合成的衬底与图1中的示意图完全吻合。PS纳米颗粒测试Figure 3. (a) Raman spectra of PS nanoplastics with different sizes on Au TCAs substrates at concentration of 1%. (b) Enhancement factor (EF) as a function of PS size. (c) Raman spectra of 50 nm PS nanoplastics with concentrations varying from 1% to 0.001% on TCAs substrates and on plain glass substrate at the concentration of 1% (control line). (d-g) Raman mapping images of 50 nm PS nanoplastics on Au TCAs substrates with different concentrations from 1% to 0.001%. Scale bar in d-g: 200 nm.图3展示了不同粒径的PS纳米微球的增强测试,在50、200、500和1000 nm四个粒径中,50 nm的PS微球增强因子最高,随着粒径增加,增强因子变低。此外,还对50 nm的PS微球的不同浓度做了分析测试,发现在0.001%仍可检测到清晰的信号,特征峰1003 cm-1的信噪比为88。瓶装水前处理Figure 4. (a) Schematic of sample preparation from commercially bottled drinking water. (b-d) SEM images of an extracted sample that drop-casted on a silicon wafer after drying under ambient conditions. Scale bar: (b) 300 µm (c) 5 µm (d) 200 nm.图4为瓶装水的处理过程和SEM结果。在采购瓶装水后,取100 mL过100 nm的滤膜,对过滤后的水样进行SEM检测,从图中可看出,在扫描电镜下,存在大量的颗粒物,经过不同倍数的放大,粒径小的可低至几十纳米。同时,采用去离子水做了过程空白对照,在扫描电镜下,无颗粒物检出,排除了实验过程中外部的污染。瓶装水检测Figure 5. (a)Schematic of sample preparation from bottled drinking water. (b) Raman mapping image of sample extracted from bottled drinking water on TCAs substrate. Scale bar: 500 nm. (c) Raman spectra of sample extracted from bottled drinking water on TCAs substrate (red line) and plain glass substrate (brown line), and PET film (purple line). (d) Finite track length adjustment (FTLA) concentration/size image for NTA of sample extracted from bottled drinking water on TCAs substrate: indicating mean size of nanoplastics is ca. 130.8 ± 58.0 nm.图5为瓶装水的拉曼检测结果,将过滤后的瓶装水直接滴加在衬底上,经过拉曼检测后,可鉴别出1620和1760 cm-1两个峰,与PET纳米塑料标准品和PET膜进行对比,可知瓶装水中的颗粒物为PET,在检测空白和过程空白中均无信号。此外,水样还进行了NTA测试,平均粒径约为88.2 nm(三个平行样品的平均值),浓度为1.66×108 个/毫升。小结通过合成新的SERS衬底,可实现对纳米塑料的拉曼信号的增强,纳米塑料的粒径越小增强因子越高,且该衬底的灵敏度高,可对过滤后的水样直接检测,同时还可重复使用。瓶装水的检测结果表明塑料瓶身是水样中纳米塑料的主要来源。
  • 三思纵横携精品设备亮相塑料行业的技术市场盛会
    11 月28 日,为期三天的2016首届新材料与产业化国际论坛暨首届国际塑料产业技术与市场高峰论坛在浙江宁波举行,包括国内外塑料化工原料制造企业、塑料改性企业、塑料加工成型制造企业、知名材料检测设备供应商、第三方检测机构、科研院所等在内的700余位代表出席会议。 作为塑料行业的较大规模技术市场盛会,大会邀请了国内知名院士及专家作主题报告, 以“智能制造与创新发展”为主题,以高端化、智能化、国际化为方向,会议围绕诸如可靠性、安全性、稳定性、高效率、成本优化、生产工艺、测试认证等热点话题进行技术探讨,为塑料企业之间以及塑料企业与专家之间搭建一个优化的技术与市场交流平台。 三思纵横作为中国领先的材料试验设备和材料解决方案的服务商,受邀携三思精品UTM6000系列电子万能试验机和飞龙系列塑料摆锤式冲击试验机出席此次会议。与会嘉宾对三思纵横的设备表现出了极大的兴趣,杭州办办事处经理欧阳思越、销售工程师程鸿波、李伦军、客服人员戚文昌为嘉宾现场演示设备并就设备的性能及技术参数等方面进行答疑解惑,优质的设备和可靠的服务赢得了在场嘉宾的一致好评。 参会设备介绍:UTM6000系列电子万能试验机主要适用于各种非金属材料的拉伸、压缩、弯曲、剪切、剥离、撕裂等试验,,以技术先进、性能卓越和质量稳定为主要优势,数年来全国销售第一。 飞龙系列塑料摆锤式冲击试验机主要适用于进行塑料及硬橡胶、玻璃钢、玻璃纤维、增强塑料、电气绝缘材料、玻璃陶瓷、地砖铸石、摩擦材料的简支梁、悬臂梁冲击试验。
  • CSTM发布《纤维增强聚合物基复合材料 超低温力学性能试验方法》团体标准
    近日,中国材料与试验团体标准委员会(CSTM标准委员会)批准发布T/CSTM 00653—2022《纤维增强聚合物基复合材料 超低温力学性能试验方法》团体标准,并将于2022年8月27日起正式实施。该团体标准规定了纤维增强聚合物基复合材料超低温力学性能试验的试验原理、试验设备、试样、试验步骤、试验结果和试验报告;适用于连续纤维增强聚合物基复合材料在-183 ℃~-269 ℃超低温下进行拉伸、面内压缩、弯曲和剪切等力学性能试验,超出上述温度范围及树脂浇铸体和塑料的超低温力学性能试验可参照使用。该标准起草人:渠成兵、肖红梅、黄传军、刘玉、付绍云、刘德博、张健、左小彪、史汉桥、李元庆、矫维成、杨帆、蔡浩鹏、张红菊、陈超。起草单位:中国科学院理化技术研究所、北京玻璃钢研究设计院有限公司、北京宇航系统工程研究所、航天材料及工艺研究所、重庆大学、哈尔滨工业大学、武汉理工大学、国标(北京)检验认证有限公司、山东省标准化研究院。标准文本:标准下载链接:https://www.instrument.com.cn/download/shtml/1091668.shtml
  • 碳纤维高歌猛进,仪器检测遇阻:业/仪/检融合或可破局——访上海骐杰新材料董事长申富强
    “第十七届中国科学仪器发展年会(ACCSI2024)”于2024年4月17-19日在苏州狮山国际会议中心盛大召开。ACCSI定位为科学仪器行业高级别产业峰会,经过多年的发展,已被业界誉为科学仪器行业的“达沃斯”论坛。ACCSI2024 以“融合创新,质领未来”为主题,吸引了来自“政、产、学、研、用、资、媒”等各方的高端人士共计1500余人参会,共同探讨科学仪器行业的前沿趋势与发展机遇。年会现场,仪器信息网特别采访了上海骐杰新材料股份有限公司董事长申富强。访谈就公司的整体业务概况、碳纤维复合材料产业化现状、研发过程中所用到的仪器检测技术、目前对仪器检测的需求等话题展开。仪器信息网:请介绍下上海骐杰新材料股份有限公司的整体业务概况?申富强:上海骐杰股份是做碳纤维复合材料的,主要的应用领域有三个,第一个是超高温应用领域,第二个是摩擦材料领域,第三个是储能材料领域。公司目前有将近200人,总部在上海,设有4个生产基地,主要在江苏淮安,各基地承载了不同的职能,目前着重开发的市场是光伏和半导体的应用方面。仪器信息网:我国碳纤维复合材料产业化现状如何?与国际水平有哪些差距?骐杰新材料在推进碳纤维复合材料国产化方面取得哪些进展?申富强:中国的碳纤维发展基本已与世界同步,虽在某些技术上稍显落后,但经过这几年的努力,已经追上来了。当前,中国碳纤维在国际市场的份额大幅提升,原来主要集中在日本、美国和欧洲,现在产量已与日本不相上下,预计到2030年,有望超越欧美和日本,成为碳纤维生产的第一大国。碳纤维复合材料领域也呈现出增长态势,之前看过相关报道,在2030年之前,会维持年均14%的增长率,是一个非常好的行业。中国在这一领域的发展与世界也基本是同步的,水平相当。目前,我国碳纤维复合材料领域主要分为树脂基和碳碳复合材料两大类。我们公司专注于碳碳复合材料领域,并已在此领域取得了一系列重要突破,包括飞机、汽车的摩擦材料,半导体的高纯材料,以及新能源储能材料等方面的显著进步。仪器信息网:中国碳纤维复合材料呈现积极发展态势,您认为发展背后的驱动力主要来自具体的应用需求还是碳纤维材料本身发展规律?申富强:从我个人角度来看话,可以从两个方面回答,第一个确实是碳纤维材料本身的发展,从最开始的50年代到现在的高速发展,这是一个材料发展的必然的结果。材料的发明到最终的市场的应用,需要一个很长的周期,尤其是基础材料的应用,周期可能更长。所以作为材料人来讲,要耐得住寂寞,守得住底线,和材料一起发展。第二方面,我认为碳纤维材料的发展同样受到国家导向和政策的影响,包括世界上新兴的科研前沿需求,也具有一定的指导作用。各个国家都在做相应的政策性引导,我们国家也是跟国际政策是相匹配的,能够跟得上新兴器件的应用,比如半导体、飞机及重型的航天器。材料的需求出来之后,必然会带动碳纤维的发展,这是两方面的推动。仪器信息网:碳纤维复合材料研发生产过程中主要会应用到哪些仪器检测技术?请从您的角度谈谈这些仪器检测技术对于材料研发生产的重要意义?申富强:我觉得在材料发展过程中,检测是一个非常重要的环节。检测必然会对仪器带来需求,尤其是新材料或者新的苛刻的应用场景出现的时候,对于检测仪器也会相应地提出新的需求,而且会提出苛刻的需求。现在碳纤维复合材料应用领域,尤其是碳碳复合材料领域,出现的应用场景都是超高温、超纯或超大容量,对于原有的普通的仪器或者普通精度的仪器,已经不能够满足市场的需求了。在碳纤维复合材料行业中,测试3000度以上的高温机械性能和物理性能等,一直是个技术挑战。目前,市场上缺少这类仪器,也让众多企业倍感困惑。为了突破这一困境,不少企业开始自主研发或寻找合适的厂家进行联合开发。而且,测试标准也不统一。所以,现在对于碳纤维复合材料来说,要么是找不到相应的仪器,要么是有仪器,但精度不够。此外,行业还面临着测试平台不足和数据积累、共享困难的问题。所以我觉得将来对于仪器的要求,除了在有和无之间先实现之外,第二个很重要的问题就是实现精度、智能化、数据化,要在这方面做更多的努力,否则无法满足新材料的发展需求,也会阻碍新材料的发展。所以我呼吁相应的国内的仪器生产厂家积极投入到这一领域,尽可能实现这些仪器的国产化。仪器信息网:从目前应用来看,贵司对检测技术或仪器设备还有哪些需求?申富强:在超高温条件下,如超过1500度的导热系数仪,目前难以找到合适的供应商。同样,超高温下的热膨胀系数仪,以及用于测量微孔、介孔和纳孔的粒径分布和电化学活性的设备也极为稀缺。此外,对于模拟高速运动惯量下的热损或摩擦性能,以及导热性能的测试仪器同样缺乏。所以我希望相关仪器制造商能够投入研发或联合研发相应的仪器。仪器信息网:您认为材料研发生产企业与科学仪器生产企业有哪些合作的方向?申富强:之前我思考过这个问题,可以概括为业仪一体或业仪融合,就是企业和仪器应该要一体化发展,甚至应该加上检测服务,实现业仪检的一体化发展,可能对以后产业的发展有帮助。如果没有精准的仪器,没有合适的仪器,对产业的发展,对行业的推动是比较麻烦的。发展到中期的时候,我建议建立一个检测服务的平台,实现仪器的共享,减少企业的仪器购置成本。同时,随着数据积累的增加,材料未来的发展可能会从传统的产业研究院模式逐步转向数字化的产业研究院。这种转变将减少测试量,从而加速研发过程,降低测试成本。我认为这是未来产业发展的一个理想方向。因此,我建议咱们仪器信息网能够构建一个这样的体系,新的名词可以叫“材料基因研究所”,这样可以通过这个平台,加速材料和产业的发展。仪器信息网:您提到骐杰新材料在材料研发过程中也展开一些仪器技术的开发,能不能谈谈贵公司在此方面有没有实质性进展或看法?申富强:实际上,我们一直在努力推进产学研合作,因为购买全部所需仪器对企业而言是一笔庞大的开支,所以现在也在和大学及科研院所联合开发项目,这样可以借助高校的平台满足公司在材料检测服务方面的需求。当然,现在也有一些第三方检测机构也不错,所以我觉得是一个阶段性的发展需求。所以我认为公司可以跟第三方来共建测试平台,如仪器信息网或政府机构,这也是一个比较合适的选择。仪器信息网:今年是仪器信息网成立25周年,请您谈谈对仪器信息网未来有哪些建议或者期待?申富强:我觉得咱们网站做得非常好。建议就是可不可以整合下咱们网站供应商、检测服务机构等这些资源,真正的实现产业、仪器、检测一体化发展,也希望可以早日实现。
  • 深圳三思纵横试验机|复合材料试验机:为材料科学插上腾飞的翅膀
    复合材料试验机是一款专用于测试复合材料性能的重要设备,它在材料科学研究、产品研发以及质量控制等多个环节中发挥着至关重要的作用。该试验机通过模拟实际工作环境和应用条件,对复合材料的各种物理和化学性能进行精确测量和分析,为科研人员和企业提供有力的数据支持。今天深圳三思纵横试验机小编将探讨复合材料的构成和性能、应用意义以及检测标准,大家一起来了解下吧。一、复合材料构成和性能复合材料是由两种或两种以上不同性质的材料,通过物理或化学的方法,组成具有新性能的材料,由基体相、增强相材料组成;既能保留原有组成材料的主要特点,又通过材料设计使各组分的性能相互补充并彼此关联,从而获得新的优越性能。复合材料并非仅限于金属,其增强相可以是玻璃纤维、碳纤维、陶瓷、纸板、织物、泡沫等材料。而基体相则可以是塑料、树脂、金属、陶瓷等材料。所以,不是所有复合材料都是金属材料。二、复合材料应用意义1、轻质高强复合材料的强度比传统材料高出很多,而且密度很低,因此具有高强度和轻质化的特点。在航空航天、汽车等领域,采用复合材料可以减轻整个系统的重量,提高系统的性能;2、良好的抗腐蚀性能许多金属材料容易受到氧化、腐蚀等环境因素的影响,而复合材料因其大多数是聚合物基质,因此具有很好的抗腐蚀性能;3、调节特殊性能由于复合材料是由两种或两种以上不同性质的材料组成的,因此可以设置不同材料的比例和形状,从而调节其特殊性能,满足特定需求;4、增强机械性能复合材料通常是由增强材料和基体材料制成,增强材料可以提高复合材料的强度、硬度和韧性等机械性能,同时也可以改善其热膨胀系数和导热性能等物理性能;5、材料优化复合材料通过优化铺层设计,可以在保证材料强度和刚度的前提下,减少材料的使用量和制造成本,提高材料使用效率。三、复合材料检测标准复合材料以其卓越的性能、轻盈的重量和出色的耐腐蚀性等特点,在众多领域得到了广泛应用。对于确保复合材料产品质量的关键,检测标准发挥着至关重要的作用。通过严格执行检测标准,我们能够全面掌握保障复合材料质量的具体实践方法,进而确保产品的可靠性与优质性。1、国内标准(1)国家标准-GB;(2)国家军用标准-GJB;(3)航空工业行业标准-HB。2、美国标准:美国复合材料试验和材料协会—简称ASTM(1)ASTM D:塑料、复合材料、胶粘剂;(2)ASTM C:夹层结构。3、其他标准(1)SCAMA先进材料供应商协会;(2)ISO国际标准。目前,全国纤维增强塑料标准化委员会(SAC/TC39)归口制订/颁布了一系列复合材料力学性能测试的国家标准,这一系列标准达到了国际先进水平。综上所述,复合材料试验机是现代工业中不可或缺的重要设备,无论是构成和性能,还是应用应用和检测标准都是不可缺少的。随着科技的不断发展,复合材料试验机将继续发挥着重要作用,为推动科技创新和产业升级做出更大的贡献。
  • 我4个创新主体进入全球碳纤维产业技术创新十强
    p  日前,八月创新研究院在京发布了《全球碳纤维产业技术创新200强报告》,报告显示,我国4个创新主体进入全球碳纤维产业技术创新十强,表明中国在碳纤维产业技术创新方面达到了较高的活跃度和强度。/pp  根据报告评测结果,全球碳纤维产业技术创新200强中,东丽株式会社居于首位,第2名为帝人株式会社,第3名为波音公司,第4至第10名依次为三菱化学株式会社、东华大学、哈尔滨工业大学、福特全球技术公司、中国国家电网公司、三菱瓦斯化学株式会社和山东大学。/pp  报告显示,美国14个创新主体进入200强,平均得分0.225 日本有29个创新主体进入200强,平均得分0.175 中国有139个创新主体进入200强,平均得分0.151。“这一方面表明我国碳纤维技术创新在全球横向比较中呈现较高的活跃度,另一方面表明我国碳纤维技术创新总体上与世界先进水平仍有不容忽视的差距。”八月瓜创新研究院有关负责人指出。/pp  报告分析,在我国技术创新主体结构的特点方面,在200强前100强中,我国高校院所居多 200强后100强中,企业居多。中国碳纤维技术创新布局中有三点值得关注:一是中国技术创新主体创新实力优劣分化明显 二是中国创新主体海外专利布局十分薄弱 三是高校碳纤维技术科研实力明显高于企业,但同时意味着技术成果产业化有巨大市场空间。/ppbr//p
  • 自行车的“质检员”,菲力尔的业务又扩大了.......
    菲力尔热像仪在各行业各业都有它的身影,一直在用自身卓越的产品性能,帮助各行各业解决实质性的问题菲力尔热像仪在各行业各业都有它的身影,一直在用自身卓越的产品性能,帮助各行各业解决实质性的问题。在科研、建筑、消防、工业、医疗、执法机关及军工领域等,均做出了突出的贡献。它不仅能够挽救人的生命,检测人身体健康,而且还能防事故于未然。菲力尔热像仪在自行车制造领域就起到了这样至关重要的作用,它如同自行车制造商们的“质检员”,帮助自行车制造商们甄别出有质量缺陷的自行车,有效的避免因自行车质量问题而造成的事故发生。众所周知,轻量化,是现代自行车制造的大势所趋。所以,很多自行车制造商,均采用极其轻便和坚固的碳纤维增强塑料来制造车架,此种材料与原先普遍应用的金属材料有着本质上的差异。但碳纤维增强塑料的有一个显著特性,只折,不弯。如果,车架本身有缺陷,在骑行的过程中会导致断裂,让骑车人陷入危险,极易造成人身伤害,甚至危胁生命。 由于碳纤维增强塑料的这一特性,致使它对各种特定压力的承受力非常脆弱,经常会造成一些隐蔽性缺陷。如:刹车钳拧得过紧,偶然的撞击或翻倒,都有可能造成自身的不可见裂纹。从外表看起来依然完美,但实际上,自行车已经有损坏,可能在两三天之内就会出现断裂。为了解决这些隐藏的危害,自行车制造商们,用菲力尔红外热像仪对碳纤维增强塑料的故障进行脉冲热成像质量检测。他们将自行车置于热脉冲环境下,用菲力尔热像仪对热流进行追踪,根据热流中不同的温差,生成热成像,并收集热成像数据,根据收集到的热成像数据,在 Volker Carl软件上,就能轻松检查出车体是否存在质量缺陷。 碳纤维为基础的车架通常不便宜,通过菲力尔的探测,不仅保护骑行人的安全,而且也保全了自行车原本的价值。看到这里,原理想必大家也都清楚了,那么,现在就一起看一下,菲力尔红外热像仪在自行车制造领域的实际应用吧!对一车辆破损的自行车进行检测,探测出碳纤维增强塑料的缺陷所在。自行车车架安装在旋转台上。20毫秒内,两个闪光灯在车架表面释放出了12千焦耳的光能。该热量穿透材料,红外热像仪记录表明故障的热流温差。每段测试持续时间为10秒,2分钟内能检测完整车架,10分钟后就可以出分析结果。 找出之前未受损的车架热图像,用以对比检测结果。通过与之前车架热成像的对比,在这张热图像中,我们可以看到折断的车架清楚的显示了脱层迹象。触发热脉冲,使用FLIR红外热像仪跟踪热流,热流中的不同温差能表明零件故障,使用红外热像仪收集的热数据为自行车制造商提供一种独特视角来了解碳纤维增强材料中的缺陷,减少不必要的损失。
  • 填补行业标准空白!广东发布乘用车复合材料翼子板团标
    2021年1月5日,广东省标准化协会发布实施《乘用车用碳纤维复合材料翼子板》团体标准。此举将促进国产乘用车翼子板质量规范和升级。翼子板是汽车车身上遮盖车轮的外饰件,因该部件形状及位置似鸟翼而得名。在汽车行驶过程中,翼子板可以起到防止行驶过程中车轮带起的砂石、泥浆等对轮毂和车厢底部的损坏,是轿车上比较典型的外覆盖件之一,质量要求高、成型难度大,一般选用成型性比较好,同时强度比较好、防腐性能较好的材料,材料厚度在满足抗凹性、刚度的前提下尽量选择薄的板材,降低整车重量。碳纤维复合材料是一种高性能新型材料,具有优异的比强度、比模量、耐腐蚀、抗疲劳性等优点。碳纤维增强塑料汽车翼子板相对于传统的钣金翼子板:1)可减重45%以上,轻量化效果显著,节能减排的优势明显;2)物理化学性能稳定,不易氧化生锈,耐腐蚀性强、寿命长;3)尺寸稳定性好,提高与翼子板相关的附件的匹配精度;4)较高的阻尼系数和疲劳强度极限,减震性能和抗疲劳性能强;5)特殊的纹理图案显示。随着中国汽车保有量不断增长,以及受主要消费群体年轻化、需求个性化等因素影响,以体现高端化、品质化、定制化趋势的碳纤维复合材料翼子板等汽车精品件引起越来越多人的认知与关注。目前,国内碳纤维复合材料翼子板生产企业主要为中小型企业,这些企业主要做高端汽车改装件的制造,并不能大批量生产。相比于国外的碳纤维复合材料汽车部件的发展,国内显得较为落后。而且,乘用车用碳纤维复合材料翼子板在国家标准、行业标准或地方标准上还是空白,生产企业多以客户的要求为依据制订自己的企业标准并组织生产,行业内因为缺乏标准的引导和规范,产品良莠不齐。为有效引导产业的良性持续发展,同时使用户在选择、使用产品的过程中有统一的标准进行参考和对比,促进产品质量和技术升级,充分保障消费者的权益。据此,广东亚太新材料科技有限公司、广州汽车集团股份有限公司汽车工程研究院、中国汽车工程研究院股份有限公司、深圳市标准技术研究院、广东亚太轻量化技术研究有限公司、北京汽车集团越野车有限公司、北京奔驰汽车有限公司、上海坤刚复材技术研究有限公司、广东省肇庆市质量计量监督检测所等单位联合起草了该标准。由上述单位专家和得力技术骨干组成的起草组对碳纤维复合材料翼子板产品现行市场状况、生产技术水平、应用领域、存在的急待解决的问题以及关联技术标准等进行了充分的调查研究,对部分技术指标在相关企业反复进行测试取得数据,并多次召开研讨会,对有关技术问题和指标进行深入研讨取得一致。《乘用车用碳纤维复合材料翼子板》团体标准立足于保障和提升汽车翼子板的质量和技术水平,对采用碳纤维增强环氧树脂基复合材料制作的乘用车翼子板的各个质量环节作了规范规定,包括规范性引用文件、术语和定义、技术要求、试验方法、检验规则、标志、包装、运输和贮存。技术要求包括一般要求、尺寸要求、外观质量、功能性要求等。质量技术指标既考虑先进性、前瞻性,又立足与现有生产技术水平相适应。其中,一般要求的指标与GB 11566—2009《乘用车外部凸出物》和GB/T 24550—2009《汽车对行人的碰撞保护》完全一致,外观及尺寸要求相较于GB/T 27799—2011《载货汽车用复合材料覆盖件》的要求更严,产品核心技术指标之一的耐气候老化试验采用颜色变化的灰标度评定,评定办法与指标要求与ISO相关标准一致,抗石击试验在比美国汽车工程师协会(SAE)规定的气候温度更严苛的条件下效果相同。 专家组评审认为,《乘用车用碳纤维复合材料翼子板》团体标准统一、规范了乘用车用碳纤维复合材料翼子板的技术质量要求,技术质量指标先进、适用,可为国产乘用车翼子板的升级换代提供技术支撑和满足市场需要,对推广应用高性能新型材料,实现乘用车部件翼子板技术质量升级具有促进作用。
  • “国家碳纤维产业计量测试中心”获批筹建
    p  近日,国家质检总局正式回函山东省人民政府,同意依托威海市计量所筹建“国家碳纤维产业计量测试中心”。/pp  碳纤维复合材料是国家重点发展的十大战略性新兴材料之一,在军工和民用领域用途广泛。长期以来,由于西方发达国家的技术封锁,我国碳纤维需求量的80%依赖国外进口。生产工艺技术水平落后,生产过程缺少精准的测量、测试技术及装备是主要原因之一。为此,国务院于2016年底成立了新材料产业发展领导小组,工信部等四部委联合下发了《新材料产业发展指南》,明确提出“强化新材料产业协同创新体系建设,建立新材料产业计量测试服务体系”,集中突破一批制约产业发展的技术瓶颈,提升产业核心竞争力。/pp  山东省威海市是国内碳纤维及复合材料的主要产地,拥有碳纤维及其复合材料生产企业200多家,产业链式化、高端化、集群化优势明显,已成为发展前景良好的战略性新兴材料产业基地。为贯彻落实国家促进战略性新兴材料产业快速发展相关要求,山东省政府充分发挥当地产业优势,以威海市计量所为依托,拟在威海市临港区碳纤维产业园建设“国家碳纤维产业计量测试中心”。/pp  该中心建成后,一方面可为全国碳纤维及其复合材料产业搭建测量、测试技术服务平台,为碳纤维产业提供原辅料、碳纤维及其复合材料质量检测与评价、计量设备校准、认证咨询、专业技术培训等服务 另一方面可以以中心为依托,成立国家碳纤维产业计量测试联盟,搭建科研合作平台,聚集有关高等院校、科研院所优势资源,开展技术合作,为碳纤维产业提供标准、技术规范制定和测量、测试技术研究及设备研制等服务。有利于集中力量,共同解决制约碳纤维产业发展的关键性和前瞻性技术难题,提高碳纤维产业生产过程控制能力和水平,提升产业核心竞争力,促进区域经济快速发展,助力碳纤维产业做大做强。/p
  • 岛津试验机丨夹具世界系列之复合材料测试
    导读随着科技发展的日新月异,汽车、航天、航空等工业对材料性能的要求越来越高,单一材料如金属、陶瓷、高分子材料几乎都难以胜任。若将不同性能特点的单一材料复合起来,取长补短,则能满足现代高新技术的需求。复合材料既能保持组成材料各自的优异特性,又具有组合后的新特性,如比强度和比模量高、抗疲劳和破断安全性良好、高温性能优良等。以汽车工业为例,在车身及主要零部件、汽车结构件、电动汽车高压电池组件等应用中,复合材料可减轻重量实现汽车轻量化,同时减少碳排放。在飞机工业中,以波音777为例,其机体结构中复合材料仅占到约11%,而且主要用于飞机辅件;但到波音787时,复合材料的使用出现了质的飞跃,不仅数量激增,而且开始用于飞机的主要受力件,如今,波音787的复合材料用量已占到结构重量的约50% 。因此对于复合材料的研究,根据不同需求测试评估各种复合材料的力学性能,就显得尤为重要。今天,我们一起来看看岛津试验机在复合材料力学测试方面的夹具与应用。1 ASTM D6641组合载荷压缩测试复合材料不同于以往的均质材料,具有各向异性,在承受载荷的应力主轴方向呈现出拉伸、压缩、弯曲、向内剪切、向外剪切或兼有上述动向的复杂受力情况。为了提高对所设计产品的性能预测精度,需要采集各种数据,因此,在进行复合材料试验时,对于分别测量各断裂现象的试验方法的要求越来越高。例如根据标准ASTM D6641的组合载荷压缩(CLC)试验(如下图)是一种具有剪切和端面载荷组合的试验方法,提供了实现强度评估的同时进行弹性模量的测量。点击查看视频:https://mp.weixin.qq.com/s/6xI_kByFbXRV7nm8g6MJOw2 ASTM-D6484 开孔压缩强度测试碳纤维增强塑料(CFRP)以其强度高、重量轻等优点,在航空航天领域得到了广泛的应用。碳纤维具有优良的强度特性和高刚度特性,但在开孔时会损失很大的强度。复合材料零部件实际使用中,常需要开孔与别的部件连接。因此,飞机上使用的复合材料,必须对中心切出一个孔的试样的试验进行评估。我们根据ASTM-D6484对碳纤维塑料进行了开孔压缩试验。点击查看视频:https://mp.weixin.qq.com/s/6xI_kByFbXRV7nm8g6MJOw3 ASTM-D7078 V型切口剪切测试为了减少试制次数,降低新产品开发的成本,计算机辅助工程(CAE)分析被广泛应用。为了提高对所设计产品的性能预测精度,需要采集各种数据,因此,在进行 CFRP 试验时,对于分别测量各断裂现象的试验方法的要求越来越高。评价复合材料的试验方法有多种。其中,作为面内剪切试验方法,以纤维强化复合材料的纤维方向或织物层压材料为目标,在设有缺口的样片上取非对称的 4 个点加载弯曲负荷的Iosipescu法(ASTM D5379),以及在±45&ring 的层压材料上加载拉伸负荷的方法(ISO 14129)最为普及。本次试验使用 V-Notched Rail Shear 法(ASTM D7078),能够稳定进行面内剪切试验。另外,因样片的测量部位较大,可同时适用于无孔样片及短纤维系列 CFRP 层压材料的测量。点击查看视频:https://mp.weixin.qq.com/s/6xI_kByFbXRV7nm8g6MJOw4 其他复合材料测试夹具展示结语岛津标准试验机,试验载荷从 1 N到600KN不等,可适应各种样品,如橡胶、塑料、复合材料、金属、木材、玻璃陶瓷等材料的板、棒、线、绳等样品。本文介绍了岛津试验机在复合材料测试中主要夹具。另外,岛津夹具设计团队还可以根据特殊需求和标准,设计、定制夹具,以满足复合材料行业客户需求,提高复合材料的研究深度和应用广度,同时助推产业结构优化升级,实现绿色发展。撰稿人:杨汉章本文内容非商业广告,仅供专业人士参考。如需深入了解更多细节,欢迎联系津博士 sshqll@shimadzu.com.cn
  • 新型超强韧石墨烯材料有望替代碳纤维
    p style="text-indent: 2em "发表在最新一期美国《国家科学院学报》上的研究显示,北京航空航天大学程群峰教授课题组和美国得克萨斯大学达拉斯分校雷· 鲍曼团队受到天然珍珠母力学结构的启发,制备出微观结构类似于珍珠母的有序层状石墨烯结构。/pp style="text-indent: 2em "程群峰对新华社记者说,此前将石墨烯单片机械堆叠成较厚的宏观材料耗时费力。例如制备人头发厚度的石墨烯薄膜,需要堆叠15万层单片石墨烯,且片层间界面作用较弱,力学性能较差。/pp style="text-indent: 2em "珍珠母具有高强度、高韧性的力学性能,主要得益于内部规整的层状结构和离子键、共价键、氢键等丰富的界面作用。研究人员采用化学制备法而非机械堆叠制备出这种材料。他们借鉴了珍珠母的层状连接方式,通过在氧化石墨烯层间引入共价键、共轭键等不同键连的交联分子,将石墨烯纳米片牢固地“缝合”在一起,制造出强韧一体化的高导电石墨烯薄膜。/pp style="text-indent: 2em "程群峰说,这种薄膜材料的拉伸断裂强度是普通石墨烯薄膜的4.5倍,韧性是后者的7.9倍。/pp style="text-indent: 2em "研究人员介绍,传统碳纤维材料的制备条件需超过2500摄氏度,但新材料可在45摄氏度以下的室温进行制备,强度与碳纤维复合材料相当,成本更加低廉,易实现商业规模化制备。/pp style="text-indent: 2em "程群峰说,这种廉价、低温的高性能多功能石墨烯纳米复合材料在航空航天、汽车、柔性电子器件等领域具有广泛应用前景。/pp style="text-indent: 2em "论文通讯作者鲍曼说,薄膜有望最终取代飞机、汽车等设备使用的碳纤维复合材料。/p
  • 塑料拉伸模量及泊松比试验
    摘 要:本文介绍使用鲲鹏BOYI 2025电子万能材料试验机,配合手动楔形拉伸夹具、Reliant精密轴向引伸计以及横向引伸计,根据《GB /T 1040.1-2018 塑料 拉伸性能的测定 》和《GB/T 1040.2-2022塑料 拉伸性能的测定 第2部分:模塑和挤塑塑料的试验条件》,进行了塑料拉伸模量及泊松比试验的实例,试验结果表明,使用鲲鹏BOYI 2025电子万能材料试验机能够完全对应塑料拉伸试验。关键词:鲲鹏BOYI 2025电子万能材料试验机 塑料 高分子 聚合物 拉伸试验 拉伸模量 泊松比塑胶原料定义为是一种以合成的或天然的高分子聚合物,可任意捏成各种形状最后能保持形状不变的材料或可塑材料产品。塑料是重要的有机合成高分子材料,由于其良好的物理化学性能,以及加工特性,被广泛应用于日常工作与生活中。根据各种塑料不同的使用特性,通常将塑料分为通用塑料、工程塑料和特种塑料三种类型。本次应用选用日常生活中最常见的5种塑料进行试验,可以很直观的对比出各种塑料的力学性能差异。电子万能材料试验机在塑料的力学性能分析中是属于最重要的物理性能测试设备之一。鲲鹏试验机配备的手动楔形拉伸夹具,可以在不借助工具的情况下,实现试样的快速夹紧,同时配备样品夹持对中装置确保每次试样放置位置统一,可以大大测试提高效率以及测试的重现性;夹具采用的楔形夹紧方式,可以比传统的平面夹持夹具夹紧后更小的预应力,并且在拉伸过程中持续稳定的提供夹持力。除夹具外,本次试验采用的Reliant精密轴向引伸计以及横向引伸计配合试验机主机的高精度和超过1000Hz的采集频率,可以完整的记录拉伸过程中的所有特征数据,给用户提供准确可靠的试验数据,配合智能化的测试软件可以同时提供单试样、多试样、双坐标等各种测试曲线,让不同的用户均可以拥有良好的交互体验,为企业的研发、质量以及产品控制保驾护航。1.试验部分1.1仪器与夹具BOYI 2025-010 电子万能试验机10kN手动楔形拉伸夹具Reliant轴向引伸计Reliant横向引伸计Smartest软件1.2分析条件试验温度:室温22℃左右载荷传感器:10kN(0.5级)加载试验速率:5mm/min夹具间距:115mm标距:50mm1.3样品及处理本次试验,选取5款注塑成型的塑料试样,包括原材料或增强塑料,材质分别为PP、PP+EPDM+TD20、ABS、PC、PA6+30GF,尺寸均为GB/T 1040.2的1A型试样,数量各5个。2.试验介绍使用BOYI 2025-010电子万能试验机进行试验,将样品夹持在上下夹具中,开启试样保护,将夹持后的预应力消除,然后分别将横向引伸计及轴向引伸计夹持在试样的中间部位,然后将引伸计清零,再以5mm/min的速度进行试验,直至拉伸应变超过拉伸模量及泊松比取值范围后,停止测试,将引伸计卸除。测量过程中的力以及变形数据,并生成拉伸试验曲线。图7 测试系统图(主机、夹具、引伸计)3.结果与结论3.1试验结果具体试验结果如下表1所示。表1.试验结果图8-试验曲线PP图9-试验曲线PP+EPDM+TD20图10-试验曲线ABS图11-试验曲线PC图12-试验曲线PA6+30GF从上(表1)数据以及试验曲线可以看出,拉伸曲线平滑连续,无松动打滑等异常现象,软件可以记录整个过程中完整的试验曲线,可以获取载荷、位移、轴向变形、横向变形等各项数据用于分析。可以看出各种样品之间因材质不同的曲线差异,模量大刚性高的样品,曲线斜率更大,每组各5个试样重现性良好,满足标准要求。从本次试验结果可以体现出鲲鹏BOYI 2025-010 电子万能试验机的高精度及高稳定性。4.结论上述试验结果表明,鲲鹏BOYI 2025-010 电子万能试验机配合手动楔形拉伸夹具、Reliant轴向引伸计以及横向引伸计,可以完全满足《GB /T 1040.1-2018 塑料 拉伸性能的测定 》和《GB/T 1040.2-2022塑料 拉伸性能的测定 第2部分:模塑和挤塑塑料的试验条件》标准要求,高效高质完成试验。通过高精度高采样率的测试系统,可以获得塑料材料的各项力学数据,且稳定可靠,这对于塑料材料的技术发展非常重要,能够为企业的产品研发、品质管理,以及该行业的标准化、规范化提供数据支持与技术保障。
  • 塑料拉伸强度及伸长率试验
    摘 要:本文介绍使用鲲鹏BOYI 2025电子万能材料试验机,配合手动楔形拉伸夹具、大变形引伸计,根据《GB/T 1040.1-2018 塑料 拉伸性能的测定 》和《GB/T 1040.2-2022塑料 拉伸性能的测定 第2部分:模塑和挤塑塑料的试验条件》,进行了塑料拉伸强度及伸长率试验的实例,试验结果表明,使用鲲鹏BOYI 2025电子万能材料试验机能够完全对应塑料拉伸试验。关键词:鲲鹏BOYI 2025电子万能材料试验机 塑料 高分子 聚合物 拉伸试验 拉伸强度 伸长率 标称应变塑胶原料定义为是一种以合成的或天然的高分子聚合物,可任意捏成各种形状最后能保持形状不变的材料或可塑材料产品。塑料是重要的有机合成高分子材料,由于其良好的物理化学性能,以及加工特性,被广泛应用于日常工作与生活中。根据各种塑料不同的使用特性,通常将塑料分为通用塑料、工程塑料和特种塑料三种类型。本次应用选用日常生活中最常见的5种塑料进行试验,可以很直观的对比出各种塑料的力学性能差异。电子万能材料试验机在塑料的力学性能分析中是属于最重要的物理性能测试设备之一。鲲鹏试验机配备的手动楔形拉伸夹具,可以在不借助工具的情况下,实现试样的快速夹紧,同时配备样品夹持装置确保每次试样放置位置统一,可以大大测试提高效率以及测试的重现性;夹具采用的楔形夹紧方式,可以比传统的平面夹持夹具夹紧后更小的预应力,并且在拉伸过程中持续稳定的提供夹持力。除夹具外,本次试验采用的大变形引伸计具有响应快、精度高的特点,配合试验机主机的高精度和超过1000Hz的采集频率,可以完整的记录拉伸过程中的所有特征数据,给用户提供准确可靠的试验数据,配合智能化的测试软件可以同时提供单试样、多试样、双坐标等各种测试曲线,让不同的用户均可以拥有良好的交互体验,为企业的研发、质量以及产品控制保驾护航。1.试验部分1.1仪器与夹具BOYI 2025-010 电子万能试验机10KN手动楔形拉伸夹具大变形引伸计Smartest软件1.2分析条件试验温度:室温22℃左右载荷传感器:10kN(0.5级) 加载试验速率:5mm/min、50mm/min夹具间距:115mm标距:50mm1.3样品及处理本次试验,选取5款注塑成型的塑料试样,包括原材料或增强塑料,材质分别为PP、PP+EPDM+TD20、ABS、PC、PA6+30GF,尺寸均为GB/T 1040.2标准1A型哑铃状试样,中间平行部分宽度约10mm,厚度约4mm,数量各5个。2.试验介绍使用BOYI 2025-010电子万能试验机进行试验,将样品夹持在上下夹具中,开启载荷零点保持功能消除样品夹持后的预应力,将大变形引伸计夹持在试样的中间部位后将引伸计清零,对应不同伸长率的样品分别以5mm/min、50mm/min的速度进行试验,直至样品断裂,设备监测到试样断裂后自动停止,设备将测量过程中的力以及变形数据完整记录,并生成拉伸试验曲线。图7 测试系统图(主机、夹具、引伸计)3.结果与结论3.1试验结果具体试验结果如下表1所示。表1.试验结果 图13-试验曲线PP图14-试验曲线PP+EPDM+TD20图15-试验曲线ABS图16-试验曲线PC图17-试验曲线PA6+30GF从上(表1)数据以及试验曲线可以看出,拉伸曲线平滑连续,无松动打滑等异常现象,软件可以记录整个过程中完整的试验曲线,可以获取载荷、位移、变形等各项数据用于分析。可以看出各种样品之间因材质不同的曲线差异,其中PP/PP+EPDM+TD20/PC/ABC试样有屈服现象,PA6+30GF无屈服现象,每组各5个试样重现性良好,满足标准要求。从本次试验结果可以体现出鲲鹏BOYI 2025-010 电子万能试验机的高精度及高稳定性。4.结论上述试验结果表明,鲲鹏BOYI 2025-010 电子万能试验机配合手动楔形拉伸夹具、大变形引伸计,可以完全满足《GB/T 1040.1-2018 塑料 拉伸性能的测定 》和《GB/T 1040.2-2022塑料 拉伸性能的测定 第2部分:模塑和挤塑塑料的试验条件》标准要求,高效高质完成试验。通过高精度高采样率的测试系统,可以获得塑料材料的各项力学数据,且稳定可靠,这对于塑料材料的技术发展非常重要,能够为企业的产品研发、品质管理,以及该行业的标准化、规范化提供数据支持与技术保障。
  • 柔性二维碳化钒基表面增强拉曼散射检测平台问世
    安徽理工大学力学与光电物理学院青年教师蓝雷雷与东南大学物理学院邱腾课题组合作,制备出两种类型的二维碳化钒(V4C3和V2C)MXenes材料,并证明这种材料可以作为性能优异的表面增强拉曼散射(SERS)平台,其中V4C3作为SERS活性材料首次报道。相关研究成果发表于《美国化学会-应用材料与界面》。柔性二维碳化钒MXene基滤膜的SERS增强效果示意图 安徽理工大学供图表面增强拉曼散射作为一种具有高灵敏度、分子指纹识别和快速无损测量的表面光谱分析技术,将检测灵敏度提升了百万倍以上,已广泛应用于生命科学、物理、化学、材料学、地质学、考古和艺术品鉴定等领域。“比如将SERS技术应用于患者呼出物、血清液、脱氧核糖核酸的检测,为早期患者的疾病诊断提供一种有力分析手段;应用于海洋微塑料、大气有毒有害气体、水体有机污染物和土壤重金属的微量检测,实现对环境中有害物质的监测;还可实现对危害公共安全的爆炸物质和疑似吸毒人员体液毛发中含毒品物质的快检。” 蓝雷雷向《中国科学报》介绍。近年来,一些MXenes材料表现出相当强的SERS活性,为SERS活性材料发展开辟了新前景。但其瓶颈在于灵敏度不足,无法满足实际应用需求。因此,将MXene材料的灵敏度推向更高水平仍然具有挑战性。此次研究中,蓝雷雷等提出了一种新的增强策略,通过结合二维裁剪和分子富集来设计高灵敏度的柔性MXene基SERS衬底,成功制备出两种类型的二维碳化钒MXenes材料。“我们研究发现,与块状MXene材料相比,二维裁剪赋予碳化钒MXenes费米能级附近更为丰富的态密度,促进了光致诱导电荷转移,增加了多达2个数量级的检测灵敏度。”蓝雷雷说。进一步,研究人员采用了一种分子富集方法,实现了2分钟内超快速分子富集、超高分子截留率和更低的检测限,从而获得了超灵敏的SERS检测。蓝雷雷说,“这项研究有助于设计和开发出高性能的新型MXene基SERS基底,可用于食品安全、疾病诊断、反恐搜爆、毒品稽查、环境监测和病毒检测等领域。”审稿人认为:作者将二维裁剪策略与分子富集效应相结合,这是一项有趣的研究工作,新型碳化钒基底的SERS增强效果显著,其中V4C3作为SERS基底在这之前未曾报道过。通过简单抽滤的分析物富集概念为实现超灵敏的SERS检测提供了一种有效的策略。相关论文信息:https://doi.org/10.1021/acsami.2c10800
  • 中国原创:“碳纤维质谱离子源”新技术详解
    p  碳纤维(Carbon fiber)是有机纤维材料经碳化、活化制成的一种新型材料,具有独特的物理、化学结构和吸附速率快、容量大、含碳量高、再生容易的特点,是受人瞩目的新型材料。作为最具发展前景的分析技术之一,质谱技术的研究一直在食品、环境、人类健康、药物、国家安全、和其他与分析测试相关的领域有着广泛的应用前景。那么,有无可能将碳纤维这种被认为是新世纪最有发展前景的功能材料用于质谱分析,开创出新型的质谱分析装置和方法呢?近日,中国科学院上海有机化学研究所的郭寅龙课题组依据碳纤维优异的样品兼容性、承载和分散能力和介于金属与非金属之间的导电性,制备了一种高性能、多功能的碳纤维离子化(Carbon fiber ionization, CFI)装置。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201612/insimg/0b330c2b-8b8c-4649-a1ad-dce8e6f4b175.jpg" title="1.webp_副本.jpg"//pp style="text-align: center "新型碳纤维离子源的照片和一些典型碳纤维离子化-质谱分析案例/pp  目前常用的离子化方法如电喷雾离子化(ESI)、基质辅助激光解吸(MALDI)、大气压化学电离(APCI)等离子化方法仍然存在一些限制,包括待测化合物种类和溶剂的限制,缺少与质谱相连的直接进样接口,以及难以直接分析较大的表面和低极性或非极性溶剂中的化合物。碳纤维离子化可以弥补这些不足:首先,高电压条件下碳纤维有出色的离子传递效率,提高了样品的离子化效率 另外,碳纤维离子化具有良好普适性,尤其适合分析低极性和非极性的热不稳定有机化合物,可以弥补现有离子化技术的局限。同时,该技术在非极性有机相溶液分析上也有出色效能,有潜力实现与正向液相色谱的联用或用于非极性溶剂系统的有机反应研究。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201612/insimg/987ae86e-407c-41f3-9a5c-3cc867c37edd.jpg" title="2_副本.jpg"//pp style="text-align: center "碳纤维离子化装置的三种工作模式/pp  碳纤维离子化装置集三种工作模式于一体:(a) 离子化探头模式,将样品点样在碳纤维探头,碳纤维探头端加上高压,温和的高效的离子化条件 (b) 连续流动接口模式,可实现在线研究并具备可联用性 (c) 可拆卸采集/分析模式,可拆卸采集待测样品并立刻装回系统后分析。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201612/insimg/f8e69f14-feee-475a-96d7-25e3dd401d81.jpg" title="3.webp_副本.jpg"//pp style="text-align: center "碳纤维离子化装置与超临界流体色谱法联用检测低极性化合物/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201612/insimg/3bd99596-fc05-4b37-aa0f-bd3a986eca48.jpg" title="4.webp_副本.jpg"//pp style="text-align: center "固态物体表面哌替啶、氯胺酮和人体尿液中微量甲基苯丙胺的检测/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201612/insimg/c380c7f2-8cc2-4247-8259-6c68cbbc7454.jpg" title="5.webp_副本.jpg"//pp style="text-align: center "碳纤维离子化技术进行吸烟者呼出气检测/pp  碳纤维离子化是一种多功能且普适性强的离子化技术,不仅可以用于微量化合物溶液的快速分析,还可以与色谱联用,以及直接进行固体表面和溶液中化合物的收集和检测。经过科研攻关实现了与超临界流体色谱技术的联用,在呼出气体检测和法医毒物鉴定方面也展现出良好的应用前景。研发碳纤维离子化技术提升了质谱学对解决上述难题的研究能力与水平,并对相关的分析化学、法庭科学和药物检测起到积极的推动作用。/pp  碳纤维离子化在质谱分析如脱氢表雄甾酮类的热不稳定分子时,相比于商品化的大气压化学电离源(APCI)和直接分析实时电离源(DART),碳纤维离子源(CFI)温和的操作条件往往使其具有更软的电离效能。/pp  这一成果近期发表在《Analytical Chemistry》上,文章的第一作者是中国科学院上海有机化学研究所博士研究生吴梦茜,通讯作者是王昊阳副研究员和郭寅龙研究员。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201612/insimg/41a4c6e8-49aa-4263-b2aa-c5e4c1e62bec.jpg" title="6_副本.jpg"//pp  该论文作者为:Meng-Xi Wu, Hao-Yang Wang*, Jun-Ting Zhang, and Yin-Long Guo*/ppbr//p
  • 万测受邀参加2022年中国(第八届)碳纤维及复合材料技术创新与应用发展论坛
    7月22日,主题为“创新驱动发展,材料助力‘碳中和’”的中国(第八届)碳纤维及复合材料技术创新与应用发展论坛在常州市顺利召开,近500位来自知名院校、科研单位和碳纤维企业的学术专家、企业代表共聚一堂,围绕碳纤维及复合材料的产业应用研讨创新发展之路,为促进碳纤维及复合材料产业发展建言献策。万测作为知名的碳纤维及复合材料力学性能检测方案供应商,受邀出席了此次行业盛会。 据悉,此次论坛邀请到多位行业专家和企业代表进行主题报告,内容包括“‘双碳’格局之下,碳纤维市场的前景和主要驱动力、新动向、新活力”、“‘碳中和’背景下,炭炭复合材料行业在新能源、航空航天方面的研究现状及发展趋势”、“高模量碳纤维产业化进展”等最新发展干货,现场学习气氛浓厚,讨论热烈。 近年来,碳纤维及复合材料以其优异的理化性能已成为目前世界首选的高性能材料。碳纤维及复合材料是发展国防军工、航空航天、新能源及高科技产业的重要基础原材料,同时在汽车工业、轨道交通、机械、电子、建筑、化工、医疗、海洋开发、体育休闲等国民经济各个领域具有无可比拟的应用优势,世界各国均把发展高性能碳纤维产业放在极其重要的位置。 作为立足客户市场需求,深耕试验技术研发的国内试验机行业先锋企业,万测近年来也积极投入碳纤维及复合材料力学性能测试方案的研制工作,经过一段时间的全力研发和层层评审验证,我司在复合材料测试系统上取得了丰富的技术成果,可为碳纤维及复合材料的质量控制、研究应用和产品设计工作提供良好的数据支撑。此次受邀参加复合材料技术创新与应用发展论坛,万测也带来了丰富的碳纤维及复合材料的静态与动态力学测试整体解决方案,先进的产品技术和优秀的实践成果受到了与会嘉宾们的关注与肯定。 本次论坛为广大碳纤维及复合材料上下游产业链搭建了一个合作交流平台,汇报了前沿技术研究及创新技术应用等方面的新进展,促进了行业关键技术的融合与交流。通过本次活动,万测也了解到了碳纤维及复合材料行业的新发展及新工艺,这也为我司日后不断提升研发能力和开拓新领域带来了新思路。未来万测也会积极参加各种行业交流展览会,为中国复合材料技术的发展贡献自己的力量!
  • 循丝探理│碳纤维取向度如何测?
    导 读碳纤维作为高性能纤维的翘楚,具有耐高温、抗摩擦、导电、导热及耐腐蚀等特性,并且沿纤维轴方向有很高的强度和模量,其外形呈纤维状、柔软、可加工成各种织物,一直以来,是航空航天、风电叶片、汽车、压力容器等高端应用场景的核心材料之一。 老话常说:心往一处想,劲儿往一处使。其实说的就是“方向一致进而形成强大的合力”。类似,对纤维材料而言,其分子链、微晶在拉伸等加工过程中产生的方向效应,即取向效应,亦对纤维的机械性能有着直接影响。岛津XRD(X射线衍射仪),配有纤维取向度专用附件,可方便、迅捷的对聚合物等纤维材料取向程度进行测定。 什么是纤维取向度?定义:表示纤维的晶体轴沿着纤维长度方向排列的平行程度或择优取向程度。 先来看两张示意图:左图给各位看官直观的感觉是不是就像一群散兵游勇? 而右图则是整齐队列的既视感?整齐划一、万众一心、众志成城!!! 是的,合成纤维等线形聚合物在未发生取向时,大分子链或链段、微晶的排列是随机的、无序的;而在纺丝、拉伸等加工过程中,大分子链或链段、微晶受到外力的作用,则会表现出不同程度的取向效应。 发生取向后,由于在取向方向上原子之间的作用力以化学键为主,而在与之垂直的方向上,原子间的作用力以较弱的范德华力为主,因而纤维取向度越高,则纤维长度方向上的机械强度、弹性模量等机械性能越好。 XRD测试纤维取向度原理 XRD作为材料结构分析的典型手段,可对纤维材料取向度进行有效表征。图1 纤维取向度测试时光路示意图 在正交透射模式下(图1),将纤维束置于子午线方向,保持光管、样品位置固定不动,探测器作2θ扫描收集衍射信号,此过程称为子午扫描。将纤维束置于赤道线方向,重复上述过程,即为赤道扫描;存在高度取向的纤维,赤道扫描与子午扫描谱图差异较大。 选取某特征衍射峰,将探测器固定于该特征峰峰位处,纤维束在垂直于入射X射线的平面内旋转(图1),测得β-I角度-强度分布曲线,此过程称之为方位角扫描,并采用以下经验公式即可计算纤维取向度π。 式中:π—纤维取向度 H—方位角扫描谱峰半峰宽(单位°) 岛津解决方案 针对纤维取向度测试,岛津XRD开发有纤维取向度专用附件,纤维专用样品架(图2)可保证纤维束平直拉紧,旋转样品台(图3)可实现正交透射模式及平面内旋转,以及数据处理模块“Preferred Orientation”可一键给出纤维样品取向度。 以某碳纤维样品实际测试为例,其赤道扫描及子午扫描谱图叠加见图4;显然,纤维束在两种方向放置测试,测得谱图差异十分明显,例如黑色箭头标示处,赤道扫描,该衍射峰强度非常高,而在子午扫描时该处基本未出峰,这表明该碳纤维存在很强的取向。 图4 碳纤维样品赤道扫描与子午扫描谱图叠加 利用岛津分析软件“Basic Process”模块,对赤道扫描谱图进行处理,读取最强峰衍射角2θ=25.69°,将探测器固定在25.69°进行方位角扫描,测得的强度分布曲线如图5所示。 图5 碳纤维样品方位角扫描谱图 利用岛津分析软件“Basic Process”模块,对方位角扫描谱图进行平滑、扣除背底、寻峰等操作后,利用岛津分析软件“Preferred Orientation”模块即可直接计算出碳纤维样品取向度为83.7%。 结语 纤维取向度对纤维的机械强度、弹性模量及其它机械性能有着直接影响,因此对纤维取向度进行测定有着非常重要的实际意义。类似的测试可拓展用于不同批次、不同工艺下纤维产品的对比,进而指导工艺优化。 撰稿人:崔会杰 *本文内容非商业广告,仅供专业人士参考。
  • 碳纤维制备技术国家工程实验室落户宁波
    近日,“碳纤维制备技术国家工程实验室”在中科院宁波材料技术与工程研究所揭牌成立,这是中科院宁波材料所第一个国家级实验室。中科院副院长施尔畏等参加了成立仪式。  建在中科院宁波材料所的碳纤维制备技术国家工程实验室是由国家发展和改革委员会批复建设的产学研相结合的研究开发实体,共建单位包括中科院山西煤化所、中科院上海有机所、中科院化学所、中科院长春应化所、中科院高技术研究与发展局、中科院计划财务局、中国航空工业集团公司航天工艺与材料研究所、中国航空工业集团公司北京航空材料研究院、维科控股集团股份有限公司、中简科技发展有限公司等。  该工程实验室的建设目标和任务是:围绕航空、航天、能源、交通等领域的重大战略任务与重点工程对碳纤维复合材料的迫切需求,建立碳纤维制备工程化技术平台,开展工程化技术研究,研制关键设备,开发自主知识产权的碳纤维制备工艺和配套材料并形成成套技术和应用评价体系。
  • 贝斯特商品化最新系统:碳纤维复合材料原位微裂纹动力学分析
    复合材料的微裂纹和断裂力学一直是困扰科研人员的难题, 对于类似金属材料的断裂力学研究已经有了丰硕的成果;但是复合材料的断裂力学机理和过程, 一直没有较好的测试技术和设备商品化, 贝斯特公司的研发人员通过多年的科研经验和创新的工作, 开发了碳纤维复合材料微裂纹动力学测试技术, 通过该技术可以在线原位扫描样品在外力作用下,内部裂纹的扩展机理和动力学;为科研人员提供一臂之力。 此系统主要由Nano系列动态试验机和原位扫面测试系统、多通道控制系统和专业软件组成。 涡流检测原理:通过感应磁场和微裂纹相关性测试碳纤维复合材料的裂纹动力学。 由于导电材料不均匀会导致磁导率、电导率不同,使涡流流通路径发生改变,导致涡流的大小、相位发生改变。如果被检测件存在缺陷(如表面裂纹),则会阻碍涡流流过,因涡流只能存在于导体材料中,故导致涡流流通路径的畸变,最终影响涡流磁场,使得涡流强度降低。 构造配置: 技术参数:* 400x400毫米扫描区域* 探针直径1 & 3 mm* 速度Up to 100 mm/s, 同步数据采集up to 5 kHz* 样品厚度 t 8 mm* 3-轴位置控制 X, Y旋转编码器; Z 激光位置反馈* 作为独立的完全集成 “工作站”测试系统控制器。独立的扫描应用* 单通道输出信号,整流直流(0-10V)* X, Y &与负载、行程、应变等信号的记录* 轴向和横向的合规性应用:
  • 碳纤维国家标准有望年内发布
    在近日举行的中国碳纤维发展战略研讨会上,业内人士称,碳纤维国家标准今年将由国家有关部门发布。  据了解,我国的碳纤维牌号沿用日本东丽的碳纤维系列,尚未建立实用而完整的自主品牌号系列,不利于引导国产碳纤维的良性发展和推广应用。
  • 万测出席中国复合材料行业年会暨第五届碳纤维复合材料产业发展高峰论坛
    2023年11月17日-18日,中国复合材料行业年会暨第五届碳纤维复合材料产业发展论坛在上海成功举办。万测作为国内知名的材料力学测试解决方案供应商参加了本次论坛。 论坛期间,万测展示了微机控制电子万能试验机、电液伺服疲劳试验机、复合材料试验机、复合材料落锤冲击试验机等产品及解决方案,与现场嘉宾共同探讨了未来复合材料行业的发展趋势和挑战。 万测微机控制复合材料试验机主要用于复合材料的拉伸、弯曲、压缩、剪切、裂纹扩展等力学性能测试。具有应力、应变、位移三种闭环控制方式,可求出最大载荷、抗拉强度、弯曲强度、压缩强度、剪切强度、弹性模量、断裂延伸率、泊松比等参数。根据国家标准及ISO、JIS、ASTM、DIN等国际标准进行试验和提供数据。 作为国家级专精特新重点“小巨人”企业,万测一直以来都关注着复合材料的发展,承担着为国内复合材料发展做出贡献的责任和义务。为了更好地服务行业,万测将继续加大复合材料力学测试领域的研发投入,为广大用户带来更多专业的测试解决方案。未来,随着复合材料行业的持续发展和创新,万测将继续发挥其专业优势和技术实力,为我国复合材料行业的繁荣发展做出更大的贡献。
  • 省时省力!微塑料全自动快速分析,非接触式亚微米红外拉曼同步光谱显微系统再度升级!
    随着大量塑料的使用和随意处置,微塑料几乎污染了整个地球,科学家也愈发关注对微塑料的研究。环境中微塑料的尺寸往往小于5μm,传统红外因受限于微米级别空间分辨率,以及不同尺寸颗粒变化的实际红外吸收峰相较于理想吸收峰散射严重等问题,很难对样品进行有效的定性和定量分析。美国PSC公司推出的非接触式亚微米红外拉曼同步光谱显微系统-mIRage,得益于其500 nm空间分辨率、不因颗粒尺寸变化而发生散射且无需接触测量等优势,有效解决了绝大多数环境微塑料样品光谱显微测试的问题。其显著的技术优势为:✔ 亚微米红外空间分辨率,比传统的FTIR/QCL红外显微提高~20倍;✔ 有效排除小尺寸样品散射伪影,极大提高样品测试范围,获得高质量红外拉曼分析图谱;✔ 非接触式,反射(远场)模式测量,对样品无污染,没有任何常见光谱失真。可快速匹配光谱商用数据库,获得样品种类结果;✔ 可升级亚微米同步红外+拉曼同步联用系统,在相同时间、条件、位置下获得相同空间分辨率的红外和拉曼光谱。非接触亚微米分辨红外拉曼同步测量系统—mIRage近日,PSC公司将mIRage系统全新升级,即将发布FeaturefindIR功能。FeaturefindIR创新性的实现了微塑料和其他颗粒快速、自动化的光谱测量和化学鉴定,显著提高了实验效率,并为应用中大量样品的测量提供了基础,包括但不限于微塑料,缺陷污染和细胞分析,以及许多其他样品类型。mIRage升级系列将原有优势进一步拓宽:☛ 测试从亚微米到毫米范围内微塑料样品;☛ 红外拉曼同步,测量大量的微塑料和颗粒;☛ 测试系统自动搜索和检测粒子;☛ 自动测量和定位化学ID。升级功能新品发布会为使研究者更好的了解这一升级功能,美国PSC公司将举办升级功能新品发布会,发布会将由产品管理和营销总监Mustafa Kansiz博士主持介绍。此次发布会将主要介绍“FeaturefindIR”软件自动化工具如何在mIRage上对更具有生物学意义的微塑料颗粒(从小于500 nm到大尺寸(mm))进行自动化、快速和准确的分析,规避传统FTIR/QCL和拉曼显微系统所见的明显缺陷,从而有效完成微塑料样品测试。同时,Mustafa Kansiz博士也将实时演示亚微米mIRage的featurefindIR功能,无论颗粒形状和大小如何,都将得到一致、无伪影的图谱,并使用交叉偏振可见光增强颗粒检测。敬请期待mIRage系统featurefindIR的详情发布!FeaturefindIR优势解析:【高效粒子数据收集】微塑料、颗粒和有机污染物有时很难在大量的一般污染物中发现。为了获得最大的灵活性,featurefindIR可以使用图像输入,以实现更准确和敏感的检测和定位。【自动测量和识别】一旦确定了颗粒的位置和大小,mIRage系统就会自动移动到所需测量位置,并执行快速、自动化的红外光谱测量。测量完成后,粒子信息汇总表将列出获得关键光谱的每个粒子的位置和特定尺寸。此表可以转移到featurefindIR μChemical ID报告中,也可以导出为CSV文件。【FeaturefindIR μChemical ID报告】FeaturefindIR μChemical ID报告将自动分析PTIR Studio文件中用户选择的所有光谱,并将它们与集成数据库中的参考光谱集相关联。对每个测量的频谱报告命中质量指数(HQI),如果HQI高于用户设置的阈值,还会报告最佳匹配化学ID。在测量光谱和参考光谱之间显示覆盖层,颜色编码可用于评估光谱数量的视觉支持,特定塑料类型被分配特定颜色作为视觉辅助。此外,可以通过选择每个结果来进行定量检查,以显示与OPTIR参考匹配接近的详细光谱叠加。FeaturefindIR为研究人员提供了一种快速测量大量相关微塑料的自动化方案。不但提供了维度方面的信息,同时可以通过专用的μChemical ID数据库确定它们的化学ID。所有数据都可以通过CSV导出,以便根据需要进行进一步分析。FeaturefindIR通过提供识别微塑料类型的不同方法(如单波长成像和荧光图像)来提高测量效率,提供了从亚微米到毫米大小的微塑料研究完整解决方案。
  • 国内首台碳纤维抽油杆超声波检测装置投入试运行
    p  2017年12月16日,胜利油田技术检测中心在胜利新大实业集团有限公司第三工业园,完成了“碳纤维抽油杆超声波在线连续检测装置”的现场调试工作,现场数据采集达到预期效果,标志着该中心研发的国内首台碳纤维抽油杆超声波检测装置取得成功。/pp  碳纤维抽油杆作为一种新兴抽油设备,在节能增效、深抽提液、降低修井频次等方面具有显著优势,是目前采油技术发展应用的新方向。但是,如何通过检测实现其生产质量的把关以及作业过程的可靠性,是该技术推广与应用面临的一项重大问题。为此,技术检测中心特种设备检验所牵头开展了中石化课题《碳纤维连续抽油杆检测评价技术研究》,并参与了中石化课题《碳纤维连续抽油杆检测评价系统研发》。/pp  为切实解决碳纤维抽油杆推广应用过程中的实际难题,确保课题有效运行,技术人员集思广益、悉心钻研,先后调研、测试了多项无损检测技术,最终确定采用超声波开展在线连续检测的可行性。技术人员结合碳纤维抽油杆生产线的工况与超声波技术的特点,开展了检测装置的研发,经过不断的实验测试与方案变更,最终研制成功了基于水浸超声的碳纤维抽油杆在线检测装置。/pp  该检测装置的成功试运行,标志着碳纤维抽油杆检测评价系统硬件部分圆满完成。今后,技术检测中心将瞄准如何准确评价抽油杆的产品质量,开展超声波检测信号与碳纤维抽油杆力学性能对应关系的研究;确定产品质量超声检测评定标准,实现该技术的在线应用,推动碳纤维抽油杆在油田的推广与应用。/p
  • 微塑料正在进入你的体内|前沿应用
    塑料吸管=隐形杀手?今年,包括星巴克在内的不少餐饮企业正在尝试停用塑料吸管,转而使用直饮杯盖及纸质吸管。尽管新杯盖和纸质吸管因使用不便遭到一些网友的吐槽,作为专注前沿研究领域的科学仪器公司编辑,我们还是非常肯定这些企业的做法,也号召更多的企业和个人加入减少塑料使用的行动当中来。因为,正是这一看似不起眼的小小塑料吸管,正在破坏地球生态系统,甚至成为威胁人类健康的“隐形杀手”。据《福布斯》杂志统计,2017年, 全球每分钟卖出约100万个塑料水瓶,然而,仅有9%被回收利用。其中塑料吸管这类制品,因体积很小,通常可以躲过自动化回收而不被填埋,且有相当一部分被冲入河流湖泊和海洋,被动物尤其是海洋生物摄入,终进入人类体内。世界经济论坛警告说,到 2050年, 海洋中的塑料将比鱼还要多。这些小小的塑料吸管如何能够威胁我们的生命呢?事实上,这些未被回收利用的大小塑料在阳光、空气和海洋的共同作用下,终都会碎裂或降解为较小的碎片,当其尺寸小于5毫米时,就称为“微塑料”。与“白色污染”的可见塑料相比,这些微塑料肉眼难以分辨,更加危险的是,它可以通过层层食物链进入人体。无处不在的“微塑料”很多人会问:“如果我不吃鱼,不吃任何海鲜,是不是微塑料就影响不到我?”答案依然是否定的。事实上,目前研究发现,微塑料已经渗透到人类生存环境的各个食物链条当中。根据《国家地理》2018年的一份报告,研究人员对全世界多个品牌的食盐进行了抽样检测,其中90%都发现了微塑料,亚洲食盐中的微塑料密度尤为高,因此亚洲被该杂志列为塑料污染的重点地区。不仅是食盐等食物,在人们看不见甚至难以想象的地方,微塑料也存在。据《时代》杂志报道,有研究人员对9个国家购买的11个品牌的259例瓶装水进行了测试,其中90%以上的水中都含有微塑料。因为微塑料体积很小,粒径范围在几微米到几毫米,甚至有一些只能在显微镜下才能看到,因此可以轻松通过饮用水的杂质过滤器。“微塑料”危害有多少事实上很多塑料本身都具有毒性,而一些环保材料在高温高压等条件下还会释放出有害物质,给人类带来二次伤害。此外,塑料作为一种高分子聚合物,都会在不同程度上聚集污染物、细菌、病毒、化学物质和有害藻类等,成为有害物质的“载体”。阿肖克• 德什潘德博士是美国东北渔业科学中心的化学家,对微塑料在海洋等领域的影响有深入研究,他对微塑料的影响表示忧虑,“塑料就是藻类和细菌殖民的运输管道,我们每个人都无法逃脱微塑料的影响“。显然,潜在的健康隐患令人胆战心惊,我们已经很难忽视微塑料带来的影响,它正在通过各种看得见看不见的方式进入人体内。阿肖克德什潘德博士拉曼光谱助力,防治已见成效无处不在的微塑料已经给我们的生存敲响警钟,防治工作迫在眉睫。庆幸的是,目前微塑料已经成为日益受关注的话题,专项研究也已经在全球各地的大学和研究机构开启。要对付这些看不见的微塑料,首先是确定其类型,进而确定环境污染物的来源,在此基础上,就可以有针对性的对污染源进行监测和控制。目前已有多种技术手段被用于帮助科学家表征微塑料进而确认其污染源。德什潘德博士通过研究发现,鱼体内的微塑料可以用气相色谱 (GC) 热解、质谱、红外光谱或拉曼光谱等多种技术来表征。其中,显微拉曼光谱仪由于集成了拉曼光谱和光学显微镜, 既能获得待测样品的显微形貌,又能得到样品具体位置的拉曼光谱,因此成为识别聚合物高效、有效的技术手段之一。利用显微拉曼光谱仪能够进行微区分析、表征亚微米级别材料这一优势,德什潘德博士团队将采集到的微塑料拉曼光谱与已知聚合物拉曼光谱库进行比对,从而轻松识别出微塑料的种类,为确认其来源提供了可靠的依据。制备好的含微塑料的沙粒样品等待进行分析而加拿大多伦多大学生态与进化生物学系切尔西• 罗奇曼博士及其所在团队,则将研究重点放在利用拉曼光谱仪获取微塑料类型、尺寸及数量等信息上。她们利用XploRA™ PLUS拉曼光谱仪进行研究,尝试开发出一套快速简便且准确的微塑料样品表征方法,从而提高表征效率。她指出“因为有太多不同类型的塑料,为了表征这些材料,进而衡量它们对动物的影响,像拉曼显微镜这样的分析工具是必不可少的。”毫无疑问,这些科学家的研究为确定环境污染物的来源,进而监测控制污染源找到了科学高效的方法。HORIBA XploRA™ PLUS智能型全自动拉曼光谱仪注:如需了解该研究中HORIBA 拉曼光谱仪的详细介绍及使用问题,欢迎点击左下角“阅读原文”留言,我们的技术专家会尽快联系您进行答疑解惑。微塑料“循环”中的生命研究目前,庆幸的是科学家已经能够表征部分微塑料。德什潘德博士表示,接下来的挑战是识别出贝类和其他小生物中的小纤维,从而了解微塑料是如何通过食物链层层富集进入人体的。因为食物链是层层递进的,贝类摄入微塑料,鱼再吃下贝类等浮游生物,体型较大的海洋生物又会吃掉较小的鱼,这一过程中微塑料在一层层富集。可以想象,有多少条鱼摄入微塑料,处于食物链顶端的我们遭受的微塑料污染就有多严重。减少塑料,从我做起对微塑料追本溯源是科学家们在做的事,作为普通人的我们能做些什么呢?近进行的如火如荼的垃圾分类就是重要方式,通过回收利用散落在各地的大小塑料,避免其流入湖泊海洋进入人体;抑或是多用环保袋代替塑料袋;少点外卖也是个不错的方法,毕竟外卖盒用多了也对健康无益。其实我们能做的事情还挺多。点击观看视频, 了解更多微塑料研究今日话题环境问题一直是人类生存的大问题,你所在实验室目前关于环保和环境方面的研究有哪些呢?不妨留言说出你的想法或正在进行的研究,我们将在下期前沿应用中介绍给更多科研小伙伴。 点击查看更多往期精彩文章 严峻环境下的自救——探寻端气候下的生命存续 | 前沿应用【上篇】JGR-Atmospheres: 中国典型燃煤城市的大气颗粒物中发色团的粒径分布特征发现生命的轨迹——化石中的碳元素分析 | 前沿应用复旦巧用增强拉曼“识”雾霾 | 前沿用户报道“钢铁侠”背后的清洁能源之梦【GDS微课堂-5】 HORIBA科学仪器事业部 HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。 如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。 点击下方“阅读原文”,咨询相关技术服务。 阅读原文
  • 上海高研院在量子增强的超分辨显微成像机制研究中取得进展
    中国科学院上海高等研究院王中阳课题组提出新型的基于荧光量子相干的超分辨显微成像方法,研究成果以Breaking the diffraction limit using fluorescence quantum coherence为题,近日发表在 《光学快报》(Optics Express)上。 在经典光学成像中,显微镜的空间分辨率受阿贝衍射极限限制为?λ/2NA,其中λ为光波长,NA为显微物镜的数值孔径。近二十年来,各种超分辨荧光显微成像技术的出现打破了光学衍射极限,将空间分辨率提高到纳米尺度,主流技术包括随机光学重构超分辨成像技术(STORM)、结构光照明显微技术(SIM)和受激辐射损耗技术(STED)。其中STED和STORM通过不断提升测量精度极限来提高分辨率,如STED利用非线性受激辐射损耗机制来压制衍射受限的埃里斑尺寸再通过点扫描获得超分辨成像,而STORM通过统计荧光分子中心位置的定位精度来超衍射极限分辨,其分辨率由测量精度即统计分辨率极限? ?N?1/2决定,?N?为探测到平均光子数。 在量子光学中,现有研究表明利用光的量子性质能够突破经典的空间分辨率限制,从而进一步提升分辨率。例如,利用N个纠缠光源的光子干涉能够将分辨率提升到海森堡极限?1 / N。而在荧光显微镜中,同样可以利用荧光光源的量子特性来实现分辨率的提升。单个荧光分子或原子的发射具有单光子辐射源的性质,在一次脉冲激发下仅发出单个光子,因此光子发射统计概率不同于热辐射光源的一簇一簇的光子辐射,而是一个接一个发出,体现了明显的反聚束统计特性,并且理想的单光子源发出的光子在光谱、偏振上完全相同,即具有高的光子不可区分特性。上述荧光的量子性质已被实验证明存在于荧光显微成像常用的荧光染料中,例如单个有机染料分子、单个量子点以及单个金刚石色心,为发展新型的超分辨荧光显微成像技术带来了新的量子信息维度。 基于此,王中阳课题组提出了基于荧光光源的量子性质的超分辨成像方法,并对成像机制展开研究。研究者从荧光光源的发光机制出发,考虑了大多数荧光染料所包含的退相和光谱扩散机制,构建了通用的单光子波函数并考虑其在显微系统中的时间和空间维成像变换;通过计算双光子干涉的时间和空间的探测概率分布,从而获得荧光量子相干统计模型。该模型为宏观部分相干理论与荧光微观辐射机制提供了桥梁。基于此模型,研究者还提出了一种基于荧光量子相干性的超分辨荧光显微成像方法。利用新型的单光子雪崩探测器(SPAD)阵列统计荧光光子的时间和空间涨落p(r, t)。为了提取荧光光子相干性,通过引入时间门Tg作为光子到达时间的后选择窗口来提取高度相干的光子并沿Tg积分构造时间相干调制函数p(r, Tg),如图1所示。 时间相干调制函数与荧光光源空间分离量s有关。因此,通过准确测量时间相干调制函数,并预先确定其它变量,可从中准确提取出衍射极限内荧光光源空间分离距离s。此时,分辨率(即光源分离距离s)取决于荧光时空相干性的测量精度,而相干性测量精度又与探测到的光子数和空间采样率有关,如图2所示,仿真结果表明,当探测到的光子数达到104时,分辨率可以达到50 nm。该新型量子增强成像技术能够发掘荧光量子时空涨落特性及量子相干性,有助于实现荧光弱信号下的快速超分辨成像。  论文链接   图1.基于荧光量子相干的超分辨荧光显微成像方法示意图。(a)实验装置图;(b)传统成像方式和SPAD阵列探测方案对比图;(c)成像过程时序图;(d)荧光光子时空相干性概率分布;(e)引入时间门调制后荧光光子时空相干性概率分布。 图2.不同累计光子数下p(0, Tg)的测量精度(荧光光源距离s分别为50和100 nm)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制