当前位置: 仪器信息网 > 行业主题 > >

糖酵解速率

仪器信息网糖酵解速率专题为您整合糖酵解速率相关的最新文章,在糖酵解速率专题,您不仅可以免费浏览糖酵解速率的资讯, 同时您还可以浏览糖酵解速率的相关资料、解决方案,参与社区糖酵解速率话题讨论。

糖酵解速率相关的资讯

  • 潘东宁/唐惠儒合作揭示天冬酰胺可促进脂肪细胞产热和糖酵解
    棕色和米色脂肪是一类特殊的“产热脂肪”,能够将代谢底物氧化产生的能量转化为热能,是哺乳动物及人类新生儿在寒冷环境下维持体温的重要手段之一,在进化上具有重大意义。近年来,肥胖、糖尿病等代谢性疾病日益流行,能量过剩是此类疾病的共同特征。产热脂肪具有高代谢活性和可诱导性,同时参与维持机体的能量代谢稳态,因而受到人们的关注,产热功能的调节机制和激活信号成为重要的研究课题。糖和脂肪酸是产热脂肪的两大“燃料”,其代谢途径及信号通路已有大量报道。然而,氨基酸是否能作为代谢底物或信号分子调节产热脂肪的功能,目前尚知之甚少。2021年10月27日,复旦大学潘东宁课题组和唐惠儒课题组合作在EMBO Journal上发表了题为 Asparagine reinforces mTORC1 signaling to boost thermogenesis and glycolysis in adipose tissues的研究成果。该研究发现,天冬酰胺通过激活mTORC1信号通路,启动脂肪组织产热和糖酵解,促进白色脂肪米色化,从而提高小鼠对寒冷环境的耐受能力,在肥胖情况下改善胰岛素敏感性、缓解体重增长。天冬酰胺(Asparagine, Asn)属于非必需氨基酸。哺乳动物细胞广泛表达天冬酰胺合成酶(Asparagine synthetase, ASNS),该酶以天冬氨酸为底物,由谷氨酰胺提供氨基,合成天冬酰胺。白血病母细胞(leukemic blasts)缺乏Asns表达,无法合成天冬酰胺,依赖外源摄取。因此,临床上使用天冬酰胺酶(asparaginase, ASNase)作为急性淋巴细胞性白血病的治疗手段,通过清除循环中的天冬酰胺,使白血病细胞由于缺乏天冬酰胺而凋亡。值得注意的是,接受该疗法的患者中,分别有20%和67%出现了高血糖和高血脂。此外,循环中天冬酰胺的水平与代谢综合征、肥胖的发生呈负相关。这些现象引起了本文作者的关注:天冬酰胺是否能影响全身能量代谢?为了探究这一问题,作者改变小鼠循环中天冬酰胺的水平,观察代谢和产热指标的变化。实验发现,在饮水中添加天冬酰胺,提高循环天冬酰胺水平,小鼠在4℃冷暴露时的体温维持能力显著提高,白色脂肪中出现更多米色化细胞;全身耗氧量、产热量均显著增加。另一方面,给予天冬酰胺酶,清除循环中的天冬酰胺,则出现相反的表型。在使用高脂饮食诱导肥胖的同时,给小鼠饮水中添加天冬酰胺,天冬酰胺组肥胖小鼠对β3肾上腺素受体激动剂反应敏感,体重增长减缓,血清胰岛素和血脂水平下降,糖耐量改善。这说明,天冬酰胺确实能促进脂肪组织产热、改善全身能量代谢。天冬酰胺发挥上述作用的机制是什么呢?作者采用代谢组学与同位素标记-靶向代谢流分析手段,发现添加天冬酰胺后,细胞内糖酵解中间产物(果糖-6-磷酸,果糖-1,6-二磷酸)显著增加。与之一致地,糖酵解关键酶(己糖激酶HK2、磷酸果糖激酶PFKL、丙酮酸激酶PKM)蛋白水平显著上调。进一步研究发现,天冬酰胺可激活mTORC1信号通路,上调4E-BP1和S6K的磷酸化水平,从而促进糖酵解关键酶的翻译;天冬酰胺对产热的激活作用,则依赖于mTORC1对Pgc1α的诱导。本研究首次报道了天冬酰胺对脂肪组织产热和糖酵解的激活作用,发现口服补充天冬酰胺能有效改善全身代谢、缓解肥胖进程。这一研究成果完善了我们对氨基酸调节产热脂肪功能的认识,并为利用天冬酰胺作为营养补充来预防和缓解肥胖提供了实验基础。复旦大学基础医学院博士生徐英江和施亭为本文共同第一作者,基础医学院潘东宁研究员和生命科学学院、人类表型组研究院唐惠儒教授为本文共同通讯作者。
  • 安捷伦宣布推出实时活细胞 ATP 速率测定试剂盒
    安捷伦宣布推出实时活细胞 ATP 速率测定试剂盒新测定方法扩大了 Agilent Seahorse XF 技术的应用范围2018年5月8日,北京——安捷伦科技公司(纽约证交所:A)日前宣布推出一款新产品 — Agilent Seahorse XF 实时 ATP 速率测定试剂盒,这款试剂盒将帮助生物学家增进对活细胞实时功能的了解。Seahorse XF 实时 ATP 速率测定试剂盒使研究人员可以测定并定量分析细胞的三磷酸腺苷 (ATP) 产生速率,ATP 是一种在多个生物学过程中都非常重要的复杂有机物。事实上,这是唯一一款能同时测定两种产能通路(线粒体呼吸和糖酵解)中 ATP 生成的产品。这一新测定方法为细胞表型和功能提供了独特见解,为驱动细胞信号转导、增殖、活化、毒性和生物合成的关键功能研究提供了平台。该检测方法扩大了 XF 技术(可用于检测细胞代谢和生物能量中发生的不连续变化)的应用范围,提供了生理相关指标,另外与仅测量细胞 ATP 静态总终点水平的传统方法相比,此方法能提供更丰富的信息。加州大学洛杉矶分校分子和医学药理学系助理教授 Ajit Divakaruni 博士表示:“对于重点研究细胞代谢如何影响生理机能和疾病的研究人员来说,Seahorse XF 实时 ATP 速率测定试剂盒是一款非常强大的工具。它对使用 XF 分析仪的分析而言是一次巨大飞跃,因为它突破了实时定性测量的阶段,迈向了对细胞中主要能量转换通路的定量计算。”他还谈道:“此外,这是一种非常灵敏的检测方法,传统 ATP 水平的即时快照测定仅在极端情况下才能获得丰富信息,相比之下新方法在此基础上有了巨大的提升。这款试剂盒与传统方法保持一致,便于使用并能提供可靠而直观的数据,我已迫不及待想见证研究界利用这一新试剂盒发现的内容。”安捷伦科技细胞分析事业部高级总监 David Ferrick 博士谈道:“我们非常荣幸能为客户提供一项能得到所有细胞生物学研究人员青睐的突破性功能。这是首个可依据 XF 技术测定线粒体和无氧糖酵解中活细胞 ATP 生成速率的测定方法。现在科学家们可以追踪发生的生物过程,特别是对于疾病相关因素或细胞功能的驱动因素,从而揭示与生理和病理生理变化相关的转折点。”Seahorse XF 实时 ATP 速率测定易于运行,利用便捷的数据处理工具并具有优化的一次性使用形式,可降低复杂性并简化工作流程。安捷伦设计这款试剂盒的初衷是加快各领域的研究进程,包括生物化学、生物技术、肿瘤学、免疫学、细胞生物学、分子生物学、神经学、基因组学、蛋白质组学、代谢组学、毒理学和药物研发。 关于安捷伦科技公司安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,拥有 50多年的敏锐洞察与创新,我们的仪器、软件、服务、解决方案和专家能够为客户最具挑战性的难题提供更可靠的答案。在2017财年,安捷伦的营业收入为44.7亿美元,全球员工数为14200人。 如需了解安捷伦公司的详细信息,请访问 www.agilent.com。 # # #
  • 安捷伦宣布推出实时活细胞 ATP 速率测定试剂盒
    p style="text-align: center "span style="color: rgb(31, 73, 125) "strong新测定方法扩大了 Agilent Seahorse XF 技术的应用范围/strong/span/pp  2018年5月8日,北京——安捷伦科技公司(纽约证交所:A)日前宣布推出一款新产品 — Agilent Seahorse XF 实时 ATP 速率测定试剂盒,这款试剂盒将帮助生物学家增进对活细胞实时功能的了解。/pp  Seahorse XF 实时 ATP 速率测定试剂盒使研究人员可以测定并定量分析细胞的三磷酸腺苷 (ATP) 产生速率,ATP 是一种在多个生物学过程中都非常重要的复杂有机物。事实上,这是唯一一款能同时测定两种产能通路(线粒体呼吸和糖酵解)中 ATP 生成的产品。/pp  这一新测定方法为细胞表型和功能提供了独特见解,为驱动细胞信号转导、增殖、活化、毒性和生物合成的关键功能研究提供了平台。该检测方法扩大了 XF 技术(可用于检测细胞代谢和生物能量中发生的不连续变化)的应用范围,提供了生理相关指标,另外与仅测量细胞 ATP 静态总终点水平的传统方法相比,此方法能提供更丰富的信息。/pp  加州大学洛杉矶分校分子和医学药理学系助理教授 Ajit Divakaruni 博士表示:“对于重点研究细胞代谢如何影响生理机能和疾病的研究人员来说,Seahorse XF 实时 ATP 速率测定试剂盒是一款非常强大的工具。它对使用 XF 分析仪的分析而言是一次巨大飞跃,因为它突破了实时定性测量的阶段,迈向了对细胞中主要能量转换通路的定量计算。”/pp  他还谈道:“此外,这是一种非常灵敏的检测方法,传统 ATP 水平的即时快照测定仅在极端情况下才能获得丰富信息,相比之下新方法在此基础上有了巨大的提升。这款试剂盒与传统方法保持一致,便于使用并能提供可靠而直观的数据,我已迫不及待想见证研究界利用这一新试剂盒发现的内容。”/pp  安捷伦科技细胞分析事业部高级总监 David Ferrick 博士谈道:“我们非常荣幸能为客户提供一项能得到所有细胞生物学研究人员青睐的突破性功能。这是首个可依据 XF 技术测定线粒体和无氧糖酵解中活细胞 ATP 生成速率的测定方法。现在科学家们可以追踪发生的生物过程,特别是对于疾病相关因素或细胞功能的驱动因素,从而揭示与生理和病理生理变化相关的转折点。”/pp  Seahorse XF 实时 ATP 速率测定易于运行,利用便捷的数据处理工具并具有优化的一次性使用形式,可降低复杂性并简化工作流程。安捷伦设计这款试剂盒的初衷是加快各领域的研究进程,包括生物化学、生物技术、肿瘤学、免疫学、细胞生物学、分子生物学、神经学、基因组学、蛋白质组学、代谢组学、毒理学和药物研发。/pp strong 关于安捷伦科技公司/strong/pp  安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,拥有 50多年的敏锐洞察与创新,我们的仪器、软件、服务、解决方案和专家能够为客户最具挑战性的难题提供更可靠的答案。在2017财年,安捷伦的营业收入为44.7亿美元,全球员工数为14200人。 /p
  • 【安捷伦】聚焦代谢,安捷伦 Seahorse 在病毒免疫研究中的应用
    自新冠病毒爆发以来,治疗新型肺炎的药物和疫苗的研发进展备受瞩目。近期,连续传来好消息:浙江海正药业股份有限公司研制的“法维拉韦”(原名“法匹拉韦”)正式获得国家药监局批准上市、美国吉列德的“瑞德西韦”目前正在武汉金银潭医院等 11 家医院开展多中心临床试验验证、康复者的血浆抗体被用于治疗。在新药研发过程中,非常关键的一环就是评估药物引起的免疫反应,这将决定药物能否上市,能否用来治疗新型肺炎患者。免疫是人体的一种重要的生理功能,人体依靠这种功能识别“自己”和“非己”成分,从而破坏和排斥进入人体的危险物质,如抗原、病原体(如病毒、细菌)和炎症刺激。人体免疫系统是人抵御外来感染的防线,而淋巴细胞就是这道防线的哨兵。淋巴细胞包括 B 淋巴细胞和T淋巴细胞。B 淋巴细胞亦称 B 细胞,主要功能是产生抗体,介导体液免疫应答;T 淋巴细胞亦称 T 细胞,发挥细胞免疫及免疫调节等功能。这两种淋巴细胞分工明确,共同杀伤和清除入侵体内的病原体。代谢是细胞合成和分解营养物质的过程,是所有活细胞维持生存、增殖和行使功能的必须生理过程。近些年来,代谢在免疫系统中的作用被越来越多的研究者发现。代谢被视为调控免疫细胞功能与分化的主要因子。在 T 细胞分化过程中,初始 T 细胞、效应 T 细胞和记忆 T 细胞对于能量的需求各异,因此这三种 T 细胞依赖氧化磷酸化和糖酵解的能力各不相同。由此可见,代谢对于免疫系统的功能至关重要。Seahorse 技术作为检测能量代谢的金标准,在病原体感染与免疫方向有着非常广泛的应用,为科学家提供强有力的武器来研究病毒与免疫系统的攻防。1、 巴尔病毒(EBV)诱导 B 细胞进行单碳代谢,驱动 B 细胞转化EBV 可以导致多种 B 细胞淋巴瘤。人们对 EBV 感染 B 细胞后,B 细胞如何快速增殖的机制知之甚少。剑桥大学和哈佛医学院的科学家们 2019 年在 Cell Metabolism 上发表的文章为大家揭开了这个谜题[1]。他们的研究发现,EBV 会重塑 B 细胞的代谢通路,诱导 B 细胞进行单碳叶酸代谢,从而促进 B 细胞获得营养,快速增殖。EBV 上调 B 细胞对外源丝氨酸的摄入,目的是为了支持线粒体的单碳代谢(图 1 )。他们的工作为开发新的线粒体单碳代谢抑制剂来治疗 EBV 的感染的 B 淋巴瘤提供了理论基础。图 1. Seahorse 的结果表明,丝氨酸的缺失会降低新感染细胞的呼吸作用。(E)EBV 感染 4 天的原代 B 细胞在含有丝氨酸和缺乏丝氨酸的培养基中生长,测量氧气消耗速率(OCR)。(F)根据图E的结果计算得到的代谢参数。2、 调控 CD8 阳性 T 细胞的代谢可以对抗流感病毒感染CD8 阳性 T 细胞在不同的分化阶段,由初始细胞向效应和记忆细胞转换的过程中,线粒体的呼吸是被精密调控的。代谢状态的改变可以满足不同种类 CD8 阳性 T 细胞对能量的需求,有利于它们进行增殖。美国佛蒙特大学的 Champagne 等研究者于 2016 年在 Immunity 上发表成果,揭示 MCJ 蛋白是 CD8 阳性 T 细胞线粒体呼吸的负调控因子(图 2)[2]。MCJ 缺陷的记忆 CD8 阳性 T 细胞对流感病毒的感染具有更强的保护能力。T 细胞代谢与流感病毒感染之间的关系由此可见一斑。此研究揭示 MCJ 可以作为一个治疗靶点来增加 CD8 阳性 T 细胞的反应。图 2. MCJ 缺陷的效应 CD8 阳性 T 细胞氧化磷酸化升高。野生型和 MCJ 缺陷的 CD8 阳性 T 细胞经 CD3 和 CD28 抗体激活 2 天。(A)细胞在无刺激培养基中静置 4 小时后 ATP 的浓度。(B)Seahorse 线粒体压力试验测量静置 12 小时的细胞的 OCR。(C)Seahorse 糖酵解压力试验测量细胞的 ECAR。3、 艾滋病病毒(HIV)感染和抗逆转录病毒疗法对免疫细胞功能的影响大家对 HIV 应该很熟悉了。HIV 是一种逆转录病毒,它能够攻击人体免疫系统,在慢性 HIV 感染中,免疫细胞会变得越来越不正常,最终衰竭。2019 年发表在 JCI Insight 上的一篇文章探讨了 HIV 感染以及相应的抗转录病毒疗法对免疫细胞代谢的影响[3]。德国杜伊斯堡大学 Korencak 等人的研究结果表明,在 HIV 感染时,大多数免疫细胞的呼吸作用都会大幅降低,而这种代谢的变化与慢性免疫激活和衰竭是联系在一起的。当用抗逆转录病毒疗法治疗 HIV 感染的患者时,除了 CD4 阳性 T 细胞以外,其他类型的免疫细胞的呼吸作用可以得到恢复(图 3 )。这一最新的研究成果为评估抗病毒药物对于人体免疫功能的副作用提供了一个很好的方法。图 3. 与 HIV 阴性的患者相比,HIV 阳性、未治疗的患者和抗逆转录病毒疗法治疗的患者显示基础呼吸和最大呼吸降低。(A)Seahorse 线粒体压力测试比较 HIV 阳性、未治疗和治疗患者,以及健康人的 CD4 阳性 T 细胞的基础和最大线粒体呼吸。(B)Seahorse 糖酵解压力测试结果表明,CD4 阳性 T 细胞的糖酵解能力在三组患者中没有显著性差异。免疫代谢是一个快速增长的研究领域。代谢与免疫细胞的功能息息相关,为研究免疫生物学提供了新的策略。安捷伦 Seahorse 在免疫学研究中的应用囊括了免疫学的各个方面。参考文献1. Wang, L. W. et al. Epstein-Barr-Virus-Induced One-Carbon Metabolism Drives B Cell Transformation. Cell Metab30, 539-555 e511, doi:10.1016/j.cmet.2019.06.003 (2019).2. Champagne, D. P. et al. Fine-Tuning of CD8(+) T Cell Mitochondrial Metabolism by the Respiratory Chain Repressor MCJ Dictates Protection to Influenza Virus. Immunity44, 1299-1311, doi:10.1016/j.immuni.2016.02.018 (2016).3. Korencak, M. et al. Effect of HIV infection and antiretroviral therapy on immune cellular functions. JCI Insight4, doi:10.1172/jci.insight.126675 (2019).推荐阅读:1. 战胜新冠病毒可用之利器 | 安捷伦 Seahorse 助力抗病毒研究 https://www.instrument.com.cn/netshow/SH100320/news_522313.htm2. 抗击新型冠状病毒,安捷伦核酸/蛋白质质量控制产品从这些方面入手! https://www.instrument.com.cn/netshow/SH100320/news_521879.htm 关注“安捷伦视界”公众号,获取更多资讯。
  • 肿瘤细胞中不同的糖代谢途径|附相关会议
    人们早在20世纪初就观察到肿瘤细胞群体的一个有趣且独特的性质:大多数肿瘤细胞的能量代谢与正常细胞相比呈现出巨大的差异性。1924年Otto Warburg首先报道了这一现象,后来他由于发现呼吸酶(即细胞色素c氧化酶)而获得了诺贝尔奖。相关会议推荐点击可免费报名大多数不增殖的正常细胞通过获取氧分子,将葡萄糖通过葡萄糖转运蛋白(GLUT)运输入胞内,在胞质中有氧条件下能通过糖酵解途径将葡萄糖分解成丙酮酸。在糖酵解的最后一步,丙酮酸激酶的M1亚型的存在,可以确保产物丙酮酸被运送到线粒体,再在丙酮酸脱氢酶(PDH)的作用下进行氧化,生成乙酰辅酶A,进入三羧酸循环。通过这种方式,线粒体每分解一个葡萄糖分子就能产生36个ATP分子。而在肿瘤细胞中,即使在有充足氧供应的肿瘤细胞中,GLUT1将大量葡萄糖运输至胞质中进行糖酵解。它依赖丙酮酸激酶的M2亚型,将丙酮酸盐转化为乳酸脱氢酶(LDH-A)的底物,生成大量乳酸,分泌到胞外。由于只有极少量的葡萄糖被运输至线粒体进行分解,故每个葡萄糖分子只分解得到2个ATP分子。此外,糖酵解途径中的大量中间产物被用于其他生化合成途径中。被Warburg称为肿瘤细胞“有氧糖酵解”的这种代谢方式,由于其每分解一个葡萄糖分子只能得到两个ATP分子,在能量学上显得很不经济。因为在三羧酸循环中有氧分子参与的情况下,一个葡萄糖分子的有氧糖酵解途径能提供36个ATP分子。机体中的大多数正常细胞正是通过这种由血液系统带来氧分子、进而进行有氧糖酵解的途径获得高效供能的。而即使子提供充足氧气的情况下,肿瘤细胞也不使用常规糖酵解方式,这实在是一种非常与众不同的生物学行为。由于肿瘤细胞使用的是一种很不经济的糖代谢方式,因此它们需要大量的葡萄糖进入胞内进行分解。在多种肿瘤中,如上皮来源的癌和血液系统肿瘤,都能观察到这种行为。它们高表达葡萄糖转运蛋白,如GLUT1等,以便能跨膜转运大量葡萄糖。那么为什么80%的肿瘤细胞要采取这种糖酵解的方式,而不采用到线粒体中进行三羧酸循环的方式对葡萄糖进行分解呢,并且明显后者能提供更多的ATP以供肿瘤细胞的生长和增殖?有氧糖酵解是否是肿瘤细胞维持其表型必需的?又或它只是细胞转化后的一个无意义的副效应,对细胞转化和生长并没有因果作用。有关有氧糖酵解的一个解释是肿瘤块内部的肿瘤细胞通常都呈现缺氧的状态,这种缺氧状态导致细胞不能进行充分的糖酵解进而提供充足的ATP,就像正常细胞在缺氧状态时的反应一样。由于具备Warburg效应,肿瘤细胞很好地适应了这种缺氧环境,但这依然不能解释为什么在提供充足氧气的条件下,肿瘤细胞依然不加以利用以合成更多的ATP。关于有氧糖酵解另一个合理的解释是,除了产生ATP,糖酵解还有第二个作用:糖酵解途径的中间产物可以作为很多涉及细胞生长(如核酸和脂类的合成)的分子的前体。肿瘤细胞通过糖酵解途径的负反馈机制,阻断糖酵解途径的最后一步,使细胞内积累了大量早期中间代谢物。这些糖酵解途径的中间产物能参与许多重要的生化合成反应。较肿瘤细胞而言,正常细胞没有那么强的增殖活性,也不需要大规模的生化合成反应,葡萄糖主要用来产生ATP以维持其正常代谢。正是这种肿瘤细胞异常的葡萄糖代谢为其创造了生长和增殖的生理学环境。参考文献: 1. 《The biology of CANCER》second edition. Robert.A Weinberg 2. 《癌生物学》詹启敏 刘芝华 主译
  • 【安捷伦】战胜新冠病毒可用之利器 | 安捷伦 Seahorse 助力抗病毒研究
    新型冠状病毒疫情牵动着每一个人的神经,自疫情发生以来,政府及时采取措施,全国各地医护人员团结一心,众志成城,在第一线与病毒作斗争。科研、临床、制药等领域人员通力合作,相信我们最终会取得这场战役的胜利。病毒结构简单,必须寄生在活细胞中并以复制的方式增殖,但它又十分狡猾,就像罪犯躲避警察追捕一样,躲避着免疫系统的追捕。因此,只有了解病毒是如何作用于宿主细胞的,人们才能更好地对付它。安捷伦的 Seahorse 能量代谢分析系统,能够实时无标记测量细胞的呼吸作用和糖酵解,从而反映细胞代谢的状态,在病毒学研究领域也有着广泛的应用。下面我们通过三个实例介绍 Seahorse 技术在病毒学研究中的具体应用。流感病毒的研究绝大多数人对流感都不陌生,流感是由流感病毒引起的。美国田纳西大学健康科学中心、圣犹大儿童研究医院的 Smallwood 等人于 2017 年在 Cell Report 上发表文章,阐述了流感病毒感染对宿主细胞的影响[1]。他们用 Seahorse 技术测量发现流感病毒会引起正常人支气管上皮细胞糖酵解和谷氨酰胺分解增加,同时也会使氧消耗增加(图1 ),也就是说,呼吸道细胞的代谢在病毒感染后升高了。这一发现启发了科学家们思考,改变代谢的药物是否可以用来治疗流感?结果与他们的预期相符,他们发现 PI3K/mTOR 的抑制剂 BEZ235 能够减少体内病毒的滴度,增加流感病毒感染小鼠的存活率,并且会逆转病毒感染诱导的宿主细胞的代谢变化。他们的研究为临床治疗提供了新的思路。图 1. 流感病毒感染使正常人支气管上皮细胞的代谢流增加。(A-C) 正常人支气管上皮细胞在Seahorse 24孔板中里培养和分化,然后经过不同的处理:未处理(control),在 MOI 1用活病毒(CA04)或β-propriolactone失活的病毒(BPL)感染 17 个小时,或用 TLR 激动剂(LPS,PolyIC,R848)刺激。(A) ECAR(细胞外酸化速率)。(B)OCR(氧气消耗速率)。(C)PPR(质子产生速率)。登革热病毒的研究登革热是一种蚊媒病毒感染,感染会导致流感样症状,有时还会发展为可能致命的并发症,称为重症登革热。2017 年,美国罗德岛大学的科学家 Barbier 等人发表在 Virology 上的文章表明,登革热病毒感染时,被感染细胞线粒体的长度和呼吸都会增加[2]。其中,对于线粒体呼吸作用的测量作者是用 Seahorse 技术来完成的(图2)。这篇文章表明,登革热病毒感染后会影响宿主细胞线粒体的形态和功能,也提供了这样一种假说,改变线粒体的形态或许可以用来治疗或干预病毒感染。图 2. 登革热病毒感染的细胞线粒体呼吸增加。(A)Seahorse 线粒体压力测试测量未感染和登革热病毒感染 48 小时后(MOI为1)Huh7 细胞的 OCR。(B)线粒体功能的参数,表现为与未感染细胞相比的倍数变化。风疹病毒的研究风疹是一种急性传染病病毒感染,风疹病毒感染通常会引起儿童和成人轻度发烧和皮疹。2018 年发表在 Journal of Virology 上的一篇研究风疹病毒的文章中,德国莱比锡大学的研究人员运用 Seahorse 技术发现风疹病毒感染诱导宿主细胞的生物能量状态转变为更高的氧化和糖酵解的表型(图3)[3]。这一崭新的研究成果揭示细胞代谢的改变是病毒-宿主相互作用过程中的重要一环,代谢表型可以作为病毒感染的生物标志物。图 3. 感染风疹病毒的上皮细胞 Vero 的氧气消耗速率和代谢表型。(A)Seahorse 细胞线粒体压力测试测量对照和感染风疹病毒 72 小时的 Vero 细胞的 OCR。(B)线粒体呼吸作用计算。(C)图 A 获得的数据被用来计算备用储备能力(SRC)和 ATP 产生(ATP prod)。(D)对照和感染风疹病毒 72 小时的 Vero 细胞的代谢表型。(E)对照和感染风疹病毒 72 小时的 Vero 细胞基线条件下 OCR 与 ECAR 的比率。此次新型冠状病毒的大规模感染使得人们重新审视流行病学的防治工作。对于新型病毒来说,短期内很难出现特效药或疫苗。抗病毒药物和疫苗的研制离不开对病毒本身的了解,由于病毒无法脱离宿主细胞而活,因此理解病毒如何作用于宿主细胞至关重要。安捷伦 Seahorse 技术聚焦代谢,能够帮助人们深入理解病毒作用于细胞的机制,为抗病毒药物和疫苗的研发奠定了理论基础。参考文献:1 Smallwood, H. S. et al. TargetingMetabolic Reprogramming by Influenza Infection for Therapeutic Intervention.Cell Rep 19, 1640-1653, doi:10.1016/j.celrep.2017.04.039 (2017).2 Barbier, V., Lang, D., Valois, S.,Rothman, A. L. & Medin, C. L. Dengue virus induces mitochondrial elongationthrough impairment of Drp1-triggered mitochondrial fission. Virology 500,149-160, doi:10.1016/j.virol.2016.10.022 (2017).3 Bilz, N. C. et al. Rubella Viruses ShiftCellular Bioenergetics to a More Oxidative and Glycolytic Phenotype with aStrain-Specific Requirement for Glutamine. J Virol 92, doi:10.1128/JVI.00934-18(2018).推荐阅读:1. 安捷伦细胞分析出版物数据库 https://www.agilent.com/cell-reference-database/?utm_term=&utm_campaign=Agilent%20Seahorse%20October%20XF%20Publications%20Alert&utm= 2. 战胜新型冠状病毒可用之利器,从抗病毒药物筛选到疫苗开发(一) https://www.agilent.com/zh-cn/rtca2-shaixuan3. 战胜新型冠状病毒可用之利器,从抗病毒药物筛选到疫苗开发(二) https://www.agilent.com/zh-cn/liushi-yimiao4. 战胜新型冠状病毒可用之利器,从抗病毒药物筛选到疫苗开发(三) https://www.agilent.com/zh-cn/rtca-cn5. 抗击新型冠状病毒,安捷伦核酸/蛋白质质量控制产品从这些方面入手! https://www.agilent.com/zh-cn/hesuan-cn6. 快速测定口罩中的环氧乙烷残留,让医务人员和大家更安心! https://www.agilent.com/zh-cn/kouzhao-cn关注“安捷伦视界”公众号,获取更多资讯。
  • 800万!北京中医药大学机能检测平台实验设备采购项目
    项目编号:ZTXY-2022-H26153项目名称:北京中医药大学机能检测平台实验设备采购项目预算金额:800.0000000 万元(人民币)最高限价(如有):800.0000000 万元(人民币)采购需求:分包预算金额:分包1预算金额:人民币壹佰陆拾伍万元整(人民币1,650,000元)。分包2预算金额:人民币贰佰陆拾伍万元整(人民币2,650,000元)。分包3预算金额:人民币叁佰柒拾万元整(人民币3,700,000元)。采购需求:分包号标的的名称数量简要技术需求或服务要求是否接受进口产品投标1全自动生化分析系统、全自动凝血分析仪2用于检测生化、药物检测、毒品检测、电解质检测(钾、钠、氯的检测)、同工酶测定、脂类测定等项目指标。是2高通量细胞能量代谢分析系统1用于实时侦测包括有氧呼吸以及糖酵解作用的细胞能量代谢的状态和动态,能同时进行活体细胞内线粒体耗氧速率和糖酵解产酸速率的实时、定量、全自动测定。是3超高分辨率超声成像系统11.1 彩色液晶触摸显示屏≥10英寸;1.2 可以连接小动物专用电子线阵探头,频率≥50MHz;#1.3 主机采集实时帧频≥1000频/s,满足大/小鼠快速心率的要求。是合同履行期限:国产设备合同签订后一个月内,进口设备合同签订后三个月内。本项目( 不接受 )联合体投标。
  • 全球首发!Incyton实时全息细胞能量代谢分析平台
    德国Incyton公司出品的全新产品“实时全息细胞能量代谢分析平台”- CYRIS Flox系统将于第十届慕尼黑上海分析生化展全球首发!能量代谢异常常见于代谢性疾病,肥胖、糖尿病、癌症、神经性疾病等。探索疾病发病机理、寻找药物作用靶点,往往是科研的首要任务,而细胞的能量代谢检测与细胞形态的观察,能够真实有效的反应细胞的状态与活力。德国Incyton实时全息细胞能量代谢分析平台可以从组织样本、活细胞样本到线粒体样本进行一站式无标记检测。CYRIS Flox系统采用全新的实时无标记荧光检测模块与铂金芯片传感器相结合方法,能够精准的获得多参数数据,实时侦测包括有氧呼吸以及糖酵解作用的细胞能量代谢的状态和动态,能同时进行活体细胞内线粒体耗氧速率和糖酵解产酸速率、细胞膜电阻值检测等功能的全自动测定和分析。具有显微扫描成像系统,首创细胞能量代谢数据与显微细胞影像同时在线实时监测和分析。▌性能指标24孔样本,每孔可单独进行实验耗氧率(OCR)、产酸率 (ECAR)、氧浓度、细胞膜阻抗显微扫描成像系统首创细胞能量代谢数据与显微细胞影像同时在线实时监测和记录氧气浓度和湿度控制氧气控制范围1-21%,可做低氧、厌氧等试验自动灭菌检测室全自动移液工作站,24通道独立换液6个不同试剂池多次精准加药可进行几周至数月的长期试验全自动化数据处理,可实现无人值守耗材可重复使用,配套试剂全部开放▌具体应用1、经典细胞氧化压力测量模式,测量细胞的基础呼吸、质子漏水平、最大呼吸、呼吸储备能力以及非线粒体耗氧等阶段。2、毒理药理学研究中,将细胞能量代谢实时检测与活细胞成像完美结合,诠释了细胞理化性质与细胞密度、细胞活力之间的耦联作用。3、细胞应激研究中,将细胞有氧呼吸和无氧呼吸同时检测,并结合细胞膜电阻抗电生理信号,可同时观察到细胞在应激调节中,细胞的抗压能力的高低。
  • 260万!华南理工大学活细胞代谢检测分析仪采购项目
    项目编号:GZZJ-ZFG-2023061项目名称:华南理工大学活细胞代谢检测分析仪采购项目预算金额:260.0000000 万元(人民币)最高限价(如有):260.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价万元(人民币)1活细胞代谢检测分析仪1套主要用于实时侦测包括有氧呼吸以及糖酵解作用的细胞能量代谢的状态和动态,能同时进行活体细胞内线粒体耗氧速率和糖酵解产酸速率的实时、定量、全自动测定和分析。细胞能量代谢技术近年来已经发展成为细胞相关研究中的重要工具,该设备可广泛应用于食品科学、生命科学和医学的前沿领域:能量代谢学,线粒体,生理、生化,免疫功能和监控研究,干细胞研究,药理学和新药筛选,环境监控,神经生物学,血液学,肿瘤学等260经政府采购管理部门同意,本项目(活细胞代谢检测分析仪设备)允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品,具体详见采购需求。本项目采购标的所属行业为:工业合同履行期限:国内供货:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用;境外供货:收到信用证后(90)天内。本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名称:华南理工大学地址:广州市天河区五山路381号联系方式:文老师020-871129622.采购代理机构信息名称:广州中经招标有限公司地址:广州市越秀区寺右一马路18号泰恒大厦14楼1409室联系方式:陈小姐、庄小姐 020-87385151、020-37639369、020-87371812、020-873722963.项目联系方式项目联系人:陈小姐、庄小姐电话:020-87385151
  • 安捷伦推出用于低丰度免疫细胞代谢分析的高灵敏度XF分析解决方案
    2021年2月17日,北京——安捷伦科技公司 (纽约证交所:A)推出安捷伦 Seahorse XF HS 迷你板,可用于提高免疫细胞代谢分析。免疫学和疾病研究人员越来越多地使用稀有的体外基因工程细胞来建立更好的疾病模型。然而,此类细胞的生产数量有限,限制了研究人员可进行的细胞分析类型。XF HS Mini是安捷伦Seahorse XF平台系列的最新成员,可实时分析活细胞中的线粒体呼吸、糖酵解和ATP生成。这些代谢测量使研究人员能更充分地了解细胞的健康状况、功能和信号转导。高度灵敏的XF HS Mini分析仪可提高性能和精度、减少每孔所需细胞数量、改善悬浮细胞工作流程一致性,并简化分析。这些改进使研究人员能从免疫细胞等数量有限或呼吸速率低的细胞类型中可靠地生成XF数据,进行以往无法完成的测量。斯坦福大学干细胞移植与再生医学系儿科学副教授Katja Weinacht医学博士说道:“我们使用的是经过高度操纵的免疫细胞,其生命周期较短,生成成本较高且耗时费力。以更少的细胞数量获得更高的灵敏度是成败的关键,因此我们在疾病模型中使用安捷伦Seahorse XF技术。”安捷伦细胞分析事业部高级总监David Ferrick博士表示:“随着我们的客户努力在更复杂、更特殊的体内环境中进行生物学探究,对稀有细胞群的研究需求已愈发明确。XF HS Mini更高的灵敏度和精度将为客户开辟代谢分析的新领域。”关于安捷伦科技安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,致力于提供敏锐洞察与创新,帮助提高生活质量。我们的仪器、软件、服务、解决方案和专家能够为客户最具挑战性的难题提供更可靠的答案。在 2020 财年,安捷伦的营业收入为 53.4 亿美元,全球员工数为 16400 人。
  • 耶鲁大学新进展!探索活细胞脂肪代谢过程:光学红外显微成像技术揭开DNL的奥秘
    从头脂肪生成(DNL)是脂肪和肝脏组织产生脂质代谢的关键过程。该途径的失调与肥胖、非酒精性脂肪性肝病和II型糖尿病密切相关。但是DNL在细胞内的研究非常困难,常规的脂质染料缺乏特异性,抗体和小分子染料很难特异性标记这些脂质体。虽然目前可以使用葡萄糖基代谢探针等同位素来标记这些物质,但是很难具备亚微米级别的空间分辨率,同时无法对细胞内部进行成像,也不能提供脂质的特性和其他环境生物分子的组成信息。这些都极大的限制了脂质体的相关研究,尤其是活细胞内脂质代谢的研究。美国PSC公司研发的全新非接触亚微米分辨红外拉曼同步测量系统——mIRage的出现为上述问题提供了新的解决方案。mIRage采用新型光学光热诱导共振(O-PTIR)技术,不仅具备传统FTIR的特性,可以对物质的分子结构进行解析,还克服了传统红外空间分辨率不足,无法精细表征细胞内部结构的问题,其分辨高达500 nm,可在亚微米尺度上实现对细胞结构的观测,与光学显微镜基本相同,有助于理解亚细胞器结构。设备光热膨胀技术能够在不接触样品的情况下进行检测,大幅度简化了样品制备过程,全程对样品无污染,并且没有米氏散射问题,可在不平整的表面上取得良好的谱线。而其特有的探测机制使得mIRage能够很大限度上避免水的干扰,真正实现活细胞的探测。 近期,耶鲁大学成功安装了非接触亚微米分辨红外拉曼同步测量系统——mIRage,并在活细胞脂肪代谢研究中取得了新的进展!在该研究中,Sydney O. Shuster等人使用非接触亚微米分辨红外拉曼同步测量系统——mIRage观测DNL在活细胞和固定脂肪细胞中的分布。作者认为在DNL、葡萄糖或其他碳水化合物代谢形成游离脂肪酸(FFA) 和甘油三酯的途径中,首先形成糖酵解丙酮酸,后被带进线粒体,通过TCA循环转化为柠檬酸盐。柠檬酸盐再转化为酰基辅酶a和丙二酰辅酶a用于脂肪酸合成并产生甘油三酯,然后储存在脂滴中作为能量储备。通过mIRage对固定的3T3-L1细胞的成像分析,作者通过脂肪代表性的酯羰基振动1747cm-1成功定位到细胞中的大部分脂质、甘油三酯的分布,并通过1655和1541cm-1处的酰胺-I和酰胺-II带定位蛋白质。DNL的代谢途径与固定细胞的明场与红外脂质体与蛋白的热图成像 为了跟踪葡萄糖代谢和DNL,作者给细胞喂入13C葡萄糖来代替12C葡萄糖。因为它的分子振动模式与所涉及的原子质量增加导致红外波数的红移,通过检测发现羰基的拉伸震动红移了44 cm-1。有趣的是1239 cm-1的波段本身不能明确地区分给C-O-C或PO2 ,而未标记细胞中的不对称拉伸在13C标记后时消失,这可能是红移到相邻的峰中导致的。这表明该峰值的主要来源是C-O-C 甘油三酯和/或胆固醇酯的不对称拉伸震动,并且磷脂不会显著地干扰3T3-L1脂肪细胞中的信号。而蛋白信号在这一过程中没有变化,表明蛋白质不会随着13C葡萄糖的供给而偏移。与之相对,CH3和CH2相关的1450cm-1波段蛋白质和脂类的变形和伸展震动的出峰不变。这可能是由于形成的甘油三酯来自游离脂肪酸和甘油的酯化。虽然两者都是 FFA和甘油由葡萄糖通过糖酵解产生,但它们以不同的速度产生和回收,影响着这些波段的移动速率。进一步对加入13C葡萄糖24、48和72小时后的细胞进行检测,结果显示平均单细胞13C/12C比率在测试期间(72小时)持续增加,最终比率为0.54±0.14。其中大部分的13C转化成甘油三酯,并且DNL在空间上也是异质的。对不同时间点固定的细胞进行观测和对比其中的DNL含量 在活细胞实验中,也取得了和固定细胞类似的结果,并且活细胞的光谱图像比固定的更清晰,细胞和与蛋白质酰胺-I信号重叠较少证明了这项技术甚至可以检测到活细胞中甘油三酯到12C甘油三酯13C比率的微小差异。活细胞的DNL含量观测综上所述,非接触亚微米分辨红外拉曼同步测量系统——mIRage在细胞成像中具有优异的潜力,可以提供脂质种类的信息,提供对低浓度物质如游离脂肪酸的定位,并允许对每个样品的脂质和蛋白质光谱特征进行全面位置光谱分析,并且能够应用长时间观测。这项技术未来将可以用于绘制细胞系和细胞内DNL的比率、疾病状态,进一步揭示DNL 导致代谢紊乱的原因。在评估针对调节DNL和治疗疾病的药物方面提供诸多帮助。 参考文献:Spatiotemporal Heterogeneity of De Novo Lipogenesis in Fixed and Living Single Cells. J. Phys. Chem. B 2023, 127, 2918&minus 2926为满足国内日益增长的生物红外表征需求,更好的为国内科研工作者提供专业技术支持和服务,Quantum Design中国北京样机实验室引进了非接触亚微米分辨红外拉曼同步测量系统——mIRage,为您提供样品测试、样机体验等机会,期待与您的合作!
  • 助力代谢组学精准研究,安捷伦与清华大学联合举办“代谢组学解决方案专题讲座”
    pimg src="http://img1.17img.cn/17img/images/201808/insimg/e017bc51-a3ae-4abc-800c-36d898027b8b.jpg" style="float:none " title="061.jpg"//ppimg src="http://img1.17img.cn/17img/images/201808/insimg/9adc9c98-3838-4e4a-9cc2-70eb2d093da6.jpg" style="float:none " title="062.jpg"//pp 近日由安捷伦科技与清华大学蛋白质研究技术中心代谢组学平台合办的“代谢组学解决方案专题讲座”在清华大学生物新馆举行。来自清华大学及其他院校超过120 名师生参加了此次讲座。本次活动上,安捷伦科技的专家们分享了针对代谢组学研究领域如何实现多维度的动态研究以及不同疾病能量代谢通路与细胞功能的关联研究等方面的干货心得。 /pp 安捷伦液质联用产品应用经理冉小蓉博士为大家带来了题为《开启深度研究,洞悉机理机制—代谢组学、代谢流与 Seahorse 的前沿整合方案》的报告,向大家介绍了安捷伦拓展代谢组学深度研究的前沿解决方案。安捷伦基于 MPP 的非靶向/靶向代谢组学工作流程有效地发现差异代谢物,并匹配可能激活的通路;基于 VistaFlux 的定性代谢流解决方案提供更快、更准、更完整的差异代谢物在通路上动态活动规律的研究;Seahorse 在活细胞水平上的细胞能量代谢分析,实现对组学/代谢流结果的正交生物学验证。安捷伦这三个方案的整合,无疑实现了对一个复杂生物学问题从生物标记物的发现到机理机制深入阐释的多维度的动态研究。 /ppimg src="http://img1.17img.cn/17img/images/201808/insimg/4c75825d-51d8-4473-9d30-47d4b6438257.jpg" title="063.jpg"//pp 来自 Seahorse 团队的产品经理张小宇则着重从能量代谢角度做了《从能量角度看细胞:新的视角,独到的精彩》的报告。Seahorse 细胞能量代谢平台,可通过监测细胞的体内糖酵解/线粒体呼吸引起的胞外酸化速率、氧气消耗速率来判定不同状态下的细胞实时代谢状态,佐证代谢理论,方便、快捷地帮助研究者进行不同疾病能量代谢通路与细胞功能的关联研究。 /pp Agilent 的整体解决方案,将包括生物标志物的发现、鉴定、靶向验证以及通路分析过程中所需要的硬件、软件、消耗品及服务支持的整体融入到代谢组学综合解决方案中,为开启代谢组学的精准研究,提供了有力的条件。 /pp 此次讲座受到广大清华师生的热烈欢迎,会后安捷伦的工程师也为广大师生进行了长时间的问答和技术探讨。此次讲座是安捷伦与清华大学代谢平台的第一场联合讲座,后续还会有更多的关于技术分享的活动/p
  • 1210万!华南理工大学活细胞代谢检测分析仪、原位X射线衍射仪等采购项目
    一、项目基本情况1.项目编号:ZZ0230049项目名称:华南理工大学原位X射线衍射仪采购项目预算金额:365.0000000 万元(人民币)最高限价(如有):365.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价(万元/套)1原位X射线衍射仪1套主要用于原位电化学和变温情况下,分析材料物相和晶体结构分析。365经政府采购管理部门同意,本项目允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品。本项目采购标的所属行业为: 工业 合同履行期限:合同签订之日至质保期结束。本项目( 不接受 )联合体投标。2.项目编号:GZZJ-ZFG-2023604项目名称:华南理工大学多元粉料热机械加工和发酵特性检测系统采购项目预算金额:130.0000000 万元(人民币)最高限价(如有):130.0000000 万元(人民币)采购需求:包组号序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价万元(人民币)11多元粉料热机械加工和发酵特性检测系统1套多元粉料热机械加工和发酵特性检测系统由多元粉料热机械加工特性检测系统(混合试验仪)和面团发酵过程检测系统(流变发酵仪)组成,可独立和协同使用。混合试验仪揭示谷物蛋白和淀粉的加工特性,一次测定包括吸水率、形成时间、稳定时间、弱化度、淀粉糊化和回生特性等。设备含多个内置测试协议和校准方法,可依据粉料种类和热加工工艺定制测试协议。流变发酵仪聚焦发酵力、面团发酵过程流变特性,对被测定样品的发酵速率、发酵稳定性、发酵力、面团体积、产气速度等进行量化和特性评定。人民币130万元 经政府采购管理部门同意,本项目允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品,具体详见采购需求。本项目采购标的所属行业为:工业合同履行期限:国内供货:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用。境外货物:办理免税证明后(90)天内。本项目( 不接受 )联合体投标。3.项目编号:GZZJ-ZFG-2023602项目名称:华南理工大学活细胞代谢检测分析仪采购项目预算金额:255.0000000 万元(人民币)最高限价(如有):255.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价万元(人民币)1活细胞代谢检测分析仪1套主要用于实时侦测包括有氧呼吸以及糖酵解作用的细胞能量代谢的状态和动态,能同时进行活体细胞内线粒体耗氧速率和糖酵解产酸速率的实时、定量、全自动测定和分析。细胞能量代谢技术近年来已经发展成为细胞相关研究中的重要工具,该设备可广泛应用于食品科学、生命科学和医学的前沿领域:能量代谢学,线粒体,生理、生化,免疫功能和监控研究,干细胞研究,药理学和新药筛选,环境监控,神经生物学,血液学,肿瘤学等255 经政府采购管理部门同意,本项目(活细胞代谢检测分析仪设备)允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品,具体详见采购需求。本项目采购标的所属行业为:工业合同履行期限:国内供货:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用;境外供货:收到信用证后(90)天内。本项目( 不接受 )联合体投标。4.项目编号:0809-2341HGG14049项目名称:华南理工大学大功率激光白光与近红外光源测试系统采购项目预算金额:200.0000000 万元(人民币)最高限价(如有):200.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价万元(人民币)1大功率激光白光与近红外光源测试系统1套具体详见采购需求200.00本项目(大功率激光白光与近红外光源测试系统)只允许采购本国产品,具体详见采购需求。本项目采购标的所属行业为: 工业 交付地点:华南理工大学五山校区。合同履行期限:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用本项目( 不接受 )联合体投标。5.项目编号:ZZ0230047项目名称:华南理工大学分子与元素分析系统采购项目预算金额:160.0000000 万元(人民币)最高限价(如有):160.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)单项最高限价(万元/人民币)1元素分析设备1套可实现有机分子C、N、H、S等元素比重分析952在线质谱仪1台可实现0-300amu分子量在线分析,包括实现差分电化学质谱分析65 经政府采购管理部门同意,本项目(包组)允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品。本项目采购标的所属行业为: 工业 合同履行期限:合同签订之日至质保期结束。本项目( 不接受 )联合体投标。6.项目编号:ZZ0230053项目名称:华南理工大学全自动表面积和孔隙率分析系统采购项目预算金额:100.0000000 万元(人民币)最高限价(如有):100.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价(万元/套)1全自动表面积和孔隙率分析系统1套比表面与孔隙度分析仪是材料表征的基本手段之一,通过静态物理吸附法测定比表面积和孔径分布,揭示材料微观孔隙结构和表面特性。该设备可以对化学、材料、环境分析等领域的样品进行材料的比表面和孔结构进行分析及研究。100经政府采购管理部门同意,本项目允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品。本项目采购标的所属行业为: 工业 合同履行期限:合同签订之日至质保期结束。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年09月08日 至 2023年09月14日,每天上午9:00至12:00,下午12:00至17:30。(北京时间,法定节假日除外)地点:https://www.zztender.com/方式:详见本招标公告“六、其他补充事宜”。售价:¥0.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:华南理工大学     地址:广州市天河区五山路381号        联系方式:文老师020-87112962      2.采购代理机构信息名 称:广东志正招标有限公司            地 址:广州市天河区龙怡路117号银汇大厦5楼            联系方式:罗小姐 020-87554018 85165610            3.项目联系方式项目联系人:李小姐、滕小姐电 话:  020-85165610
  • Nat Neurosci:清华大学时松海团队揭示乳酸代谢调控大脑新皮层发育的关键机制
    2022年6月20日,清华大学时松海课题组在 Nature Neuroscience 期刊在线发表了题为:Metabolic lactate production coordinates vasculature development and progenitor behavior in the developing mouse neocortex(乳酸代谢调控小鼠大脑新皮层血管生长和神经前体细胞行为)的研究论文。该研究揭示了大脑新皮层发育过程中的早期增殖型放射状胶质前体细胞(Radial glia progenitor,RGP)具有更强的糖酵解代谢能力并大量合成和分泌乳酸,进而调节血管生长及其自身增殖分裂特性。大脑新皮层是神经系统的最高级中枢,理解大脑新皮层的发育组装及工作机制是脑科学乃至整个自然科学的终极目标之一。研究大脑新皮层的发育及其调控机制有助于更好地理解其细胞组成和结构特性,进而推动生理功能和运行工作机制的认知,同时对相关疾病的诊断治疗有着至关重要的意义。大脑新皮层是进化的末期产物,其发育是一个高度复杂且受到多种因素的共同调节的生物学过程,这也为系统性研究其内在机制带来了诸多挑战。为此该研究从细胞最为基本特征—细胞代谢的角度出发,揭示了细胞代谢方式及相关产物在调控大脑新皮层发育过程中的关键作用和机制,为更好的理解大脑皮层发育机制提供了重要的理论补充。放射状胶质前体细胞(RGP)是大脑发育最为关键的一种神经前体细胞,其分裂产生大脑皮层几乎所有的神经元和胶质细胞。在小鼠发育早期(E10.5-E11.5),大脑新皮层中几乎没有血管生长,此时 RGP 以对称分裂进行增殖。伴随着血管的生长,RGP 也随之改变其分裂方式,以不对称分裂进行神经细胞产生。基于单细胞代谢状态分析,该研究首先发现大脑新皮层发育过程中,随着 RGP 谱系发生过程的进行,RGP 及其子代细胞具有不同的代谢状态,并呈现出不同的代谢特征。在此基础上,结合基因表达分析、细胞代谢类型分析以及碳代谢流分析多方面研究,进一步发现进行对称分裂的增殖型 RGP 具有更强的糖酵解代谢能力,并大量合成和分泌乳酸,而进行不对称分裂的分化型 RGP 具有更强的氧化磷酸化代谢能力,并积累高浓度的乙酰辅酶A。图1: 单细胞代谢状态分析揭示神经细胞代谢特征为深入探讨细胞代谢方式与大脑新皮层发育的相互关系,研究团队考察了具有强糖酵解代谢能力的增殖型 RGP 对早期大脑新皮层发育的影响,发现当抑制增殖型 RGP 的乳酸合成或分泌,导致大脑新皮层中乳酸浓度降低,血管生长出现缺陷。进一步分析发现,乳酸可以通过调节趋化因子配体 CXCL1 的表达来调节血管内皮细胞的迁移和增殖。此外,研究团队发现抑制增殖型 RGP 的乳酸合成代谢会系统性改变其基因表达谱并重塑细胞代谢方式,导致 RGP 过早分化。为探讨这一内在机制,研究者发现与分化型 RGP 相比,增殖型 RGP 呈现出更长的线粒体形态,抑制或阻断乳酸合成或分泌都会导致线粒体长度大幅度缩短,进而导致 RGP 分化。该结果表明增殖型 RGP 通过加强乳酸合成来影响线粒体形态,进而保持其对称分裂增殖特性。图2: 乳酸合成代谢调控早期大脑新皮层发育清华大学生命科学学院时松海教授为本文通讯作者,清华大学生命科学学院2017级博士董晓翔为本文第一作者。清华大学生命科学学院张强强博士和马健博士、清华大学生命科学学院博士研究生于翔宇和王玎,以及美国达特茅斯学院本科生马嘉明为本文共同作者。该研究得到了清华大学实验动物中心和生物医学测试中心的大力协助和支持。该研究获得了国家自然科学基金委创新群体基金、国家科技部脑科学与类脑研究基金、北京市教育委员会卓越青年科学家计划、北京市科技委员会科技计划、北京生物结构前沿研究中心、生命科学联合中心和北京脑科学与类脑研究中心的资助。
  • 郝海平/叶慧团队联合王南溪揭示人类蛋白组乳酰化修饰
    细胞中的信号转导在很大程度上依赖于蛋白质氨基酸侧链的翻译后修饰状态。当翻译后修饰发生在不同位点、占据不同比例和产生多样的修饰组合,这会使得同一个底物蛋白被“装扮”成了构象、功能、结合伴侣、定位存在巨大差异的蛋白质变体。这激发了研究者们研究蛋白质翻译后修饰的热情。近年来,人们对经典的翻译后修饰如磷酸化、糖基化、乙酰化、泛素化、甲基化等已经有了深入了解。然而,有趣的是在赖氨酸残基上仍旧不断有新的酰化修饰如巴豆酰化、丁酰化、丙二酰化、琥珀酰化被发现。同样在赖氨酸残基上,2019年芝加哥大学赵英明教授课题组首次报道了在组蛋白上发现了乳酰化,并且证明组蛋白乳酰化修饰是由乳酸衍生而来的,该修饰在不同的生物学场景中具有和组蛋白乙酰化不重叠的转录调控功能。这无疑是解答了细胞是如何感知代谢变化、启动转录调节机制的一项重要发现。但是有趣的问题尚待解答:乳酰化是一种广泛存在于人类细胞、组织中的翻译后修饰吗?乳酰化可能发生在人类非组蛋白的赖氨酸残基上吗?非组蛋白的乳酰化修饰水平如何,是否具有生物学调控作用?为了解答这些问题,中国药科大学郝海平/叶慧团队联合南京中医药大学王南溪教授进行了探索。他们的最新研究成果Cyclic immonium ion of lactyllysine reveals widespread lactylation in the human proteome于2022年6月27日发表在Nature Methods。该工作首次鉴定并确证了携带乳酰化修饰赖氨酸的多肽所产生的特征环状亚胺离子,应用该离子从现有的非富集、大规模的人类蛋白质组数据资源中挖掘出全新的乳酰化修饰底物蛋白和位点的信息,并通过向代谢酶定点引入乳酰化修饰,初步确证了乳酰化发生在人类的非组蛋白底物上同样具有重要的调控功能。该研究的灵感来自于对蛋白组翻译后修饰研究的规律总结:磷酸化、乙酰化等翻译后修饰均可产生具有诊断意义的特征离子。乳酰化修饰是否也会产生诊断离子?为了验证此猜想,该团队提出在共享的海量人类蛋白质组数据库中探究乳酰化修饰是否存在新的底物。然而,从非富集的蛋白质组数据中检索修饰位点的假阳性率极高,若能发现修饰特异性的特征离子则能通过谱图筛选,显著降低赖氨酸位点存在修饰的假阳性率,揭示真实的修饰靶标,指导后续的生物学功能探索。基于此需求,该团队通过合成和研究模型乳酰化肽段的谱图,首次发现了携带乳酰化修饰赖氨酸的多肽在质谱碰撞室中经过二级断裂会形成链状亚胺离子,该离子经过脱氨环化再形成次生碎片——环状亚胺离子。该团队通过分析化学修饰和生物样本中富集出的阳性乳酰化肽段,再以近十万条人类蛋白质组的非修饰合成肽段谱图作为阴性对照,确证了环状亚胺离子指征乳酰化修饰的灵敏度和特异性,能作为判定数据库搜索获得的乳酰化修饰新位点的金标准。基于该诊断离子策略,研究者从现有的非富集、大规模人类蛋白质组数据资源中挖掘了大量全新的乳酰化修饰底物蛋白及其位点的信息,特别是从2020年Nature Methods[7]发表的多种人类细胞系的蛋白质组热稳定性Meltome Atlas数据资源里发现乳酰化修饰高度富集在糖酵解通路代谢酶这一现象。其中,乳酰化修饰的代谢酶ALDOA在多种人类肿瘤细胞系中具有保守性且修饰占位比高,引发了乳酰化修饰能调节代谢酶活性等功能,进而调控糖酵解通路的猜想。郝海平、叶慧团队进一步联合王南溪课题组,利用先进的化学生物学技术——基因密码子扩展技术,首次实现向靶蛋白ALDOA定点引入乳酰化修饰,发现修饰后酶活性显著降低,揭示了乳酸蓄积后,通过共价修饰糖酵解通路中上游代谢酶,抑制糖酵解活跃度的反馈调节机制,对生物化学领域现有的“终产物抑制”的调控模式进行了补充。综上,该研究表明乳酰化是广泛存在于人类组织、细胞中的一种非组蛋白特异性的翻译后修饰,对非组蛋白的底物蛋白也具有调控功能。该分析策略可为揭示乳酸更多的共价修饰靶标,阐释乳酰化修饰的动态变化与乳酸紊乱在炎症、肿瘤等重大慢性疾病发生发展中的重要作用之间的因果关系,进而发现新的疾病治疗靶点提供线索。2019级博士研究生皖宁和2018级硕士研究生王念为本论文的共同第一作者,叶慧研究员、郝海平教授、王南溪教授为本文的共同通讯作者。该工作获得了王广基院士和江苏省药物代谢动力学重点实验室以及谭仁祥教授和中药品质与效能国家重点实验室(培育)的大力支持。示意图 环状亚胺离子示踪技术揭示保守的乳酰化修饰人醛缩酶,该修饰具有酶活抑制作用作者简介:郝海平教授主要从事代谢调控与靶标发现/确证研究、中药及天然药物体内过程及作用机理研究。提出了“反向药代动力学”、代谢处置导向的作用靶标与机理研究的学术思想;在胆汁酸、色氨酸等内源活性代谢调控研究中取得重要研究成果。在Cell Metab, Nat Commun, Trends Pharmacol Sci等发表代表性工作。叶慧研究员致力于组学技术驱动的小分子靶标发现研究。旨在通过发现疾病状态下紊乱的内源性代谢物的结合靶标蛋白,阐明其调控模式,发现具有转化价值的治疗靶点。代表性工作发表于APSB, Redox Biol, Anal Chem, Mol Cell Proteomics等。王南溪教授的研究兴趣集中在通过基因密码子扩展等技术开发新的蛋白质研究工具,从而探索生命过程和开发生物技术药物。代表性工作发表于JACS, Angew等。郝海平/叶慧团队长期招收具有生物信息学、代谢调控、靶标发现等背景的博士生/硕士生,简历投递邮箱:haipinghao@cpu.edu.cn和cpuyehui@cpu.edu.cn;欢迎报考王南溪教授的博士生/硕士生,简历投递邮箱:nanxi.wang@njucm.edu.cn。文章发表链接: https://www.nature.com/articles/s41592-022-01523-1
  • 岛津合作研究:全球首次!开发出准确测量代谢的新技术
    —有助于代谢疾病治疗方法、生物燃料生产微生物开发的新技术—研究成果的重点? 发挥产学相结合优势,在世界上首次开发出准确测量细胞内代谢物的糖磷酸盐的技术。? 代谢中间体糖磷酸盐大多是结构相似的物质,而且存在传统技术无法对其进行分离并准确测量的问题。? 预计有助于代谢疾病的新型治疗方法、生物燃料生产微生物的开发、生物质资源植物的开发等。研究概要大阪大学研究生院情报学研究科的冈桥伸幸副教授、松田史生教授等生物信息计测学讲座研究小组,与(株)岛津制作所、大阪大学?岛津分析创新共同研究讲座※1饭田顺子特聘教授(岛津制作所分析计测事业部 生命科学事业统括部高级经理)的团队,在世界上首次开发出一项准确分析在细胞内代谢物中发挥着重要作用的糖磷酸盐※2的技术。这使得可以更准确地测量代谢流量。人类的每一个细胞都具有新陈代谢※3的功能,分解通过膳食等摄取的糖分,获取生存必需的能量和生长所需的制造新细胞的成分(氨基酸等)。一般认为代谢功能异常与糖尿病和癌症等各种疾病有关,为了阐明其机理,亟需一种准确测量糖降解过程中可能产生的代谢中间体的分析技术。其中,若干种被称为糖磷酸盐的代谢中间体具有相似的结构,即使2000年前后出现的代谢中间体的网罗式测量技术,经过近20年的发展,使用传统技术分离这些中间体非常困难,而且测量的准确性有限。此次,松田教授等人的研究小组利用岛津制作所开发的前沿分析仪器进行产学联合研究,成功开发出一种通过完全分离糖磷酸盐,准确进行分析的方法。将本方法应用于癌细胞时,可以更准确地测量代谢流量。今后,通过将本方法应用于各种细胞、组织等,并对所获得的数据进行分析,预期有助于疾病新治疗方法和药物的研发。另外,由于所有生物都具有代谢功能,因此本技术可应用于生产生物燃料的微生物和固定CO2的生物质植物,有助于环境友好产品制造技术的改进等各项研究的发展。本研究成果于9月2日(日本时间)发表在美国科学期刊《Metabolic Engineering》上。研究背景截至目前,已知构成生物的细胞将葡萄糖等糖摄入细胞内,通过糖酵解系统的代谢途径进行分解,并在此过程中制造能量及成为新细胞成分的前体物质。糖酵解是所有细胞生物的基本功能,近年来表明糖尿病和癌症等各种疾病与糖酵解系统有着密切的关系。而且,为培育生产生物燃料的微生物,正在尝试人工改善糖酵解系统。为了开展这些研究,需要准确测量糖酵解系统中大约15种代谢中间体。但是,糖酵解中间体(糖磷酸盐)大多是结构相似的物质,而且存在传统技术无法对其进行分离并准确测量的问题。生物信息计测学讲座的冈桥副教授、松田教授等人,与(株)岛津制作所和大阪大学?岛津分析创新共同研究讲座开展共同研究,根据(株)岛津制作所拥有的负CI模式气相色谱/质量分析技术※4,开发一种新型分析方法,可以完全分离糖磷酸盐,准确测量其同位素标记率※5。而且,将本方法应用于乳腺癌细胞(MCF7)的分析,成功地测量了代谢流量,准确度比以往提高10倍以上。这是大阪大学的研究成果和(株)岛津制作所的技术成果相结合的产学合作研究成果。本研究成果对社会的影响(本研究成果的意义)根据本研究成果,通过测量各种生物可以获得糖酵解系统更准确的数据。通过对收集的数据进行分析和运用,阐明各种疾病与糖酵解功能之间的关系,有望获得癌症以外疾病的新型治疗方法和药物研发有关知识。而且,通过将本技术应用于微生物和植物,预计有助于生产生物燃料的有用微生物的开飞,固定CO2的植物改良等,环境友好产品制造技术等研究的发展。特别记载事项本研究成果于2018年9月2日(日本时间)发表在美国科学期刊《Metabolic Engineering》(Online)上。标题 :“Sugar phosphate analysis with baseline separation and soft ionization by gas chromatography-negative chemical ionization-mass spectrometry improves flux estimation of bidirectional reactions in cancer cells”作者名称 :Nobuyuki Okahashi, Kousuke Maeda, Shuichi Kawana, Junko Iida, Hiroshi Shimizu,and Fumio Matsuda此外,作为文部科学省新学术领域研究“代谢适应的Trans-Omics分析”的重要一环,本研究的部分研究在与大阪大学研究生院工学研究科福崎英一郎教授的合作下实施的。术语说明※1 大阪大学?岛津分析创新共同研究讲座 成立于2015年4月20日,旨在建立以“生物技术”为核心的环境友好型可持续社会系统。以大阪大学的代谢物组学(总代谢物分析)为核心竞争力,协同岛津制作所致力于解决各种问题。(URL:https://www.shimadzu.co.jp/labcamp/index.html)※2 糖磷酸盐磷酸基团与几乎所有生物拥有的糖相结合的代谢物群的总称。结构类似的物质很多,完全分离很难。※3 代谢所有细胞都通过代谢的一系列化学反应,供给生存所需的能量和蛋白质合成所需的前体物质。如果代谢发生异常,则会导致糖尿病和高脂血症等疾病。※4 负CI模式气相色谱/质量分析技术一种在气相色谱分离技术、质量分析检测技术中组合应用负CI电离技术的测量方法。岛津制作所是日本气相色谱及质量分析仪器的顶级制造商。※5 同位素标记率大阪大学研究生院信息科学研究科正在开发测量代谢流量的技术。向细胞施用碳稳定同位素(与碳的性质相同但质量不同的物质)标记的葡萄糖,通过调查碳的稳定同位素通过糖酵解系统转移到糖磷酸盐的情况,可以测量代谢流量。为了准确地掌握代谢流量,必须将各个糖磷酸盐完全分离,并测量其同位素标记率。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 生物大分子标记新突破:可基因编码的代谢糖质标记技术
    生物体中几乎所有的细胞都具有相同的基因组,而不同的细胞类型和功能则由不同的基因表达、表观遗传修饰和翻译后修饰等所决定。解析特定器官或组织中特定细胞的生物大分子图谱对探究发育、细胞间通讯以及疾病的发生发展等都具有重要意义。因此,开发细胞选择性的生物大分子标记方法,近年来受到了科学家们的广泛关注。通过基因编码的方法,人们在活体动物中实现了蛋白质的组织特异性和细胞选择性标记和分析。然而,糖质(glycan)作为另外一种主要的生物大分子,尚无法通过基因编码的方式,实现活体中的细胞选择性标记。糖质以寡糖、多糖、糖蛋白、糖脂等形式直接参与细胞的分化增殖、免疫调节、信号转导、细胞迁移等重要的生命活动,对其进行在体标记和分析一直是领域内的一个难点。其中,基于生物正交化学的代谢糖质标记(metabolic glycan labeling)技术已经成为了最主要的工具之一。经过20多年的发展,目前已有数十种非天然糖分子可用以在活细胞和活体中标记糖质。然而,非天然糖在活体中并不具备器官或细胞特异性,无法实现精准的细胞选择性标记,阐释特定细胞群体中糖质所发挥的生物学功能。北京大学化学与分子工程学院、北大-清华生命科学联合中心陈兴教授课题组一直致力于解决这个问题,此前开发了基于靶向性脂质体的非天然糖代谢标记技术,实现了肿瘤组织和脑部的糖质标记。同时,他们意识到,基因编码技术可以在活体中实现更加精准的细胞选择性。为了实现这一目标,继续推进代谢糖质标记技术的应用,2022年5月5日,该课题组在 Nature Chemical Biology 上发表了题为“Cell-type-specific labeling and profiling of glycans in living mice”的论文,报道了一种可基因编码的代谢糖质标记技术(GeMGL)。该技术将“凸凹互补(bump and hole)”的化学遗传学策略与代谢糖质标记方法相结合,利用非天然糖1,3-Pr2GlcNAl(Bump)及其匹配的焦磷酸酶突变体AGX2F383G(Hole)的正交组合,在活体动物上实现了细胞选择性糖质标记和分析。他们从一个具有低标记效率的非天然糖—乙酰胺基葡萄糖的叠氮类似物GlcNAz出发,确认了其代谢通路中的焦磷酸酶AGX是限速酶,将其过表达可以增强代谢强度。他们随即想到,增大非天然基团并对AGX酶进行突变,可能可以开发出凹凸对。于是,他们采用了炔基修饰的乙酰胺基葡萄糖GlcNAl和焦磷酸酶突变体AGX2F383G,通过体外和细胞实验证明了GlcNAl的代谢完全依赖焦磷酸酶突变体AGX2F383G。接着,在多细胞共培养体系和小鼠移植瘤模型中,证明了GeMGL策略的可行性。基于此,他们将该策略拓展到了转基因小鼠中。他们首先利用心肌细胞特异的启动子α-MHC实现了AGX2F383G在小鼠心肌细胞中的特异性表达,然后腹腔注射非天然糖1,3-Pr2GlcNAl,实现了非天然糖分子在小鼠心肌细胞中的特异性代谢。从各组织标记结果来看,GeMGL策略展现出严格的心肌细胞选择性。结合定量蛋白质组学方法,在小鼠心肌细胞中鉴定到582个O-GlcNAc修饰蛋白。分析发现,心肌细胞中许多糖酵解、TCA循环和氧化磷酸化途径相关蛋白都具有O-GlcNAc糖基化修饰,表明O-GlcNAc糖基化修饰可能在心肌细胞的线粒体能量代谢过程中发挥重要功能。在转基因小鼠中进行的细胞类型特异性代谢糖质标记该工作提供了一种可基因编码的细胞特异性糖质标记技术GeMGL,为在活体层面研究糖质在特定细胞类型中的生物学功能提供了一种便利、有效的工具。该技术有望被推广到更为复杂的神经系统中,并在相关疾病模型中探究糖基化与神经发育、神经退行性疾病等的关系。陈兴 北京大学化学学院教授,生命科学联合中心高级研究员,合成与功能生物分子中心研究员。长期致力于糖化学和糖生物学研究,糖质标记和分析是其研究重点之一。综合运用化学方法、生物手段和纳米技术,研究糖基化的生物学功能及其在代谢疾病及其心血管并发症中的作用。原文连接:https://www.nature.com/articles/s41589-022-01016-4
  • 安捷伦Seahorse技术讲座:细胞能量代谢探索疾病机理新角度
    能量的产生与消耗,在细胞的“生老病死”中究竟扮演着什么角色?有氧呼吸,糖酵解,如何在细胞能量代谢中相辅相成,互相影响与调控?肿瘤、糖尿病、神经退行性疾病,背后为什么都在代谢异常的影子?能量代谢程度,有没有可能成为下一个身体健康表征的重要临床指标?时 间:2018 年 4 月 13 日 ( 周五 ) 09: 00 – 12:00地 点:清华大学生物技术馆 2201 会议室主办方:清华大学生物医学测试中心共享仪器平台主讲人:谢璨 博士 安捷伦 Seahorse应用经理
  • 代谢组学揭示肠癌患者临床诊断依据
    近年来,医学领域的基础研究日趋系统化和多学科交叉,系统生物学的迅猛发展翻开了临床实践、药物研发的新篇章。作为国内较早涉足系统生物学研究的贾伟教授研究团队,近年来应用代谢组学技术对各种临床疾病的早期预测、诊断和预后的生物标志物进行了广泛的研究,现以结直肠癌的系列研究为例介绍我们的研究进展。  研究团队首先采用气相色谱质谱联用、液相色谱质谱联用分析方法,结合单维统计、多维统计的代谢组学研究技术,对I-IV期的64名肠癌患者和65名健康志愿者分别进行了血清和尿液代谢标志物的筛查,并进一步在扩大的研究对象101名肠癌患者和103名健康人中对所发现的潜在代谢标志物进行了验证。  研究结果显示,肠癌患者与健康人的血清代谢物组成具有显著差异。肠癌患者的糖酵解通路中的两个代谢产物丙酮酸和乳酸在血清中呈显著性升高,三羧酸循环中的琥珀酸、异柠檬酸、柠檬酸中间产物呈下降趋势 油胺在肠癌病人血清中的含量也有显著性降低 尿素循环代谢物精氨酸、鸟氨酸和瓜氨酸在病人血清中均显著降低,脯氨酸、羟基脯氨酸和谷氨酸也显著下降 另外,色氨酸及其相关的代谢物5-羟基色氨酸和5-羟基吲哚乙酸在肠癌组和正常组之间有显著性差异,提示与5-羟色胺的代谢相关。研究结果还显示,血清代谢产物不仅可以将肠癌Ⅱ-Ⅳ期的患者与健康人明显区分开,还能将Ⅰ期的早期肠癌患者与健康人也区分开来。我们的相关研究结果从2009年开始陆续发表在专业领域内具有较大影响力的杂志Journal of Proteome Research(2009和2013)上。  尿液代谢组学结果同样显示,结直肠癌患者和正常人的代谢谱亦呈显著差异。结直肠癌患者中的色氨酸代谢上调,组胺和谷氨酸代谢通路、三羧酸循环和肠道菌群代谢紊乱。另外,结直肠癌病人中紊乱的代谢谱,如5-羟色氨酸代谢物、三羧酸循环代谢和肠道菌群代谢物在手术后得到明显改善。研究进而开展了二甲肼(DMH)所致结肠癌早期病变的SD大鼠模型的研究,同样发现这些代谢物的波动和紊乱。研究结果发表在Journal of Proteome Research (2010和2012)上,并得到美国ACS和TIME(时代周刊)为代表的多家权威媒体的重点报道和关注,对该研究结果和前景给予了极高的评价。  在结直肠癌血清和尿液的代谢组学研究基础上,我们对肠癌的组织也进行了深入的研究,对组织的研究可以有效规避血清、尿研究中由于饮食差异等外界因素对体内代谢物的影响带来对研究结果的影响。研究团队首先对来自上海地区的结直肠癌和癌旁组织进行研究,发现了一组在癌和癌旁组织中具有显著性差异的代谢物。进而对来自北京、浙江和美国加州另外3个不同地区的结直肠癌和癌旁组织也进行了研究。结果显示肠癌组织中总的代谢物变化趋势在4个不同地区的样本具有很高的相似性,其中的15个代谢分子呈现出完全一致的变化趋势。进一步研究发现这些差异性代谢物的变化与所在的代谢通路上的基因表达水平的变化呈高度的一致性。这些差异代谢物包括上调的犬尿氨酸、b-丙氨酸、谷氨酸、半胱氨酸、2-氨基丁酸、棕榈油酸、焦谷氨酸、天冬氨酸、次黄嘌呤、乳酸、豆蔻酸、甘油、尿嘧啶、腐胺,以及下调的肌醇。差异表达性的基因包括LDHA、TALDO1、GOT2、MDH2、ME1、GAD1、ABAT、PANK1、DPYD、ACLY、FASN、SCD、IDO1、GPX1、GSTP1、GSR、GSS、GGCT、ANPEP、CAT、ERCC2。结合代谢物和基因表达变化发现的结直肠癌的代谢物模式和基因表达模式特点主要可以从三个方面阐释其生物特性:1)“瓦伯格效应”(Warburg Effect):这是肿瘤细胞能量代谢的典型特征,表现在大量地摄取葡萄糖进行有氧糖酵解,生成大量的乳酸,同时为不断生长的肿瘤细胞提供生物合成原料 2)伴随着糖酵解的上升,用于大分子物质合成的代谢中间体显著上升:肿瘤细胞的代谢会产生大分子中间体来支持细胞生长,导致某些特定的游离脂肪酸(豆蔻酸、棕榈油酸)和核酸(次黄嘌呤)的浓度上升。在肿瘤细胞中,高表达的ACLY、 FASN和SCD同样提示了脂肪酸合成的增强。而b-丙氨酸在肿瘤细胞生长中明显的变化可能与脂肪酸合成中的乙酰辅酶A和丙二酸辅酶A有着密切的联系,提示这种变化可能与肠道菌群代谢有相关性 3)肿瘤细胞内维持较高的氧化应激水平:我们发现肿瘤组织内具有抗氧化活性代谢物的浓度显著上升。由于肿瘤细胞加速合成代谢而产生较高的活性氧,从而使胞内氧化应激水平上升。所发现的这些具有抗氧化活性的代谢产物在肿瘤组织中被大量的合成,提示肿瘤细胞通过改变代谢模式,用还原性的分子来平衡活性氧,从而在较高的氧化应激水平下维系其生理和代谢功能。实验中发现,氧化应激的生物标志物视晶酸、2-氨基丁酸在肿瘤细胞中上升。同时,与谷胱甘肽相关的基因包括GPX1、GSR、GGCT、GSTP1也在肿瘤组织中显著升高。该研究结果发表于国际知名的癌症研究期刊ClinicalCancer Research(2014)。  我们相信对结直肠癌的系统性的代谢研究,对寻找和发现具有临床早期诊断和预后价值的生物标志物研究提供了极大的可能性,为未来的临床转化研究奠定了坚实的基础。     原文出处:  1.Qiu, Y. Cai, G. Su, M. Chen,T. Zheng, X. Xu, Y. Ni, Y. Zhao, A. Xu, L. X. Cai, S. Jia, W., Serummetabolite profiling of human colorectal cancer using GC-TOFMS and UPLC-QTOFMS.Journal of Proteome Research. 2009, 8, 4844–4850.  2.Qiu, Y. Cai, G Su, M. Chen, T. Liu, Y. Xu, Y. Ni, Y. Zhao, A. Cai, S. Xu, L. X. Jia, W.,Urinary Metabonomic Study on Colorectal Cancer. Journal of Proteome Research.2010, 9, 1627–1634.  3.Cheng, Y., Xie, G., Chen, T., Qiu, Y., Zou,X., Zheng, M., Tan, B., Feng, B., Dong, T., He, P., Zhao, L., Zhao, A., Xu,LX., Zhan,g Y., Jia, W. Distinct urinary metabolic profile of human colorectalcancer. Journal of ProteomeResearch. 2012, 11(2):1354-63.  4.Tan, B, Qiu,Y, Zou, X, Chen, T, Xie, G, Cheng, Y, Dong, T, Zhao, L, Feng, B, Hu, X, Xu, L.X, Zhao, A, Zhang, M, Cai, G, Cai, S, Zhou, Z, Zheng, M, Zhang, Y & Jia, W.Metabonomics identifies serum metabolite markers of colorectal cancer. Journalof Proteome Research 2013, 12, 1354?1363.  5.Qiu, Y. Cai,G. Zhou, B. Li, D. Zhao, A. Xie, G. Li, H. Cai, S. Xie, D. Huang,C. Ge, W., Zhou,Z. Xu, L. Jia, Weiping Zheng, S. Yen, Y. Jia, W. Metabonomicsof human colorectal cancer: new approaches for early diagnosis and biomarkerdiscovery. Clinical Cancer Research.2014, 20(8):15.
  • Nat Metab|上交大童雪梅团队揭示非氧化磷酸戊糖途径调控Treg细胞功能及其分子机制
    点评 | 朱锦芳(NIH)2022年5月23日,上海交通大学基础医学院生化与分子细胞生物学系童雪梅教授课题组及其合作团队,上海市免疫学研究所李斌研究员课题组和复旦大学附属华山医院/脑科学转化研究院杨辉研究员,在Nature Metabolism杂志在线发表题为 Non-oxidative pentose phosphate pathway controls regulatory T cell function by integrating metabolism and epigenetics 的研究论文,揭示非氧化磷酸戊糖途径(非氧化PPP)对调节性T(Treg)细胞代谢模式及细胞功能的调控机制。Nature Metabolism同期发表伦敦帝国理工学院Margarita Dominguez-Villar博士为该研究撰写的News & Views特评,认为该文章发现非氧化PPP在Treg细胞活化和功能调控中的中心地位(a central regulator)。表达特征转录因子Foxp3的Treg细胞是一类具有免疫抑制功能的CD4+ T细胞亚群,维持机体免疫系统稳态,防止免疫过激诱发自身免疫病。已知葡萄糖酵解、脂肪酸氧化和氨基酸分解代谢等都参与 Treg 细胞功能调控。PPP是一条不产生ATP的葡萄糖分解代谢途径,由生成NADPH的氧化PPP和产生5-磷酸核糖的非氧化PPP组成。非氧化PPP包括4个代谢酶催化的5步可逆反应,可以通过改变代谢物流向来满足细胞的功能需求。非氧化PPP是否参与免疫细胞如Treg细胞的代谢与功能调控尚不清楚。转酮醇酶TKT是非氧化PPP中催化两步可逆反应的代谢酶。童雪梅团队已发现TKT在肝脏、脂肪和肠道中调控糖脂代谢平衡的重要作用(Li M et al, Cancer Research, 2019 Tian N et al, Diabetes, 2020 Tian N et al, Cell Death & Disease, 2021)。在本研究中,研究人员通过构建Treg细胞特异性敲除TKT的小鼠模型,深入探究非氧化PPP是否和如何调控Treg细胞代谢及功能。他们研究发现,Treg细胞特异性敲除TKT的小鼠出生3周后发生严重自身免疫性疾病,并且在断奶之后相继死亡,其表型与缺失Foxp3基因的小鼠相似。进一步研究发现,敲除TKT在不影响Treg数目和转录因子Foxp3 水平的情况下,阻断Treg细胞的免疫抑制功能。为了排除炎症反应的影响,研究者根据Foxp3基因位于X染色体和雌鼠X染色体选择性失活的特点,构建了在同一只鼠中既有TKT缺失又有TKT正常表达的Treg细胞嵌合小鼠模型。该小鼠Treg细胞的转录组和表观遗传组分析表明,TKT缺失导致Treg细胞中87.9%的差异表达基因被下调,染色质可及性降低。这些被下调的基因几乎全部为效应性Treg特征性基因,表明非氧化PPP对调控Treg细胞免疫抑制功能是必需的。研究者进一步发现,TKT缺失导致Treg 细胞NADPH 减少和氧化应激增加,葡萄糖进入线粒体氧化减少,脂肪酸氧化增加,氨基酸分解代谢显著增强,分解代谢重构使线粒体功能受损。同时,被氧化应激和线粒体损伤诱发的还原性TCA循环使α-酮戊二酸/琥珀酸及α-酮戊二酸/富马酸比率降低,DNA甲基化增加,抑制Treg细胞特征性功能基因表达,导致其免疫抑制性功能丧失。文章也发现非氧化PPP中的另外一个代谢酶——转醛醇酶(TAL),对维持效应性Treg特征性功能基因表达也不可或缺。此外,在自身免疫性病人外周血 Treg细胞中,TKT水平显著降低。综上所述,此研究首次揭示非氧化PPP对于调控Treg细胞中糖、脂和蛋白质分解代谢稳态、维持代谢物依赖的表观遗传修饰和功能基因表达有关键作用,即非氧化PPP可以通过整合三大营养物质代谢和表观遗传修饰控制Treg细胞功能。这项研究将为通过调控Treg功能防治自身免疫性疾病和其它免疫相关疾病提供新策略新手段。非氧化 PPP 通过整合代谢组和表观遗传组调控Treg细胞功能上海交通大学医学院博士生刘琪、阿拉巴马大学伯明翰分校博士生朱方明和上海市免疫学研究所博士生刘鑫男是该研究论文的共同第一作者。此项研究得到复旦大学生物医学研究院叶丹研究员、海军军医大学附属长征医院风湿免疫科徐沪济主任、上海交通大学附属仁济医院沈南主任、上海交通大学基础医学院徐天乐教授、清华大学药学院胡泽平研究员、阿拉巴马大学伯明翰分校胡晖教授等合作实验室的大力协助。通讯作者为童雪梅教授、李斌研究员和杨辉研究员。专家点评朱锦芳Jeff Zhu (Chief, Molecular and Cellular Immunoregulation Section, NIH)调节性T细胞(Tregs)在维持免疫耐受和免疫稳态中发挥关键作用,并且参与调节感染和癌症中的各种免疫反应。一方面,Treg功能的丧失通常与自身免疫和过度炎症有关;另一方面,肿瘤微环境中激活的Treg往往会抑制肿瘤免疫。因此,了解Treg的产生、激活及其获得抑制性功能的机制不仅将拓展基础免疫学认知,而且将为各种免疫相关疾病提供新颖有效的临床疗法。不同的代谢途径在控制Treg和效应性辅助型CD4+ T(Th)细胞的发育和分化中作用不同。经典观点认为,Tregs更倾向于脂肪酸氧化,而效应Th细胞主要利用葡萄糖作为能量来源。在本项工作中,童雪梅团队及其合作实验室共同发现,非氧化磷酸戊糖途径(非氧化PPP)在控制Treg细胞激活和抑制功能中起着关键作用。非氧化PPP是葡萄糖分解代谢的一个分支,它在Treg和效应性Th细胞中的功能尚不清楚。令人惊奇的是,在Treg中敲除非氧化性PPP中的重要酶—转酮醇酶(TKT),小鼠会产生致死性自身免疫病。Treg细胞特异性 TKT 缺失导致其失去免疫抑制功能,却不影响其发育和Foxp3蛋白表达。机制上,童雪梅及其合作团队发现TKT缺失诱导线粒体氧化应激和还原性TCA循环,导致α-酮戊二酸(α-KG)水平降低。α-KG作为重要的表观遗传辅助因子,能调控组蛋白和DNA去甲基化酶的功能。TKT缺失时,Treg中众多基因的DNA甲基化增加,染色质可及性下降。并且,α-KG补充能够改善由Treg特异性TKT 缺失引起的自身免疫反应。此外,在临床自身免疫性疾病患者外周血Treg中,TKT水平被下调。Treg获得抑制功能需要被激活,TKT缺失诱发的自身免疫反应是由活化Treg特征性基因表达减少所导致的。由于Treg细胞群体的异质性,单细胞分析可以为TKT如何调节Treg激活和表观修饰提供一个更清晰的解释。然而,该研究发现在大约1000个激活态Treg特征基因中,只有124个受到TKT缺失的影响,却诱发了显著的小鼠自身免疫病表型,表明这个小的基因群体包含对Treg功能至关重要的效应分子,例如IL-10和TIGIT等。因此,本项研究发现令人印象非常深刻。本项工作不仅促进我们全面认识Treg细胞激活和功能的机理,而且在未来治疗人类疾病方面具有潜在重要转化价值。原文和特评链接:https://www.nature.com/articles/s42255-022-00575-z,https://www.nature.com/articles/s42255-022-00574-0
  • 科学家利用空间分辨的同位素示踪揭示组织代谢活动
    同位素示踪有助于确定器官的代谢活动,但研究不同器官内代谢异质性的方法尚不成熟。美国普林斯顿大学的研究团队利用空间分辨的同位素示踪揭示组织代谢活性,相关论文于近日发表在Nature Methods杂志上,题为:Spatially resolved isotope tracing reveals tissue metabolic activity。研究人员将稳定同位素标记的营养输注与基质辅助激光解吸电离成像质谱法(iso-imaging)结合,以空间分辨的方式定量哺乳动物组织中的代谢活动。他们在肾脏中观察了皮质及髓质的糖异生通量和糖酵解通量发现,肾脏各区域对三羧酸循环基质的使用不同,皮质优先使用谷氨酰胺和柠檬酸,髓质优先使用脂肪酸。此外,他们还观察了在生酮饮食下大脑中碳被利用于三羧酸循环和谷氨酸的具体情况。在富含碳水化合物的饮食中,葡萄糖始终占主导地位,但在生酮饮食中,3-羟基丁酸在海马体中的贡献最大,在中脑中的贡献最小,脑内氮的来源也有所不同,支链氨基酸主要分布在中脑,而氨则主要分布在丘脑。综上,这种方法将稳定同位素注入与成像质谱法相结合,可以空间分辨率定量分析哺乳动物组织中的代谢活动。原文链接:https://www.nature.com/articles/s41592-021-01378-y
  • 清华大学药学院胡泽平课题组应邀发表“代谢组学、代谢流技术及肿瘤药理”的综述文章
    清华大学药学院胡泽平课题组应邀发文系统总结了代谢组学和代谢流分析技术的最新研究进展,及其在肿瘤药理学应用中的重要研究进展,包括发现抗肿瘤药物靶点以及生物标记物、揭示药物作用机制和耐药机制、促进精准治疗等。值得一提的是,该综述首次系统地总结绘制了代谢流分析中各种稳定同位素标记示踪物的工作原理及其应用(详见图2),这将为代谢流分析技术在代谢研究领域和肿瘤药理中的广泛应用起到重要的推动作用。  增殖中的肿瘤细胞通常以代谢重塑的方式来提供更多的生物能量和物质,以满足其自身快速增殖的需求。譬如,沃伯格效应(Warburg effect)描述了即便是在有氧的情况下,肿瘤细胞仍然会上调糖酵解途径,并产生更多的乳酸。深入理解肿瘤中的代谢重塑对于我们发现新型治疗靶点,开发抗肿瘤药物有着重大的启示作用 而代谢组学和代谢流技术的发展则极大地促进了我们对于肿瘤代谢的理解。代谢组学能够给我们提供某一静态时刻下的大量代谢物信息,而代谢流分析能够动态地告诉我们某一代谢通路的流量变化。代谢组学和代谢流相辅相成,为我们理解肿瘤代谢打开了全面且动态的崭新视角。  图1. 基于液相色谱-质谱的代谢组学-代谢流分析流程简图  代谢组学分析主要分为三步骤:样品制备、数据采集、和数据处理分析与生物学意义阐释。生物样本经过提取处理后,通过色谱-质谱(mass spectrometry, MS)联用或核磁共振(nuclear magnetic resonance, NMR)来对代谢物进行分析和数据采集。简要数据处理则主要包括通过火山图和热图呈现代谢物的丰度和倍数变化,对代谢物进行通路富集分析。后续则可选择使用同位素标记的代谢流分析来揭示代谢通路的动态变化,并使用体外或者体内模型来进行代谢重塑的功能和机制验证。近年来的代谢组学技术取得一些重要进展,如胡泽平课题组发展的可用于极微量样本(如1,000-5,000个造血干细胞或者60个卵母细胞)的超灵敏代谢组学技术和Sabatini课题组发展的线粒体代谢组学等,都推动了代谢组学在代谢生物学和肿瘤生物学中的应用。  代谢流分析(metabolic flux analysis, MFA)可以动态地揭示代谢通路的流量变化。当一个代谢物产生积累时,可能是由于其生产的增加或者是消耗的减少。基于稳定同位素示踪法的MFA则可以帮助我们测量代谢流量:带有稳定同位素标记的代谢物经过生化反应,则会导致下游代谢产物的标记,产生在特定位置被同位素标记的M+1,… ,M+n代谢物。通过分析下游代谢物的标记模式及被标记代谢物的量,我们可以计算得出感兴趣的代谢通路的流量速度和方向信息。  图2. 稳定同位素标记示踪剂标记葡萄糖代谢通路(节选部分)  例如图2(A)中全13C标记的葡萄糖经过糖酵解反应,生成糖酵解终产物丙酮酸。丙酮酸又可经丙酮酸脱氢酶生成乙酰辅酶A,进入三羧酸循环(TCA cycle)。另外,葡萄糖作为磷酸戊糖途径和丝氨酸生物合成的底物,可以标记这两条代谢途径中的中间产物。通过分析特定通路的下游产物标记,我们可以得到在某段时间内的代谢流量。图2(B)则展示了全13C标记的葡萄糖通过糖酵解代谢为丙酮酸后,可以通过丙酮酸脱氢酶和丙酮酸羧化酶两种方式进入三羧酸循环,从而产生M+2以及M+3的TCA中间产物,进而我们可以分析得到两种酶所介导的不同通路信息。  代谢是高度复杂且受严密调控的动态变化网络。除了基于特定酶、转运体的调控外,通路之间可以通过同一中间产物而产生关联。如果能找到肿瘤细胞中相较于正常细胞而特定依赖的代谢通路,那么我们就可以精确地靶向肿瘤细胞进行治疗和干预。   图3. 促进肿瘤细胞生长的代谢通路及潜在治疗靶点  图3.展示了细胞中复杂的代谢通路,包括葡萄糖的代谢(糖酵解、磷酸戊糖途径)、脂肪酸代谢、核苷酸的合成、叶酸代谢等,其中特别标记了值得调控的关键酶和转运体,以及针对这些作为靶标已进入临床试验或者已经被FDA批准的小分子药物。譬如,在胶质瘤中曾报道过突变的异柠檬酸脱氢酶(IDH)可以介导肿瘤代谢物2-羟戊二酸(2HG)的产生,展示了IDH作为抗肿瘤靶标的潜力,从而引发IDH抑制剂的开发、获批与应用。  代谢组学与代谢流分析也可以在肿瘤药物研发中发挥重要作用,并可贯穿于每一步中:从发现靶点到理解药物作用机理,从耐药机制研究到指导精准治疗。  经过代谢组学分析后,差异代谢物和代谢通路可引导发现潜在的生物标记物和可靶向的代谢依赖性和弱点。潜在的生物标记物可帮助肿瘤的早期诊断、预后和药物有效性预测。通过结合代谢流分析,代谢靶标可以帮助新药研发,或者是帮助科研人员更好地理解现有药物的作用机制,以及如何产生耐药,从而改善现有疗法。药理代谢组学可以用于指导精准治疗 饮食干预疗法则可以作为药物治疗的辅助手段。  图4.代谢组学和代谢流分析技术在肿瘤药物研发和药理学中的应用  尽管代谢组学和代谢流分析极大拓展了我们对于肿瘤生物学的理解,但是领域中依旧存在诸多技术挑战和瓶颈,比如灵敏度不足、精准度不够、难以进行代谢流分析,以及至今无法实现真正意义上的单细胞代谢组学(特别是由于灵敏度的技术瓶颈)等等。相关的技术进步和新型方法开发都将进一步促进代谢组学和代谢流分析技术在不同生物医学背景下的应用。下一阶段的研究需要更好地整合、利用所获取的代谢重塑表型和机制信息,将其转化成更好的抗肿瘤疗法。药物研发方面需要更多地关注肿瘤微环境,尤其是肿瘤细胞与免疫细胞之间的代谢相互作用。多组学整合的应用,包括基因组学、蛋白组学、代谢组学等,将有助于加深我们对于肿瘤生物学的理解和利用,进一步加速抗肿瘤药物的研发。  以上综述文章于2021年3月1日应邀在线发表于国际知名学术期刊《药理学&治疗》(Pharmacology & Therapeutics),题为《代谢组学、代谢流分析与肿瘤药理学》(Metabolomics, metabolic flux analysis and cancer pharmacology),此前,胡泽平课题组曾于2019年获邀在国际知名临床药理期刊《临床药理学&治疗》Clinical Pharmacology & Therapeutics发表代谢组学技术及其在临床药理中应用的相关综述。  清华大学药学院胡泽平研究员与烟台大学药学院王洪波教授为本文通讯作者,2016级药学院本科毕业生梁凌帆与胡泽平课题组2020级博士研究生孙菲分别为本文第一、第二作者。本研究得到了国家自然科学基金委糖脂代谢重大计划重点项目(92057209)、基金委面上项目(81973355)、国家科技部重点研发计划(2019YFA0802100-02, 2020YFA0803300)、清华-北大生命科学联合中心、北京市高精尖结构生物学中心的资助。  点击链接,阅读原文:https://www.sciencedirect.com/science/article/abs/pii/S0163725821000292
  • BCEIA 2023 后疫情•大健康高峰论坛即将召开,日程一览!
    近年来我国人口结构老龄化特征日益凸显,恶性肿瘤、慢性疾病呈高发态势。与此同时,病毒导致的重大传染性疾病近年来频频发生,除了席卷全球的新冠病毒,“猴痘”、“甲流”、“诺如”等病毒不断来袭。疫情大流行使全社会对健康的关注度空前提高,“大健康”理念正深入人心。大健康是对生命实施全程全面全要素的呵护,贯穿于疾病预防、诊治、康复、抗衰老和保健各个环节。时代发展要求创新大健康技术,发展大健康产业,完善大健康服务。大健康产业正在经历前所未有的全产业链变革。  2023年9月7日上午,BCEIA 2023将隆重举行后疫情•大健康高峰论坛。围绕“‘后疫情’时代大健康发展”这一主题,以前瞻性的视角,从不同层面对当下相关的热点问题、理论研究、前沿技术等展开交流。论坛将邀请相关领导解读健康管理等宏观政策,行业内知名专家分享肿瘤、病毒对抗等前沿进展以及癌症早期筛查与诊断、标志物检测等内容,炙手可热的POCT、临床质谱、生物芯片等相关仪器应用也将进行现场展示,政、产、学、研、用相结合,将开启一场思维碰撞、智慧汇聚的大健康学术、产业交流的盛宴。报告摘要  气候变化是21世纪人类面临的最大健康挑战,空气污染也是全球重要的公共卫生问题。我国提出2030年前实现碳达峰、2060年前实现碳中和的“双碳”目标,不仅会对我国空气污染和气候状况产生深远影响,也会全面影响人群健康。报告将围绕“双碳”目标背景下的空气污染、气候变化与公共卫生的研究现状和未来趋势展开论述,以期为后续更好地开展环境与健康研究提供思路和建议。专家简介  副院长、教育部长江学者特聘教授。任国家环境与健康专家咨询委员会委员、Environmental Health Perspectives杂志副主编、International Journal of Epidemiology杂志副主编。曾获《新英格兰医学杂志》年度最佳论文奖、吴阶平-保罗杨森医学药学奖、CMB杰出教授奖、美国环保署科学技术成就奖、上海市科技进步一等奖(1)等。报告摘要  疫情常态化以后,体外诊断面临着新的发展机遇与挑战。无论是在医改还是在新技术的临床应用及体外诊断创新等领域,都面临着新的发展机遇和新的挑战。从涉及体外诊断全要素分析来看,体外诊断向好的基本面没有改变,尤其是在当下的国际国内新形势下,体外诊断企业如何进一步地加强创新产品的研发投入和国际化布局等方面提出了新的思考和定位。专家简介  宋海波,先后担任:  安徽省临床检验中心副主任  上海市实验医学研究院副院长、体外诊断产业发展研究所所长、主任技师、教授  CACLP创始人  全国卫生产业企业管理协会副会长  全国卫生产业企业管理协会医学检验产业分会会长  中国医学装备协会检验医学分会第一届委员会副主任委员  中国分析测试协会标记免疫分析专业委员会副主任委员  全国卫生产业企业管理协会实验医学分会副主任委员兼秘书长  全国医用临床检验实验室和体外诊断系统标准化技术委员会常务委员报告摘要  分析科学与健康科学-个体化健康评价体系  健康中国建设的十五个行动大大推动了走健康强国之步阀。同时也对我们提出要达到精准健康必须要具备个体化健康评价能力。而这种能力必须包括生命全程每阶段的健康评价能力。至今人类在疫情和疾病的泛滥之下尚未来得及认真考虑全生命周期健康评价体系的建立。  随着分析科学的迅速发展大量的人体生理信息的釆集变为现实。这些可釆集的生理生化学生命信息对评价个体的发生、生长、成熟、衰老和走向临终的健康状态具有重要的作用。如何建立完善的可釆集生命全周期的分析系统,将其变为可以作为常规应用的产品,再建立把釆集的数据作为大数据的底座用成熟算法计算的摸型后完善数字化健康孪生人已成为重要健康强国的手段和目标。专家简介  1978年8月毕业白求恩医科大学 医疗系入职白求恩医大三院  1993年8月白求恩医科大学教授、主任医师  2001年8月首都医科大学北京天坛医院实验诊断中心  2018年8月兼职北京航天航空大学生物医学工程博导  1997年4月-2001年7月东京大学医科研报告摘要  正常细胞在有氧时通过糖的有氧氧化获取能量,只有在缺氧时才进行无氧糖酵解 而肿瘤细胞无论在氧气充足还是缺氧环境下,都表现为糖酵解水平显著增强,而有氧氧化效率受到抑制,这种现象被称为Warburg效应或有氧糖酵解,导致肿瘤细胞葡萄糖摄取能力增强,乳酸水平升高,有利于肿瘤生长和转移。Warburg效应被认为是肿瘤标志之一,靶向Warburg效应的抗肿瘤药物正在被开发。转录因子和转录辅助因子在Warburg效应调节中发挥重要作用,缺氧诱导因子HIF-1和癌基因c-Myc 是促进糖酵解的转录因子,抑癌基因p53是抑制糖酵解、维持线粒体有氧呼吸功能的转录因子。我们实验室的工作发现,转录因子SIX1通过与组蛋白修饰酶HBO1和AIB1的相互作用调节Warburg效应,促进肿瘤生长,肿瘤相关SIX1点突变进一步促进了肿瘤细胞的有氧糖酵解和肿瘤生长。与SIX1功能相反,转录因子OVOL2通过募集转录共抑制因子NCoR和组蛋白去乙酰酶HDAC3来抑制糖酵解基因的表达,从而阻断Warburg效应,抑制肿瘤的生长和转移。p53通过与癌蛋白MDM2的结合抑制MDM2介导的OVOL2的泛素化和OVOL2的降解,从而激活OVOL2。SIX1高表达是肿瘤患者不良的预后指标,而OVOL2高表达是肿瘤患者良好的预后指标。我们的研究深入阐明了糖代谢与肿瘤生长和转移的关系,为肿瘤的诊断和治疗提供了新的思路和候选靶标。专家简介  叶棋浓,军事科学院军事医学研究院生物工程研究所科技委主任,研究员,博士生导师。国家杰出青年科学基金获得者,享受国务院政府特殊津贴。中国生物工程学会副秘书长、中国生物工程学会医学生物技术专业委员会主任委员、中国分析测试协会标记免疫分析专业委员会副主任委员。Frontiers in Cell and Developmental Biology和Frontiers in Oncology杂志副编辑。1989年毕业于南开大学生物系,分别于1992年和1995年获得军事医学科学院分子遗传专业硕士和博士学位,1998年10月至2002年2月在美国弗吉尼亚大学医学院做博士后研究工作。主要从事肿瘤发生、侵袭、转移、耐药相关基因功能及机制研究,发现了一批新的调控重要信号转导通路的基因和非编码RNA,为肿瘤的诊断和治疗提供候选靶标。以通讯作者在Cancer Cell、Nature Communications、Science Advances、JCI、Advanced Science、Science Bulletin、STTT等SCI杂志上发表论文80余篇。获北京市科学技术一等奖1项,军队科技进步二等奖1项。报告摘要  从临床质谱发展史、医疗机构质谱平台设置、仪器配置等角度入手,以北京协和医院临床质谱平台发展为例,介绍了以临床需求为导向开展质谱临床项目,从多角度满足临床疑难、罕见病诊疗需求的探索。同时介绍了临床质谱从小分子向大分子、从“峰”向“空间”、从“多指标”向“多组学”的转换,为质谱技术落地临床提供了可行性建议。专家简介  邱玲,研究员,教授,博士/博士后导师,北京协和医院检验科主任,北京协和医学院临床检验诊断学系副主任。  现担任中国老年医学学会检验医学分会副会长、中华医学会检验分会生化学组委员、北京检验学会副主委、CNAS 医学实验室认可主任评审员、国家卫生标准委员临床检验标准专业委员会委员等社会职务。  主持国家自然科学基金、首发基金重点项目、科技部重点支撑子项目等共17项。以第一作者、通讯作者发表SCI论著90余篇(IF300分)、核心期刊论著100余篇。获省级科技进步二、三等奖各一项,授权发明专利11项(欧洲专利2项),牵头体外诊断产品注册试验60余项。  全国三八红旗手,全国民族团结进步先进个人,2021中国最美医生。  以上报告内容由BCEIA2023组委会提供欢迎扫码报名参加BCEIA2023
  • IVIS视角 | 醛缩酶B介导的果糖代谢诱导了结肠癌肝转移过程中的代谢重组
    癌症导致的死亡中,大部分是由恶性肿瘤转移而引起的,在临床上仍然是一个挑战。转移性癌细胞通常与原发癌细胞相似,但它们可能会受到所转移器官附近环境的影响。本文揭示了结直肠癌(CRC)细胞在转移至肝脏(一个关键的代谢器官)后经历代谢的重组过程。特别是肝转移细胞通过GATA结合蛋白6抗体 (GATA6) 上调醛缩酶B (ALDOB)的表达,提高果糖代谢,为肿瘤细胞增殖过程中的主要中心碳代谢提供能量。靶向ALDOB或降低膳食果糖可显著降低肝转移性生长,但对原发肿瘤几乎没有影响。本文的研究结果表明,转移细胞可以在新的微环境中利用代谢重组,尤其是在代谢活跃的器官,如肝脏中,对相关通路的操纵可能会影响转移性生长的过程。原发性肿瘤逐渐累积遗传性改变,并受其肿瘤微环境的影响,直到获得能转移到远处器官的能力(Gupta和Massague, 2006 Valastyan和Weinberg, 2011)。这一过程的典型特征是,结直肠癌(CRC)经过腺瘤到癌的顺序发展,最终导致转移(Barker et al., 2009),(约70%的患者) 优先转移到肝脏这个部位 (Rothbarth和van de Velde, 2005) 。在这个阶段,该疾病变得很难治疗,并对大多数形式的联合治疗产生耐药性,使得结直肠癌(CRC)转移成为癌症相关死亡的主要原因。无法进行手术的肝转移患者对化疗干预治疗效果较差,中位生存期为6至9个月 (Alberts et al., 2005) 。目前针对晚期结直肠癌的化疗并不针对肝转移。部分原因是由于观察到CRC转移与任何特定的基因突变并不一致 (Jones et al., 2008) ,而且它们通常与原发肿瘤中的细胞相似。然而,新出现的证据表明,非遗传改变,如表观遗传和代谢重组,可能促进癌症转移。将这种机制作为研究的目标可能为开发结直肠癌转移的治疗方法提供新的途径。在本研究中,来自临床样本和经盲肠移植的体内CRC转移模型的数据表明,结直肠癌(CRC)肝转移瘤的特定代谢通路发生了改变。特别是,肝转移会上调ALDOB的水平,这是一种参与果糖代谢的酶。肝内植入表明肝环境导致CRC细胞上调ALDOB。代谢组学和13C标记的果糖追踪研究表明,ALDOB促进果糖代谢,促进糖酵解、糖异生和戊糖磷酸途径。降低ALDOB或限制饮食果糖会抑制CRC肝转移瘤的生长,但不抑制原发肿瘤或肺转移瘤的生长,这突出了肿瘤微环境的重要性。1、在结直肠癌CRC肝转移中BALDOB表达升高为了证实ALDOB在肝转移中的上调,作者将3株CRC细胞株:HCT116和2株肝转移患者来源的异种移植(PDX)细胞株CRC119和CRC57植入NOD/SCID小鼠的盲肠末端。细胞携带双标记报告基因结构,稳定表达荧光蛋白(mCherry或GFP) 和荧光素酶。在盲肠注射前,流式细胞分选(FACS)分析显示,这些CRC细胞株中KHK、ALDOB和HK表达均为单峰。注射盲肠后,CRC细胞在2周内首次形成原位肿瘤。随后,它们在5周内发生了CRC肝转移。收集原发性盲肠和肝转移肿瘤后,利用荧光流式细胞仪(FACS)分离CRC细胞。肝转移瘤的ALDOB水平明显高于原发性转移瘤,而KHK和HK水平基本保持不变(图3B-3D) 。20%至40%的小鼠也出现肺转移,尽管与原发性盲肠肿瘤相比,肺转移中ALDOB没有上调。Figure 3. 肝转移使体内ALDOB表达升高为了研究肝脏微环境是否引起CRC细胞中ALDOB的表达上调,本文将HCT116、CRC119和CRC57细胞同时直接注入小鼠肝脏和盲肠。CRC肿瘤迅速在肝脏和盲肠中形成,注射10天后,分别采集肿瘤。肿瘤经盲肠转移至肝脏之前,在盲肠注射模型中需要3~5周(图3E)。从采集的肿瘤细胞中,利用荧光流式细胞分选(FACS)分离出CRC细胞。Western blot检测证实,从肝脏分离的CRC细胞中ALDOB水平高于盲肠分离的细胞,而KHK和HK水平保持相似(图3F-3H)。另一方面,Transwell迁移实验中迁移和非迁移的CRC细胞表达了相似的ALDOB水平,这表明ALDOB与迁移能力的增强无关。此外,在体外培养后,肝脏和盲肠分离的肿瘤细胞表达相似的ALDOB水平。综上所述,这些数据表明肝脏微环境可导致CRC细胞上调ALDOB的表达。2、ALDOB促进CRC肝转移瘤的生长HCT116、CRC119和CRC57细胞中ALDOB 的表达下调(RNA干扰下调表达),不影响体外含葡萄糖或果糖培养基中培养的CRC细胞迁移 。尽管盲肠移植HCT116、CRC119或CRC57细胞与对照载体均可有效发展肝转移(3个细胞系的5只小鼠中有5只发生了转移) ,但在盲肠注射模型中,ALDOB下调表达可抑制CRC肝转移。经shRNA1干扰的ALDOB的HCT116、CRC119或CRC57细胞分别在5只小鼠中仅有2只、2只和2只出现可检测到的肝转移,而经shRNA2敲除的小鼠分别为2、1和2只(图5A-5E) 。此外,从ALDOB 下调表达细胞中的肝转移比对照细胞中的肝转移肿瘤少得多,且小得多。然后进行肝内注射,观察ALDOB是否促进肝内CRC的生长。对照载体的HCT116、CRC119和CRC57细胞在肝脏中生长明显大于ALDOB表达下调的细胞(图5F-5H) 。Figure 5. RNA干扰ALDOB表达可抑制CRC肝转移3、靶向果糖代谢抑制肝转移接下来考虑的是,果糖摄入量的水平是否会影响肿瘤的生长,尤其是在肝脏。注射CRC至盲肠后 (每组5只小鼠) ,高果糖饮食的小鼠显示CRC肝转移增加,而不含果糖饮食的小鼠相对于对照组显示肝转移减少(图6A-6D) 。随后将这两种治疗方法结合起来。对小鼠注射ALDOB基因敲除剂后,然后按规定对其喂食不含果糖的饮食。这正如预期的那样,抑制了CRC的肝转移(图6A-6D) 。将CT26细胞注射到具有免疫功能的BALB/c小鼠的盲肠中,在果糖饮食对肝转移瘤的影响方面也显示出类似的结果。一直以来,高果糖饮食降低了老鼠的存活率,而低果糖饮食和低碳水化合物能延长老鼠的存活率。用相同shRNA结构转染LV-HCT116细胞,下调ALDOB的表达。与盲肠注射模型一致,ALDOB下调表达和果糖限制饮食抑制了肝脏中CRC肿瘤。关于抑制肝脏LV-HCT116肿瘤,ALDOB下调和果糖限制似乎比5-氟尿嘧啶或奥沙利铂更有效,这两种药物都是晚期和转移性CRC的一线化疗。与ALDOB敲除或果糖限制饮食不同,5-氟尿嘧啶或奥沙利铂在肿瘤抑制或生存方面几乎没有益处。因此, 针对ALDOB和果糖代谢的调节可能会影响肝转移瘤的生长,并对目前的化疗作为一个补充策略。Figure 6. 饮食果糖限制抑制CRC肝转移关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 高动态角速率测量仪研制
    table border="1" cellspacing="0" cellpadding="0"tbodytrtd width="91"p style="line-height: 1.75em "成果名称/p/tdtd width="530" colspan="3" style="word-break: break-all "p style="text-align: center line-height: 1.75em "strong高动态角速率测量仪 /strong/p/td/trtrtd width="100"p style="line-height: 1.75em "单位名称/p/tdtd width="530" colspan="3"p style="line-height: 1.75em "高动态导航技术北京市重点实验室/p/td/trtrtd width="100"p style="line-height: 1.75em "联系人/p/tdtd width="162"p style="line-height: 1.75em "付国栋/p/tdtd width="161"p style="line-height: 1.75em "联系邮箱/p/tdtd width="187"p style="line-height: 1.75em "fuguodd@163.com/p/td/trtrtd width="100"p style="line-height: 1.75em "成果成熟度/p/tdtd width="527" colspan="3"p style="line-height: 1.75em "□正在研发 □已有样机 □通过小试 □通过中试 √可以量产/p/td/trtrtd width="100"p style="line-height: 1.75em "合作方式/p/tdtd width="527" colspan="3"p style="line-height: 1.75em "√技术转让 √技术入股 √合作开发 □其他/p/td/trtrtd width="648" colspan="4" style="word-break: break-all "p style="line-height: 1.75em "strong成果简介: /strong /pp style="text-align:center"img src="http://img1.17img.cn/17img/images/201604/insimg/8c56e480-1306-43a5-919d-a9f238e912f4.jpg" title="QQ图片20160415140809.jpg"//pp style="line-height: 1.75em " 在灾难救援、消防安全、应急预警、国防等领域,载体运动过程伴随着大过载、高速、高旋等恶劣环境条件约束,现有各类陀螺无法满足 10000g过载、 10r/s转速条件下的角速率实时精准直接测量需求。本成果针对上述迫切需求,重点突破传统角速率检测仪难以适应11000g以上过载、高速滚转和高速度扰动环境下交叉耦合难以抑制、全温度段陀螺零偏和标度因数不稳定的技术瓶颈,实现一种新型角速率检测仪,在全温度(-45~+55℃)工作条件下,能够适应大于11000g过载冲击和大于800m/s线速度扰动复杂应用环境、具有大于3600& #176 /s滚转速率测量范围且耦合系数小于0.1%,随机漂移优于8& #176 /h,全温度段零位偏差优于0.6& #176 /s,标度因数综合误差优于0.1%,具备成果推广与产业化条件。/p/td/trtrtd width="648" colspan="4" style="word-break: break-all "p style="line-height: 1.75em "strong应用前景: /strongbr/ 成果在该产品在灾难救援、消防安全、矿山开采预警、水坝山体滑坡预警、国防等领域等领域有广泛应用前景。 br/ 预计国内市场年需求量在8000~10000台,市场规模约5亿元。/p/td/trtrtd width="648" colspan="4" style="word-break: break-all "p style="line-height: 1.75em "strong知识产权及项目获奖情况: /strongbr/ 获奖情况:北京市科学技术奖三等奖1项,吴文俊人工智能科学技术进步二等奖1项。 br/ 授权发明专利6项,受理发明专利2项,主要专利: br/ (1)专利名称:钟形振子式角速率陀螺振子结构设计方法(专利号:ZL201110117526.4)/p/td/tr/tbody/tablepbr//p
  • 创新融合,精准诊断 BCEIA 2021标记免疫分析分会圆满举办
    仪器信息网讯 第十九届北京分析测试学术报告会暨展览会(BCEIA2021)于2021年9月27-29日在北京中国国际展览中心(天竺新馆)盛大召开。作为BCEIA学术报告会的重要组成部分,9月29日,由中国分析测试协会标记免疫分析专业委员会主办的BCEIA 2021学术报告会标记免疫分析分会在学术会议区E301举行,会议为期一天,旨在推动标记免疫分析领域的发展,为国内外同行提供充分交流的平台,吸引逾百位学者与会。会议现场本次会议主席,也是中国分析测试协会标记免疫分析专业委员会委员颜光涛研究员为会议致辞。颜光涛研究员本次会议主题为“创新融合,精准诊断”,围绕“精准诊断新检测技术、新检验指标临床验证转化、检验质量控制、检验参考物质及溯源”4个专题方向,邀请了10位国内标记免疫领域权威专家,针对前沿热点领域的研究重点进行学术报告。以下是部分精彩报告摘要:上下半场会议主持人 (左上:崔丽艳 北京大学第三医院 右上:敬华 战略支援部队特色医学中心检验科 左下:陈建魁 解放军总医院第五医学中心 右下:徐国宾 北京大学肿瘤医院)张国军 首都医科大学附属北京天坛医院报告题目:一种新型缺血性卒中标志物(ACS)化学发光法及开发临床评价为了建立自动化学发光免疫分析法(CLIA)测定人体液中凋亡相关斑点样蛋白(ASC)的方法,探讨脑卒中患者血清ASC的临床意义,首都医科大学附属北京天坛医院张国军主任采用自行研制的CLIA法检测血清ASC浓度,评价新biomarker的临床意义。所在团队以磁性颗粒-FITC-FITC抗体为固相分离体系,FITC标记了一株抗ASC单克隆抗体,吖啶酯标记了另一株抗ASC单克隆抗体,建立了ASC自动CLIA检测方法。一共收集了167例急性缺血性中风(AIS)患者和238例健康对照者的血清。结果发现自行研制的ASC自动CLIA检测方法满足临床检测的要求。AIS患者血清ASC水平显著升高,是鉴别脑卒中患者的良好指标,可用于监测脑卒中的发病、治疗及预后。叶棋浓 中国军事科学研究院报告题目:肿瘤糖代谢基因表达控制癌症是严重威胁人类健康的常见疾病之一。葡萄糖代谢是最重要的代谢过程之一,包括葡萄糖的厌氧氧化、戊糖磷酸途径、三羧酸循环、糖异生和糖原合成。在恶性肿瘤转化过程中,糖代谢的重编程为癌细胞的生长和转移提供了能量和物质支持。中国军事科学研究院叶棋浓研究员在研究中发现,与正常细胞相比,肿瘤细胞葡萄糖摄取水平升高,需氧糖酵解和戊糖磷酸途径通量增加,三羧酸循环异常,糖异生水平下降。肿瘤细胞葡萄糖代谢的调节机制主要包括蛋白质的转录调控、转录后调控和翻译后修饰。癌细胞可以通过HIF-1、c-Myc、p53等转录因子调控糖代谢相关基因的表达。其所在团队发现SIX1是调控肿瘤糖酵解的关键转录因子,SIX1的翻译后修饰在调控糖酵解中发挥重要作用,SIX1是肿瘤诊断和治疗的候选靶标。刘向祎 首都医科大学附属北京同仁医院报告题目:新型质谱技术在临床检验实践核酸质谱技术已开始越来越被大家了解和熟悉,很多体外诊断产品在注册中。在报告中,首都医科大学附属同仁医院的刘向祎主任所在实验室利用MALDI-TOF技术,采用毅新博创的飞行时间质谱仪,在耳聋基因筛查、老年性黄斑变性和疫苗在人群有效性评估方面进行初步检测和评估,为尽快走向临床起到一定推动作用。周洲 中国医学科学院阜外医院 报告题目:高敏肌钙蛋白检测性能评价周洲教授主要研究方向为遗传性心血管疾病的分子机制研究及基因诊断方法开发。报告当天恰逢世界心脏日,中国医学科学院阜外医院周洲主任对高敏肌钙蛋白检测的性能评价等作了专业归纳与表述。周主任认为,高灵敏度肌钙蛋白检测方法的分析性能评价是临床应用的前提。评价标准应包括空白限、检出限、定量限、报告范围、印痕和一致性等,且不同样品类型和“目标”机器的一致性是必要的。宗金宝 青岛大学附属青岛市海慈医院报告题目:流式细胞术在淋巴细胞亚群及细胞因子检测的临床应用青岛大学附属青岛市海慈医院宗金宝主任对流式细胞术的原理及特点作了详细介绍。团队利用流式细胞术进行了淋巴细胞亚群检测,细胞内外细胞因子检测等一系列详实实验。结果表明流式细胞术是检测淋巴细胞亚群和细胞内细胞因子非常重要而且不可或缺的手段,此外流式细胞术也可以检测细胞外细胞因子,其中流式荧光技术将在细胞外细胞因子的检测中发挥重要作用。李海霞 北京大学第一医院报告题目:膀胱癌肿瘤异质性及液体活检的应用膀胱癌(BC)是一种异质性疾病,以基因组为特征,具有不稳定性和高突变率。液体活检技术是一项很有前途的技术,可以在多个时间点分析体液(如血液和尿液)中的肿瘤成分,并提供一种微创的方法,可以跟踪进化动态和监测肿瘤异质性。北京大学第一医院李海霞主任在报告中对膀胱癌基因组和转录水平上异质性的多重面,以及它们如何影响临床护理和结果进行了系统阐述。高艳红 解放军总医院第一医学中心报告题目:流式荧光技术在临床应用及发展精准医学模式对临床实验室诊断提出了越来越高的要求,要求其具有预防性、预测性、个体化以及参与性等。因此快速、灵敏、高通量对疾病的生物标志物进行定性和定量分析,是当今生命科学领域的研究热点。流式细胞术(FCM)是70年代初发展起来的一项采用流式细胞仪对细胞悬液进行快速分析的高新技术,是继化学发光、生物芯片技术之后的新一代高通量分子诊断技术平台。在报告中,解放军总医院第一医学中心高艳红详细介绍了流式细胞仪的基本原理以及在免疫学、肿瘤学等领域的应用。郭建巍 北京市第一中西结合医院报告题目:临床实验室助力肠癌的早期发现结直肠癌是全球发病率和病死率居首位的消化系统恶性肿瘤,平均每一分钟就有一人确诊结直肠癌,每两分钟就有一人死于结直肠癌。然而结直肠癌发生、发展需要十余年时间,所以早期筛查可以显著降低肠癌死亡率,让肠癌止步。传统的结直肠癌筛查方法使用粪便潜血试剂盒或者肠镜进行检测判断,但平均漏诊率高达41%。北京市第一中西结合医院郭建巍在报告中介绍了几类新型的结直肠癌筛查方法,并分别对比了其优缺点。最后他认为FIT+便DNA(单靶点或多靶点)模式为肠癌筛查的主要手段,DNA甲基化检测是主要方法,并号召提高医务人员认知,他认为这将在结直肠癌的防控中发挥不可或缺的重要作用。李永哲 北京协和医院报告题目:自身免疫病实验诊断技术临床应用进展北京协和医院李永哲主任介绍了自身免疫病实验诊断技术的临床需求,自身免疫病新标志物临床应用进展,检测技术临床应用现状及发展趋势。首先明确了检查的一些基本要素,如免疫细胞、免疫分子、基因分型、自然抗体等等。随后介绍了自身免疫指标的应用,作为伴随诊断提供疾病预警判断等。李永哲主任重点介绍了自身抗体在炎性疾病中的应用,自身抗体与中毒的关联性,狼疮脑病与类风湿关节炎等新型标志物,以及新冠病毒与自身抗体的关系。陆予非 安捷伦科技(中国)有限公司报告题目:超亮荧光蛋白拓展免疫检测新征程荧光藻胆蛋白(RPE)是由多个小亚基组成的生物大分子,是一种高吸收荧光分子,具有良好的检测性能。当高灵敏度对检测和准确性至关重要,荧光藻胆蛋白是首选的荧光色素。荧光藻胆蛋白偶联物用于流式细胞术、免疫测定、MHC四聚体测定和珠基测定。陆予非展示了安捷伦科技能够提供的链霉亲和素、藻胆蛋白和广泛选择的结合产品。会议设置颁奖环节,会务组为本次获得优秀论文的年轻科研学者颁发了荣誉证书。优秀论文获奖者合影部分报告嘉宾合影留念(一)部分报告嘉宾合影留念(二)
  • 2021年全国糖科学与糖工程学术会议暨产业论坛在重庆盛大开幕!
    仪器信息网讯 7月10日-11日,2021年全国糖科学与糖工程学术会议暨产业论坛(China Glycoscience and Glycoengineering Conference,CGC)在重庆隆重召开。中国科学院院士张玉奎、中国科学院院士饶子和、中国科学院院士邵峰、中国科学院院士高福、中国工程院院士朱蓓薇受邀出席,张玉奎院士、邵峰院士、高福院士、朱蓓薇院士在会上作精彩的大会报告,此外,大会邀请到国内外在糖科学及糖工程相关等领域的一百多位报告嘉宾,同时吸引了全国近千位专家与会,大会视频和图片直播访问量累计超6万人次,仪器信息网作为本届大会的独家直播合作媒体进行了全程的跟踪报道。2021年全国糖科学与糖工程学术会议暨产业论坛现场本届会议由中国生物工程学会糖生物工程专业委员会、中国生物物理学会糖生物学分会、重庆医科大学及北京市阳光健康公益基金会联合主办。中科院过程所生化工程国家重点实验室、重庆医科大学药学院、南方科技大学、上海科技大学共同承办。重庆医科大学药学院院长、大会执行主席于超担任开幕式主持人。重庆医科大学药学院院长、大会执行主席于超主持开幕式上,中国科学院院士饶子和、中国生物工程学会副理事长马树恒、重庆医科大学党委书记刘宴兵分别为大会致辞,对嘉宾的到来表示热烈欢迎,预祝大会取得圆满成功。中国科学院院士饶子和视频致辞中国生物工程学会副理事长马树恒致辞重庆医科大学党委书记刘宴兵致辞为发扬张树政院士科学精神,推动我国糖科学领域科学研究、技术创新与开发,大会启动张树政糖科学专项基金成立仪式。中国科学院院士张玉奎、中国工程院院士朱蓓薇、中国科学院院士邵峰、中国生物物理学会糖生物学分会会长王鹏、张树政糖科学奖获奖代表俞飚、国家糖工程技术研究中心主任凌沛学、张树政院士学生代表中国科学院微生物研究所研究员金城、北京中研同仁堂医药研发有限公司院长王志斌、华熙生物科技股份有限公司副总经理刘爱华、北京市阳光健康公益基金会秘书长刘子齐、张树政糖科学专项基金发起人代表杜昱光,共同按下手印启动仪式。中国生物工程学会糖生物工程专业委员会主任委员杜昱光主持张树政糖科学专项基金成立仪式  张树政糖科学专项基金管理委员会授牌仪式为激励更多优秀青年学生投身到糖科学与糖工程科研领域。糖生物工程专业委员会每隔两年评选张树政糖科学奖,授予对糖科学领域及糖工程产业做出重大贡献的杰出人物及取得优秀成绩极具潜力的青年人才。CGC特别设立了第四届“张树政糖科学奖”颁奖环节,南方科技大学教授王鹏、北京大学教授陈兴荣获“第四届张树政糖科学杰出成就奖”。南方科技大学教授王鹏获奖合影王鹏教授的工作证明糖链合成可以用传统商业化的自动多肽合成仪完成,实现了寡糖的高通量合成,极大的推动了糖肽的合成生物学发展,创造性的将酶合成法和化学合成方法结合起来,提出了合成糖组学的概念。在微生物多糖的生物合成、生物起源和合成生物学方面也进行了深入的研究,在糖化学和糖生物学领域做出了一系列创新的成果。北京大学教授陈兴获奖合影陈兴教授研究集中于化学糖生物学领域,开发聚糖标记和功能解析新方法,解决糖科学中的重要问题。在“化学糖生物学”这一新兴交叉学科方向上形成了鲜明的特色,开辟了利用化学标记研究糖生物学问题的新途径,有力推动了化学和生命科学的交叉与融合。西北大学教授关锋、浙江大学教授易文、中国科学院上海药物研究所研究员黄蔚荣获“第四届张树政糖科学优秀青年奖”。张树政糖科学优秀青年奖获奖者合影关锋教授从事基于组学的肿瘤糖生物学研究,建立了系列糖组分析方法,发现乳腺癌中平分型糖链的异常表达,阐明平分型糖链修饰影响外泌体功能等。获奖研究项目中建立起完善的糖链质谱分析策略,将糖组学研究技术应用于糖生物工程及糖生物学中,挖掘乳腺癌、膀胱癌、肝癌等多种肿瘤发生发展过程中的特征性糖链,并通过生物工程技术手段进行改造。易文教授发展基于酶反应的糖基化标记方法,以及探讨糖基化在调控细胞代谢、生长、和免疫应答的分子机制。获奖研究项目以O-GlcNAc糖基化修饰为主要对象,阐明了O-GlcNAc糖基化通过将营养感知与表观遗传联系起来决定细胞命运的新机制。黄蔚研究员发展糖类药物研发新技术、新方法、新策略,拓展糖类药物设计理论和化学空间。获奖项目在糖类药物设计上,从理论上凝练糖类药物设计的共性与特性 实现了糖型优化抗体药物和基于糖链定点的抗体药物偶联物设计,为新型抗体药物研发提供新的糖结构思路和技术策略,开发新型抗万古霉素耐药菌候选药物SM-V-61。随后,张树政糖科学独家冠名赞助企业华熙生物科技股份有限公司常务副总经理刘爱华上台致辞。华熙生物常务副总经理刘爱华致辞大会报告环节,中国科学院院士邵峰、中国工程院士朱蓓薇、中国科学院院士张玉奎、北京大学教授陈兴分别作精彩大会主旨报告。中国科学院院士邵峰报告题目:《Innate immunity to cytosolic LPS: Pyroptosis and beyond》细胞焦亡(Pyroptosis)是一种程序性细胞死亡,表现为细胞不断胀大直至细胞膜破裂,导致细胞内容物的释放进而激活强烈的炎症反应,是机体一种重要的天然免疫反应,在抗击感染中发挥重要作用。邵峰院士讲解了Toll样受体(TLR)介导的先天免疫,并阐释先天免疫系统处理细胞溶质中的细菌的作用机理。中国工程院院士朱蓓薇报告题目:《海洋食品的营养与人类健康》目前,不合理的膳食结构已经造成严重的健康负担,各个国家都在积极制定健康膳食指南保障健康,而我国同样面临营养不足和肥胖的问题。海洋生物是研究和开发创新海洋营养食品的重要生物资源,肩负着提高人类健康和生活质量的使命,补充我们身体所需的蛋白质、油脂、糖、维生素、矿物质等。针对海洋资源的开发,朱蓓薇院士提出要以科技力量推动第三代海洋功能食品开发、聚焦视频营养素与人类健康的关系研究、开展食品营养素对特殊膳食人群的健康改善研究、结合传统中医药资源,开发中国特色海洋功能食品、结合食品行业优势,开发海洋功能食品、开发低值海洋生物为功能食品原料等,实现海洋强国的战略目标。中国科学院院士张玉奎报告题目:《基于离子液提取的蛋白质分析》2020年,人类蛋白质组组织整合25个研究团队的染色体蛋白质数据和19个研究团队的生理/疾病蛋白质组学数据。张玉奎院士介绍了微量蛋白组样品制备方法、用于肾病分型相关蛋白的筛选、血液透析吸附蛋白质常规评价方法、血液净化材料吸附蛋白组的定性定量分析等分析方法。在疾病方面,分享了抑郁症新病因,旨在通过蛋白质组学定量分析抑郁症血浆,筛选出标志物,为抑郁症诊断提供辅助手段。北京大学教授陈兴报告题目:《“糖密码”的化学解析》糖酵解途径是将葡萄糖和糖原降解为丙酮酸并伴随着ATP生成的一系列反应,是一切生物有机体中普遍存在的葡萄糖降解的途径,而传统糖生物学在标记和成像上存在瓶颈,为研究带来一定难度。陈兴教授介绍生物正交化学标记方法,通过超高分辨成像显微镜,观察聚糖在神经突触方面的聚集,从O-GlcNAc修饰对大脑发育和功能的重要作用、O-GlcNAc修饰底物的常用方法等解锁脑内“糖密码”。下午,CGC开设4个分会场,糖链合成与分析新方法新技术分会、糖链与病原感染分会、糖链与疾病分会、肠道微生物糖组与营养健康分会,为参会的专家、企业家、用户等提供了更加全面、便利的交流平台。糖链合成与分析新方法新技术分会现场糖链与病原感染分会现场糖链与疾病分会现场肠道微生物糖组与营养健康分会现场参会专家合影后记糖生物学是当前生命科学最前沿的领域,这门新兴学科既有深远的理论意义,又和人类健康、动植物生长有着密切的关系。此次学术会议的举办,为国内外糖化学、糖生物学及糖工程等领域的专家、学者和业界人士等提供了一个相互交流,共同研讨糖链结构功能、制备技术、检测分析方法,以及糖类药物、营养食品、生物医用材料研究开发等相关领域最新研究进展和成果的平台。本次大会颁发的张树政糖科学奖,更让我们怀念在糖科学领域做出巨大贡献的张树政院士,她长期致力于我国微生物生物化学的研究,在白地霉糖代谢、红曲糖化酶结构与功能、糖苷酶和耐热酶、糖生物学和糖生物工程学等研究中成就卓著,是中国微生物生化的重要领军人,是糖生物学的奠基人之一。希望这次大会后有更多优秀人才投身糖研究领域,为我国糖科学、糖工程的未来发展做出重要贡献。
  • 上海设施质谱系统用户在Cell子刊Molecular Cell发表研究成果
    p style="text-align: center "img width="450" height="300" title="W020151217632860915782.jpg" style="width: 450px height: 300px " src="http://img1.17img.cn/17img/images/201512/insimg/242370ef-1198-401a-b257-50a6b7a52555.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "strong细胞通过GPADH磷酸化位点调节与Sirt1的相互作用,从而激活了自噬过程/strong/pp style="text-align: left "  11月25日,国家蛋白质科学研究(上海)设施质谱系统用户,浙江大学a title="" style="color: rgb(255, 0, 0) text-decoration: underline " href="http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target="_self"span style="color: rgb(255, 0, 0) "基础医学/span/a系刘伟教授研究组在国际期刊Cell子刊Molecular Cell在线发表了最新研究成果“AMPK-Dependent Phosphorylation of GAPDH Triggers Sirt1 Activation and Is Necessary for Autophagy upon Glucose Starvation”,该研究发现一条激活组蛋白脱乙酰化酶Sirt1启动细胞自噬的新的信号途径。/pp  自噬体形成调控是细胞自噬研究的重要内容。与长寿和衰老等密切相关的组蛋白脱乙酰化酶Sirt1,通过使LC3等主要自噬相关蛋白脱乙酰化,在饥饿诱导的自噬体形成中发挥关键作用。然而,细胞饥饿时Sirt1被迅速激活进而启动自噬的分子机制一直未能解决。/pp  在本研究中,博士后常春美和博士生苏华等人在刘伟教授的指导下研究发现,在葡萄糖缺乏时,细胞内激活的能量感受器分子AMPK激酶能磷酸化定位于胞质的经典糖酵解酶GAPDH,使得GAPDH移位细胞核。在核内,GAPDH直接作用于Sirt1,造成Sirt1与其抑制蛋白DBC1的分离而得到激活,并继而启动细胞自噬。该研究阐明了一条Sirt1不依赖于其辅酶浓度而被迅速激活的新的途径,揭示了GAPDH作为一个传统糖酵解酶,在细胞自噬调控中的重要功能。/pp  上海设施质谱系统彭超博士通过基于质谱技术的a title="" style="color: rgb(255, 0, 0) text-decoration: underline " href="http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target="_self"span style="color: rgb(255, 0, 0) "蛋白质组学/span/a方法帮助解析确定了GAPDH的磷酸化位点以及GAPDH和Sirt1的互作蛋白质网络,提供了强有力的专业技术支持,为成果的发表做出了积极贡献。该研究还得到国家重点基础研究发展计划和国家自然科学基金的资助。/p
  • 安捷伦与BioTek强强联手推出集成式代谢分析与成像平台
    p  2018年4月11日,北京——安捷伦科技公司(纽约证交所:A)与 BioTek Instruments, Inc. 日前宣布推出一套结合细胞代谢与成像技术的全新集成式解决方案。/pp  经过优化的解决方案集成了Agilent Seahorse XFe96/XFe24分析仪与BioTek Cytation 1细胞成像多模式酶标仪。该解决方案为比较 XF 数据集、改进分析工作流程、将图片嵌入 WAVE 软件以及将标准化数值应用于 Seahorse XF 测量提供了标准化方法。/pp  BioTek 市场营销全球总监 Gary Barush 表示:“安捷伦和 BioTek 的共同目标都是通过技术创新推动科研进展,而我们的合作正是基于这一目标的自然延伸。 安捷伦的自动化 XFe 分析仪与 BioTek 的 Cytation 1 细胞成像多模式酶标仪相结合,为细胞生物研究人员提供了绝佳的机遇,让他们对样品进行完全标准化与分析,以获得细胞代谢领域最具挑战性问题的答案。”/pp  安捷伦细胞分析事业部高级总监 David Ferrick 博士谈道:“安捷伦的客户需要用经过优化的方法来验证分析结果,并借助我们数据丰富的分析实现更有意义的数据比较。这一集成式解决方案可以让我们的客户比较不同孔、不同板乃至不同实验之间的 XF 数据。”/pp  将高质量图像结合到 Agilent Seahorse XF WAVE 软件的能力为数据增加了另一个维度。 现在,研究人员可以在切换 XF 数据、明视场图像和荧光图像中拥有统一的软件操作体验。 在分析 XF 数据的同时参考图像,有助于获得如何限制 XF 分析差异并提高分析重现性的依据和指导。 应用基于细胞计数的标准化数值,从根本上可使解析 Seahorse XF 数据以及寻找数据间的关系变得更轻松。/pp  安捷伦将与 BioTek 共同销售这款集成式解决方案,计划先于 2018 年 4 月在美国和欧洲上市,其余国家/地区将于 2018 年 6 月上市。/pp  Agilent Seahorse XFe 分析仪可同时测量活细胞中线粒体呼吸和糖酵解两个主要细胞产能通路的活性。这些测量可帮助科学家更好掌握细胞生理过程与基因组/蛋白质组学数据间的关联。 BioTek Cytation 1 细胞成像多模式酶标仪经过配置,可显示最高放大 60 倍的荧光和高对比明视场细胞成像,并在多种应用中发挥潜力。/pp  除标准化外,灵活的 Cytation 1 细胞成像酶标仪还有潜力扩充全新的应用领域。 双方此次合作旨在以集成式解决方案为基础,进一步探索这些可能性。/pp  strong关于 BioTek Instruments/strong/pp  BioTek Instruments, Inc. 总部位于美国佛蒙特州威努斯基,是设计、生产、销售微孔板仪器和软件的全球领导者。这些技术着力于生命科学研究,有助于药物研发,提供快速、经济有效的分析,并在多种应用中实现灵敏而准确的分子定量分析。/pp  strong关于安捷伦科技公司/strong/pp  安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,拥有 50多年的敏锐洞察与创新,我们的仪器、软件、服务、解决方案和专家能够为客户最具挑战性的难题提供更可靠的答案。在2017财年,安捷伦的营业收入为44.7亿美元,全球员工数为14200人。/p
  • 华人科学家吕志民获世界权威肿瘤机构科研成就奖
    近日,世界权威肿瘤机构——美国德州大学M.D.安德森肿瘤中心将2016年度科研成就奖授予华人肿瘤代谢专家吕志民教授,他也成为该机构本年度肿瘤基础研究领域的唯一获奖者。  吕志民现为美国德州大学M.D.安德森肿瘤中心终身教授,多年来一直致力于肿瘤代谢以及相关领域的研究,其团队在肿瘤细胞糖酵解新机制、肿瘤代谢酶与肿瘤发生等领域的独创性研究被认为是国际肿瘤代谢领域的标志性事件,推动了对肿瘤代谢的重新认知,相关研究成果多次被《Cell》《Nature》等世界权威杂志发表。同时,吕志民教授的创新成果也推动了一系列针对肿瘤代谢新关键靶标的检测以及治疗药物的应用研究。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制