当前位置: 仪器信息网 > 行业主题 > >

陶瓷粉体粒度

仪器信息网陶瓷粉体粒度专题为您整合陶瓷粉体粒度相关的最新文章,在陶瓷粉体粒度专题,您不仅可以免费浏览陶瓷粉体粒度的资讯, 同时您还可以浏览陶瓷粉体粒度的相关资料、解决方案,参与社区陶瓷粉体粒度话题讨论。

陶瓷粉体粒度相关的方案

  • 粒径检测在陶瓷粉体领域面临的挑战
    在陶瓷制备工艺过程中,其粉料的粒度分布对于陶瓷的加工和性能都会产生非常直接的影响,然而大家经常面临的一个问题就是从高倍率电镜下看明明都是几十纳米的微晶颗粒,通过激光粒度仪却得到的几个微米甚至更大的结果。对于很多陶瓷粉料来说,微晶大小和聚集体尺寸是同一个材料的两种不同属性,这两个属性对于陶瓷材料都很重要,从测试分析来看,电镜能很好地给出陶瓷晶体的微晶大小和形态,而激光粒度仪则能更好地给出团聚体大小和统计性分布,两种技术本身并不矛盾,只有充分地用好不同的分析工具,才能对陶瓷粉料的特性进行更好的掌控。
  • 陶瓷粉料中陶瓷粉体粒度检测方案(研磨机)
    本实验采用干法球磨制取陶瓷墙地砖粉料,用正交实验分析法分析了行星式球磨过程中的球磨参数( 料球比、球磨转速、介质级配) 对颗粒粒度的影响,探索出行星式球磨制粉工艺的最佳工艺参数。对干法与湿法球磨所制得细粉颗粒形貌,化学均匀性作了对比分析,为干法制粉取代喷雾干燥法制粉奠定了基础。
  • X射线荧光光谱玻璃熔片法分析日用陶瓷粉中的主次成分
    参考《GB/T 4734-2022 日用陶瓷材料及制品化学分析方法》国标方法,将日用陶瓷粉高温灼烧处理后熔融制成玻璃熔片,使用岛津多道同时型X射线荧光光谱仪MXF-N3 Plus建立工作条件分析日用陶瓷粉中的主次成分含量。实验结果表明,分析结果全部优于标准要求。该方法操作简单,能够很好地消除矿物效应、组织效应和颗粒度效应,提高了日用陶瓷粉成分分析方法的准确度。
  • 微波消解陶瓷粉
    所谓陶瓷粉体就是制备陶瓷时所有原料经充分混合均匀后焙烧后的粉末状物质。陶瓷的原料之间的化学反应不是在熔融的状态下进行的,而是在比熔点低的温度下,通过各原子(或离子)之间的扩散来完成的,也就是固相反应,所以经过焙烧得到的陶瓷粉体已经是纯相晶体物质。我们选取一种陶瓷粉样品,采用微波消解作为前处理方法,选择一种可将其完全溶解的方案,有利于后续对多种重金属含量的快速准确测定。
  • 微波消解陶瓷粉
    所谓陶瓷粉体就是制备陶瓷时所有原料经充分混合均匀后焙烧后的粉末状物质。陶瓷的原料之间的化学反应不是在熔融的状态下进行的,而是在比熔点低的温度下,通过各原子(或离子)之间的扩散来完成的,也就是固相反应,所以经过焙烧得到的陶瓷粉体已经是纯相晶体物质。我们选取一种陶瓷粉样品,采用微波消解作为前处理方法,选择一种可将其完全溶解的方案,有利于后续对多种重金属含量的快速准确测定。
  • 解决方案|ICP-OES法测定陶瓷粉中贵金属元素铂、钯、铑
    对于不同的含贵金属样品,分析测定方法多种多样,如光度法、重量法、X荧光法(XRF)、中子活化法(NAA)、原子吸收法(AAS)、电感耦合等离子体原子发射光谱法(ICP-OES)、电感耦合等离子体质谱法等。本文建立ICP-OES法测定陶瓷粉末中铂、钯、铑贵金属含量的方法,供相关人员参考。
  • 低温合成多孔硅酸盐陶瓷
    德国FRITSCH(飞驰)的激光粒度仪Analysette 22内置强劲的超声系统,可以达到完美的样品分散,对于陶瓷粉颗粒的粒径分布可以进行很好的测量
  • MLCC陶瓷浆料均一性的一体化解决方案(短篇)
    MLCC陶瓷浆料作为MLCC生产的重要环节,浆料的稳定性和均一性影响着后续流延工艺和印刷工艺的效果,浆料如果易沉淀和易团聚,陶瓷介质的紧密型和稳定性将会受到影响;陶瓷浆料中陶瓷粉体的粒径会影响介质层的厚度,陶瓷粉体粒径过大不利于MLCC薄层化和小型化,此外还会影响MLCC产品的烧结性能、介电常数、介质损耗,温度特性及容量等多方面;陶瓷粉体的外貌形态也会影响MLCC的性能,因此在分散过程中,需尽可能减少陶瓷粉体的损伤
  • 自动成像技术在陶瓷相关领域的应用
    随着人们对陶瓷材料性能的要求不断提升,大家对于陶瓷粉料的研磨和加工要求也是越来越高,尤其是对于一些超细陶瓷粉料,要想实现对超细粉料的控制,除了研磨设备本身的设计,研磨介质的质量也是至关重要。动态图像一般有两种进样方式,即自由落体进样和鞘流进样,自由落体进样利用颗粒自身重力通过检测区域,设计简单,测试速度较快,但一般主要面对颗粒较大、分散性较好的粉料。而鞘流进样,则采用特殊的设计,形成鞘流以便颗粒排着队逐个通过检测区域,其具有准确度高、对小颗粒效果好等优点,但不足之处就是对于颗粒较大的样品或者密度较大的,其容易发生堵塞或者输送问题。
  • 陶瓷实验室的样品制备和粒径测量
    本文介绍了用德国Fritsch公司的磨机制备实验室的陶瓷样品的方法。首先用Fritsch公司的P1——实验室颚式破碎机对大块的陶瓷样品进行粗处理,然后再用Fritsch公司的系列行星式球磨机(P5——四罐高能行星式球磨机,P7——微型行星式球磨机)进行细处理。同时还使用了Fritsch公司的A22激光粒度仪对粉碎后的陶瓷样品进行了粒度分布的测定。具体的研磨粉碎实验方法及相关实验数据,欢迎您来电话与北京飞驰科学仪器有限公司取得联系。
  • 陶瓷(涂层)比表面积该如何测试--精微高博
    陶瓷粉体颗粒的比表面积与其导热系数有着紧密的联系。随着陶瓷晶粒尺寸减小,比表面积增大,晶界与气孔的分离区随之减小,在烧结过程中不易出现晶粒的异常生长,晶粒分布均匀,导热系数将随之降低。
  • TRILOS三辊机在3D打印用3Y-TZP陶瓷浆料的应用
    当大量的纳米陶瓷粉末添加到光敏树脂体系中,由于静电力和范德华力,陶瓷颗粒的团聚是不可避免的,颗粒团聚将显著增加粘度并降低陶瓷浆料的稳定性。为了解决上述技术问题,我们提供了用TRILOS三辊机均匀分散高固含量3Y-TZP陶瓷浆料的方法。
  • TRILOS三辊机和混料脱泡机在3D打印陶瓷复合材料中的应用
    3D打印在陶瓷成型中的应用,为Si3N4/β-SiAlON复合陶瓷的制备提供了一种新的制备方法。其中,光聚合3D打印技术具有很高的准确性,被广泛用于制造几何复杂的陶瓷。但当大量的陶瓷粉末添加到光敏树脂体系中,由于静电力和范德华力,陶瓷颗粒的团聚是不可避免的,颗粒团聚将降低陶瓷浆料的稳定性。为了解决上述技术问题,我们提供了用TRILOS三辊机和混料脱泡机均匀分散Si3N4/β-SiAlON复合陶瓷浆料的方法。
  • 喷雾干燥法制备陶瓷粉体的研究
    目前制备ZrO2和三氧化二铝粉体的方法,以物料状态可分为气相法、固相法和液相法。气相法一般需要惰性气体保护,而且要在气化状态下反应,成本大而难实现工业化生产;固相法制备ZrO2和三氧化二铝粉体复合粉体颗粒不均匀,粒径难以达到纳米级别,在仪器设备的要求和损耗上都较高;液相法具有在溶液中反应的优势,相对气相法能够大量降低成栖,而相对于固相法又易制得粒径小且纯度较高的粉体,还能够使ZrO2和三氧化二铝粉体复合粉体均匀混合,所以制备ZrO2和三氧化二铝复合粉休的常用的方法是液相法,这其中又分为沉淀法、溶胶-凝胶法、水热热合成法、溶胶凝胶法、微乳液法。本实验研究者利用液相法和喷雾干燥法的特点,先以液相溶解锆盐和铝盐,使其均匀,再喷雾干燥法制备分散均匀的球状ZrO2和三氧化二铝复合粉体,主要目的是提高坯体的密度和烧结性能。
  • 碳化硅陶瓷材料的XRD表征
    碳化硅陶瓷是一种重要的功能陶瓷材料,具有优异的高温力学强度、高硬度、高弹性模量、高耐磨性、高导热性、耐腐蚀性等性能。本文使用岛津XRD-7000衍射仪测试了两种市售的SiC陶瓷粉末,对得到的衍射谱图进行了物相解析,两个样品的主物相均为α -SiC-6H,其中样品SiC-1#还含有游离Si和α -SiC-15R相。通过Rietveld精修获得了晶粒尺寸。物相组成和晶粒尺寸严重影响烧结后碳化硅陶瓷材料的机械性能,这些信息对于优化碳化硅陶瓷材料的生产工艺和产品质量监控有着重要意义。
  • 使用激光粒度仪测试碳化硅粉体的粒度
    使用岛津激光粒度仪SALD-2300湿法测试碳化硅粉体的粒径大小和分布,为了解碳化硅粉体的粒度信息提供参考。本法使用纯水为分散介质,在搅拌和超声条件下进行测试,样品消耗量少,分析速度快,数据稳定且重复性好,满足碳化硅样品的粒度测试要求。
  • 喷雾干燥机在制备陶瓷粉体的应用
    目前制备ZrO2和三氧化二铝粉体的方法,以物料状态可分为气相法、固相法和液相法。气相法一般需要惰性气体保护,而且要在气化状态下反应,成本大而难实现工业化生产;固相法制备ZrO2和三氧化二铝粉体复合粉体颗粒不均匀,粒径难以达到纳米级别,在仪器设备的要求和损耗上都较高;液相法具有在溶液中反应的优势,相对气相法能够大量降低成栖,而相对于固相法又易制得粒径小且纯度较高的粉体,还能够使ZrO2和三氧化二铝粉体复合粉体均匀混合,所以制备ZrO2和三氧化二铝复合粉休的常用的方法是液相法,这其中又分为沉淀法、溶胶-凝胶法、水热热合成法、溶胶凝胶法、微乳液法。本实验研究者利用液相法和喷雾干燥法的特点,先以液相溶解锆盐和铝盐,使其均匀,再喷雾干燥法制备分散均匀的球状ZrO2和三氧化二铝复合粉体,主要目的是提高坯体的密度和烧结性能。
  • 激光粒度仪测试中药粉体颗粒粒度方法学研究
    建立激光衍射法测定多种中药粉体颗粒粒度的方法学。方法:采用丹东百特 Bettersize2600 激光粒度分析仪,配置全自动干法 & 湿法分散系统,对不同的中药粉体粒度测试进行了系统研究;湿法对浸润和分散等因素进行了考察,而干法通过测试不同分散压力下药物颗粒的粒径,系统考察分散能量对粒度测量结果的影响。结论:通过比对,最终确认干法分散风险更低,数据相关性也更加合理。
  • 扫描电镜下的陶瓷材料
    陶瓷材料通常以无机非金属粉末为原料进行制备,粉体的化学成分、物相组成决定了制得陶瓷材料的基本性能,而粉体粒度级配、显微形貌则决定了其加工性能的好坏。粒径和比表面积是生产过程中描述粉体性能的重要表征指标,但粉体粒径跟比表面积之间的对应关系比较复杂,受其形状因子和粒径分布的影响较大。借助扫描电子显微镜(SEM),可以方便地对粉体原料的微观形貌进行分析,以描述其粒径和比表面积之间的关系,并且,利用飞纳电镜颗粒统计分析测量系统(ParticleMetric)还可以直接对粉体一次粒径进行统计,得到更真实的粒径分布。除此之外,配有能谱仪(EDS)的扫描电镜(SEM)还可以对粉体的成分进行分析,得到其化学组分信息。
  • 微波消解法---测定陶瓷粉中贵金属元素铂、钯、铑
    铂族金属在现代工业中有着举足轻重的作用,其在许多行业都有应用,尤其是汽车排放尾气治理方面有着不可替代的作用。汽车催化转化器通常以陶瓷为载体、铂钯铑等贵金属作为其活性成分来达到治理汽车尾气(一氧化碳(CO)、碳氢化合物(HC)、氮氧化合物(NOx))的目的。其中铂钯主要对CO、HC起催化氧化作用,铑主要对NOx起催化还原作用。
  • 陶瓷等硬性样品制备方案-北京旭鑫盛科
    ST-E200台式颚式破碎仪是用于实验室固体样品快速制备的仪器。具有噪声低、破碎速度快,设有快速出样粒度调节装置等特点。对脆性、硬性、中硬性,硬韧性等的材料进行快速的粗破碎和预粉碎处理,例如矿石、岩心、岩石、炉渣、土壤、陶瓷,脆性材料制品,干贝壳,干海参等样品。
  • APS-100高浓度纳米粒度仪在TiC碳化钛粉体中的应用
    在碳化物基金属化合物中,除 WC-Co 外,以 TiC-Ni 为基的金属陶瓷也研究得比较成熟,其应用也很广泛,由于 TiC 的熔点(3250℃)比 WC(2630℃)高,耐磨性好,密度只有 WC 的 1/3,抗氧化性远优于 WC,可用来替代目前在切削工具工业中广泛使用的 WC-Co基金属陶瓷,很大程度降低成本,因而引起人们的极大研究兴趣,将纳米级的 TiC 粉体添加入WC-Co作为增强相,大大的提高金属陶瓷力学性能和化学稳定性。
  • 评价水蒸气氛围气中固体高分子形燃料电池PEFC用离子交换膜
    以醋酸锆、硝酸铝为原料, 柠檬酸作为络合剂, 采用溶胶- 凝胶法获得前体, 将前驱体在空气中热分解, 制备了纳米ZrO2 /A l2O3 复合陶瓷粉体. 采用XRD 考察了合成产物的结构和纯度, 分析了制备过程中原料初始浓度及前驱体热分解温度对最终产物的影响. 结果表明, 初始浓度为0􀀁 6mol /L, 热分解温度为1 200􀀂 时, ZrO2 /A l2O3 复合陶瓷粉体的粒径为30~ 41nm.
  • XRF玻璃熔片法测试特殊陶瓷中SrZrZn元素
    陶瓷主要是由粘性较高的高岭土、黏土、石英和长石等混合高温烧成而成,通过调整3者比例,可得到不同的抗电性能、耐热性能和机械性能的陶瓷。陶瓷成分组成复杂,有时加入如Sr Zr Zn等稀有元素来改变其性能,以达到SZP陶瓷的特殊用途;传统化学分析方法需要复杂的样品前处理,操作比较麻烦,性质接近的特殊元素的相互干扰无法掩蔽,而利用XRF荧光玻璃熔片法分析,样品处理简单方便,既可以消除矿物效应、粒度效应对结果的影响,又可以通过修正排除元素之间的干扰,提高了分析精度和准确度。本文使用岛津XRF-1800 波长色散X射线荧光光谱仪,建立了特殊陶瓷的分析方法,同时验证了方法的准确度和精密度。
  • 稳健的粉体、剂型激光粒度仪颗粒粒径质控评价
    各种制剂和粉体是由多种不同尺寸及粒径分布(以下简称粒度)的颗粒原料组成的固-液、固-气或液-液相混合体系。在颗粒的研制、加工及应用过程中,颗粒的粒度设计是控制制剂溶解性、界面反应速率、吸附性、贮藏稳定性、流变行为、涂布填充性能、缓释性和生物活性等的重要手段。粒度测试分析方法开发、稳健的粒度质量控制体系的建立及科学的产业链中真实的粒度信息的交换等,对于在工业企业及产业链中减少质量风险、提高产品附加值、引领绿色发展是至关重要的一环。本文以此为出发点,结合欧美克仪器有限公司(以下简称欧美克)20多年在多种工业粒度控制的经验积累,对粒度测试中的诸多影响因素进行具体评价分析,并给出改善意见,以供制剂企业参考。
  • 粒度与粒度分布如何影响粉末涂料的生产和应用
    近年来,粉末涂料以其固含量高、无挥发性有机物、生产过程能耗低、涂饰质量好等优点深受市场青睐。本文聚焦粉末涂料的生产和应用过程,探究粒度及粒度分布对产品性能的影响。
  • 岛津激光粒度仪在粉体材料中的应用
    激光粒度分析仪,是指以激光作为探测光源的粒度分析仪器,通过颗粒的衍射或散射光的空间分布(散射谱)来分析颗粒大小,已成为当今比较流行的粒度测量仪器之一,,具有测量动态范围大、测量速度快、重复性好、操作方便等优点,尤其适合测量粒度分布范围宽的固体颗粒和液体雾滴。激光粒度仪作为一种测试性能优异和适用领域极广的粒度测试仪器,已经在其他粉体加工与应用领域得到广泛的应用。激光粒度进样方式分为干法、湿法两种。湿法是利用水或其它试剂将样品颗粒分散后测量,湿法又包括微量进样池和超声循环池两种附件。超声循环池具有不同的循环速度,可提供超声以增加样品的分散性,根据样品特性自由选择,可针对样品优化分散条件;微量进样池具有不同的搅拌速度,搅拌速度均匀且样品需求量小。干法测定部件采用气旋方式样品抽吸结构,抽吸与喷射2段作用,从而出色实现样品的稳定气相分散,可实现高灵敏度、高重现性、高分辨率的测定干燥样品的粒径分布。岛津激光粒度(SALD)系列包含多款产品,主要包括SALD-2300、SALD-7500nano、IG-1000、SALD-7500和DIA-10等众多型号,适合多种粒度范围测量。除光学系统,不同机型也有相应多种规格的进样器可供选用进样器,根据样品特性可以选择湿法(微量进样池和超声循环池)和干法测试样品粒径,可以帮助客户大大提高分析速度和工作效率。
  • 锂离子电池用负极材料的粉体特性评价-粒度分布、颗粒形状
    锂离子电池(LiB)是通过锂离子在正极和负极之间移动进行充电和放电的充电电池。近年来,锂离子电池被广泛应用于智能手机和汽车等领域,在提高电池容量、延长使用寿命、降低成本和提高安全性方面开展了大量研究。电池的主要材料是正极、负极、隔膜和电解液。在构成材料中,粉体特性(粒度、颗粒形状、密度、比表面积、细孔分布等)会对电池性能造成影响,因此,需要优化各特性值。本报告为您介绍通过激光衍射式粒度分析仪和动态颗粒图像分析系统评估负极材料的案例。除本报告之外,还对比表面积和颗粒密度进行了评价。关于分析条件和结果的详情,请查阅应用新闻《锂离子电池用负极材料的粉体特性评价-比表面积、颗粒密度》。
  • 激光粒度仪对淀粉的粒度测试
    选用Winner3003A干法激光粒度仪进行测试,测量范围为0.1-300um,该仪器适用于任何干粉物料,特别是和水发生化学反应以及在液体中发生形状变化的粉料,与湿法相比具有相同的准确度和重复性。
  • 激光粒度仪对水泥粉磨过程的指导作用
    水泥是一种粉体产品。和其他粉体一样,粒度分布(简称“粒度”,水泥行业称“颗粒级配”,本文统称“粒度”或“粒度分布”)对水泥性能(比如强度、流动性、混合材的掺加比例等)有强烈影响。然而到目前为止,粒度测试技术在水泥行业的应用并不普遍。究其原因,作者以为主要有两点:(一)水泥的粒度分布较宽,测量比较困难,加上水泥不宜在水介质中测量,测量成本高;(二)水泥的生产和使用都是粗放式的,对粒度这类“微观”、深层次的问题没有去细究。随着社会的进步,人们对水泥性能的要求越来越高。例如,泵送混凝土要求强度能满足需要的前提下,流动性也足够好;环保政策要求水泥在生产过程中能源消耗要降低,混合材的添加要增加等等。在熟料指标确定的情况下,改善粉磨工艺,使水泥粒度达到较理想的目标,是水泥工业满足社会进步要求的主要途径之一。国家发改委于2006年5月发布了建材行业推荐性标准《水泥颗粒级配测定方法 激光法》[1],目前国内外激光粒度仪的技术水平也完全能够满足水泥粒度测量的需要,这些都为粒度测量技术在水泥行业的推广应用打下良好基础。鉴于目前水泥行业的研究和工程技术人员对粒度测量理论、粒度仪器以及粒度数据如何指导粉磨过程等问题还不十分了解,作者特作此文,以助推水泥行业粉磨技术的进步。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制