当前位置: 仪器信息网 > 行业主题 > >

陶瓷文物

仪器信息网陶瓷文物专题为您整合陶瓷文物相关的最新文章,在陶瓷文物专题,您不仅可以免费浏览陶瓷文物的资讯, 同时您还可以浏览陶瓷文物的相关资料、解决方案,参与社区陶瓷文物话题讨论。

陶瓷文物相关的论坛

  • 古陶瓷真伪拉曼光谱——羟基鉴定方法

    1928年C.V.拉曼实验发现,当光穿过透明介质被分子散射的光发生频率变化,这一现象称为拉曼散射。光照射到物质上发生弹性散射和非弹性散射。弹性散射的散射光是与激发光波长相同的成分。非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应。 拉曼光谱分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源与分子的振动和转动。其谱线数目、位移值和谱带强度等直接反映了分子的构成及构象信息。拉曼光谱的应用范围遍及化学、物理学、生物学和医学等各个领域,对于纯定性分析、高度定量分析和测定分子结构都有很大价值。http://www.gogochina.cn/uploadPic/news/2011/8/23/201182310221232704.jpg图:大师手绘加官图陶瓷艺术花瓶 拉曼光谱技术是一种分析技术,由于它能够获得物质的分子信息而被应用于文物的分析中,特别是拉曼光谱作为无损的分析方法,可应用于文物的原位分析。 羟基是由氢和氧两种原子组成的一价离子团(-OH),即氢氧根。字中左边的羊表示氧,右边的表示氢,读音取氢(qing)之qi,取氧(yang)之韵母ang,合起来念——“抢”。 羟基在高温下不稳定,在常温、常压地表环境下是稳定的,其在陶瓷釉面中的含量与陶瓷烧造出窑时间成正比关系。羟基是鉴定古陶瓷真伪的定性、定量物质。 羟基鉴定方法原理及优点 原理(一)我们知道陶瓷在烧造过程中会发生一系列的物理和化学变化。其中比较重要的反应之一是釉料的脱水反应。反应过程如下: 1、100~110℃吸附水开始排出。 2、110~400℃其它矿物杂质所带入的水排出。 3、400~450℃结构水开始排出。 4、800~1000℃时排水结束。 由于中国古陶瓷的烧造温度均在1200℃以上(除陶器外),同样现代仿品的成瓷温度亦均在1280℃左右。因此从理论上可以得知瓷器在烧造结束后,其釉面中不存在结构水、离子水、吸附水等。我们对新烧造的陶瓷做了大量的检测,检测结果与理论推算完全相附。 (二) 新仿品和古代真品有着本质的区别,这是问题的关键。我们如果不能正确地理解仿品与真品之间的本质区别,也就无法找到正确的鉴定方法。 我们知道陶瓷的烧造过程是一个造岩过程或者成矿过程,真品的成岩过程和仿品的成岩过程有着本质的不同: 真品与仿品的烧制过程从理论上讲是相同的,但真品具有在地表条件下长期风化和水解的过程,而仿品却没有。真品在地表环境中长期变化的过程仿品是无法做到的。也就是说从理论上讲,真品的本质是无法仿制的。(地表环境指:馆藏环境,传世环境,墓葬环境,水下环境等现有古陶瓷所处的环境。) (三) 真品在地表环境下的化学反应 真品在地表环境下其釉面将会发生如下水解反应: Si-O-R + HOH → Si-OH + R+OH-Si-O-Si + OH- → Si-OH + Si-O- H+置换R+后形成硅凝胶薄膜 以上的反应生成物中既有氢氧根(羟基)、也有结构水。 上面的反应进行的很慢。 拉曼光谱——羟基古陶瓷真伪检测鉴定法的依据和原理是:现代仿品和古代真品的成岩过程有着本质区别,而时间是造成的这种区别的根本原因,造假者无法跨越时间所产生的鸿沟。时间所造成的古陶瓷的物理、化学变化是造假者无法仿制的。基于此,古陶瓷真伪拉曼光谱——羟基鉴定法的技术研发者把古陶瓷真品在地表环境下其釉面所产生的化学反应中生成的羟基作为古陶瓷鉴定的定性及定量物质。并运用世界上最先进的激光拉曼光谱测试仪( Renishaw Micro-Raman Spectroscopy System)进行相关检测,从而做出准确而科学的鉴定结论。 摘录自瓷器中国

  • 分析仪器中的陶瓷和陶瓷金属连接电极

    分析仪器中的陶瓷和陶瓷金属连接电极

    陶瓷目前在分析仪器的应用主要有四极杆上的陶瓷固定环,陶瓷金属连接电极。陶瓷固定环对陶瓷的表面精度和公差范围要求很高,目前国内厂商的加工能力很难满足要求。陶瓷金属连接电极主要是通过金属和陶瓷的钎焊实现,对气密性和连接强度要求高。http://ng1.17img.cn/bbsfiles/images/2013/06/201306261050_447775_2751433_3.jpg

  • 陶瓷+金属焊接

    近期公司计划开发新产品---氧化锆陶瓷管+金属焊接。。。我们需要焊接的陶瓷是8Y氧化锆陶瓷,密度等比氧化铝陶瓷大很多,外露(焊接部位)部份估计温度也有1400℃左右,哪位在做或有朋友在做的,请留下联系方式或联络我,谢谢。

  • 陶瓷的消解

    玻璃用HF比较好消解,但陶瓷我用HF消解了几天没没有什么反应(用电加热板),不知道大家有什么好方法消解陶瓷?

  • 陶瓷前处理?

    请教各位以下样品前处理方法,使用火焰AAS测试其中铅镉含量PCB板,可能材质为玻璃纤维电子元件,可能为陶瓷的,这种陶瓷一般由钛酸钡,钛酸鋅,氧化鋅构成。

  • 特种陶瓷分析

    我公司准备开发特种陶瓷无油轴承产品,用什么仪器能分析特种陶瓷成分?请各位版友大力推荐。

  • 陶瓷电路板的诞生

    随着全球环保意识高涨,节能省电已经成为一种必然的趋势,LED产业是今年来发展潜力最好备受瞩目的行业之一。但是由于LED散热问题导致一个潜在的技术问题“LED路灯严重光衰”严重制约了LED行业的发展,LED发光时所产生的热能若无法及时导出,将会使LED结面温度过高,进而影响产品生产周期、发光效率、稳定性。而LED路灯光衰问题就是受到温度影响,对于散热基板鳍片、散热模块的设计煞费苦心以期获得良好的散热效果,但是由于LED路灯常用语户外场合,为了防气候侵蚀需要加烤漆保护,这样又成为散热环节的阻碍,还是造成了温度散热不良,而产生光衰问题。LED路灯的光衰问题导致许多安装不到一年的LED路灯无法通过使用单位的认证验收。研究表明,通常LED高功率产品输入功率约为20%能转换成光,剩下80%的电能均转换为热能。因此,要提升LED的发光效率,LED系统的热散管理与设计便成为了一重要课题。通过对LED散热问题的研究,发现要解决散热问题,必须从最基本的材料上着手,从根本上由内而外解决高功率LED热源问题。 为解决上述问题而研发了一种以氧化铝为主要材料,加入导热性能优良的石墨粉、长石粉等材料制作成散热效果好、热传导率高、抗氧化性强、操作环境温度相对较 低、工艺过程简单的陶瓷LED电路板。技术方案是一种陶瓷PCB电路板的制作方法,包括材料配制、磨碎、混合、成形、烘烤制作成陶瓷板,然后在陶瓷板上进行线路设计、以刻蚀方式在陶瓷板上制备 出线路完成陶瓷PCB线路板,其特征在于,其中所述原材料配制为组分一,将氧化铝、石墨粉、和长石粉按照100 10-15 26-30重量比进行配制,组分二为电气石、含有稀有元素 的矿石至少一种成分,加入的重量为组分一总重量的4% -6%;混合将上述准备的原材料放置于研磨机,进行破碎及研磨成粉末,并均勻的混合;在加水搅拌之前进行一道除磁性成分工序;然后进行成形;干燥将成形物放置阴凉处自动干燥;所述烘烤将成形干燥的成 形物放置于高温炉内,在高温炉内充满惰性气体环境下以1400 1700°C高温烧结50-70分 钟;烘烤之后进行磨光;覆铜处理在磨光的成形物表面,将高绝缘性的氧化铝陶瓷基板的单面或双面覆上铜金属后,经由高温1065 1085°C的环境加热,使铜金属因高温氧化、扩散与氧化铝材质产生共晶熔体,使铜金属与陶瓷基板黏合,形成陶瓷复合金属基板;最后刻蚀线路制成陶瓷PCB电路板。所述除磁性成分工序是指利用磁性物体在粉末中移动,完全消除粉末中带磁性的成分,将带有磁性成分的原材料粉末全部在磁性处理装置中脱磁处理。所述成形是指将搅拌好的材料放入到成形框架中,制造成为均勻大小的成形物。所述烘烤工序中,将所述成形物中的含水率控为0. 2%以下。在完成了制备陶瓷PCB电路板之后,在线路表面附上绝缘油。本发明的有益效果是该方法选用能让陶瓷PCB电路板具有较好的导热率,在陶瓷板上面附加铜烧结为共晶熔体,形成陶瓷复合金属基板。将LED光源直接封装在陶瓷散 热基板上,经由LED晶粒散热至陶瓷电路板,解决了LED大功率光源在安装过程中产生热阻导致光衰的问题。

  • 陶瓷积分球

    各位朋友,有谁知道陶瓷积分球有哪些优缺点,或关于陶瓷积分球的资料,万分感谢!

  • 陶瓷测试温度的影响

    陶瓷铅镉溶出测试时温度的影响有多大?是否有影响??之前做了个陶瓷比对测试,fail了。其间,没有陶瓷房,也不知道具体的温度是多少,测试环境为在一个房间内放个试剂架(可以关门的那种,门是玻璃的),把样品放在里面进行测试,然后再在外面盖上白布,以遮挡灯光,房间开了空调,为22摄氏度。有个没有校准过的温度表,上面显示温度是21.5(三个温度表三个不一样的温度),跟上面反映过,上面表示晚上的室温大概就在22左右。结果出来了,跟比对方的结果差距比较大。在实际测试过程中,白天和晚上的温度波动是比较大的,而且也不清楚实际的具体温度是多少,最后老大们认为的原因是温度对结果没影响,fail是人的原因,没做好。http://simg.instrument.com.cn/bbs/images/default/em09504.gif

  • 陶瓷基板与铝基板的比较

    陶瓷基板与铝基板的比较

    一、什么是陶瓷基板、铝基板?[img=,571,233]http://ng1.17img.cn/bbsfiles/images/2017/09/201709181545_07_3305913_3.jpg[/img]二、陶瓷基板和铝基板的组成及工作原理如何?[img=,569,147]http://ng1.17img.cn/bbsfiles/images/2017/09/201709181545_06_3305913_3.jpg[/img]三、陶瓷基板和铝基板的参数对比[img=,570,301]http://ng1.17img.cn/bbsfiles/images/2017/09/201709181545_05_3305913_3.jpg[/img]四、陶瓷基板和铝基板的性能比较[img=,570,545]http://ng1.17img.cn/bbsfiles/images/2017/09/201709181545_04_3305913_3.jpg[/img]五、陶瓷基板和铝基板的优势比较[img=,570,544]http://ng1.17img.cn/bbsfiles/images/2017/09/201709181545_03_3305913_3.jpg[/img]六、陶瓷基板和铝基板的应用领域列举[img=,571,317]http://ng1.17img.cn/bbsfiles/images/2017/09/201709181545_02_3305913_3.jpg[/img]七、陶瓷基板与铝基板产品图片[img=,524,259]http://ng1.17img.cn/bbsfiles/images/2017/09/201709181545_01_3305913_3.jpg[/img]

  • milestone主控罐(陶瓷管)的作用与保护

    陶瓷管是一根中空的陶瓷制品,外面覆盖一层聚四氟涂层。陶瓷管的作用是将温度传感器插在里面,陶瓷管一端浸泡酸液里,探测溶液温度。陶瓷起到了密封、耐压的作用,聚四氟涂层起到了耐酸、耐碱的作用。陶瓷管一旦断裂,主控罐压力将会保持不住,导致酸气外泄,温度不能按照程序设定升温,会导致其它消解罐温度失控而泻压。陶瓷管十分脆弱,一旦摔倒地上或者被什么较重的物品砸到了,必须认真检查陶瓷管是否断了。因为陶瓷管外覆盖一层聚四氟,所以并不会断成两段,如果发现陶瓷管上有一条白色的印迹,陶瓷管就可能是断了。

  • 陶瓷样品消解方式

    想请教大家遇到陶瓷,玻璃这些样品如何进行消解?微波消解仪是不是消解不完全?

  • 纤维之十一------陶瓷纤维

    纤维之十一------陶瓷纤维

    陶瓷纤维是一种纤维状轻质耐火材料,具有重量轻、耐高温、热稳定性好、导热率低、比热小及耐机械震动等优点,因而在机械、冶金、化工、石油、交通运输、船舶、电子及轻工业部门都得到了广泛的应用,在航空航天及原子能等尖端科学技术部门的应用亦日益增多.发展前景十分看好。陶瓷纤维在我国起步较晚,但一直保持着持续发展的势头,生产能力不断增加,并实现了产品系列化,我国已发展成为世界陶瓷纤维生产大国。陶瓷纤维在中国的发展:到目前为止,中国国内现在大大小小的陶瓷纤维生产厂家共有二百多家,但分类温度为1425℃(含锆纤维)及以下的陶瓷纤维的生产工艺,只分为甩丝毯与喷吹毯两种。普通陶瓷纤维又称硅酸铝纤维,因其主要成分之一是氧化铝,而氧化铝又是瓷器的主要成分,所以被叫做陶瓷纤维。主要用途1、各种隔热工业窑炉的炉门密封、炉口幕帘。2、高温烟道、风管的衬套、膨胀的接头。3、石油化工设备、容器、管道的高温隔热、保温。4、高温环境下的防护衣、手套、头套、头盔、靴等。5、汽车发动机的隔热罩、重油发动机排气管的包裹、高速赛车的复合制动摩擦衬垫。6、输送高温液体、气体的泵、压缩机和阀门用的密封填料、垫片。7、高温电器绝缘。8、防火门、防火帘、灭火毯、接火花用垫子和隔热覆盖等防火缝制品。9、航天、航空工业用的隔热、保温材料、制动摩擦衬垫。10、深冷设备、容器、管道的隔热、包裹。11、高档写字楼中的档案库、金库、保险柜等重要场所的绝热、防火隔层,消防自动防火帘。陶瓷纤维是一种新型纤维状轻质耐火材料, 应用领域很广,主要用于金属基和陶瓷基复合材料和隔热功能材料,如应用于航空、航天和其它要求耐高温和较好力学性能的部件, 包括烧蚀材料如宇航器重返大气层的隔热罩、火箭头锥体、喷嘴、排气口和隔板等。此外还可应用于熔融金属或高温气液体的过滤材料和耐极高温的绝热材料等。http://ng1.17img.cn/bbsfiles/images/2015/06/201506041409_548791_2974654_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/06/201506041409_548790_2974654_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/06/201506041409_548792_2974654_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/06/201506041409_548793_2974654_3.png

  • 【求助】-陶瓷的消解

    玻璃可以用HF搞定,但陶瓷我用HF溶解了好几天也没什么反应(用电加热板),不知道大家有什么办法消解的?

  • 陶瓷产品消解

    有没有哪位大侠做过陶瓷产品有害元素分析的,介绍点样品消解的经验。我按照GB/T26125-2011的方法进行微波消解,感觉消解效果太差了,几乎没怎么溶解。想寻求点其他的好的方法,如能得到大家的帮助,万分感谢。

  • 求购陶瓷管!

    我想买一根陶瓷管,但是并不是一般形状的,请问哪边可以定做啊![em53] [em53]

  • 陶瓷压力传感器原理及应用

    2kV,输出信号强,长期稳定性好。高特性,低价格的陶瓷传感器将是压力传感器的发展方向,在欧美国家有全面替代其它类型传感器的趋势,在中国也越来越多的用户使用陶瓷传感器替代扩散硅压力传感器。

  • 请教消解玻璃陶瓷的设备

    经过大侠们的帮忙,现在我知道消解玻璃陶瓷要用HF或碱热熔,估计用HF要快,消解后通过加热把HF除去或加硼酸洛合F离子可进入玻璃进样系统测试。但消解玻璃陶瓷还可以用普通的玻璃仪器进行加热吗?该用什么仪器盛放来加热?(我消解用的是电加热板)

  • 低介电常数微波介质陶瓷基覆铜板的研究

    微波介质陶瓷是指应用于微波(主要是300MHz~30GHz频段)电路中作为介质材料并完成一种或多种功能的陶瓷、在现代通信中被用作谐振器、滤波器、介质基片、介质天线、介质波导回路等,应用于微波电路的介质陶瓷除了必备的机械强度、化学稳定性之外,还应满足如下介电特性,微波频率下大的相对介电常数C^2高Qf值以及接近零的频率温度系数微波介质陶瓷可以按照其组成系统,介质特性及应用领域加以分类,较为常见的是按其介电常数的大小来分类,可分为低介电常数类(20~40);中介电常数类(40~80);高介电常数(>80)。低介电微波陶瓷主要应用于微波基板、卫星通讯以及军事应用等通讯系统中。目前研究的较多的低介微波陶瓷主要是以AL2O3和AIN的应用,低介微波陶瓷基覆铜板用绝缘散热材料的理想性能是既要导热性能好,散热好,还要在高频微波作用下产生损耗尽量小。BeO陶瓷是目前陶瓷基覆铜板中绝缘散热的绝佳材料,但由于BeO粉料具有毒性,在制造过程中需要采取严格的防护措施,且在美日等发达国家已禁止生产BeO陶瓷。因此研制替代BeO陶瓷的覆铜板用新型绝缘散热材料已迫在眉睫。AIN陶瓷是一种散热性能较好、无毒的陶瓷材料,其热导率理论值为320W/(mK),与BeO陶瓷热导率的理论值370 W/(mK)相近,并且已研制出热导率在200 W/(mK)以上的AIN陶瓷材料。所以AIN陶瓷材料被认为是最有希望替代BeO陶瓷的绝缘散热材料。 由于BN的介电常数较小,但AIN陶瓷中加入了h-BN,根据复相材料的介电常数公式计算,将h-BN加入到AIN中,还可以降低AIN陶瓷介电常数。本文旨在研制出满足陶瓷基覆铜板使用要求的高热导率、低介电损耗AIN及BN-AIN基陶瓷材料,以替代BeO陶瓷材料。 因为BN,AIN均为共价化合物,难以烧结,为了获得高致密度陶瓷,需添加烧结助剂。烧结助剂的选择应从两个方面考虑,其一,能形成低熔物相,实现液相烧结,促进致密;其二,能与AIN中的氧杂质反应,使AIN晶格净化。基于此两点,选用Y2O3为烧结助剂。因为Y2O3与AIN表面的氧化铝形成Y3AI5O12,Y3AI5O12的液相温度为1760℃,这样既促进了烧结又净化了晶格。但是,若烧结助剂分散不均匀,也很难烧制出结构致密的陶瓷材料。通过化学工艺,将BN包裹到AlN粉体表面,从而实现将BN均匀分散到AIN基体中的目的,并且利用包裹型复合粉体,制备出显微结构均匀的复相陶瓷,其热导率为78.1 W/(mK),在Ka波段介电常数为7.2、介电常数最小值为13×10-4。通过对AIN及BN-AIN基复相陶瓷在Ka波段的微波特性研究,发现AIN基陶瓷材料的介电常数随频率变化的幅度很小,但材料的介电损耗随频率的变化较大,并且在该区间内存在最大值和最小值。

  • 请教专家:ROHS对陶瓷中的铅是否豁免?

    ROHS豁免条款中有一条是lead in electronic ceramic parts(e.g. piezoelectronic devices),大部分机构都将其中文译为电子陶瓷产品中的铅,但哪些属于电子陶瓷?是不是电路板上的含陶瓷的元件都属于电子陶瓷?比如碳膜电阻,瓷片电容等等?急待回答 ,谢谢

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制