当前位置: 仪器信息网 > 行业主题 > >

特异性

仪器信息网特异性专题为您整合特异性相关的最新文章,在特异性专题,您不仅可以免费浏览特异性的资讯, 同时您还可以浏览特异性的相关资料、解决方案,参与社区特异性话题讨论。

特异性相关的论坛

  • CrossMAb技术:推动双特异性及多特异性抗体治疗的创新与应用

    [font=宋体][font=宋体]随着生物制药技术的快速发展,抗体疗法已成为治疗多种疾病的有力手段。特别是双特异性抗体([/font][font=Calibri]bsAbs[/font][font=宋体])和多特异性抗体([/font][font=Calibri]msAbs[/font][font=宋体]),因其能够同时靶向多个生物学标志物,展现出了独特的治疗潜力。然而,这些抗体的开发面临着重重挑战,尤其是在确保正确的重链和轻链配对方面。本文将基于一篇关于[/font][font=Calibri]CrossMAb[/font][font=宋体]技术的综述文章,探讨该技术在构建双特异性及多特异性抗体中的应用及其潜力。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]CrossMAb[/font][font=宋体]技术[/font][/font][font=宋体]最初由[/font][font=宋体][font=Calibri]Roche[/font][/font][font=宋体]等公司开发,[/font][font=宋体]是一种[/font][font=宋体]新型[/font][font=宋体]的抗体工程技术,其核心在于[/font][font=宋体]利用[/font][font=宋体]免疫球蛋白[/font][font=宋体]结构[/font][font=宋体]域交叉来实现正确的轻链配对。[/font][font=宋体]此外,该技术还可与[/font][font=宋体][font=Calibri]knobs-into-holes[/font][/font][font=宋体]([/font][font=宋体][font=Calibri]KiH[/font][/font][font=宋体])[/font][font=宋体]技术或静电[/font][font=宋体]转向[/font][font=宋体]等[/font][font=宋体]正确的[/font][font=宋体]重链配对技术相结合,[/font][font=宋体]产生各种不同形式的双特异性抗体,[/font][font=宋体][font=宋体]极大地提高了双特异性[/font][font=Calibri]IgG[/font][font=宋体]抗体的生成效率。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]自[/font][font=Calibri]2011[/font][font=宋体]年[/font][font=Calibri]CrossMAb[/font][font=宋体]技术首次被[/font][/font][font=宋体]提出[/font][font=宋体]以来,它已被证明是一种多功能的抗体工程技术,能够[/font][font=宋体]开发出[/font][font=宋体]多种[/font][font=宋体]形式的[/font][font=宋体][font=宋体][url=https://cn.sinobiological.com/resource/antibody-technical/bispecific-antibody][b]双特异性抗体[/b][/url],包括异源二聚体[/font][font=Calibri]/[/font][font=宋体]非对称双价、三价、四价[/font][/font][font=宋体]的[/font][font=宋体]双特异性抗体以[/font][font=宋体]和特异性性[/font][font=宋体][font=宋体]抗体。这些双特异性抗体可以从任何现有的抗体对中通过域交叉获得,无需识别共同的轻链、翻译后加工[/font][font=Calibri]/[/font][font=宋体]体外化学组装或引入一组强制正确轻链配对的突变。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]CrossMAb[/font][font=宋体]技术的一个关键优势在于其能够[/font][/font][font=宋体]开发[/font][font=宋体][font=宋体]针对特定疾病的双特异性抗体。例如,针对肿瘤治疗的双特异性抗体[/font][font=Calibri]vanucizumab[/font][font=宋体]([/font][font=Calibri]RG7221[/font][font=宋体]),它能够同时靶向血管内皮生长因子[/font][/font][font=宋体][font=Calibri]A[/font][/font][font=宋体][font=宋体]([/font][font=Calibri]VEGF-A[/font][font=宋体])和血管生成素[/font][font=Calibri]-2[/font][font=宋体]([/font][font=Calibri]Ang-2[/font][font=宋体]),在临床前研究中显示出强大的抗肿瘤效果。此外,该技术还被用于开发针对眼部疾病的[/font][font=Calibri]VEGF-Ang-2 CrossMAb RG7716[/font][font=宋体],以及针对实体瘤的[/font][font=Calibri]CEA TCB[/font][font=宋体]([/font][font=Calibri]RG7802[/font][font=宋体])等。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]除了在双特异性抗体领域的应用,[/font][font=Calibri]CrossMAb[/font][font=宋体]技术还[/font][/font][font=宋体]可用于生成其他类型的抗体[/font][font=宋体][font=宋体]。例如,通过该技术可以生成功能性的单价抗体([/font][font=Calibri]MoAb/MonoMAb[/font][font=宋体])和二聚体[/font][font=Calibri]MoAb[/font][font=宋体]([/font][font=Calibri]MoAb-dimer, DuoMAb[/font][font=宋体])。此外,还可以构建三特异性抗体,如针对[/font][font=Calibri]HER[/font][font=宋体]家族受体的[/font][font=Calibri]panHER[/font][font=宋体]家族[/font][font=Calibri]DAF-CrossMAb[/font][font=宋体]抗体,以及四特异性抗体,如针对[/font][font=Calibri]EGFR/HER1[/font][font=宋体]、[/font][font=Calibri]HER2[/font][font=宋体]、[/font][font=Calibri]HER3[/font][font=宋体]和[/font][font=Calibri]VEGF[/font][font=宋体]的[/font][font=Calibri]FL518[/font][font=宋体]和[/font][font=Calibri]CRTB6[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]CrossMAb[/font][font=宋体]技术的成功不仅在于其能够生成具有特定生物学功能的抗体,还在于其能够通过标准化的工作流程和典型的上下游处理产生高质量的[/font][/font][font=宋体]抗体[/font][font=宋体][font=宋体]产品。这些抗体在规模、产量、糖基化、稳定性和质量方面与传统的[/font][font=Calibri]IgG[/font][font=宋体]抗体相当。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]总之,[/font][font=Calibri]CrossMAb[/font][font=宋体]技术为双特异性及多特异性抗体的开发提供了一种强大且灵活的平台。随着该技术的不断发展和优化,将有更多基于[/font][font=Calibri]CrossMAb[/font][font=宋体]技术的抗体进入临床试验阶段,为患者带来[/font][/font][font=宋体]治疗福音[/font][font=宋体][font=宋体]。然而,尽管[/font][font=Calibri]CrossMAb[/font][font=宋体]技术已经取得了显著的进展,但在实际应用中仍可能遇到产量或纯度不足等问题,需要进一步的优化和改进。未来的研究将继续探索[/font][font=Calibri]CrossMAb[/font][font=宋体]技术的潜力,以满足临床治疗的需求。[/font][/font][font=宋体] [/font][font=宋体]本篇文章由[url=https://cn.sinobiological.com/][b]义翘神州[/b][/url]进行整理,同时提供[url=https://cn.sinobiological.com/services/bispecific-antibody-service][b]双特异性抗体生产服务[/b][/url],详情可点击了解!参考文献:[/font][font=宋体][font=Calibri]Klein C, Schaefer W, Regula JT. The use of CrossMAb technology for the generation of bi- and multispecific antibodies [published correction appears in MAbs. 2018 Nov 13 11(1):217]. MAbs. 2016 8(6):1010-1020. doi:10.1080/19420862.2016.1197457[/font][/font]

  • 【分享】出现非特异性扩增带

    PCR扩增后出现的条带与预计的大小不一致,或大或小,或者同时出现特异性扩增带 与非特异性扩增带。非特异性条带的出现,其原因:一是引物与靶序列不完全互补、 或引物聚合形成二聚体。二是Mg2+离子浓度过高、退火温度过低,及PCR循环次数 过多 有关。其次是酶的质和量,往往一些来源的酶易出现非特异条带而另一来源的酶 则不出 现,酶量过多有时也会出现非特异性扩增。其对策有:①必要时重新设计引 物。②减低 酶量或调换另一来源的酶。③降低引物量,适当增加模板量,减少循环次 数。④适当提 高退火温度或采用二温度点法(93℃变性,65℃左右退火与延伸)。

  • 【分享】增加PCR特异性

    1、引物设计 细心地进行引物设计是PCR中最重要的一步。理想的引物对只同目的序列两侧的单一序列而非其他序列退火。设计糟糕的引物可能会同扩增其他的非目的序列。下面的指导描述了一个可以增加特异性的引物所具有的令人满意的特点:1.典型的引物18到24个核苷长。引物需要足够长,保证序列独特性,并降低序列存在于非目的序列位点的可能性。但是长度大于24核苷的引物并不意味着更高的特异性。较长的序列可能会与错误配对序列杂交,降低了特异性,而且比短序列杂交慢,从而降低了产量。2.选择GC含量为40%到60%或GC含量映像模板GC含量的引物。3.设计5'端和中间区为G或C的引物。这会增加引物的稳定性和引物同目的序列杂交的稳定性。4.避免引物对3'末端存在互补序列,这会形成引物二聚体,抑制扩增。5.避免3'末端富含GC。设计引物时保证在最后5个核苷中含有3个A或T。6.避免3'末端的错误配对。3'端核苷需要同模板退火以供聚合酶催化延伸。7.避免存在可能会产生内部二级结构的序列,这会破坏引物退火稳定性。目的序列上并不存在的附加序列,如限制位点和启动子序列,可以加入到引物5'端而不影响特异性。当计算引物Tm值时并不包括这些序列,但是应该对其进行互补性和内部二级结构的检测。有时候,对于引物设计仅了解有限的序列信息。比如,如果仅知道氨基酸序列,可以设计兼并引物。兼并引物是指代表编码单个氨基酸所有不同碱基可能性的不同序列的混合物。为了增加特异性,可以参考密码子使用表,根据不同生物的碱基使用偏好,减少兼并性。次黄嘌呤可以同所有的碱基配对,降低引物的退火温度。不要在引物的3'端使用兼并碱基,因为3'端最后3个碱基的退火足以在错误位点起始PCR。使用较高的引物浓度(1μM到3μM),因为许多兼并混合物中的引物不是特异性针对目的模板。

  • 双特异性抗体的优缺点介绍

    [font=宋体][font=宋体]双特异性抗体是含有两种抗原结合位点的抗体,可结合不同表位(通常在两个抗原上)。一般来说,一个抗原结合位点特异性结合靶细胞表面的抗原,而另一个则结合效应细胞表面上的触发分子,例如一种[/font][font=Calibri]Fc[/font][font=宋体]γ[/font][font=Calibri]R[/font][font=宋体]或[/font][font=Calibri]CD3/T[/font][font=宋体]细胞受体复合物。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]双特异性抗体可以改变效应细胞对其自然靶标的特异性,并使其重定向,杀死它原本会忽略的靶标。不同的细胞毒性细胞表达不同的触发分子(受体)。因此,通过改变靶标和效应结合域的特异性,可针对大多数类型的靶细胞产生多种效应应答。或者,通过特异性结合血清免疫球蛋白,可以实现全范围的效应功能(即[/font][font=Calibri]ADCC[/font][font=宋体]、吞噬作用、补体激活和延长血清半衰期)。[/font][/font][font=宋体] [/font][font=宋体]近日,市面上出现了用于治疗用途的两种双特异性抗体。由于其独特的作用机制,双特异性抗体受到了广泛的关注,越来越多的双特异性抗体不仅用于癌症研究,也用于其他疾病的临床试验。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]双特异性抗体的优缺点:[/b][/font][font=宋体]优势:[/font][font=宋体]①双特异性抗体将效应细胞直接靶向肿瘤细胞,增强其细胞毒性。[/font][font=宋体]②双特异性抗体可以同时识别两种分子,提高了抗体的选择性和功能性亲和力,改善了药物的安全性和有效性。[/font][font=宋体]③与两种单克隆抗体药物联合用药治疗相比,双特异性抗体药物减少了开发和临床试验成本。[/font][font=宋体] [/font][font=宋体]与单克隆抗体药物相比,双抗药物也存在不足之处,主要表现在:[/font][font=宋体]①存在重链、轻链错配现象,制备工艺难度高[/font][font=宋体]②双抗并非天然结构,存在使用过程中产生抗药物抗体的可能。[/font][font=宋体] [/font][font=宋体][b]双特异性抗体的制备方法:[/b][/font][font=宋体][font=宋体]制备[url=https://cn.sinobiological.com/resource/antibody-technical/bispecific-antibody][b]双特异性抗体[/b][/url],科学界同仁已开发了诸多解决方案。杂交[/font][font=Calibri]-[/font][font=宋体]杂交瘤法(也称为四源杂交瘤)是最早用于制备双特异性抗体的技术。基于两种不同杂交瘤细胞系的体细胞融合,表达所需特异性的鼠[/font][font=Calibri]IgG[/font][font=宋体]。然而,这种方法制备的功能性双特异性抗体占比低,为后续的抗体纯化和质控带来了巨大的挑战。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]通过使用分子克隆技术,双特异性[/font][font=Calibri]IgG[/font][font=宋体]抗体由同一细胞系表达的两条不同重链和轻链组成。双特异性抗体的制备需要至少两个用于异二聚化重链的质粒和一个用于公共轻链的质粒。如果使用两个不同的轻链,则需要两个轻链质粒。一般建议[/font][font=Calibri]2[/font][font=宋体]个单独的质粒上表达[/font][font=Calibri]HC[/font][font=宋体]和[/font][font=Calibri]LC[/font][font=宋体],因为调整质粒比率是一种简单有效的方法。随后,通常要经历复杂的过程从异质稳定转染池中选择最理想的克隆细胞系,以用于大规模抗体生产。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]与稳定转染相比,瞬时转染无需将重组[/font][font=Calibri]DNA[/font][font=宋体]整合至宿主基因组中,可以在数天内快速得到结果。人胚肾细胞([/font][font=Calibri]HEK293[/font][font=宋体])可用于双抗的瞬时表达,适合应用于双抗药物开发的早期阶段。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多详情可以查看:[/font][font=Calibri]https://cn.sinobiological.com/resource/antibody-technical/bispecific-antibody[/font][/font]

  • 增加RT-PCR特异性的办法

    第一链cDNA合成的起始可以使用三种不同的方法,各种方法的相对特异性影响了所合成cDNA的量和种类。随机引物法是三种方法中特异性最低的。引物在整个转录本的多个位点退火,产生短的,部分长度的cDNA。这种方法经常用于获取5‘末端序列及从带有二级结构区域或带有逆转录酶不能复制的终止位点的RNA模板获得cDNA。为了获得最长的cDNA,需要按经验确定每个RNA样品中引物与RNA的比例。随机引物的起始浓度范围为50到250ng每20μl反应体系。因为使用随机引物从总RNA合成的cDNA主要是核糖体RNA,所以模板一般选用poly(A)+RNA。Oligo(dT)起始比随机引物特异性高。它同大多数真核细胞mRNA 3’端所发现的poly(A)尾杂交。因为poly(A)+RNA大概占总RNA的1%到2%,所以与使用随机引物相比,cDNA的数量和复杂度要少得多。因为其较高的特异性,oligo(dT)一般不需要对RNA和引物的比例及poly(A)+选择进行优化。建议每20μl反应体系使用0.5μg oligo(dT)。oligo(dT)12-18适用于多数RT-PCR。ThermoScript RT-PCR System提供了oligo(dT)20,因为其热稳定性较好,适用于较高的保温温度。基因特异性引物(GSP)对于逆转录步骤是特异性最好的引物。GSP是反义寡聚核苷,可以特异性地同RNA目的序列杂交,而不象随机引物或oligo(dT)那样同所有RNA退火。用于设计PCR引物的规则同样适用于逆转录反应GSP的设计。GSP可以同与mRNA3‘最末端退火的扩增引物序列相同,或GSP可以设计为与反向扩增引物的下游退火。对于部分扩增对象,为了成功进行RT-PCR,需要设计多于一个反义引物,因为目的RNA的二级结构可能会阻止引物结合。建议在20μl的第一链合成反应体系中使用1pmol反义GSP。提高逆转录保温温度为了充分利用GSP特异性的全部优点,应该使用有较高热稳定性的逆转录酶。热稳定逆转录酶可以在较高温度保温以增加反应严谨性。比如,如果一个GSP退火温度为55℃,那么如果使用AMV或M-MLV在低严谨性的37℃进行逆转录,GSP所带有的特异性就没有完全利用。然而SuperScripⅡ和ThermoScript可以在50℃或更高进行反应,这就会消除较低温度时产生的非特异性产物。为获得最大的特异性,可以将RNA/引物混合物直接从65℃变性温度转移到逆转录保温温度,并加入预热的2×反应混合液(cDNA合成热启动)。这有助于防止低温时分子间碱基配对。使用PCR仪可以简化RT-PCR所需的多种温度转换。http://www.biomart.cn/upload/asset/2009/03/27/1237778966.gif图 逆转录温度对RT-PCR特异性的影响使用ThermoScriptTM和设计用来同人DNA聚合酶ε mRNA退火的GSP,由1μg Hela RNA合成cDNA。ThermoscriptTM加入到预热的反应混合液中,使用Platinum Taq DNA聚合酶对1/10的cDNA进行35个循环的PCR。减少基因组DNA污染RT-PCR所遇到的一个潜在的困难是RNA中沾染的基因组DNA。使用较好的RNA分离方法,如Trizol Reagent,会减少RNA制备物中沾染的基因组DNA。为了避免产生于基因组DNA的产物,可以在逆转录之前使用扩增级的DNaseⅠ对RNA进行处理以除去沾染的DNA。将样品在2.0mM EDTA中65℃保温10分钟以终止DNaseⅠ消化。EDTA可以螯合镁离子,防止高温时所发生的依赖于镁离子的RNA水解。为了将扩增的cDNA同沾染的基因组DNA扩增产物分开,可以设计分别同分开的外显子退火的引物。来源于cDNA的PCR产物会比来源于沾染的基因组DNA的产物短。另外对每个RNA模板进行一个无逆转录的对照实验,以确定一个给定片段是来自基因组DNA还是cDNA。在无逆转录时所得到的PCR产物来源于基因组。

  • 双特异性抗体:定义、种类及其优势

    [font=宋体][font=宋体]双特异性抗体是含有[/font][font=Calibri]2[/font][font=宋体]种特异性抗原结合位点的人工抗体,能在靶细胞和功能分子[/font][font=Calibri]([/font][font=宋体]细胞[/font][font=Calibri])[/font][font=宋体]之间架起桥梁应,激发具有导向性的免疫反应,是基因工程抗体的一种,现已成为抗体工程领域的热点,在肿瘤的免疫治疗中具有广阔的应用前景。[/font][/font][font=宋体] [/font][b][font=宋体]双特异性抗体类型:[/font][/b][font=宋体][font=宋体]由于抗体的模块化结构,目前已经产生了[/font][font=Calibri]100[/font][font=宋体]多种不同的双特异性抗体形式。这些形式在许多方面均有不同,包括它们的分子量、抗原结合位点的数量、不同结合位点之间的空间关系和药代动力学半衰期等。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]重组双特异性抗体可分为两种类型:具有[/font][font=Calibri]Fc[/font][font=宋体]区的双特异性抗体和无[/font][font=Calibri]Fc[/font][font=宋体]区的双特异性抗体。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]具有[/font][font=Calibri]Fc[/font][font=宋体]区的双特异性抗体保留[/font][font=Calibri]Fc-[/font][font=宋体]介导的效应功能,例如[/font][font=Calibri]CDC[/font][font=宋体]和[/font][font=Calibri]ADCC[/font][font=宋体]。此类抗体包括[/font][font=Calibri]"knob into hole" IgG[/font][font=宋体]、[/font][font=Calibri]crossMab[/font][font=宋体]、[/font][font=Calibri]ortho-Fab IgG[/font][font=宋体]、[/font][font=Calibri]DVD IgG[/font][font=宋体]、[/font][font=Calibri]two in one IgG[/font][font=宋体]、[/font][font=Calibri]IgG-scFv[/font][font=宋体]和[/font][font=Calibri]scFv2-Fc[/font][font=宋体]等。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]无[/font][font=Calibri]Fc[/font][font=宋体]区的双特异性抗体缺乏[/font][font=Calibri]Fc-[/font][font=宋体]介导的效应功能。然而,相较于类[/font][font=Calibri]IgG[/font][font=宋体]抗体,较小尺寸的抗体具有更好的肿瘤组织渗透性。在这种形式中,每个亲本单克隆抗体的可变区和多肽([/font][font=Calibri]linker[/font][font=宋体])均被克隆,并形成单链双特异性抗体。这些双特异性抗体有多种形式,包括[/font][font=Calibri]tandem scFvs[/font][font=宋体]、单链双抗体、[/font][font=Calibri]TandAbs[/font][font=宋体]、[/font][font=Calibri]DART[/font][font=宋体]、 [/font][font=Calibri]dock-and-lock[/font][font=宋体]([/font][font=Calibri]DNL[/font][font=宋体])以及纳米抗体等。[/font][/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体]双特异性抗体(双抗)相对于单克隆抗体具有以下优势:[/font][/b][font=宋体] [/font][font=宋体]①特异性增强:双抗具有两个抗原结合位点,可以同时结合两种不同的特异性表位或目的蛋白,因此其特异性更强。[/font][font=宋体]②杀伤肿瘤细胞效率提高:双抗可以将免疫细胞募集至肿瘤细胞周围,通过重新定向免疫细胞,增强对肿瘤的杀伤力。同时,双抗可以阻断两种不同的信号通路,从而增强细胞杀伤毒性。[/font][font=宋体]③降低副作用:双抗与两种不同的细胞表面抗原结合后,潜在增加结合特异性,降低脱靶等引起的副作用。[/font][font=宋体][font=宋体]④提高药物经济学效益:双抗的治疗效果可以达到普通抗体的[/font][font=Calibri]100-1000[/font][font=宋体]倍,使用剂量最低可降为原来的[/font][font=Calibri]1/2000[/font][font=宋体],显著降低药物治疗成本,提高了市场空间。[/font][/font][font=宋体]⑤适应症更广泛:双抗在组织渗透率、杀伤肿瘤细胞效率、脱靶率和临床适应症等指标方面也具有较强的竞争力,临床应用优势显著。[/font][font=宋体]综上所述,双特异性抗体具有更强的特异性、靶向性,可以提高杀伤肿瘤细胞效率并降低副作用,同时还能降低治疗成本,提高药物的市场空间。[/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供[url=https://cn.sinobiological.com/services/bispecific-antibody-service][b]双特异性抗体制备服务[/b][/url],服务内容包含:基因合成及密码子优化[/font][font=宋体]→载体构建→表达与纯化→[/font][font=Calibri]QC[/font][font=宋体]分析→交付内容[/font][/font][font=宋体] [/font][font=宋体][font=宋体]文章来源:双特异性抗体[/font][font=Calibri]https://cn.sinobiological.com/resource/antibody-technical/bispecific-antibody[/font][/font]

  • 双特异性抗体的作用原理及制备方法详解

    [font=宋体][font=宋体][url=https://cn.sinobiological.com/resource/antibody-technical/bispecific-antibody][b]双特异性抗体[/b][/url]([/font][font=Calibri]bispecificmonoclonalantibody,BsAb[/font][font=宋体])是一种人工制作出来的可以同时结合两种不同抗原的特殊抗体。双特异性抗体在自然状态下不存在,只能通过人工制备。研究双特异性抗体,对于癌症的免疫治疗有着重大的意义。本文主要对双特异性抗体的结构、作用原理及制备方式做一综述。[/font][/font][font=宋体] [/font][b][font=宋体]作用原理:[/font][/b][font=宋体]双特异性抗体的的作用机制主要有三种:[/font][font=宋体]介导免疫细胞杀伤[/font][font=宋体]双靶点信号阻断[/font][font=宋体]促进蛋白形成功能性复合体[/font][font=宋体] [/font][font=宋体]①[/font][font=宋体]介导免疫细胞杀伤[/font][font=宋体] [/font][font=宋体][font=宋体]双特异性抗体的一个重要作用机制是介导免疫细胞杀伤,双特异性抗体有两条抗原结合臂,其中一条与靶抗原结合,另一条与效应细胞上的标志抗原结合,后者可以激活效应细胞,使其靶向杀灭肿瘤细胞。以[/font][font=Calibri]Catumaxomab[/font][font=宋体](卡妥索单抗,[/font][font=Calibri]2009[/font][font=宋体]年批准上市的双特异性抗体药物)为例,两个抗原结合臂分别结合细胞毒性[/font][font=Calibri]T[/font][font=宋体]细胞的[/font][font=Calibri]CD3[/font][font=宋体]位点和肿瘤细胞的[/font][font=Calibri]EpCAM[/font][font=宋体]位点,从而引导[/font][font=Calibri]T[/font][font=宋体]细胞杀伤靶细胞。[/font][/font][font=宋体] [/font][font=宋体]②[/font][font=宋体]双靶点信号阻断[/font][font=宋体] [/font][font=宋体][font=宋体]同时结合双靶点,阻断双信号通路是双特异性抗体的另一个重要作用机制。受体酪氨酸激酶[/font][font=Calibri](receptortyrosinekinase[/font][font=宋体],[/font][font=Calibri]RTKs)[/font][font=宋体]是最大的一类酶联受体,在细胞增殖过程中发挥重要调节作用,如[/font][font=Calibri]Her[/font][font=宋体]家族等。[/font][font=Calibri]RTKs[/font][font=宋体]在肿瘤细胞表面异常高表达,导致肿瘤细胞恶性增生,因此也是肿瘤治疗的重要靶点。针对[/font][font=Calibri]RTKs[/font][font=宋体]的单靶点单克隆抗体已在肿瘤治疗中得到广泛应用。但是,肿瘤细胞可以通过转换信号通路或通过[/font][font=Calibri]HER[/font][font=宋体]家族成员自身或不同成员之间的同源或异源二聚体激活细胞内信号进行免疫逃逸。因此采用双特异性抗体药物同时灭活两个或多个[/font][font=Calibri]RTKs[/font][font=宋体]或其配体,可以减少肿瘤细胞逃逸,提高治疗效果。[/font][/font][font=宋体] [/font][font=宋体]③[/font][font=宋体]促进蛋白形成功能性复合体[/font][font=宋体] [/font][font=宋体]利用双特异性抗体两个抗原结合臂可以结合不同抗原的特点,两个抗原结合臂分别结合两种特定蛋白分子,形成功能性复合体。利用该种复合体给药,可以减少机体内排斥反应,提高临床治疗效果。[/font][font=宋体] [/font][b][font=宋体]双特异性抗体种类[/font][/b][font=宋体] [/font][font=宋体][font=宋体]双特异性抗体按结构区分主要有两大类:含[/font][font=Calibri]FC[/font][font=宋体]区的双特异性抗体([/font][font=Calibri]IgG-like[/font][font=宋体]双特异性抗体)与不含[/font][font=Calibri]Fc[/font][font=宋体]区的双特异性抗体([/font][font=Calibri]non-IgG-like[/font][font=宋体]双特异性抗体)。含[/font][font=Calibri]Fc[/font][font=宋体]区双特异性抗体保持了传统的单克隆抗体的结构,具有两个[/font][font=Calibri]Fab[/font][font=宋体]区和一个[/font][font=Calibri]FC[/font][font=宋体]区。但与传统单克隆抗体不同,这两个[/font][font=Calibri]Fab[/font][font=宋体]是可以结合不同抗原。此类抗体主要有[/font][font=Calibri]Triomabs[/font][font=宋体]、[/font][font=Calibri]DVD-Ig[/font][font=宋体]、[/font][font=Calibri]2in1-IgG[/font][font=宋体]、[/font][font=Calibri]kihIgG[/font][font=宋体]、[/font][font=Calibri]CrossMAb[/font][font=宋体]等;不含[/font][font=Calibri]Fc[/font][font=宋体]区双特异性抗体缺失了[/font][font=Calibri]Fc[/font][font=宋体]区,由两个抗体的[/font][font=Calibri]VH[/font][font=宋体]区及[/font][font=Calibri]VL[/font][font=宋体]区组成或者由[/font][font=Calibri]Fab[/font][font=宋体]片段组成。此类双特异性抗体主要有[/font][font=Calibri]BiTE[/font][font=宋体],[/font][font=Calibri]DA[/font][font=宋体]R[/font][font=Calibri]T[/font][font=宋体],[/font][font=Calibri]TandAbs[/font][font=宋体],[/font][font=Calibri]bi-Nanobody[/font][font=宋体]等。[/font][/font][font=宋体] [/font][b][font=宋体]双特异性抗体的制备方法[/font][/b][font=宋体][font=宋体]制备双特异性抗体,科学界同仁已开发了诸多解决方案。杂交[/font][font=Calibri]-[/font][font=宋体]杂交瘤法(也称为四源杂交瘤)是最早用于制备双特异性抗体的技术。基于两种不同杂交瘤细胞系的体细胞融合,表达所需特异性的鼠[/font][font=Calibri]IgG[/font][font=宋体]。然而,这种方法制备的功能性双特异性抗体占比低,为后续的抗体纯化和质控带来了巨大的挑战。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]通过使用分子克隆技术,双特异性[/font][font=Calibri]IgG[/font][font=宋体]抗体由同一细胞系表达的两条不同重链和轻链组成。双特异性抗体的制备需要至少两个用于异二聚化重链的质粒和一个用于公共轻链的质粒。如果使用两个不同的轻链,则需要两个轻链质粒。一般建议[/font][font=Calibri]2[/font][font=宋体]个单独的质粒上表达[/font][font=Calibri]HC[/font][font=宋体]和[/font][font=Calibri]LC[/font][font=宋体],因为调整质粒比率是一种简单有效的方法。随后,通常要经历复杂的过程从异质稳定转染池中选择最理想的克隆细胞系,以用于大规模抗体生产。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]与稳定转染相比,瞬时转染无需将重组[/font][font=Calibri]DNA[/font][font=宋体]整合至宿主基因组中,可以在数天内快速得到结果。人胚肾细胞([/font][font=Calibri]HEK293[/font][font=宋体])可用于双抗的瞬时表达,适合应用于双抗药物开发的早期阶段。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]目前义翘神州提供[url=https://cn.sinobiological.com/services/bispecific-antibody-servicehttp://][b]双特异性抗体制备服务[/b][/url],详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/services/bispecific-antibody-service[/font][/font][font=Calibri] [/font]

  • 关于方法特异性和准确度

    我们的产品在做方法确认时要做1、特异性;2、线性相关;3、精密度;4、准确度 特异性:以待测物质的特点来确定,通常用光谱来鉴别分析有效成分,如GC/MS、LC/MS、和HPLC-DAD,这个具体是如何操作的呢?分析方法确认指南上准确度以特异性和精密度来进行评价,想知道如何通过特异性和精密度来评价,有没有具体的量化指标呢?[img]http://simg.instrument.com.cn/bbs/images/default/em09511.gif[/img]

  • 特异性鲎试剂,如何鉴定?

    如题。六十年代美国的Levine和Bang发现革兰氏阴性菌内毒素可以迅速地引起鲎血细胞裂解液形成凝固,从而开发了灵敏度和特异性都非常高的检测内毒素的鲎试验法,此法已广泛被各国所采用。但在使用鲎试剂过程中有时发现假阳性反应(或叫非内毒素引起的凝胶反应),给鲎试验法的应用带来问题。为解决上述假阳性问题,八十年代以后进行了很多研究和改进。1981年Kakinuma发现一种抗癌药(1-3)β-D-glucan(β-葡聚糖)能使鲎试剂凝固,该物质广泛存在于担子菌、真菌、地衣类、酵母和藻类的菌体成分中,在10ng/ml时,就可使鲎试剂凝固。另外,某些人造纤维制造的人工肾透析膜上也含有类似的物质,干扰鲎试验,但它不引起家兔升温。普通鲎试剂出现阳性,因为它的G因子旁路被β-葡聚糖激活,形成凝胶;特异性鲎试剂不受β-葡聚糖激活,只对内毒素起专一反应,不形成凝胶。

  • 双特异性抗体的功能与应用有哪些?

    [font=宋体][font=宋体]双特异性抗体是一种基因工程的产物,它有两种不同抗原的结合位点[/font][font=Calibri],[/font][font=宋体]可以结合两种不同的抗原。双特异性抗体可以通过结合靶细胞同时利用另一位点招募功能细胞,使得靶细胞与功能细胞相互作用,进而增强功能细胞对肿瘤细胞的杀伤作用。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]双特异性抗体主要包括含[/font][font=Calibri]Fc[/font][font=宋体]段和不含[/font][font=Calibri]Fc[/font][font=宋体]段两大类。含[/font][font=Calibri]Fc[/font][font=宋体]区双特异性抗体保持了传统的单克隆抗体定制结构,具有两个[/font][font=Calibri]Fab[/font][font=宋体]区和一个[/font][font=Calibri]FC[/font][font=宋体]区。与传统单克隆抗体定制不同的是,这两个[/font][font=Calibri]Fab[/font][font=宋体]可以结合不同抗原。不含[/font][font=Calibri]Fc[/font][font=宋体]区双特异性抗体缺失了[/font][font=Calibri]Fc[/font][font=宋体]区,由两个抗体的[/font][font=Calibri]VH[/font][font=宋体]区和[/font][font=Calibri]VL[/font][font=宋体]区组成或者由[/font][font=Calibri]Fab[/font][font=宋体]片段组成。[/font][/font][font=宋体] [/font][font=宋体][b]如何制备双特异性抗体[/b][/font][font=宋体][font=宋体]制备双特异性抗体,科学界同仁已开发了诸多解决方案。杂交[/font][font=Calibri]-[/font][font=宋体]杂交瘤法(也称为四源杂交瘤)是最早用于制备双特异性抗体的技术。基于两种不同杂交瘤细胞系的体细胞融合,表达所需特异性的鼠[/font][font=Calibri]IgG[/font][font=宋体]。然而,这种方法制备的功能性双特异性抗体占比低,为后续的抗体纯化和质控带来了巨大的挑战。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]通过使用分子克隆技术,双特异性[/font][font=Calibri]IgG[/font][font=宋体]抗体由同一细胞系表达的两条不同重链和轻链组成。双特异性抗体的制备需要至少两个用于异二聚化重链的质粒和一个用于公共轻链的质粒。如果使用两个不同的轻链,则需要两个轻链质粒。一般建议[/font][font=Calibri]2[/font][font=宋体]个单独的质粒上表达[/font][font=Calibri]HC[/font][font=宋体]和[/font][font=Calibri]LC[/font][font=宋体],因为调整质粒比率是一种简单有效的方法。随后,通常要经历复杂的过程从异质稳定转染池中选择最理想的克隆细胞系,以用于大规模抗体生产。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]与稳定转染相比,瞬时转染无需将重组[/font][font=Calibri]DNA[/font][font=宋体]整合至宿主基因组中,可以在数天内快速得到结果。人胚肾细胞([/font][font=Calibri]HEK293[/font][font=宋体])可用于双抗的瞬时表达,适合应用于双抗药物开发的早期阶段。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供:双特异性抗体生产服务[/font][font=Calibri]https://cn.sinobiological.com/services/bispecific-antibody-service[/font][/font][font=宋体] [/font][font=宋体][b]双特异性抗体功能与应用[/b][/font][font=宋体] [/font][font=宋体]①募集免疫细胞[/font][font=宋体] [/font][font=宋体][font=宋体]细胞毒性[/font][font=Calibri]T[/font][font=宋体]淋巴细胞([/font][font=Calibri]CTL[/font][font=宋体])也称[/font][font=Calibri]T[/font][font=宋体]细胞,属于[/font][font=Calibri]T[/font][font=宋体]细胞的一种,可以特异性识别抗原肽[/font][font=Calibri]-MHCI[/font][font=宋体]类分子复合物,与之发生结合,释放细胞因子裂解细胞或直接进行靶细胞杀伤,但由于很多肿瘤细胞会通多种机制逃避机体免疫系统(包括[/font][font=Calibri]CTL[/font][font=宋体])识别和攻击,从而形成免疫逃逸。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]科学家们将[/font][font=Calibri]T[/font][font=宋体]细胞上面加上了一个特殊的[/font][font=Calibri]CAR[/font][font=宋体]结构,其中带有能够特异性识别靶细胞的相关抗体序列,相当于给[/font][font=Calibri]T[/font][font=宋体]细胞装上了一个[/font][font=Calibri]GPS[/font][font=宋体],增强识别靶细胞能力和杀伤能力,使之成为一个超级卫士。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]双特异性抗体[/font][font=Calibri](BsAb)[/font][font=宋体]如[/font][font=Calibri]CD19-CD3[/font][font=宋体]也具有相似的作用,[/font][font=Calibri]BsAb[/font][font=宋体]使[/font][font=Calibri]T[/font][font=宋体]细胞激活并定向接近肿瘤细胞,这个过程伴随着[/font][font=Calibri]T[/font][font=宋体]细胞和靶肿瘤细胞之间瞬时的溶细胞突触形成,随后[/font][font=Calibri]T[/font][font=宋体]细胞增殖和激活导致肿瘤细胞裂解。除了[/font][font=Calibri]T[/font][font=宋体]细胞,其他免疫细胞如巨噬细胞、单核细胞、粒细胞和自然杀伤细胞([/font][font=Calibri]NK[/font][font=宋体])也会发挥杀死肿瘤细胞的效应。[/font][/font][font=宋体] [/font][font=宋体]②阻断信号通路[/font][font=宋体] [/font][font=宋体][font=宋体]信号通路是指将细胞外的分子信号经细胞膜传入细胞内发挥效应的一系列酶促反应通路。这些细胞外的分子信号[/font][font=Calibri]([/font][font=宋体]称为配体[/font][font=Calibri])[/font][font=宋体]包括激素、生长因子、神经递质以及其它小分子化合物等。当配体特异性地结合到细胞膜或细胞内的受体后,在细胞内就会将信号传递下去,对细胞的生长、增殖、凋亡、血管生成、自吞噬等过程发挥着极其重要的生物学功能。某些肿瘤细胞异常高表达某种受体,从而导致肿瘤恶性增殖,利用双特异性抗体可以特异性的阻断两个或多个信号通路,减少其通过转换信号通路的方式形成的肿瘤细胞逃逸,提高治疗效果。[/font][/font][font=宋体] [/font][font=宋体]③阻断细胞因子[/font][font=宋体] [/font][font=宋体][font=宋体]一些细胞因子被认为是引起炎症发生和自体免疫疾病的关键因子,因此阻断这些因子是有治疗潜力的。例如,抑制[/font][font=Calibri]IL17[/font][font=宋体]或[/font][font=Calibri]TNF[/font][font=宋体]α对于牛皮癣、银屑病关节炎、克罗恩病、溃疡性结肠炎、少年关节炎和许多其他疾病有很好的治疗效果。[/font][font=Calibri]BsAb[/font][font=宋体]可以结合两个细胞因子受体,达到更好的治疗目的。[/font][/font][font=宋体] [/font][font=宋体]④作为运载工具[/font][font=宋体] [/font][font=宋体][font=宋体]双特异性抗体具有蛋白识别的特异性。因此,通过一定的耦联技术将抗肿瘤药物或免疫调节药物等[/font][font=宋体]“绑定”在一起,而另一抗原结合位点靶向肿瘤部位,进而提高药物在肿瘤部位的浓度,加强药物疗效。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多双特异性抗体详情可以参看[/font][font=Calibri]https://cn.sinobiological.com/resource/antibody-technical/bispecific-antibody[/font][/font]

  • 双特异性抗体表达作用及制备方法?

    [font=宋体]什么是双特异性抗体?[/font][font=宋体][font=宋体]双特异性抗体([/font] [font=Calibri]bispecific antibody[/font][font=宋体],[/font][font=Calibri]BsAb[/font][font=宋体],简称双抗)是指能同时特异性结合两个抗原或抗原表位的人工抗体。形象比喻,它就像一座连接[/font][font=Calibri]2[/font][font=宋体]个抗原(表位)的桥梁。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]双特异性抗体在自然条件下并不存在,而是通过细胞融合或重组[/font][font=Calibri]DNA[/font][font=宋体]技术制备实现的。由于其特异性和双功能性,现已成为抗体工程领域的研究热点,在肿瘤治疗及自身免疫病等领域中具有广阔的应用前景。除此之外,双特异性抗体还被应用于治疗骨质疏松、血友病等其他领域。[/font][/font][font=宋体] [/font][font=宋体]双特异性抗体的作用机制:[/font][font=宋体]双特异性抗体在抗肿瘤治疗中的主要作用机制是:[/font][font=宋体][font=宋体]([/font][font=Calibri]1[/font][font=宋体])招募[/font][font=Calibri]T[/font][font=宋体]细胞或自然杀伤细胞,并将它们重定向至肿瘤细胞,增强其对肿瘤细胞的杀伤力;[/font][/font][font=宋体][font=宋体]([/font][font=Calibri]2[/font][font=宋体])同时阻断发病进程中两个不同的信号传导通路而发挥独特或重叠的功能,影响肿瘤细胞的生长增殖及存活;[/font][/font][font=宋体][font=宋体]([/font][font=Calibri]3[/font][font=宋体])同时靶向细胞表面不同的抗原或表位,增强其与肿瘤细胞的特异性结合并直接杀伤肿瘤细胞。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]双抗[/font][font=Calibri]VS[/font][font=宋体]单抗,有何优势?[/font][/font][font=宋体]与普通单克隆抗体相比,双特异性抗体具有同时结合两种特异性表位或目的蛋白的功能,因此可以发挥特殊的功能起到单抗药物难以达到的生物学功能。[/font][font=宋体] [/font][font=宋体]例如,将效应细胞直接靶向肿瘤细胞以增强其细胞毒性、提高抗体选择性和功能性、共刺激或抑制受体。相对单抗,双抗具备更强特异性、靶向性,可以降低脱靶毒性;相较单抗的组合疗法,也可有效降低治疗成本等。[/font][font=宋体] [/font][font=宋体]但双抗药物开发复杂性和技术壁垒更高,对于技术平台和靶点选择的适配性要求也有所提高。[/font][font=宋体] [/font][font=宋体]双特异性抗体的制备方法[/font][font=宋体][font=宋体]([/font][font=Calibri]1[/font][font=宋体])化学偶联法:该方法于[/font][font=Calibri]1985[/font][font=宋体]年首次被使用,其原理是通过化学偶联剂将两个完全的单抗或[/font][font=Calibri]Fab2[/font][font=宋体]片段偶联成一种双特异性抗体。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]([/font][font=Calibri]2[/font][font=宋体])双杂交瘤融合法:将两种杂交瘤细胞通过细胞融合的方法,合成双杂交瘤细胞株,筛选出具有两种抗体功能的稳定靶细胞株。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]([/font][font=Calibri]3[/font][font=宋体])基因工程法:利用基因工程技术对抗体进行改造,从而形成多种形式的双特异性抗体。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州在重组抗体生产方面具有扎实的专业知识和经验,利用优化的成熟哺乳动物细胞表达平台,为您提供快速高效的双特异性抗体表达服务。从抗体序列开始,我们可以表达多种双特异性抗体形式,如[/font][font=Calibri]BiTE[/font][font=宋体]、[/font][font=Calibri]Diabody[/font][font=宋体]、[/font][font=Calibri]CrossMab[/font][font=宋体]和[/font][font=Calibri]DVD-IgG[/font][font=宋体]。义翘神州服务优势:[/font][/font][font=宋体][font=宋体]①[/font][font=Calibri]20+[/font][font=宋体]种[/font][font=Calibri]BsAb[/font][font=宋体]生产经验[/font][/font][font=宋体] [/font][font=宋体][font=宋体]②成功率[/font][font=Calibri]90%[/font][/font][font=宋体] [/font][font=宋体][font=宋体]③自主优化的[/font][font=Calibri]HEK293/CHO[/font][font=宋体]平台[/font][/font][font=宋体] [/font][font=宋体]④多种纯化技术[/font][font=宋体] [/font][font=宋体]⑤强大的质控分析能力[/font][font=宋体] [/font][font=宋体][font=宋体]⑥最高产量[/font][font=Calibri]250 mg/L[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体][url=https://cn.sinobiological.com/services/bispecific-antibody-service][b]双特异性抗体生产服务[/b][/url]内容与抗体结构可以关注:[/font][font=Calibri]https://cn.sinobiological.com/services/bispecific-antibody-service[/font][/font]

  • 三氧化硫特异性吸附剂有哪些

    如题,三氧化硫特异性吸附剂有哪些?特别是陶瓷材料?有哪位大侠知道,japan产的可去除SO3而不去除SO2的mist catcher (ZBBB3V03-0 / ZBBB4V03-0. For elimination of SO3 )填充材料具体是什么啊 ,介绍里仅写了 Ceramic

  • 双特异性抗体较单克隆抗体的优势及制备方法

    [font=宋体][font=宋体]双特异性单克隆抗体[/font][font=Calibri]6ispecific Mcr'b[/font][font=宋体]即杂交的杂交瘤[/font][font=Calibri](hybrid hybridoma)[/font][font=宋体]是将杂交瘤与其他抗原免疫的脾细胞或另一种杂交瘤融合的结果。[/font][/font][b][font=宋体] [/font][font=宋体]什么是双特异性抗体?[/font][/b][font=宋体] [/font][font=宋体][font=宋体]双特异性抗体([/font] [font=Calibri]bispecific antibody[/font][font=宋体],[/font][font=Calibri]BsAb[/font][font=宋体],简称双抗)是指能同时特异性结合两个抗原或抗原表位的人工抗体。形象比喻,它就像一座连接[/font][font=Calibri]2[/font][font=宋体]个抗原(表位)的桥梁。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]双特异性抗体在自然条件下并不存在,而是通过细胞融合或重组[/font][font=Calibri]DNA[/font][font=宋体]技术制备实现的。由于其特异性和双功能性,现已成为抗体工程领域的研究热点,在肿瘤治疗及自身免疫病等领域中具有广阔的应用前景。除此之外,双特异性抗体还被应用于治疗骨质疏松、血友病等其他领域。[/font][/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体]双特异性抗体的作用机制[/font][/b][font=宋体] [/font][font=宋体]双特异性抗体在抗肿瘤治疗中的主要作用机制是:[/font][font=宋体][font=宋体]([/font][font=Calibri]1[/font][font=宋体])招募[/font][font=Calibri]T[/font][font=宋体]细胞或自然杀伤细胞,并将它们重定向至肿瘤细胞,增强其对肿瘤细胞的杀伤力;[/font][/font][font=宋体][font=宋体]([/font][font=Calibri]2[/font][font=宋体])同时阻断发病进程中两个不同的信号传导通路而发挥独特或重叠的功能,影响肿瘤细胞的生长增殖及存活;[/font][/font][font=宋体][font=宋体]([/font][font=Calibri]3[/font][font=宋体])同时靶向细胞表面不同的抗原或表位,增强其与肿瘤细胞的特异性结合并直接杀伤肿瘤细胞。[/font][/font][b][font=宋体] [/font][font=宋体][font=宋体]双抗[/font][font=Calibri]VS[/font][font=宋体]单抗,有何优势[/font][/font][/b][font=宋体] [/font][font=宋体]与普通单克隆抗体相比,双特异性抗体具有同时结合两种特异性表位或目的蛋白的功能,因此可以发挥特殊的功能起到单抗药物难以达到的生物学功能。[/font][font=宋体] [/font][font=宋体]例如,将效应细胞直接靶向肿瘤细胞以增强其细胞毒性、提高抗体选择性和功能性、共刺激或抑制受体。相对单抗,双抗具备更强特异性、靶向性,可以降低脱靶毒性;相较单抗的组合疗法,也可有效降低治疗成本等。[/font][font=宋体] [/font][font=宋体]但双抗药物开发复杂性和技术壁垒更高,对于技术平台和靶点选择的适配性要求也有所提高。[/font][b][font=宋体] [/font][font=宋体]双特异性抗体的制备方法[/font][/b][font=宋体] [/font][font=宋体][font=宋体]([/font][font=Calibri]1[/font][font=宋体])化学偶联法:该方法于[/font][font=Calibri]1985[/font][font=宋体]年首次被使用,其原理是通过化学偶联剂将两个完全的单抗或[/font][font=Calibri]Fab2[/font][font=宋体]片段偶联成一种双特异性抗体。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]([/font][font=Calibri]2[/font][font=宋体])双杂交瘤融合法:将两种杂交瘤细胞通过细胞融合的方法,合成双杂交瘤细胞株,筛选出具有两种抗体功能的稳定靶细胞株。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]([/font][font=Calibri]3[/font][font=宋体])基因工程法:利用基因工程技术对抗体进行改造,从而形成多种形式的双特异性抗体。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州在重组抗体生产方面具有扎实的专业知识和经验,利用优化的成熟哺乳动物细胞表达平台,为您提供快速高效的[url=https://cn.sinobiological.com/services/bispecific-antibody-service][b]双特异性抗体表达服务[/b][/url]。从抗体序列开始,我们可以表达多种双特异性抗体形式,如[/font][font=Calibri]BiTE[/font][font=宋体]、[/font][font=Calibri]Diabody[/font][font=宋体]、[/font][font=Calibri]CrossMab[/font][font=宋体]和[/font][font=Calibri]DVD-IgG[/font][font=宋体]。更多详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/services/bispecific-antibody-service[/font][/font]

  • PCR扩增DNA特异性片段实验方法与步骤

    一、实验目的 本实验目的了解PCR反应用来扩增DNA 特异性片段实验的的基本原理、实验方法和操作步骤,熟练掌握PCR反应基本体系配制和实验条件的设定。 二、实验原理 PCR(Polymerase Chain Reaction)即聚合酶链式反应是1986 年由Kallis Mullis 发现。这项技术已广泛地应用于分子生物学各个领域,它不仅可用于基因分离克隆和核酸序列分析,还可用于突变体和重组体的构建,基因表达调控的研究,基因多态性的分析,遗传病和传染病诊断,肿瘤机制探查,法医鉴定等方面。PCR技术已成为方法学上的一次革命,它必将大大推动分子生物学各学科的研究发展。PCR是一种利用两种与相反链杂交并附着于靶DNA两侧的寡核苷酸引物经酶促合成特异的DNA 片段的体外方法,由高温变性,低温退火和适温延伸等几步反应组成一个循环,然后反复进行,使目的的DNA 得以迅速扩增,主要过程如图6。置待扩增DNA 于高温下解链成为单链DNA 模板;人工合成的两个寡核苷酸引物在低温条件下分别与目的片段两侧的两条链互补结合;DNA聚合酶在72 ℃将单核苷酸从引物3"端开始掺入,沿模板5"—3"方向延伸,合成DNA 新链。由于每一循环所产生的DNA均能成为下一次循环的模板,所以PCR 产物以指数方式增加,经25—30次周期之后,理论上可增加109倍,实际上可增加107倍。PCR技术具有操作简便、省时、灵敏度高特异性强和对原始材料质量要求低等优点,但由于所用的TaqDNA 聚合酶缺乏5"—3"核酶外切酶活性,不能纠正反应中发生的错误核苷酸掺入,估计每9000个核苷酸会导致一个掺入错误,不过Innis M·A 发现,错误掺入的碱基有终止链延伸的作用倾向,使得错误不会扩大。PCR技术应用广泛,不可能有这样一套条件满足所有的实验,但本实验所介绍的方法可适应于大多数DNA 扩增反应,即使有的不适应,至少也确定了一个共同的起点,在此基础上可以作多种变化。不过下列因素在实验应用时应予以特别注意,以求取得满意结果。1. 模板:单、双链DNA 和RNA都可以作为PCR样品,若起始材料是RNA,须先通过逆转录得取第一条cDNA。虽然PCR 可以仅用极微量的样品,但为了保证反应的特异性,一般宜用ng 量级的克隆DNA,ug 级的染色体DNA,待扩增样品质量要求较低,但不能混合有任何蛋白酶、核酸酶,Taq DNA聚合酶的抑制剂以及能结合DNA 的蛋白质。2. 引物:引物是决定PCR 结果的关键,下列原则有助于引物的合理设计。(1)尽可能选择碱基随机分布,GC 含量类似于被扩增片段的引物,尽量避免具有多聚嘌呤、多聚嘧啶或其它异常序列的引物。(2)避免具有明显二级结构(尤其是在引物3"—末端)的序列。(3)防止引物间的互补,特别要注意避免具有3"末端重叠的序列。(4)引物的长度约为20个碱基,较长引物较好,但成本增加,短引物则特异性降低。(5)引物浓度不宜偏高,过高易形成二聚体,而且扩增微量靶目标或起始材料是粗制品,容易产生非特异产物。3. 缓冲液:PCR缓冲液的变化通常会影响扩增结果,特别是MgCl2,其浓度对专一性和扩增量有重大影响,通常最适浓度为1.5 mM左右(每种dNTP 的浓度为0.2 mM时),浓度过高,使反应特异性降低;浓度过低,使产物产量降低。四种dNTP 浓度通常每种都是0.05 mM—0.2 mM。过高的浓度会导致错误掺入,浓度过低,则影响反应产物的产量。四种dNTP浓度应大体相同,其中一种若偏高,会诱发错误掺入,降低合成速度,过早终止延伸反应。另外dNTP 能与Mg2+结合,使游离Mg2+浓度降低,所以如果dNTP 的浓度有很大改变,MgCl2浓度也要改变。Taq聚合酶是一种耐高温聚合酶,用量通常是1—4 单位/100 ul,浓度过高,产生过多的非特异片段。4. 循环参数:PCR 循环是把起始材料加热到90—95 ℃,保持短时间使双链DNA 解链;然后冷却至37—55 ℃,使引物与模板退火;再升温至70—75 ℃,在TaqDNA聚合酶的作用下掺入单核苷酸,使引物沿模板延伸。解链不完全是导致PCR 失败的最主要原因。用DNA扩增仪时,94 ℃保持1 分钟可使模板的起始物完全变性。若用低于94 ℃的条件,则应适当延长时间。引物与模板退火温度由引物的长度及G+C含量决定。适时间退火(1—2)分钟有利于产物的特异性。引物延伸在70—75 ℃保温的时间可根据扩增DNA片段的长短来调节。正常情况下,每分钟可延伸1 Kb 的长度,常规PCR 一般为25—40个循环,若循环加长,则由于酶活性降低,聚合时间延长,引物及单核苷酸减少等原因,反应后期容易产生错误掺入,所以在满足产物得率前提下,应尽量减少周期次数。三、材料(一)仪器与器皿PRC 扩增仪(PE2400),琼脂糖凝胶电泳设备,微量取样器,一次性指形管,凝胶成像仪 玻片(二)试剂与材料1. 琼脂糖凝胶电泳试剂1)电泳缓冲液:Tris—乙酸0.04 mol/L PH8.0 0.002 mol/L EDTA2)加样缓冲液:0.25%溴酚兰40% w/v蔗糖3)溴化乙锭溶液:0.05 mg/ml溴化乙锭/水4)琼脂糖2. TaqDNA 多聚酶3. 5′反应缓冲液:125 mmol/L Tris-HCl pH8.2;10 mmol/L MgCl2;0.5 mg/ml gelatin;125 mmol/L(NH4)2SO4; Formamide 25%4. 混合dNTP 液(dATP dGTP dTTP dCTP各2 mmol/L)5. DNA 模板(每2 ml 中含有10 fg 待扩增DNA)6. 引物 1 (25 pmol/L),5’加入EcoRI 粘性末端碱基7. 引物 2 (25 pmol/L),5’加入HindIII 粘性末端碱基8. 无菌水四、实验步骤1. 按顺序在200 ml 指形管中加入以下试剂与样品:(因购入的试剂批次不同,加样时有 所差别,以预实验结果为准。)1) ddH2O 74 ml2) 10′Buffer 10 ml3) MgCl2 6 ml(10′Buffer 如已加入MgCl2,则不必加)4) dNTP 2 ml5) 引物1 2 ml6) 引物2 2 ml7) 模板 2 ml8) Taq DNA聚合酶2 ml总体积共100 ml(也可以配成40 ml 的反应体系)2. 在PCR 扩增仪上按以下反应条件编入程序:(以下为参考值,因扩增的DNA片段不同,各类PCR 扩增仪程序设定各不相同,编程过程视扩增的DNA 片段的要求及仪器而定参数,见示范。)预变性 94 ℃ 2 分种循环条件(30 次)变性 94 ℃ 40 秒复性 55 ℃ 35 秒延伸 72 ℃ 2 分10 秒延长延伸 72 ℃ 7 分钟编完反应程序,置反应管于PCR扩增仪的反应孔中,开动机器,扩增循环反应开始。3. PCR 扩增完毕,配2%琼脂糖凝胶,取15 ml 反应液及相适应的PCR mark 分别点样, 加样缓冲液应为40%W/V 蔗糖,电泳观察结果。4. 凝胶成像仪或紫外灯下观察实验结果,是否已扩增到实验设计的DNA 片段。注意事项: 要想得到预期的实验结果,PCR的反应条件和很多参数有着密切的关系,都应引起注意。在实验设计中我们要考虑到模板浓度的大小,设计引物时也要主要引物长度适当以及恰当的GC含量,在PCR体系中引物浓度,dNTPs浓度相对要均衡,选取的taq enzyme,缓冲液的离子含量也是影响产物的结果,另外就是要根据产物大小设定适当的变性时间,退火温度及时间,延伸的时间。

  • PCR常见问题分析及对策【无扩增产物、非特异性扩增、拖尾、假阳性】

    PCR相关经验分享PCR常见问题-分析及对策(无扩增产物、非特异性扩增、拖尾、假阳性)问题1:无扩增产物 现象:正对照有条带,而样品则无 原因: 1.模板:含有抑制物,含量低 2.Buffer对样品不合适 3.引物设计不当或者发生降解 4.反应条件:退火温度太高,延伸时间太短 对策: 1.纯化模板或者使用试剂盒提取模板DNA或加大模板的用量 2.更换Buffer或调整浓度 3.重新设计引物(避免链间二聚体和链内二级结构)或者换一管新引物 4.降低退火温度、延长延伸时间 问题2:非特异性扩增 现象:条带与预计的大小不一致或者非特异性扩增带 原因: 1.引物特异性差 2.模板或引物浓度过高 3.酶量过多 4.Mg2+浓度偏高 5.退火温度偏低 6.循环次数过多 对策: 1.重新设计引物或者使用巢式PCR 2.适当降低模板或引物浓度 3.适当减少酶量 4.降低镁离子浓度 5.适当提高退火温度或使用二阶段温度法 6.减少循环次数 问题3:拖尾 现象:产物在凝胶上呈Smear状态。 原因: 1.模板不纯 2.Buffer不合适 3.退火温度偏低 4.酶量过多 5.dNTP、Mg 2+浓度偏高 6.循环次数过多 对策: 1.纯化模板 2.更换Buffer 3.适当提高退火温度 4.适量用酶 5.适当降低dNTP和镁离子的浓度 6.减少循环次数 问题4:假阳性 现象:空白对照出现目的扩增产物 原因: 靶序列或扩增产物 的交*污染 对策: 1.操作时应小心轻柔,防止将靶序列吸入加样枪内或溅出离心管外; 2.除酶及不能耐高温的物质外,所有试剂或器材均应高压消毒。所用离心管 及加样枪头等均应一次性使用。 3.各种试剂最好先进行分装,然后低温贮存 PCR引物设计的黄金法则 (转自tiangen)1.引物最好在模板cDNA的保守区内设计。 DNA序列的保守区是通过物种间相似序列的比较确定的。在NCBI上搜索不同物种的同一基因,通过序列分析软件(比如DNAman)比对(Alignment),各基因相同的序列就是该基因的保守区2.引物长度一般在15~30碱基之间。 引物长度(primer length)常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA 聚合酶进行反应。3.引物GC含量在40%~60%之间,Tm值最好接近72℃。 GC含量(composition)过高或过低都不利于引发反应。上下游引物的GC含量不能相差太大。另外,上下游引物的Tm值(melting temperature)是寡核苷酸的解链温度,即在一定盐浓度条件下,50%寡核苷酸双链解链的温度。有效启动温度,一般高于Tm值5~10℃。若按公式Tm= 4(G+C)+2(A+T)估计引物的Tm值,则有效引物的Tm为55~80℃,其Tm值最好接近72℃以使复性条件最佳。4.引物3′端要避开密码子的第3位。 如扩增编码区域,引物3′端不要终止于密码子的第3位,因密码子的第3位易发生简并,会影响扩增的特异性与效率。5.引物3′端不能选择A,最好选择T。 引物3′端错配时,不同碱基引发效率存在着很大的差异,当末位的碱基为A时,即使在错配的情况下,也能有引发链的合成,而当末位链为T时,错配的引发效率大大降低,G、C错配的引发效率介于A、T之间,所以3′端最好选择T。6. 碱基要随机分布。 引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错误引发(False priming)。降低引物与模板相似性的一种方法是,引物中四种碱基的分布最好是随机的,不要有聚嘌呤或聚嘧啶的存在。尤其3′端不应超过3个连续的G或C,因这样会使引物在GC富集序列区错误引发。7. 引物自身及引物之间不应存在互补序列。 引物自身不应存在互补序列,否则引物自身会折叠成发夹结构(Hairpin)使引物本身复性。这种二级结构会因空间位阻而影响引物与模板的复性结合。引物自身不能有连续4个碱基的互补。 两引物之间也不应具有互补性,尤其应避免3′ 端的互补重叠以防止引物二聚体(Dimer与Cross dimer)的形成。引物之间不能有连续4个碱基的互补。 引物二聚体及发夹结构如果不可避免的话,应尽量使其△G值不要过高(应小于4.5kcal/mol)。否则易导致产生引物二聚体带,并且降低引物有效浓度而使PCR 反应不能正常进行。8. 引物5′ 端和中间△G值应该相对较高,而3′ 端△G值较低。 △G值是指DNA 双链形成所需的自由能,它反映了双链结构内部碱基对的相对稳定性,△G值越大,则双链越稳定。应当选用5′ 端和中间△G值相对较高,而3′ 端△G值较低(绝对值不超过9)的引物。引物3′ 端的△G 值过高,容易在错配位点形成双链结构并引发DNA 聚合反应。(不同位置的△G值可以用Oligo 6软件进行分析)9.引物的5′端可以修饰,而3′端不可修饰。 引物的5′ 端决定着PCR产物的长度,它对扩增特异性影响不大。因此,可以被修饰而不影响扩增的特异性。引物5′ 端修饰包括:加酶切位点;标记生物素、荧光、地高辛、Eu3+等;引入蛋白质结合DNA序列;引入点突变、插入突变、缺失突变序列;引入启动子序列等。 引物的延伸是从3′ 端开始的,不能进行任何修饰。3′ 端也不能有形成任何二级结构可能。10. 扩增产物的单链不能形成二级结构。 某些引物无效的主要原因是扩增产物单链二级结构的影响,选择扩增片段时最好避开二级结构区域。用有关软件(比如RNAstructure)可以预测估计mRNA的稳定二级结构,有助于选择模板。实验表明,待扩区域自由能(△G°)小于

  • 双特异性抗体生物活性检测:策略、挑战与案例研究

    [url=https://cn.sinobiological.com/resource/antibody-technical/bispecific-antibody][u][font=宋体][color=#0000ff]双特异性抗体[/color][/font][/u][/url][font=宋体][font=宋体]([/font][font=Calibri]Bispecific Antibodies, BsAbs[/font][font=宋体])是一种新型的生物治疗药物,它们能够同时结合两种不同的抗原,在多种疾病治疗,尤其是癌症[/font][/font][font=宋体]治疗[/font][font=宋体][font=宋体]方面展现出巨大的潜力。然而,由于[/font][font=Calibri]BsAbs[/font][font=宋体]的结构复杂性和作用机制的多样性,为它们的生物活性检测和表征带来了挑战。本文将探讨[/font][font=Calibri]BsAbs[/font][font=宋体]的生物活性检测策略,并结合案例研究,提供对这一领域的深入见解。[/font][/font][font=宋体] [/font][b][font=宋体][font=Calibri]BsAbs[/font][font=宋体]的结构多样性与作用机制[/font][/font][/b][font=宋体][font=Calibri]BsAbs[/font][font=宋体]的设计和开发受益于对传统单克隆抗体([/font][font=Calibri]mAbs[/font][font=宋体])的深入了解。它们具有与常规[/font][font=Calibri]mAb[/font][font=宋体]相似的表位特异性和可[/font][/font][font=宋体]改造[/font][font=宋体]性,[/font][font=宋体]可[/font][font=宋体]以结合两个不同的[/font][font=宋体]抗原位点[/font][font=宋体][font=宋体]。[/font][font=Calibri]BsAbs[/font][font=宋体]的结构非常多样化,取决于预期的作用机制([/font][font=Calibri]MoA[/font][font=宋体])和所需的药代动力学[/font][font=Calibri]/[/font][font=宋体]药效学([/font][font=Calibri]PK/PD[/font][font=宋体])特性。[/font][font=Calibri]BsAbs[/font][font=宋体]的作用机制大致可分为四类:细胞桥接型、受体[/font][font=Calibri]/[/font][font=宋体]配体阻断或激活型、辅助因子模拟型和“归巢”型。[/font][/font][font=宋体] [/font][b][font=宋体][font=Calibri]BsAbs[/font][font=宋体]生物活性检测的挑战与策略[/font][/font][/b][font=宋体][font=宋体]开发[/font][font=Calibri]BsAbs[/font][font=宋体]的生物活性检测方法需要[/font][/font][font=宋体]深入理解[/font][font=宋体]其分子的作用机制,以及[/font][font=宋体]全面了解[/font][font=宋体]不同生物分析方法的原理和应用。生物活性检测对于生物制品的表征和控制至关重要,也是解释临床研究结果的关键。[/font][font=宋体] [/font][font=宋体][font=Calibri]1. [/font][/font][font=宋体]分阶段检测[/font][font=宋体]方法[/font][font=宋体]对于生物治疗药物的生物活性检测,行业和监管机构普遍接受分阶段[/font][font=宋体]检测[/font][font=宋体][font=宋体]的方法。在产品开发的早期阶段,通常首选结合方法进行检测。随着产品开发的推进,更复杂的、反映[/font][font=Calibri]MoA[/font][font=宋体]的基于细胞的生物活性检测方法被开发出来,并在上市申请提交前进行验证。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2. [/font][font=宋体]作用机制驱动的设计[/font][/font][font=宋体][font=宋体]生物活性检测策略是由药物预期的生理[/font][font=Calibri]MoA[/font][font=宋体]驱动的。与其它分析技术不同,生物活性检测针对每[/font][/font][font=宋体]种[/font][font=宋体]治疗药物[/font][font=宋体]都是[/font][font=宋体]独一无二的。一个设计良好的生物活性检测[/font][font=宋体]方法[/font][font=宋体]能够准确捕捉药物候选物的生物活性。[/font][font=宋体] [/font][font=宋体][font=Calibri]3. [/font][font=宋体]整体[/font][font=Calibri]BsAbs[/font][font=宋体]表征策略[/font][/font][font=宋体][font=Calibri]BsAbs[/font][font=宋体]的效力和安全性评估依赖于成功开发一个药理学和临床相关生物分析策略,该策略能够反映双[/font][/font][font=宋体]特异性[/font][font=宋体]抗体的生物活性,并能够区分高[/font][font=宋体]级[/font][font=宋体]结构、效力和[/font][font=宋体]疗效[/font][font=宋体]。[/font][font=宋体]其中[/font][font=宋体][font=宋体]重要的是开发表征和生物分析方法来研究重要的质量属性,包括整体稳定性、片段化[/font][font=Calibri]/[/font][font=宋体]聚集[/font][font=Calibri]/[/font][font=宋体]免疫原性、抗原特异性、亲和力、结合和解离速率、双靶点结合的亲和力(对于在同一细胞上的两个靶点的分子)和[/font][font=Calibri]MoA/[/font][font=宋体]生物活性。[/font][/font][font=宋体] [/font][b][font=宋体][font=Calibri]BsAbs[/font][font=宋体]生物活性检测案例研究[/font][/font][/b][font=宋体][font=Calibri]1. ELISA[/font][font=宋体]和[/font][font=Calibri]SPR[/font][font=宋体]技术[/font][/font][font=宋体][font=Calibri]ELISA[/font][font=宋体]和[/font][font=Calibri]SPR[/font][font=宋体]技术常用于表征[/font][font=Calibri]BsAbs[/font][font=宋体]的体外抗原结合特性。[/font][font=Calibri]ELISA[/font][font=宋体]具有灵敏度高、开发速度快[/font][/font][font=宋体]和[/font][font=宋体][font=宋体]成本相对较低等优点,而[/font][font=Calibri]SPR[/font][font=宋体]能够实时监测结合事件,提供动力学和热力学参数。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2. [/font][font=宋体]细胞表面配体结合检测[/font][/font][font=宋体][font=宋体]通过流式细胞术和基于细胞的报告基因分析,可以评估[/font][font=Calibri]BsAbs[/font][font=宋体]与其目标的结合特异性和选择性,这些信息在传统的[/font][font=Calibri]SPR[/font][font=宋体]或[/font][font=Calibri]ELISA[/font][font=宋体]基础结合分析中无法捕获。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3. [/font][font=宋体]效力检测[/font][/font][font=宋体][font=宋体]针对[/font][font=Calibri]BsAbs[/font][font=宋体]的效力检测策略具有挑战性,因为其复杂的[/font][font=Calibri]MoA[/font][font=宋体]涉及两个[/font][/font][font=宋体]靶点[/font][font=宋体][font=宋体]结合。效力检测应该根据[/font][font=Calibri]MoA[/font][font=宋体]进行定制,同时满足[/font][font=Calibri]QC[/font][font=宋体]和监管[/font][/font][font=宋体]部门的要求[/font][font=宋体],成为稳[/font][font=宋体]定[/font][font=宋体]和灵敏的方法,以检测稳定性中的任何结构变化。[/font][font=宋体] [/font][font=宋体][font=Calibri]4. [/font][font=宋体]效应功能检测[/font][/font][font=宋体][font=宋体]一些[/font][font=Calibri]BsAbs[/font][/font][font=宋体]通过[/font][font=宋体]靶向细胞表面蛋白或受体[/font][font=宋体]来[/font][font=宋体]增强[/font][font=宋体][font=Calibri]ADCC[/font][/font][font=宋体][font=宋体]效应功能。根据[/font][font=Calibri]MoA[/font][font=宋体]和其他分子特异性因素,效应功能可能与[/font][/font][font=宋体]一些[/font][font=宋体][font=宋体]安全事件相关,因此,优选效应功能减弱的[/font][font=Calibri]Fc[/font][font=宋体]区域。[/font][/font][font=宋体] [/font][b][font=宋体]结论[/font][/b][font=宋体][font=Calibri]BsAbs[/font][/font][font=宋体]是[/font][font=宋体]一个[/font][font=宋体]极具前景的[/font][font=宋体][font=宋体]新兴治疗领域。由于[/font][font=Calibri]BsAbs[/font][font=宋体]与单特异性抗体在结构和生物学上的差异,为[/font][font=Calibri]BsAbs[/font][font=宋体]开发生物活性检测策略带来了独特的挑战和考虑。本文[/font][/font][font=宋体]总结[/font][font=宋体][font=宋体]了目前可用的生物分析技术平台、生物活性检测方法和相关的案例研究,以提供对设计[/font][font=Calibri]BsAbs[/font][font=宋体]放行和表征策略的见解。[/font][/font][font=宋体]了[/font][font=宋体][font=宋体]解和开发良好的生物活性检测对于[/font][font=Calibri]BsAbs[/font][font=宋体]的整体控制策略至关重要,它们将[/font][/font][font=宋体]随着[/font][font=宋体][font=Calibri]BsAbs[/font][font=宋体]分子和[/font][/font][font=宋体]现有[/font][font=宋体]分析技术的发展[/font][font=宋体]而不断发展[/font][font=宋体]。[/font][font=宋体] [/font][font=宋体]本文[/font][font=宋体]由[/font][font=宋体]义翘[/font][font=宋体]神州[/font][font=宋体]进行[/font][font=宋体]整理[/font][font=宋体],[/font][font=宋体]同时[/font][font=宋体]提供快速高效的[/font][url=https://cn.sinobiological.com/services/bispecific-antibody-service][u][font=宋体][color=#0000ff]双特异性抗体表达服务[/color][/font][/u][/url][font=宋体][font=宋体]。从抗体序列开始,我们可以表达多种双特异性抗体形式,如[/font][font=Calibri]BiTE[/font][font=宋体]、[/font][font=Calibri]Diabody[/font][font=宋体]、[/font][font=Calibri]CrossMab[/font][font=宋体]和[/font][font=Calibri]DVD-IgG[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体]参考文献:[/font][font=宋体][font=Calibri]Register AC, Tarighat SS, Lee HY. Bioassay Development for Bispecific Antibodies-Challenges and Opportunities.[/font][/font][font=Calibri] Int J Mol Sci. 2021 22(10):5350. Published 2021 May 19. doi:10.3390/ijms22105350[/font]

  • 非特异性的硅珠黏附细胞法检测宫颈癌

    非特异性的硅珠黏附细胞法检测宫颈癌美国克拉克森大学纳米工程和生物技术实验室中心Igor Sokolov课题组开发出一种新的宫颈癌检测方法——非特异性的硅珠黏附细胞法(nonspecific adhesion of silica beads to cells)。这篇研究报告发表在Small杂志上。这项研究是基于课题组之前发表在Nature Nanotechnology杂志的研究报告,他们观察到,正常的和发生癌变的宫颈上皮细胞表面存在着某些之前未发现的差异。在这项研究中,研究人员将硅珠连接到原子力显微镜(atomic force microscopy,AFM)的旋臂上,从而使硅珠黏附在细胞表面,硅珠和细胞分离所需的的黏附力的大小可以通过测量得到。黏附能力越高的细胞表面黏住的硅珠越多。根据细胞表面的荧光硅珠粒子的数目以及荧光的亮度轻易区别出癌细胞和正常细胞。试验中所使用的超亮的荧光硅珠(ultrabright fluorescent silica particles)也是Sokolov课题组开发出来的。(

  • 抗体融合蛋白:双特异性抗体与蛋白融合的原理与应用

    [font=宋体][font=宋体]抗体融合蛋白是一种将抗体片段与功能蛋白融合表达的重组蛋白,具有抗体的特性和功能蛋白的活性。它可广泛应用于免疫诊断、免疫治疗、抗体纯化、抗体和抗原的定量分析以及免疫导向药物的制备等领域。根据结合的[/font][font=Calibri]Ig[/font][font=宋体]片段的不同,可以将抗体融合蛋白分为[/font][font=Calibri]Fab[/font][font=宋体]融合蛋白、[/font][font=Calibri][url=https://cn.sinobiological.com/resource/protein-review/fc-fusion-proteins][b]Fc[/b][/url][/font][font=宋体][url=https://cn.sinobiological.com/resource/protein-review/fc-fusion-proteins][b]融合蛋白[/b][/url]与[url=https://cn.sinobiological.com/resource/antibody-technical/scfv-antibody-production][b]单链抗体([/b][/url][/font][font=Calibri][url=https://cn.sinobiological.com/resource/antibody-technical/scfv-antibody-production][b]scFv[/b][/url][/font][font=宋体][url=https://cn.sinobiological.com/resource/antibody-technical/scfv-antibody-production][b])[/b][/url]融合蛋白。制备抗体融合蛋白的方法主要有化学交联法和基因工程技术,其中基因工程技术是目前主要的方法。在制备过程中,需要注意两蛋白间的接头序列的长度,以确保蛋白质的折叠和稳定性。抗体融合蛋白在免疫学、生物制药和医学等领域具有广泛的应用前景,为疾病的诊断、治疗和药物研发提供了新的工具和方法。[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]双特异性抗体如何与蛋白融合[/font][font=Calibri]?[/font][/font][/b][font=宋体] [/font][font=宋体]双特异性抗体是一种特殊的抗体,具有两个不同的抗原结合位点。通过技术手段,可以将双特异性抗体与另一种蛋白质融合。[/font][font=宋体] [/font][font=宋体]①使用基因工程技术,将双特异性抗体的基因与目标蛋白质的基因进行融合,然后通过表达载体在细胞内表达融合蛋白质。[/font][font=宋体] [/font][font=宋体]②使用化学手段,将双特异性抗体与目标蛋白质进行化学偶联。这需要使用特定的化学偶联剂,将双特异性抗体的特定基团与目标蛋白质的特定基团连接起来。[/font][font=宋体] [/font][font=宋体]需要注意的是,融合蛋白质的功能和性质取决于其组成成分的特性和比例,因此在融合过程中需要谨慎选择和设计组成成分,以确保融合蛋白质具有所需的功能和性质。[/font][font=宋体] [/font][b][font=宋体]抗体融合蛋白具有广泛的应用,包括但不限于以下方面:[/font][/b][font=宋体] [/font][font=宋体]①免疫诊断:抗体融合蛋白可以用于检测抗原,如病毒、细菌、肿瘤标志物等。通过将抗体片段与荧光蛋白、酶等标记物结合,可以实现对抗原的高灵敏度检测。[/font][font=宋体]②免疫治疗:抗体融合蛋白可以用于治疗肿瘤、感染性疾病等。通过将抗体片段与细胞毒素、免疫调节因子等效应分子结合,可以实现对肿瘤细胞的靶向杀伤或调节免疫反应。[/font][font=宋体]③抗体纯化:抗体融合蛋白可以用于分离和纯化抗体。通过将抗体片段与亲和标签结合,可以利用亲和层析等技术实现对抗体的纯化和富集。[/font][font=宋体]抗体和抗原的定量分析:抗体融合蛋白可以用于定量分析抗体和抗原的浓度。通过将抗体片段与荧光染料等标记物结合,可以利用流式细胞术等技术实现对抗体和抗原的定量分析。[/font][font=宋体]④免疫导向药物的制备:抗体融合蛋白可以用于制备免疫导向药物,即将药物与抗体片段结合,利用抗体的特异性结合能力,将药物定向引导至病变部位,提高药物的疗效并降低副作用。[/font][font=宋体] [/font][font=宋体][font=宋体]更多[url=https://cn.sinobiological.com/resource/antibody-technical/bispecific-antibody][b]双特异性抗体[/b][/url]详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/antibody-technical/bispecific-antibody[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b]

  • 【分享】《中国药理学报》:特异性探针有助检测早老性痴呆

    【分享】《中国药理学报》:特异性探针有助检测早老性痴呆

    [I]作者:Duan-zhi YIN… 来源:《中国药理学报》 时间:2008-5-20 [/I]早老性痴呆症(简称AD)是困扰现代社会的重大脑部疾病。随着社会卫生事业的进步和生活条件的改善,人类寿命提高的同时也使社会人口逐步进入老年化,而使得与年龄相关的脑部疾病——早老性痴呆(AD)患者空前增加。大脑的淀粉样斑块沉积是早老性痴呆的特征性病变。但是多年以来,一直缺乏活体患者脑组织中鉴别该斑块的方法。到目前为止,研究人员还只能通过患者去世后进行尸检脑组织检查来确诊。 正电子发射计算机断层扫描(PET)是一种可活体、动态、定量观察体内活性物质功能性变化的最先进核医学仪器,而该仪器成功应用的关键是发展针对生物靶点的特异性探针。在疾病早期阶段,早老性痴呆的许多病变相当轻微,如果此时能够通过扫描显像以检测出早期形成的斑块,不但可以尽早开始治疗,而且也可能在发生实质性损伤之前延缓或者终止斑块形成。中国科学院上海应用物理研究所放射性药物研究中心尹端沚研究员领导的放射性新药研究小组,在中科院重大项目、国家自然科学基金和上海市科学基金的资助下,开展了针对肿瘤和神经系统疾病的创新性放射性新药研究。该工作克服了国际上使用AD转基因小鼠的不足,首次使用苯并噻唑类结构化合物探针[18F]2-(4'-(methylamino)phenyl)-6-fluoroethoxy- benzothiazole ([18F] O-FEt-PIB),和micro-PET成像设备,观察到了探针在活体模型大鼠脑内和斑块的特异性结合现象。同时使用micro-PET设备研究了该探针在大鼠体内的药理行为。模型鼠与正常大鼠体内实验表明,该探针能快速入脑,并能与模型大鼠脑内的淀粉样蛋白特异性结合;而在对照大鼠脑内没有观察到类似的结合现象。[img]http://ng1.17img.cn/bbsfiles/images/2008/05/200805201157_90016_1622715_3.jpg[/img]图片说明:A,B分别是大鼠脑横断面和冠状面显像图。A1 B1,A2 B2分别显示新合成探针在模型和对照大鼠脑海马区域的分布情况,结果表明探针在斑块聚集的模型大鼠右脑区域比无斑块的左脑区域明显聚集,而在对照鼠左右脑分布较对称。A3,B3 为[18F]FDG在正常大鼠脑内葡萄糖代谢分布情况。该实验的成功一方面为其走向临床应用奠定了基础,另一方面也有助于推动先进的micro-PET设备在我国新药研究和生命活动研究中的应用。该结果于2008年5月发表在《中国药理学报》(Acta Pharmacologica Sinica)上。(来源:中科院) (《中国药理学报》(Acta Pharmacologica Sinica),29 (5): 548-554,Ming-qiang ZHENG,Duan-zhi YIN)

  • PCR仪:验证检测体系特异性

    PCR仪:验证检测体系特异性

    PCR仪:验证检测体系特异性[img=,690,440]https://ng1.17img.cn/bbsfiles/images/2018/10/201810241920068844_557_2166779_3.png!w690x440.jpg[/img][img=,690,348]https://ng1.17img.cn/bbsfiles/images/2018/10/201810241920136615_5696_2166779_3.png!w690x348.jpg[/img][img=,690,438]https://ng1.17img.cn/bbsfiles/images/2018/10/201810241920205690_3262_2166779_3.png!w690x438.jpg[/img][img=,677,357]https://ng1.17img.cn/bbsfiles/images/2018/10/201810241920278229_7640_2166779_3.png!w677x357.jpg[/img][img=,671,371]https://ng1.17img.cn/bbsfiles/images/2018/10/201810241920322534_5519_2166779_3.png!w671x371.jpg[/img][img=,690,428]https://ng1.17img.cn/bbsfiles/images/2018/10/201810241920383647_113_2166779_3.png!w690x428.jpg[/img][img=,690,339]https://ng1.17img.cn/bbsfiles/images/2018/10/201810241920451356_1349_2166779_3.png!w690x339.jpg[/img][img=,690,468]https://ng1.17img.cn/bbsfiles/images/2018/10/201810241921047116_3047_2166779_3.png!w690x468.jpg[/img][img=,690,444]https://ng1.17img.cn/bbsfiles/images/2018/10/201810241921142173_9563_2166779_3.png!w690x444.jpg[/img][img=,510,348]https://ng1.17img.cn/bbsfiles/images/2018/10/201810241921520473_8333_2166779_3.png!w510x348.jpg[/img][img=,690,531]https://ng1.17img.cn/bbsfiles/images/2018/10/201810241922003072_6167_2166779_3.png!w690x531.jpg[/img][img=,642,482]https://ng1.17img.cn/bbsfiles/images/2018/10/201810241922274909_3120_2166779_3.png!w642x482.jpg[/img][img=,429,467]https://ng1.17img.cn/bbsfiles/images/2018/10/201810241922375767_5529_2166779_3.png!w429x467.jpg[/img][img=,413,502]https://ng1.17img.cn/bbsfiles/images/2018/10/201810241922482720_7230_2166779_3.png!w413x502.jpg[/img][img=,425,631]https://ng1.17img.cn/bbsfiles/images/2018/10/201810241922576927_5663_2166779_3.png!w425x631.jpg[/img] [img=,674,366]https://ng1.17img.cn/bbsfiles/images/2018/10/201810241925118803_6362_2166779_3.png!w674x366.jpg[/img][img=,690,375]https://ng1.17img.cn/bbsfiles/images/2018/10/201810241925220513_7303_2166779_3.png!w690x375.jpg[/img]

  • 荧光显微镜表征材料特异性

    [font='times new roman'][size=16px][color=#2a2b2e]荧光显微镜表征材料特异性[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]为了评估[/color][/size][/font][font='times new roman'][size=16px]SiO[/size][/font][font='times new roman'][sub][size=16px]2[/size][/sub][/font][font='times new roman'][size=16px]@BSA@Fe-TA[/size][/font][font='times new roman'][sub][size=16px]6[/size][/sub][/font][font='times new roman'][size=16px][color=#2a2b2e]对外[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]泌[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]体的特异性,[/color][/size][/font][font='times new roman'][size=16px]SiO[/size][/font][font='times new roman'][sub][size=16px]2[/size][/sub][/font][font='times new roman'][size=16px]@BSA@Fe-TA[/size][/font][font='times new roman'][sub][size=16px]6[/size][/sub][/font][font='times new roman'][size=16px][color=#2a2b2e]与[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]H1299[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]细胞培养上清和[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]FITC[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]标记的抗[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]IgG[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]抗体孵育,这种抗体理论上不识别外[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]泌[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]体表面蛋白[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e],则[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]在[/color][/size][/font][font='times new roman'][size=16px]SiO[/size][/font][font='times new roman'][sub][size=16px]2[/size][/sub][/font][font='times new roman'][size=16px]@BSA@Fe-TA[/size][/font][font='times new roman'][sub][size=16px]6[/size][/sub][/font][font='times new roman'][size=16px][color=#2a2b2e]表面只观察到微弱的背景荧光信号[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]([/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]图[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]c)[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]。接下来,依次[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]将[/color][/size][/font][font='times new roman'][size=16px]SiO[/size][/font][font='times new roman'][sub][size=16px]2[/size][/sub][/font][font='times new roman'][size=16px]@BSA@Fe-TA[/size][/font][font='times new roman'][sub][size=16px]6[/size][/sub][/font][font='times new roman'][size=16px][color=#2a2b2e]与[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]IgG[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]蛋白和[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]FITC[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]标记的抗[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]IgG[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]抗体孵育,在[/color][/size][/font][font='times new roman'][size=16px]SiO[/size][/font][font='times new roman'][sub][size=16px]2[/size][/sub][/font][font='times new roman'][size=16px]@BSA@Fe-TA[/size][/font][font='times new roman'][sub][size=16px]6[/size][/sub][/font][font='times new roman'][size=16px][color=#2a2b2e]上只观察到微弱的背景荧光[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]([/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]图[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]11d)[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e],而在[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]介[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]孔二氧化硅球上[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]则[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]观察到强烈的荧光信号[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]([/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]图[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]e)[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]。以上结果表明,在[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]介孔硅[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]球上进行简单的[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]TA-Fe (III)[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]网络修饰,[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]即[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]可显著提高其对外[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]泌[/color][/size][/font][font='times new roman'][size=16px][color=#2a2b2e]体的捕获特异性和捕获效率。[/color][/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2023/06/202306302140018513_1329_5389809_3.jpeg[/img][font='times new roman'][color=#2a2b2e]图[/color][/font][font='times new roman'][color=#2a2b2e]11[/color][/font][font='times new roman'][color=#2a2b2e]荧光和明亮图:[/color][/font][font='times new roman'][color=#2a2b2e]SiO[/color][/font][font='times new roman'][sub][size=13px][color=#2a2b2e]2[/color][/size][/sub][/font][font='times new roman'][color=#2a2b2e]@BSA@Fe-TA[/color][/font][font='times new roman'][sub][size=13px][color=#2a2b2e]6[/color][/size][/sub][/font][font='times new roman'][color=#2a2b2e]与[/color][/font][font='times new roman'][color=#2a2b2e]含[/color][/font][font='times new roman'][color=#2a2b2e](a, f)[/color][/font][font='times new roman'][color=#2a2b2e]和不含[/color][/font][font='times new roman'][color=#2a2b2e](b, g) [/color][/font][font='times new roman'][color=#2a2b2e]外[/color][/font][font='times new roman'][color=#2a2b2e]泌[/color][/font][font='times new roman'][color=#2a2b2e]体和[/color][/font][font='times new roman'][color=#2a2b2e]FITC[/color][/font][font='times new roman'][color=#2a2b2e]标记的抗[/color][/font][font='times new roman'][color=#2a2b2e]CD63[/color][/font][font='times new roman'][color=#2a2b2e]抗体的[/color][/font][font='times new roman'][color=#2a2b2e]H1299[/color][/font][font='times new roman'][color=#2a2b2e]细胞培养[/color][/font][font='times new roman'][color=#2a2b2e]基[/color][/font][font='times new roman'][color=#2a2b2e]上清孵育[/color][/font][font='times new roman'][color=#2a2b2e] [/color][/font][color=#2a2b2e] [/color][font='times new roman'][color=#2a2b2e]SiO[/color][/font][font='times new roman'][sub][size=13px][color=#2a2b2e]2[/color][/size][/sub][/font][font='times new roman'][color=#2a2b2e]@BSA@Fe-TA[/color][/font][font='times new roman'][sub][size=13px][color=#2a2b2e]6[/color][/size][/sub][/font][font='times new roman'][color=#2a2b2e]与含有外[/color][/font][font='times new roman'][color=#2a2b2e]泌[/color][/font][font='times new roman'][color=#2a2b2e]体和抗兔[/color][/font][font='times new roman'][color=#2a2b2e]IgG/FITC[/color][/font][font='times new roman'][color=#2a2b2e]的细胞培养[/color][/font][font='times new roman'][color=#2a2b2e]基[/color][/font][font='times new roman'][color=#2a2b2e]上清孵育[/color][/font][font='times new roman'][color=#2a2b2e](c, h) [/color][/font][color=#2a2b2e] [/color][font='times new roman'][color=#2a2b2e]SiO[/color][/font][font='times new roman'][sub][size=13px][color=#2a2b2e]2[/color][/size][/sub][/font][font='times new roman'][color=#2a2b2e]@BSA@Fe-TA[/color][/font][font='times new roman'][sub][size=13px][color=#2a2b2e]6[/color][/size][/sub][/font][font='times new roman'][color=#2a2b2e] (d, [/color][/font][font='times new roman'][color=#2a2b2e]i[/color][/font][font='times new roman'][color=#2a2b2e])[/color][/font][font='times new roman'][color=#2a2b2e]和[/color][/font][font='times new roman'][color=#2a2b2e]SiO[/color][/font][font='times new roman'][sub][size=13px][color=#2a2b2e]2[/color][/size][/sub][/font][font='times new roman'][color=#2a2b2e] (e, j)[/color][/font][font='times new roman'][color=#2a2b2e]与蛋白[/color][/font][font='times new roman'][color=#2a2b2e]IgG[/color][/font][font='times new roman'][color=#2a2b2e]和抗兔[/color][/font][font='times new roman'][color=#2a2b2e]IgG/FITC[/color][/font][font='times new roman'][color=#2a2b2e]孵育后。比例尺[/color][/font][font='times new roman'][color=#2a2b2e]:30 [/color][/font][font='times new roman'][color=#2a2b2e]μm[/color][/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制