当前位置: 仪器信息网 > 行业主题 > >

提高有效场景亮度

仪器信息网提高有效场景亮度专题为您整合提高有效场景亮度相关的最新文章,在提高有效场景亮度专题,您不仅可以免费浏览提高有效场景亮度的资讯, 同时您还可以浏览提高有效场景亮度的相关资料、解决方案,参与社区提高有效场景亮度话题讨论。

提高有效场景亮度相关的资讯

  • 在线色彩测量,纸机监测颜色色彩和亮度的方案
    在线色彩测量,纸机监测颜色色彩和亮度的方案随着造纸行业的不断发展,市场竞争日益激烈,纸厂需要不断提升生产效率和产品质量,以保持其市场地位。未来,随着自动化和智能化技术的广泛应用,纸厂的生产流程将变得更加高效和精准。这种技术进步不仅能够大幅降低运营成本,还能显著提升产品质量的一致性和可靠性。尤其是在色彩和亮度控制方面,先进的在线色彩测量和闭环色彩控制系统将发挥关键作用。为了保持竞争力,造纸厂必须实现高效运营。在启动生产时,色彩和亮度往往是最难调整的质量指标。通过高效的在线色彩测量和闭环色彩控制系统,操作人员只需按下按钮即可实现精准的色彩控制。虽然操作人员仍需设置相关机器参数,但在线测量系统能够通过同时调整色彩和光学增白剂(如使用)来缩短启动时间,并减少每次调整色度和克重所需的时间。一、在线色彩测量和控制系统是什么?在线色彩测量和控制系统包括一个非接触式分光光度仪和一个固定机架,按一定间隔放置在造纸生产线上。分光光度仪与质量控制软件相连,监测实际色彩并存储整个批次的数据,同时在工艺开始时调整染色泵站的着色剂。系统屏幕能够立即显示哪怕是非常细微的色彩偏差,以保持严格的色彩公差。即使实际色彩与色标相差甚远,系统也可以通过数学算法自动计算并执行所有必要的染料调整,从而消除生产过程中的主观臆测。该在线测量设备能够承受恶劣的工作环境,不易受到环境光、振动、纸张速度和纸面颤动等因素的影响。定制的测量机架设计在断纸的情况下能够张开探头和托臂,方便穿引新的纸幅。一旦纸张重新稳定,测量设备会自动摆动到测量点并开始测量。在线测量系统还可以采用双机配置,同时监测和控制纸张的两侧。通过直接在纸机上采集准确的测量数据,闭环系统或机器操作人员能够及时纠正色彩偏差。二、何时测量纸张色彩在线色彩测量系统帮助纸机操作人员保持色彩和亮度的一致性。常见的测量点是紧挨卷取前的产线末端,因为该测量点与实验室的色彩相关性高。然而,在线测量系统还可以在纸浆阶段进行测量,以便提供早期预警。此外,在压榨部后的装饰纸测量也很重要,这样可以更好地关联层压在木材上的纸张,从而确保最终产品的质量和一致性。①纸浆的在线色彩测量在纸浆阶段进行在线色彩测量,可以在纸浆进入纸机之前提供早期预警。虽然测得的色彩与成品纸的色彩有所不同,但通过检测纸浆的色彩变化,操作人员能够在纸浆上机之前甚至在生产开始之前进行必要的调整。在线系统监测纸浆色彩可以进行批次比较,确定两种原料流(如废纸与“清洁”原料)的混合情况,评估添加废纸原料的影响,并检测荧光增白剂的相对含量。这样,操作人员可以及时采取措施,确保最终产品的色彩一致性和质量。②卷取前的在线色彩测量在复绕前进行色彩测量非常适合双层牛卡纸、彩色纸巾、彩纸或白纸、纸板、装饰纸、防伪纸和薄打印纸。此阶段的测量可以有效关联实验室数据,因为成品纸在卷取前测量能够提供精准的色彩信息。由于在线测量仅在单层上进行,还需要测量不透光纸张的不透明度,并重新计算至无限层,以确保与实验室数据的一致性。在复卷前的色彩测量非常适合闭环色彩控制,因为原材料的色彩波动最终会反映在纸机末端的色度变化。在线色彩测量系统能够可靠地检测出哪怕是微小的偏差,并一步计算出所有染料的必要调整,然后将这些调整指令发送到染色站。因此,即使原材料发生变化,纸机末端的色彩也只会有细微的波动,确保成品纸的色彩稳定性和一致性。③压榨部和烘干部之间的在线色彩测量在压榨部和烘干部之间进行在线色彩测量非常适合压平和层压的装饰纸。装饰纸的色彩必须完全一致,但树脂或清漆的折射率会改变纸张的色彩外观。在湿纸干燥前进行色彩测量,与成品色彩有良好的相关性,因为纸张中的水分具有与装饰纸类似的折射率。这种在线测量系统可以在必要时生产重染的纸带并进行测量,无需再次压板,从而进一步缩短调整时间。这样不仅能够保证装饰纸的色彩一致性,还能提高生产效率,减少调整时间。三、投资回报快在线色彩测量和控制系统能够显著帮助操作人员控制纸机,通过早期识别色彩偏差并自动调整染料泵,将色彩恢复到公差范围内,从而确保高效运行。其自动启动和色度调整功能最大限度地减少了人为介入,加快启动速度,缩短改抄时间多达50%。同时,系统还降低了染料用量,减少了浪费,确保整个生产批次几乎没有波动,从而提高了成品的市场认可度。这一系列优化措施使得企业能够获得快速的投资回报。四、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 虹谱光色发布CX-1000成像亮度计成像色度计成像光度计新品
    CX-1000成像亮度计用于测量Led模块,灯,灯具,显示器,街道亮度和其他来源的亮度,具有广泛的应用范围成像亮度计主要特点: 1、使用CMoS图像传感器和高级v-lambda滤镜2、具有数百万个探测器点矩阵,能捕获整个场景,同时测量每个点的亮度 3、一次操作即可快速测量多个点 4、高分辨率和高灵敏度 成像亮度计标准及规格:成像分辨率1920×1200(FUHD.2.3MPix)A / D转换12位测量范围0.01cd / m2至10000cd / m2 (ND滤镜适用范围更大要求可以办到)分辨率0.01cd / m2动态范围1:1000000对焦距离440毫米为无限最小工作面积86毫米x55毫米 (距离440 mm)光谱响应不确定性A级(F1) 3%整合时间50μs ~ 30秒测量传感器类型带有光谱响应滤波器CMOS单色矩阵光学系统50毫米f / 2.8镜头(可根据要求提供) 尺寸 [ 高 X 宽 X 长 ]86毫米 x 90毫米 x 156毫米重量1200克PC连接USB 3.0能量源由USB连接供电三脚架适配器创新点:成像亮度计是一种基于成像原理来进行测光和测色的计量仪器,基本结构是由视觉(或色觉)匹配的探测器、光学系统以及与亮度(或三刺激值)成比例的信号输出处理系统所组成。● 测量精度高光学系统的V(λ )匹配可达国家标准级或一级水平。亮度测量精度可达± 3%。● 动态范围高采用高动态测量技术,可同时实现高亮光源和低亮背景的精确测试,动态范围可达120dB● 高稳定性采用独特的降噪和缺陷处理技术,产品无需预热,开机即测。重复性好且高度稳定。● 测量结果的线性度高系统的线性校准采用高亮度范围的标准光源,可实现CMOS信号强度在3%以上的条件下精确测量。● 软件功能强大软件可以实现对光源的识别、编号和处理。采用先进的图像处理算法实现字符、眩光和显示器检测等测量。● 灵活便携产品尺寸小、重量轻,且可直接通过USB连接电脑,在室外环境中可进行便携式测试。CX-1000成像亮度计成像色度计成像光度计
  • 科普:高亮度LCD液晶屏如何选择?
    我们来看一下LCD显示屏的内部结构液晶显示屏被广泛用在各种电子设备中,LCD 是液晶显示屏的简称,其结构包括增亮膜、扩散片、导光板、偏光片等。分光光度计是检查光学组件特性的有利工具,今天我们重点介绍LCD中偏光片的评估。LCD中偏光片的作用是产生明亮对比,如上图所示,它位于液晶面板LC的两侧,液晶面板具有各向异性,光通常可以透过,当向LC施加电流时,LC变得各向同性,光线就会被处于交叉状态的偏光片阻止。通过这种对光线的透过和阻挡,调整像素亮度。偏光片评估的实验数据对偏光片的要求是其在交叉状态下应具有较低的透过率,这影响LCD产生暗的能力。在平行状态下具有较高的透过率,这影响LCD产生亮度的能力。本次实验使用日立紫外-可见-近红外分光光度计UH4150搭配偏振样品测量附件、积分球检测器评估液晶显示屏中的偏光片。实验测量了薄膜偏光片的透过率。偏振测量附件偏光片的透过光谱结果表明,在546 nm处,Ys透过率为40.68%,Yp透过率为32.98%,Yc透过率为0.01%。根据公式1计算该薄膜偏光片的偏振度为0.9998,偏振效果好。日立紫外-可见-近红外分光光度计UH4150具有优异的平行光束特征,确保反射率和透过率的准确测定,大型样品仓和多种多样的附件,可以满足LCD中不同组件的评估。UH4150可操作性强,能为您提供高精度的光学系统测定。UH4150公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 用于VR传感器测试的高亮度 RGB 积分球均匀光源
    测试VR传感器需要红、绿、蓝 (RGB) 光源。图1 VR工作室的男孩该仪器需要满足:光谱输入可控制,具有非常高的亮度水平且5cm² 开口端具有很高的均匀性。该均匀光源还必须适合特定的、空间有限的工作空间。客户要求Labsphere(蓝菲光学)设计和开发一种红、绿、蓝 (RGB) 积分球均匀面光源。亮度分布要求至少由 30% 的红色(150,000 尼特)、60% 的绿色(300,000 尼特)和 10% 的蓝色(50,000 尼特)组成。总而言之,在可见光谱区域内亮度 500,000 尼特。在正常查看光栅图和离轴 ±30° 的 5cm 亮度开口端上必须有 98% 或更高的亮度均匀性。该解决方案需要有一个带有 NIST 可溯源校准的嵌入式人眼视觉探测器,以监测开口端的亮度。客户要求结构紧凑,且开口上方和周围的严格垂直限制。图2 蓝菲光学高亮RGB积分球光源结构图Labsphere (蓝菲光学)的解决方案该RGB 积分球均匀光源设计核心是对开口端的亮度级别的满足。物理结构设计需保证结构紧凑的基础上,同时满足发光开口端亮度均匀性要求。图3 RGB积分球光源3D图为了提供强光输出亮度级别,Labsphere 采用内部为高反射漫反射材料 Spectralon(99% 的可见光反射率)的小型积分球。光引擎采用Labsphere 设计的 RGB LED 阵列集群。光引擎接口允许其自身与积分球之间的有效耦合。积分球内部包含光引擎、光孔径和光电探测器开口孔径,以监测系统高动态范围内的亮度。光引擎配备了 100W 热电冷却器,以补偿光引擎产生的热量并保持稳定性和可重复性。校准是在 Labsphere(蓝菲光学)先进的辐射测量/光度测量实验室中进行的,校准结果可溯源至 NIST。均匀性映射采用机器人控制自动化的高分辨率成像色度计进行采集的。图4 RGB积分球光源开口处光源输出图5 光谱图规格参数Red Luminance:210k nits Green Luminance: 260k nits Blue Luminance:86k nits Normal Uniformity:98% Angular Uniformity: 99%
  • 集成电路CT精准成像的“源头”:Excillum高亮度液态靶X射线源
    X射线穿透物体时会被物体吸收,其吸收能力取决于材料类型与物体厚度。CT(Computed Tomography),即电子计算机断层扫描,利用的X线束与灵敏度高的探测器一同围绕被测物的某一部位进行连续的断面扫描并结合计算机实现三维重构,得到三维成像图形。传统上我们接触比较多的是医疗CT,它是基于人体不同组织对X线的吸收与透过率不同,拍下人体被检查部位的断面或立体的图像,发现体内某些部位的细小病变。除医疗方面的应用,CT也在无损检测和逆向工程中发挥重大的作用。工业CT技术对气孔、夹杂、针孔、缩孔、分层等各种常见缺陷具有很高的探测灵敏度,并能地测定这些缺陷的尺寸,给出其在零件中的部位。与其他常规无损检测技术相比,工业CT技术具有成像尺寸精度高、不受工件材料种类和几何形状限制以及可生成材料缺陷的三维图像等优势。随着CT的发展,该技术也被用于电子业和半导体工业。半导体领域内传统的成像往往借助于破坏性的切片成像,而CT可以在样品任何方向上进行非破坏性成像,不受周围细节特征的遮挡,可直接获得目标特征的空间位置、形状及尺寸信息,在电子元器件的工艺、失效分析等方面有着巨大的应用前景。 2019年美国国防微电子部门(DMEA)的Michael Sutherland等人使用瑞典Excillum公司的液态金属靶X射线源MetalJet D2+,定制了一款用于集成电路检测的CT系统,该系统对90 nm制程的集成电路进行了扫描成像[1],图1为90 nm铜制程的某个断面层析成像,可以非常清楚的观察到内部结构。图1 90 nm铜制程的某个断面层析成像 与标准铜(Kα 8.04 keV)旋转阳固态金属靶源相比,MetalJet D2+以镓(Kα 9.2 keV)为X射线源,在观测Cu和Si时,对比度约为标准铜靶的9倍。如图2所示,镓靶在Kα 9.2 keV时明显能比铜Kα 8.04 KeV获得更大的吸收衬度,并且液态靶光源亮度比标准铜光源高出约10倍。基于上述优势,液态靶光源可获得更高的成像质量,成为集成电路铜互连结构成像的理想光源。 图2 利用镓(Kα 9.2 keV)在铜吸收边上方成像,对铜成分具有良好的对比度 Michael Sutherland等人还对该成像系统的X射线微焦斑大小和探测计数等进行了探讨。在液态靶X射线源MetalJet D2+中,焦斑大小可以在5-20 μm之间连续可调,其电子束的大允许功率与光斑尺寸呈线性对应关系,即20 μm光斑尺寸在250 W下运行,10 μm光斑尺寸在125W下运行。此外,其亮度随电子束焦斑功率密度的提高而增加。例如,与20 μm光斑相比,光源在10 μm光斑下的亮度大约是前者的两倍。通常,X射线显微镜中探测器计数与光源的亮度有直接关系,作者预期在光斑大小为5 μm时系统具有高的计数。为了验证这一假设,他们以1 μm为步长在5-20 μm之间的每个光斑大小进行了系统配置。对于每一个光斑尺寸,他们对聚光器进行校准,找到佳光斑位置,终确定了系统的佳光斑尺寸实际上为~12 μm(图3),而且使12 μm附近的计数比5 μm和20 μm光斑尺寸增加了30%。通过上述的研究表明X射线光学显微镜计数大时并不一定是在微焦斑小的时候,而是在计数和焦斑大小之间存在着佳对应关系。由此可见,连续可调的X射线焦斑大小有利于系统对X射线计数优化,提升系统的成像质量。 图3 优化光斑大小,使x射线计数大化。蓝色的线是图像中心计数的中位数,橙色的线是整个图像计数的中位数 为什么液态靶X射线源可以比标准光源高出约十倍的亮度呢?图4 Excillum液态金属靶X射线源示意图 在传统固体阳技术中,为了避免阳被损坏,其表面的工作温度必须远低于靶材的熔点,因此靶材的各种物理性质,如熔点、导热系数等大地限制了电子束功率的范围。而液态金属阳则不同,由于靶材本身已处于熔化的状态,不受熔点的限制。同时,完好如初的液态靶材以接近100 m/s的速度在腔体内循环,阳不断地自再生,电子束对靶材的损坏将微乎其微,使得液态靶与其他固态靶相比,功率密度得到大幅度的提升(如图5所示)。因此液态靶光源能够带来10倍于普通固体阳X射线光源所发射的X射线通量(在相同焦斑面积上),实现更快(测试时间短)、更高(高的亮度)、更强(信号强度)的测试体验。图5 液态靶与其他固态靶功率密度对比 综上所述,相比于传统的破坏性检测,通过X射线进行CT成像可以进行非破坏性的多维成像检测,有着非常大的优势,瑞典Excillum的液态靶X射线源的高亮度以及镓靶更适合于铜和硅的对比度检测,是集成电路成像检测的理想光源。 Quantum Design中国于2020年正式成为Excillum液态靶X射线源代理,更多关于Excillum液态靶X射线源的信息请致电/邮件详询。 参考资料:[1] Michael Sutherland, Software Automation and Optimization of an X-ray Microscope Custom Designed for Integrated Circuit Inspection. Microsc. Microanal. 24 (Suppl 2), 2018
  • 最亮手持激光器在美问世 亮度为阳光八千倍
    Wicked公司研制的S3氪激光器,射程可达到85英里。  S3氪激光的亮度可达到阳光的8000倍。  北京时间9月8日消息,从CD到DVD,激光技术的触角已经延伸到地球的每一个角落。科学家研制的激光器中绝大多数能量很小,与科幻作品中可怕的太空激光武器相差十万八千里。在研制激光器的道路上,美国Wicked激光公司又向前迈出一步,他们研制的S3氪激光器射程可达到85英里(约合136公里),可以穿过房间点燃纸张,能够从地球大气层锁定地面上的物体。  S3氪激光的亮度达到阳光的8000倍,是世界上亮度最高的手持激光器。目前,吉尼斯世界纪录组织正对这一激光器进行评估。Wicked公司表示:“建议用户佩戴护目镜。”S3氪激光器的售价为299美元,涵盖一副护目镜的价格。在人类肉眼看来,绿色激光的亮度是蓝色激光的20倍,S3氪激光器便是绿色激光,拥有惊人的射程。它的能量很高,能够在远距离点燃纸张和火柴。由于内置微处理器,S3氪激光器不会出现温度过高情况。  Wicked公司为S3氪激光器采用了一系列安全举措,例如使用密码以防止滥用激光器。此外,他们还警告用户,不要将激光对准车辆、飞行员、动物、人或者卫星。这款激光器能够进入“战术休眠”模式,允许激光器立即冷启动。  由于任何非人造物体都无法从距地面85英里的高度照射到地球——除非科幻影片中入侵地球的外星人——人们不免对S3氪激光器的用途产生好奇。Wicked公司CEO史蒂夫-刘表示:“如果这款激光器安装在一个稳定的支架(我们并不卖这种支架)上并与卫星同步,宇航员能够看到微弱的绿光。这种实验需要获得政府航天机构的批准。我们的绝大多数职业消费者将这种激光器用于军队、工业界和科学研究。一些业余爱好者将其视为一个奇异的玩具,探索它的用途。作为公司的一项政策,我们并不列出激光器的具体用途,同时建议专业人员使用我们的产品并对自己的行为负责。”  WickedLasers.co.uk等网站计划将这种危险的装置进口到英国。2010年,一名青少年被自己从网上购买的绿色激光器严重灼伤眼睛,这起事故发生后,英国健康保护署发出警告,提醒公众不要购买大功率激光器。目前,英国已经有超过12个人因将大功率激光指示器对准飞行员、司机和足球运动员被送进监狱。
  • 我国在高亮度硬X光源研究中取得新进展
    p style="line-height: 1.75em " 高亮度X光源由于其在材料、生物研究等方面的广泛应用,一直是国际相关科研领域追求的目标。韧制辐射、同步辐射光源、X射线自由电子激光(XFEL)等都可以产生高亮度X光源。超短超强激光通过不同相互作用机制,可在从THz到伽马射线的各个频段产生高亮度超短电磁辐射源。/pp style="line-height: 1.75em "  中国科学院上海光学精密机械研究所强场激光物理国家重点实验室与德国杜塞尔多夫大学合作,3月14日发表在国际物理学期刊《物理评论快报》上的论文Bright x-ray source from a laser-driven micro-plasma waveguide [Phys. Rev. Lett. 116, 115001 (2016)] 报道了利用高对比度超短超强激光和微等离子体通道相互作用产生高亮度X射线的理论方案。超强激光将通道壁上的电子拉出,在激光场中加速,高能电子在激光场中的横向运动可辐射极强的X光(如图)。利用这一新机制,辐射X光的能量在20keV左右,单个脉冲光子数接近1011个,X光源具有很好的准直性,亮度可达5× 1023photons/s/mm2/mrad2/0.1%bandwidth,为这一重要频段(~20KeV)产生极高亮度X光源提出了一种重要方案。强场激光物理国家重点实验室正准备在实验室超短超强激光装置上进行相关实验。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201604/insimg/9ad78f2c-8891-4cf9-88a3-08ed3718ea6d.jpg" title="W020160419336153986380.jpg"//pp style="text-align: center "高能电子在圆偏转超强激光场中加速、旋转,辐射出高亮度硬X射线/p
  • 南科大开发高亮度聚合物点探针实现三维多色超分辨成像应用
    近日,南方科技大学生物医学工程系教授吴长锋课题组成功开发了一系列高亮度聚合物点荧光探针,通过荧光探针功能化和扩展成像技术,在普通荧光显微镜上可以观察到精细的亚细胞结构,分辨率高达30 nm。相关成果发表在材料领域知名期刊Advanced Materials。超分辨光学成像因其能够提供低于衍射极限的分辨率而获得了2014年诺贝尔化学奖,当前超分辨技术主要分为两类:基于激发光调制的超分辨成像和基于单分子定位的超分辨成像。扩展显微成像采用了截然不同的思路:通过将样本膨胀扩大,使得原本在衍射极限范围内的相邻分子由于距离变大而变得清晰可辨。该方法不依赖于复杂的成像系统,用普通共聚焦显微镜可以获得纳米级分辨率,但样本扩展过程中由化学猝灭及密度稀释导致的荧光亮度衰减是该方法进一步发展的难题。针对这一问题,研究团队开发了适用多色扩展显微成像的聚合物点荧光探针。相比于商用的荧光染料,聚合物点的荧光标记亮度可以提高6倍。由于聚合物点的高亮度标记,细胞骨架微管蛋白的三维空间构象、网格蛋白有被小泡以及神经元突触结构等,都能够在普通荧光显微镜上解析出来(图1a-c)。课题组进一步将聚合物点探针、扩展成像技术、和光学涨落超分辨技术结合起来,在普通宽场显微镜上实现了约30 nm的超高分辨率成像,更加真实地还原出微管蛋白尺寸以及线粒体中空膜结构等细节信息(图1d-j)。这些发现展示了高亮度聚合物点在生物光学成像的应用潜力。 图1三维超分辨扩展-光学涨落联合成像解析亚细胞精细结构图2 全自动细胞免疫荧光标记平台南方科技大学-香港浸会大学联合培养博士生刘洁为本文第一作者,南方科技大学为该论文的通讯单位。以上研究得到了国家自然科学基金、国家重点研发计划、深圳市科技创新委员会资助项目等的支持。
  • 激光驱动白光光源|每天使用3小时,至少可用8年的高亮度光源
    众所周知,传统的辐射校准光源,如氘灯、石英窗卤素钨灯、长弧氙灯等无法在200 nm-800 nm范围内保持较高的输出,并且在使用100小时或更短时间后需要进行重新校准,在使用500小时后还需要更换灯泡。图1 LDLS与其他传统光源的性能对比基于此,Hamamatsu集团旗下的Energetiq公司研发出单点激光驱动光源技术,并将其命名为激光驱动白光光源(Laser Driven Light Source, LDLS),该类光源不仅可以在170nm-2500nm的光谱范围内提供超高发光亮度,而且整个光源的发光寿命相比较于传统光源也高出了整整一个数量级。激光驱动白光光源(LDLS)激光驱动白光光源(以下简称,LDLS)由一个特殊设计的灯室、驱动激光光源、激光聚焦光路、光源输出光路、光源控制器等主要部分组成。图2 LDLS发光原理其原理是采用无电极结构,将外置1000 nm左右波长的激光汇聚到光源灯室中,加热氙等离子体至足够高温时发光,灯室发光后系统会自动给灯室断电,发光等离子体的状态就一直由外部激光器所保持。图3 LDLS产品参数与常见的有氘灯、钨灯、氙灯等传统光源相比,LDLS在亮度、稳定性、UV波长覆盖、寿命上都有很大突破。LDLS性能优势1、高亮度LDLS是高亮度光源,可以将光源压缩成一个极小的点,拥有极高的功率密度,超小光点成像(~0.1 mm)变得更容易,也更容易耦合进光纤、光谱仪等各种光学设备。适用于成像应用和测量诸如微芯片、生物细胞等精密测量样本的应用。图3 氙灯光源灯焰与LDLS灯焰比较2. 宽光谱范围LDLS光谱分布涵盖了深紫外—可见光—近红外的光谱范围(170nm-2500nm),光谱分布平坦相比于传统光源在深紫外波段光谱有极高光谱强度(10X)。图4 EQ-99X和卤钨灯光谱分布对比图5 LDLS系列光源光谱强度分布和传统光源对比3. 长寿命LDLS具有超长灯室寿命,超9000小时典型时长(低耗材成本),与传统光源(氙灯、氘灯、卤钨灯)相比校准时间间隔更长、漂移更低。图6 LDLS光源寿命4. 高稳定性LDLS 以每秒200帧的速度收集和存储2500张图像 ,使用ImageJ(图像分析软件)计算每张图像的质心; 发光等离子体质心位置标准差: 水平方向—0.145 µ m;垂直方向—0.094 µ m。产品应用紫外-可见光光谱分析单色仪光源薄膜检测 滤光片/光学元件测试原子吸收光谱材料特征检测环境分析高光谱成像气相分析测量光学传感器检测生命科学与生物成像
  • 药检设备招标项目因被投诉两度流产
    一桩旨在提升药监部门检测检验能力的药检设备招标项目,因竞标者的投诉两度流产,背后的利益纷争扑朔迷离。  福建药品检验设备采购招标惹争议  2008年,福建省天海招标公司遭遇了有史以来第一场流年不利:1月18日,省财政厅采购办以违规操作为由,向全省通报给予该公司“记不良记录一次”。  这是一起由福建省食品药品监督管理局委托的药检设备招标项目。采购办干预的直接后果是,招标必须推倒重来。  4月22日,招标在强烈的争议中重新组织,不过,这一次努力,并未给天海公司带来更好的运气。4月28日,第二次招标结果刚一贴出,再次被发现“有问题”。  消息甫一传开,业界一片哗然。尽管天海公司声明这是他们在主动纠正失误,但这样的理由并未能让外界信服。有供应商甚而直接指出:天海公司是否在搞黑箱操作?药监局是否与招标的失误有关?  第一次招标留下不良记录  5月上旬,一位自称代理国际著名品牌ABI的闽商致函《中国改革》记者,诉称招标公司在组织一次有关药检设备的招标项目中,公然以潜规则代替国家法律政策,由于遭到投标人极力反对,招标数度流产,严重损害了政府的利益。  这位不愿透露姓名的报料人声称,为牟取不当利益,招标公司曾通过中间人赤裸裸地引诱其跟招标公司进行交易,并宣称只要肯交钱,招标公司保证让其中标,在未得到及时回应的情况下,便悍然将目标转向别的品牌。果然,两次招标,“ABI均以非正常方式被排挤出局。”  “如此明目张胆的黑箱操作,置法律尊严于何地?”这位供应商怒不可遏地说,如果被逼无奈,他们将拿起法律的武器来捍卫自己的合法权益。  报料人口中的招标公司,正是几个月前被福建省采购办列入不良记录的天海招标代理有限公司。  记者调查发现,该公司是福建省具有甲级资格的政府采购代理机构,自成立以来,已承接过大量政府采购项目,其中不乏省药监局委托的项目。  一位福州本地的商人告诉记者,天海公司以前组织的药检设备招标项目,从未发生过类似问题,也没听说过哪个药监局的领导授意过天海在招标中做手脚。  为何这一宗“买卖”发生意外?  “原因很简单,这次招标,给出的是近年来药监系统最大的合同包。”2008年5月25日,天海招标公司的古经理对记者透露,正因为利益的膨胀,参与投标的所有单位才表现得格外重视。  2007年8月31日,天海公司首次公告:该公司将于当年9月20日组织一次药品检验设备采购项目,采购内容为高效液相色谱串联四级杆质谱联用仪3套和气液质谱联用仪1 套。精明的供应商马上便打听到,采购预算高达880万人民币。  “罕见的大肥肉啊!”业内人士随即奔走相告。纷争,亦由此在不同的利益主体中间潜流暗涌。  业内人士透露,液相质谱联用仪和气液质谱联用仪都是高级精密的分析仪器,对药品的质量成份有着超凡的检验和识别能力。在世界上,只有少数几个发达国家懂得生产这两类产品。“如此尖端的仪器,若装备到药检部门,必定让那些靠仿冒伪劣产品敛财的制药商魂飞魄散。”  福建省食品药品监督管理局亦告诉《中国改革》的记者,这是国家专门下拨经费要求各地方采购的一批设备,旨在提高药监部门的检验检测水平。  正因如此,药监局下属的药检所对这次招标寄予厚望,招标前,便组织专家根据自身工作的需求,对各种品牌的技术参数深入对比,并会同其它部门反复研究后,才编制了第一次的招标文件。  这些专家认为,产品需求清晰明了,招标过程必能简单快捷,根本没想过,接下来的招标过程会搞得如此复杂。  2007年11月13日,第一次招标就遭遇难产,经过一个多月的评议和报批,才有了结果:代理安捷伦产品的华侨实业集团公司中标。药检专家以为,“精密武器”马上就要到位了。  不料,结果出来第二天,一封神秘的投诉信便悄悄送往福建省采购办。  信件是由ABI的代理商闽东公司发出的。  投诉者认为,招标的程序很有问题,结果很不公平。理由是,ABI是全球同类产品中的品牌“老大”,各类参数指标都符合标书的要求,并且给出的价格最低 天海公司无视采购人的真正需求,为了让别的品牌中标,在招标过程中故意引导评标专家制造不公平打分,并且在发现闽东公司的分数明显高出的情况下,居然要求专家违规复议,以追求自己所需要的结果。  只过了没几天,古经理便从采购办的调查中感受到了这封投诉信的威力。  2008年1月18日,省采购办认定这是一次明显的违规操作,并且对该公司作出给予不良记录一次的处罚。  10天后,天海公司宣告,其接受福建省食品药品监督管理局委托组织的这起编号为FJTH-20070716的药品检验设备采购项目按流标处理。  药检所:标书是天海公司要求改的  2008年4月22日,招标被迫重新组织。由于竞争过于激烈,一些品牌纷纷退出。最终,只剩四家公司参与了第二次竞标。  这次招标在一周内便有了结果。4月28日,公告显示,中标者仍为安捷伦的代理商华侨实业集团公司。  而作为两次投标的有力竞争者——ABI,还没进门,就被天海公司以“选择性报价”为由废标。  ABI 及其联盟品牌岛津的代理商很不服气,认为天海公司明显打击报复“投诉人”。他们发现,天海公司第二次发售的标书与第一次有许多不同,而这些不同,似乎在有意在排挤ABI,迎合安捷伦。让他们更为“吃惊”的是,报价968万的一家公司,竟没按超预算废标。  谁修改了标书?不废标的原因和目的又何在?针对此一系列疑问,投标人多次向天海公司提出质询,然而,始终没有得到让他们满意的答复。  事后,记者对比了两次标书,发现在产品的技术参数及投标商准入门槛等方面,的确存在较大出入。如,第二次标书里边的质量数范围及最小离子驻留时间的参数,与第一次标书的要求截然不同。在两次招标中,采购人的需求为何有如此大的变化?  在记者面前,天海公司的古经理否认其有排挤任何投标人的行为,并称:“改动是由药监部门决定,并报经采购办批准的。”她还解释,放宽条件,是为了提高竞争性,这无疑是符合采购人利益的。  而对超预算报价的问题,天海公司认为这是2008年4月1日才开始执行的《福建省省级政府采购货物和服务项目招标文件编制指引的补充通知》的新规定。  然而,福建省药监局下属药检所的李科长在接受记者采访时,否认了药检所主动要求修改标书的说法:“是天海公司让我们改的。第一次的标书的确由我们专家组会同采购部门反复论证后编制。但流标后,天海公司找到我们,说重新组织招标必须在标书上有所改动。我们才改的。”  按规定,招标代理公司无权主动要求采购方修改产品的技术参数,到底谁影响了药检所的专家?李科长没有给出进一步的解释。  对有关超预算未废标的说法,闽东公司的一位经办人对记者说,ABI被废标后,竞标者只剩3家,若再废掉一家,总数便无法达到最低3家的要求,按规定必须按流标处理。他们有可能是不想流标,才这样做。”  正当几方争执难下的时候,2008年5月13日,天海公司宣布,第二次中标公告因有效投标报价人不足三家,按废标处理。  药监局:不排除重新考虑代理人  一石击起千层浪。  第二次中标结果的作废,意味着这起让多家国际品牌争得头破血流的药检设备招标项目,不得不再次推倒重来。消息传开后,业界人士议论纷纷。第三次招标还未开始,天海公司已经被舆论推向风口浪尖。  此时,一封措辞更激烈的投诉信再次被送往投标人心目中的“包青天”——福建省采购办。然而,这一次,福建省采购办的官员并没有像上次那样对投标人的诉求作出快速反应。几乎所有接受过记者访问的官员都三缄其口。对招标负有法定监督义务的采购办,因何沉默?  传言挥之不去,天海公司的古经理自言颇感委屈:“谁做事情,都不可能百分百完美。流标是很正常的现象。想不到一点点疏忽,竟然被借题发挥。”  就当记者前往福建调查后的第三天,一位自称是古经理好友的行内人士突然致电记者,为天海公司打抱不平。他说:“天海公司根本没搞黑箱操作。我曾经好心帮助过投诉方的人去找古文,希望古文能够在招标的过程中对他们有所倾向。然而,古经理并没有答应。事情没办成,却反咬一口,太没江湖道义了。”  为此,记者分别向天海公司的古经理和投诉方核实。  古经理的的答复是:“这位行内人士的确是我的朋友,他曾经带投标人在外面找过我两次,但是我并没有作任何表态。”她还说,“我们始终以政府采购的相关法律法规为准绳、以公开、公平、公正为宗旨组织招标工作,不存在任何黑箱操作的问题。”  而投诉方的解释是:“我们从未主动找过天海公司帮忙。倒是在投标的过程中,有位自称神通广大的中间人曾经来找我们,提出要我们交十几万的买路钱。因为我们未及时表态。他们便利用潜规则将我们抛弃。”投诉方还举出多份证据,希望记者相信其没有撒谎。  由于几方各执一词,事实变得扑朔迷离。作为对国家采购项目负有监督职能的福建省采购办,始终不愿打破沉默。  而作为采购人的福建省食品药品监督管理局,则于5月30日专门致函记者,宣称该局领导包括工作人员,从未授意招标公司暗箱操作,并请记者认真调查核实,以驳斥有意造谣,防止有人继续制造事端,维护该局形象。  药监局还向记者提供了一份他们要求天海公司撰写的解释函,力证天海公司的操作没有任何问题。  不过,该局又说:“此次招标时间较长,一定程度上影响了我局药品检验检测工作。我们会征求省采购办对天海招标公司整个招标操作过程的评价和意见,视情况重新考虑为我局代理采购检验设备的资格。”  第三次招标即将来临,类似的争议还会上演吗?对于事情的真相,哪一方的解释更可信?记者将继续跟踪报道。
  • 1015万!武汉大学中南医院医学研究中心和浙江大学高亮度微焦斑转靶X射线衍射仪等采购项目
    一、项目一(一)项目基本情况项目编号:ZJ-2460683-35G项目名称:高亮度微焦斑转靶X射线衍射仪预算金额:650.000000 万元(人民币)采购需求:序号项目名称数量单位预算金额(万元)简要技术描述或基本概况介绍备注1高亮度微焦斑转靶X射线衍射仪1项650.0000高亮度微焦斑转靶X射线衍射仪采购,详见采购文件。 允许进口 合同履行期限:合同签订后360天本项目( 不接受 )联合体投标。(二)获取招标文件时间:2024年08月14日 至 2024年08月21日,每天上午8:30至11:30,下午13:30至17:00。(北京时间,法定节假日除外)地点:浙江国际招投标有限公司(杭州市文三路90号东部软件园1号楼3楼317室)方式:现场报名/或邮件报名,获取招标文件时应提交企业法定代表人授权委托书或单位介绍信(留存)、营业执照复印件、报名表(word版)、标书发票开票资料(如邮件报名需附上报名费汇款单,单位名称:浙江国际招投标有限公司。开户银行:工商银行杭州市武林支行。账号:1202021209906782015。资料发至466740141@qq.com)。售价:¥500.0 元,本公告包含的招标文件售价总和(三)对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:浙江大学     地址:杭州市西湖区余杭塘路866号        联系方式:徐老师 0571-88981325      2.采购代理机构信息名 称:浙江国际招投标有限公司            地 址:文三路90号东部软件园1号楼3楼             联系方式:谢凯枫 0571-89731841            3.项目联系方式项目联系人:谢凯枫电 话:  0571-89731841二、项目二(一)项目基本情况1、项目编号:2c9080f48c5d19fc018c62a0d00b2b852、采购计划备案号: 3、项目名称:医学研究中心高通量自动核酸提取仪等研究实验设备一批4、采购方式:公开招标5、预算金额:0365.436(万元)6、最高限价:365.436(万元)7、采购需求:医学研究中心高通量自动核酸提取仪等研究实验设备一批,本项目分三个包,详见附件采购需求。 8、合同履行期限:交货期:合同签订后60天内;质保期:货到验收合格后不少于36个月。9、本项目(是/否)接受联合体投标:否10、是否可采购进口产品:111、本项目(是/否)接受合同分包:否12、本项目(是/否)专门面向中小微企业:否13、符合条件的小微企业价格扣除优惠为:10%(二)获取招标文件 1、时间:2024年08月14日至2024年08月20日,每天上午09:00至12:00,下午14:00至17:00(北京时间,法定节假日除外)2、地点:武汉市武昌区中北路1号楚天都市花园B座26楼现场或通过邮箱zczb@hbzhongcai.com获取3、方式:(1)现场获取:获取时间内,提供以下材料获取采购文件:①投标人为法人或者其他组织的,需提供单位介绍信(或法人授权委托书)、经办人身份证明;投标人为自然人的,只需提供本人身份证明;②加盖投标人公章的《基本信息表》;投标人为自然人的,无需盖章,只需签名。(2)网络获取:将上述材料发至邮箱:zczb@hbzhongcai.com。 4、售价:0(元)(三)对本次招标提出询问,请按以下方式联系1、采购人信息名 称:武汉大学中南医院武汉大学中南医院 地 址:武汉市武昌区东湖路169号联系方式:027-678125032、采购代理机构信息名 称:湖北中采招标有限公司地 址:武汉市武昌区中北路1号楚天都市花园B座26楼联系方式:027-877101563、项目联系方式 项目联系人:肖雨豪、王陈电 话:027-87710156
  • 国产非制冷红外探测器新型场景校正方法
    现有国产非制冷红外探测器多采用挡板校正进行非均匀性校正,影响了红外探测器的观测效果与目标搜跟。近期,湖北久之洋红外系统股份有限公司的科研团队在《光学与光电技术》期刊上发表了以“国产非制冷红外探测器新型场景校正方法”为主题的文章。该文章第一作者为刘品伟,主要从事红外技术方面的研究工作。本文提出了基于国产非制冷红外探测器的新型场景校正方法。该方法包含两部分:第一部分是基于高频非均匀性的场景校正;第二部分是基于低频非均匀性的场景校正。通过对不同频域非均匀性分别进行处理来去除探测器响应的非均匀性。国产非制冷红外探测器非均匀性分析国产非制冷红外探测器工作过程中,探测器的状态参数会产生缓变,从而导致图像非均匀性的变化。图1所示是以黑体为目标的具有较强非均匀性的非制冷红外图像。图1 具有较强非均匀性的非制冷红外图像非均匀性包括低频非均匀性与高频非均匀性两部分。低频非均匀性表现为全局灰度分布不均匀,在图像中表现为平缓的明暗变化,如图像四周与中心灰度值差别大,如图2所示。低频非均匀性主要是由探测器及镜头不同位置温度变化不均匀引起的。高频非均匀性表现为局部区域灰度值剧烈变化,在图像中表现为亮暗点或条纹。高频非均匀性主要是探测器的响应不均匀引起的,如图3所示。图2 低频非均匀性的三维显示图3 9×9邻域内高频非均匀性的三维显示传统的场景校正方式很少涉及对低频非均匀性的消除,而对高频非均匀性的消除容易产生“鬼影“等副作用,同时消除低频与高频非均匀性才能真正提高图像质量。因此,本文将针对高频与低频非均匀性,采用不同的场景校正方法处理。基于高频非均匀性的场景校正国产非制冷红外探测器在工作过程中,随着探测器整体温度的变化,由于探测器响应的不均匀性,会出现较强的高频非均匀性,具体在图像上表现为散粒及细条纹,如图4所示。图4 高频非均匀性的不同类型目前常用的场景校正算法有恒定统计法、时域高通滤波法、神经网络校正算法、基于图像配准的校正算法等。这些算法能够在一定程度上根据场景的信息自适应地补偿热像仪的增益和偏置的漂移,但是在实际使用过程中,这类算法存在各种各样的使用限制条件。以传统的神经网络场景校正算法为例,该算法要求场景信息不断变化,否则会造成图像退化或者模糊,并且如果图像中存在较强边缘信息,该算法容易导致图像出现“鬼影”现象,严重影响图像质量。对此,提出了一种基于神经网络的新型场景校正算法来消除图像退化和“鬼影”现象。首先分析图像退化与“鬼影”现象产生的原因。当原始图像中存在较强的边缘信息时,低通滤波会使边缘信息产生损失,预测图像会产生模糊失真现象。若场景保持静止不动,随着场景校正参数的不断更新,图像就会逐渐退化失真;若场景长期静止后开始运动,图像就会包含静止图像中损失的边缘信息,也就是“鬼影”现象,如图5所示。图5 传统场景校正算法产生的“鬼影”现象为了解决传统场景校正算法存在的问题,提出了一种基于中值滤波=2。同时采用时空联合阈值作为校正判断条件,选择更新系数与校正区域。时空联合阈值分为两个阈值条件:时域连续运动条件与空域邻域均匀性条件。针对高频非均匀性的场景校正算法流程图如图6所示。的自适应场景校正算法。由于高频非均匀性中包含大量的散粒非均匀性,同时为了更好地保留图像的边缘信息,该算法采用中值滤波作为滤波器,中值滤波半径r。图6 高频非均匀性场景校正算法流程图分别用此算法与传统神经网络场景校正算法对原始图像进行处理,比较两种算法是否具有“鬼影”现象。将热像仪静止工作500帧后,观察两种方法处理后的运动图像。可以看到,该算法基本没有“鬼影”现象,而传统算法“鬼影”现象严重。因此,该算法能够有效地抑制“鬼影”现象。图7 本文方法与传统神经网络“鬼影”现象比较基于低频非均匀性的场景校正高频非均匀性去除后,图像仍残留有大量的低频非均匀性。低频非均匀性在非制冷探测器开始工作时较弱,随着探测器及镜头温度的变化,图像的低频非均匀性会逐渐增加,在图像上表现为四角与中心灰度值差别较大。如图8所示,可以看到,图像灰度分布不均匀,四周有明显的光圈,影响图像观感与图像质量。图8 低频非均匀性对图像的影响这里提出了一种基于时空联合低频滤波的场景校正方法,通过在时域和空域同时进行低通滤波,分离出图像的固定低频非均匀性并进行去除。由于探测器输出图像的低频非均匀性在短时间内位置保持不变,当图像产生运动时,可以通过时域低频滤波对低频非均匀性进行分离去除,因此首先需要判断场景是否处于运动中。这里仍采用上节提到的连续运动条件来判断场景是否处于连续运动中。当场景处于连续运动时,采用基于自适应时间常数的时域低频滤波来筛选图像的低频信息。时域滤波结果包含低频非均匀性与部分边缘细节信息,因此还需要对在空域上进行低通滤波,以消除存在的边缘信息细节,达到获取低频非均匀性的目的。采用均值滤波进行空域的低通滤波。为了验证此场景校正算法的效果,对仅处理高频非均匀性的图像与高频低频非均匀性均处理的图像进行比较,如图9所示。可以看到,此算法对低频非均匀性有良好的处理效果,能够有效地减少图像四周与中央灰度差异较大的问题。图9 运动200帧后是否处理低频非均匀性图像对比为进一步验证此场景校正算法的效果,使用两台相同规格的红外机芯,第一台仅对高频非均匀性进行处理,第二台对高频低频非均匀性都进行处理,均在运动条件下连续工作1 h后,对同一温度黑体成像,计算其图像非均匀性。结果表明,仅处理高频非均匀性的图像非均匀性为2.3%,而对高频低频非均匀性都进行处理的图像非均匀性为0.5%,该算法有利于提高输出图像的均匀性。算法总体流程及效果图本文算法首先通过连续运动条件判断场景是否处于连续运动中,若处于运动过程则分别更新高频与低频非均匀性处理模块校正参数,然后进行非均匀性校正;否则直接进行非均匀性校正,整体流程如图10所示,最终效果如图11所示。图10 本文算法流程图图11 最终校正输出结果结论本文提出了一种基于非制冷红外探测器的新型场景校正方法。首先通过改进的神经网络场景校正方法滤除高频非均匀性,在此基础上通过时空联合的低频滤波去除低频非均匀性,得到最终校正结果。该方法具有良好的校正效果,并且能够有效地抑制“鬼影”现象,有利于非制冷红外探测器的推广应用。
  • 一家仪器企业入选2021年度智能制造优秀场景名单
    2月14日,工信部公布了2021年度智能制造示范工厂揭榜单位和优秀场景名单。据了解,智能制造是基于新一代信息技术与先进制造技术深度融合,贯穿于设计、生产、管理、服务等制造活动各个环节,具有自感知、自决策、自执行、自适应、自学习等特征,旨在提高制造业质量、效益和核心竞争力的先进生产方式。作为制造强国建设的主攻方向,智能制造发展水平关乎我国未来制造业的全球地位,对于加快发展现代产业体系,巩固壮大实体经济根基,构建新发展格局,建设数字中国具有重要作用。针对于此,2021年工信部发布了《“十四五”智能制造发展规划》,规划提出要开展多场景、全链条、多层次应用示范,培育推广智能制造新模式新业态,到 2025 年,建设 2000 个以上新技术应用智能场景、1000 个以上智能车间、100 个以上引领行业发展的标杆智能工厂,遴选培育 100 个智慧供应。本次名单公布了110家智能制造示范工厂揭榜单位和241个智能制造优秀场景,其中美康生物科技股份有限公司的体外诊断试剂及配套仪器智能制造示范工厂入选2021年度智能制造示范工厂揭榜单位名单。据了解,美康生物是一家专业从事体外诊断产品研发、生产、销售及服务的国家高新技术企业。目前,美康生物的产品线覆盖生化、化学发光免疫、质谱、VAP血脂亚组分检测、血球、尿液和POCT等领域,产品种类丰富。与此同时,公司已具备研发生产体外诊断仪器、试剂、校准品和质控品的系统化专业能力,已完成从生物原材料、体外诊断产品到专业化服务的上下游产业链布局。附件:1. 2021年度智能制造示范工厂揭榜单位名单2. 2021年度智能制造优秀场景名单
  • 如何在1秒内实现锂离子电池的微米级全CT扫描 --- 高亮度液态靶X射线源助力高产量电池高效检测
    高效电池是电动汽车(EV)转型的关键,也是在使用更多可再生能源时实现储能平衡电网的关键。如今,每一个电动汽车电池都要经过二维(2D)X射线检查以进行质量控制,及早发现可能导致火灾的缺陷。然而,即使采取了这一步骤和其他几个质量控制步骤,这些缺陷也时常发生,导致经济和人身伤害方面的灾难性损失。 相较于二维X射线检查方法,100%三维(3D)X射线检查,或在不清楚的情况下对二维检查进行三维补充,是一条有希望实现令人满意的质量控制的道路。但是, 3D X射线CT检查通常需要很长的时间,会大幅降低检测效率,因此需要一个具有微米焦点的高功率X射线源——这是市场上从未曾有过的。 瑞典Excillum是一家致力于研发、生产超高亮度微焦斑X射线光源的公司,经过十余年的研发与改进,发布了10倍于普通固体阳X射线光源所发射的X射线通量(在相同焦斑面积上)的高亮度液态靶X射线源MetalJet D2+,今年又研发出新一代的高亮度液态靶X射线源MetalJet E1+,在相同焦斑面积上的通量约2倍于MetalJetD2+。该公司一直在寻求解决方案,以实现对电池和其他工业部件的高速3D X射线检查。在如下视频中,您将看到如何在1秒内实现锂离池的微米全CT扫描。这些实验均在瑞典的Excillum工厂进行,使用其MetalJet E1+、直接转换的高性能探测器(Thor FX20.256 CdTe)和高速、高精度旋转台。 1秒内实现锂离子电池的微米全CT扫描MetJet E1+160KV液态靶X射线源 技术参数性能参考 在1000瓦的功率下,新的MetalJet E1+在宽光谱范围内提供的X射线通量是具有相同30 µm光斑尺寸的30 W传统钨固体阳微焦点源的17倍。在24-29千电子伏的光谱范围内,铟和锡的特征发射线存在,通量优势高达100倍。 尽管在1000 W的高热负荷下运行,MetalJet E1+在连续长期运行期间保持优于1µm的位置稳定性。
  • 数字化改革“成绩单”②丨多个浙农系列应用场景取得实效
    2021年,浙江省“三农”数字化改革加速推进。这一年,浙江省农业农村厅积极构建“业务牵头单位+数字‘三农’改革专班+技术开发公司”的“1+1+1”工作机制,按照“顶层设计—增量开发—迭代升级”的推进模式谋划开发,以“浙江乡村大脑”为顶层框架,应运而生了“14+2”的“浙农”系列多跨场景应用。 其中,浙江森特信息技术有限公司(托普云农全资子公司)主要参与规划了“低收入农户帮促”、“浙农田”、“浙农机”、“浙农种业”、“浙农优品”(产销对接模块)等多项应用,并取得了良好实践成果。“低收入农户帮促”应用打通百余项数据实现目标农户全覆盖 “低收入农户帮促”应用围绕“我要帮促”一件事,横向打通民政、人社、文旅、妇联等20多个部门208项数据,纵向贯通省市县乡村五级应用。搭建服务端、治理端、社会端、管理端多跨场景,通过四端应用,做到农户诉求“一码通办”,结对干部“一帮到底”,监测预警“一键预警”,社会帮扶“一屏直达”。 该应用实现全省低收入农户帮扶对象全覆盖、帮扶流程全链条、帮扶服务全方位、帮扶监测全闭环。归集全省低收入农户48.2万户、72.92万人的数据,形成低收入农户幸福清单和主体画像。“低收入农户帮促”应用日均访问量超1万人次,三次成为“浙里办”月度热门服务。“浙农田”应用数字化管理助推耕地“非粮化”整治 “浙农田”应用场景利用数字技术,推动农田建设、生产、管护相融合。建立耕地“非粮化”情况通报机制。推进全省高标准农田、粮食生产功能区、“一张图”管理,为农业生产力布局、粮食生产功能区“非粮化”整治等提供决策支持。“浙农机”应用提升农机生产效率加快推动农业机械化转型 “浙农机”是推进农业机械化高质量发展,强化数字化技术和装备的应用。通过农机装备全生命、全周期、全流程的信息互通、风险识别、监测预警、分析研判、服务保障,扩大农机产品和服务的有效供给,提高农机装备和主体的生产效率,增强农机生产的安全保障,提供精准有效的金融扶持,实现农机化全程全面高质高效发展。“浙农种业”应用全力推动种业创新助力打好翻身仗 “浙农种业”归集整合分散的种业数据资源,立志打破信息孤岛,满足各类用户需求,育好种、用好种、管好种,推进种业强省和特色品种大省建设。全面展示浙江省各地区主导品种、推荐品种,以及种子供需预警情况。 综合数据分析种质资源、品种管理、种业监管、种子保供、种业服务场景。让农户对品种进一步了解,知道品种专业知识,进行品种合理选用。还可线上预约购买种子,使企业与农户的供需需求便捷、快速达成。“浙农优品”(产销对接)应用抓好产销对接实现农民增产致富 “产销对接”是通过线上线下相结合的方式,为农业生产主体与商家提供数据服务,解决因信息不对称造成的“卖难”与“买贵”难题,缓解农产品供给与需求的不平衡现象,力图拓宽农业生产主体销售渠道,从而增加农民收入的应用。
  • 全场景噪声管理解决方案加快声环境质量改善
    随着技术的进步,现代噪声监测系统正朝着智能化、网络化方向发展,利用物联网、大数据分析等技术实现远程实时监控和预警,使得噪声管理更加精准高效,市场更加广阔。为了解当前噪声监测技术进展、应用成效、行业状况及挑战机遇,向大家展现当前噪声监测市场现状,仪器信息网开展了“噪声监测现状与市场动态”主题约稿活动,本篇文章为河北先河环保科技股份有限公司回稿内容。近几年,国家相继出台《中华人民共和国噪声污染防治法》、《“十四五”噪声污染防治行动计划》(以下简称“行动计划”)等相关立法和规定,聚焦于与人民群众息息相关的突出问题。其中,《行动计划》要求:通过实施噪声污染防治行动,基本掌握重点噪声源污染状况,不断完善噪声污染防治管理体系,有效落实治污责任,稳步提高治理水平,持续改善声环境质量,逐步形成宁静和谐的文明意识和社会氛围。加快建设安静优美的生态环境,加速提高自身能力建设,加强噪声污染防治工作,改善城市和乡村的声环境质量,对启动现代化环境噪声自动监测系统建设具有十分重要的意义。据了解,“十四五”期间,国家将实现全国地级及以上的城市建成3800多个自动监测站点,目前,全国噪声领域科研及产业发展已形成一定规模。目前先河环保对于噪声业务布局方面较为齐全,包括声功能区划分技术、噪声自动监测点位选择和优化技术、噪声自动监测技术、噪声自动监测运维技术、噪声污染在线智能决策平台、噪声地图技术等方面进行了储备,满足功能区声环境噪声监测、社会生活噪声、建筑施工噪声、工业噪声、道路交通噪声等场景。先河环保推出的XHSN-301环境噪声自动监测仪是一款在线监测环境噪声的仪器,可同时监测温度、湿度、大气压、风速、风向等气象参数并搭配声源识别,设备采用电容传声器实现对噪声的监测。仪器测试精度高,响应迅速,出数准确。拥有北斗定位功能,便于查源和数据分析;监测仪可满足有线传输及无线传输,监测数据实时传送至服务器,可通过web页面或者手机APP查看实时测量数据,满足《HJ 907-2017环境噪声自动监测系统技术要求》并通过中国环境监测总站适用性认证,为各城市建设安静和谐环境提供及时、准确的噪声监测数据,为声环境评价和治理提供有效可靠的依据。
  • 2023年离子色谱新品盘点:自主DIY搭建多场景离子检测平台
    2023年是国产离子色谱40周年。《生活饮用水标准检验方法》2023版新标将离子色谱纳入高氯酸盐、甘草膦、一氯乙酸、一溴乙酸等化合物的标准检测方法。苏州市计量测试学会发布的团体标准规定采用离子色谱法测定人唾液中葡萄糖的浓度。......一系列相关标准的颁布意味着离子色谱在水/废水、食品、石油化工、环境空气等领域的应用将更加广泛,离子色谱的市场规模将进一步增长。编辑对2023年发布的离子色谱新品进行盘点,数据主要统计自本网报道或公开信息,如有遗漏、错误欢迎在留言区补充。据仪器信息网统计,2023年中国市场共推出6台离子色谱新品,主要涉及4家厂商(以下厂商按照品牌简称首字母排序),包括谱临晟1台、盛瀚3台,赛默飞1台和皖仪1台。(1)谱临晟IC-50IC-50 超级离子分析系统包含一套全PEEK流路的MSS-2多功能样品处理系统、一套高压离子色谱仪、一套柱后衍生系统、一套高通量自动进样器、一套色谱工作站,以及与AFS 和ICPMS联机的接口等。IC-50离子色谱仪在常规的离子色谱仪的基础上,新增设一个四元比例阀和混合器,可实现多种流动相梯度;还可以选配不同类型的检测器,电导检测器、电化学检测器和紫外检测器。产品可与前处理产品MSS-2多功能样品处理系统联用组成在线前处理系统,或者与MSS-2多功能样品处理系统配合构成二维色谱,可以实现海洋、食品、环境、地质、饮用水、农残等领域的高基体复杂样品测试。(2)盛瀚 CIC-D120+ CIC-D160+ CIC-D260CIC-D120+采用全PEEK流路系统,搭配气液分离器,进一步保证流路中气泡的去除。PEEK材质具有极高的酸碱耐受性、极低的离子溶出,PEEK色谱柱在强酸碱淋洗液、强酸碱样品、痕量离子、重金属离子检测等方面表现出更好的稳定性,基线噪声更低,具有明显优势。采用自动量程技术替代传统电导检测器,一次进样即可完成相差4 个数量级浓度的多种离子检测,即ppb级和ppm级浓度离子的同时检测。此产品采用内置循环式立体恒温柱温箱技术,采用变频控制循环风立体加热模式,加热效果均匀;智能程序控制升温和保温,效率优先兼顾功耗;拥有高强度簧片式柱卡,兼容更多型号色谱柱。此产品拥有强大的色谱分析系统,自主研发的氢氧根体系阴离子色谱柱、碳酸盐体系阴离子色谱柱、阳离子色谱柱,低容量到高容量全系列多款色谱柱可选,满足阴阳离子、消毒副产物、糖、氰根、碘离子、小分子有机酸等的分析;色谱柱兼具实监测检测功能,实时反馈耗材应用情况;全方位安全保障系统采用压力报警、漏液报警、淋洗液液位监控等多种手段,确保仪器异常时及时反馈到使用人员。CIC-D160+在智能化软件方面进一步升级,包括自动量程技术、耗材监控功能、安全保障系统等。色谱柱和抑制器等关键耗材部件进行实时监控,对产品的使用次数和周期实时记录。新更换耗材可自动识别,鉴别新产品的型号和编号,同时根据需求复制成熟的测试方法使用。除以上技术优化外,仪器还开发了免试剂技术,日常操作只需加水,即可根据设置自动产生所需浓度淋洗液,实现梯度洗脱。CIC-D260核心部件均由盛瀚自主设计开发,其余部件均实现国产化。产品采用双通道设计,一次进样可实现阴阳离子同时检测;除传统的CD检测器外,还可以与ECD、UV、DAD、ICP-OES、AFS、MS等检测器联用,应用场景广泛。高压色谱泵采用全新设计的串联式双柱塞泵,最大耐压可达42MPa,最大流量可达10ml/min,压力脉动低于1%;高压进样阀寿命可达10万次以上;进样采用CLICK进样模式,摒弃注射器,点击按键即可完成进样。(3)赛默飞Dionex Inuvion离子色谱系统有三种配置:Dionex Inuvion Core离子色谱系统、Dionex Inuvion离子色谱系统和具有免试剂(RFIC)的Inuvion离子色谱系统。Dionex Inuvion Core可以升级到Dionex Inuvion(带RFIC)。Dionex Inuvion离子色谱系统可以根据用户需求选择配件(电解抑制和自动电解淋洗液发生器等),利用多款4μm填料色谱柱和化学试剂加快分析速度并提高结果质量。(4)皖仪IC6600IC6600系列多功能离子色谱仪采用全新的模块化设计,配制灵活,功能全面,操作简便。可通过配置电导检测器、安培检测器、紫外检测器,实现对常规阴、阳离子及氰根、碘离子、糖、小分子有机酸、六价铬(铬酸雾)、过渡金属等所有与离子色谱相关项目的检测。进样器可实现一针进样阴阳离子同时分析;一机多能,满足客户常规检测的同时,可升级柱后衍生、在线富集、在线基体消除等功能。其高灵活系统,能应对潜在的挑战以及高级应用场景。IC6600是一款环境友好,免试剂型离子色谱,采用“只加水”模式的淋洗液发生器,可在线产生氢氧根、碳酸根、甲烷磺酸多种类型淋洗液,降低成本,减少污染。自主开发的色谱工作站功能强大, 数字信号接入,最大可四通道同时采集;软件可以实现系统部件的有效集成和控制,对皖仪提供色谱类产品可无缝式增加,可以轻松的实现多维色谱(柱切换)及多种仪器联用等功能。如今,离子色谱应用越来越广泛,今年推出的新产品更加注重多场景应用,根据客户需求进行检测器、色谱柱的配备;还可以搭配其他科研仪器进行联用。不仅如此,离子色谱新产品还大力推进智能化软硬件设计,自动进样器、自动量程技术、多离子同时检测技术等均有效提高产品的自动化和检测效率,更好的为仪器使用者服务。
  • 陈京一:如何提高药物微量晶型检测的灵敏度?
    p style="text-align: justify text-indent: 2em "在药物晶型的研发和生产过程中,X射线衍射(XRD)是一个非常有用的检测方法。作为晶型分析的唯一决定性证据,它常用于确定药物的晶型和结晶度,还可以对制剂中原料药晶型进行定量分析,对微量晶型进行检出。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/1d9e19e9-56c1-447e-bf6b-846c64e11064.jpg" title="图片1.jpg" alt="图片1.jpg"//pp style="text-align: center text-indent: 0em "strong图1. 经典BB衍射几何,由X光管发出的X射线经样品衍射后被一个探测器接收/strong/pp style="text-align: justify text-indent: 2em "目前中国制药行业对衍射仪的需求更多地集中于微量晶型的测量,包括原料药多晶型中的微量杂质晶型,也可以是药物制剂中的低含量有效成分(CPI)。/pp style="text-align: justify text-indent: 2em "对于x射线衍射而言,要提高微量相的测试灵敏度。涉及到两个比率关系,一个是信噪比,另外一个是峰背比。信噪比顾名思义就是谱图中的信号与测量噪声的比值,如图2所示。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/e1accc1b-bf2e-47e8-bb70-12eae3649be8.jpg" title="图片2.jpg" alt="图片2.jpg"//pp style="text-align: center text-indent: 0em "strong图2. 衍射谱图中的信噪比(S/N)和峰背比(P/B)/strong/pp style="text-align: justify text-indent: 2em "要提高信噪比,就需要得到高的计数,这可以从两方面着手,一个是增加测试的时间,而另一个就是采用高效的阵列探测器,阵列探测器是用半导体技术制作的,通常是上百个子探测器的集合,采用这种探测器可以大大提高测量信号的强度及信噪比,如图3.所示,测量时间相同,阵列探测器(红色数据)可以获得比传统的点探测器(蓝色数据)高出百倍以上的强度。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/d1f74102-67c9-4c82-9353-dc7b83ad4a1a.jpg" title="图片3.jpg" alt="图片3.jpg"//pp style="text-align: center text-indent: 0em "strong图3.span style="text-indent: 2em "阵列探测器与传统点探测器的数据对比/span/strong/pp style="text-align: justify text-indent: 2em "采用阵列探测器以后,测量的强度得到了明显的提高,因此在2000年后,阵列探测器已成为主流衍射仪的基本配置之一。更进一步提高峰背比的主要方向是降低背景。对于实验室中的衍射仪而言,X射线来自X光管,从X光管中发出的射线,除了衍射实验中需要的K-alpha外,还会有K-beta及连续光谱部分。K-beta一般需要用滤光片滤除,如我们常用的Cu靶,就需要Ni滤光片将K-beta除去。而连续波部分就会构成衍射中的背景。/pp style="text-align: justify text-indent: 2em "马尔文帕納科公司推出的BBHD光学模块,可以将X光管中发出的射线单色化,只保留衍射需要的K-alpha,完全去除K-beta和连续波,因此可以大大降低衍射谱图中的背景,从而提高衍射的峰背比。光路中不再需要使用金属滤光片,因此K-alpha强度较之传统光路也有明显提升。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/a2012663-cbfe-47ac-8cb5-1217618d19aa.jpg" title="图片4.jpg" alt="图片4.jpg"//pp style="text-align: center text-indent: 0em "strong图4.带有BBHD单色器和PIXcel阵列探测器的BB衍射几何/strong/pp style="text-align:center"strongimg style="max-width: 100% max-height: 100% width: 664px height: 423px " src="https://img1.17img.cn/17img/images/202008/uepic/c28ad0f3-c426-43a0-b9c3-eb1e46db5d12.jpg" title="图片5.jpg" alt="图片5.jpg" width="664" height="423" border="0" vspace="0"//strong/pp style="text-align: center text-indent: 0em "strong图5.BBHD单色器与发散狭缝的对比,红色为发散狭缝作为入射光学模块,蓝色为BBHD作为入射模块,在蓝色谱图中由于背景降低,能看到更多弱衍射峰/strong/pp style="text-align: justify text-indent: 2em "另外一种获得单色X射线的技术是通过X射线聚焦透镜来获取,该透镜表面是椭圆的一部分,X光焦点位于椭圆的一个焦点上,从该焦点上发出的X射线经过透镜表面的反射,会聚焦到透镜的另外一个焦点上,而探测器就位于那个位置。只有K-alpha射线可以通过透镜反射,其它波长的X射线不能被透镜反射,因此这是一个很好的高强度,高分辨的单色器。这种几何为透视衍射几何。如图6所示。透射光路常用于药物片剂的无损检测,也用于粉状制剂中极低含量的微量晶型检出。对于具有特殊颗粒型状(如片状、针状等)的粉体样品,透射光路也有助于改善择优取向影响,获得更全面的衍射峰信息。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/46af69eb-4452-4856-8a17-a71cb501c720.jpg" title="图片6.jpg" alt="图片6.jpg"//pp style="text-align: center text-indent: 0em "strong图6.采用聚焦透镜的透视几何,左图是光路图,右图为照片/strong/pp style="text-align: justify text-indent: 2em "对于微量相的测量,不管是采用BBHD的反射几何还是采用聚焦透镜的透视几何,使用可以进行样品自旋的样品台都是提高测试准确性的重要步骤。在样品进行测试的同时进行旋转,可以使得X射线扫过样品全部表面(透射几何下扫描样品全体积),使尽可能多的样品参与衍射,从而保证对微量晶型的最低检出。/pp style="text-align: right text-indent: 2em "strong作者:陈京一/strong/pp style="text-align: right text-indent: 2em "strong马尔文帕纳科XRD专家/strong/p
  • 数字化改革“成绩单”④丨产业大脑:“梅”好兰溪数字孪生应用场景
    兰溪是中国杨梅之乡,浙江省十大精品杨梅县市之一,位列浙江省前列。兰溪杨梅栽培历史悠久,已形成特色的“五十里杨梅长廊”。为进一步促进杨梅产业发展,托普云农全资子公司——浙江森特信息以数字经济为主线,以“4+2”为指导思想,围绕梅农生产、流通、消费全链条的应用,构建“梅”好兰溪杨梅产业大脑,以“产业大脑+未来农场”推动产业大脑产业数字化应用,实现兰溪共同富裕。 一、需求与痛点 兰溪杨梅是以马涧、柏社、云山、香溪为主的杨梅主产区,杨梅种植面积约7万亩,产量约3.6万吨,产值约3.96亿元。在兰溪杨梅全产业链发展过程中,我们发现在“耕、种、管、销”方面存在诸多需求与痛点: ①生产端 存在“管理水平粗放、技术指导推广难”的问题:杨梅种植技术高低不齐,一些优秀的大棚杨梅种植经验无法数字量化、学习和推广;梅农不知道如何“用好一瓶药”,即存在禁药期违规打药、农药购置超量及不合理使用农药等现象;并且杨梅种植严重受气候灾害影响,经营风险相对较大。 ②监管端 存在“质量监管难、信息不对称和服务碎片化”的问题:产业底数摸不清、公共品牌管理难、主体监管难,农事过程数据可信度低。 ③销售端 存在“渠道单一、商品化处理难和市场拓展难”的问题:兰溪杨梅销售仍以单家独户闯市场为主体,商品化处理薄弱,亟需通过数字赋能。 二、模式创新 浙江森特信息(托普云农全资子公司)在兰溪县委县政府和农业农村局的指导下全面落实浙江省委数字化改革精神,基于兰溪市当前产业和农业农村局业务的实际情况,建设了兰溪市数字田园产业数字化平台项目。通过杨梅产业数字化改革,积极探索产业数字化转型的有效路径,总结出一大脑、一指数、一农场、一棵树、一个码、一张图的产业大脑+未来农场的建设运营模式。 三、改革亮点 ①首个杨梅产业数字孪生应用场景打造 运用数字孪生技术融合杨梅科学化生产,利用3D建模、全景拍摄技术和神经网络、大数据等技术结合,搭建杨梅“孪生”一棵树。通过孪生一棵树将数字模型与经验数据进行匹配、孪生模型与应用培训进行匹配、物联感知与技术指导进行匹配、业务服务与科学管理进行匹配,结合“e兰茗果”掌上应用,实时指导梅农剪枝、除草、打药、养护等农事行为。 ②首个杨梅指数联合团队,共创杨梅高品质发展 兰溪市围绕数字化改革的核心,以实用性为主旨,将数字技术与农业技术进行有效结合,通过农业农村局+科研院所+大数据发展中心+技术单位(森特)方式组建杨梅指数研究团队。2022年1月18日下午在浙江农科院召开首次兰溪杨梅指数研讨会,进一步完善指数内容、优化指数标准。 省农科院副院长戚行江与兰溪市人民政府副市长陈玉祥签订《签订杨梅兰溪综合指数研究协议》,共同加快建立兰溪杨梅综合指数的评价体系,推动杨梅产业数字化发展、智能化管理。 ③首个人工智能应用于品质管理,以禁药期为切入智能管控肥药使用 应用AI农事行为识别、AI农技专家,禁药期农事AI行为监测、肥药两制绿色防控,进一步实现农场生产管理与政府监管方面的无人化、智能化,确保农业数据的百分百真实采集,高可靠保障农产品质量安全。在杨梅主产区42个入口配置图像识别摄像头,对禁药期上山打药的行为进行自动监控,实现发现药桶进山,村干部思想教育,全面提升梅农品质意识,提高品质品牌。 ④首个主体信誉管理模式,以数据分析赋能产业服务 汇聚省乡村大脑、市大数据局等100多项数据,对杨梅主体进行画像,创新“兰农码”三色管理机制与每个主体关联,并与“浙农码”无缝对接,通过监测农业主体生产经营情况,制定预警模型,监测其是否存在违规行为,打造一个标准化的农产品全链路数字保障体系。通过大数据科学决策分析,为农业农村监管与产业发展及时精准掌握产业发展情况,管理部门分级进行管理、指导、聚焦红黄码的主体教育和指导。 四、未来农场 兰溪数字果园积极探索未来农场生产模式,深化农业供给侧改革,利用大数据、云计算、区块链、人工智能、数字孪生、物联网感知等先进技术,从产、供、销等多个环节切入,打造智能监测、智能预警、智能控制、数字营销等内容,实现农场精细化、智能化管理,推动小生产与大市场的对接,保障前端生产提质量、中端管理降成本、后端销售增效益,用“数字技术+互联网思维”赋能农产品种植销售。 产前:主要以产业管理、土地资源管理、企业大户资源管理、农服农资资源管理、种植经验信息管理、公众资源信息共享等形式体现。实时了解市场供给需求及价格动态,结合农场土地资源、劳动力资源及技术资源有效调整产业规划方向,做到先规划、再学习、后推广的科学模式,降低产业风险,提高生产标准。 产中:主要以精准农业、节能节源的形式体现(环境监测、病虫灾情预警、苗情监测、绿色防控、农资管理、农事管理等)。通过数字化推广应用,大大降低农投入品使用及劳动力投入。打造数字化应用产区、农产品优势区。 产后:产后主要以农产品安全监管的形式体现。全面梳理区域农产品质量监管的流程,建立起追溯岗位责任制,强化质量安全关键环节的管控,有效保障农产品的质量安全。建设从生产基地、品种信息、种植过程、投入品管理、采收管理、质检体系、生产加工、物流等生产档案。完善区域种植标准化生产和追溯管理制度规范,严格规范企业质量内控管理,促进区域种植的标准化生产水平的提升。生产过程中,建立产品可溯品牌,强化品牌追溯标识的统一管理,实现溯源信息的便捷查询,提升消费者对兰溪杨梅的认知度和认可度。 五、应用成效 2021年,兰溪精品杨梅种植面积从810亩增加至1490亩,鲜果产值增加2800万元,每亩增收3.5万元。加工杨梅收购价格从往年的3元/公斤提高到8元/公斤,仅此一项,兰溪梅农可增收5000余万元。 下一步,浙江森特信息将从完善功能、丰富场景、迭代升级等方面着手,继续深化产业大脑应用,并将“兰溪杨梅”的成功经验复制推广到兰溪市的其他农业产业、数字赋能农业产业,以促进乡村产业多维立体融合发展,打响杨梅品牌,实现产业兴旺,达到共同富裕。
  • 近红外大豆蛋白分析仪在不同场景的应用
    近红外大豆蛋白分析仪是一种专用于大豆及其制品的快速、无损、多指标定量检测的分析设备。其主要应用于大豆产业链的各个环节,包括收购、储存、加工等,为大豆品质鉴定提供了有效的检测手段。了解更多近红外大豆蛋白分析仪产品信息→https://www.instrument.com.cn/netshow/SH116147/C541874.htm收购场景快速决策支持:在大豆的收购过程中,仪器可在短时间内对大豆蛋白含量等关键指标进行检测。这使得收购人员可以迅速做出决策,确保所购大豆符合质量标准。仓储场景质量监控:在大豆仓储环节,近红外大豆蛋白分析仪可用于定期对储存的大豆样品进行检测,实时监控大豆的蛋白质等指标,确保仓储期间质量的稳定性。加工场景工艺调控:在大豆加工过程中,仪器可用于监测原料大豆的蛋白含量,为生产过程提供数据支持,帮助调整加工工艺,确保最终产品的品质。室内检测实验室应用:作为室内检测设备,仪器可放置在实验室环境中,用于进行更为精细和深入的大豆蛋白质分析,为科研和产品研发提供支持。车载检测移动式检测:设备的车载设计使其能够方便地在不同地点进行移动和应用。这对于需要在野外或不同仓储点进行检测的场景非常有用,提供了便携式的解决方案。综合而言,近红外大豆蛋白分析仪在不同场景的应用为大豆产业链的各个环节提供了灵活、有效的检测手段,有助于确保大豆及其制品的质量和生产过程的可控性。
  • 数字孪生技术首现深圳生态环境监测场景
    数字孪生,简单来说就是利用数字技术,在网络空间上构造一个与物理世界完全对应的数字世界。对于生态环境监测而言,数字孪生技术的运用意味着监测站点场景的可视化程度大大增加,环境监测数据、设备和管理之间的连接也更加智能化。近日,广东省深圳生态环境监测中心站(以下简称深圳站)积极贯彻落实《深圳市数字孪生先锋城市建设行动计划(2023)》的有关要求,率先在生态监测智慧应用方面建设《典型生态监测场景数字孪生应用》(以下简称数字孪生场景)。数字孪生场景依托GIS地理信息系统搭建精准的地理地貌场景,依据CAD图纸和三维扫描建模,真实还原深圳辖区内的监测站点场景,实现虚拟场景和现实场景的一致性。同时,深圳站将数字技术中的交互技术、电子游戏技术、物联网技术、AI技术和生态监测业务相结合,实现“地表—市域—城区—监测站点—监测仪器仪表—样本模型”多层次、多尺度模型来表达孪生数据分级体系,建立了创新的多元异构数据的数字表达。相较于传统的可视化呈现方式,数字孪生场景在实时可视化渲染方面有较强的优势,尤其是对气流、粒子、水体、光照等自然环境的真实模拟,再结合物联网传感器数据,真实地再现污染扩散,污染辐射的运动状态,在生态环境监测领域具有广阔的应用前景。未来,如果结合人工智能系统,通过对历史监测数据的分析研判,可对监测区域可能发生的污染或生态事故进行预测、模拟。从平面到立体再到交互,使用者在每一个数字孪生生态监测场景中都可以通过场景交互设备,在虚拟世界中驾驶车辆、船舶或者步行,进行自主巡游,实现远程参观、沉浸式游览,并了解监测站点的建设情况、现场布局、仪器仪表现状等等,通过数字触点交互实时查看仪表的监测数据。除了1:1真实还原的“物”,数字孪生场景里还“住着”一群人。深圳站将技术专家打造成“3D数字人”,在相关场景中通过逼真的肢体动作,用生活化的言语介绍环境监测现状、成果,增加了更为真实的互动体验感。据了解,该应用目前已在深圳市10个具有代表性的生态监测站点搭建形成。从海洋碳汇站点代表的东涌红树林、福田红树林,到高精度碳监测站点的马峦山温室气体高精度站,从356米高的立体空气质量自动站到解析空气污染来源的超级站、路边站,从国家水质自动监测站到海洋浮标站,从盐田土壤样品库到杨梅坑动植物标本库......跨越山海,深圳站将整个监测站点发生的一切,呈现在数字空间中。在深圳市福田红树林监测站点,数字孪生场景高精度地还原了以监测站为中心1平方公里的包括植被物种在内的场景,同时接入并呈现碳通量等实时数据,物候变化数据等多维度监测数据指标,通过粒子系统、大气系统等,结合实时数据指标,模拟和重现气体元素的含量变化,让数字站点自主地动起来。通过典型生态监测场景数字孪生应用,深圳站实现了多源数据的新型汇聚,树立了智慧深圳生态环境应用的新标杆。接下来还会在计算机视觉、机器学习、智能语音等技术上继续挖掘和探索,让数字技术帮助实现更深层次的生态监测数字孪生交互,实现高效能管理,谱写新时代生态监测序曲,实现“智慧蝶变”,让城市更美好。
  • 扫描电镜能谱技巧分享|4种方法提高扫描电镜能谱的准确性
    扫描电镜能谱技巧分享|4种方法提高扫描电镜能谱的准确性能谱(EDS)结合扫描电镜使用,能进行材料微区元素种类与含量的分析。其工作原理是:各种元素具有自己的 X 射线特征波长,特征波长的大小则取决于能级跃迁过程中释放出的特征能量 E,能谱仪就是利用不同元素 X 射线光子特征能量不同这一特点来进行成分分析的。 能谱定量分析的准确性与样品的制样过程,样品的导电性,元素的含量以及元素的原子序数有关。因此,在定量分析的过程中既有一些原理上的误差(数据库及标准),我们无法消除,也有一些人为因素产生的误差(操作方法),这些因素都会导致能谱定量不准确。 飞纳能谱面扫01 根据衬度变化判断元素的富集程度 利用能谱分析能够根据衬度变化判断元素在不同位置的富集程度。 如图 1,我们获得了材料的背散射图像以及能谱面扫 Si 的分布图,其中 Si 含量为20.38%。在背散射图及面扫图中,可以看到不同区域衬度不同,这是不同区域 Si 含量不同造成的。我们选取了点 2-7,其点扫结果 Si 含量分别为 19.26%、36.37%、18.06%、1.54%、20.17%、35.57%。 这种通过衬度判断元素含量的方法在合金(通过含量进而推断合金中含有金相的种类,不同的金相含有的某种元素有固定的含量区间),地质(通过含量判断矿石等的种类)等行业有广泛的应用。 图1. 左图为材料背散射图及能谱点扫位置,右图为能谱面扫 Si 含量的分布 02 判断微量元素的分布 利用能谱,可以寻找极微量元素在材料中分布的具体位置,先通过面扫进行微量元素分布位置的判断,然后通过点扫确定。 如下图,左边为背散射图像,右边分别对应 Al、Cr、Fe、Mg、Si、Ca、Ti、P,它们的含量如表 1,通过能谱面扫描分析得到各元素含量,其中 P 的含量为 0.09%。 图2. 材料的背散射图及 Al、Cr、Fe、Mg、Si、Ca、Ti、P 元素的分布 表1. 图 2 中 Al、Cr、Fe、Mg、Si、Ca、Ti、P 元素含量 工程师对样品进行点扫确认,位置 7 是面扫结果P元素富集区,其各元素分布如表 2,这个位置的P含量高达 14.56%,局部含量比整体含量高 160 倍。 图3. 背散射图像及样品点扫位置 表2. 样品点扫位置 7 各元素的含量飞纳台式扫描电镜获得高质量面扫结果的原因1. 灯丝亮度决定能谱信号的强度,飞纳电镜采用 CeB6 灯丝,具有高亮度,可以获得高强度的能谱信号。 2. 采用新型 SDD 窗口材料 Si3N4,提高了穿透率,透过率由 30% 提高到 60%。比传统聚合物超薄窗透过率提高 35% 以上。 3. 采用 Cube 技术提高响应速度(计数率)并降低了噪音(分辨率提高),是国际上处理速度最高的能谱系统,解决了计数率与分辨率的冲突。 如图 4 所示,飞纳电镜能谱一体机可以获得更高计数率与更高分辨率的能谱结果。 图4. 飞纳能谱结果 飞纳电镜能谱一体机 Phenom ProX 不需要液氮、制冷速度快、信号强度大、分辨率高、体积和重量小,真空密封性高,可以使用更少的能量获得更低的温度。尺寸更为紧凑,适用于不同环境需求。小技巧 - 如何提高能谱的准确性能谱使用前要校准保证样品平整保证分析区域均质、无污染保证样品导电性、导热性良好
  • “梅”好系列场景上线啦!擘绘兰溪“梅”好共富新画卷
    天下杨梅出浙江,浙江杨梅选兰溪。六月杨梅红江南,兰溪独占第一枝。吃过兰溪杨梅,那你知道如何种出优质果,怎样买到放心果吗?“梅”好系列页面展示 近日,兰溪市农业产业数字化改革成果亮相,“梅”好系列场景正式上线。这个由兰溪市农业农村局联合托普云农全资子公司——浙江森特信息共同打造的“梅”好系列场景,以“梅”为契机,开展农业产业领域数字化改革,建设“兰溪市数字田园产业数字化平台”,以杨梅产业为先导,搭建全产业链数字化管理服务应用系统。 当传统的兰溪杨梅遇上当下热门的数字化,会碰撞出怎样的火花? “数字田园”系统是浙江森特信息(托普云农全资子公司)打通三农、银行、保险、气象、财政、旅游等涉农单位数据,以多跨形式搭建“1+6”的杨梅全产业链全生命周期的数字化服务管理平台,即一个杨梅产业数字大脑、六个“梅”好应用场景。六个“梅”好应用场景分别为“梅”好管家、“梅”好服务、“梅”好基地、“梅”好产品、“梅”好共富、“梅”好乡村。 “梅”好产业多跨场景推出后,将实现线上农技专家诊治、杨梅病虫害防治、农户生产经营管理、政策性保险服务、农产品产销对接、农产品零售电商、农事AI行为监测、品牌管理等多方面服务,有效串联政府、农户、市场三方需求,做到政府监管便捷、种植户生产管理有效和消费需求满足等三方共赢。种植户端+消费者端页面展示 “梅”好系列场景以杨梅产业为突破口,集种植服务、政策服务、品牌管理、购销管理、农文旅融合等功能于一体,数字化、可视化地展现杨梅数据画像,解决因产业数据零碎而导致的政府决策难、肥药施用统计难、质量安全监管无闭环、品牌宣传无媒介等难题,实现种植科学化、品质精品化、销售高端化、产业规模化等目标,从而提升兰溪杨梅产业发展。通过数字化应用,浙江森特信息(托普云农全资子公司)助推杨梅产业产前、产中、产后全产业链管理服务,农民种得开心、政府管得省心、消费者买得放心,“以梅为媒”,助力“梅好• 兰溪”品牌建设,推动兰溪杨梅“走出去、富起来”。 除了“梅”好系列场景应用,在浙江数字化改革、共同富裕示范区先行先试的生态沃土上,依托专业的数字化服务能力和多年农业行业洞察能力,托普云农一直在数字赋能农业产业。不断完善功能、丰富场景、迭代升级,持续探索农业科研智能化仪器装备、种植业数字化综合解决方案、乡村大脑/产业一件事信息化服务应用,深入实践“藏粮于地、藏粮于技”战略,在宁波古林打造标准化无人化水稻种植技术体系;在吉林开发黑土地质量保护大数据平台;在浙江打造“葡萄一件事”、“田保姆”、“人居环境治理”等数字化典型应用;在全国构建数字植保信息化监测网络等等。为传统产业发展赋予新活力,推动农业发展迈入少人化或无人化的智慧农业生产新阶段,助力国家实现乡村振兴,推动共同富裕进程更近一步。(部分来源:兰溪农业农村)
  • 2021红外/近红外光谱新品盘点:做适合应用场景的分析仪器
    随着应用需求的拓展,红外/近红外光谱技术也在不断的发展。相较于高分辨率、成像等高性能指标,越来越多的仪器厂商将重点放在了实用上,从细节处着手,着重解决用户使用过程中的实际问题。据统计,申报仪器信息网2021年度“科学仪器优秀新品评选”活动的红外/近红外光谱类仪器共计12台,其中红外光谱仪8台(含附件),近红外光谱仪4台。另外,还有7台基于红外/近红外光谱原理的专用化仪器。虽然红外光谱仪已经相对比较成熟,但是其发展却从未停滞。随着应用需求的变化,红外光谱仪近年来的发展也呈现多样化。各大厂商相继在操作的灵活性、便捷性、智能化及兼容性等多方面入手,提升仪器的性能和使用体验。2021年度,荧飒光学仪器(上海)有限公司推出多台红外光谱新品,包括,研究型傅里叶变换红外光谱仪Foli20、双样品腔傅里叶变换红外光谱仪 Foli10-R-S、移动式傅里叶变换红外光谱仪Foli10 Plus、傅里叶变换红外光谱仪 Foli10-R-T等。其中,研究型傅里叶变换红外光谱仪Foli20首次实现入光口/出光口多光路设计,光源和检测器自动切换,增加了科研的灵活性和扩展性。该产品全光谱的分辨率优于0.4cm-1,具备升级更高分辨率的能力;双样品腔傅里叶变换红外光谱仪 Foli10-R-S实现积分球漫透射及常规透/反射测量于一体。仪器可测量不同弧度的样品,可兼容不同反射角测量附件,可配置室温检测器和/或低温电制冷、低温液氮MCT检测器,双通道A/D采集自适应;移动式傅里叶变换红外光谱仪Foli10 Plus主机和平板可智能化充电,可实现户外即开即用。该产品的集成智能化红外特征峰峰位识别功能及多组分连续差减功能,可实现混合物的快速搜索,并可更换各类测量附件,一键式卡扣锁紧,适合不同应用场景;傅里叶变换红外光谱仪 Foli10-R-T,采用双样品腔双通道设计,相互独立且等效使用,并可同时实现2种大型红外附件的测试,可同时配置室温检测器和低温液氮MCT检测器,双通道A/D采集自适应,实现最快60K扫描速度。此外,天津港东科技股份有限公司推出的傅里叶变换红外光谱仪FTIR-650S在多重防潮设计和抗电磁干扰设计方面也进行了创新,产品采用了更大容量干燥剂筒结构设计,更优异的干涉仪和探测器防潮设计,大幅降低更换干燥剂的频率,有效保护红外光谱仪的光学系统和探测系统。作为一类比较成熟的仪器分析方法,红外光谱已经得到了广泛的应用,特别是在制药、生物研究以及食品和饮料的终端用户中应用非常广泛。质量控制是中药评价的关键问题,而采用单一的化学成分分析方法无法适用于成分复杂的中药体系。应用现代仪器分析手段,建立于中药整体系统上的光谱量子指纹图谱技术是中药质量一致性评价的新方法,特别FTIR红外光谱测定快速,指纹特征性强,是开展中药原料药物和中成药质量控制的简单易行方法。天津市能谱科技有限公司推出的中药红外量子指纹一致性评价系统(LZ9000FTIR)通过FTIR红外光谱法原理,对中药红外光谱指纹进行分析测试。该产品把连续光谱量子指纹化,它能按照官能团量子指纹特征峰类型对化合物进行官能团分类的定性和定量分析,通过对其准确分析进行评价,可揭示数据背后的质量变异而作为中药的质控依据,为建立中药红外量子指纹图谱提供大量特征信息数据。随着FTIR光谱仪器技术的不断进步,红外附件也在不断发展,从而促使红外光谱技术得到更加广泛的应用。比如,天津市能谱科技有限公司的珠宝漫反射附件 IRA-51是一款设计独特的仓外大样品漫反射附件产品,测量平台位于仓外,大尺寸样品可直接置于样品台上,完全摆脱了珠宝尺寸大小的局限;Specac的Arrow系列一次性ATR单次反射附件采用最新的Si芯片技术,是一款可抛弃型ATR样品盘,其采用可回收聚丙烯制成,专门用于污染、腐蚀、胶黏、强酸碱性样品。一次使用一片,即插即用,用完即可抛弃。作为一类实用型的分析方法,近红外光谱仪器的创新也更多以更加适合应用场景为目的。仪器操作的简单便捷,让近红外光谱仪走入了更多的应用领域,得到越来越多不同类型用户的认可,而小型化的产品设计给在线及系统集成提供了更多的便利。2021年度,福斯分析仪器公司推出了近红外多功能品质分析仪NIRS DS3,产品采用全新设计的操作软件ISIscan Nova,可预约定时开机,定时自检。新的软件系统将实时监控光源使用情况,并在预期寿命结束前500小时给出提醒,而且光源连接使用全新设计,无需任何工具即可徒手更换,更快更简便。海洋光学亚洲公司也推出了两款近红外光谱仪,其中高灵敏度NIRQuest+近红外光谱仪采用增强光学台和孔径设计,改善光谱仪的响应,实现更低的检测极限。同时,由于灵敏度的提升,积分时间缩短,从而降低了检测时间,在流水线或流动液体样品检测时具有很大优势;Flame-NIR+ 近红外光谱仪无移动部件,坚固耐用,可用于严苛环境。产品的小尺寸非常适合集成在手持系统中,并且客户可以根据自己的应用自行更换狭缝,来调整光谱仪的通光量及分辨率。任何一类仪器都不可能“放之四海而皆准”,针对不同行业或领域开发的专用化仪器不仅可以针对性地解决问题,而且可以提高通用仪器的利用率,并在一定程度上支撑国家产业和科技的高质量发展,成为当前科学仪器的一个重要发展方向。从2021年度申报的红外/近红外光谱仪器新品来看,在气体和油品检测方面有多款新品推出。在气体检测方面,谱育科技的EXPEC 1900 傅里叶红外气体遥测仪将可见光成像+红外成像+化学成像三合一叠加显示。对比常规的可见成像+化学成像的图像显示,增加了红外成像的叠加显示。红外成像不仅可以在夜间提供视野支持,同时可利用红外热像显现检测区域内的高温污染云团、排口等,叠加显示于化学成像的图像上,可辅助研究污染气体云团的分布与扩散趋势。另外,产品采用了云台扫描与振镜扫描相结合的速扫描方式,提高扫描效率的同时,提升了检测区域的准确性;北京乐氏联创科技有限公司推出了9100FIR 傅里叶红外气体分析仪,这是一款便携式傅里叶变换红外气体分析仪,其采用PLS偏最小二乘法,高分辨率分析模式(1cm-1的分辨率),开放气体组分化学计量方法模型构建功能,适用于对各种排放气体进行现场在线分析,包括工业废气、锅炉烟气排放、焚烧炉排放,也可用于环境空气中无机气体、有机气体的快速应急检测;此外,常州亿通分析仪器制造有限公司也推出了红外一氧化碳气体分析仪(CO) ET-3015AF。在油品检测方面,深圳市德沃仪器有限公司推出了用于成品油检测的近红外光谱仪DW-NIR-PD。该仪器属于光栅扫描型,采用德州仪器的数字镜像整列微型近红外光谱仪InGaAs探测器。据悉,该产品收集了1000多份汽油和柴油的样品和数据,样品覆盖全国各地的大小炼油厂和检测机构的数据,并针对国内使用的油样自行开发近红外数据模型;此外上海昂林科学仪器股份有限公司推出了全自动便携式红外测油仪OL1025,山东格林凯瑞精密仪器有限公司推出了新款含油量检测红外分光测油仪GL-7100,分别在仪器的便携性和智能化方面进行了改进和创新。
  • 扫描电镜拍摄技巧|消除像散,提高样品成像质量
    像散对扫描电镜成像质量的影响通过之前的文章,大家了解了 “加速电压” 与 “束流强度” 对图像的成像质量有非常大的影响。其实除了加速电压、样品的导电性、电镜的束流强度,像散、图像的亮度对比度等都会影响扫描电镜图像的成像质量。 今天,这一篇文章将教大家了解消除像散的重要性,提高样品的成像质量。 像散的定义可能会比较抽像,所以,小编用近视的散光来进行对比。 当近视看月亮时,月亮会比较模糊,但仍是一个圆形。 当近视有散光看月亮时,看到的月亮会出现变形。 扫描电镜的像散就如同散光,当图像有像散时,在聚焦的过程中会发现图像拉伸变形,失去原本的形状,这也是判断像散的依据。如果在聚焦的过程中,没有发现图像出现拉伸变形,仅仅只是图像虚化,那便说明没有像散。 像散是影响图像清晰度的重要因素。尤其是高倍图片——在用高加速电压、低束流拍摄高倍率图片时,一般都需要进行消像散。下面,通过几组图片,让大家更好的理解消像散对高倍率图像的重要性。 锡球,扫描电镜放大倍数是 79000 倍,左边图像无像散,右边图像有像散 电极材料,扫描电镜放大倍数 50000 倍,左边图像无像散,右边图片有像散 炭材料,扫描电镜放大倍数 20000 倍,左边图像无像散,右边图片有像散 当扫描电镜图像出现像散时,对其进行聚焦,图像会出现拉伸感,如下图所示,消像散需要实验员具有丰富的操作经验,才能准确识别并消除象散。 飞纳电镜 Rel 4.6 的自动消像散功能可以轻松解决扫描电镜初级操作者无法熟练消像散的问题。
  • 炭黑含量测试仪:基本原理、使用方法及应用场景
    炭黑含量测试仪是一种用于测量材料中炭黑含量的仪器。本文将介绍炭黑含量测试仪的基本原理、使用方法及其优缺点,并结合实际应用场景阐述其重要性和应用价值。上海和晟 HS-TH-3500 炭黑含量测试仪基本原理炭黑含量测试仪的基本原理是通过在氧气环境中燃烧样品中炭黑,对材料中的炭黑进行定量分析。使用方法使用炭黑含量测试仪需要按照以下步骤进行:准备样品:将待测1g样品,并按照测试并放入燃烧舟。开机预热:打开测试仪,通几分钟氮气,设置升温程序。放置样品:将准备好的样品放入石英管中。开始测试:按下测试按钮,试验结束后拿出样品。数据处理:根据公式计算出测试结果。炭黑含量测试仪的优点包括:精度高:可以精确测量材料中的炭黑含量。快速方便:测试速度快,操作简单方便。适用范围广:可以用于测量各种材料中的炭黑含量,如塑料、橡胶、涂料等。炭黑含量测试仪的缺点包括:价格较高:仪器价格相对较高,不是所有用户都能承担。需要专业操作:需要对操作人员进行专业培训,否则会影响测试结果的准确性和可靠性。实际应用炭黑含量测试仪在工业生产、科学研究、质量检测等领域有广泛的应用。在工业生产中,可以利用炭黑含量测试仪对原材料中的炭黑进行定量分析,从而控制生产过程中的原料配比和产品质量。在科学研究领域,可以利用炭黑含量测试仪对新型材料中的炭黑进行定量分析,从而了解材料的物理和化学性质。在质量检测中,可以利用炭黑含量测试仪对产品中的炭黑进行定量分析,从而保证产品的质量和安全性。结论未来,随着科学技术的不断发展和进步,炭黑含量测试仪将会更加完善和先进,为材料研究和生产提供更加准确和可靠的数据支持。同时,随着人们对材料性质和反应过程的理解不断深入,炭黑含量测试仪将会发挥更加重要的作用,为科学研究和社会发展做出更大的贡献。
  • 橡树岭国家实验室《ACS AMI》:高能球磨法有效提高硅基材料的循环性能
    碳酸乙烯酯(VC)和聚环氧乙烷(PEO)被认为是硅(Si)的固态电解质界面(SEI)的功能剂,已知VC和PEO分别作为电解质添加剂和SEI组分有助于硅基锂离子电池的稳定性。在这项工作中,橡树岭国家实验室的研究人员通过用VC和PEO高能球磨Si颗粒的简便方法实现了共价表面功能化。热重分析、X射线光电子能谱和魔角自旋核磁共振(MAS NMR)光谱表明,添加剂与Si颗粒结合明显,MAS NMR显示Si−R或Si−O−R基团,证实了在VC或PEO中研磨后Si的官能化。与纯Si制备的电极相比,通过VC和PEO球磨的硅负极材料制成的电极的拉曼图谱显示Si和碳导电添加剂的分布更均匀。此外,与纯Si的半电池相比,与VC研磨的Si在半电池和全电池中都表现出更好的电化学性能,高出的容量超过200mAh g−1。相关研究成果以“Functionalized Silicon Particles for Enhanced Half- and Full-Cell Cycling of Si-Based Li-Ion Batteries”为题发表在ACS Applied Materials & Interfaces上。硅基锂离子电池(LIB)在锂化和脱锂过程中,Si发生严重的体积变化(~300%),对应于Li15Si4合金的形成,这导致Si的粉碎和不稳定的SEI。此外,SEI在循环过程中也会发生溶解,因此,研究者不断寻求方法来最小化Si体积膨胀的影响,并有效地调整Si表面的SEI,从而提高电池性能。获得硅负极稳定SEI的最常见方法之一是在电解质中使用牺牲型添加剂,如碳酸氟乙烯酯(FEC)和碳酸乙烯酯(VC)。这两种添加剂通过与其他碳酸盐和羧酸盐化合物一起形成交联的聚环氧乙烷(PEO)型物质,从而在硅表面上形成聚合物膜,这种PEO型物质的存在与良好的容量保持率和高库仑效率有关。除了直接改变硅表面的SEI之外,另一种用于最小化与硅相关的断裂和容量衰减的方法是使用纳米颗粒,该尺度下的硅体积变化相对减小,防止颗粒粉碎,但硅纳米级颗粒由于其高表面积,与电解质的反应性也更高。因此,粒径和相关副反应之间的平衡对于减轻电极开裂和电解质连续分解都很重要。预计应变引起断裂的硅颗粒的临界直径通常在300至150nm之间。利用VC和PEO的稳定性,作者将这些材料直接结合到Si表面有助于提高SEI的界面稳定性。高能球磨已被有效地用于硅材料来制备亚微米或纳米颗粒,以及用于锂离子电池负极的Si基复合材料/合金和结构。在这项工作中,作者采用高能球磨作为唯一步骤,通过将添加剂(VC和PEO)添加到新切割和暴露的Si中来实现Si的颗粒尺寸减小和表面功能化。研究了VC和PEO对研磨后Si的影响以及对其电化学性能的影响,具有VC功能化颗粒的硅基电池的比容量明显增加。使用传统的聚丙烯酸(PAA)和聚酰亚胺型(P84)粘结剂制备电极,与常见的PAA相比,聚酰亚胺粘结剂对硅基锂电池性能提高有更明显的效果。使用DLS、PALS、TGA、XPS、拉曼映射和魔角自旋核磁共振谱(MAS NMR)对粉末和电极进行表征,揭示了功能化硅对加工和界面性能的重要影响。这项工作首次报告了通过简单的高能球磨法用VC对Si表面进行功能化,增强了硅基锂离子电池的性能。(文:李澍)图1 高能球磨前后粒度变化图2 高能和低能球磨对Si颗粒的粒度、分散指数和团聚的影响示意图图3 纯硅粉末和用VC和PEO研磨的硅的C1s光谱图4 Si粉末的固态MAS NMR谱图5 使用PAA和P84粘结剂的的Si电极的XPS光谱图6 (a)纯Si、(b)Si-VC、(c)Si-PEO电极与PAA粘结剂的拉曼光谱;(d)具有P84(聚酰亚胺)粘结剂的纯Si电极
  • 安捷伦科技推出提高基因组学实验完整性的有效工具
    安捷伦科技推出提高基因组学实验完整性的有效工具DNA 完整性指数有助于确保组织样品的质量 2015 年 1 月 6 日,北京 — 安捷伦科技公司(纽约证交所:A)今日宣布其基因组 DNA ScreenTape 分析法新增一个重要的功能,DNA 完整性指数,也就是 DIN,用以评估基因组 DNA 的完整性。 这一新功能旨在保证基因组学实验的质量,尤其适用于新一代测序 (NGS)。 该功能是基于安捷伦评估 RNA 完整性的技术:RNA 完整性指数 (RIN),该项技术已成为业内领先的标准。 借助这一新的软件功能,安捷伦基因组 DNA ScreenTape 分析法可为众多样品提供 DNA 完整性的客观衡量标准,不仅包括从新鲜组织获得的完整样品,也包括从福尔马林固定、石蜡包埋的组织中获得的高度降解的样品。 随着研究人员应用 NGS 的规模越来越大,准确评估 DNA 样品质量的能力也变得尤为重要。 在大型组织样本库(也叫生物银行)中,DIN 也是衡量档案质量的一种非常有用的工具。 当样品进入 NGS 工作流程后,DIN 有望在确定样品质量方面发挥关键作用。 这有助于研究人员更准确地探究基因组 DNA 样品,规范其完整性评估,还可能有助于简化测序工作流程。 安捷伦将 DIN 作为软件升级包免费提供。 要下载此新软件并了解关于 DIN 的更多信息,请访问网页(http://www.genomics.agilent.com/campaign.jsp?id=5300004&cid=G011701)。关于安捷伦科技公司 安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,是致力打造美好世界的顶级实验室合作伙伴。 安捷伦与全球 100 多个国家的客户进行合作,提供仪器、软件、服务和消耗品,产品可覆盖到整个实验室工作流程。 在 2014 财年,安捷伦的净收入为 40 亿美元。全球员工数约为 12,000 人。 如需了解安捷伦科技公司的详细信息,请访问 www.agilent.com。 编者注: 更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 海尔生物携手贝康医疗 共同打造中国生殖健康医疗新场景
    7月13日,在中国青岛,青岛海尔生物医疗股份有限公司与苏州贝康医疗股份有限公司签署战略合作,双方就共筑生殖健康医疗场景达成重要共识。未来将在辅助生殖低温冷冻领域开展合作研发,并基于共同研发成果进行注册申报,致力于为国内辅助生殖领域提供优质完善的生殖健康医疗场景解决方案。这也意味着,海尔生物医疗正围绕人民持续升级的生命健康需求,加快生命科学与医疗创新生态链布局,不断拓展业务和服务创新边界,致力于为中国生命科学和医疗创新高质量发展提供优质可靠的解决方案。海尔生物与贝康医疗在生殖健康医疗领域达成战略合作聚焦生育和生殖健康需求,共创生殖健康医疗场景当前,不孕不育、高龄生育困难等问题愈加凸显,随着人们对辅助生殖技术的认知和接受度上升、人均可支配收入提高、生育政策放开等,国内辅助生殖市场有望持续扩张。同时低温冷冻技术作为实施辅助生殖过程中一项不可或缺的技术,已被广泛应用于辅助生殖领域,为相关人群的生育需求和生殖健康提供保障和希望。加上《冷冻胚胎保存时限的中国专家共识》提出冻存胚胎最长保存和临床使用期限不要超过10年等建议。多重因素下,辅助生殖低温冷冻市场需求日益旺盛。贝康医疗是国内NGS细分市场——生殖领域的龙头企业,一直致力于高通量测序技术在生育健康领域的研发和临床应用,目前已实现了从孕前到植入前、孕中以及产后新生儿的生殖系列基因检测的全面覆盖,能够为临床机构提供全面的三代试管解决方案,在国内生殖健康医疗领域,有着雄厚技术实力和经验积累。海尔生物医疗则自创立以来,就致力于通过关键核心技术攻关,服务国家重大战略和国民生命健康需求。自突破低温制冷关键核心技术,打破国外垄断以来,海尔生物医疗已成长为全球领先的生命科学和医疗创新数字化场景方案服务商,能够为全球用户提供覆盖-196℃至常温全温域、全场景、全容积的生物医疗低温存储解决方案。早在2017年时,就已在低温存储市场位列国内第一、全球第三。目前,海尔生物医疗正聚焦公共卫生、智慧疫苗、智慧血液、数字医院、智慧实验室、生物制药等领域深耕,不断引领生命科学与医疗创新高质量发展。通过携手合作,海尔生物和贝康医疗将在技术、产品、市场等方面,实现资源共享、优势互补,从市场推广、技术研发、注册报证等方向,在辅助生殖低温冷冻领域进行合作共创,构建完善的生殖健康医疗场景方案,推动生育力保存等生命科学领域创新发展。立足生命科学加速生态协同,推动生物经济创新发展生殖健康医疗场景只是海尔生物医疗探索生命科学领域的其中一环。当前,生命科学已成为前沿科学研究最活跃的领域之一,由生命健康需求而逐渐延伸的生物经济正在成为高新技术的集合地。海尔生物医疗洞察行业数字化转型趋势,以创用户最佳健康体验为中心,聚焦生命科学领域打造起数字化全场景服务生态,为生物经济领域创新发展提供服务和技术保障。为推动细胞治疗及临床转化应用,提高人民健康水平,海尔生物医疗创新出细胞制备智慧物联全场景解决方案,围绕细胞治疗全生命周期,从细胞采集接收、检测、培养制备、储存、质控、运输到应用及销毁等,实现全流程标准化、可视化、智慧化和可追溯的管理,保证细胞生产制备的安全和质量可控。目前方案已在吉美瑞生、海西细胞、南华生物等生物医药企业落地应用。聚焦人类遗传资源和生物资源高质量保藏需要,海尔生物医疗创新融合物联网、大数据、人工智能等数字技术,开创自动化低温生物样本库全场景管理方案,实现了海量生物样本全流程的自动化、无人化、信息化智慧存储管理,为高质量生物样本库建设管理提供技术支撑。目前已应用于中国西南野生生物种质资源库旗下动物种质资源库、中科院武汉病毒所、中科院大连物化所、农科院兰州兽医研究所、国家癌症中心、南方海洋实验室海洋生物资源库等国家重大战略工程,助力生物多样性保护的同时,也为医药研发、生命科学基础研究等筑牢基础保障。同时,针对生物危险因子的安全防范与应对需要,海尔生物医疗则研发出高性能生物安全柜及生物安全实验室智慧管理系统,实现了从单个设备到实验室整体系统的协同防控升级,为科研院所、高校、医院等单位创设更加安全的科研环境,促进生命科学及生物医药领域技术创新。创造用户最佳体验,让生命更美好,是海尔生物医疗一直以来的科创使命。未来,海尔生物医疗将响应国家战略要求和人民健康所需,充分发挥链主企业带动引领作用,加速关键核心技术攻关步伐,积极拓展生命科学和医疗创新领域创新边界,持续为我国生物经济高质量发展注入活力,为健康中国建设提供智慧方案,致力于让生命更美好。
  • 小身材大作为:光纤传感器应用前景及场景剖析
    p  光纤传感器是近年来势头正猛的“科技新贵”,因为它有极高的灵敏度和精度、抗电磁干扰、高绝缘强度、耐腐蚀、能与数字通信系统兼容等优点,已被广泛应用于电网系统、道路监控、轨道交通、食品安全等领域。/pp  紧贴时代发展趋势,由中国光学工程学会光纤传感技术专家工作委员会、中国光纤传感技术及产业创新联盟组织的2019第八届中国(北京)国际光纤传感技术及应用大会暨展洽会将于2019年8月5日-7日在北京国家会议中心组织召开。/ppstrong  科技新贵之光纤传感器/strong/pp  光纤传感技术是一种新型传感技术。通过光的反射、折射和吸收效应,光学多普勒效应、声光、电光、磁光和弹光效应等,可使光波的振幅、相位、偏振态和波长等参量直接或间接地发生变化,因而可将光纤作为敏感元件来探测各种物理量。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 404px height: 263px " src="https://img1.17img.cn/17img/images/201907/uepic/b0818f87-2205-4c37-9840-bd1f8c595af5.jpg" title="113.jpg" alt="113.jpg" width="404" height="263"//pp  中国已成为全球光纤传感器消费最大国,在国产化进程有一定的突破。据了解,以南京大学、深圳中科传感为代表的大学及研究院等机构,基本掌握了全套的光纤传感器方案。而在光纤传感系统的核心部件上,厦门彼格的窄带光源、世维通的铌酸锂波导等为代表相关的器件,都不甘落后争相实现自主研发。/pp  纵观整个行业市场,目前中国光纤传感器的自主研发仍是“短板”,总体市场化水平仍落后外国。据统计,中国传感器新品研制率落后美日等国近10年,产业化水平落后10-15年。未来,中国光纤传感市场产业化格局有待提升,物联网技术的加持,将推动中国光纤传感市场走向新一轮发展高峰。/pp  strong光纤传感器应用场景分析/strong/pp  物联网俨然已经成为光纤传感器国产化的重要推手。物联网的发展必须要借助大量传感器获得各种环境参数,从而为物联网提供更可靠的数据信息,再经过系统的处理,得到人们需要的结果。可见,光纤技术在物联网中有很广阔的应用前景。/pp  正是敏锐捕捉到光纤传感器技术在上述领域日益紧密的行业风向,第八届中国(北京)国际光纤传感技术及应用大会暨展洽会致力于全面拓展光纤传感器科技应用领域终端,聚焦智能电网、矿山安全、轨道交通、海洋与环境、地质与水利等各个应用行业,展现国内巨头企业相应的创新综合解决方案。/pp  光纤传感器在智能电网领域起到重大作用。利用光纤传感技术对输电线路进行安全监控,通过对输电线路上发生的触碰光缆、接头盒、光芯等扰动的实时监测,采集和分析信息,判定扰动发生的位置、类型、强度,以帮助线路维护人员及时发现输电线路的破坏行为,有效解决对线路损毁的预警监测,为电力系统提供告警、智能分析和辅助决策支持。/pp  光纤传感器也同样发力道路安全领域。伴随着工业与交通运输的发展,桥梁的跨度增加以及结构的复杂趋势,使得其安全隐患受到更多的关注。把光纤传感系统埋入水泥结构形成能够感知应力和断裂损伤的能力。同时,利用张力传感器感受隧道容易发生塌方的局部的变形情况,这些信息可以与互联网相结合,实现对这些基础设施的长期稳定的实时监测,减少事故的发生。/pp  光纤传感器在轨道交通领域的作用也不容小觑。以中国自主研发的高铁列车代表作——和谐号380AL为例,一辆列车里的传感器数量多达1000多个,平均每40个零部件里就有一个是传感器。它们承担着状态监视、故障报警、车载设备控制等功能。中国工程院院士、中车株洲所总经理丁荣军曾一语道破光纤传感器的重大作用,它对于收集列车的运行状态信息、高速综合检测列车、钢轨探伤、轨道状态远程监测、室内外环境综合传感等方面都起到了不可或缺的作用。/pp strong 行业翘楚荟萃 看点十足/strong/pp  第八届中国(北京)国际光纤传感技术及应用大会暨展洽会目前已进入倒计时,诚邀您八月相聚北京国家会议中心,感受这个绽放出耀眼科技光芒的盛会!/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 514px height: 295px " src="https://img1.17img.cn/17img/images/201907/uepic/f9808917-ffd1-4382-89fa-a8893f2e65a4.jpg" title="115.png" alt="115.png" width="514" height="295"//pp strong 看点一:大咖领衔名企云集 定义光智造未来/strong/pp  会议将邀请清华大学教授廖延彪、北京航空航天大学张惟叙教授、加拿大皇家科学院院士鲍晓毅及国内光纤传感领域的优秀研究团队等亲临现场助阵。会议内容涉及光纤传感系统在轨道交通、海洋与环境领域应用、矿山安全、智能电网、地质与水利工程中的应用等。/pp strong 看点二:匠心巨制 同期展会争奇斗艳/strong/pp  会议现场将同期举办第十一届光电子· 中国博览会,会议还将呈现激光智能制造、全球高校· 研究所· 重点实验室创新技术、红外微光技术及应用、智能信息、光学制造、精密光学与光电检测六大主题展,吸引了从光学元器件到终端用户应用的众多行业龙头企业及科研机构参展。/pp  strong看点三:精准孵化采购新商机尊享高端定制贵宾服务/strong/pp  第十一届光电子· 中国博览会将为光电行业的高管及专业买家提供新产品、新资讯、新方向、新商机贵宾导向服务,提升买家参观体验感,使买家豪享高端定制上中下游产品的一站式采购服务。/pp  本届光博会展商参展/参观登记/参会注册均已全面上线,欢迎登陆展会官网或官方微信预约登记。/pp  展会报名地址:http://www.cipeasia.com//ppbr//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制