当前位置: 仪器信息网 > 行业主题 > >

提取基因组

仪器信息网提取基因组专题为您整合提取基因组相关的最新文章,在提取基因组专题,您不仅可以免费浏览提取基因组的资讯, 同时您还可以浏览提取基因组的相关资料、解决方案,参与社区提取基因组话题讨论。

提取基因组相关的资讯

  • 基于电荷检测质谱(CDMS)对AAV提取的DNA的分析揭示基因组的截断
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Analysis of AAV-Extracted DNA by Charge Detection Mass Spectrometry Reveals Genome Truncations1,文章的通讯作者是来自印第安纳大学化学系的Jarrold, Martin F.教授。  腺相关病毒(AAV)是一种小的(26纳米)、无包膜二十面体病毒。由于其低免疫原性和高组织亲和性,AAV已成为一种很有前途的基因治疗载体。AAV衣壳包含三种病毒蛋白质,VP1、VP2和VP3。对于来自HEK细胞的重组AAV (rAAV),VP1-3的比例约为1:1:10。AAV包裹单链(ss)DNA基因组。野生型基因组的长度约为4.7 kB。基因组两侧有两个倒置末端重复序列(ITRs),它们在复制和基因组包装中起着重要作用。目前,主要用于rAAV研究的生产平台是人HEK293细胞的瞬时转染,然而其HEK293细胞的制造限制其大规模地用于AAV载体的生产。杆状病毒感染的Sf9细胞系已被发现是一种可行的生产方法,但是研究发现在生产过程中出现的ITR丢失和基因组截断现象,似乎成为了Sf9细胞系必须关注的一个问题。因为包裹着不完整的基因组的载体,会使得治疗的有效性降低。  在本研究中,作者提出了一种利用电荷检测质谱(CDMS)直接检测从AAV中提取的DNA的方法。CDMS可以使用静电线性离子阱(ELIT)同时检测单个粒子的电荷数和质荷比,从而直接获得粒子的质量。测量是在一个自制的仪器上进行的,简单地说,纳喷雾(Advion Triversa Nanomate)产生的离子通过金属毛细管进入仪器,然后通过几个不同真空区域。第一个区域包含FUNPET(an ion-funnel ion-carpet hybrid),随后是射频六极杆和分段射频四极杆。FUNPET会破坏气体通过毛细管时形成的气体射流,样品离子随即在六极杆中被热化,最终的离子能量由六极杆上的直流电位决定。离子束在分段四极杆中的径向分布被压缩,经过四极杆的离子通过非对称艾泽尔透镜聚焦到双半球形偏转能量分析器中,并设置传输具有较窄动能分布的离子(以100 eV/z为中心)。传输的离子被聚焦到ELIT中,其中一些离子被捕获并通过位于ELIT端帽之间的检测圆筒来回振荡。振荡离子产生的信号被电荷敏感放大器接收。信号被放大和数字化,然后用快速傅里叶变换(FFTs)进行分析。短时间窗口FFT通过每个捕获事件的信号进行转换,以确定离子是否在整个事件中被捕获。没有在整个事件中存活的离子信号将被丢弃。振荡频率与m/z有关,振幅与电荷成正比。用这种方法测量了数千个离子,并将其分成直方图以给出质量分布。    图1. 来自Sf9细胞的AAV8-CMV-GFP的CDMS测量。(a,b)未孵育样品的质量分布和电荷与质量散点图。电荷与质量散点图中的橙色线是球形离子瑞利电荷极限的预测。(c,d)在45°c孵育15分钟后测量的质量分布和散点图。(d)中的插图显示了基因组从衣壳挤出的示意图。(e,f) 80°C孵育15 min后的结果。绿色虚线表示释放的ssDNA GOI的序列质量,紫色虚线表示互补DNA链碱基对进入溶液后的序列质量。图1第一排的图片显示了用CDMS测量的Sf9细胞制备的AAV8-CMV-GFP的质量分布。在4.5MDa处的主峰是由于rAAV对GOI进行了包装,在5.2MDa处的峰值是由于异质DNA的包装达到了包装容量,在3.7处MDa的肩峰是由于空颗粒。对应的电荷-质量散点图如图1第二排所示。其中空颗粒和包装了DNA的颗粒在电荷上的数值比较接近是因为DNA被包裹到了衣壳的内部。图1c显示了AAV8-CMV-GFP在45°C孵育15min后测量的质量分布。rAAV已经开始分解,存在大量质量低于3 MDa的离子。在3.7 MDa处的空颗粒的数量也大幅增加,这表明基因组正在被释放。而在80℃孵育15min后可见AAV已经完全分解,对应峰也消失了,而剩下的峰与推测的互补DNA链的分子量相当。图2显示了培养后为提取GOI而测量的rAAV载体的CDMS质量分布和电荷-质量散射图。值得注意的是,AAV8-CMV-CRE和AAV8-CAG-GFP(来自Sf9细胞)的平均电荷约为400 e, AAV8-CMV-GFP(来自HEK细胞)的平均电荷约为900 e。平均电荷的差异可能反映了dsDNA的整体几何结构,电荷越高的GOIs具有更广泛的结构。    图2. 在80°C孵育15分钟后记录的代表性质量分布和电荷与质量散点图。结果显示AAV8-CMV-CRE、AAV8-CAG-GFP和AAV8-EF1a-GFP来源于Sf9细胞,AAV8-CMV-GFP来源于HEK细胞。紫色虚线显示dsDNA GOI的序列质量。插图显示了dsDNA GOI的峰值的扩展视图。图3a显示了测量到的dsDNA GOI与AAV样本序列质量的偏差的柱状图,对于大多数AAV样本,测量的dsDNA GOI大于序列质量。这种偏差可以用反离子来解释。DNA在中性溶液中带负电荷,因为它的一些主链磷酸被电离,dsDNA GOI有2219−3443个碱基对,因此它们可能有多达4438−6886个反离子。最可能的反离子是NH4+因为样品是用醋酸铵溶液电喷涂的。如果所有的dsDNA GOI主链磷酸都被电离并且有NH4+反离子,则附加质量(超出完全电离序列质量)为80 ~ 124 kDa。而有些dsDNA的分子量低于预测的序列质量,这是因为序列发生了截断导致的,图3d显示了为该样品测量的DNA峰值的扩展视图。峰宽可以提供截断分布的信息。如果所有的DNA链都损失了425 nt,峰值就会很窄。另一方面,如果截短长度分布较宽,则会产生较宽的峰值。图3d中的峰值相对较窄,说明分布较窄。有一个高质量拖尾,这可能表明一些基因组被截断了小于425 nt。    图3. 来自Sf9和HEK细胞的一系列GOIs的AAV8、AAV9和AAVDJ血清型的dsDNA质量测量总结。(a)测量质量与序列质量偏差的柱状图。(b)考虑反离子的测量质量与预期质量的偏差的柱状图。(c) AAV基因组结构示意图。(d)来自HEK细胞的AAV8-CMV-CRE的dsDNA GOI峰的扩展视图。最后,将CDMS测量的基因组截断与来自第三代测序方法的信息进行比较将具有指导意义。尽管CDMS测量可以判断基因组是否被截断以及缺失的数量,但它不能确定截断发生在哪里。关于截断发生位置的信息可以从第三代测序中获得,这些信息反过来可以深入了解其机制。因此,CDMS测量全基因组MW和第三代测序是互补的。CDMS测量可用于筛选截断的基因组,以便通过第三代测序进行后续深入分析。  撰稿:李孟效  编辑:李惠琳  文章引用:Analysis of AAV-Extracted DNA by Charge Detection Mass Spectrometry Reveals Genome Truncations  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  1. Barnes, L. F. Draper, B. E. Kurian, J. Chen, Y. T. Shapkina, T. Powers, T. W. Jarrold, M. F., Analysis of AAV-Extracted DNA by Charge Detection Mass Spectrometry Reveals Genome Truncations. Analytical Chemistry, 4310-4316.
  • 华大基因参与全球最大微生物基因组研究项目
    华大基因3月22日宣布将参与全球最大微生物基因组研究项目EarthMicrobiomeProject(简称&ldquo EMP&rdquo ),将负责EMP亚洲地区所有样本的收集和鉴定,并对整个项目提供DNA提取、扩增、建库、宏基因组测序,以及研发生物信息学分析流程所需的计算资源。  EMP将对来自全球的20万个样本进行环境DNA测序或者宏基因组测序,从而建立一个全球性的基因图谱,旨在全方位、系统性地研究全球范围内的微生物群落的功能及进化多样性,以便更好地造福社会及人类。参与该项目的主要单位有华大基因(BGI)、阿拉贡国立实验室、芝加哥大学、科罗拉多大学、劳伦斯· 伯克利国立实验室和美国基因能源联合研究所。  据介绍,与以往的微生物研究有所不同,该项目的研究对象不仅集中于海洋和人体环境中微生物群落,还包括土壤、空气、淡水生态系统等整个地球表面的绝大多数的微生物群落。  华大基因理事长、中国科学院院士杨焕明表示,&ldquo 我们非常荣幸能够作为主要参与者参加如此重要的研究项目。微生物对地球上所有的生命具有至关重要的作用,而我们对微生物的复杂性和多样性认识不足,征服这个未知的领域是非常有必要的。华大基因拥有国际先进水平的测序平台和强大的生物信息学分析能力,我们相信可以为促进人类对微生物群落重要性的了解贡献出价值和力量&rdquo 。  据悉,今年6月13日至15日,华大基因将联合EMP联盟在深圳共同举办第一届EMP大会。作为本次大会的主办方,华大基因将与来自各地的学者分享微生物学、微生物基因组学及相关生态、健康、医学、工业、农业等各领域最新的学术成果及应用前景。
  • 英研制出“U盘”基因组测序仪
    中国科技网讯 据美国物理学家组织网近日报道,英国牛津纳米孔技术公司在佛罗里达州基因组生物学与技术会议上宣布了一个爆炸性消息,即推出GridION和MinION两款基于新一代DNA测序技术的便携式基因组测序仪,后者仅有U盘大小,可插入电脑USB端口完成测序,价格仅900美元。  两个仪器都是基于纳米孔测序技术,采用一种特殊的蛋白在薄膜结构上打出纳米级小洞或小孔,在膜的一侧施加电压将单条DNA链(带负电)拉进纳米孔。当DNA的化学碱基通过时,引起细微的电流变化,测量这种变化即可识别出不同的碱基(T、C、G和A)组成顺序,然后通过电脑将每一部分的结果编织在一起呈现。人类基因组包含大约30亿个碱基,DNA测序就是将这些碱基的顺序识读出来。  该消息令投资者大为振奋,而对于牛津纳米孔技术公司的竞争对手美国Illumina公司和生命科技公司来说犹如一记重创。生命科技公司于今年初推出的最新台式离子质子序列发生器测序需要24小时,价格约15万美元。相比之下,如果将20个单元连接在一起,GridION可在15分钟内完成整个人类基因组测序,价格为5000美元 如U盘大小、即插即用的MinION可直接插入笔记本电脑USB端口测序。  无疑,新测序仪将带来DNA测序更为广泛的应用,允许非专业科学家提取DNA信息,即使在野外研究人员也可将样品置于仪器中,将其插入载有相关软件的笔记本电脑后,几乎片刻就会得到基因组样品的信息,以确定植物或动物的遗传性状。种子研究公司可使用它来分析田间作物,如查查是否有外源混合 肉类检查员可拿它测试不同类型的微生物 生物学家可以用它来寻找几代人基因中的微小变化。  然而,在这些愿景中也有小小瑕疵:目前这种设备有4%的错误率 MinION是一次性的,产量不如GridION高 尽管该公司称,在今年某个时候发售相关产品之前,价格会大幅下降,但对于许多应用者来说还是有些贵。
  • 新方法显著改善宏基因组测序
    在一项新的研究中,来自俄罗斯圣彼得堡国立大学的研究人员开发出一种方法极大地改善人们对实验室中不能培养的有机体---如生活在人胃肠道中的微生物,或者生活在海洋深处的细菌---的DNA进行测序的能力。相关研究结果于2016年2月1日在线发表在Nature Methods期刊上,论文标题为“TruSPAdes: barcode assembly of TruSeq synthetic long reads”。  这种被称作TruSPADES的方法通过计算机将来自Illumina公司的机器产生的长300个碱基对的短测序片段(short reads)组装成所谓的合成长测序片段(synthetic long reads),这些合成长测序片段是基因组中长大约10,000个碱基对的片段。  研究人员说,使用这些合成长测序片段而不是短测序片段组装基因组就好比是使用整个章节而不是单个句子来组装一本书。因此,人们有强烈的动机利用长测序片段改进测序。  论文作者Pavel Pevzner教授说,“这是下一代测序技术。它将对宏基因组测序的操作应用产生深刻影响。”  当前,作为长测序片段测序市场的佼佼者,Pacific Biosciences公司和Oxford Nanopore公司产生的长测序片段是不准确的,而且很难用于解决复杂的测序问题,如组装宏基因组(metagenome),其中宏基因组可以指的是从自然环境取样的全部微生物的基因组,也可以指的是从自然环境取样的全部微生物。相比之下,这种合成长测序片段的准确性提高了100倍,而且能够大规模地快速产生从而覆盖宏基因组中的大部分细菌。  为了开发这种新的方法,研究人员获取携带条形码的长100~300个碱基对的短测序片段。他们然后利用一种在短测序片段测序(short read sequencing)中经常使用的被称作德布鲁因图(de Brujin graph)的方法描绘这些短测序片段,将它们组装成合成长测序片段。这种德布鲁因图允许研究人员确定哪些短测序片段连接在一起,从而组装出更长更准确的合成长测序片段。  接下来就是应用这种方法研究包括从人微生物组到海洋微生物组在内的多种微生物群落。Pevzner和另一名论文作者Anton Bankevich正在与来自美国克雷格文特尔研究所(J. Craig Venter Institute)的研究员Christopher Dupont合作开展这方面的研究工作。  宏基因组学特别充满挑战,这是因为研究人员需要研究生活在一个微生物群落中的好几百种细菌,而不能研究其中的单个细菌菌种。当研究人员从这种微生物群落中提取样品并进行测序时,他们获得的是来自这个群落中所有细菌基因组的片段。这非常像是试图拼出好几百个拼图,但是并不知道哪些拼板属于哪个拼图。TruSPADES方法和合成长测序片段将有助研究人员拼出这些拼图。  Dupont 说,“这种方法以更小的成本产生更好的结果。我们如今正在组装我们之前甚至还不知道它们存在的有机体的基因组。”
  • 英开发出简化的基因组测序新方法
    据物理学家组织网报道,英国研究人员简化了基因组测序的标准流程,首次无需进行文库制备便完成了DNA(脱氧核糖核酸)单分子测序,而且新方法只要很少量的DNA就能获得序列数据,用量可低至不到1纳克(10亿分之一克),仅为常规测序方法的500分之一到600分之一。  文库制备是指从测序前基因组样本中提取不同长度的DNA片段,这一过程不仅费力、费时,还会浪费DNA,而新技术能极大地减少DNA的损耗,并缩短测序时间。  该研究论文的第一作者、英国威康信托基金会桑格研究所的保罗· 库普兰说:&ldquo 我们用这种方法对病毒和细菌的基因组测序后发现,即使在相对较低的水平,我们也能够确定所检测的是何种有机物,不论样本中是否存在特定的基因或质粒(这对于确定抗生素耐药性很重要),或者其他信息,如对特定DNA碱基的修改等。&rdquo 他表示,一旦技术得到优化,将在快速、高效地识别医院和其他医疗场所中的细菌和病毒方面具有很大的应用潜力。  研究小组利用第三代单分子测序系统PacBio RS演示了这种简化的直接测序方法。他们仅仅用800皮克(千分之一纳克)DNA来分析一个生物体的基因组,尽管测序仪只读取了基因组的70个序列片段,相对于常规测序方法获得的数据来说不过是很小的一部分,但这些信息足以让研究人员确定他们所检测的生物体的品种。  这项技术也使得科学家能够对此前无法识别的宏基因组(也称微生物环境基因组)样本中的生物体进行确认。&ldquo 为微生物测序,首先需要能够在实验室中培养它们。&rdquo 论文的主要作者、英国巴布拉汉研究所的塔米尔· 钱德拉说,&ldquo 这不仅耗费时间,而且有时候微生物不生长,为它们的基因组测序极其困难。&rdquo 他表示,新方法可以直接对微生物测序,短时间内便可确定其&ldquo 身份&rdquo 。  论文的另一主要作者、威康信托基金会桑格研究所的哈罗德· 斯维尔德洛说:&ldquo 我们的技术可以在对所测序列没有任何先验知识、没有特定微生物试剂的条件下,在很短的时间内操作,这是一种很有前途的替代手段,可应用于控制感染等临床需要。&rdquo
  • 最新测序技术能用单个细胞分析基因组
    最近,来自美国加利福尼亚大学圣地亚哥分校、克雷格· 文特尔研究院和Illumina公司的科学家对现代基因测序算法进行了改良,只需从一个细菌细胞中提取的DNA(脱氧核糖核酸)就可组装成接近完整的基因组,准确率达到90%,而传统的测序方法至少需要10亿个相同的细胞才能完成。这一突破为那些无法培养的细菌提供了测序方法。研究发表在9月18日的《自然· 生物技术》网络版上。  实验室无法培养的细菌范围极广,约占99.9%,从产生抗体和生物燃料的微生物,到人体内的寄生菌。它们的生存条件特殊,比如必须和其他菌种共生,或只能生存在动物皮肤上,因此很难进行人工培养。  论文合著者、文特尔研究院的罗杰· 拉斯肯教授10年前曾开发出一种多重置换扩增(MDA)技术,可对实验室无法培养的细菌测序,能恢复70%的基因。其工作原理是对一个细胞的基因片断多次复制,直到其数量相当于10亿个细胞那么多。不过,这种技术却给测序软件带来很多麻烦,它在复制DNA时会出现各种错误,而且并非完全统一放大,有些基因组被复制数千次,有一些却只被复制一两次。但测序算法不能处理这些不一致,而是倾向于舍弃那些只复制了少数次的基因,即使它们对整个基因组来说很关键。  加州大学圣地亚哥分校雅各布工程学院计算机科学教授、现代基因测序技术算法创建人帕维尔· 帕夫纳和同事改进了这一方法,保留了那些少量复制的基因片断,并用新方法对一个大肠杆菌测序以检验其精确性,发现它能恢复91%的基因,接近传统的培养细胞水平。这已足够解答许多重要的生物学问题,比如该细菌能产生什么抗体。  人体细菌占体重的约10%,它们有些会造成传染病,但也有的能帮助消化,最近研究还发现,它们能改变人的行为方式,比如引诱人吃更多的东西。新方法也有助于科学家理解细菌行为,研究人体内细菌能产生哪种蛋白质和多肽,这些蛋白质和多肽是细菌之间、细菌和宿主之间互相沟通的工具。  研究小组还用新方法对一种以前未曾测序过的海洋细菌进行了测序,获得了相当完整而且能解释的基因组,掌握了它是如何生存和运动的,该基因组将被存入美国国家卫生研究院的基因银行(GenBank)。研究人员表示还将对更多迄今未知的细菌进行测序。
  • 2017: 基因组学的突破之年
    p style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/6d24d129-b200-4ee0-805e-22b518688387.jpg" title="1.jpg" style="width: 599px height: 322px " width="599" vspace="0" hspace="0" height="322" border="0"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "strongFrancis deSouzabr//strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong Illumina公司总裁兼CEO/strong/spanbr//pp style="text-align: left "br/  Evelyn Villareal出生时患有1型脊肌萎缩症(SMA1),这是一种遗传病,患病的婴儿会逐渐瘫痪。诊断结果让她的父母心碎不已,因为他们的第一个女儿也被这种疾病夺去了生命,当时她只有15个月大。大多数患病的儿童活不过两岁。br/  不过这一次,这个家庭发现了一种临床试验。八周时,Evelyn接受了一种实验性治疗,具体方案是让携带健康基因的病毒穿过血脑屏障,提供一种关键的缺失蛋白。试验获得了惊人的成功:所有15个婴儿都取得了良好的反应,Evelyn现在已经三岁了。br/  SMA1并不是个例。经过20年的紧张工作,我们突然发现一系列的基因治疗都取得了成功。Spark Therapeutics公司的Luxturna有望成为第一个被批准用于遗传性失明的药物。另一种针对大疱性表皮松解的实验性治疗也在开发当中。这些患病的孩子常被称为“蝴蝶儿童”,因为他们的皮肤如蝴蝶翅膀一般脆弱。br//pp style="text-align: center "span style="color: rgb(255, 192, 0) "strong对抗癌症/strong/span/pp  癌症是一种遗传病,所以基因组测序可以在癌症诊断和治疗中发挥重大作用。Foundation Medicine的综合性实体瘤遗传检测FoundationOne CDx™ 近日获得了美国食品药物管理局(FDA)的批准,这一事件具有里程碑式的意义。 br/  利用新一代测序,这种检测寻找324个基因中与黑色素瘤、乳腺癌、结直肠癌、卵巢癌以及非小细胞肺癌相关的变异。肿瘤医生根据检测的结果,将每位患者与获批的靶向疗法、免疫疗法或临床试验相匹配。br/  这一成功案例并不是孤证。今年,美国FDA简化了肿瘤分析检测的批准程序。更多产品即将获批。br/  FDA也创造了历史,批准了美国第一个基因治疗:诺华(Novartis)的Kymriah,适用于治疗患晚期白血病的儿童。FDA很快又批准了吉利德(Gilead)旗下Kite Pharma的Yescarta,它适用于一种成人淋巴瘤。这些疗法从人体中提取出T细胞,对其进行遗传改造,使其对抗患者的特定癌症。br/  默克(Merck)的免疫治疗药物Keytruda则是另一个监管上的里程碑,它是第一个获批的癌症治疗药物,适用于带特定基因组生物标记的实体瘤,而无论其在身体中的何处。 br//pp style="text-align: center "span style="color: rgb(255, 192, 0) "strong基因编辑的进展/strong/span/pp  作为近年来最激动人心的发现之一,CRISPR-Cas9基因编辑能够确保稳定的食物供应,让生物燃料更经济,并治愈许多遗传病。此外,一种新的CRISPR变体Cas13让研究人员能够编辑RNA,而不仅仅是DNA,这打开了许多治疗应用的大门。br/  2017年,一名患者首次接受了一种意在精确编辑体内细胞DNA的疗法,该临床试验利用基因编辑工具来治疗亨特综合征,这是一种遗传代谢疾病,可导致严重残疾。br/  另外,研究人员还利用CRISPR来校正胚胎的遗传性疾病。研究小组修复了MYBPC3基因中的突变,这些突变可能导致心源性猝死及其他心血管疾病。如今,我们拥有了工具,有望消除亨廷顿舞蹈症、囊性纤维化及其他遗传病。不过,生殖系的编辑也引发了伦理问题。研究需要开展下去,而法律、监管和伦理的讨论也必须跟进。br//pp style="text-align: center "span style="color: rgb(255, 192, 0) "strong患者权益的改善/strong/span/pp  基因组测序已经推动了医疗保健的各种进步,但如果患者享受不到,便毫无意义。今年,精准医疗在付费者接纳方面迈出了重要的一步。br/  FoundationOne Cdx实体瘤检测除了获得FDA的监管批准,还获得了美国联邦医疗保险(Medicare)的初步覆盖,这意味着最容易患癌症的老年患者将有更多的机会使用这种检测。br/  其他付费者也正参与其中。11月,美国最大的私营保险公司联合健康保险(United Healthcare)开始报销罕见病患儿的全外显子组测序。/ppbr//pp style="text-align: center "span style="color: rgb(255, 192, 0) "strong更多的群体基因组学/strong/span/pp  全世界的多个国家在群体基因组学上继续取得进展,希望更好地了解遗传学与疾病之间的关联。丹麦和印度也加入英国、美国、中国、卡塔尔、沙特阿拉伯、土耳其和爱沙尼亚的行列,开展群体基因组学计划。截至本月,全球首个也是最大的群体基因组学行动Genomics England的十万人基因组计划已经对癌症或罕见遗传病患者的41,000多个基因组进行了测序。英国国民保健署(NHS)正准备将全基因组测序作为某些罕见病和癌症患者的常规诊断检测。br/  同时,法国也首次指定了2个测序点,而最终将有12个测序点分布在该国的大学医院,作为法国2025年基因组医疗计划的一部分。该计划旨在将基因组医疗整合到法国的临床保健行动中,其目标是在2020年之前,每年对23.5万个基因组进行测序。br/  在美国,国立卫生研究院的All of Us研究计划开始招募参与者,而美国退伍军人事务部也签订了一份合同,对百万退伍军人计划(MVP)的首批34,000个基因组进行测序。最终,All of Us和MVP计划将分别收集超过百万名美国人的健康数据,包括基因组信息。br//pp style="text-align: center "span style="color: rgb(255, 192, 0) "strong基因组学无处不在/strong/span/pp  2017年,基因组学生态系统以多种方式扩大,包括直接面向消费者的市场。Helix推出了在线消费者市场,提供基于DNA的产品。23andMe的客户超过了200万。单就今年来看,AncestryDNA的客户就翻了一番,超过600万,也创造出世界上最大的DNA数据库。br/  这一势头将逐步强劲,而周密的监管将起到重要作用。FDA宣布,它正在简化消费者检测公司的审查程序。br/  以基因组学为重点的创业公司也呈爆炸式增长,包括Illumina加速器资助的那些。例如,Checkerspot正利用先进的生物技术和化学来设计高性能的材料,而Mantra Bio正利用外泌体(exosomes)这种天然存在的细胞结构来输送新一代的靶向治疗药物。br//pp style="text-align: center "span style="color: rgb(255, 192, 0) "strong临床基因组学/strong/span/pp  研究人员和临床医生正为充分利用基因组学而另辟蹊径。基因组测序技术让新境界触手可及:更大规模的研究,以全基因组而不是外显子组为对象的更广范围应用,以及超深度测序。这将让“大海捞针”的应用成为现实,比如开展深度的肿瘤分析,或通过一滴血来寻找单个癌症分子。br/  麻省理工学院和哈佛大学旗下Broad研究所的研究人员表明,他们能够检测患者血液中几乎90%的肿瘤遗传特征,而Illumina子公司Grail也推进了其液体活检项目。br/  Illumina的NovaSeq架构也支持这些及其他方面的工作,而这种技术才刚刚开始在患者中发挥作用。br/  保健革命的潜力是惊人的。目前,只有少数实体瘤得到了测序。科学家已经开始揭示ApoE4基因变异如何增加阿茨海默病的风险。同时,人类细胞图谱(Human Cell Atlas)计划正在绘制人体中全部37万亿个细胞。通过描绘和定义健康与疾病的细胞基础,这项大胆的举措将影响生物学和医学的方方面面。br/  测序有望彻底改变癌症、未确诊的罕见遗传病及进行性疾病(如阿茨海默病)的治疗方式。对于Evelyn等孩子来说,生活从此变得不同,他们如今也有机会过上健康长寿的生活。而作为Illumina的一份子,我们很荣幸能够推动这些进步,让全世界的广大民众受益。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201712/insimg/6322412a-1eff-448c-9715-2532ee6f71f3.jpg" title="2.jpg" style="width: 600px height: 400px " width="600" vspace="0" hspace="0" height="400" border="0"//p
  • 人类基因组测序或将只需数分钟
    来自伦敦帝国理工学院的科学家正在开发一种技术,它能够在几分钟内完成个人基因组的测序,且费用比目前的技术要低得多。研究人员已经将这项原型技术申请专利,其研究成果发表在近期的《纳米快报》(Nano Letters)杂志上。  在这个新研究中,研究人员证明能在50nm孔中利用电荷高速推动DNA链。当DNA链出现在芯片后面时,它的编码序列被一种电极隧道接头(tunnelling electrode junction,生物通译)读取。电线之间的2nm间隔支持一种电流,它能与每个碱基的不同电信号相互作用。然后,一台强大的计算机能够解析碱基的信号,以构建出基因组序列。  一直以来,因纳米孔测序的高速和高通量,它被认为是DNA测序技术的重大进步。在典型的纳米孔实验中,生物分子在电力驱动下穿过一个外加电场的纳米孔。这导致孔内离子电流的特征性阻断。通过分析,能提取出有关分子性质的一些信息,如长度、成分以及与其他分子的相互作用。但是,目前基于粒子电流阻断或荧光的检测似乎还缺乏时空的分辨率,不能获得结构信息。  而另一种基于DNA的隧道运输的检测方法有望打破这些限制。因其源于量子力学,隧道电流随距离迅速衰减,从而提高空间分辨率,还提供了分子的特异性。  帝国理工学院化学系的Emanuele Instuli博士解释了研究时面临的挑战:&ldquo 直到现在还很难精确对齐接头和纳米孔。此外,对这种尺寸电线的改造接近原子规模,实际上已达现有仪器的极限。然而,在实验中,我们能够让两个铂电线进入电极接头,其间隔足够小,让电流能够通过。&rdquo   研究人员通过隧道光谱学鉴定出有功能的隧道装置,随后第一次证明能在纳米孔平台上同时进行隧道检测和DNA分子的离子电流检测。这是迈向超快DNA隧道测序的重要一步。  与现有技术相比,这项技术有几个明显优势:纳米孔测序很快、很简单 硅芯片比目前使用的一些易损材料更耐用,它们能够处理、洗涤、并重新使用很多次,而完全不会折损其性能。  作者之一,化学系Joshua Edel博士谈到:&ldquo 与目前的技术相比,这个装置能够带来更廉价的测序:只需几美元而已。我们还未试过全基因组测序,但是初期实验表明理论上能够在几分钟内完成人类基因组的全基因组扫描。它显然快得多,更可靠,且有望放大成一种装置,每秒钟读取1千万个碱基。&rdquo
  • 英国推进十万人基因组计划,众企业踊跃投标
    p  英国计划在2017年完成10万人的基因测序工作,但筛选疾病基因需要创新的软件。/pp  一对加利福利亚双胞胎出生后,他们的父母日益忧心:宝宝们发育缓慢,而且肌张力低。脑部扫描发现,男宝宝可能有大脑麻痹,但女宝宝却有癫痫和震颤。医生们百思不解。多种测试结果都无法确诊两个宝宝究竟出了什么问题。等到孩子们5岁的时候,使用左旋多巴胺——一种帕金森病药物,疗效也非常短暂。/pp  2010年,这对双胞胎14岁了,全基因组筛查终于揭开了谜题。双胞胎编码墨蝶呤还原酶(sepiapterin reductase,一种在神经递质多巴胺和5-羟色胺合成中起作用的酶)的基因存在缺陷。医生因此改变了治疗方案,增加了5-羟色胺的服用。男孩子的行动能力有所加强,女孩也不再出现突发性抽搐了。/pp  这样的故事激起了学界人士使用基因筛查作为诊断工具的兴趣。确实,如果检查能筛出疾病相关的基因突变,这样治疗就更加有的放矢。/pp  但这样的基因测试通常不能为诊断提供多少依据,因为目前的基因测试聚焦于在特定染色体上的特定基因。在类似于双胞胎的案例中,研究者们不得不筛查所有基因,来寻找致病基因。就目前来说,这种检验非常稀少。但一些大规模的研究项目正准备把全基因组筛查加入到常规医学诊断中。/pp  英国对于基因组医学壮志满怀,启动了10万人基因组计划。该计划由12年开始,赢得了英国首相David Cameron的个人支持。该计划投资3亿英镑,对英国国民健康服务中心(National Health Service, NHS)的癌症、少见疾病和传染性疾病病人进行测序。该计划旨在寻找疾病的致病基因,为临床提供更好的诊断工具,为病人提供个性化治疗,最终促进英国基因产业。/pp  John Bell认为,英国卫生医疗系统是国家资金支持的,因此非常适合执行这种大规模的基因组医学实验。Bell是牛津大学(University of Oxford)的医学研究者,同时也是Genomic England公司的董事。Genomic England是英国国民健康服务中心附属的一家公司,是10万人基因组计划的主要实施公司。NHS有非常详细的病人信息,将这些与基因筛查结果联系起来,能更清楚地认识到疾病和基因之间的联系。Bell指出,多种证据表明,全基因组筛查能够帮助诊断和治疗多种疾病,NHS希望能把全基因组筛查作为常规医学手段。/pp  但在这个目标实现以前,10万人基因组计划必须克服几个问题。从这么多人身上提取DNA样本本身就是一件繁琐的事情,除此之外,确定哪些基因突变是致病的,哪些是无害的也是一件棘手的事情。这需要大量的数据、时间,还需要专门的软件来干这些事情。/pp  strong支持者众多/strong/pp  冰岛是第一个启动大规模全基因组分析计划的国家。很多国家也抱着将疾病和基因联系在一起的美好愿景,加入到了基因组筛查的队伍中。在美国,精准医疗计划打算测试100万志愿者的基因组,而百万老兵项目则计划对百万名老兵进行基因测序。而其他多个国家,包括加拿大、澳大利亚、日本、韩国、新加坡、泰国、以色列、科威特、卡塔尔、比利时、爱森堡和爱沙尼亚也纷纷开展基因筛查项目。/pp  但英国的10万人基因组计划看起来最有希望:它已经成功募集了3500名罕见疾病患者和2000个癌症病人,未来只需要找到75000名志愿者(其实基本都是这些患者的亲属)就够了。罕见疾病患者和他们的家人最后会有5万人。80%的罕见疾病是家族遗传的,因此受影响者(通常是儿童)的基因可以和他血缘最近的亲属的结果进行对比。癌症病人及其家属会组成另外的25000名志愿者。癌症病人的基因组会测两次,和父母的正常细胞进行对比。因此,英国基本已经找齐了他们所需的志愿者。/pp  志愿者们希望,基因筛查结果能让他们更清楚地了解自己的状况。这些信息对于整个病人群体都有重要意义。一个前列腺癌患者的基因组,经过与数据库的对比,可以提供前列腺癌相关的基因信息。医生从这个患者的治疗中,了解到对于具有类似基因的患者采用哪种治疗最为有效。/pp strong 企业合作者/strong/pp  Genomics England现在正在挑选每一步(从提取DNA到解读基因组)的企业合作者。总部在圣地亚哥的测序仪器生产商Illumina负责测序工作,同时也负责鉴别基因突变。这由Illumina在英国小切斯特福德的分公司进行。但在未来几个月里,计划开始扩大范围时,Illumina计划把测序仪器搬到英国斯顿的维康信托基因组园区(Wellcome Trust Genome Campus)。/pp  Illumina通过高通量测序仪器处理提取的DNA样本,获得小段的碱基片段。这些片段通过电脑计算,重组成连续的序列,然后通过生物信息学,科学家们会把生成的结果和人类参照基因组(由国际基因组参照协会(Genome Reference Consortium)不断更新的人类代表性基因组)进行对比,目的是发现和参照基因组不同的序列片段,也就是突变。/pp  为了鉴别这些突变,Illumina团队使用该公司的Isacc工作流程(一种开源的计算基因组排布和识别变体的工具)。然后,为了鉴别每个基因组的几百个变异中哪一个致病,Genomics England公司会在数据中心收集10万人的基因信息,然后进行分析。但Genomics England还没有决定选择哪个软件来实施这一工作:需要和Illumina和学界一起检验各个软件的可靠性,然后改善现有的识别变体的算法,最后再确定选择哪个软件。/pp  Illumina已经对3000多个样本进行了测序,但每天有更多的样本涌入。Peter Formen,Illumna10万人基因组计划的管理主任表示,针对突变分析,他们打算收集和上报生殖细胞和体细胞NDA中特定位点的的多种变体。变体包括增加或缺少几个核苷酸,或是以一种核苷酸替代了另一种。也可能有结构性的变体,例如一个基因拷贝数变异。/pp  紧接着,每个变体和已有的变体数据库,例如dbSNP库(一个由美国国立卫生研究院(NIH)建立的,针对短基因突变的数据库)进行对比。类似的数据库还有很多,包括:全球千人基因组计划也建立了全球人类基因变异的目录 Exome Aggregation Consortium (ExAC),一个外显子测序数据库(外显子是负责编码蛋白的全部DNA序列) 以及ClinVar,NIH建立的变异与相关生理状况的数据库。发现这些变体的作用是下个阶段的任务,各个公司都踊跃申请承担这项任务。2014年春天,Genomics England对全球的基因组阶段专家进行了评价。28家参评公司需要对15个罕见疾病患者和两个健康人的基因,以及同一个病人的10个肿瘤DNA和正常DNA进行分析,然后给出变异注解(确定基因和其蛋白产物)和解读(把基因、蛋白和功能联系在一起)。/pp  表现最佳的公司可以接受一个测试,为8000个志愿者进行基因组解读的工作。Genomics England从28家公司中挑出了表现最佳的4家,这4家需要通过这个测试,并签订协议。这四家公司分别是英国剑桥的Congenica和美国加利福利亚的Omicia,他们会分析罕见疾病患者的基因组 加利福利亚的Nanthealth,他们会分析癌症基因 麻省的Wuxi NextCode公司,他们既要分析罕见疾病又要分析癌症。圣地亚哥的Cypher Genomics公司及其合作伙伴高级技术和防卫公司Lockheed Martin则是候选公司。这些公司此前都有相关领域的从业经验。/pp  所有公司都会使用高效能计算来解读基因数据,并且工作场所都是Genomics England的安全数据中心。目的是提供几乎全自动的服务——解读下一代测序数据目前主要是人工操作,需要花费数小时到数周的时间。据Genomics England生物信息部门的领导Augusto Rendon表示,最忙的时候,每天有200多个基因组的数据需要处理。如果要按时地、不超预算地完成计划,如果想把全基因组测序作为常规诊疗手段,那么人工解读必然无法达到要求。/pp  strong花落谁家/strong/pp  每个公司都带来了自己的专家团队来完成基因组解读任务。Congenica,是维康信托桑格研究所(Wellcome Trust Sanger Institute)和英国卫生部(Wellcome Trust Sanger Institute)的下属公司,之前一直为NHS提供测序服务。它会分析疾病相关的遗传性和获得性的稀有基因突变。它开发的Sapientia平台已经在“解密发育疾病项目”(Deciphering Developmental Disorders, DDD)中投入使用,对12000名儿童进行基因测序。DDD是迄今为止全世界最大规模的、全国性的、罕见疾病测序项目。Congenicad 首席运营官Tom Weaver表示,这项研究对30%-40%的参与儿童做出了诊断,这些儿童患有无法确诊的出生缺陷或认知缺陷。/pp/pp  美国的Omicia公司在基因组的临床解读上也有很多经验,但它之前使用的是开放源码、开放获取的工具。在10万人基因组计划中,它将会使用Opal的基因解读软件,来预测哪个变体可能导致疾病。该公司的Phevor算法(表型驱动编译本体论重排序工具)能把突变可能与疾病相关的概率,与基因功能现行和信息的数据库相结合。Omicia可利用这一工具将病人的表型(也就是病理表现)也结合起来。Omicia的首席科学家Martin Reese表示,这些高度自动化的工具意味着,Omicia可以避免人工解读信息。这些算法能够把变体归类到已知的致病基因中,这些基因与疾病的联系部分已知,部分仍待证实。随后Opal会把这些结果整合在一起,汇总成报告,帮助医生形成治疗意见。/pp  Cypher Genomics是斯克里普斯研究所(Scripps Research Institute)的下属公司,开发过Mantis基因解读软件。Mantis能够根据变体致病的概率进行排序。Cypher Genomics的首席运营官Adam Simpson表示,根据Mantis的分析结果,科学家们可以优先选择研究的变体对象。/pp  最后要谈到Wuxi NextCode公司了。Wuxi NextCode是冰岛基因公司deCODE的衍生公司。deCODE由Kari Stefansson于1996年创立。Kari Stefansson率先提出,获取全国人民的基因信息,来寻找致病基因的理念。后来deCODE被制药公司Amgen收购时,一帮生信学家和deCODE的前职工创立了Wuxi NextCode。Wuxi NextCODE在2015年1月被中国上海药明康德公司收购。/pp  Wuxi NextCode的结果并不是一张可能引起疾病的突变清单。Wuxi NextCode的首席科学家Jeff Gulcher表示,全球的临床医生和研究人员都可以通过任何网络浏览器,在单个碱基分辨率上实时存储、查看和分析基因数据,并且软件不断更新最新的变异信息。/pp  Gulcher表示,一个典型的问题可能是“我想知道,这到底是不是变异”。这意味着,需要寻找患有相同罕见疾病的个体,看看他是否也有相同的突变体。总有一天,医生可能想知道癌症病人是否有类似的变体和病程发展,同时想了解过去十年的此类病人采用的治疗。Gulcher表示,Wuxi NextCODE的Genomically Ordered Rela -tional Database数据库可以完美地实现这类需求。/pp  另一方面,基因学家可能需要比较20个基因组,每个有一百万个变体。他需要知道的是,哪个是致病变体。Wuxi NextCODE的数据库根据基因位置来显示变体,从而不需要对所有基因从头到尾进行比较分析,提高处理效率。Wuxi NextCode的首席运营官Hannes Smarason表示,该平台非常适应处理大量信息,例如30万冰岛人的基因组信息。/pp  Nanthealth是私营企业,主攻癌症基因组信息的计算分析,为临床治疗提供指导。Nanthealth拒绝提供信息,但它的主页上显示,该公司分析了超过2万个基因样本。该公司由医生和生物医学研究者Patrick Soon-Shiong创立。Patrick Soon-Shiong还是一个基金会的主席,该基金会致力于消除医疗资源不平等,并支持研究。同时他还是一个非营利性研究机构的负责人,该研究结构致力于促进电子分子诊断。他研发了抗癌药物Abraxane,该药物能够治疗多种癌症。/pp  对于Genomics England来说,整个项目旨在为临床提供指导。但在把结果反馈给医生和家属之前,科学家和医生们需要先仔细研究这些数据。Genomics England 募集了2000名专攻13种罕见疾病和10种癌症的医生和科学家,来完成质量检验工作。同时他们也需要研究项目成果,特别是审查基因和疾病的联系是否明确。他们会通过细胞检验和小鼠实验来研究变体是如何影响和诱发疾病的,这些信息都会汇总到10万人基因组计划。一些结果可通过数据库很快证实,而另一些结果则需要通过文献、软件和实验来谨慎验证。/pp  Bell表示,NHS并不以技术创新出名,但Genomics England可能会改变这一形象。10万人基因组计划对整个基因领域造成了重大影响。它将提供很多商业和学术机会,甚至有可能实现将基因组运用到临床上,从而造福全人类的伟大目标。/pp  原文检索:/pp  Vivien Marx. (2015) The DNA of a nation. Nature, 524(7565): 503-505./ppbr//p
  • 华大智造打造“大人群基因组学一站式解决方案”: 满足百万级高深度全基因组测序需求
    p style="text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "2020年10月26日,第十五届国际基因组学大会(ICG-15)在武汉拉开帷幕。深圳华大智造科技股份有限公司(下称“华大智造”)在学术报告中分享了“大人群基因组学一站式解决方案”。该方案集样本前处理、文库制备、高通量测序、基因数据管理等模块为一体,从样本到报告全程自动化,目前可满足每年五万到百万级规模高深度全基因组测序需求,全流程均可按需定制。/pp style="text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "  华大智造高级副总裁倪鸣表示:“可以看到,近年来大人群基因组测序和分析渐成趋势,国家级别的基因组测序项目不断涌现。全球范围内大人群基因组计划的实施,对高通量基因测序平台技术的水平,对基因测序方案的通量、成本、精准度、智能化等提出了更高要求,华大智造也希望为此贡献己力。”/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 450px " src="https://img1.17img.cn/17img/images/202010/uepic/9b327086-c705-4c70-a688-d724a3567919.jpg" title="倪鸣博士.jpg" alt="倪鸣博士.jpg" width="600" vspace="0" height="450" border="0"//pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "华大智造高级副总裁倪鸣在ICG-15分享解决方案/pp style="text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "  span style="color: rgb(255, 0, 0) "strong华大智造大人群基因组学一站式解决方案:四大模块, 测序系统超强定制/strong/span/pp style="text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "  华大智造在大会上分享的“大人群基因组学一站式解决方案”由生物样本库、建库中心、测序中心和数据中心四大核心模块构成。其中,生物样本库主要功能是将全血分离为血浆和白膜层,完成gDNA提取 建库中心则分为文库制备和DNB制备两部分,用于测序文库制备。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 408px " src="https://img1.17img.cn/17img/images/202010/uepic/0fda5a10-f7e1-4498-8f8c-60f8c0c55f48.jpg" title="3.png" alt="3.png" width="600" vspace="0" height="408" border="0"//pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "大人群基因组学一站式解决方案布局br//pp style="text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "  而该方案的测序中心采用了超强定制的测序系统——DNBSEQ-T10× 4RS,这是基于华大智造独有DNBSEQ测序技术打造的超高通量测序仪,以满足超高通量测序需求。该测序系统的创新突破点在于,不同于以往华大智造测序平台采用的流道式芯片和封闭式反应系统,DNBSEQ-T10× 4RS运用了浸没式生化方案和开放式反应体系,实现了测序读长、测序质量以及成本投入之间的最佳平衡。一台DNBSEQ-T10× 4RS测序系统支持8张测序载片同时运行,每天可产出最高达20Tb(约200个高深度人类全基因组)的测序数据,单套测序系统可年产超过5万个高深度个人全基因组测序。/pp style="text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "  采用该解决方案的前期测试数据显示, DNBSEQ-T10× 4RS测序系统检测SNP的准确度和灵敏度都超过99%,检测Indel的准确度和灵敏度超过98%,均已达到业内领先水平。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 337px " src="https://img1.17img.cn/17img/images/202010/uepic/b1cbd9a8-fdb6-4d01-a6aa-0b4a22c4183a.jpg" title="T10× 4.jpg" alt="T10× 4.jpg" width="600" vspace="0" height="337" border="0"//pp style="text-align: center "运行中的DNBSEQ-T10 × 4RS/pp style="text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "  最后一个重要模块——数据中心则使用华大智造ZTRON基因数据中心一体机,可实现样本管理、实验室生产、生信分析及数据治理等全周期基因数据管理。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 277px " src="https://img1.17img.cn/17img/images/202010/uepic/9d09841f-83dd-4db0-b6b8-be188225a664.jpg" title="2.png" alt="2.png" width="600" vspace="0" height="277" border="0"//pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "ZTRON基因数据中心一体机/pp style="text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "  据介绍,华大智造打造的“大人群基因组学一站式解决方案”拥有四大核心优势:第一,超高通量,单台测序仪年产高深度全基因组测序不低于5万人次 第二,超低成本,其所采用的新型测序方案可有效降低测序成本 第三,超强定制,能够实现全流程可定制化,满足五万到百万级基因组测序需求 第四,该方案从样本到报告全程实现自动化,使测序全流程操作更为便利。/pp style="text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "  更进一步,通过其提供的基础版、扩容版方案,可根据客户需求设计设备数量与配置、场地、人员安排等,目前可实现测序深度30x、年产五万至百万的全基因组测序能力。/pp style="text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "  span style="color: rgb(255, 0, 0) "strong大人群基因组学项目成全球趋势:依托成熟技术,开启精准医疗新时代/strong/span/pp style="text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "  近两年,华大智造凭借高通量测序整体解决方案及全流程运转能力,不断拓展高通量测序技术创新应用的想象空间。/pp style="text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "  2019年9月,由华大智造自主研发的超高通量基因测序仪DNBSEQ-T7正式交付商用。作为全球日生产能力最强的基因测序仪,DNBSEQ-T7配备4联载片平台,四载片连载日产数据量高达6Tb,即一天最多可完成60例个人全基因组测序,是能够强有力推动测序产业跃迁的“超级生命计算机”。/pp style="text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "  同年12月,阿联酋启动 “全民基因组计划”,其中华大智造负责建设高通量测序平台,为该计划提供了核心设备支撑,展示了我国基因测序设备制造领域的领先水平。/pp style="text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "  当前,大规模人群基因组学研究项目成果正在全球范围内持续拓展,包括美国、新加坡、法国、阿联酋在内的多国政府先后启动国家级大人群基因组计划。不久前,英国政府颁布了全国性基因组学医疗保健战略——《基因组英国(Genome UK)》,将在未来持续利用基因组学对特定患者群体进行干预,以应对新的全球性流行病和公共卫生威胁,生命科学产业进入基因大数据时代。/pp style="text-align: justify margin-top: 10px margin-bottom: 10px line-height: 1.5em "  在此趋势下,市场亟需高质量的全面测序方案,华大智造“大人群基因组学一站式解决方案”此番推出,得益于其深厚的技术积淀、强大的自主研发能力及定制化整体解决方案能力,这将进一步推动基因检测技术普及惠民,推动精准医疗发展,加速推进“人人基因组时代”进程。/p
  • 汤富酬课题组实现基于单细胞测序数据的人类基因组从头组装
    随着三代测序技术(TGS,也即单分子测序技术)的发展,基于大量细胞的三代基因组测序数据被广泛应用于各种复杂大型基因组的组装,由于其读长相比于二代测序(NGS)技术有数百倍的增加,因此基因组中重复序列区域以及染色体重排等复杂结构变异区域都能被更好地组装出来。对于人类基因组的组装研究,端粒到端粒(T2T)联盟在2022年3月,使用纯合二倍体细胞系CHM13率先发布了首个完整的端粒到端粒的人类基因组参考序列CHM13v1.1。2022年3月,人类泛基因组联盟(HPRC)在预印本平台bioRxiv上发布了首个高质量人类杂合二倍体细胞系HG002的单倍型组装结果。目前,高质量的基因组组装通常依赖于大量细胞混合样本的三代测序数据,需要大量的基因组DNA(通常需要从数百万个细胞中提取几十微克基因组DNA),然而在基因组组装的实际应用中常常要面对两个困难:1、细胞群体中存在遗传异质性。基于大量细胞三代测序数据的基因组组装需要确保测序的样本中每个细胞的遗传背景高度一致,否则组装结果将很难区分同一个细胞内的不同单倍型基因组之间的差异和不同细胞亚群之间的基因组差异。只有降低或者消除细胞间的遗传异质性才能确保单倍型组装的准确性。但是,在人体正常组织样本中也常常广泛存在体细胞拷贝数变异(CNA)。与此同时,正常的人类细胞也会不断积累突变,同一块人体组织常常是由很多包含不同突变的细胞克隆组成。在癌症研究中,同一个肿瘤样本中不同癌细胞亚克隆之间的基因组异质性就更为明显。2、细胞数量稀少。在很多情况下,很难获取上百万个细胞以提取大量(几微克)基因组DNA。例如,在早期胚胎发育研究、司法检验、特别是在癌症基因组研究中(如循环肿瘤细胞、肿瘤活检样本、脑脊液中的肿瘤细胞、以及腹水中的肿瘤细胞等),能够获取的细胞数量常常很稀少,而且这些细胞很难在体外培养和扩增;即使偶尔可以培养扩增,也不能保证在体外培养扩增过程中其基因组不会进一步产生新的遗传变异。基于二代测序(NGS)平台的单细胞基因测序技术被广泛应用于微生物等简单小型基因组的组装。许多种类的细菌无法在实验室中培养,单细胞基因组测序可以与宏基因组学方法结合起来完成微生物的基因组组装。由于人类基因组结构、大小、以及复杂程度远超细菌等微生物,单纯使用基于二代测序平台的大量细胞基因组测序数据也无法组装出高质量的人类基因组参考序列(NG50很难达到Mb(百万碱基对)级别),那么使用少量DNA甚至单细胞基因组测序数据组装人类基因组则更具挑战性,它不仅需要基于三代测序平台的单细胞基因组长读长测序技术的支持,还需要合适的组装软件以及良好的生物信息学分析策略。2022年7月12日,北京大学生物医学前沿创新中心(BIOPIC)汤富酬课题组在Nucleic Acids Research发表了题为De novo assembly of human genome at single-cell levels的研究论文。该研究使用优化的SMOOTH-seq单细胞基因组三代测序技术,基于Pacific Biosciences(PacBio)HiFi和Oxford Nanopore Technologies(ONT)两种三代测序平台首次在单细胞水平上完成了Mb级连续性的人类基因组组装,并使用多种评价指标,充分探索了不同测序策略和组装工具对基因组组装结果的影响。1、全面优化了SMOOTH-seq单细胞基因组三代测序技术,使其同时适用于PacBio和ONT两种主流单分子测序平台。此前的SMOOTH-seq技术只适用于PacBio单分子测序平台,使用场景有较大的局限性。优化后的SMOOTH-seq技术既可以用于PacBio单分子测序平台,也可以用于ONT单分子测序平台,使用场景更加灵活,可以兼顾测序数据准确性和测序成本。2、使用hifiasm,Hicanu,wtdbg2等主流组装工具和95个单细胞的三代基因组测序数据(Pacbio HiFi平台),对人类慢性粒细胞性白血病(CML)细胞系K562进行了高质量基因组组装。组装出的主要叠连群(primary contig)的NG50(可覆盖50%的已知基因组区域的最短叠连群的长度)可达2.11Mb,也就是说在这个组装出的参考序列中,人类基因组中一半(15亿碱基对)以上的区域都被至少2.11Mb以上的叠连群覆盖了。最长叠连群可达14.12Mb,完整的通用单拷贝同源基因基准(Complete BUSCOs)比例接近95%,且大部分组织相容性复合体(MHC)位点(基因组上的一个有代表性的复杂区域,全长约6Mb)被成功组装出来(如图1所示)。图1. 95个K562细胞的基因组组装结果(Pacbio HiFi)3、使用hifiasm,Hicanu,wtdbg2等主流组装工具和人类正常二倍体细胞系HG002的157个单细胞的基因组三代测序数据(Pacbio HiFi平台)对人类基因组进行了高质量组装。组装出的主要叠连群(primary contig)的NG50可达0.65Mb,最长的叠连群可达6.82Mb,完整的通用单拷贝同源基因基准(Complete BUSCOs)比例接近91%。在使用此数据进行HG002的单倍型组装的过程中该研究发现经过指数扩增的基因组数据的k-mer分布会发生偏移,因此使用有双亲二代测序数据作为辅助的Trio-binning模式进行基因组单倍型组装结果更为准确。因此该研究分别使用Trio hifiasm和Trio Hicanu两种组织工具进行单倍型组装,得到的亲本叠连群的NG50可达0.3Mb左右,完整的通用单拷贝同源基因基准(Complete BUSCOs)比例均超过84%。通过比较HG002亲本六种经典人类白细胞抗原(HLA)位点的组装分型结果,Trio Hicanu能够正确组装出HLA区域的两个亲本的大部分基因位点(如图2所示)。图2. 157个HG002细胞的基因组组装结果(Pacbio HiFi)4、使用Flye,Necat,wtdbg2等主流组装工具和人类正常二倍体细胞系HG002的192个单细胞的三代基因组测序数据(ONT平台,低测序深度)对人类基因组进行高质量组装。研究发现,不同的组装工具对最终组装结果有很大影响,Flye展现出更为适合单细胞ONT三代测序数据的特性,组装出的叠连群的NG50可达1.38Mb,最长叠连群可达11.42Mb,完整的通用单拷贝同源基因基准(Complete BUSCOs)比例超过93%,多项指标都远超另外两个组装工具。同时组装结果能够补齐39个hg38版本的人类参考基因组中未组装出的缺口(gap)区域,其中14个区域在hg38中注释的长度超过50Kb(如图3所示)。图3. 192个HG002细胞以及30个HG002细胞的基因组组装结果(ONT)5、使用Flye,wtdbg2等组装工具和人类正常二倍体细胞系HG002的30个单细胞的三代基因组测序数据(ONT平台,高测序深度)对人类基因组进行高质量组装。为了探究仅使用极少量单细胞的基因组测序数据进行人类基因组组装的极限情况,该研究分别使用1个、10个、20个和30个单细胞尝试进行人类基因组组装,发现仅需要高测序深度的30个单细胞的基因组测序数据(平均基因组覆盖度~41.7%)就能完成叠连群 NG50高达1.34Mb连续性的组装。同时组装结果能够补齐38个hg38版本的人类参考基因组未组装出的gap区域,其中15个区域在hg38注释的长度超过50Kb(如图4所示)。图4. 30个基因组高覆盖度HG002细胞的基因组组装结果(ONT)6、通过对K562细胞系基因组的从头组装,该研究相比于使用原始单细胞基因组三代测序数据能更精准地鉴定出更多的基因组插入事件和复杂结构变异事件。对于K562这样的白血病细胞系,基因组从头组装之后是否能更好地鉴定出基因组结构变异(SV)事件是癌症研究中的重要问题。该研究分别使用hifiasm和Hicanu组装出的主要(primary)叠连群和替代(alternate) 叠连群来进行结构变异鉴定。发现组装后的叠连群比起原始单细胞数据直接比对能更准确地鉴定出基因组插入事件,召回率达到70%以上,精确度达到90%以上。同时,K562中的三对经典融合基因:CDC25A-GRID1、BCR-ABL1和NUP214-XKR3都能被精准地鉴定出来,而CDC25A-GRID1融合在原始单细胞基因组数据直接比对到参考基因组时是无法被发现的 (如图5所示) 。为了进一步验证基因组从头组装后找到的结构变异事件的准确性,该研究挑选了20个(14个插入事件,6个缺失事件)在组装后的叠连群中被鉴定到、但是在单细胞基因组原始测序数据直接比对到参考基因组时没有被鉴定出来的结构变异事件进行了PCR验证,准确率高达80%,证明了组装后的叠连群对结构变异事件的鉴定是精准可靠的(如图6所示)。图5. 组装后叠连群(contig)中结构变异事件检测的准确性 图6. PCR验证基因组结构变异事件的结果综上,为了解决基因组从头组装在实际应用中遇到的细胞遗传异质性和细胞稀缺性的问题,该研究使用优化的SMOOTH-seq技术在两种不同的主流三代测序平台上,采用不同的测序策略(高通量、低深度测序策略(multi-cells with low sequencing depth)和低通量、高深度测序策略(few-cells with high sequencing depth)),使用多种不同组装软件(hifiasm,Hicanu,wtdbg2, Flye,Necat等)、多个评价指标、以及不同组装策略,探讨了利用单细胞测序数据从头组装人类基因组的可行性,并确定了影响组装结果的主要因素,将基因组组装的分辨率提高到单细胞水平(少至30个单细胞)。未来随着单细胞测序技术和基因组组装策略的进一步发展,最终必将实现只用一个单细胞的测序数据就能组装出Mb级连续性的人类参考基因组的梦想。北京大学生命科学学院博士生谢昊伶以及北京大学前沿交叉学科研究院博士生李文为该论文的并列第一作者。北京大学生物医学前沿创新中心汤富酬教授为该论文的通讯作者。该研究项目得到了北大-清华生命科学联合中心、国家自然科学基金委、北京市科技委和北京未来基因诊断高精尖创新中心的支持。论文链接:https://doi.org/10.1093/nar/gkac586汤富酬研究员简介:汤富酬,博士,北京大学BIOPIC/ICG研究员,国家“优青”(2013)、“杰青”(2016)。1998年本科毕业于北京大学,2003年在北大获得细胞生物学博士学位,2004-2010年间在英国剑桥大学Gurdon研究所从事博士后研究, 2010年回到北京大学组建实验室,主要从事人类早期胚胎发育的单细胞功能基因组学研究。在国际上率先系统发展了单细胞功能基因组学研究体系,并利用一系列技术体系对人类早期胚胎发育进行了深入、系统的研究,揭示了人类早期胚胎DNA去甲基化过程的异质性以及其他表观遗传学关键特征,发现了人类早期胚胎中基因表达网络的重要表观遗传学调控机理,为人们提供了一个全面分析人类早期胚胎表观遗传调控网络的研究框架,加深了对人类原始生殖细胞的发育以及表观遗传重编程过程的认识。
  • 基因组所完成鲤鱼基因组初步测定分析
    近日,中国科学院北京基因组研究所运用新一代高通量测序技术以及高性能的生物信息分析,完成了鲤鱼基因组初步测定与分析工作,获得了鲤鱼基因组高覆盖的基因组数据。&ldquo 鲤鱼基因组计划&rdquo 是基因组所与水产生物应用基因组研究中心和黑龙江水产研究所联合开展的研究项目,目前项目进展顺利,是我国鱼类第一个全基因组测序计划,也是世界上第一个鲤科经济鱼类基因组计划。  本项目主要依托于基因组所基因组及生物信息学平台第二代高通量测序仪进行测序分析工作,该平台拥有13台新一代高通量测序仪(SOLiD、Solexa和 454测序仪)、3台3730xl,1台3130xl的测序规模,拥有超过10万亿次/秒的计算能力和大于1000TB的存储。目前已经完成部分454shotgun文库段测序,总体数据已经达到4乘的覆盖度,完成部分组织转录组的工作,为基因组注释提供参考。目前该项目正在加紧进行生物信息学的分析,预计将比计划提前完成鲤鱼基因组框架图的工作。  科学家希望通过鲤鱼基因组测序及其序列分析,为研究养殖鱼类的生长、发育、繁殖、遗传变异、疾病、与环境的相互用(包括抗逆能力)及其遗传改良提供重要的参考甚至指导信息。通过鲤鱼基因组的研究,可以获得与经济性状相关的基因,与疾病的发生及免疫相关的基因等,为鲤鱼的遗传育种提供基础。  随着人和其它主要动植物基因组的破译,模式动物和经济动物基因组计划方兴未艾,越来越多的鱼类被提上议程,世界各国的科学家相继完成了一些鱼类的基因组测序和分析工作,大都以本区域或者本国的鱼类产品为主,例如日本完成的青鳉鱼,挪威和加拿大共同完成的大西洋鲑等。作为我国鱼类中分布最广、品种最多、产量最高的鲤鱼基因组计划的开展,是我国水产科研步入现代科学先进行列的标志性事件,将对我国乃至世界水产业的发展产生重要的影响。
  • 2010:基因组学推动生命科学大步向前
    2010年下旬,河南安阳曹操墓真伪之辩正酣。而一则来自上海的重磅消息更是引发了多方关注。复旦大学现代人类学教育部重点实验室宣布,向全国征集曹姓男性DNA样本,拟用基因组科学的手段验证出土的头骨是否为曹操本人。  一下子,基因组科学成为热门,这一话题&ldquo 落入寻常百姓家&rdquo 。  事实上,伴随着2000年人类基因组框架图和2003年人类基因组完成图的发表,近十年来,DNA测序技术继续高速发展,基因组科学极大地推动了生命科学的发展,并一直受到各国政府和学术组织高度重视。  2010年,基因组科学研究更是取得了重大进展。在美国《科学》杂志评出的当年十大科学进展中,涉及基因组科学的共有3项&mdash &mdash 尼安德特人基因组、外显子组测序、下一世代的基因组学。这也从一个侧面反映了该项科学在2010年的蓬勃发展。  多个重要物种基因组图谱完成  2010年,期待已久的大豆基因组序列终于测通。  当年1月,来自美国农业部、美国能源部联合基因组研究所等单位的研究人员联合在《自然》宣布,该研究团队利用&ldquo 全基因组鸟枪测序法&rdquo 对大豆基因组的11亿个碱基进行测序,公布了第一张豆科植物完整基因组序列图谱。这也是目前利用全基因组鸟枪测序完成的最大植物基因组。  &ldquo 这是大豆研究一个重要的里程碑。&rdquo 美国能源部大豆生物技术国家中心主任Gary Stacey博士认为。  伴随着该图谱的绘制完成,作为世界上主要油料来源的大豆,其基因组科学研究进展又获新突破。  2010年11月,由香港中文大学、华大基因研究院、农业部基因组重点实验室、农业科学研究院等单位宣布,他们对17株野生大豆和14株栽培大豆进行了全基因组&ldquo 重测序&rdquo ,总共发现了630多万个SNP(单核苷酸多态性位点),建立了高密度的分子标记图谱,并作为封面故事刊登于《自然&mdash 遗传学》杂志。  &ldquo 这是世界上首次大规模获得野生和栽培大豆群体基因组数据。&rdquo 华大基因研究院徐讯博士告诉《科学时报》记者。  精确的大豆基因组序列图谱和其全基因组大规模遗传多态性分析,为大豆遗传性状的鉴定提供了便利,而有关其他物种基因组的研究也不遑多让。  最牵动国人神经的基因组图谱绘制,莫过于国宝大熊猫。  由深圳华大基因研究院、中国科学院昆明动物研究所、中国科学院动物研究所、成都大熊猫繁育研究基地和中国保护大熊猫研究中心等单位共同完成的《大熊猫基因组测序和组装》,于1月21日以封面故事形式在国际权威杂志《自然》上发表,并获评2010年中国十大科技进展。  该项研究表明,大熊猫有21对染色体和2.4亿对碱基,包含基因2万多个,并且其基因组仍然具备很高的杂合率。&ldquo 这同时也标志着基于短序列的基因组测序、拼接和组装技术获得了重大突破。&rdquo 徐讯指出。或许,这项研究进展将让人类更早地知道大熊猫的&ldquo 黑眼圈&rdquo 之谜。  此外,在过去的12个月里,先后有包括中国在内的多国研究人员在《自然》《科学》等杂志上报告完成了苹果、青蒿、黄瓜、寄生性金小蜂、蚂蚁、蚜虫、珍珠鸟等多个重要物种的基因组图谱。  今后,基因组测序规模将越来越大。记者从华大基因研究院获知,仅仅2011年,就可能有土豆、绵羊、牦牛、几种鸟类等多项物种的基因组图谱陆续绘制完成。  基因组科学揭示人类变迁  本文开头提到的&ldquo 利用曹姓DNA鉴定曹操头骨&rdquo 并非国人专利。据英国《每日邮报》报道,比利时学者曾对希特勒家族的39位亲属进行DNA检测,来证明希特勒的族裔。  这些工作的开展,借助的正是&ldquo 基因留有祖先深刻烙印&rdquo 这一事实。  而以基因为研究目的的基因组科学,恰恰使描述人类及动物变迁等地理基因组学和人类学研究成为可能。  2010年,世界各地的科研人员在该方面研究均有较大进展,我国科学家的研究也同样呈现多点开花局面。  2009年12月15日,美国《国家科学院院刊》刊载的中国科学院院士、中科院昆明动物研究所研究员张亚平等人的文章称,通过对680份藏族人群线粒体DNA样本分析表明,现代藏族人的绝大部分母系遗传组分,可能追溯至新石器时期以来迁入青藏高原的中国北方人群。  2010年,来自复旦大学的研究人员也对西藏地区居民进行了&ldquo 基因普查&rdquo 。研究人员推测,西藏居民可能最早来自北亚人群,接近蒙古和贝加尔湖区域等地区的北方人群。而国家计划生育研究所和北京基因组研究所的最新研究结果则进一步揭示,藏族先民可能是经横断山脉向上游迁徙,最后抵达青藏高原。  发现还不止于此。同样是2010年,华大基因研究院对我国藏族、汉族人群常染色体EPAS1基因进行分析,研究结果刊于美国《科学》杂志。这项研究初步推测出该基因在青藏高原世居藏族人和平原汉族人中出现分离的年代。  除了在藏族人类学领域取得了重要成就,科学家在2010年仍大有收获。如果佐以社会学的相关研究,基因组科学或将在人类学研究领域获得更大的空间。  另一项关于古人类的基因组学研究更在2010年震惊世界,并同时位列多个不同机构评选的世界十大科学新闻。  2010年5月6日,多家国际著名机构在《科学》杂志上发文表示,研究人员通过DNA两轮靶向序列捕获的测序新技术,实现了分别对3个古代尼安德特人头骨化石片段DNA的测序。  尼安德特人在进化学上是与我们最为接近的亲族。它们出现在大约40万年前,分布遍及欧洲和西亚,并于3万年前灭绝。  研究表明,所获得的基因组序列图占其整个基因组中的60%之多,而现代人具有约1%~4%尼安德特人的基因。  来自马普研究所的Svante Paabo兴奋地表示:&ldquo 尼安德特人基因组序列首个版本的获得,完成了人类长期以来的一个梦想。我们首次发现了将我们与其他所有生物区别开来的基因特征,包括那些在进化过程中距离我们最近的亲族。&rdquo   中国的发现也同样令人振奋。中国科学院院士、中国农业大学教授李宁等成功提取出距今已有9000年历史的猪骨化石DNA,通过测序研究发现,其是经过驯化的家猪,这将中华民族的家畜驯化史推到万年层面。  或许,在今后的基因组科学研究中,有关人类历史学的观点将不断更新。  下一世代测序技术令人翘首  古DNA的成功测序和组装依赖于测序技术的进步。同样,有别于前两代的下一世代测序技术也在2010年的基因组科学研究中&ldquo 小荷已露尖尖角&rdquo ,并入选世界十大科学进展。  下一世代测序技术,是基于纳米孔的单分子读取技术,可以直接读取序列信息,简便快捷 反观之前的两代技术,则需要荧光或化学发光物质的协助, 通过读取整合到DNA链上的光学信号而间接确定。  虽然该测序方法仍有基因组覆盖不完整等缺陷,但并不影响其风生水起。  例如,斯坦福大学的生物工程师Stephen Quake等研究人员在《自然&mdash 生物技术》发文称,他们利用一台新开发的单分子测序仪,对其本人的基因组进行了测序,仅耗时4个星期,试剂费约48000美元。  与此同时,离子激流公司的下一代硅芯片测序仪也获得突破。利用该技术,科学家们于2010年在《科学》杂志上公布了3个低成本的完整人类基因组序列。  就此,英国纳米孔公司总裁发表评论说,这一技术预示了基因测序领域的跳跃变化,或许今后不超过1000美元就可以完成一个基因组测序。  中科院基因组研究所副所长于军告诉《科学时报》记者,基于现在的经验曲线,即使目前广泛运用的第二代测序技术,也可能在一两年内实现&ldquo 千美元基因组&rdquo 的设想 但是对于&ldquo 百美元基因组&rdquo 的设想可能还有一段路要走,急需革命性技术的出现。  然而,我们已然看到了希望。2010年4月6日,日本大阪大学产业科学研究所的川合知二和谷口正辉宣布,新一代DNA测序技术的可行性首次通过验证。  这篇发表在《自然&mdash 纳米技术》上的文章显示,研究者通过电测方法,利用只有1纳米的超短距离电极,成功地测量出构成DNA的1个核酸碱基分子中流动的电流,成功识别了核苷酸。  令人欣喜的是,科学家们并没有&ldquo 喜新厌旧&rdquo 。&ldquo 不同代的测序技术并不互相排斥,尤其是化学原理不同的基本技术,它们在具体应用方面存在功能上的互补性,将长期共存。&rdquo 于军强调。  在测序技术快速发展的2010年,中国科学家同样不甘落后。  据了解,中科院的基因组研究所及半导体所联合开发、具有部分自主知识产权的第二代测序仪预计在今年3月下线,这不但能打破国外测序仪公司的垄断,还将大大降低我国基因组测序的成本。  此外,中科院基因组研究所已和浪潮集团成立了联合实验室,将共同研发第三代基因测序仪,预计第一台样机于2013年问世。  毫无疑问,新一代的测序技术必将对人类的未来生活产生深远影响。  测序分析理念迎来突破  随着新一代测序技术的广泛使用,测序速度将越来越快,成本则大大降低。但是,测序产生的大量数据却会给后期的生物信息分析带来巨大压力。  &ldquo 我认为生物信息分析是在基因组测定过程中最关键的一项技术。&rdquo 华大基因研究院副院长王俊曾这样表示。  不过,就在2010年,基于基因组的生物信息学分析研究也取得了丰硕成果。  当年10月, 中科院基因组研究所、中科院上海生科院植物生理生态研究所等单位在《自然&mdash 遗传学》杂志发表文章。研究人员结合第二代测序技术和自主开发的基因型分析方法,构建了高密度的水稻单体型图谱,并对籼稻品种的14个重要农艺性状进行全基因组关联分析, 确定了这些农艺性状相关的候选基因位点。  同样来自《自然&mdash 遗传学》等杂志的文章还显示,伦敦帝国理工学院的研究人员也通过多次全基因组关联分析,发现了多个包括糖尿病、冠心病在内的与现代热点疾病相关的基因。  事实上,研究人员还表示,对两个毫不相干的人进行&ldquo 全基因组关联分析&rdquo 对比,或许能够得出许多有用的研究信息,但如果辅以家庭遗传关系,那么测序数据会更加准确。  《科学》杂志在2010年3月发表文章称,美国首次为一个四口之家进行了全基因组测序。由于有家庭遗传背景关联,研究人员更精确地锁定了与米勒综合征相关的4个基因。  &ldquo 家庭测序将成为今后基因研究和疾病治疗方面的一个新工具。&rdquo 于军表示。  随着研究的深入,一项世界最大的表观遗传学研究项目也已启动。据了解,华大基因研究院与伦敦国王学院TwinsUK团队将通力合作,对5000对双胞胎的基因组的化学修饰进行深入研究。  除了对测序结果分析方法及样本选择的拓展,2010年,研究人员还对测序理念和方式进行了全新尝试。  2010年5月,刊于《自然&mdash 遗传学》的一篇杂志文章称,科学家们使用基因组定向捕获工具&mdash &mdash 安捷伦的SOLiD,成功捕获了4个患病婴儿的外显子组并测序成功 而华盛顿大学医学院的研究人员也在《科学》上表示,他们利用外显子测序,找到了一种恶性眼疾的关键基因。  毫无疑问,这项备受各方关注、位列世界十大科学进展的技术将会越来越多地应用于更多疾病研究,用来寻找包括癌症在内的多重疾病的致病基因和易感基因。  于军评论说,与全基因组重测序相比,外显子组测序相对经济、高效。它只需针对外显子区域的DNA即可,覆盖度更深、准确性更高。  而公共数据库提供的大量外显子组数据,更是为科学家更好地解释研究结果提供了便利。  显而易见,在未来,基因组测序分析理念将随着测序技术的升级而不断变革。  各方眼中的基因组科学  正如上文所述,在已经过去的2010年里,全世界每个月几乎都有两到三个家族全基因组和外显子组测序被用于检测疾病的基因突变。  由此可以看出,基因组科学离人们的生活越来越近。英国医学研究临床科学中心的分子遗传学家Tim Aitman表示,基因组测序在未来的10年到20年内将更加普及。  在美国,尽管其食品与药品管理局严格控制私人基因组公司的产品,但随着基因组测序费用的不断降低,越来越多的医生开始利用全基因组或外显子组测序技术进行诊断。  基因组科学带给普通患者治愈疾病的希望,那么对科学研究又会有怎样深远的影响?  《自然》杂志对超过1000名生物学家的一项调查显示,几乎所有生物学家都在一定程度上受到人类基因组计划的影响。  绝大部分人认为自身的研究获益于人类基因组的测序, 其中46%的人认为影响巨大 同时,有接近1/3的人几乎天天都使用到基因组 甚至有69%的受访者表示,是人类基因组计划改变了他们的职业和研究方向。  &ldquo 对于像我这样的年轻研究者,没有基因组,很难想象将如何工作。&rdquo 一位受访者如此表示。  除了能够对生命科学领域的研究快速推进,各国政府都在期待基因组科学的进一步发展。  2008年初,一项被称为&ldquo 千人基因组&rdquo 的计划由来自英国桑格研究所、美国国立人类基因组研究所、中国华大基因研究院等多家机构共同启动。据称,科学家们将对全球至少2000个人类个体的基因组进行测序,从而生成一个庞大的、公开的人类基因变异目录,来寻找基因与人类疾病间的秘密关系。  在2010年,非洲也宣布加入基因组革命。同年,世界各国政府和组织纷纷推出了最新的基因组计划,其中就包括基因地理计划、英国10K计划等。此前,中国对人和水稻基因组研究计划的实施也引起世界瞩目。  &ldquo 近来中科院基因组研究所与沙特王国阿卜杜拉阿齐兹国王科技城合作开展的椰枣相关基因组研究计划,也标志着中国基因组科学在国际上的重要地位。&rdquo 于军非常自豪。  过去的一年,基因组科学的发展一日千里。人们有理由相信,在DNA测序技术飞速发展的引领下,中国和世界基因组科学将走向更加辉煌的未来。
  • 江苏引进Illumina HiSeq X10 拟打造基因组大数据库
    生命健康产业是江北新区重点发展的“4+2”主导产业之一,新区的资本运作平台——南京扬子国资投资集团提前布局健康医疗大数据产业,引进了全球最先进的超高通量人类全基因组测序仪Illumina HiSeq X10,将打造“基因测序+大数据中心”信息化平台。昨天,记者前往探访了这套刚投用1个月的“高大上”仪器,这也是江苏省首次引进这一来自美国的基因测序仪。  走进位于江北新区生物医药谷中丹生命产业园B栋19楼的南京高新生物医药精准医学中心,类似医院的白色板房将1500平方米的实验室分割成几个宽敞的独立空间,标本提取、试剂准备、基因测序等全流程都各自在独立的空间完成。最里间的实验室内,5台四四方方、体积约1立方米的仪器一字排开摆在桌上,这就是目前世界上最顶尖的Illumina HiSeq X10人类全基因组测序仪。此次,扬子集团共引进了10台仪器,目前5台已安装完成并投入使用。  记者注意到,每台仪器的左上方是一个电脑显示屏,实时显示着正在处理的各种数据。“基因测序首先要从人体血液或唾液中提取DNA样本,然后放入一个神奇的试剂盒。”工作人员指着显示屏下方的一个深灰色盒子说,这里就是存放试剂的盒子,“盖上盒子,DNA样本与试剂起复杂的化学反应,激光高速拍照成像,再通过精密仪器的测算,基因‘密码’就一个个被显示出来,而一个人的全序列基因就有100G的大数据。”  目前,扬子集团委托南京高新生物医药精准医学中心对这些先进仪器进行前期管理。相关负责人介绍,仪器可用于精准医学领域的科学研究、疾病筛查以及健康人群的基因测序等。5台仪器目前均已启用,首批客户以科研院校、医院和生命健康相关企业为主。  扬子集团相关负责人告诉记者:“上世纪90年代,人类耗资30亿美金,花了10多年,才完成人类基因组30亿个碱基对的精准测序工程。而如今,用这台全球最先进的基因组测序仪,测出一个健康人的全序列基因仅要3天时间,耗费成本仅需1000美金。只要解开这些基因‘密码’,就可以实现健康人的遗传病携带者筛查、遗传性肿瘤风险预测、新生儿基因筛查、药物过敏性分析等。”  日前,国家健康医疗大数据中心与产业园建设试点工程(南京园区)在江北新区正式挂牌。园区将打造“一中心、三基地”,分别是健康医疗大数据存储中心、国际健康服务社区、南京生物医药谷和健康科技产业园。其中,大数据中心将与基因测序相结合,打造以江苏为基地,辐射我国东部地区的健康人基因组大数据库。在不久的将来,“高大上”的基因测序技术将走进更多普通人的生活。
  • 药典委公示微生物全基因组测序技术指导原则标准草案
    11月29日,国家药典委员会官方网站公示了关于微生物全基因组测序技术指导原则标准草案,公示时间为3个月。详情如下:编号:Fg2022-0216号我委拟制定微生物全基因组测序技术指导原则,为确保标准的科学性、合理性和适用性,现将拟制定标准公示征求社会各界意见(详见附件)。公示期自发布之日起3个月。请认真研核,若有异议,请及时来函提交反馈意见,并附相关说明、实验数据和联系方式。相关单位来函需加盖公章,个人来函需本人签名,同时将电子版发送至指定邮箱。联系人:朱冉、陈蕾电话:010-67079581 010-67079566电子邮箱:zhuran@chp.org.cn通信地址:北京市东城区法华南里11号楼 国家药典委员会办公室邮编:100061国家药典委员会2022年11月29日附件:微生物全基因组测序技术指导原则公示稿.pdf微生物全基因组测序技术指导原则起草说明.pdf微生物全基因组测序技术指导原则 本指导原则对全基因组测序技术用于药品微生物控制给予通用性技术规定,为药用原料、辅料、制药用水、中间产品、终产品、包装材料、环境、设备和人员等药品全生命周期质量控制中微生物精准鉴定、溯源分析和风险识别等提供指导。微生物全基因组测序(Microbial whole-genome sequencing)是指利用高通量测序技术对微生物个体的整个基因组序列进行测定,获取遗传信息的过程。高通量测序技术主要包括:边合成边测序、半导体测序、DNA (Deoxyribonucleic acid, DNA)纳米球测序、连接酶测序等第二代测序技术(又称下一代测序,Next Generation Sequencing)和基于单分子测序(Single Molecule Sequencing)的第三代测序技术。第二代测序技术的基本原理主要是利用物理或酶切的方法将待测样本的基因组打断到1kb以内的DNA片段,在其两端连接特定接头序列后,固定于测序介质中,通过核酸扩增技术,如聚合酶链式反应、等温扩增技术等将待测样本放大收集成库,然后进行平行循环测序。当需要获得微生物样本基因组精细图、完成图时,可采用能够实现大片段测序读长的第三代测序技术。第三代测序技术的基本原理主要有:采用荧光标记脱氧核糖核苷酸,用光学镜头实时记录DNA合成过程中新引入脱氧核糖核苷酸的荧光变化,通过不断地重复合成、成像、淬灭等过程进行单分子荧光测序;或采用电泳技术驱动单个分子逐一通过纳米孔,通过检测不同碱基的电信号,进行单分子纳米孔测序。本指导原则以目前发展成熟、应用较为广泛的第二代测序技术为主要技术手段,对实验室的一般要求、全基因组测序的主要技术指标、技术流程、影响测序结果的主要因素、方法学考察和应用指导等方面进行通用性技术规定。一、实验室的一般要求1.实验场地及人员 开展微生物全基因组测序的实验环境应具备分子生物学实验室的基本条件,并符合相应级别的生物安全等级要求。实验区域一般应设置:试剂储存和准备区、样本制备区、扩增区、核酸测序及分析区,各个区域在物理空间上相互独立,并标识明确;另外,根据使用仪器的功能,相关区域可适当合并。应单向流进入各工作区域,按照试剂储存和准备区、样本制备区、扩增区、核酸测序及分析区的先后顺序进行实验操作。实验区域应定期进行清洁消毒。实验人员应具备分子生物学和微生物学专业背景,或经专业培训。2. 实验仪器实验室一般应具备高通量核酸测序仪、核酸扩增仪、片段分析仪、核酸定量仪、生物安全柜、混匀器、高速离心机、水浴或加热模块、冰箱、微量加样器等分子生物学检验常用仪器设备。影响测序质量的仪器设备应定期进行性能确认和维护,以保证仪器处于良好的运行状态。3. 实验试剂除另有规定外,所有实验使用的试剂均应不含DNA和DNA降解酶,宜大体积配制、小体积分装,并保证试剂的无菌性,必要时可采用高压灭菌或0.22 μm孔径滤膜过滤除菌。用于核酸扩增的相关试剂应避免反复冻融。关键试剂应制定质量控制程序,以确保试剂质量。采用适宜的商品化试剂或试剂盒进行核酸提取、文库构建和核酸测序时,应按照说明书操作,并符合说明书中的质量控制要求。二、全基因组测序的主要技术指标1. 测序通量测序通量是指单次测序可获得序列信息的基因片段数量或可测定的DNA (以碱基表示)数量。核酸测序仪器的测序通量直接关系到测序输出的数据量。微生物的基因组DNA较小,但不同种属之间变化幅度较大,如:葡萄球菌属、埃希菌属、假单胞菌属、沙门菌属等常见细菌的基因组DNA大小约3~6 Mbp;酵母菌的基因组DNA大小约12~16 Mbp;典型致病霉菌的基因组DNA通常大于30 Mbp。在进行微生物全基因组测序时,应根据待测样本基因组大小、样本数量等实际需求,选择适宜测序通量的测序仪器和配套试剂,保证测序结果的准确性。2. 碱基识别质量碱基识别质量是衡量碱基正确识别的概率(通常以数字值直接表示)。碱基识别质量与碱基识别错误率之间的关系为:Q=-10lg P(Q为碱基识别质量,P为碱基识别错误率)。Q=20代表碱基识别正确率≥99%;Q=30代表碱基识别正确率≥99.9%。高通量测序仪器应能自动判读碱基识别质量。三、 技术流程 全基因组测序的一般流程包括:测序样本的获得、测序文库的构建、全基因组测序和数据分析等。1. 测序样本的获得 全基因组测序主要用于待测微生物的核酸序列测定。待测微生物应进行分离纯化,以获得生长状态稳定的纯培养物,可参考“微生物鉴定指导原则”(通则9204)。分离纯化后的纯培养物应采用适宜的方法,可参考“细菌DNA 特征序列鉴定法”(通则1021),获得浓度、纯度和完整性良好的基因组测序样本。2. 测序文库的构建 测序文库是指将基因组样本随机打断后,在其两端加入特定接头序列(adapters),并经过大规模平行扩增,形成的DNA片段集合。测序文库中样本的核酸浓度、纯度、片段的大小分布等因素,都会影响测序输出的数据量和碱基识别质量。应对构建的测序文库进行纯化、定量、均一化处理,使文库中各待测样本的浓度保持均等;必要时,采用凝胶电泳或毛细管电泳等方法检测文库的质量。3. 全基因组测序 将测序文库中的待测样本固定在测序介质中,通过特定接头序列,将测序引物与待测核酸序列进行结合。加入底物脱氧核糖核苷酸,在DNA聚合酶作用下,使结合在待测核酸序列上的测序引物进行延伸,并利用信号收集器采集信号,包括但不限于光信号、电信号或离子信号等,通过信号分析软件对采集到的信号进行分析,获得待测样本的碱基序列信息,以及物理通量、有效通量、测序读长、测序深度、碱基识别质量等参数。4. 数据分析 采用适宜的序列分析方法和软件,对得到的核酸测序下机数据进行序列拼接,最终获得待测微生物样本的全基因组序列信息。四、 影响测序结果的主要因素 1. 待测样本核酸质量 应采用适宜的方法提取待测样本的基因组DNA,并保证提取的基因组DNA 在适宜的浓度和纯度范围内,无蛋白、多糖等污染。一般情况下,核酸浓度宜不低于10 ng/μl,A260/A280比值宜在1.8~2.0之间。核酸浓度较低,或发生降解等导致质量不佳的情况,可导致基因组DNA片段化不完全,影响文库质量,进而影响测序深度和测序结果。2. 测序文库质量 应对测序文库进行质量控制。当测序文库中包含多个待测样本时,不同样本的核酸浓度应基本一致,保证测序后的输出数据量均匀稳定。推荐采用荧光分析法定量检测不同样本的基因组DNA浓度,测序文库制备完成后,采用适宜的稀释倍数,确定上机测序文库的浓度。3. 测序深度 测序深度是指待测样本中某个指定核苷酸被检测的次数。一般高通量测序仪器输出的测序深度指待测样本基因组序列中核苷酸被检测次数的平均值。测序深度与基因组覆盖率之间是正相关,测序深度越大,重复测序次数越多,待测样本基因组覆盖率越大,测序带来的错误率也会随着测序深度的提高而降低。一般而言,基因组测序深度应不少于50倍;建立全基因组序列参考数据库时,测序深度应不少于100倍。4. 碱基识别质量 碱基识别质量是评价测序结果准确率的重要因素。根据核酸测序仪器的正常运行参数,单个样本的核酸测序的结果应保证Q20≥80%或Q30≥70%;也即测序数据中80%及以上的碱基正确率大于99%,或者70%及以上的碱基正确率大于99.9%。五、 方法学考察 除考察影响测序结果的主要因素,包括:待测样本核酸质量、测序文库质量、测序深度、碱基识别质量等,还应进行相应的分析方法学考察;可在测序过程中增加已知序列的参考品,评估测序仪器性能,以保证全基因组测序结果的准确性和重现性。六、 应用指导 微生物全基因组序列能够提供全面丰富的遗传信息,通过全基因组序列的比对分析,可以实现待测微生物,包括:标准菌株、模式菌株、质控菌株、生产检定用菌(毒)种、益生菌等,以及从药用原料、辅料、制药用水、中间产品、终产品、包装材料和环境等中检出污染微生物等的精准鉴定、溯源分析以及风险评估等。精准鉴定当基于常规生化筛选、表型和基因型鉴定方法无法获得待测微生物样本准确的鉴定信息时,可利用全基因组测序技术获得更加精准的鉴定结果或遗传变异信息等。全基因组序列分析还对研究微生物的系统进化具有重要价值,有助于新种或亚种的发现和遗传分类单元的系统发育解析,提高对新种或亚种的生物学认识。溯源分析当出现无菌试验结果阳性、培养基灌装等模拟工艺失败、生产过程严重异常事件时,如常规基因型鉴定方法无法提供足够的分辨力,可在获得菌种鉴定信息的基础上,采用全基因组测序技术对目标微生物以及相关环节中分离的同种微生物进行全基因组序列的同源性分析,结合污染调查信息,实现目标微生物的溯源分析风险评估全基因组序列包含了微生物菌株全部的遗传信息,基于全基因组数据分析还能够用于毒力、耐药以及其他基因的功能分析与表型预测,为开展微生物的风险评估分析提供参考依据。起草单位:上海市食品药品检验研究院联系电话:1800677839复核单位:中国食品药品检定研究院、天津市药品检定研究院、辽宁省药品检验检测院参与单位:浙江现代生物技术发展中心、中国工业微生物菌种保藏中心
  • 英国基因组计划完成:目标为5500万公民提供基因组医疗服务!
    pstrong  医疗保健的下一次重大转型很可能始于基因组计划!/strong/pp style="text-align: justify text-indent: 2em "早在2013年夏天,Genomics England就开始为100,000 基因组计划项目进行紧锣密鼓的筹备。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/6918dc05-7bd5-49a3-b542-b9f4b72542e2.jpg" title="微信图片_20190201134555.jpg" alt="微信图片_20190201134555.jpg" width="532" height="266" style="width: 532px height: 266px "//pp  该试点项目在启动时的目标可谓是雄心勃勃:完成100,000人全基因组序列的患者测序。英格兰国家卫生服务局(NHS)招募的参与者获取的基因序列将用于建立罕见病和癌症的研究队列,同时未来还将使用这些数据为诊断提供信息并指导临床护理。/pp  当时的总理大卫卡梅伦是这次项目启动背后的强大后盾,他的长子伊万患有罕见的遗传病大田原综合症,这种病的体征是无数次严重的癫痫发作。不幸的是,2009年伊万在他六岁时死于此病。/pp  2017年BIO会议的一个人头攒动的大厅里,卡梅伦这样表示:“这让我觉得我们可以做更多的工作来帮助研究遗传学和基因组学的药物,所以我通过了100,000人基因组计划项目,第一个测序的基因组至今仍旧放在我的桌子上,我认为可以将基因组数据库与我们的国家卫生服务部门结合起来。”/pp  strong这项庞大的基因组计划绝不仅仅是一个梦想,它的最终目的旨在为所有5500万公民提供基因组医疗服务。/strong/pp  Genomics England首席商务官Joanne Hackett表示:“由于当时全基因组测序的成本非常高,所以并没有人大规模地做这件事。“而就在其成立一年多后,Genomics England宣布与测序巨头Illumina合作,继而耗资3亿英镑,建成了剑桥外的Wellcome Trust Sanger研究所Genome校区的测序中心。/pp  根据Illumina副总裁兼首席科学家David Bentley的说法,英国基因组学在项目结构方面的远见卓识绝对不容小觑,而他们认为这便是医学遗传学的未来。/pp  尽管这项任务面临庞大的挑战,但这一切最终还是得到了回报。去年10月,NHS宣布将从该试点过渡,并将开始为任何疑似患有罕见病和某些癌症的人提供全基因组测序,而迄今为止最大规模的基因组医学服务将部署于世界上每一个角落。/pp  就在去年12月初,英格兰基因组计划领导人宣布:已完成在2018年底测序100,000个基因组的宏伟目标,而要知道,截止去年2月他们才刚刚对50,000个基因组进行了测序,这无疑是一个巨大飞跃。/pp  目前测序中心的试验步伐依旧迅速,现在每个月的检测速度在6,000到7,000个全基因组之间。而如果服务需求增加,数量上仍有足够的空间上涨,因为其测序操作已从目前正在使用的HiSeq仪器转换到Illumina新的,更快的测序平台NovaSeq。/pp  strong临床基因组的挑战/strong/pp  虽然100,000基因组计划的第一个任务是帮助开发通过NHS提供基因组医学的工作模型,但它还包括运行一个平行的研究机构来利用测序数据供学术和商业实体使用,数据和相关发现将使NHS能够不断改善其对患者的服务。/pp  strong如何实现研究到临床护理的转化/strong/pp  该组织与该项目的NHS关键联络人福勒表示:“我作为一名区域流行病学家目前正在调查传染病的暴发,而100,000基因组项目能够促进医疗保健转型,我坚信,而这势必会将研究和临床实践紧密结合在一起。”/pp  该计划的目的是将罕见病和癌症序列分离为50%和50%。但是,在开始收集癌症样本后不久,福勒和他的团队发现,对于大多数研究环境而言依靠FFPE组织样本是无效的。虽然FFPE样本长期被临床医生和研究人员使用,在存储人体组织有优势,通常有助于比较在不同时间采集的样本以跟踪疾病的进展。但是这些样品的测序通常是针对少数基因的,这些活动通常不受组织固定过程中已知的DNA降解和片段化的影响,而这时新鲜冷冻变成了唯一可行的选择。/pp  放弃FFPE组织样本的决定使该项目的癌症患者招募工作停滞了大约一年,最终分离的结果为60%的罕见疾病基因组和40%的癌症基因组。英国基因组学研究人员正在试验不同的冷冻方法,以确定它是否影响测序质量以及样品使用不同的运输方法保持其完整性的时间。/pp  福勒表示:“我不确定具体的数字是怎样的,但我们每周收到400份新冷冻样品,而这种数量是我们始料未及的。”/pp  strong教育和培训/strong/pp  NHS在接下来的18个月内会让所有国家医院信托基金的工作人员得到培训,计划在10年内培养出一支训练有素的基因组医学工作者队伍。/pp  Chandratillake表示:雄心壮志很重要,100,000人测序看似是一座不可攀登的山峰,而我们现在已经登上山顶。现在我们要攀登一座更大的山。/pp  Pope表示:由于NHS的目的是继续从基因组医学服务的患者那里收集研究数据,患者必须经过一个知情同意过程。因此,临床医生需要与患者就临床决策达成共识。”/pp  对于Chandratillake来说,全国范围内的基因组医学也是NHS的一个具体例子,它关注的是跨越种族,区域和社会经济方面的护理公平。通过100,000个基因组计划,NHS跟踪了患者招募和人口覆盖情况。/pp  然而,除了护理公平,除了迄今为止最大规模的基因组医学部署,NHS和Genomics England的努力也正在迈入一个新的领域。/pp  也许医疗保健领域的数字革命才刚刚开始。/pp  strong参考文献:/strong/pp  Genomic Medicine for the Masses England’s National Health Service launches genomic medicine service for all 55 million citizens/p
  • 英研制出“U盘”基因组测序仪 插入电脑即可完成测序
    据美国物理学家组织网近日报道,英国牛津纳米孔技术公司在佛罗里达州基因组生物学与技术会议上宣布了一个爆炸性消息,即推出GridION和MinION 两款基于新一代DNA测序技术的便携式基因组测序仪,后者仅有U盘大小,可插入电脑USB端口完成测序,价格仅900美元。  两个仪器都是基于纳米孔测序技术,采用一种特殊的蛋白在薄膜结构上打出纳米级小洞或小孔,在膜的一侧施加电压将单条DNA链(带负电)拉进纳米孔。 当DNA的化学碱基通过时,引起细微的电流变化,测量这种变化即可识别出不同的碱基(T、C、G和A)组成顺序,然后通过电脑将每一部分的结果编织在一起 呈现。人类基因组包含大约30亿个碱基,DNA测序就是将这些碱基的顺序识读出来。  该消息令投资者大为振奋,而对于牛津纳米孔技术公司的竞争对手美国Illumina公司和生命科技公司来说犹如一记重创。生命科技公司于今 年初推出的最新台式离子质子序列发生器测序需要24小时,价格约15万美元。相比之下,如果将20个单元连接在一起,GridION可在15分钟内完成整 个人类基因组测序,价格为5000美元 如U盘大小、即插即用的MinION可直接插入笔记本电脑USB端口测序。  无疑,新测序仪将带来DNA测序更为广泛的应用,允许非专业科学家提取DNA信息,即使在野外研究人员也可将样品置于仪器中,将其插入载有 相关软件的笔记本电脑后,几乎片刻就会得到基因组样品的信息,以确定植物或动物的遗传性状。种子研究公司可使用它来分析田间作物,如查查是否有外源混合 肉类检查员可拿它测试不同类型的微生物 生物学家可以用它来寻找几代人基因中的微小变化。  然而,在这些愿景中也有小小瑕疵:目前这种设备有4%的错误率 MinION是一次性的,产量不如GridION高 尽管该公司称,在今年 某个时候发售相关产品之前,价格会大幅下降,但对于许多应用者来说还是有些贵。
  • 北京基因组所开发国际领先基因组序列变异库
    p  近日,中国科学院北京基因组研究所生命与健康大数据中心开发了国际领先、国内首个规模最大的基因组序列变异库——GVM(Genome Variation Map)。该库基于人工审编整合了多个物种的大量基因组序列单核苷酸多态位点和小的插入与删除变异信息,是基因组序列变异信息汇交、管理与检索的资源库。研究成果以Genome Variation Map: a data repository of genome variations in BIG Data Center为题,在线发表在Nucleic Acids Research上。/pp  基因组序列变异是基因组DNA水平发生的可遗传变异,是生物多样性的基础,是物种进化、分子育种、优良性状选育、人类疾病等研究最为宝贵的遗传资源。近年来,随着测序技术发展,越来越多物种的基因组被精细解析 物种内遗传多态变异位点也通过大规模的群体测序获得,并广泛应用于复杂性状的关联解析。国际两大数据中心NCBI和EBI旗下的dbSNP和EVA是主要的基因组序列变异资源库。今年5月,NCBI宣布自2017年9月1日起,dbSNP和dbVar两大数据库停止接收非人物种的SNP提交信息,自2017年11月1日起停止非人物种的SNP在线查询与提交。这对基于序列变异研究的科研人员造成了不便。/pp  为此,GVM作为生命与健康大数据中心的核心数据资源库之一,搜集了以二代测序和芯片技术为主要检测手段的全基因组序列变异检测的原始数据,通过标准化的变异位点鉴定与注释,获得包括人、畜牧动物、主要农作物和其他资源物种在内的19个物种共约50亿的变异信息,8,884个个体的基因型数据,并通过人工审编收录了13,262条高质量非人物种的基因型与表型知识数据,整合了180,911条人变异位点的知识信息。其中,大熊猫、虎鲸、毛竹、橡胶、小麦是GVM数据库所特有的物种。/pp  GVM开发了友好的数据提交、浏览、搜索和可视化功能。用户可通过基因组位置、变异影响、基因名称和基因功能等检索变异位点信息,并下载数据 可通过ftp服务下载VCF和FASTA文件格式的全基因变异信息 可在线或离线方式向系统提交数据,这方便了科研人员的数据共享。/pp  研究工作得到了中科院战略性先导科技专项、中科院国际大科学计划、国家科技攻关计划、国家高技术研究发展计划(863计划)、国家自然基金项目、中科院百人计划、中科院青年创新促进会等的资助。/pp论文标题:Genome Variation Map: a data repository of genome variations in BIG Data Center/pp style="text-align: center "img title="W020171027507396378092.png" src="http://img1.17img.cn/17img/images/201710/insimg/a8ee4d25-d8cb-4e86-a1de-06e90d767ff5.jpg"//pp style="text-align: center "strongGVM数据库物种变异信息统计表/strong/p
  • 关于病原体宏基因组高通量测序产品的几点考虑
    感染性疾病是由病原微生物(细菌、病毒、真菌、寄生虫等)引起的疾病的统称。据统计感染性疾病死因占全部死因的25%以上,是当今世界严重威胁人类健康的重大疾病。长期以来感染性疾病的诊断和疗效监测一直依靠形态学、免疫学、分子生物学以及病原体分离培养等方法,这些方法各有优缺点,在感染性疾病的辅助诊断中发挥着重要作用。近年来新兴的病原体宏基因组高通量测序(metagenomic next-generation sequencing,mNGS)技术,是指采用高通量测序技术对特定临床样本中所有核酸进行测序,并通过生物信息学分析判断样本中是否存在病原体的检测方法。与传统基于分离培养的病原体检测技术相比,该技术从理论上讲能够无偏倚的检测各类微生物(如:病毒、细菌、真菌、寄生虫等),包括难以培养的病原体以及新发病原体。mNGS技术是一个开放的分析和诊断系统,对于mNGS技术所检测的病原体数量未有明确规定,根据不完全统计,开展相关检测服务的机构已纳入的病原体有近万种,包括细菌、病毒、真菌和寄生虫等,为疑难危重症及罕见病原体感染的诊断提供了有效的技术手段。在特定的临床应用场景下,具有临床意义。针对mNGS的临床应用,目前已有多个临床专家共识。结合该技术的特点,我中心对相关产品的临床应用、设计开发、验证确认等方面进行了专题研究,现将当前的几点考虑总结如下。一、关于产品预期临床使用场景基于mNGS技术的产品与常规的病原体检测产品相比,具有检测过程较为复杂、易受到人源基因的干扰、检测时间较长、结果解读专业要求高、检测成本高等特点,一般用于传统检验方法未能给出明确病原学结果从而影响患者准确诊疗的感染性疾病、新发突发传染病、危急重症或排除其他发热疾病。推荐临床通过拟诊先行传统微生物检验及常规分子生物学产品检测常见病原体,不盲目使用mNGS技术。在必要或紧急情况下,如危急重症、群体性感染事件等,可考虑与常规方法同步进行检测。对常规微生物学检查容易明确的病原体不建议进行mNGS检测。从临床角度,mNGS结果不能单独作为病原学确诊或排除的证据。适用场景举例如下:(一)患者表现为发热或发热症候群,病因未明确(符合不明原因发热定义),考虑感染或不除外感染,但规范性经验抗感染治疗无效,在应用常规技术检测的基础上,开展mNGS产品检测。(二)各种原因导致患者急危重症表现,不除外感染所致,或考虑继发或并发危及生命的严重感染,在常规检测的基础上,开展mNGS产品检测。(三)免疫受损患者疑似继发感染,常规病原学检查未能明确致病原或/和规范性经验抗感染治疗无效,建议进一步完善常规病原学检测的同时,或在其基础上,开展mNGS产品检测。(四)疑似局部感染,病原学诊断未明确、不及时处理则后果严重时,在常规检测的基础上,开展mNGS产品检测。(五)高度疑似感染性疾病,但病原学诊断未明确且常规抗感染治疗无效,建议进一步完善常规病原学检测、处理原发感染灶,调整经验抗微生物治疗方案的同时开展mNGS检测。(六)慢性感染,或慢性疾病不除外感染,尤其是二者临床表现相似、难以鉴别时,病情严重或抗感染治疗疗效不佳需要明确病因,建议在完善常规检测、调整经验治疗的同时开展mNGS产品检测。(七)其他患者疑似特殊病原体感染或从相关流行病学角度考虑需要进行mNGS产品检测。二、关于产品的检测样本及适应证mNGS产品在目前的临床应用研究中涉及多种适应证,如:中枢神经系统感染、血流感染、局灶性感染、呼吸道感染、感染性腹泻等,对于具有相关临床症状的病例,应在按照现有诊疗流程进行标准化诊疗的基础上开展检测。针对患者感染部位不同,采集的样本类型也不同,产品适用的样本类型主要包括:静脉血、脑脊液、痰液、肺泡灌洗液、胸腔积液、腹水、组织、局灶穿刺物、粪便等多种类型。对于样本的采集,应注意以下两个方面,一是,对于无菌体液,如静脉血、脑脊液、胸腔积液、腹水等,需按照严格的无菌操作采集样本,采集的样本须置于无菌容器内;二是,对于有菌部位的样本,如痰液、肺泡灌洗液、咽拭子等,应标明样本的采集部位,在样本采集过程中应尽量避免引入该部位的正常菌群,以免干扰后续检测结果。采集的样本应尽量选取感染部位的体液或组织,可提高检测结果的可信度。若感染部位的样本采集难度较大,可选择外周血液样本,但有可能会降低检测结果的准确性。产品适用的样本类型推荐优先选择无菌采集的样本。关于不同适应证适用的样本类型举例见表1。表1.产品适应证与适用的样本类型举例三、关于产品检测病原体种类范围mNGS产品检测原理为对临床样本中存在的病原体核酸进行无偏倚的检测,从产品检测的技术角度考虑,除新发病原体外,产品的检测范围不应局限为某一种或某几种常见病原微生物,应为产品适应证、适用样本中所有可报告的病原微生物。产品所检测的病原微生物受几个方面的影响,一是产品配套使用的参考数据库及生信分析过程涵盖的病原体种类,如数据库中未涵盖某种病原体基因组参考序列,则该类病原体不在该产品的检测范围之内;二是检测样本类型、核酸提取等会直接影响产品病原体的检测种类,不同的样本类型可能检出的病原体会存在差别,如脑脊液样本检出的病原体主要以中枢神经系统感染的病原体为主,而粪便样本检出病原体主要为消化系统感染的病原体。不同的核酸提取方式对病原体的检出种类也会产生影响,如核酸提取过程未考虑破壁,则产品可能不适用于具有厚细胞壁的病原体检测;三是产品检测的目标物是否包括不同类型的核酸靶标,如产品检测的靶标仅为DNA,则RNA病毒不在该产品的检测范围之内。相关产品的申请人应依据产品设计、适用的样本类型、适应证等多个方面综合考虑产品预期用途,确定合理的病原体检测范围。四、关于产品配套使用的数据库mNGS产品检测结果,除了产生可用于比对的微生物短片段序列外,还存在大量人源、环境微生物、试剂含有的微生物等背景核酸序列,必须依靠生物信息学手段对其进行筛选、过滤、比对,最终给出微生物物种注释。结果分析过程中,数据库的使用是必需的,而且是影响mNGS产品检测结果准确性的重要因素。目前相关产品在选择配套使用的数据库时,一般会存在两种情况,一种为直接选择公共数据库,如:NCBI nr/nt database、NCBI RefSeq database等;另一种为自建数据库,对公开数据库中基因组序列进行挑选、整理、分类,然后通过程序软件将收集到的基因组序列整理成适用于本产品的微生物及人源序列比对数据库。针对成熟的产品,建议根据产品特点及临床需要,使用临床应用级的自建数据库。在数据库的构建、使用和管理方面应注意以下问题:(一)需要考虑数据库的全面性以及纳入物种在分类学上的代表性,对于同一种微生物,往往存在具有遗传差异的不同亚型或株,所以在选择基因组时,应考虑到微生物的遗传多样性,尽可能选取具有高度代表性的不同亚型或株的高质量基因组。(二)无论所选择的参考基因组的来源如何,申请人需要考虑其注释的准确性及序列的完整性,防止注释错误、命名错误或者代表性不足临床相关微生物列入库。(三)申请人应在有必要的基础上,对纳入库中的微生物的潜在的临床意义进行注释,让结果解读人员对检测的微生物有基本的认识和判断。(四)由于病原体在自然状态下是不断发生进化变异的,致病性也是动态变化的,所以需要及时(或定期)对参考数据库中的基因组信息及临床致病证据进行更新。(五)当数据库发生可能影响病原体判读结果的更新后,应对更新后的数据库进行验证与确认。(六)应构建全面的人源基因序列数据库,并评估最新版国际人类参考基因组和用于构建人源基因序列数据库所选择的参考基因组差异,进而评价人源基因序列数据库的代表性,人源基因序列数据库用于在生信分析过程中过滤人源基因数据。(七)mNGS检测产品检测过程中一些样本中会存在背景菌序列、环境微生物及实验室残留微生物,这些基因序列可造成测序污染,导致假阳性结果产生;另外,一些样本(例如呼吸道样本)会存在定植微生物,因此,针对产品需要构建检测背景库用于过滤污染序列、区分背景病原体和致病性病原体。五、关于测序数据要求人体不同的样本类型单位体积含有的细胞数量有巨大的差异,最终的测序数据由微生物序列和人源基因组序列组成,不同的人源细胞含量、病原微生物感染的类型和病原体含量的高低都会影响测序数据中目标微生物序列占比,如组织样本的人源细胞含量比较高,测序所得的序列数据中相应微生物的占比可能较少,因此,mNGS产品在不同的样本类型中,产品分析灵敏度会存在差异。该类产品可通过增加测序数据量来提高待检出的微生物数据量,或通过富集微生物含量以提升微生物序列的占比,从而提高微生物的检出率。一般而言,在一定范围内随着测序数据量的增加,产品的灵敏度会有所提升。因此,为了保证产品具有满足临床要求的灵敏度,针对某一样本类型,应保证一定的测序数据量。产品在设计上,一般分为去除宿主人源基因与未去除宿主人源基因两种设计,去除宿主人源基因后,产品产生的相应数据量会大大减少。在缺乏有效的人源宿主去除步骤的情况下,单个样本检测所需的数据量应充分评估并设立合理的指标要求。测序模式一般为单端测序和双端测序,双端测序所花费的经济成本及时间均高于单端测序,如产品设计选择单端测序,为确保序列比对的准确性,避免因同源错配导致的序列比对错误,可参考相关专家共识的要求,如测序序列单端读长当前建议不少于50bp。为了保证数据分析的可靠性,产品检测的下机数据应有一定的质量要求。下机数据经拆分后即得到每个样本的测序数据,需要进行数据质量过滤,包括过滤测序接头、低质量序列、低复杂度序列、重复序列等,将获得的高质量读长序列作为微生物鉴定的输入数据。一般而言,数据应达到以下指标:Q30碱基数量占比80%、接头污染比例不超过1%、有效序列长度不小于50bp、数据的有效比对率应大于70%等。六、关于产品阳性判断值的研究产品阳性判断值的研究,主要是为了区分真阳性、真阴性,以及判断实验过程中污染的微生物等。基于mNGS技术的产品,阳性判断值应包含度量标准,例如检测结果中能够比对到数据库中的微生物的序列数、对某种微生物的基因组覆盖度等,可通过ROC曲线分析的方法对产品的阳性判断值进行研究。在阳性判断值研究过程中应注意,胞内菌和厚壁微生物检出率低,因此即使在检测报告中某种/某些胞内菌/厚壁菌检出序列数不高,也要考虑其为致病病原体的可能。七、关于产品检测结果的报告用于临床辅助诊断的mNGS报告应包括测序总序列数、检测病原微生物列表、检出病原特异序列数量、检测病原范围、覆盖度、测序深度、检测方法及检测技术说明。需要注意的是,检测结果仅代表临床样本中检出或未检出某微生物的核酸片段,不能明确该物种与感染的关系,即使阴性结果也需结合临床表现及其他检查结果进行综合判断。对于胞内菌和厚壁微生物的检测,因技术原因存在一定的偏倚,如对于胞内感染菌因释放到体液中含量较少而导致检测敏感性偏低,对具有较厚细胞壁的病原微生物如真菌感染,可能由于核酸提取效率较低,相对检出率低,导致临床检出率和敏感性较低。因此即使在检测结果中某种胞内菌/厚壁菌检出序列数不高,也要考虑其为致病病原体的可能。mNGS信息量大,临床应用过程中,检验机构依据检测结果出具检验报告时,有些情况下不可能在结果中列举出所有检测到的病原体,对于罕见病原体、胞内菌等,可能因检出序列数少、微生物丰度低,在报告中未能列举,如果临床有疑似特殊病原体的感染,应该可以追溯原始数据库进行查询。八、关于产品验证与确认的考虑基于mNGS技术的产品,因其预期用途涵盖的病原体的种类非常广,产品验证与临床试验应对检测范围内的病原体进行有充分覆盖度、有充分代表性的性能评价。产品临床试验在入组人群上,应与产品临床适用人群一致。在对比方法选择上,应选择临床参考方法作为对比方法,临床参考方法应综合病原体分离培养、患者的影像学检查结果、基于宿主反应的检测结果等。同时,由mNGS获得致病病原体后,临床上会针对病原体进行精准治疗,治疗后患者的临床表现和治疗效果的随访结果也可以作为临床试验对比方法的证据。临床试验过程中,应关注试验体外诊断试剂对一些对于胞内感染菌、具有较厚细胞壁的病原微生物等的临床性能研究。参考文献:1.宏基因组分析和诊断技术在急危重症感染应用的专家共识[J].中华急诊医学杂志,2019(02):151-155.2.宏基因组学测序技术在中重症感染中的临床应用专家共识(第一版)[J].中华危重病急救医学,2020,32(05):531-536.3.《中华传染病杂志》编辑委员会.中国宏基因组学第二代测序技术检测感染病原体的临床应用专家共识[J].中华传染病杂志,2020,38(11):681-689.4.中华医学会检验医学分会.高通量宏基因组测序技术检测病原微生物的临床应用规范化专家共识[J].中华检验医学杂志,2020,43(12):1181-1195.5.宏基因组高通量测序技术应用于感染性疾病病原检测中国专家共识[J].中华检验医学杂志,2021,44(02):107-120.6.中华医学会检验医学分会.宏基因组测序病原微生物检测生物信息学分析规范化管理专家共识[J].中华检验医学杂志,2021,44(09):799-807.7.Charles Y. Chiu and Steven A. Miller Clinical metagenomics Nature Reviews Genetics 2019,20, 341-355.8.fda. Infectious Disease Next Generation Sequencing Based Diagnostic Devices:Microbial Identification and Detection of Antimicrobial Resistance and Virulence Markers(Draft)
  • 浙大李兰娟院士国际期刊连发两项基因组测序成果
    p  浙江大学的李兰娟(Lanjuan Li)院士是我国传染病学领域杰出的领军人物,其从事传染病临床、科研和教学工作已有40多年。她不仅是我国人工肝的开拓者,创建的人工肝支持系统治疗重型肝炎曾获得重大突破。还首次提出了感染微生态学理论,从微生态角度来审视感染的发生、发展和结局,为感染防治提供了崭新的思路。/pp  近日,李兰娟院士课题组宣布她们不仅对分离自脑脊液的耐药山羊葡萄球菌进行了全基因组测序,还首次获得了从酵母中提取出的面包乳杆菌的基因组序列草图。两篇研究论文发布在《Genome Announc》杂志上。/pp  Whole-Genome Sequence of Multidrug-Resistant Staphylococcus caprae Strain 9557, Isolated from Cerebrospinal Fluid/pp  山羊葡萄球菌(Staphylococcus caprae)是凝固酶阴性葡萄球菌(CNS)中的一员,最早是从山羊分离出来,已被公认为是一种重要的医院病原菌。山羊葡萄球菌主要与骨及关节感染有关。此外,它也可以引起侵入性感染,包括尿道感染、菌血症、心内膜炎、脑膜炎和眼内炎。但目前对于促成其毒力及存活的基因却知之甚少。/pp  在这篇文章中,研究人员从脑脊髓液样本中分离出了多药耐药山羊葡萄球菌菌株9557,对其进行全基因组测序解析了这种细菌致病及耐药的遗传基础。组装基因组的大小达2,747,651 bp,GC含量达33.34%,获得了249倍的覆盖度。基因组序列预期编码了2,678个基因。/pp  基因组分析结果揭示,9557菌株包含各种类型的、与粘附、抗吞噬作用、胞外酶、铁摄入和分泌系统及溶血素相关的毒力因子。这些毒力因子是粘附宿主、免疫逃避和损伤宿主细胞所必需的。在9557菌株中鉴别这些基因对于阐明可能与毒力和流行分布相关的基因至关重要。此外,研究人员还鉴别出了一些抗菌素耐药性基因,包括aadD、blaZ、mecA、qnrD、lnuA和msrA基因。/pp  进一步搜寻假定的噬菌体元件,揭示出存在一个完整的原噬菌体区域及两个可疑的原噬菌体区域。有研究证实,原噬菌体与金黄色葡萄球菌的毒力直接相关。但迄今尚未描述过原噬菌体在山羊葡萄球菌中的功能和含量。此外,在这一基因组中研究人员还鉴别出了7个假定的CRISPR重复区域。/pp  Draft Genome Sequence of Lactobacillus panis DSM 6035T, First Isolated from Sourdough/pp  面包乳杆菌(Lactobacillus panis)最早是从长期发酵的酵母中分离出来,是一种杆状的革兰氏阳性的、不会移动的、无孢子细菌。/pp  在这篇文章中,研究人员绘制出了面包乳杆菌DSM 6035T的基因组序列草图。其基因组大小为2.08 Mb,G+C含量为47.9%,与高效液相色谱法检测结果相似。这一DSM 6035T基因组包含2,047条编码序列(CDS)、20个不完整的rRNAs和61个tRNA。预计总共有81种非编码RNAs (ncRNAs)和3个CRISPR序列。/pp  研究人员从中发现了一些与糖代谢有关的基因,包括6-磷酸葡萄糖酸脱氢酶、L-核酮糖-5-磷酸-4-差向异构酶等,与以往的结果相一致表明了这一物种是异型发酵。面包乳杆菌的基因组信息对于进一步研究它在食品工业领域和其他方面的应用将非常有用。/p
  • 从人类基因组草图到完全图谱 ——论基因组重复片段研究
    从人类基因组草图到完全图谱——论基因组重复片段研究作者:李东卫,张玉波(中国农业科学院农业基因组研究所,“岭南现代农业”广东省实验室,深圳 518120)2001年发表的人类基因组草图并没有包含全部的基因组序列,直到二十年后,科学家们才正式宣布完成了人类全序列基因组图谱,这其中主要的技术障碍就是重复片段的测序工作。重复片段(segmental duplications,SDs)是指广泛存在于基因组中的大于1 kb且序列相似性超过90%以上的大片段。它们可以通过基因组重排及拷贝数变异产生新基因和驱动进化,其大量存在于子端粒中,并与哺乳动物细胞复制性衰老以及癌症等重要生物学过程密切相关,一直以来备受科学家关注。但是其序列特点使得常规的测序技术难以完全准确测出全部序列,是基因组组装工作的一个难点。人类基因组全图谱的完成将重复片段在生物体进化、延缓衰老、疾病治疗等方面的研究提供基础。本文将就重复片段的重要性,研究的技术难点,研究现状以及未来展望等方面展开论述。重复片段的重要性重复片段是基因组中序列高度相同的大片段,具有广泛的结构多样性。它们占人类参考基因组(T2T-CHM13)中的7.0%,长度为218 Mbp[2 ],在中心体及子端粒区域富集高达10倍。中心体所包含的5个典型重复为:α卫星,β卫星,CER卫星,γ卫星,CAGGG重复,以及重复子4。子端粒所包含的典型重复为:端粒相关重复(TAR)以及传统的(TTAGGG)n重复[4 ]。重复片段可以介导染色体重排,使常染色体和异染色体之间通过同源重组产生镶嵌类型的重复的染色质[5 ]。在最近新鉴定的人类重复片段中,Mitchell R等预测了182个新的候选蛋白编码基因,并使用T2T-CHM13基因组重构了重复基因(TBC1D3,SRGAP2C,ARHGAP11B),这些基因在人额皮质增生中具有重要作用,揭示了重复片段结构在人和他们近亲物种之间的巨大进化差异[6 ]。大量的染色体子端粒区含有重复片段[8 ]。复制性衰老被认为是一种抗癌机制,限制细胞增殖。长寿的有机体经历更多的细胞分裂,因此具有更高的产生肿瘤的风险。端粒酶能够增加端粒的长度,促进癌细胞不断增殖,因此长寿动物体细胞倾向于抑制端粒酶的活性,从而抑制肿瘤发生的风险[10 ]研究难点:大片段长度、多拷贝数、序列高度相似 重复片段的大的片段长度,多拷贝数以及序列的高度相似是长期以来其研究的难点。各种测序技术的发展致力于解决这个问题。重复片段长度范围是1到400 kb [12 ]。而且,标准的长读段校正工具,例如MUMmer 或Minimap2不能够有效的捕捉低相似的重复片段,也经常将重复片段与其它调控元件混淆[14 ],为重复片段的研究带来机遇。尤其是PacBio的HiFi读段,具有长读段的同时还具有较高的准确度。但是,很多重复片段的长度要比HiFi读段的平均长度要长,因此很难完全准确的进行组装[3 ]。染色体重排,尤其是染色质断裂常发生在高GC区域[16 ]。同时,在T2T-CHM13基因组基础上,Mitchell R等首次进行了全基因组重复片段的研究。与当前人类参考基因组(GRCh38)鉴定的167 Mbp复制片段相比,鉴定了更多的(218 Mbp)非冗余重复片段(图2 a, b)。新发现91%的重复片段能更好地代表人的拷贝数,通过与非人灵长类基因组相比,前所未有的揭示了人类和其它近亲在重复片段结构中的杂合性以及广泛的进化差异[17 ]。图2 T2T-CHM13中新鉴定的染色体内(a)与染色间(b)的重复片段[1 ]。利用重复片段解析衰老机制未来可期新组装的T2T-CHM13的拷贝数比GRCh38高9倍,因此它能更好的呈现人类拷贝数变异。通过鉴定新基因的拷贝数变异,可筛选相应的药物治疗靶点。例如,CHM13鉴定到LPA、MUC3A、FCGR2基因的拷贝数变异与疾病相关[1]。此外,对于尚具争议的疾病标志基因,例如乳腺癌中ESR1 基因[18],可以通过CHM13对其进行分子进化分析,进而鉴定其突变和扩增,确定其在乳腺癌中的作用。尽管端粒作为抗衰老靶标已研究多年,但是端粒长短变化与复制性衰老的关系仍不清楚。细胞减数分裂过程中端粒变短的机制是什么?重复片段拷贝数变异与端粒变短有无相关性?很多研究已证明端粒酶具有延长端粒长度的作用,具体的机制是什么?这些问题因此前端粒不能被准确测序而长期未解决。现在,人类基因组完全图谱已基本实现,相信这些谜团会很快解开。未来可以根据人类年龄增长过程中端粒重复片段的拷贝数变异,解析其抗衰老的机制。通过人为干预其拷贝数,可能用于探索生命的极限。1. Vollger MR, Guitart X, Dishuck PC, Mercuri L, Harvey WT, Gershman A, Diekhans M, Sulovari A, Munson KM, Lewis AM et al.Segmental duplications and their variation in a complete human genome. bioRxiv.2021:2021.2005.2026.445678.2. Prodanov T, Bansal V.Sensitive alignment using paralogous sequence variants improves long-read mapping and variant calling in segmental duplications. Nucleic Acids Research.2020 48(19).3. Bailey JA, Yavor AM, Massa HF, Trask BJ, Eichler EE.Segmental duplications: Organization and impact within the current Human Genome Project assembly. Genome research.2001 11(6):1005-1017.4. Courseaux A, Richard F, Grosgeorge J, Ortola C, Viale A, Turc-Carel C, Dutrillaux B, Gaudray P, Nahon JL.Segmental duplications in euchromatic regions of human chromosome 5: a source of evolutionary instability and transcriptional innovation. Genome research.2003 13(3):369-381.5. Giannuzzi G, Pazienza M, Huddleston J, Antonacci F, Malig M, Vives L, Eichler EE, Ventura M.Hominoid fission of chromosome 14/15 and the role of segmental duplications. Genome research.2013 23(11):1763-1773.6. Young E, Abid HZ, Kwok PY, Riethman H, Xiao M.Comprehensive Analysis of Human Subtelomeres by Whole Genome Mapping. PLoS genetics.2020 16(1):e1008347.7. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al.Initial sequencing and analysis of the human genome. Nature.2001 409(6822):860-921.8. Seluanov A, Chen ZX, Hine C, Sasahara THC, Ribeiro AACM, Catania KC, Presgraves DC, Gorbunova V.Telomerase activity coevolves with body mass not lifespan. Aging Cell.2007 6(1):45-52.9. Bromham L.The genome as a life-history character: why rate of molecular evolution varies between mammal species. Philos T R Soc B.2011 366(1577):2503-2513.10. Shay JW.Role of Telomeres and Telomerase in Aging and Cancer. Cancer discovery.2016 6(6):584-593.11. Sharp AJ, Locke DP, McGrath SD, Cheng Z, Bailey JA, Vallente RU, Pertz LM, Clark RA, Schwartz S, Segraves R et al.Segmental duplications and copy-number variation in the human genome. American journal of human genetics.2005 77(1):78-88.12. Hartasanchez DA, Braso-Vives M, Heredia-Genestar JM, Pybus M, Navarro A.Effect of Collapsed Duplications on Diversity Estimates: What to Expect. Genome Biol Evol.2018 10(11):2899-2905.13. Numanagic I, Gokkaya AS, Zhang L, Berger B, Alkan C, Hach F.Fast characterization of segmental duplications in genome assemblies. Bioinformatics.2018 34(17):i706-i714.14. Vollger MR, Dishuck PC, Sorensen M, Welch AE, Dang V, Dougherty ML, Graves-Lindsay TA, Wilson RK, Chaisson MJP, Eichler EE.Long-read sequence and assembly of segmental duplications. Nature methods.2019 16(1):88-94.15. Rhie A, McCarthy SA, Fedrigo O, Damas J, Formenti G, Koren S, Uliano-Silva M, Chow W, Fungtammasan A, Kim J et al.Towards complete and error-free genome assemblies of all vertebrate species. Nature.2021 592(7856):737-+.16. Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, Vollger MR, Altemose N, Uralsky L, Gershman A et al.The complete sequence of a human genome. bioRxiv.2021:2021.2005.2026.445798.17. Zhu Y, Liu X, Ding X, Wang F, Geng X.Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology.2019 20(1):1-16.18. Tabarestani S, Motallebi M, Akbari ME.Are Estrogen Receptor Genomic Aberrations Predictive of Hormone Therapy Response in Breast Cancer? Iranian journal of cancer prevention.2016 9(4):e6565.
  • 高通量基因组测序等三项革命性技术服务于医疗领域势不可挡!
    p  随着人们探索和操控基因组技术的进步,生物医学也迎来了前所未有的发展机遇。在过去,人们形容新事物发展速度喜好用“火箭”般,而如今测序技术的推进,医疗技术也正以“基因”数据的递增速度而快速进步。/pp style="TEXT-ALIGN: center"img style="WIDTH: 450px HEIGHT: 366px" title="1.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201601/noimg/3be80e62-fc24-44d6-817e-5b970178a9cf.jpg" width="450" height="366"//pp style="TEXT-ALIGN: center"  安永预测的2020年医疗服务模式/pp  美国杰克逊实验室(The Jackson Laboratory)建立于1929年,是一个非赢利性的独立研究机构。80多年以来,杰克逊实验室的科学家们一直从事基于小鼠的生物医学研究,并在小鼠的繁育、小鼠遗传学和在研究中如何选择运用实验小鼠方面积累了大量的宝贵知识和经验。/pp  作为世界最大的遗传基因工程研究中心,杰克逊实验室认为:有三项技术正在势不可挡地服务于制药和医疗领域,依次是:高通量基因组测序,CRISPR基因编辑和单细胞基因组学。借助于上述技术,科学家们逐渐揭开了蕴藏于人体的DNA的奥秘,并试图溯源复杂疾病的本质。本文主要从它们如何出现?如何工作?以及如何改变生物医学进程三个方面来阐述这3大技术。/pp  strong高通量基因组测序/strong/pp  strong如何出现?/strong/pp  人体的基因有30亿个碱基对,由碱基对排列差异造成了人与人之间的差异。为了发现这些差异,科学家发明了仪器来读取A、G、C、T的意义。尤其是高通量测序技术是对传统测序一次革命性的改变,一次对几十万到几百万条DNA分子进行序列测定,使得对一个物种的转录组和基因组进行细致全貌的分析成为可能,所以又被称为深度测序。/pp  2005年,454公司首先推出了二代测序仪 2006年,Solexa推出了Genome Analyzer 2007年年初Illumina收购了Solexa公司,在随后的几年陆续推出了Hiseq、MiSeq、NextSeq等多种系列测序仪 ABI推出了SOLiD测序平台,随后收购了454测序仪发明者创立的Ion Torrent,转而大力推广PGM和Ion Proton平台 2014年,也就是高通量测序技术发展的第十年,Illumina公司的Hiseq X平台已经实现了1000美金一个人类基因组测序的目标。2015年,华大子公司CG推出新款“超级测序仪”Revolocity?,该系统结合了Complete Genomics新一代测序技术和操作经验,可以对人全血、唾液等各种样本进行自动化的DNA提取。/pp  strong如何工作?/strong/pp  高通量基因组测序主要包括样本准备(sample fragmentation)、文库构建(library preparation)、测序反应(sequencing reaction)、数据分析(data analysis)。由于具体操作已经是人尽皆知,在此不赘述。/pp  strong如何改变生物医学进程?/strong/pp  高通量测序(NGS)从兴起到现在已有10余年的时间,但其成本下降依旧只是这几年的事情。随着成本的不断下降,高通量DNA测序平台已经发展为基因组和各种基因文库序列检测的强大工具。大容量的抗体基因库是目前获得抗体新药的基础,高通量DNA测序技术为从海量的抗体基因库中快速发现功能抗体分子提供了可能。/pp style="TEXT-ALIGN: center"img style="WIDTH: 450px HEIGHT: 338px" title="2.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201601/noimg/e7f238c7-b10b-41ef-8f55-b78132d2e3bc.jpg" width="450" height="338"//pp style="TEXT-ALIGN: center"  NIH统计的读取DNA序列成本/pp  1000美金价格的实现比十年前的30亿美金降低了300万倍。除此以外,还有一些公司开发了第三代测序仪,比如Pacific Biosciences的PacBio RS测序仪,DNA模板无需二代测序常用的PCR扩增的方法,就可以实现长读长、实时的测序 Oxford Nanopore MinION测序仪只有USB存储器那么大等等。/pp style="TEXT-ALIGN: center"img style="WIDTH: 450px HEIGHT: 300px" title="3.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201601/noimg/27198d7b-8d57-45f9-956d-a171bed7410f.jpg" width="450" height="300"//pp style="TEXT-ALIGN: center"  NIH统计的基因组测序价格/pp  随着高通量测序的普及,全基因组测序将越来越普遍(花更少的时间和金钱),基于NGS平台展开的各类医疗服务,犹如基于ios系统的APP,在一个较小的平台上,可以按需使用相关的检测,实现大规模并行测序。/pp  strongCRISPR基因编辑/strong/pp  strong如何出现?/strong/pp  在细菌的基因末端,一段 DNA序列会紧接着一段它自己的反向序列,然后再接一段大约30bp左右的、貌似是由碱基随机排列而成的DNA序列,科学家们曾称之为“空格DNA(spacer DNA)”,由于在大约40%的细菌和90%的古细菌(archaea)中都能够观察到这种现象,于是科学家们给这种序列取了一个名字——成簇的、规律间隔的短回文重复序列(Clustered Regularly Interspaced Short Palindromic Repeats),简而言之CRISPR。如今,CRISPR热度已赶超上世纪末开始大放光彩的简称PCR的聚合酶链式反应(Polymerase Chain Reaction)。/pp  strong如何工作?/strong/pp style="TEXT-ALIGN: center"strongimg style="WIDTH: 450px HEIGHT: 429px" title="4.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201601/noimg/a38ec20e-35f3-4839-a2e8-f33de8fac2c2.jpg" width="450" height="429"//strong/pp  CRISPR/Cas9技术的产生与DNA测序技术的进步密不可分。CRISPR由两部分组成:一部分是可以切割基因的“手术刀”蛋白Cas9 另一部分是拖着“手术刀”在基因组的“茫茫大海”中精确定位的向导RNA(Guide RNA)。一些科学家用灭活版本的Cas9蛋白与向导RNA结合,改造出只有精确定位功能的CRISPR技术,可用来关闭或打开几乎任何单个基因,或者精细地调控它们的活跃程度,这被视为令人激动的一个研究方向。/pp  strong如何改变生物医学进程?/strong/pp  几千年来,人类一直在改造大自然。现在,有了被誉为“基因剪刀”的CRISPR基因组编辑技术,人类有望以前所未有的能力改造自身。CRISPR技术问世仅3年,就已被全世界生物医学实验室和制药企业广泛应用。/pp  首先,通过CRISPR方法构建一种小鼠动物病理模型仅需数周,远低于过去的近1年时间,并能以更快的速度对基因进行研究,同时可以一次对细胞内的多个基因进行遗传学改造,研究这些基因之间的相互作用 其次,通过CRISPR技术成功打造“基因驱动”系统,并被用于根除疟疾、登革热等虫媒疾病、消灭或控制入侵物种等 第三,哈佛大学研究人员利用CRISPR技术一次性敲除猪细胞中62个逆转录病毒基因,从而扫清猪器官用于人体移植的重大难关,给异种器官移植工作带来了曙光,为全世界需要器官移植的上百万病人带来希望 第四,中山大学黄军就利用CRISPR技术成功修改人类胚胎基因,或可用于治疗地中海贫血等疾病。/pp  科学家们梦想能操纵基因,CRISPR如今让它成为现实,它的能力令人极其兴奋。科研人员相信,在CRISPR的推动下,一场生物医学领域的革命正在到来。无论好坏,我们正翱翔在CRISPR的世界里。/pp  strong单细胞测序是一个新兴的领域/strong/pp  strong如何出现?/strong/pp  细胞是生物学的基本单位,人体大约由200种不同类型近40兆(trillion)个细胞组成。在这种显著的多样性中,科学家们通常都是在大批量地探索细胞,曾发现了一种对成千上万个细胞一次分析的办法,不过这反映的是人体的整个细胞,而不是单个特定细胞状况。出现这种状况的原因是从单个细胞中提取的DNA(RNA/蛋白)不足以进行基因组规模的研究。/pp style="TEXT-ALIGN: center"img title="5.gif" src="http://img1.17img.cn/17img/images/201601/noimg/39110477-e58d-476b-852a-35794be32935.jpg"//pp style="TEXT-ALIGN: center"  捕获单个细胞和泡沫分离的液体,并准备进行分析/pp  单细胞测序指DNA研究中涉及测序单细胞微生物相对简单的基因组,更大更复杂的人类细胞基因组,是在单细胞水平对全基因组进行扩增与测序的一项新技术。尽管早在1990年,Norman Iscove的课题组就通过PCR技术实现了对cDNA分子的指数级扩增,证实对单细胞进行转录组分析是可行的 但单细胞测序萌芽于2010年,2013年左右才真正发展起来 2014年,单细胞测序的应用被列为Nature Methods年度最重要的方法学进展 2015基因组学前沿研讨会将单细胞组学单独列为一个单元。/pp  strong如何工作?/strong/pp style="TEXT-ALIGN: center"strongimg style="WIDTH: 450px HEIGHT: 319px" title="6.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201601/noimg/d1abc8a9-c305-47a3-8c66-3aec359bedd0.jpg" width="450" height="319"//strong/pp style="TEXT-ALIGN: center"  单细胞测序的工作流/pp  单细胞测序分为单细胞转录组测序和单细胞基因组测序。单细胞转录组测序分为:单细胞DGE、单细胞polyA测序、单细胞lncRNA测序 单细胞基因组测序分为:单细胞外显子组测序和单细胞全基因组重测序。/pp  strong /strong/pp  单细胞测序技术在临床医学上的应用主要包括癌症领域和生殖领域的应用。譬如华大基因用解析单细胞基因组研究原发性血小板增多症(一种血癌)和肾透明细胞癌(一种肾癌)的肿瘤内部遗传特征 MD安德森癌症中心的遗传学家通过单细胞分辨率乳腺癌遗传学发现单个细胞通常包含数十个罕见突变,而这些突变采用大型肿瘤测序方法通常无法检测到 Smart-Seq的基因组测序方法可以深入分析临床相关的单细胞 谢晓亮团队通过MALBAC进行单基因遗传病和染色体异常同时筛查助力孕妇诞生了试管婴儿。/pp  总之,利用单细胞基因组学,研究人员可以逆向操控发育过程,揭示出了单个的前体细胞类型是如何生成这两种不同的成熟肺泡细胞的。在个别细胞之间的遗传差异表达方面拥有无与伦比的优势,为癌症发生、发展机制及其诊断、治疗提供了新的研究思路并开辟了新的研究方向。杰克逊实验室单细胞基因组学研究室主任Paul Robson在一份声明中表示,目前单细胞基因组学技术正在快速发展,而增加专门从事研究领域的实验室或将为更多的生物学家提供最好的可用工具来进行基因组学研究 单细胞基因组学研究中心的成立或将为更多的联合研究提供更多机会。/p
  • 北京昊诺斯科技有限公司在中科院基因组所进行维修回访服务
    北京昊诺斯科技有限公司系致力于为生命科学、生物检测、生物工程、药物研发等领域提供先进的实验室仪器设备及多层次服务的高科技公司。应中国科学院北京基因组研究所资产处的邀请,于5月5日为中国科学院北京基因组研究所老用户进行了维修回访服务活动,受到广大师生的热烈欢迎;同时,为了让大家更加深入的了解纯水机的日常维护保养以及进水的水质要求,在中国科学院北京基因组研究所举办了2场纯水知识的技术讲座,得到了广大师生的积极响应。 北京昊诺斯科技有限公司密理博高级认证高级维修工程师谢峰为大家讲解超纯水机的日常维护保养 北京昊诺斯科技有限公司高级维修工程师李玉明正在清洗离心机内腔 此次维护保养服务的内容包括:清洗离心机内腔、校准平衡、清洗防尘罩;校准CO2培养箱程序进行内部消毒;更换生物安全柜滤网;清洗超低温冰箱滤网;讲解超纯水机更换耗材及维护保养方法和免费检测超纯水机进水和实验室自来水水质等。 北京昊诺斯科技有限公司系致力于为生命科学、生物检测、生物工程、药物研发等领域提供先进的实验室仪器设备及多层次服务的高科技公司。我们代理的国外产品绝大部分是专业领域内的世界一流品牌。主要包括:美国赛默飞世尔公司Thermo-Fisher Sorvall(索福), Heraeus(贺利氏)品牌的离心机、培养箱、生物安全柜、超低温冰箱等各类产品;美国Millipore纯水、超滤及层析系统;德国QIAGEN荧光定量PCR仪;日本Malcom超微量紫外分光光度系统、全自动核酸提取仪等。
  • 人类基因组计划完成15周年——从个人基因组到精准医疗
    本文作者基因组学科技工作者田埂,原文题目&ldquo 写给人类基因组计划完成十五周年:从一个人的基因组计划到精准医疗&rdquo 。  &ldquo 美国总统克林顿于当地时间26日上午10时在白宫举行的记者招待会上郑重宣布,由一批国际科学家组成的人类基因组研究计划已经完成人类基因组草图。英国首相布莱尔以卫星电视的形式参与了这个发布会。克林顿在评价这一历经10年时间完成的科学成果的深远意义时说,&lsquo 人们将世世代代记住这一天&rsquo 。他感谢美国、英国、德国、日本、中国和法国的上千名科学家为取得将这一开辟新纪元的成果所作出的贡献。&rdquo   田埂教授  刚刚看到这个2000年6月26日的新闻,突然发现不知不觉时间已经过去了15年。那个时候人们对刚刚完成的人类基因组草图充满了期盼:通过人类基因组信息帮助人们克服疾病,达到人们的终极健康长寿的需求。  在人类基因组计划完成的这15年里,那些主要参与国美国、英国、中国都发生了什么?  15年后的今天人们所能感受到的人类基因组计划的影响究竟是个什么样子?  未来的人类基因组研究和应用在往哪个方向发展?  15年后的今天,人们依然充满了期望。  美国在人类基因组计划完成后的变化  人类基因组计划组织和塞雷拉基因组公司兵分两路  在美国,人类基因组计划完成以后,原先竞争的两大阵营:人类基因组计划组织和塞雷拉基因组(Celera Genomics)公司,分别走向了两个方向:人类基因组计划原先的参与Whitehead Institute(后来的著名的Broad Institute)、美国能源部基因组中心、华盛顿大学医学基因组测序中心、贝勒大学医学基因组测序中心等11个基因组中心继续开展各类大型的基因组研究计划 塞雷拉基因组公司,则转向了心血管病和个体化医疗管理等商业方向。  可以说美国的人类基因组研究有一个贯穿始终的目的,就是将人类遗传和基因组信息应用到医疗和健康领域。因为科学家们认识到从第一个人类遗传病亨廷顿氏舞蹈症(Huntington&rsquo s Disease,又称为慢性遗传舞蹈病)的基因被定位,这种通过家系研究定位遗传病的方式,在没有对人类基因组序列的深刻认识,没有对人类遗传规律深刻的了解情况下,医学遗传学研究的速度将无法从本质上提高。  在这个认识的基础上,美国先后启动了&ldquo 国际人类基因组单体型图计划&rdquo (The International HapMap Project,HapMap计划) &ldquo 癌症基因组图集&rdquo (The Cancer Genome Atlas,TCGA)计划 &ldquo DNA元件百科全书&rdquo 计划(Encyclopedia of DNA Elements,简称ENCODE) 千人基因组计划(1000 Genome Project),以及最近炒的火热的&ldquo 精准医疗计划&rdquo (The Precision Medicine Initiative)。这些计划投资规模以百亿美元计,参与科学家以数万人计。可以说美国人在朝着既定的目标一步一步向前发展,脉络清晰,步骤明确,并且从人才培养到技术支撑,从领导科学家选拔到商业运行模式上的探索,都走在世界的前面。  在这15年的时间里,参与人类基因组计划的几位领导科学家也有了各自的发展:当时的领导科学家Francis Collins已经是现任NIH的主任 Whitehead Institute研究所的主任Eric Lander完成了将Whitehead Institute从MIT和Harvard的独立出来的工作,已经成为美国最大的基因组研究中心,他本人也是奥巴马总统的科技参赞,可以参与美国的科技政策决策 &ldquo 科学狂人&rdquo 塞雷拉基因组公司创始人Craig Venter则独辟蹊径,虽然塞雷拉基因组公司已经不再复当年风光,但是Craig Venter却先后成为第一个合成原核生物基因组的人,第一个用计算机模拟生物整个代谢途径的人,第一个提出海洋基因组学研究并实施的人。  与此同时,美国在基因组研究技术上也领先于世界,从人类基因组计划所使用的ABI和Amersham的第一代测序仪,到HapMap计划使用的Affymetrix和Illumina公司的芯片,再到千人基因组和TCGA以及Encode计划使用的Illimina公司的第二代测序系统,以及Pacbio的第三代测序系统,美国人在测序和基因组技术上的创新和积累,依然领先于世界。  英国在人类基因组计划完成后,率先启动十万人基因组项目  再看看英国:英国人对基因组研究的热情始终如一,从Frederick Sanger先生发明第一代测序系统,到首先参与美国提出的&ldquo 人类基因组计划&rdquo ,贡献仅次于美国,英国有欧洲大陆最大的基因组研究中心&ldquo Sanger Institute&rdquo ,是第二代测序技术的参与发明国,共同提出和启动了&ldquo 千人基因组计划&rdquo ,共同提出并启动和领导了&ldquo 国际肿瘤基因组计划&rdquo ,率先启动了Genome England的十万人基因组项目,间接影响到美国的&ldquo 精准医疗计划&rdquo 的提出。  英国人在人类遗传学上的投入也不遗余力,英国有全世界研究人类遗传病最好的研究团队,并且英国有政府引导,科学家和企业共同参与的举国基因组研究体制,可以说虽不及美国人在人类基因组研究上的布局深刻,但是英国总能在某些领域里有独特的见解和布局,通过自己的方式影响着世界,并且不得不说的是,英国在基因组研究领域对中国科学家毫无保留的帮助的无私情怀,从捐赠中国华大基因研究中心测序仪,到在各种国际合作中为中国提供便利和帮助,以及帮助中国培养基因组学研究人才,可以说中国的基因组学发展处处都有英国的帮助。  中国在人类基因组计划完成后,积极探讨&ldquo 中国版的精准医疗计划&rdquo   再看看中国这15年人类基因组学的研究进展。首先看看当时的报道&ldquo 1999年的日历翻开了。杨焕明说,要干就要干大,再难也要干大。于是,杨焕明、汪建、于军凑出了自己积蓄的200多万元。他们用这笔钱,购买了一台&ldquo 377&rdquo 型测序仪和一台美国产的毛细管测序仪。在不到半年的时间里,他们递交了人类基因组序列70万个碱基的测序结果,并做了热泉菌测序。这些成果,引来了国际同行的瞩目。&rdquo   6月29日,记者来到了中科院遗传所人类基因组中心。在实验室,记者看到,工作平台是用集装箱搭成的。在平台上,有三根玉米棒,旁边有一行字:穷棒子精神永放光芒!据介绍,深居京郊的这些科研人员,收入不高,也没有娱乐,在&lsquo 1%&rsquo 测序中,他们测序精确,但相应的测序成本却只有美国等国家测序成本的四分之一。&rdquo &ldquo &lsquo 中心&rsquo (作者注:北京华大基因研究中心)执行主任汪建对记者说:&ldquo 中国虽然只做了1%,但意义重大。中国科研人员在测序过程中,不仅增加了设备,而且培养了技术。21世纪生物产业发展的机遇,中国没有失去。&rdquo 他意味深长地说。&rdquo   随后,中国科学院成立了&ldquo 中国科学院北京基因组研究所&rdquo ,专注基因组研究,中国也参与了HapMap计划,同时发表了一系列植物和动物的基因组学研究成果,但从那以后中国的基因组学研究一度遭到寒冬,在大约三年的时间里,鲜有大型研究项目启动,研究成果也较少。  2007年6月华大基因南下深圳,成立了&ldquo 深圳华大基因研究院&rdquo ,深圳华大抓住了二代测序发展的关键时期,用独特的运行模式,先后完成了&ldquo 炎黄一号&rdquo 第一个黄种人基因组测序研究,发起并实施了&ldquo 炎黄九九基因组研究项目&rdquo ,共同参与设计和启动&ldquo 千人基因组计划&ldquo ,共同参与和发起&ldquo 国际肿瘤基因组计划&rdquo ,共同发起&ldquo 中国肿瘤基因组协作组&rdquo ,上个月华大发表了&ldquo 炎黄一号&rdquo 单倍型图的研究成果,将黄种人的基因组组装成了最完整的人类基因组单倍型图。  这些研究计划开展和研究成果陆续发表的同时,华大还培养了大批基因组科技人才,这些人才活跃在国内外基因组研究和产业化的各个领域。在有感于产业链上游测序仪的限制后,深圳华大于2012年完成了对美国Complete Genomics公司的收购,打通了产业链上下游。当然,这些大型的研究计划,都得到了深圳市政府和国家科技部等的支持。  展望:把握住基因组学发展的脉络,真正实现精准医疗的设想  在英国和美国相继提出自己的大型基因组研究计划后,中国也在积极讨论&ldquo 中国版的精准医疗计划&rdquo ,作为基因组学科技工作者我们也期望中国的&ldquo 精准医疗计划&rdquo 把握住基因组学发展的脉络,顺应人类基因组学研究发展的规律,真正实现精准医疗的设想。  回顾人类基因组计划完成这15年历史,我们会发现,在当年人类基因组计划的基础上,已经逐步建立起来的人们使用基因组和遗传信息来指导健康生活和医疗的路线图,相信在下一个15年,我们再笑谈15年里人类基因组研究和应用的发展时,我们可以欣慰的告诉自己,我为人类了解自己的基因组并应用做出了贡献。最后,由衷感谢参与人类基因组计划的所有科学家和科技工作和的工作,更加感谢中国参与过人类基因组计划的科学家和科技工作者们,是你们的辛苦工作让国人有机会更早的享受到基因组学进展为我们的健康生活和医疗带来的好处。  备注:作者田埂系基因组学科技工作者。
  • 首日即破千人!基因测序大会最后一天聚焦海关检疫和农业基因组
    仪器信息网讯 7月12日,仪器信息网主办的“第六届基因测序网络大会”拉开序幕。会议为期三天,包括“新仪器新技术”、“单细胞和空间组学”、“临床分子诊断”、“病原微生物宏基因组&靶向测序”。“海关检疫”、“遗传育种”六大主题会场,各领域30余位代表专家倾情分享,第一天报名参会人数就突破千人!现在会议已经超过半程,接下来还有2个主题会场,请大家持续关注。日期上午下午7月12日新仪器新技术单细胞和空间组学7月13日病原微生物宏基因组&靶向测序临床分子诊断7月14日海关检疫遗传育种点击观看会议7月14日,大会迎来最后一天,聚焦基因测序仪在海关系统和农业遗传和育种方向的应用。日程如下报告嘉宾王艺凯,硕士研究生,高级工程师。主要从事海关实验室及口岸现场领域的检测仪器设备、监管装备研制工作;检测试剂研发工作。参与国家标准4项;参与国家标准样品3项;申请国家专利7项;发表SCI、核心期刊等论文10余篇。理学博士,香港大学博士后,珠海国际旅行卫生保健中心(拱北海关口岸门诊部)主任技师。目前担任国际旅行医学会(ISTM)研究与奖励委员会委员,全国卫生检疫标准化技术委员会(TC582)秘书,海关总署病原体基因测序平台应用业务专家组成员、科技评估专家组成员、实验室防护安全管理专家组成员、新型冠状病毒实验室检测专家组成员,广东省预防医学会医学病毒学专业委员会委员,珠海市预防医学会理事、新冠病毒检测能力建设和质量控制专家组成员、病原微生物实验室生物安全质量控制中心专家委员会成员、临床检验质量控制中心专家组成员,珠海市劳模和工匠人才创新工作室“拱北海关卫生检疫创新工作室”领衔人。主要从事卫生检疫及传染病防控工作。主持省部级科研项目9项,发表SCI 论文34篇,国际会议摘要10篇,获得授权专利15项,制订行业标准5项,担任Journal of Travel Medicine、Diagnostic Microbiology and Infectious Disease编委以及多本SCI杂志审稿人。曾获得国际艾滋病疫苗大会的“Conference scholar”奖,国际艾滋病协会的“International conference scholarship”奖,国家质检总局“科技兴检奖”三等奖等,曾获得中华全国总工会“阅读学习成才职工”、“全国海关系统抗击新冠肺炎疫情先进个人”、珠海好青年“爱岗敬业好青年”、“珠海市直机关优秀共产党员”、拱北海关“先进工作者”、“卫生检疫业务标兵”等称号,当选南方都市报“致敬劳动者”封面人物。唐泰山,博士,研究员,现于南京海关动植物与食品检测中心从事进出境动物检疫和物种鉴定工作。江苏省“333高层次人才”,目前担任江苏省食品安全委员会专家委员会委员、江苏省卫生健康标准委员会寄生虫病专业委员会委员、江苏省微生物学会理事、海关总署进出境濒危物种鉴定实验室联盟专家等。在动物疫病前沿检测技术、濒危物种鉴定等方面开展了广泛研究,曾主持或参与完成各类科研项目28项,获得科技奖项16项、国家发明专利6项,主持或参与编制国家或行业标准18项、发表论文50余篇。杜智欣,博士,高级农艺师。主要从事植物和植物产品的检验检疫及相关研究工作。现为植物检疫专业委专家、农业转基因生物安全专家、合格评定委员会技术评审专家、进出境濒危物种鉴定实验室联盟专家组成员、广西外来入侵物种专家。主持完成省部级以上科研项目15项。获省部级科技奖励4项,发布标准14项、授权专利20项,发表国内外论文论著20篇。浙江大学“求是特聘”教授、博士生导师,浙江大学农学系主任。1986年毕业于浙江农业大学遗传育种专业并获得学士学位,1996-2001年先后获得德国哥廷根大学硕士、博士学位。2001-2005年任新加坡国立大学农业分子生物研究院(IMA)、分子与细胞生物研究院(IMCB)任博士后、研究员等职。2005年后任浙江大学教授。要从事油料植物基因组学与分子生理学研究,研究主题包括:(1)种子含油量和脂肪酸形成的分子生物学机制;(2)油菜种质资源基因组研究;(3)基于基因组重测序基础上GWAS分析和杂种优势预测;(4)(油菜)异源四倍体基因组进化的分子机制。涉及物种包括:甘蓝型油菜(Brassica napus)、白菜型油菜(Brassica rapa)、甘蓝(Brassica oleracea)、十字花科拟南芥(Arabidopsis thaliana)等。学术兼职:国际油菜发展咨询委员会成员(Member of Global Council for Innovation in Rapeseed and Canola,简称GCIRC )、国际芸薹属基因组研究指导委员会成员(Member of Multinational Brassica Genome Project, MBGP)、欧盟-中国 Horizon 2020, Food Agriculture and Biotechnology (FAB)专家组成员、Theoretical and Applied Genetics (TAG) 编委 、GEGE、Plants等杂志编辑。刘贵明,生物信息学博士,北京市农林科学院研究员。研究方向为围绕高通量测序平台和分子育种共性技术开发、组学大数据挖掘、复杂作物基因组的组装策略和方法以及作物表观遗传调控等方面的研究。搭建了北京市农林科学院高性能计算平台和高通量测序平台,开发了基于CRISPR和微流控的快速核酸检测以及基于高通量测序的超多重PCR和液相捕获分子设计育种检测平台。建立了de novo、重测序、转录组、甲基化、lncRNA 和miRNA建库平台以及ATAC-seq、RNA m6A修饰、dCAS9捕获、Hi-C、ChIP-seq和等基于高通量测序的表观调控技术。主持国家自然科学基金2项,主持国家科技基础性工作专项子课题1项。在Nature Genetics等杂志发表文章20多篇。赵汀,博士,浙江大学现代种业研究所特聘研究员和浙江大学海南研究院研究人员。博士毕业于南京农业大学,作物遗传育种专业。主要研究方向是基于基因组大数据,利用群体遗传学、机器学习等手段对控制异源多倍体棉花产量、品质等关键农艺性状的遗传基础进行解析。从基因组非编码区转录、陆地棉和海岛棉种间渗透解析和利用和进化丢失基因得鉴定,挖掘农学可利用“非典型”基因资源。以第一作者、通讯作者和共同第一作者在Genome Biology (2018),Plant Biotechnology Journal (2021, 2022),Plant Methods(2023) 等期刊发表研究论文9篇。潘磊,男,博士,江汉大学教授/硕士生导师,美国乔治华盛顿大学访问学者。中国园艺学会豆类蔬菜分会秘书长,湖北省遗传学会理事,湖北省植物生理学会理事。主要从事食用豆类植物遗传资源与分子育种研究。在Plant Biotechnology Journal、Journal of Experimental Botany等国际刊物上发表论文20余篇;获批授权国家发明专利6项;参与选育豆类蔬菜植物新品种4个;获“十一五”湖北省高校科技成果转化提名奖1项、武汉市科技进步二等奖2项。成都瀚辰光翼科技有限责任公司产品总监,资深产品应用工程师。研究生期间从事玉米分子育种相关工作,在基于二代测序及高通量基因分型分子育种工作中积累十余年经验。在瀚辰光翼参与开发了高通量自动化核酸提取系统、高通量自动化基因分型系统、全自动核酸提取及建库一体机以及自动化智能化全流程分子育种实验室整体解决方案等一系列产品,目前在全国育种企业、高校科研院所等得到了广泛使用。报名页面:https://www.instrument.com.cn/webinar/meetings/geneseq2023/
  • 从传言中认清不孕不育事实 基因组学帮助婴儿安全出生
    p  每年4月,RESOLVE(美国国家不孕症协会)都会指定一个星期,鼓励人们讨论不孕不育、提高认识并加强基层宣传。他们这一周的目标是共享资源,并帮助夫妇度过这段往往痛苦的旅程。/pp  作为生殖与遗传健康解决方案的供应商,Illumina加入这项运动,以帮助建立对有关不孕不育的问题的了解,并分享基因组学如何提高活产(安全生育婴儿)的可能性。/pp  strong什么是不孕不育?/strong/pp  不孕症是指一年内有正常性生活,未采取避孕措施但无法成功怀孕。对于35岁以上的女性,尝试怀孕的时限应缩短至六个月。据美国疾病控制中心统计,对于15至44岁的女性,11%(每八对夫妇中即有一对)很难或无法怀孕,或足月妊娠。/pp  世界卫生组织、美国生殖医学学会以及美国妇产科医师协会都承认不孕症是一种疾病。男性和女性伴侣都有患上不孕症的风险,其中三分之一的不孕归结于女性伴侣,三分之一归结于男性伴侣。而最后三分之一可能归结于双方或不明原因的不孕症。/pp  幸运的是,生殖医学专家为女性、男性以及不明原因的不孕症提供了许多治疗方案。这包括药物和手术,以及辅助生殖技术(ART)。ART包括人工授精(用导管将伴侣或供者的浓缩剂量精子注射到女性的子宫内)、体外受精(IVF)及其他,不过体外受精占所有ART操作的99%以上。ART也包括使用Illumina提供的基因组学方案,以提高成功的概率。/pp  strong传统的干预措施/strong/pp  在IVF过程中,医生通过激素来刺激女性的卵巢。卵巢产生多个卵子,随后可由生殖科专家人工提取。在实验室中,专家利用伴侣或供者的精子让女性的卵子受精,创造出胚胎,在体外培养三至五天。/pp  一个健康的胚胎通常有46条染色体。染色体拥有DNA这种遗传物质,决定了我们的身体如何发育和行使功能。DNA也是以基因组学为基础的医学“筛查”的对象。每个细胞内有23对染色体,包括编号1-22的染色体(常染色体)以及两条性染色体。有时,胚胎可能会丢失或增加染色体。/pp  尽管ART操作,特别是IVF技术,已经让许多夫妇拥有一个孩子的梦想成真,但在2012年,仅有不到三分之一的辅助生殖技术相关流程能成功带来了活产婴儿。体外受精过程无法带来活产的原因有很多,其中很大比例的胚胎存在缺失或额外的染色体。/pp  strong基因组学带来新选择/strong/pp  在标准的IVF操作中,生殖医学专家通过显微镜观察可用的胚胎,选择最佳的胚胎植入子宫内。这个过程尽管提高了成功怀孕的可能性,但并没有筛查全部46条染色体。此外,为了提高成功怀孕的概率,专家往往同时植入多个胚胎,增加了高风险的多胎妊娠的可能。/pp  然而,有研究证明,染色体缺失或增加的胚胎很难成功植入子宫,或在孕早期导致流产。Illumina已经与参考实验室合作,提供配合IVF的新一代测序服务,称为胚胎植入前遗传学筛查(PGS)。/pp  在PGS的过程中,胚胎学家从卵子或胚胎中取出几个细胞,检查每条染色体,以确定移植回子宫的最佳胚胎。一项研究表明,患者在IVF过程中增加PGS,使得成功怀孕(单胎)的几率比仅进行IVF的患者提高几乎一倍。由于成功率更高,专家通常能够只选择一个胚胎,使得多胎妊娠的风险大大降低。/pp  不孕不育也许令人沮丧,令人绝望。不过正如RESOLVE在全国不孕不育宣传周中所说的,“你并不孤单”。Illumina通过创新、准确的基因组技术,为生殖与遗传健康提供明智知情的选择。他们提供一套全面的基因组学方案,能提供及时、可靠的答案。/p
  • 泰州市疾控中心预算709.5万元购买全基因组测序系统等多台仪器
    近日,泰州市疾控中心公开招标购买全自动微量点滴仪、全基因组测序系统(含建库仪、分析软件)等多台仪器,总预算709.5万元。 项目编号:TZZCDL2021-07  项目名称:泰州市疾控中心公共卫生体系及重大疫情防控救治体系建设检测仪器设备采购项目  本项目分为四个分包,投标人自行选择所投标段分包序号预算(人民币,万元)最高限价(人民币,万元)12502502260.5260.5318018041919  采购需求:分包序号仪器设备名称台套数备注1●致病菌质谱鉴定仪1接受进口产品投标2●全基因组测序系统(含建库仪、分析软件)1全自动核酸提取仪13●全自动药敏分析系统1接受进口产品投标脉冲场电泳仪1接受进口产品投标凝胶成像仪1接受进口产品投标孵蛋箱1接受进口产品投标胶块清洗系统1超纯水仪2高精度CO2震荡培养箱1离心机1低温保藏箱1生物安全柜1超净工作台14●全自动微量点滴仪1接受进口产品投标正置相差显微镜1接受进口产品投标  注:以上仪器设备未备注接受进口产品投标的,投标人如用进口产品投标将作无效投标处理。  具体采购需求详见招标文件  合同履行期限:合同签订后60天内交货  本项目不接受联合体  开标时间:2021年5月20日上午09:00整
  • 北京基因组所等开发出叶绿体基因组综合数据库
    叶绿体是植物将光能转化为化学能的重要细胞器,具有独立的基因组。自植物叶绿体基因组被发现以来,被广泛应用于植物系统进化关系研究、光合作用调控机制研究、叶绿体基因工程等方面。随着基因测序技术的发展,尽管已发布了海量的植物叶绿体基因组序列,但如何整合应用这些数据目前仍面临数据命名标准不统一、数据信息不全以及较高经济价值的物种尚未进行测序等问题。  近日,中国科学院北京基因组研究所(国家生物信息中心)国家基因组科学数据中心章张、宋述慧团队,联合中国中医科学院中药资源中心袁媛、黄璐琦团队,开发了迄今为止物种数量最多的叶绿体基因组综合数据库Chloroplast Genome Information Resource(CGIR )。CGIR收录了来自11,946个物种的19,388条叶绿体基因组序列,包括利用全国第四次中药资源普查标本自测的718种未发表的叶绿体基因组序列,按照基因组(Genomes)、基因(Genes)、微卫星序列(SSRs)、DNA条形码(Barcodes)、DNA特征序列(DSSs)五个功能模块对数据进行组织与管理。相关研究成果以Towards comprehensive integration and curation of chloroplast genomes为题,发表在Plant Biotechnology Journal上。  根据生物物种名录(The Catalogue of Life),经过大规模人工审编,CGIR对所收录叶绿体基因组的物种分类信息进行审编,按照纲、目、科、属、种不同分类层级进行整理,并依据权威植物研究机构邱园发布的世界功能植物名录(World Checklist of Useful Plant Species)对药用植物、食用植物、环境植物、能源植物、有毒植物、能源植物等进行标注。同时,CGIR审编修正基因名的不规范命名、异名、错误注释等情况。在此基础上,CGIR系统整理各基因组的基因注释信息,为用户检索、浏览和信息获取提供便利。  针对分子标记开发这一叶绿体基因组最为常见的应用情景,CGIR使用生物信息学方法计算了所收录叶绿体基因组的微卫星序列、DNA条形码和DNA特征序列三种不同类型分子标记信息,同时,开发了相应的树型视图方便用户根据分类层级信息快速寻找目标标记,简化了科研人员开发分子标记的流程。  CGIR通过自主测序、整合公开基因组资源和人工数据审编向用户提供了目前最全面、物种数量最多的叶绿体基因组数据。经审编的物种分类、物种功能、基因名称与序列、分子标记等保证了数据的高度可靠,对植物系统发育、物种鉴定、叶绿体基因工程的发展均具有重要意义。  研究工作得到科技基础资源调查专项、中国中医科学院科技创新工程项目、中央本级重大增减支项目“名贵中药资源可持续利用能力建设项目”的支持。  论文链接 CGIR数据处理示意图及主要功能模块的数据统计
  • Cancer Cell | 通过单细胞基因组测序绘制肿瘤抗原图谱
    一个世纪之前,诺贝尔奖得主、德国化学家Paul Ehrlich 曾经说过:如果我们可以设计出特异性靶向某个病原体的化合物,那么,我们就可以在不伤害宿主的基础上杀死这一病原体【1】。多年过去了,尽管Ehrlich尝试了多种方法来寻找特异性肿瘤靶点,但精准抗癌,也就是在不伤害机体的情况下靶向杀伤肿瘤细胞这一概念,似乎仍停留在概念阶段【2】。时隔多年,以免疫细胞修饰为基础的免疫治疗,包括抗体-药物偶联物(antibody-drug conjugates,简称ADCs)、双特异性T细胞衔接器(bispecific T cell engagers,简称BiTEs)和嵌合抗原受体T细胞(chimeric antigen receptor T cells,简称CAR-T)似乎是现今的新方向。有报道指出,靶向CD19的CAR-T疗法,可以将一些B细胞淋巴瘤的治愈率提高至43%~71%【3】,但是,有40%患者出现一定程度的神经损伤。这一“脱靶效应”很可能是由其他表达CD19的细胞类型引起的【4】。事实上,作者通过提取数目稀少的血脑屏障壁细胞,并进行全基因组单细胞测序确定,上述CAR-T疗法靶向B细胞淋巴肿瘤的同时,也会靶向这些壁细胞。这也说明,单细胞全基因组测序这一方法,不但可以预测免疫治疗的脱靶效应,还可以以数据为基础分析出特异的靶标。2021年12月13日,来自美国斯坦福大学Caleb A. Lareau,Ansuman T. Satpathy和来自Cartography 公司的Kevin R. Parker 在Cancer cell上发表题为Charting the tumor antigen maps drawn by single-cell genomics的评论性文章,全面展示了这一研究方法。在概念上,作者认为,寻找和确定免疫治疗的靶点应该基于数据。下图展示了通过结合大尺度但细胞图谱和特定肿瘤分析来确定抗原靶点。高通量的单细胞全基因组测序数据库可以提供肿瘤细胞抗原的潜在靶点以及这些靶点是否存在于其他细胞上。接下来,作者阐述了目前精准抗癌的现状和存在的问题。首先,目前在临床上精准抗癌的靶点主要有三类:一是在肿瘤细胞和正常体细胞上同时表达的细胞特异性标签,比如上述针对B细胞的CD19。这一类目前应用最为广泛,并且,如果其对应的体细胞不算十分重要的话,这一诊疗方案可以说是行之有效;二是与正常体细胞相比,在肿瘤细胞上过表达的分子,比如HER2。靶向这类分子可以使得杀伤作用更为精准和强大,并且,其过表达程度,还可以表征肿瘤发展水平;三是特异性表达在肿瘤细胞上的分子,比如1997年发现的NY-ESO-1【5】。当然,高通量基因组学数据库显示这一分子还表达在免疫豁免器官和组织,比如睾丸和胎盘。这也就是说,仅通过传统手段来确定表达靶标分子的细胞类型不够精确,还需要高通量单细胞基因组数据库来进行有力补充。其次,上述数据库可以用来预测和减低免疫治疗的脱靶效应所带来的细胞毒性。如上述靶向CD19治疗B细胞淋巴瘤案例所示,免疫治疗常常会出现脱靶效应。虽然研究脱靶效应对病人的副作用这方面至关重要,但是从单细胞基因组学分析来确定特定免疫疗法对正常体细胞的影响也十分必要。接下来,作者表明,单细胞全基因组测序这一方法也适用于表达量十分稀少的细胞类型,比如CD4+T细胞,CD4的RNA水平很低,但是蛋白质水平却很高,这一类分子需要高通量数据库进行修正。最后,作者提出了单细胞全基因组测序所面临的挑战:一是如何界定某一类型细胞重要与否,并且,随年龄、性别等影响,其重要性是否有所区别。二是如何确定一标准,使得某分子在肿瘤细胞与体细胞的表达量超过这一标准,才可以认定为是潜在靶标。三是影响抗原表达水平的因素都有什么。最后,理论上可行的靶标在临床上也可能出现各类未知问题。综上所述,作者给出了有别于组织学水平和单一突变水平研究肿瘤以及肿瘤治疗的方法,也就是基于高通量单细胞全基因组测序和图谱数据分析方法。并预测,这一方法可以在预测免疫治疗靶标和临床精准抗癌方面发挥重要作用。原文链接:https://doi.org/10.1016/j.ccell.2021.11.005
  • 中国启动十万人基因组计划:绘制国人精细基因组图谱
    p style="text-align: center "img title="001.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/4ff2dbe1-e196-45d3-8e15-c70b870d0740.jpg"//pp  科学家们希望通过绘制中国人精细基因组图谱,来研究疾病健康和基因遗传的关系。/pp  此次启动的“中国十万人基因组计划”覆盖地域包含我国主要地区,涉及人群除汉族外,还将选择人口数量在500万以上的壮族、回族等9个少数民族。/pp  基因是DNA上有遗传效应的片断,人类的生、老、病、死等都与基因有关。而基因组和基因是整体与部分的关系,人类基因约有25000个,基因组研究的目的就是要把人体内这25000个基因的密码解开,从而破译人类的遗传信息。此次基因组计划,就是要绘制我们民族的基因图谱。/pp  项目首席科学家 王亚东教授:主要目标是研究中国人从健康到疾病是怎么转化的,为中国的医学研究或者是临床诊断、治疗疾病提供参考。/pp style="text-align: center "img width="500" height="352" title="002.png" style="width: 500px height: 352px " src="http://img1.17img.cn/17img/images/201712/insimg/779230ba-5597-4007-94f3-8ae2367a7247.jpg" border="0" vspace="0" hspace="0"//pp  中科院院士 国家人类基因组南方研究中心主任赵国屏:那么这一点做下来以后,实际上是为我们中国人,包括汉族和各个少数民族在内,今后做中国人的疾病健康相关的遗传背景的认识,会有极大的好处。/pp  按照计划,整个项目将在四年内完成全部的测序与分析任务,这也将是当前世界上推进速度最快的基因组工程。/pp/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制