当前位置: 仪器信息网 > 行业主题 > >

提取外泌体

仪器信息网提取外泌体专题为您整合提取外泌体相关的最新文章,在提取外泌体专题,您不仅可以免费浏览提取外泌体的资讯, 同时您还可以浏览提取外泌体的相关资料、解决方案,参与社区提取外泌体话题讨论。

提取外泌体相关的资讯

  • 【聚焦外泌体】之从细胞培养上清液中分离外泌体的准备
    对于外泌体研究的新手来说,细胞培养上清液是非常好的实验材料,外泌体相对容易收集。我们可以首先从细胞上清开始来熟悉整个外泌体的研究流程,充分了解整个流程需要使用的仪器、试剂以及准备时间,对我们后续的实验安排有很大帮助。其中比较重要的一点是要确定有足够的初始细胞上清液来收集外泌体,以保证我们能够拿到足够多的蛋白、核酸来进行后续分析。我们可以逆向思维,通过后续检测所需蛋白/核酸量——外泌体量——细胞上清量,来确定初始细胞上清体积。先从细胞上清开始,熟悉了整个过程后,我们再进行其他相对较难的实验材料进行研究。01细胞系选择无论贴壁细胞或是悬浮细胞,能分泌更多外泌体的细胞系肯定是优先选择的。一般说来,肿瘤细胞的外泌体分泌水平要高一些,但并不是所有肿瘤细胞系都能分泌足够多的外泌体,我们可以借鉴文献中的细胞系推荐1。以常用基因转染的HEK293为例,是比较公认的分泌外泌体水平较高的细胞系。或者,以每100ml的细胞上清收集到的外泌体蛋白可达到5~20μg范围作为标准2,例如我们可以从100ml的细胞上清中获得10μg的外泌体蛋白,如果后续要做蛋白质组学分析(需50μg蛋白),那么初始细胞上清就需要扩大到之前的5倍,500ml,500ml上清差不多是通过离心方法可处理的大样品量了。如果后面收集到的外泌体蛋白都不够进行一次WB,那就要考虑一下是不是要换个细胞系了。如果外泌体蛋白小于3μg,那么考虑到扩大体系的实验难度和后续实验的顺利进行,那证明我们用的细胞系不太合适做外泌体研究。*虽然很多生物样品或是细胞系在文献中没有出现过,许多外泌体相关的数据库(ExoCarta, Vesiclepedia, Evpedia等)可以提供帮助,在上面我们可以查到有哪些细胞系已经有人成功进行外泌体提取了。或者也可以咨询一些做外泌体的生物公司,看看他们是用哪些细胞系来制备商业化的标准外泌体样品的。02优化细胞培养条件及细胞系选择影响外泌体质量和回收率的另外一个重要因素是在收集之前细胞的培养状态。好的收集时间段是细胞状态好、生长旺盛,即处于对数期的细胞3,并且在细胞传代之前收集细胞上清,这个时候细胞所分泌的外泌体量达到高4。准备好的细胞上清液,细胞密度也要适合,贴壁细胞如果细胞密度过高会出现接触抑制,对所分泌的外泌体也会有影响。所以,理想的条件是在细胞融合达到70%~80%后的40~48h后收集外泌体(此时约融合至90%)。要注意,为了避免FBS外泌体的污染5,收集外泌体的40~48h之前需换成无血清培养基,注意此时40~48h仅作为推荐参考。像有些细胞在无血清培养基培养24h后没有发生存活率和细胞形态改变,那么可以进行上清收集。如果出现死细胞增加、细胞形状改变、状态变差等情况时,使用EV-delepted FBS培养基来代替无血清培养基,EV-delepted FBS可以直接购买也可以自己制备(使用SW 41Ti转头在4℃,35,000rpm(Rmax 210,000 ×g)离心16h后小心收集上清)。但是这样仍无法完全避免血清外泌体的污染,需要清楚样品中血清外泌体的含量,增加一组没有培养细胞的培养基的平行样品作为阴性对照是必要的。03外泌体的提取方法目前被大家认可的方法就是超速离心,因为超离的方法可以收集到完整的细胞外囊泡群,并且几乎所有的实验材料(细胞上清、血液、体液等)都可以通过超离的方法来进行外泌体提取。当然超离的方法也有需要改善的地方,比如样品量很小的情况下,超离对外泌体的回收率不高,但是超离作为一种物理分离的方法,可以在不破坏外泌体群体特性的情况下进行分离的。当前,除了超离外还有许多外泌体分离方法,每种方法都有它的优势和劣势,首先我们需要理解各种分离方法的原理和特点,再根据我们的实验需求才能找到合适的外泌体提取方法。超离方法是可以获得整个外泌体群体,适合于研究整个外泌体群体特性。Yoshioka博士:众多外泌体分离方法中,我们使用超离沉降的方法作为实验室提取外泌体的标准方法5(见下图)。这个Protocol主要包括三个步骤:1.小心收集细胞上清并低速(4℃,2,000xg,10分钟)去除悬浮细胞(死细胞)。2.用0.22μm孔径过滤器过滤上步中收集到的包含外泌体的上清液,去除大颗粒和细胞碎片。3.将上步中的滤液进行超离处理,使用贝克曼库尔特SW 41Ti水平转头、13.2ml超净离心管(Product Number:344059,Beckman Coulter),4℃下35,000rpm(Rmax 210,000xg)离心70分钟。离心过后外泌体在离心管底聚集成沉淀,通常是肉眼不可见的。然后用预先过了0.22μm孔径过滤器的PBS进行清洗,洗掉与外泌体一起沉降的成分,例如微颗粒和蛋白。小心倾倒掉第3步超离后的上清,残留少量液体进行2~3s的涡旋振荡重悬沉淀,然后加入PBS,重悬后的样品同样的条件再进行一次超离。再次超离过后的外泌体仍然需要重悬,倾倒掉上清后,再进行2~3s的涡旋振荡重悬,这时的外泌体样品就可以进行下步分析了。从离心管中转移外泌体样品到储存管(比如1.5ml微量离心管)时,在吸取时我们可以用移液枪先大概测量一下样品体积,后面在储存管中补充PBS到我们之前预估的样品体积,比如,我们想收集到100μl的外泌体样品,但是从离心管中转移到微量管中只有80μl(注意:使用13.2ml超净离心管,平均下来每次收集到的外泌体样品大概80μl),我们加20μl PBS到微量管中再混匀一下就可以保存了。外泌体样品可以在4℃保存,并且要尽量早的用于分析。另外,外泌体样品是不能反复冻融的,与细胞类似,反复冻融过程会破坏外泌体。现在大家普遍认为外泌体是具有异质性的,整个外泌体群还可以细分为亚群(例如尺寸、蛋白表达等),不同的亚群也具备不同的特性,正如前文所说,通过超离的方法可以收集完整的外泌体群体。也有些文献也报道过使用不同的离心条件,可以将尺寸大小不同的外泌体亚群分开。目前,还没有特别统一的外泌体超离提取步骤,像转头类型、离心管类型、离心力以及离心时间等离心条件在不同的文献上都会有些许的差异。04参考文献1. Yokoi A. In Takahiro Ochiya, Yusuke Yoshioka. Exosomes encourage the medical innovation. Kagaku-Dojin Publishing Co., 2018 p.122-134 [Article in Japanese]2. Valadi H et al. Nat Cell Biol. 2007 9(6): 654–6593. Beckman Coulter. Interview article: Basics and Vision of Exosome Research. 20154. Urabe F et al. Clin Transl Med. 2017 6(1): 455. Yokoi A. In Takahiro Ochiya, Yusuke Yoshioka. Exosomes encourage the medical innovation. Kagaku-Dojin Publishing Co., 2018 p.122-134 [Article in Japanese]
  • 国家纳米中心在肿瘤外泌体microRNA高灵敏检测方面取得进展
    p  近日,国家纳米科学中心孙佳姝课题组在肿瘤外泌体microRNA高灵敏检测方面取得新进展。相关研究成果“Thermophoretic Detection of Exosomal microRNAs by Nanoflares”于 2020年3月在线发表于《美国化学会志》(J. Am. Chem. Soc. 2020, DOI: 10.1021/jacs.9b13960)。/pp  外泌体是由细胞分泌的含有蛋白质与核酸等生物大分子的纳米尺度(30-150 nm)脂质囊泡,通过运输活性分子参与细胞通讯,是肿瘤液体活检的靶标之一。microRNA是一种长度约为22核苷酸的非编码单链RNA。肿瘤细胞中高表达的microRNA会被包载在外泌体中,参与肿瘤增殖与转移,是新型肿瘤诊断标志物。现有的外泌体microRNA检测方法面临外泌体microRNA含量低、样本消耗量高以及需要RNA提取等挑战。因此,发展微量样品中外泌体microRNA的高灵敏检测新方法对癌症早期诊断具有重大意义。/pp  在前期工作中,孙佳姝课题组利用热泳富集与核酸适体标记,实现了细胞外囊泡表面蛋白组测量和癌症分类(Nat. Biomed. Eng. 2019, 3, 183-193, J. Am. Chem. Soc. 2019, 141, 9, 3817-3821, Adv. Mater. 2019, 31, 1804788)。在此基础上进一步开发了结合纳米耀斑(nanoflare)与热泳的检测新方法,实现了0.5 μL血清样本中外泌体microRNA的高灵敏检测,检出限低至0.36 fM,接近qRT-PCR。纳米耀斑通过被动输运进入外泌体后,可以特异性识别靶标microRNA并产生荧光信号。外泌体在热泳作用下快速汇聚,有效放大其中纳米耀斑产生的荧光信号,提高外泌体microRNA的检测灵敏度。临床血清样本中,外泌体肿瘤相关microRNA表达信息可以用于ER+乳腺癌的早期诊断。与常规检测手段相比,该方法灵敏度高,样本消耗量小,排除了非外泌体microRNA的干扰,为外泌体microRNA检测与癌症早期检测提供了新思路,新工具。/ppbr//p
  • “干细胞外泌体质量控制标准”又一团标上线
    干细胞衍生的细胞外囊泡(stem cell-derived extracellular vesicles, SC-EVs)作为一种“无细胞的干细胞疗法新秀”,已在多种疾病中表现出显著的治疗效果。与传统干细胞移植相比,SC-EVs结构组成简单,不存在免疫排斥、成瘤等干细胞移植风险,表现出更高的治疗安全性。根据全球市场报告,到2030年全球外泌体市场预计将达到10.3亿美元,其中干细胞外泌体相关的研究和产业化稳坐C位。Clinical Trials搜索结果显示,目前全球已有167项注册在案的外泌体相关疗法的研究,其中31项围绕干细胞来源的外泌体所开展,覆盖呼吸道疾病、传染病及肿瘤等多个方面。EVs的高度复杂性和异质性,导致其临床转化和工业生产仍存在着诸多亟待突破的瓶颈。国际细胞外囊泡协会联合领域内300多位专家发布研究指导——Minimal information for studies of extracellular vesicles 2018(MISEV2018),以规范化该领域内相关研究并给予研究者们相关实验指导;此外,FDA也发布了关于干细胞和外泌体产品的公共安全公告,强调了基于SC-EVs治疗的标准化及其法规建立。对于SC-EVs研究来说,分离与鉴定、质量控制等环节仍存在不同程度的分歧和争议,尚缺乏统一标准。为了推进SC-EVs在疾病治疗领域的研究与应用,2022年1月1日,中国研究型医院学会细胞外囊泡研究与应用分会围绕SC-EVs制定了两项全国团体标准——《人多能干细胞来源的小细胞外囊泡》(T/CRHA 002-2021)和《人间充质干细胞来源的小细胞外囊泡》(T/CRHA 001-2021)正式发布启用。其中,厦门福流生物(NanoFCM Inc.)自主研发的纳米流式检测技术被正式纳入其中,作为SC-EVs的重要表征标准。 上海市生物医药行业协会依据协会团体标准管理办法规定,结合国内外研究进展和参编单位的实践经验,制定了《间充质干细胞外泌体质量控制标准》(T/SBIAORG 001-2023),并于2023年3月27日起正式实施,以进一步推动SC-EVs相关技术的落地、建立行业标准、规范行业发展并为研究人员提供指导!该团体标准规定了间充质干细胞外泌体的质量控制方法,适用于间充质干细胞外泌体的制备、储存、运输和应用等多个环节的质量控制。 在该标准中,纳米流式检测技术承担了外泌体粒径、浓度和表面标志蛋白表征的重要角色,具体操作方法详见标准(标准文件点击链接下载):https://pan.baidu.com/s/12qLuckmS-zi2Ft1w9iDPQw?pwd=w9zg (提取码:w9zg)扫描二维码获取厦门福流生物科技有限公司自主研发的纳米流式检测仪覆盖了传统流式200 nm以下的检测盲区,除了外泌体,在核酸药物、病毒、细菌等天然及合成纳米粒子多维表征均有应用,具有快速、高通量、多参数等优势。目前客户遍布全球顶级研究机构和制药企业。为了更好的服务外泌体领域客户,2022年Q2我们全新发布了外泌体解决方案,涉及外泌体粒径分布、颗粒浓度,生化性质等多参数表征,可在纯化方法评估、质量控制、载药策略选择及疾病诊断等场景下应用。EVers福利为了庆祝NanoFCM进入新的干细胞外泌体团体标准,打通了流式进入干细胞外泌体临床和产业化质控之路,我们计划为20个干细胞外泌体临床研究和产业化的客户提供限时限量的免费检测,活动时间:即日起——5月31日,可扫码添加下方微信号,向NanoFCM客服获取测样申请表。(注:活动解释权归厦门福流生物有限公司所有)
  • 综述:细胞外泌体颗粒表征测量技术新进展
    外泌体最早发现于体外培养的绵羊红细胞上清液中,是细胞主动分泌的大小较为均一,直径为40~100纳米,密度1.10~1.18 g/ml的囊泡样小体。  细胞外泌体携带多种蛋白质、mRNA、miRNA,参与细胞通讯、细胞迁移、血管新生和肿瘤细胞生长等过程并且有可能成为药物的天然载体,应用于临床治疗。然而,测量技术手段的局限限制了外泌体在这些领域的研究进展。所以,在这篇文章中,总结了外泌体的纯化方法,比较了现存各种外泌体测量技术,重点介绍了一种新的测量技术,纳米微粒追踪分析术,在外泌体尺寸和表征研究中的应用。  1. 外泌体提取及方法学评价  到目前为止,仍没有一种方法能同时保证外泌体的含量、纯度、生物活性。  1.1 离心法  这是目前外泌体提取最常用的方法。简单来说,收集细胞培养液以后依次在300 g、2 000 g、10 000 g离心去除细胞碎片和大分子蛋白质,最后100 000 g离心得到外泌体。此种方法得到的外泌体量多,但是纯度不足,电镜鉴定时发现外泌体聚集成块,由于微泡和外泌体没有非常统一的鉴定标准,也有一些研究认为此种方法得到的是微泡不是外泌体。  1.2 过滤离心  过滤离心是利用不同截留相对分子质量(MWCO)的超滤膜离心分离外泌体。截留相对分子质量是指能自由通过某种有孔材料的分子中最大分子的相对分子质量。外泌体是一个囊状小体,相对分子质量大于一般蛋白质,因此选择不同大小的MWCO膜可使外泌体与其他大分子物质分离。这种操作简单、省时,不影响外泌体的生物活性,但同样存在纯度不足的问题。  1.3 密度梯度离心法  密度梯度离心是将样本和梯度材料一起超速离心,样品中的不同组分沉降到各自的等密度区,分为连续和不连续梯度离心法。用于密度梯度离心法的介质要求对细胞无毒,在高浓度时粘度不高且易将pH调至中性。实验中常用蔗糖密度梯度离心法,在离心法的基础上,预先将两种浓度蔗糖溶液(如2.5 M 和0.25 M)配成连续梯度体系置于超速离心管中,样本铺在蔗糖溶液上,100 000 g离心16 h,外泌体会沉降到等密度区(1.10~1.18 g/ml)。用此种方法分离到的外泌体纯度高,但是前期准备工作繁杂,耗时,量少。  1.4 免疫磁珠法  免疫磁珠是包被有单克隆抗体的球型磁性微粒,可特异性地与靶物质结合。同样,在离心法的基础上,预先使磁珠包被针对外泌体相关抗原的抗体(如CD9、CD63、Alix)与外泌体共同孵育,蒸馏水冲洗后,重悬于PBS缓冲液中。这种方法可以保证外泌体形态的完整,特异性高、操作简单、不需要昂贵的仪器设备, 但是非中性pH和非生理性盐浓度会影响外泌体生物活性,不便进行下一步的实验。  1.5 色谱法  色谱法是利用根据凝胶孔隙的孔径大小与样品分子尺寸的相对关系而对溶质进行分离的分析方法。样品中大分子不能进入凝胶孔,只能沿多孔凝胶粒子之间的空隙通过色谱柱,首先被流动相洗脱出来 小分子可进入凝胶中绝大部分孔洞,在柱中受到更强地滞留,更慢地被洗脱出。分离到的外泌体在电镜下大小均一,但是需要特殊的设备,应用不广泛。  2. 外泌体测量各种方法的比较  2.1 电子显微镜  扫描电子显微镜(SEM)的工作原理是以能量为1-30KV间的电子束,以光栅状扫描方式照射到被分析试样的表面上,利用入射电子和试样表面物质相互作用所产生的二次电子和背散射电子成象,获得试样表面微观组织结构和形貌信息。高的分辨率。由于超高真空技术的发展,场发射电子枪的应用得到普及,现代先进的扫描电镜的分辨率已经达到1纳米左右,足够用来进行外泌体尺寸的测量。鉴于SEM的工作特点,在外泌体研究中,能够直接观察到样品中外泌体的形态。并且SEM具有很高的分辨率,能够鉴别不同大小不一的外泌体。但SEM对样品的预处理和制备上面要求较高,样品的准备阶段比较复杂,不适合对外泌体进行大量快速的测量。而且由于外泌体经过了预处理和制备过程,无法准确的进行外泌体浓度的测量。  2.2 动态光散射技术  动态光散射是收集溶液中做布朗运动的颗粒散射光强度起伏的变化,通过相关器将光强的波动转化为相关曲线,从而得到光强波动的速度,计算出粒子的扩散速度信息和粒子的粒径。小颗粒样品的布朗运动速度快,光强波动较快,相关曲线衰减较快,大颗粒反之(图1)。  图1 大颗粒和小颗粒光强波动及相关曲线  在外泌体研究中,动态光散射测量敏感度较高,测量下限为10纳米。相对于SEM技术来说,样品制备简单,只需要简单的过滤,测量速度较快。但是动态光散射技术由于是测量光强的波动数据,所以大颗粒的光强波动信号会掩盖较小颗粒的光强波动信号,所以动态光散射不适合大小不一的复杂外泌体样本的测量,只适合通过色谱法制备的大小均一的外泌体的尺寸测量,并且无法测量样品中外泌体的浓度。  2.3 纳米微粒追踪分析术  纳米微粒追踪分析术(以下简称NTA)是一种比较新颖的研究纳米颗粒的方法,它可以直接和实时的观测纳米颗粒。NTA通过光学显微镜收集纳米颗粒的散射光信号,拍摄一段纳米颗粒在溶液中做布朗运动的影像,对每个颗粒的布朗运动进行追踪和分析,从而计算出纳米颗粒的流体力学半径和浓度。  NTA系统的工作原理是将一束能量集中的激光穿过玻璃棱镜对样品(悬浮颗粒的溶液)进行照射(光路图见图2)。图2 NTA激光光路图    激光光束从较小角度入射进入样品溶液,照亮溶液中的颗粒。配备相机的光学显微镜,被放置在特定的位置上,收集视野中被照亮的纳米颗粒发射出的光散射信号。 样品池有大约500微米的深度,采样点激光照亮宽度为20微米,这个数值和光学显微镜的聚焦的视野深度相匹配。相机会进行60秒的影像拍摄,每秒30个采样画面。颗粒的运动过程被NTA软件进行分析。NTA软件在每幅被记录的画面中鉴别和追踪做布朗运动的纳米颗粒。  根据颗粒的运动速度,通过二维 Stokes-Einstein方程计算颗粒流体力学半径  在方程中2是均方位移,KB是Boltzmann常数 T是溶液的温度,单位是Kelvin;ts是采样时间,例如,1/30 fpsec = 33 msec;&eta 是溶液粘度;dh是流体力学直径。 NTA检测颗粒大小的范围和颗粒本身的折光指数相关。测量的下限取决于被研究颗粒和背景之间信噪比,也就是颗粒的散射光强度和背景的光强差距。颗粒的散射光强度根据Rayleigh散射方程,受到以下因素的影响   其中,d是颗粒的直径,&lambda 是入射光的波长,n是颗粒和溶液的折光系数比。通常来说,生物样品,如外泌体等,折光系数较低,所以测量下限为30-40纳米。  由于NTA技术是直接追踪样品中每一个纳米颗粒,决定了NTA对复杂的样品具有极高的分辨率,为了证明NTA对于复杂样品的分辨能力,我们将100纳米和300纳米两种不同大小的聚苯乙烯颗粒按照5:1的数量混合,使用NTA进行测量(图3A)。尽管其分布图形有一定的重叠,但两种不同大小的纳米颗粒的峰清楚的区分开来。这种对复杂样品的分辨能力对于外泌体这样的研究对象来说是非常重要的。  NTA也能对样品浓度进行直接测量。对一系列浓度为1× 108-8× 108的100纳米单分散样品进行测量,可以看到NTA测量浓度结果和实际浓度存在着很好的线性相关(图3B)。对于多分散体系,测量结果的准确取决于仪器参数的设定(照相机快门速度和光圈),恰当的参数设定可以保证不同大小颗粒都被NTA软件追踪和计算。图3 A. 100纳米和300纳米混合样品NTA测量 B. NTA测量浓度和样品实际浓度线性相关  NTA还具有分析荧光样品的能力,NTA有四种不同波长405纳米, 488纳米, 532纳米和635纳米的激光器可以选择,在搭配相应的滤光片,从而实现对荧光样品的测量。将100纳米的荧光标记的颗粒和200纳米的非荧光颗粒用同一溶剂做成混合样品,使用NTA进行测量(图4),图4中,蓝色的线显示为NTA的光散射模式,可以看到尽管100纳米和200nm纳米颗粒的分布图有重叠,但还是清楚的区分了100纳米和200纳米的峰值。然后使用荧光滤光片进行分析,只观测到100纳米的荧光标记的纳米颗粒(红线) 图4 NTA荧光样品测量  由于外泌体表面有标志物CD9,CD63等跨膜分子的存在,在复杂的背景环境下(如血清中),可以用荧光抗体标记外泌体,在用NTA的荧光测量功能实现在复杂背景下对外泌体的测量。NTA相比较于流式细胞仪的荧光功能,分辨率较高,测量荧光颗粒的下限可以达到30-40纳米,而流式细胞仪的测量下限为400纳米,即使对于最新一代的数码流式细胞仪,其测量下限已经达到100纳米,但由于它仍然建立在监测光信号的基础上,所以测量和准确性和分辨率仍然不可靠。所以在外泌体荧光功能测量上,NTA具有独特的优势。  3. 总结  外泌体作为生物标志物的研究目前处于起步阶段,但临床应用已显示出良好的前景。 在临床诊断中,简单快速的在复杂的生物背景下(如血浆,尿液)测量外泌体浓度,大小和表征数据是必备的要求。目前存在的方法都无法完美的解决这一问题。NTA作为一个相对新的测量技术,具有实时观测,较高的分辨率,准确的浓度测量和荧光测量功能,提供了对外泌体大小和浓度研究的新的思路。  (作者:张帅,英国马尔文仪器公司生物科学专家,负责生命科学相关产品的推广与技术支持。)  注:文中观点不代表本网立场,仅供读者参考。
  • 【瑞士步琦】从猫爪草提取物当中有效分离紫外吸收与非紫外吸收成分
    从猫爪草提取物中分离紫外吸收与非紫外吸收成分Pure 应用”猫爪草是一种热带藤本植物,是科学研究的一种宝贵的药物资源。活性成分为生物碱,丹丁酸和其它可能有促进免疫系统功能潜力的植物素。其中,生物碱有降压药的效果,可降低胆固醇,除此之外,还具有消炎、抗氧化和抗癌等特性。1方法萃取条件萃取类型研磨重量2g萃取溶剂乙醚溶剂体积20ml超声波提取30minFlash 色谱条件FlashPure EcoFlex 12g Sclia流速25ml/minUV1 波长254nmUV2 波长280nm溶剂 A正己烷溶剂 B乙酸乙酯进样模式液体ELSD 载体空气柱平衡时间5min洗脱方法步骤1234时间(min)0.03.03.04.0%B3030100100▲ 图 1. 在装有 12g Sclia 填料的 FlashPure EcoFlex 柱上对猫爪草进行纯化。色谱图说明使用紫外检测器和蒸发光散射检测器检测峰的诸多优点。通过调整流动相的梯度对方法进行优化以期获得更好的分离效果,方法如下:洗脱方法步骤1234时间(min)0.03.09.01.0%B3030100100▲ 图 2. 优化后的方法使得整体分离度大大提高,在 ELSD 检测器的加持下,可以有效检测到无紫外吸收的目标产物。使用分析型 HPLC 将两组实验与初始粗提物进行分析对照,结果如下:▲ 图 3. 通过对照发现只用 UV 检测器对样品进行纯化,不能检测非发色团的产物,导致馏分纯度不高。使用 ELSD 检测器收集的馏分可分离出高回收率和高纯度的组分。2结论天然产物在新药物研发中发挥重要的作用。粗提物通常含有活性良好的先导化合物,因此分离和纯化时需要很多步骤且充满未知性。Pure 系统收集包括 UV 检测器和 ELSD 检测器在内的多个检测器的信号,克服了使用传统 Flash 色谱方法遇到的纯化瓶颈,大大提高目标产物的纯度和回收率。化学家可以在双检测器以及 Navigator 技术的帮助下,有效地从粗提取物中分离目标化合物和含量低的成分,节省时间和人力成本。3参考Cat's Claw Technical Literature, Raintree Nutrition, Carson City, Nevada.Medicinal natural products a biosynthetic approach, 3rd edition Dewick, P. John Wiley & Sons, Inc., Hoboken, New Jersey, 2009.
  • 数千万元Pre-A轮融资!汇芯生物致力于解决外泌体应用
    深圳汇芯生物医疗科技有限公司(以下简称“汇芯生物”)宣布完成数千万元Pre-A轮融资。本轮融资由苇渡创投领投,绿河投资跟投,老股东凯风创投超比例追加投资。本轮融资将用于外泌体纯化设备及系统的深度开发与量产,以及外泌体诊断、治疗产品的临床研究和上市推进。汇芯生物由外泌体领域知名科学家和产业专家创立,致力于开发全球领先的生物技术和产品,推动外泌体在癌症诊断和细胞治疗方面的应用。其核心团队在学术研究、产品研发和市场开拓等方面具有多年丰富的经验。自成立以来,汇芯生物依托行业专业的技术人才与多家科研机构合作研究,结合团队在医疗器械开发领域的丰富经验,推出了全球首台用于外泌体分离纯化的非标记自动提纯系统—EXODUS®。产品一经问世,就受到了业内的广泛关注,并获得多家科研机构和第三方医学检验实验室的认可。与其它传统分离纯化手段相比,EXODUS®能够在更短的时间内获得更高纯度、更高回收率、更高完整度的外泌体。此外,基于先进的外泌体纯化技术平台,汇芯生物在泌尿系统肿瘤诊断试剂盒开发、规模化干细胞外泌体制备等领域也取得了积极进展。汇芯生物总经理杨一杰表示:感谢本轮投资机构对汇芯生物的认可和支持,在过去的一年里我们对公司现有技术进行了优化、升级和量产,并获得外泌体行业的科研用户及专家的认可。汇芯生物将继续坚持技术创新,推动外泌体在癌症早期诊断、细胞治疗和再生医学等方面的应用。我们将持续针对市场迫切需求开发系列产品,为我国外泌体的基础研究和临床应用提供先进的技术支持,为打造中国创新可及的重大疾病防治生态圈和医疗健康产业升级做出自己的贡献。本轮领投机构苇渡创投表示:外泌体在肿瘤、神经系统疾病等多种复杂疾病的治疗、诊断以及医美修复等领域表现出巨大潜力,应用前景广阔。汇芯生物定位在解决外泌体应用的瓶颈环节,开发的外泌体提取设备有望成为外泌体产业链上游的分离纯化关键工具,从而加速下游应用的进展。汇芯生物的核心团队成员在外泌体的学术研究、产品研发和商业化落地等方面的背景复合且经验丰富,相信公司将会在创始团队的带领下,推动外泌体产业在医疗、健康领域的发展。苇渡创投将秉承“助力创业者从此岸到达彼岸”的信念,陪伴公司成长。天使轮投资方凯风创投表示:凯风创投在精准医疗领域持续深耕,外泌体检测作为精准诊疗领域的重要一环,凯风创投会持续关注其技术进步和产业化机会。由汇芯生物开发的创新技术一经发表,其独特的技术原理和潜在的巨大商业机会,就吸引了我们团队的关注,快速的完成了对公司的天使投资。我们很高兴看到汇芯生物在这一年来的快速成长,有幸见证了EXODUS®技术在外泌体分离纯化领域获得的诸多成就。我们期待与汇芯生物一起在外泌体领域走的更远,助力汇芯成为外泌体行业的领军企业。本轮跟投方绿河投资表示:外泌体具有广谱性分泌、靶向递送、内含物多样性等特点,有着巨大的研究价值和临床应用潜力,吸引了大量科研的投入和资本的关注。外泌体的研究和临床转化被推向高潮,参与企业的数量不断增长,规模不断扩大。汇芯生物拥有外泌体专业的技术和丰富的医疗器械领域经验的团队,有望助力国内外外泌体产业解决纯化富集、靶向递送、载药等问题。绿河投资坚信“科技创造价值,成长增加价值”,做积极的投资人,将长期陪伴汇芯生物共同成长。
  • IVIS视角 | 姜黄外泌体样纳米囊泡用于结肠炎治疗
    植物外泌体样纳米囊泡(plant exosome-like nanovesicles,PELNVs)是源于植物真核细胞的多泡体,通过后者与质膜融合释放到细胞外的一种膜性小囊泡。与此同时,来源于药用植物的姜黄(Curcuma longa)作为一种中药,常用于降血脂、抗肿瘤、抗炎等疾病,姜黄素作为从姜黄中所提取的一种天然疏水多酚,姜黄外泌体样纳米囊泡除了具有相应药理作用外,还兼具纳米载体的独特形态与组成特征,相比哺乳动物来源和人工合成的纳米囊泡,姜黄植物外泌体纳米囊泡具有来源广泛、价廉易得、功能丰富等优势,因此具有大规模生产的可行性。炎症性肠病(IBD),是一种特殊的慢性肠道炎症疾病,主要包括克罗恩病(CD)和溃疡性结肠炎(UC)。随着生活水平的提高和饮食结构的变化,我国IBD发病率有不断攀升的趋势,已逐渐成为我国消化科的常见病。发展IBD诊疗新技术、新方法,将为IBD的综合防治提供有效依据,研究人员受姜黄药物价值的启发,进一步研究了姜黄外泌体样纳米囊泡在IBD治疗中的作用及分子机制。作者首先将植物姜黄用萃取器均质,然后采用蔗糖梯度超离心法获取姜黄外泌体样纳米囊泡(TDNPs),并通过透射电镜、原子力显微镜、质谱分析等方式对TSNPs 1和TDNPs 2做出相关比较(图1)。图1. TDNPs的分离、纯化与表征接下来,作者研究了TDNPs 2的靶向性,使用IVISense™ DiR 750 (XenoLight™ DiR)标记TNDPs,灌胃结肠炎小鼠。通过Perkinelmer的IVIS成像系统对消化道、肠系膜淋巴结(MLN)和重要器官(心、肝、脾、肺和肾)进行成像,发现与PBS组、TDNPs 1治疗组的小鼠相比,TDNPs 2治疗组的小鼠结肠中有强烈的DIR信号,证实了TNDPs 2优先作用于炎症结肠部位(图2)。图2. TDNPs 2优先作用于炎症结肠部位随后在TDNPs 2优先定位于炎症结肠的条件下,进一步研究了TDNPs 2对DSS诱导结肠炎的影响,通过构建小鼠结肠炎模型,使用炎症探针通过化学发光成像进行监测。Lcn-2作为一种有吸引力的肠道炎症生物标志物,被用来监测肠道炎症的进展。作者通过研究Lcn-2在DDS、DSS+TDNPs 1、DSS+TDNPs 2三组中的水平变化,证实了TDNPs 2可减轻DSS诱导的结肠炎。IVIS生物发光结果显示,DSS组和DSS+TDNPs 1治疗组小鼠的腹部显示较强的生物发光信号,表明消化系统内存在严重的炎症反应。相反,虽然DSS+TDNPs 2治疗组的小鼠腹部仍有部分生物发光信号,但强度远低于DDS组和DSS+TDNPs 1治疗组小鼠。作者同时还评估了结肠组织中髓过氧化物酶(MPO) 、促炎细胞因子(TNF-α、IL-6和IL-1β)和氧化应激相关蛋白HO-1的表达水平,证实了TDNPs 2具有明显的抗炎和抗氧化作用(图3)。同时作者评估了TDNPs 2是否能够加速结肠炎的快速消退。通过体外伤口愈合试验,证实了TDNPs 2处理的细胞具有最快修复创面的速度,能够显著缓解DSS诱导的溃疡性结肠炎及促进炎症的快速消退。图3. 口服TDNPs 2可减轻DSS引起的结肠炎随后该团队为满足潜在临床应用,首先评估了TDNPs 2对Caco2细胞的毒性,通过MTT、ATPLite、细胞凋亡、活化caspase-3/7等证明了TDNPs 2具有良好的生物相容性。接下来,通过H&E染色对肝脏等器官进行组织学分析,证实了TDNPs 2在体内的生物安全性。最后作者研究了TDNPs 2是否影响NF-κB信号通路,NF-κB是一种重要的核转录因子,在调节炎症反应中发挥着重要作用。姜黄素是一种NF-kB抑制剂,具有广泛的性能。作者通过检测NF-κB p65依赖的荧光素酶活性、磷酸化NF-κB p65表达和p65转位到细胞核的共聚焦成像,表明了TDNPs 2可以抑制LPS对NF-κB通路的激活。同时为了研究TDNPs 2在体内对NF-κB通路的抑制作用,采用NF-κB-RE-Luc转基因小鼠对NF-κB进行了研究。通过采集重要器官(心脏、肝脏、脾脏、肾脏和肺)和结肠并成像。IVIS生物发光结果显示,心肝脾肺肾的生物发光信号相似,表明NF-κB在这些器官中的活性相似。相反,结肠的生物发光信号,TDNPs 2治疗组较DSS组明显降低。表明了TDNPs 2是通过抑制NF-κB信号通路发挥保护作用(图4)。图4. TDNPs 2通过抑制NF-κB信号通路发挥保护作用参考文献Oraladministration of turmeric-derived exosome-like nanovesicles withanti-inflammatory and pro-resolving bioactions for murine colitis therapy. JNanobiotechnol 20, 206 (2022).https://doi.org/10.1186/s12951-022-01421-w
  • 全新外泌体内容物检测技术助力治疗婴儿早产药物研发取得重要进展
    外泌体内容物包含蛋白质、RNA、DNA和脂类,可被用于药物传递系统与疾病的新型诊断标志物,具有重要的研究意义。但传统的技术方法如Western Blot,ELISA,无法获得单个外泌体的蛋白表型,更不能将检测内容物与粒径分析、浓度分析、计数等联系起来,大地制约了外泌体内容物的相关研究。单外泌体表征分析(Exoview)先利用免疫识别将特定的外泌体进行捕获分离,然后再对目标外泌体的表面标志物及内容物(如携带的蛋白质、RNA、DNA及细胞因子)进行定量分析,从而更加全面地反映外泌体内容物的特性。近日,《Life》期刊刊登了Kammala等人的新研究成果,该团队使用全自动外泌体荧光检测分析系统 Exoview检测胎膜和胎盘外泌体的内容物,来研究母胎界面的药物转运。Exoview检测流程: 早产是一种发生率高的产科疾病,据估计,每年有1500万名婴儿出生过早,即每10名婴儿中就超过一人。早产儿的死亡率很高,每年大约有100万名婴儿死于早产并发症,许多存活下来的儿童也要面临终生残疾,包括学习障碍和视力、听力问题。直至今日,由于研究结果的不同,自发性早产的治疗方法也各不相同。由于孕期的特生理环境会导致药代动力学的改变以及孕期药物治疗的伦理限制,进而导致治疗过程无法标准化。近期,研究人员发现胎膜(FM)和胎盘(PLA)能够表达多种药物转运蛋白。由于胎膜具有保护作用,也有可能能够控制转运蛋白进行药物的转运。Kammala等[1]研究了一种与药物转运相关的乳腺癌耐药蛋白(BCRP)在胎膜上的表达,以及在不同的胎膜细胞分泌的外泌体中是否含有BCRP,从而促进母胎界面的药物转运。 图1 (A) BCRP在胎膜和胎盘的表达;(B) BCRP在胎膜和胎盘的IHC图像;(C) 胎膜和胎盘的BCRP蛋白表达水平。 图2 (A) 使用流式细胞仪测定在不同细胞BCRP的表达水平;(B) 不同细胞的荧光强度对比;(C) 不同细胞的BCRP蛋白水平。 图3 eFFlux荧光外流法检测BCRP功能性,BCRP被抑制后会导致荧光染料被排出细胞。(A) 不同细胞经BCRP抑制后的荧光计数对比;(B) 以荧光强度表示不同细胞的药物耐受性。 由图1-图3中的各项检测结果可知,BCRP可在胎膜的多种细胞中表达,以胎盘绒毛膜癌细胞(BeWo)作为对照,其中绒毛膜滋养层细胞(CTC)的BCRP表达要高于BeWo;不同胎膜细胞均可在不同程度上控制药物转运。基于以上结果,研究组选择提取CTC和BeWo分泌的外泌体,并使用Exoview进行了外泌体表型分析。 图4 (A)CTC与BeWo两种细胞来源外泌体表面BCRP+的占比;(B) 两种外泌体内容物BCRP+的占比;(C) CTC来源外泌体内容物BCRP荧光染色图像;(D) BeWo来源外泌体内容物BCRP荧光染色图像。 由计数结果可知,无论是来源于哪种细胞,亦或是位于外泌体表面还是内部,BCRP与CD63的共表达均高于CD81和CD9;两种来源的外泌体中,BCRP更多作为内容物由外泌体进行转运,BeWo来源外泌体中含BCRP内容物的外泌体占比约为CTC来源外泌体的两倍(图A&B)。研究组次发现了CTC和BeWo细胞以外泌体内容物的形式转运BCRP。先前的研究发现,含CD63的外泌体可将跨膜蛋白转运至管腔内囊泡中,而药物转运蛋白也是一种跨膜蛋白,可以被转运至特定的组织发挥作用。胎膜细胞可通过含有BCRP的外泌体,以旁分泌的形式使其他细胞获得药物转运蛋白,影响特定组织的环境。通过这项新发现,改变现有的产科药理学,可以开发以BCRP+外泌体,尤其是CD63+/BCRP+的外泌体作为靶标的新型靶向药物,有效提高药物转运能力,降低早产的发生率,减轻孕期用药的不良反应,改善现有的孕期治疗方法。 参考文献:[1] Kammala, A., Benson, M., Ganguly, E., Radnaa, E., Kechichian, T., Richardson, L., & Menon, R. (2022). Fetal Membranes Contribute to Drug Transport across the Feto-Maternal Interface Utilizing the Breast Cancer Resistance Protein (BCRP). Life, 12(2), 166. 全自动外泌体荧光检测分析系统(ExoView R100)简介作为外泌体表征分析的倡导者,美国NanoView Biosciences于2018年推出了全自动外泌体荧光检测分析系统ExoView,该系统一经推出,便引起了外泌体领域科研工作者的广泛关注,凭借其稳定、出色的性能,短短几年在全球已有近百个客户,发表文献100多篇。ExoView的表征,能够帮助科学家更深入地了解外泌体与疾病之间的关系,助力疾病诊断和新药开发。 Nanoview所开发的全自动外泌体荧光检测分析系统(ExoView R200)采用单粒子干涉反射成像传感器(SP-IRIS)技术,是一款无需纯化的全自动的新型外泌体表征设备。该设备能够提供全方位的外泌体表征信息,包括颗粒大小、计数、表型与生物标志物共定位等,提供多层次和全面的外泌体测量解决方案。为了更好的服务中国客户;Quantum Design中国子公司在北京建立了专业的客户服务中心,正式推出专业的全方位外泌体表征测试服务,您只需要少量样品即可获得全方位的外泌体表征数据: 欢迎各位老师垂询:010-85120280。前10名订购服务的老师,可享受8折优惠!扫描上方二维码,即刻订购吧!
  • 阜外华中心血管病医院207.00万元采购基因测序仪,核酸提取仪,大分子作用仪,移液工作站
    详细信息 阜外华中心血管病医院国家区域医疗中心设备(高通量基因测序全自动核酸提取仪、高通量基因测序超声DNA打断仪 河南省-郑州市-金水区 状态:公告 更新时间: 2023-02-07 招标文件: 附件1 阜外华中心血管病医院国家区域医疗中心设备(高通量基因测序全自动核酸提取仪、高通量基因测序超声DNA打断仪、高通量基因测序生信分析软件、高通量多功能全自动液体处理工作站)采购项目-公开招标公告 中小微企业融资申请 项目概况 阜外华中心血管病医院国家区域医疗中心设备(高通量基因测序全自动核酸提取仪、高通量基因测序超声DNA打断仪、高通量基因测序生信分析软件、高通量多功能全自动液体处理工作站)采购项目招标项目的潜在投标人应在河南省公共资源交易中心网站获取招标文件,并于2023年03月01日09时00分(北京时间)前递交投标文件。 一、项目基本情况 1、项目编号:豫财招标采购-2023-19 2、项目名称:阜外华中心血管病医院国家区域医疗中心设备(高通量基因测序全自动核酸提取仪、高通量基因测序超声DNA打断仪、高通量基因测序生信分析软件、高通量多功能全自动液体处理工作站)采购项目 3、采购方式:公开招标 4、预算金额:2,070,000.00元 最高限价:2070000元 序号 包号 包名称 包预算(元) 包最高限价(元) 1 豫政采(2)20230048-1 国家区域医疗中心设备(高通量基因测序全自动核酸提取仪、高通量基因测序超声DNA打断仪、高通量基因测序生信分析软件、高通量多功能全自动液体处理工作站)采购项目 2070000 2070000 5、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等) 5.1 采购货物名称及数量:高通量基因测序全自动核酸提取仪 1台,高通量基因测序超声DNA打断仪 1台,高通量基因测序生信分析软件 1套,高通量多功能全自动液体处理工作站 1台5.2 标包划分:共划分 1 个标包 5.3 采购货物技术性能指标:具体参数详见招标文件第五章“采购需求” 5.4 核心产品:高通量多功能全自动液体处理工作站 5.5 采购范围:货物的供货、运输、保险、装卸、安装、检测、调试、试运行、验收交付、培训、技术支持、售后保修及相关伴随服务5.6 资金来源:财政资金,已落实5.7 交货期:10日历天5.8 交货地点:采购人指定地点 6、合同履行期限:/ 7、本项目是否接受联合体投标:否 8、是否接受进口产品:是 9、是否专门面向中小企业:否 二、申请人资格要求: 1、满足《中华人民共和国政府采购法》第二十二条规定; 2、落实政府采购政策满足的资格要求: 无; 3、本项目的特定资格要求 供应商须具有医疗器械经营许可证或医疗器械经营备案凭证(医疗器械注册人、备案人经营其注册、备案的医疗器械,无需办理医疗器械经营许可或者备案,但应当符合《医疗器械监督管理条例》规定的经营条件),投标产品须符合《医疗器械监督管理条例》相关规定,取得医疗器械注册证或相关凭证。 三、获取招标文件 1.时间:2023年02月08日 至 2023年02月14日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外。) 2.地点:河南省公共资源交易中心网站 3.方式:登录《河南省公共资源交易中心-市场主体》凭CA数字证书下载投标项目所含全部资料 4.售价:0元 四、投标截止时间及地点 1.时间:2023年03月01日09时00分(北京时间) 2.地点:通过《河南省公共资源交易中心-市场主体》电子交易平台加密上传 五、开标时间及地点 1.时间:2023年03月01日09时00分(北京时间) 2.地点:河南省公共资源交易中心远程开标室(二)-5 六、发布公告的媒介及招标公告期限 本次招标公告在《河南省政府采购网》、《中国政府采购网》、《河南省公共资源交易中心网》上发布, 招标公告期限为五个工作日 。 七、其他补充事宜 无 八、凡对本次招标提出询问,请按照以下方式联系 1. 采购人信息 名称:阜外华中心血管病医院 地址:河南省郑州市郑东新区阜外大道1号 联系人:何芸 联系方式:0371-58680092 2.采购代理机构信息(如有) 名称:河南省信人工程造价咨询有限公司 地址:河南省郑州市金水区文化路9号永和国际1702室 联系人:龚亮 联系方式:0371-63899156 3.项目联系方式 项目联系人:龚亮 联系方式:0371-63899156 采购需求-(高通量基因测序全自动核酸提取仪、高通量基因测序超声DNA打断仪、高通量基因测序生信分析软件、高通量多功能全自动液体处理工作站).pdf × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:基因测序仪,核酸提取仪,大分子作用仪,移液工作站 开标时间:2023-03-01 09:00 预算金额:207.00万元 采购单位:阜外华中心血管病医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:河南省信人工程造价咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 阜外华中心血管病医院国家区域医疗中心设备(高通量基因测序全自动核酸提取仪、高通量基因测序超声DNA打断仪 河南省-郑州市-金水区 状态:公告 更新时间: 2023-02-07 招标文件: 附件1 阜外华中心血管病医院国家区域医疗中心设备(高通量基因测序全自动核酸提取仪、高通量基因测序超声DNA打断仪、高通量基因测序生信分析软件、高通量多功能全自动液体处理工作站)采购项目-公开招标公告 中小微企业融资申请 项目概况 阜外华中心血管病医院国家区域医疗中心设备(高通量基因测序全自动核酸提取仪、高通量基因测序超声DNA打断仪、高通量基因测序生信分析软件、高通量多功能全自动液体处理工作站)采购项目招标项目的潜在投标人应在河南省公共资源交易中心网站获取招标文件,并于2023年03月01日09时00分(北京时间)前递交投标文件。 一、项目基本情况 1、项目编号:豫财招标采购-2023-19 2、项目名称:阜外华中心血管病医院国家区域医疗中心设备(高通量基因测序全自动核酸提取仪、高通量基因测序超声DNA打断仪、高通量基因测序生信分析软件、高通量多功能全自动液体处理工作站)采购项目 3、采购方式:公开招标 4、预算金额:2,070,000.00元 最高限价:2070000元 序号 包号 包名称 包预算(元) 包最高限价(元) 1 豫政采(2)20230048-1 国家区域医疗中心设备(高通量基因测序全自动核酸提取仪、高通量基因测序超声DNA打断仪、高通量基因测序生信分析软件、高通量多功能全自动液体处理工作站)采购项目 2070000 2070000 5、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等) 5.1 采购货物名称及数量:高通量基因测序全自动核酸提取仪 1台,高通量基因测序超声DNA打断仪 1台,高通量基因测序生信分析软件 1套,高通量多功能全自动液体处理工作站 1台5.2 标包划分:共划分 1 个标包 5.3 采购货物技术性能指标:具体参数详见招标文件第五章“采购需求” 5.4 核心产品:高通量多功能全自动液体处理工作站 5.5 采购范围:货物的供货、运输、保险、装卸、安装、检测、调试、试运行、验收交付、培训、技术支持、售后保修及相关伴随服务5.6 资金来源:财政资金,已落实5.7 交货期:10日历天5.8 交货地点:采购人指定地点 6、合同履行期限:/ 7、本项目是否接受联合体投标:否 8、是否接受进口产品:是 9、是否专门面向中小企业:否 二、申请人资格要求: 1、满足《中华人民共和国政府采购法》第二十二条规定; 2、落实政府采购政策满足的资格要求: 无; 3、本项目的特定资格要求 供应商须具有医疗器械经营许可证或医疗器械经营备案凭证(医疗器械注册人、备案人经营其注册、备案的医疗器械,无需办理医疗器械经营许可或者备案,但应当符合《医疗器械监督管理条例》规定的经营条件),投标产品须符合《医疗器械监督管理条例》相关规定,取得医疗器械注册证或相关凭证。 三、获取招标文件 1.时间:2023年02月08日 至 2023年02月14日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外。) 2.地点:河南省公共资源交易中心网站 3.方式:登录《河南省公共资源交易中心-市场主体》凭CA数字证书下载投标项目所含全部资料 4.售价:0元 四、投标截止时间及地点 1.时间:2023年03月01日09时00分(北京时间) 2.地点:通过《河南省公共资源交易中心-市场主体》电子交易平台加密上传 五、开标时间及地点 1.时间:2023年03月01日09时00分(北京时间) 2.地点:河南省公共资源交易中心远程开标室(二)-5 六、发布公告的媒介及招标公告期限 本次招标公告在《河南省政府采购网》、《中国政府采购网》、《河南省公共资源交易中心网》上发布, 招标公告期限为五个工作日 。 七、其他补充事宜 无 八、凡对本次招标提出询问,请按照以下方式联系 1. 采购人信息 名称:阜外华中心血管病医院 地址:河南省郑州市郑东新区阜外大道1号 联系人:何芸 联系方式:0371-58680092 2.采购代理机构信息(如有) 名称:河南省信人工程造价咨询有限公司 地址:河南省郑州市金水区文化路9号永和国际1702室 联系人:龚亮 联系方式:0371-63899156 3.项目联系方式 项目联系人:龚亮 联系方式:0371-63899156 采购需求-(高通量基因测序全自动核酸提取仪、高通量基因测序超声DNA打断仪、高通量基因测序生信分析软件、高通量多功能全自动液体处理工作站).pdf
  • 外泌体粒径分析该选谁?不同外泌体粒径分析技术间的比较
    测量外泌体的粒径分布一直以来都是外泌体表征的重要组成部分。但是由于外泌体的尺寸仅为30~200 nm,所以必须借助一些特殊的检测手段才能够对这种在光学显微镜下不可视的颗粒进行观测。本篇就外泌体粒径测量技术的发展进行简述,并对不同技术的差异进行比较。一、电镜技术在外泌体发现的早期,由于还没有专门针对这类尺寸颗粒的分析方法,因此直接在电镜下面观察粒径并统计成为了早的外泌体粒径统计方法。但是这种方法费时费力,且通量低,在面对临床和科研中的大量样本时显得十分无力。文献中外泌体在电镜TEM模式下的经典形态 二、动态光散射技术 & 纳米粒子跟踪分析技术由于外泌体与材料学所合成的脂质体在形态上十分相似,因此用于脂质体表征的动态光散射技术(DLS)便被应用于外泌体的尺寸测量上。DLS利用光射到远小于其波长的小颗粒上时会产生瑞利散射现象,通过观察散射光的强度随时间的变化推算出溶液中颗粒的大小。但是这种技术会受到测量物质的颜色、电性、磁性等理化特性的影响,并且对于灰尘和杂质十分敏感。因此使得DLS在测量尺寸较小的粒子时,测量出的粒径与实际的分布具有较大的偏差。为了弥补DLS的短板,纳米粒子跟踪分析(NTA)技术孕育而生。这种技术采用激光散射显微成像技术,用于记录纳米粒子在溶液中的布朗运动轨迹,并通过Stokes-Einstein方程推算粒子大小。这种技术能够对30~1000 nm的粒径进行测量,因此能够提供更为地粒径数据。在诸多文献的测试中均取得了较DLS更好的精度,因此成为目前为主流的外泌体尺寸测量手段。NTA技术的工作原理与DLS技术在测量不同尺寸纳米球的数据对比。可见相比于DLS,NTA测量的粒径分布更为。 虽然NTA取得了比DLS 更高的性,但是随着外泌体研究的深入,其局限性也十分明显。先NTA仅能够测量溶液中颗粒的平均粒径尺寸,但是NTA无法分辨其中的外泌体、囊泡、脂蛋白,也不能区别不同源性的外泌体。这直接限制了外泌体粒径表征的意义,使得研究者很难探究外泌体尺寸与外泌体来源之间的关系。另外NTA本身对于测试时的温度、浓度和校准都有着较高要求,因此使得NTA在测试较小的粒子时其精度仍不能达到令人满意的效果,其测试结果却仍与电镜、AFM等成像技术所观测到的粒径存在着明显差异。外泌体在TEM下的成像及粒径统计与NTA测量的结果对比。可见NTA测量到的粒径要比TEM直接测量的结果大50~100 nm。 三、单粒子干涉反射成像技术为了解决上述在实际测试中的问题,一种新型的单粒子干涉反射成像传感器(SP-IRIS)技术孕育而生。这种技术摒弃了布朗运动轨迹追踪方法,通过基底与颗粒形成的相干光进行成像,通过成像后的亮度来直接计算纳米粒子的大小。从而避免了NTA测量粒径轨迹误差大的短板,拥有更高的灵敏度和精度,即使对于NTA无法区分的40 nm与70 nm的粒子混合溶液也依然能够取得很好的分辨率。SP-IRIS的原理及芯片微阵列打印的成像效果和对混合不同粒径小球的区分效果。可见SP-IRIS技术拥有更高的测试通量和测量精度。得益于这种高精度测量方法,越来越多的研究者终于能够测量到与电镜直接观测相当的粒径。这种优势所带来的效果不单单是能够让TEM的数据与纳米粒子表征的数据更为一致,同时还能够表征不同来源的外泌体之间的粒径差异。SP-IRIS、NTA和TEM统计同一样品时所测量的粒径分布。SP-IRIS在测量不同尺寸的外泌体时,测量的粒径与TEM的尺寸统计基本一致,而NTA统计的粒径则比TEM大约50 nm。此外SP-IRIS技术还能够提供不同来源外泌体的尺寸差异,能够看出CD9来源的外泌体要比其它来源的外泌体大~10 nm。 SP-IRIS的另一个优势在于能够更换激光源的波长,因此除了能够实现外泌体的形貌成像外,还能够实现单外泌体的荧光成像。使得单外泌体的荧光共定位成为可能,研究者通过这种单外泌体荧光成像能够研究单外泌体的表型、载物、来源等生物信息。使用SP-IRIS 对受伤组和对照组小鼠不同时间点的血清CD9、CD81来源外泌体的分泌量监测。可以看到CD81来源的外泌体的分泌量呈现先增加后减少的趋势,而CD9来源的外泌体分泌量则一直在增加。 综上所述,由于SP-IRIS技术的高精度、高灵敏度、可做单外泌体荧光成像的优势,目前有越来越多的学者开始对比NTA技术和SP-SPIS技术,其结果均认为SP-SPIS技术测试的效果要明显优于NTA,这其中也不乏Cell等高水平期刊。相信在不久的将来,SP-IRIS技术将会越来越普及,为研究者研究外泌体打开新的大门。 参考文献:[1]. Ayuko Hoshino, et al, Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers,cell, 2020, 182, 1–18.[2]. Oguzhan Avci, et al., Interferometric Reflectance Imaging Sensor (IRIS)—A Platform Technology for Multiplexed Diagnostics and Digital Detection, Sensors 2015, 15, 17649-17665.[3]. George G. Daaboul, et al, Digital Detection of Exosomes by Interferometric Imaging, Scientific Reports,6, 37246.[4]. Federica Collino, et al, Extracellular Vesicles Derived from Induced Pluripotent Stem Cells Promote Renoprotection in Acute Kidney Injury Model, Cells 2020, 9, 453.[5]. Daniel Bachurski, et al, Extracellular vesicle measurements with nanoparticle tracking analysis – An accuracy and repeatability comparison between NanoSight NS300 and ZetaView, JOURNAL OF EXTRACELLULAR VESICLES 2019, 8, 1596016.[6]. Robert D. Boyd, et al, New approach to inter-technique comparisons for nanoparticle size measurements using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering, Colloids and Surfaces A: Physicochem. Eng. Aspects 387,2011, 35– 42.
  • 技术线上论坛丨3月11日《全自动外泌体荧光检测分析系统助力外泌体研究》
    [报告简介] 外泌体是一类直径约30-150 nm的细胞外囊泡,可携带RNA,DNA,蛋白质、等多种信号分子,是一种新型的细胞间信号传递的媒介。在疾病的发生、诊断和治疗中发挥着重要的作用。但是对于外泌体进行分析的手段却非常有限,尤其是在单个外泌体的表征的分析以外泌体内容物分析方面更加缺乏。美国NanoView Biosciences推出的全自动外泌体荧光检测分析系统—Exoview R200,采用了全新的SP-IRIS技术,实现了对单个外泌体的全面表征,包括了外泌体的荧光成像、亚群粒径检测、计数、内容物分析、蛋白共定位等。短短三年,在范围内已有多家实验室采用该设备,包括了著名的哈佛大学、约翰霍普金斯大学、康奈尔大学、洛杉矶儿童医院、麻省总医院、东京工业大学、尔大学、新加坡国立大学、大阪大学等,发表文献近百篇,其中不乏期刊如Cell、Nature、Journal of Extracellular Vesicles、Cancer Research、Nanoscale、ACS Nano、BMJ journal、Brain, Behavior, and Immunity、Trends in Cancer等。 2021年,Quantum Design中国子将Exoview R200引入中国,为国内科研工作者提供了多层次和全面的外泌体表征解决方案,同时也被生物通评为“2021生命科学十大创新产品”。 本次报告内容丰富,包括了目前外泌体研究过程中遇到的困难及挑战,常规的检测方法及其限制,外泌体前沿的进展及Exoview R200如何助力科研工作者取得更加突出的研究成果。Exoview R200能够帮助您实现:☛ 可对单个外泌体进行无标记和荧光成像☛ 无需纯化,避免对外泌体损伤造成检测误差☛ 一次性输出外泌体相关的亚群粒径、亚群计数、蛋白共定位、蛋白荧光强度与粒径对比分析等数据☛ 高通量检测☛ 同时对外泌体表面蛋白和内容物进行分析[直播二维码]扫描上方二维码即刻预约此次报告,无需注册![主讲人介绍]胡西,都医科大学博士,加州大学洛杉矶分校博士后,研究期间主要从事干细胞诱导和神经细胞分化及ALS相关病变研究。2018年加入Quantum Design中国子公司,任生物部应用科学家,主要负责光学成像类设备的应用技术支持工作,具有丰富的电镜、高显微镜操作和成像经验。[报告时间]开始: 2022年3月11日 10:00结束: 2022年3月11日 10:30[精选案例]▪ 研究脑脊液中的外泌体 ▪ 检测脊髓受伤后的小鼠血液中的外泌体▪ 研究肾癌细胞的乏氧检测▪ 研究改造的外泌体
  • 技术线上论坛丨5月17日《新一代全方位外泌体荧光检测分析系统助力外泌体研究》
    报告简介:外泌体是一类直径约30-150 nm的细胞外囊泡,可携带RNA,DNA,蛋白质、等多种信号分子,是一种新型的细胞间信号传递的媒介。在疾病的发生、诊断和治疗中发挥着重要的作用。但是对于外泌体进行分析的手段却非常有限,尤其是在单个外泌体的表征的分析以外泌体内容物分析方面更加缺乏。美国NanoView Biosciences推出的全自动外泌体荧光检测分析系统—Exoview R200,采用了全新的SP-IRIS技术,实现了对单个外泌体的全面表征,包括了外泌体的荧光成像、亚群粒径检测、计数、内容物分析、蛋白共定位等。短短三年,在范围内已有多家实验室采用该设备,包括了著名的哈佛大学、约翰霍普金斯大学、康奈尔大学、洛杉矶儿童医院、麻省总医院、东京工业大学、尔大学、新加坡国立大学、大阪大学等,发表文献近百篇,其中不乏期刊如Cell、Nature、Journal of Extracellular Vesicles、Cancer Research、Nanoscale、ACS Nano、BMJ journal、Brain, Behavior, and Immunity、Trends in Cancer等。 2021年,Quantum Design中国将Exoview R200引入中国,为国内科研工作者提供了多层次和全面的外泌体表征解决方案,同时也被生物通评为“2021生命科学十大创新产品”。 本次报告内容丰富,包括了目前外泌体研究过程中遇到的困难及挑战,常规的检测方法及其限制,外泌体前沿的进展及Exoview R200如何助力科研工作者取得更加突出的研究成果。Exoview R200能够帮助您实现:▪ 可对单个外泌体进行无标记和荧光成像▪ 无需纯化,避免对外泌体损伤造成检测误差▪ 一次性输出外泌体相关的亚群粒径、亚群计数、蛋白共定位、蛋白荧光强度与粒径对比分析等数据▪ 高通量检测▪ 同时对外泌体表面和内容物进行分析 直播入口:您可通过点击此处或扫描下方二维码进入直播界面。扫描上方二维码即可观看直播主讲人: Clayton Deighan博士是美国NanoView Biosiences的外泌体科学家和销售总监。2015年,他在俄亥俄州立大学的Jeff Chalmers博士的指导下完成了关于分离稀有细胞和纳米颗粒的课题论文,在Malvern Panalytical工作了4 年,负责颗粒粒径和计数仪器的技术支持,然后加入NanoView Biosiences工作至今。自ExoView检测平台被推出以来,他一直是NanoView的重要推动力量,与各地的外泌体科学家合作,揭示这些微小颗粒的用途。 报告时间:2022年5月17日 14:00-14:40 精选案例: ▪ 研究脑脊液中的外泌体▪ 检测脊髓受伤后的小鼠血液中的外泌体▪ 研究肾癌细胞的乏氧检测▪ 研究改造的外泌体
  • 技术线上论坛| 6月22日《全自动外泌体荧光检测分析系统——开启单外泌体表征省时省力新时代!》
    [报告简介] 外泌体是一类直径约30-150 nm的细胞外囊泡,可携带RNA,DNA,蛋白质、等多种信号分子,是一种新型的细胞间信号传递的媒介。在疾病的发生、诊断和治疗中发挥着重要的作用。但是对于外泌体进行分析的手段却非常有限,尤其是在单个外泌体的表征分析以及外泌体内容物分析方面更为缺乏。美国NanoView Biosciences推出的全自动外泌体荧光检测分析系统—ExoView R200,采用了全新的SP-IRIS技术,实现了对单个外泌体的全面表征,包括了外泌体的荧光成像、亚群粒径检测、计数、内容物分析、蛋白共定位等。短短三年,在全范围内已有100多家实验室采用该设备,发表SCI近200篇。 2021年,Quantum Design中国子公司将Exoview R200引入中国,为国内科研工作者提供了多层次和全面的外泌体表征解决方案,同时也被生物通评为“2021生命科学十大创新产品”。 短短一年时间,国内已经有多个单位使用全自动外泌体荧光检测分析系统发表高水平文章。本次报告主要包括了:☛ 目前外泌体研究常规的检测方法及其限制;☛ 外泌体研究前沿的进展;☛ Exoview R200如何助力科研工作者取得更加突出的研究成果。[直播入口] 请扫描下方二维码进入NanoView外泌体检测分析技术群,届时会在微信群中实时更新直播入口,无需注册!扫码进群,即刻获取直播链接,无需注册![报告时间]开始 2022年06月22日 14:00结束 2022年06月22日 14:30[主讲人介绍]李宁,药理学硕士,毕业于兰州大学。主要研究方向为生物制药研发和高通量检测。现任Quantum Design中国子公司产品经理,主要负责全自动外泌体荧光检测分析系统的应用开发、技术沟通及市场拓展的工作。[中国客户发表文章精选]☛ 上海大学肖俊杰课题组在《Journal of extracellular vesicles》发表文章,题目为《Extracellular vesiclesenclosed-miR-421 suppresses air pollution (PM2.5)-induced cardiacdysfunction via ACE2 signalling》 ☛ 中国科学院深圳技术研究院杨慧课题组发表在《Lab on a Chip》发表文章,题目为《Extraction of small extracellular vesicles by label-free and biocompatibleon-chip magnetic separation》 ☛ 北京天坛医院张力伟课题组、纳米科学中心梁兴杰课题组、北京航空航天大学陈军歌课题组在《Advanced Science》发表文章,题目为《Functionalized Macrophage Exosomeswith Panobinostat and PPM1D-siRNA for Diffuse Intrinsic Pontine Gliomas Therapy》☛ 同济大学附属上海市肺科医院姜格宁/徐建芳/郑迪课题组、上海思路迪转化医学在《Journal of Nanobiotechnology》发表文章,题目为《Identificationand evaluation of circulating small extracellular vesicle microRNAs asdiagnostic biomarkers for patients with indeterminate pulmonary nodules》
  • 外泌体研究快车道!全自动外泌体荧光检测分析系统顺利落户广州乾晖生物科技有限公司
    近日,Quantum Design中国顺利将NanoView全自动外泌体荧光检测分析系统安装于广州乾晖生物科技有限公司,并对用户进行了详细的仪器介绍和操作培训。全自动外泌体荧光检测分析系统无需纯化、可全自动对单个外泌体进行表征分析,其优越的性能将为广州乾晖生物科技有限公司的外泌体研究添砖加瓦!广州乾晖生物科技有限公司全自动外泌体荧光检测分析系统能够提供全面的外泌体表征信息,包括外泌体粒径大小、计数、分布、携带蛋白表达、生物标志物(CD9,CD81,CD63等)共定位等。设备操作简单,结果可靠。短短三年,在世界范围内已有100多家实验室采用该设备,包括了著名的哈佛大学、约翰霍普金斯大学、康奈尔大学、洛杉矶儿童医院、麻省总医院、东京工业大学、首尔大学、新加坡国立大学、大阪大学等,发表SCI已超过200篇,其中不乏高水平期刊如Cell、Nature、Journal of Extracellular Vesicles、Cancer Research、Nanoscale、ACS Nano、BMJ journal、Brain Behavior Immunity、Trends in Cancer等。Quantum Design中国工程师讲解实验原理广州乾晖生物科技有限公司系统装机照片全自动外泌体荧光检测分析系统顺利安装NanoView全自动外泌体荧光检测分析系统测试数据2022年NanoView高水平文章精选列表:☛ Heikki Kyykallio ……& Pia R-M Siljander. (2022) A quick pipeline for the isolation of 3D cell culture-derived extracellular vesicles. Journal of Extracellular Vesicles.☛ Tyler J ……& Atta Behfar. (2022) Exosome biopotentiated hydrogel restores damaged skeletal muscle in a porcine model of stress urinary incontinence. Npj Regenerative Medicine.☛ Min Han ……& Tao Xin. (2022) Three-Dimensional-Cultured MSC-Derived Exosome-Hydrogel Hybrid Microneedle Array Patch for Spinal Cord Repair. Nano Letters.☛ Roberto Frigerio ……& Marina Cretich. (2022) Comparing digital detection platforms in high sensitivity immune-phenotyping of extracellular vesicles. Journal of Extracellular Vesicles.☛ Zijian Yang ……& David A. Issadore. (2022) Ultrasensitive Single Extracellular Vesicle Detection Using High Throughput Droplet Digital Enzyme-Linked Immunosorbent Assay. Nano Letters.☛ Yael Hirschberg ……& Inge Mertens. (2022) Characterizing extracellular vesicles from individual low volume cerebrospinal fluid samples, isolated by SmartSEC. Journal of Extracellular Vesicles.☛ Sukhbir Kaur……& David D. Roberts. (2022) Single vesicle analysis of CD47 association with integrins and tetraspanins on extracellular vesicles released by T lymphoblast and prostate carcinoma cells. Journal of Extracellular Vesicles.☛ Simone M. Crivelli……& Erhard Bieberich. (2022) Function of ceramide transfer protein for biogenesis andsphingolipid composition of extracellular vesicles. Journal of Extracellular Vesicles.☛ Kazuki Takahashi……& Manabu Tokeshi. (2022) Non-competitive fluorescence polarization immunosensing for CD9 detection using a peptide as a tracer. Lab on a Chip.☛ Nasibeh Karimi ……& Cecilia Lä sser. (2022) Tetraspanins distinguish separate extracellular vesicle subpopulations in human serum and plasma – Contributions of platelet extracellular vesicles in plasma samples. Journal of Extracellular Vesicles.☛ Lin Zeng ……& Hui Yang. (2022) Extraction of small extracellular vesicles by label-free and biocompatible on-chip magnetic separation. Lab on a Chip.☛ Hongyun Wang ……& Junjie Xiao. (2022) Extracellular vesicles enclosed-miR-421 suppresses air pollution (PM2.5)-induced cardiac dysfunction via ACE2 signalling. Journal of Extracellular Vesicles.☛ Linglei Jiang……& Santosh Dhakal. (2022) A7 bacterial extracellular vesicle-based intranasal vaccine against SARS-CoV-2 protects against disease and elicits neutralizing antibodies to wild-type and Delta variants. Journal of extracellular vesicles.☛ Shaobo Ruan, Nina Erwin, Mei He. (2022) Light-induced high-efficient cellular production of immune functional extracellular vesicles. Journal of extracellular vesicles.全自动外泌体荧光检测分析系统(ExoView R200)简介Nanoview所开发的全自动外泌体荧光检测分析系统(ExoView R200)采用单粒子干涉反射成像传感器(SP-IRIS)技术,是一款无需纯化的全自动的新型外泌体表征设备。该设备能够提供全面的外泌体表征信息,包括颗粒大小、计数、表型与生物标志物共定位等,提供多层次和全面的外泌体测量解决方案。为了更好的服务中国客户;Quantum Design中国子公司在北京建立了专业的客户服务中心,正式推出专业的全面外泌体表征测试服务,您只需要少量样品即可获得全面的外泌体表征数据:相关产品1、全自动外泌体荧光检测分析系统2、ExoView外泌体全面表征试剂盒
  • 解锁单外泌体水平内容物分析新进展
    外泌体内容物包含蛋白质、RNA、DNA和脂类,可以被设计用于药物传递系统与疾病的新型诊断标志物,具有重要的研究意义。但传统的技术方法如Western Blot,ELISA,无法获得单个外泌体的蛋白表型,更不能将检测内容物与粒径分析、浓度分析、计数等联系起来,大地制约了外泌体内容物的相关研究。单外泌体表征分析(Exoview)是将免疫学与光学结合的一种新技术[1]。先利用免疫识别将特定的外泌体进行捕获分离,然后再对目标外泌体的表面标志物及内容物(如携带的蛋白质、RNA、DNA及细胞因子)进行定量分析,从而更加全面地反映外泌体内容物的特性。相对于传统的手段主要优势有:☛ 无论是尿液、血清、血浆、组织液、细胞液均无需纯化,即可检测;☛ 检测灵敏度高,单外泌体水平探测;☛ 一次性输出指标丰富,单次检测即可输出外泌体的:粒径、技术、表面标志物(CD9/CD63/CD81)、荧光表达及亚群分布;本文选取了部分单外泌体表型分析技术在内容物方向的新进展,供大家参考。J Extracell Vesicles:单外泌体水平的蛋白内容物检测与定量 外泌体的内容物可以通过生物工程手段修饰。其中,将选择的蛋白内容物与外泌体的EV-sorting proteins通过细胞工程融合是常用的方法。这种方法既可以在腔内储存可输送到靶细胞的内容物,也可以让内容物与靶细胞表面受体结合来增强它们的治疗信号特性或靶向能力。因此,Silva等[2]在单外泌体水平上,通过分析工程化外泌体技术对不同外泌体的EV-sorting proteins在促进蛋白内容物的装载效率进行了评估。研究人员分别将含有7种EV-sorting proteins(GFP偶联)的质粒分别转染Expi293F细胞,分离纯化了细胞分泌的外泌体后检测外泌体的表型并进行蛋白定量。ExoView芯片上包被的CD63/CD81/CD9抗体捕获外泌体后,使用带红色荧光的CD63/CD81/CD9荧光抗体标记所有外泌体,带绿色荧光的GFP荧光抗体标记表达GFP的外泌体(图1a)。图1b是外泌体的荧光扫描图像,可以确认每个荧光标记了GFP外泌体同时也被CD63/CD81/CD9标记,由此可以计算出含目标蛋白外泌体占总数的比例(图1c)。ExoView还可以检测单个外泌体的荧光强度,进而得到样品荧光强度的均值(图1d),可以表示GFP的相对含量。以上结果表示,CD63,TSPAN14和CD81TM能够使目的蛋白内容物高效地装载外泌体。图1. ExoView检测外泌体表型与相对含量 Lab on a Chip:细胞外囊泡介导的母胎之间HMGB1信号诱导早产早产(PTB,小于37周的妊娠)每年影响了全球约11%的孕妇,造成100万新生儿的死亡。高迁移率族蛋白B1(HMGB1)是一种警报素,是衰老羊膜细胞通过细胞外囊泡释放的炎症信号之一。羊水、脐带血和孕妇血液中的HMGB1水平升高与足月和早产有关。Enkhtuya Radnaa等[3]通过电穿孔把正常羊膜上皮细胞的外泌体改造为装载HMGB1的外泌体(eHMGB1)并对其进行表征。结果显示导致PTB的装载HMGB1的外泌体(eHMGB1)与增加的母-胎界面(FMi)炎症有关。该研究证明了胎儿外泌体介导的旁分泌信号传导可以产生炎症并诱导分娩。其中,研究人员使用单个外泌体表型分析技术( ExoView )检测了电穿孔法向外泌体载入HMGB1的效率。ExoView的芯片上包含了CD63/CD81/CD9抗体,分别捕获了未装载(eCTRL)和装载HMGB1的外泌体(eHMGB1),使用试剂盒自带的穿膜试剂对外泌体进行处理后,再使用荧光抗体分别标记HMGB1/CD63/CD9,进行粒径检测和表型分析。图2粒径检测结果显示,eCTRL和装载HMGB1的外泌体(eHMGB1)的粒径分布没有显著差异,表示电穿孔处理没有改变外泌体的粒径。 图2. ExoView检测未装载(eCTRL)和装载HMGB1的外泌体(eHMGB1)的粒径分布 图3荧光计数结果显示,装载HMGB1的外泌体(eHMGB1)中HMGB1阳性外泌体数量明显高于eCTRL,而CD9和CD63阳性的外泌体在两个样本中数量接近,这表明HMGB1已成功装载到eHMGB1中(图3)。图3 ExoView检测未装载(eCTRL)和装载HMGB1的外泌体(eHMGB1)的表型 在以上的研究中,ExoView系统能够以高的灵敏度和特异性地检测到外泌体的内容物,同时对外泌体的表型进行准确全面的表征。外泌体内容物的研究、编辑和外源分子导入,是当今外泌体研究的重点,在临床诊断和生物治疗方面具有巨大的潜力。作为外泌体表征分析的倡导者,美国NanoView Biosciences于2018年推出了全自动外泌体荧光检测分析系统ExoView,该系统一经推出,便引起了外泌体领域科研工作者的广泛关注,凭借其稳定、出色的性能,短短几年在全球已有近百个客户,发表文献100多篇。ExoView的表征,能够帮助科学家更深入地了解外泌体与疾病之间的关系,助力疾病诊断和新药开发。参考文献: [1] Radnaa, E., Richardson, L. S., Sheller-Miller, S., Baljinnyam, T., de Castro Silva, M., Kammala, A. K., ... & Menon, R. (2021). Extracellular vesicle mediated feto-maternal HMGB1 signaling induces preterm birth. Lab on a Chip, 21(10), 1956-1973.[2] Silva, A. M., Lázaro‐Ibáñez, E., Gunnarsson, A., Dhande, A., Daaboul, G., Peacock, B., ... & Dekker, N. (2021). Quantification of protein cargo loading into engineered extracellular vesicles at single‐vesicle and single‐molecule resolution. Journal of Extracellular Vesicles, 10(10), e12130. 全自动外泌体荧光检测分析系统(ExoView R100)简介Nanoview所开发的全自动外泌体荧光检测分析系统(ExoView R100)采用单粒子干涉反射成像传感器(SP-IRIS)技术,是一款无需纯化的全自动的新型外泌体表征设备。该设备能够提供全方位的外泌体表征信息,包括颗粒大小、计数、表型与生物标志物共定位等,提供多层次和全面的外泌体测量解决方案。 为了更好的服务中国客户,Quantum Design中国子公司在北京建立了专业的客户服务中心,正式推出专业的全方位外泌体表征测试服务,您只需要少量样品即可获得全方位的外泌体表征数据。欢迎各位老师垂询:010-85120280。前10名订购服务的老师,可享受8折优惠!扫描上方二维码,即刻订购吧!
  • 外泌体分泌动力学受温度控制
    单分子荧光成像:外泌体分泌动力学受温度控制荧光显微镜的出现,让细胞器的观察成为可能,而如果要观察到更细致的目标,则需要做单分子荧光成像,今天我们就来分享一个今年用TIRF全内反射荧光显微镜做的单分子荧光成像研究:外泌体分泌动力学受温度控制。 为什么使用TIRF全内反射荧光显微镜全内反射荧光显微镜MF53-TIRFTIRF全内反射荧光显微镜是利用光线全反射后形成衰逝波特性,来实现薄区域荧光观察的光学仪器,这种显微镜相比常规荧光显微镜(宽场荧光),背景荧光显著更低,可以实现信噪比更高、细节更丰富的荧光成像,尤其适合应用于细胞膜物质的动态观察。衰逝波①衰逝波是一种光学现象,当激发光以特定角度入射时,会发生全反射现象,所有激发光会被反射,靠近反射面的样品面则会形成一个深度仅几百纳米,光强呈指数衰减的激发光,称为衰逝波。普通荧光成像与TIRF成像对比① 利用衰逝波,TIRF全内反射荧光显微镜可以将激发范围控制在样品面极薄的区域,从而避免了传统荧光显微镜焦面以外的荧光激发形成的模糊光晕,大大提升了信噪比和分辨率。由于衰逝波光强呈指数衰减,因此最合适的应用是细胞膜相关研究。 外泌体分泌动力学受温度控制我们来看一个论文案例,从中了解TIRF全内反射荧光显微镜的应用优势:超高分辨率、动态观察。使用CD63-pHluorin可视化pH敏感蛋白 使用CD63-pHluorin可视化外泌体与质膜融合过程。TIRF全内反射荧光显微镜可以实现单分子动态跟踪观察,为此需要配备高帧率、高灵敏度的显微镜相机,比如MSH12之类背照式sCMOS科学相机。按成像分析,区分外泌体不同活动方式② 单分子荧光成像研究通常涉及数据统计分析等内容,往往需要一定的算法设计来自动化分析和量化处理,比如本论文使用的就是MATLAB脚本,在github可以下载。成像分析可靠性验证,排除溶酶体或囊泡转运② 通过成像分析CD63-pHluorin可视化外泌体与质膜融合,排除溶酶体或囊泡转运。外泌体与质膜融合有多种动力学模式② 算法分析,得出外泌体与质膜融合有多种动力学模式。 外泌体与质膜融合事件受温度控制② 对不同动力学模式进行分析,显示外泌体与质膜融合事件受温度控制。 模型验证② 利用模型验证解释实验观察到的动力学。进一步的动力学分析② 外泌体与质膜融合前先有对接。 结尾总体而言,全内反射荧光显微镜MF53-TIRF是细胞表面物质动态观察的理想仪器,如固定在盖玻片或细胞膜表面上的分子等,在TIRF基础上明美还有dSTORM超分辨成像方案,有兴趣的老师可以跟我们联系。 如您对这篇论文感兴趣,或者有兴趣获取论文使用的MATLAB自动分析处理脚本,请参考应用来源部分信息②。 引用来源:①Fish KN. Total Internal Reflection Fluorescence (TIRF) Microscopy. Curr Protoc. 2022 Aug 2(8):e517. doi: 10.1002/cpz1.517. PMID: 35972209 PMCID: PMC9522316. ②Mahmood A, et al. Exosome secretion kinetics are controlled by temperature. Biophys J. 2023 Apr 4 122(7):1301-1314. doi: 10.1016/j.bpj.2023.02.025. Epub 2023 Feb 22. PMID: 36814381 PMCID: PMC10111348.https://www.mshot.com/article/1828.html
  • 外泌体miRNA用于肺癌早期诊断
    p  随着精准医学概念的提出,越来越多的人开始关注如何能做到疾病的精确诊断和治疗。外泌体作为一个新型的研究热点,已经成为了疾病诊断的潜在有效方式,在精准医学发展上有着光明的前景。/pp  Xiance Jin等人运用高通量测序技术(High-throughput sequencing),又称“下一代”测序技术(Next-generation sequencing)对46个I期非小细胞肺癌患者和42个健康人员的外泌体miRNA进行分析,以鉴定和验证腺癌和鳞状细胞癌特异性miRNA。/pp  检测发现腺癌特异性miR-181-5p、miR-30a-3p、miR-30e-3p和miR-361-5p,以及鳞状细胞癌特异性miR-10b-5p、miR-15b-5p和miR-320b,并且对比后发现这些miRNA可能是有效的早期非小细胞肺癌非侵入性诊断的生物标志物。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201806/insimg/4dd3175f-8a80-4a9f-9356-1b36460c2ebc.jpg" title="1.jpg"//pp  Hye-Suk Han等人以微阵列及qRT-PCR检测了107例胸腔积液患者无细胞循环microRNA(Circulating cell-free microRNAs)表达水平,以寻找能鉴别良性胸腔积液(BPE)与肺腺癌相关恶性胸腔积液(LA-MPE)的miRNA标志物。微阵列分析筛选160个miRNA后,结果显示,与BPE相比,LA-MPE 的miR-198表达水平显著降低,同时qRT-PCR证实了miRNA微阵列分析结果。将miRNA检测与现有肿瘤标志物结合应用后,可提高检测敏感性与特异性。/pp style="text-align: left text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/ac8799d8-40ef-4525-8533-7afc48849af3.jpg" title="2.jpg"//pp style="text-align: left text-indent: 0em "  Riccardo Cazzoli等人对包含10例肺腺癌患者、10例肺肉芽肿及10例健康吸烟者的共30例血浆样本进行qRT-PCR检测并初步筛选,随后针对包含50个肺腺癌、30个肺肉芽肿和25名健康吸烟者的大样本进行检测再次筛选后,发现miR-378a、miR-379、miR-139-5p和miR-200b-5p的表达水平有助于鉴别结节群(肺腺癌和肺肉芽肿)与非结节群(健康吸烟者),进一步检测miR-151a-5p、miR-30a-3p、miR-200b-5p、miR-629、miR-100和miR-154-3p表达水平有助于鉴别结节群中的肺腺癌患者与肺肉芽肿患者。且前者具有97.5%敏感性与72.0% 特异性,后者具有96.0% 敏感性及60.0%特异性。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201806/insimg/8ef796f5-adf6-4715-b8c3-67e7595887cf.jpg" style="" title="3.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201806/insimg/a6a6d008-9624-4a85-9ead-bb4c22ace628.jpg" style="" title="4.jpg"//pp style="text-align: left text-indent: 2em "参考文献:br//pp  1.Jin X, Chen Y, Chen H, et al. Evaluation of tumor-derived exosomal miRNA as potential diagnostic biomarkers for early-stage non-small cell lung cancer using nextgeneration sequencing. Clin Cancer Res 2017 23:5311-9./pp  2.Han HS, Yun J, Lim SN, et al. Downregulation of cell-free miR-198 as a diagnostic biomarker for lung adenocarcinoma-associated malignant pleural effusion. Int J Cancer 2013 133:645-52./pp  3.Cazzoli R, Buttitta F, Di Nicola M, et al. microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer. J Thorac Oncol 2013 8:1156-62./p
  • 外泌体载药策略:你选对了吗?
    外泌体由于其内源性来源、组织特异性以及良好的生物相容性和血液循环时间长等特点,被视为一类理想的小分子药物递送载体,可用于提高姜黄素、紫杉醇、阿霉素、醉茄素A等小分子药物的有效性和药代动力学。目前基于外泌体的药物装载策略主要分为纯化前载药和纯化后载药两大类。前者通过对亲本细胞进行修饰改造,而实现外泌体的药物装载;后者则是对纯化后外泌体通过物理以及化学等方法进行药物装载,其中大多借鉴了脂质体药物递送系统的经验。厦门大学颜晓梅教授团队在Analytical and Bioanalytical Chemistry上发表题为“Single‑ particle assessment of six different drug‑ loading strategies for incorporating doxorubicin into small extracellular vesicles”的文章,以阿霉素(Doxorubicin, Dox)为模型药物,利用nFCM(纳米流式)在单颗粒水平对六种药物装载策略(共孵育、电穿孔、挤出法、反复冻融、超声和表面活性剂处理)进行对比,综合评估几种方法对sEVs药物包封率、药物装载量、表面蛋白功能维持、长期保存稳定性等影响,为基于sEVs的药物装载和递送研究提供了一个快速、灵敏的单颗粒分析方法。图1. nFCM评估EVs药物装载策略EVs质量控制选用HEK293T来源的EVs装载Dox作为标准模型,研究六种药物装载策略对装载Dox药物的效果。经过超速离心的方法从293T细胞上清中分离得到纯化的EVs,首先对EVs粒径、形态、纯度、蛋白等进行表征,评估获取的EVs的质量。利用Triton X-100处理的方法评估EVs的纯度,nFCM结果显示在经Triton X-100处理后,EVs颗粒数明显下降,EVs的纯度高达80%;粒径结果也显示EVs粒径均在220 nm以下,峰值为52 nm,中位值为103 nm,符合MISEV2018中建议的EVs粒径分布范围(图2)。图2. EVs的鉴定和表征载药策略对比由于Dox具有自发荧光特性,与未装载Dox的EVs相比,装载了Dox的EVs表现出明显的橙色荧光信号,阳性颗粒的比例可达46.3%;在共孵育方法中,随着Dox浓度的增加,阳性EVs的比例持续上升,当Dox浓度为100 μM时,EVs的阳性率达到最高,接近50%(图3);以优化后的Dox浓度(100 μM)为参考,评估对比了共孵育、电穿孔、挤出法、反复冻融、超声和表面活性剂处理这六种方法对EVs载药效率、颗粒浓度、药物装载量等影响。结果显示共孵育和电穿孔法具有最高的装载效率,均为40%以上,而其他几种药物装载策略阳性率在20%-30%之间(图3)。总的来说,考虑到药物包封率、颗粒浓度、药物装载量等因素,共孵育和电穿孔是这几种方法中最理想的EVs药物装载策略。图3. 不同药物装载策略的载药效率、药物装载量对比生物功能分析EVs表面蛋白是其功能形式的重要参与者,对EVs的免疫逃逸和靶向具有重要作用,作者进一步研究了不同药物装载策略对EVs表面蛋白的影响。结果发现,共孵育和电穿孔方法处理后EVs的表面蛋白(CD24、CD47、CD63)表达比例相对更高,说明这两种方法能够最大限度地保持了EVs的生物活性,而挤出法、反复冻融、超声和表面活性剂处理都会不同程度地破坏EVs的表面蛋白(图4)。图4. 不同载药策略对EVs表面蛋白的影响作者进一步评估了不同策略所得载药EVs中药物稳定性和活性(图5)。结果显示在4℃和-80℃条件下保存,随着时间的延长,六种装载策略获得的EVs阳性率均出现下降,而共孵育方法获得的EVs在长期保存下还能保持较高的药物包裹效率(约40%)。综上,无论何种载药方式,都建议将装载Dox的EVs储存在4℃,且共孵育制备的Dox-EVs显示出最高的包封率和稳定性。图5. 载药后EVs的稳定性研究药物作用效果作者还探究了不同药物装载策略所得Dox-EVs的药物活性和细胞摄取效率。共聚焦显微镜和流式细胞术的结果均证实电穿孔的方法获得的EVs具有更高的细胞摄取效率,同时更容易诱导细胞凋亡(图6)。该结果与nFCM测定的不同方法药物包封效率和药物包裹量相吻合,说明了Dox-EVs的治疗效果与细胞摄取率密切相关,并从本质上与Dox的包封率有关,揭示了利用nFCM对EVs进行单颗粒载药表征的准确性和重要价值。图6. 不同载药策略的药物活性总结本研究利用nFCM在单EV水平对六种不同的载药策略进行了全面的评估。实验结果表明:共孵育和电穿孔方法可以获得更高的装载效率,单个EVs中Dox含量也最高;共孵育和电穿孔方法制备的EVs药物具有更高水平的细胞摄取和更显著的促进肿瘤细胞凋亡;共孵育方法获得的EVs无论在4℃或-80℃长期保存条件下,均具有更好的稳定性;nFCM作为一个高效的单颗粒表征平台,可应用于EVs研究的各个环节,包括分离纯化、质量控制、EVs载药方法评估和优化、稳定性监测等方面,加速推进EVs产业化的发展!参考文献Chen, C., Li, Y., Wang, Q. et al. Single-particle assessment of six different drug-loading strategies for incorporating doxorubicin into small extracellular vesicles. Anal Bioanal Chem 415, 1287–1298 (2023). https://doi.org/10.1007/s00216-022-04248-4
  • 外泌体创新疗法:机遇、挑战和应对策略
    外泌体创新疗法:机遇、挑战和应对策略多宁生物科技外泌体是细胞外囊泡的一种亚型,后者是源自细胞的脂质双层闭合结构,几乎由所有类型的细胞分泌,包括外泌体(30-150 nm)、微泡(150 nm 至 1 μm)和凋亡小体(1-5 μm)。长期以来,这些囊泡被认为是一种装载细胞代谢废物的方式,负责运输细胞产生的废物。直到80年代,科研人员在研究绵羊网织红细胞的发育时,才初步确定了一些30-150 nm的囊泡的作用,并命名为外泌体。在电子显微镜下观察,外泌体的形状一般呈杯状或球状,其在细胞间保护和递送功能性大分子,包括核酸、蛋白质、脂质和碳水化合物,将它们的“货物”转移到受体细胞。基于外泌体的临床试验的分析(J. Rezaie, et al., 2022)基于多年的研究,行业已经认识到了外泌体在多种应用中的潜力。在目前的临床试验中,外泌体被用作生物标志物、无细胞疗法(外泌体疗法)、药物递送系统以及抗肿瘤疫苗等。其来源包括间充质细胞、T 细胞和树突状细胞以及其它工程细胞系。外泌体作为药物递送载体具有不可替代的优势,包括低免疫原性、优异的生物相容性和生物稳定性。除了使用未经任何基因/化学修饰的天然外泌体外,对于将有效载荷载入外泌体,主要有两种方式:在直接方法中,外泌体在制备和纯化后装载治疗药物(外源性加载),而在间接方法中,适当的细胞经过基因工程处理或与治疗药物共培养以产生工程外泌体(内源性加载)。将不同有效载荷加载到外泌体中的策略。A. 未经任何基因/化学修饰的天然外泌体。B. 通过亲代细胞工程(树突细胞、间充质干细胞、成纤维细胞和其它细胞)将货物装载到外泌体中。这种策略能够通过在外泌体生物发生之前简单地增加它们在亲代细胞细胞质中的浓度来加载核酸、蛋白质和/或小分子量药物,从而将所需分子包装到新形成的外泌体的腔中。C. 通过膜透化或加载策略将货物加载到外泌体(分离后)。这种策略能够通过被动或主动载荷装载方法装载核酸、蛋白质和/或小药物。然后细胞外环境中的外泌体可以被受体细胞吸收。(D. Ferreira, et al., 2022)对于外源性加载,行业已经探索了各种策略,以将药物加载到外泌体中,最大化其递送潜力,包括简单的孵育以及电转、超声处理、冻融等。研究之间通常存在一些差异,归因于不同的亲本细胞的生物学行为和试剂特性。此外,外泌体天生就装载有天然蛋白质和核酸,这大大降低了所需的载荷装载效率。实现最佳装载的正确方法,又在一定程度上取决于载荷分子,必须事先仔细选择,并且应该考虑负载能力、药物保留和对外泌体特性的潜在影响。直接加载策略的局限性限制了基于外泌体的疗法在临床试验中的使用。创建和使用合理且目的性设计、具有高度定义和可再现属性、同时具有一个已知作用机制的工程外泌体是天然源性外泌体的一个令人信服的替代选择,因为天然源性外泌体通常具有较高的异质性,且作用机制不明确,而工程外泌体对于重要新药物的开发来说,是更加可行的基础。但工程方法需要在维持理想的外泌体理化特性和提高装载效率方面实现一定的改进。而另一个挑战在于,大部分用于外泌体工程的方法都难以在稳定载入所需载荷以及表面修饰 vs. 保持外泌体生物相容性之间找到平衡。基于外泌体的治疗产品的cGMP生产流程(J. Rezaie, et al., 2022)在将基于外泌体的疗法扩展到工业规模生产并随后进入临床的另一个瓶颈是大规模临床级外泌体的产生。外泌体的产量高度依赖于其亲本细胞,受限于细胞分泌外泌体的能力不同以及大规模细胞培养的高难度和高成本。对于药用外泌体行业,扩大到工业水平仍处于起步阶段,最重要的是尽早决定能够生产所需数量并含有治疗性有效载荷的外泌体的方法。大规模外泌体分离方法的低效性是临床级外泌体开发的另一个障碍。不同细胞类型释放的外泌体的数量、物理化学特征和组成可能不同。目前,基于不同原理的技术已用于外泌体分离,包括差速/超速离心、过滤、尺寸排阻层析、基于免疫亲和捕获、聚合物沉淀等。尽管已经开发并优化了一些外泌体纯化方法,但仍然很难找到一种特定的方法解决所有相关的挑战,如分离效率低、样品损失、外泌体回收率和纯度低、以及批次间差异。相应地,全面表征外泌体也至关重要,特别是在大小、形态、浓度、外泌体标记物/内容物的存在以及污染物的去除方面。常用的外泌体分离方法及其优、缺点虽然仍存在挑战和限制,但各种制药公司和初创企业已经铺平了临床级外泌体疗法的发展之路。越来越多的公司专注于开发此类基于外泌体的疗法,以解决各种疗法的药物输送问题,包括小分子、RNA 疗法、蛋白质、病毒基因疗法,甚至成簇规律间隔的短回文重复序列 (CRISPR) 基因编辑工具。其中一些公司也在寻求更加创新的外泌体工程方法来设计基于外泌体的治疗药物,以增加载药量,提高靶向能力。递送 RNA、蛋白质和化学药物的传统方法已经显示出一些局限性,而外泌体作为药物递送载体具有免疫原性低、长期安全和无细胞毒性等巨大优势,在基于外泌体的药物在临床转化、大规模生产、稳定的制备、存储方案和质量控制方面仍存在必须克服的挑战。进一步开发细胞衍生的工程外泌体及其分离、纯化和药物装载技术将有助于克服这些缺点。工程外泌体在提高生产力方面具有显著的商业优势。此外,通过将特定的表面分子锚定在外泌体上,可以增加外泌体在靶细胞或目标疾病部位的局部浓度,从而降低毒性和不良反应,并最大限度地提高治疗效果。未来,行业将可能开发新型多功能化工程外泌体来改善医疗保健,因此,需要进一步的研究来探索外泌体介导疗法的新策略。参考文献:D. Ferreira, J.N.Moreira, L.R. Rodrigues, New advances in exosome-based targeted drug delivery systems. Critical Reviews in Oncology / Hematology, 2022,172:103628.J.Rezaie, M. Feghhi, T.Etemadi, A review on exosomes application in clinical trials: perspective, questions, and challenges. Cell Communication and Signaling, 2022: 20:145.S.Bashyal, C.Thapa, S.Lee, Recent progresses in exosome-based systems for targeted drug delivery to the brain. Journal of Controlled Release, 2022, 348:723-744.
  • Cancers:当脑脊液研究邂逅外泌体表型分析技术
    脑脊液为无色透明的液体,存在于各脑室、蛛网膜下腔和脊髓中央管内,由脑室中的脉络丛产生,平均每日产生量大约500mL,终被吸收在蛛网膜颗粒中。脑脊液充当大脑的缓冲,为颅骨内的大脑提供基本的机械和免疫保护。近几年来,随着对脑脊液的研究愈发深入,脑脊液中的某些物质与肿瘤的治疗预后间的关系也不断被发现。其中,脑脊液分泌的外泌体已成为研究的热点。单个外泌体表型分析是将免疫学与光学结合的一种新技术[1]。该技术先利用免疫识别将特定的外泌体进行捕获分离,然后再对目标外泌体的表面标志物及内容物(如携带的蛋白质、RNA、DNA及细胞因子)进行定量分析,从而更加全面地反映外泌体的特性。该技术在短短两年时间,备受广大科研工作者的关注。本文收集了单个外泌体表型分析技术在脑脊液领域的相关应用,以供参考。 Cancers:脑脊液中的外泌体浓度和miR-21表达的变化可作为软脑膜转移病的生物标记物 软脑膜转移病(LM)是通过脑脊液发展到整个神经系统的晚期癌症的临床表现。研究显示LM患者的总生存期约为6-8周,除脑脊液内化学疗法外,没有明确的LM治疗方法,但由于低反应率和神经毒性,脑脊液内化学疗法的效果值得商榷。同时由于癌细胞量非常少,暂时还没有比较常规的生物标志物来监测其进展或治疗效果。Kyue-Yim Lee等检测了472名患者和对照组的脑脊液外泌体浓度以及miRNA-21的表达,结果表明外泌体浓度升高的患者的生存期比其他患者长。此外,在预后良好组miRNA-21表达升高。因此,外泌体浓度变化结合microRNA-21表达可能会作为监测LM患者颅内化疗疗效的生物标志物。值得注意的是,研究人员使用单个外泌体表型分析技术检测了脑脊液外泌体增加组和外泌体减少组化疗前后外泌体浓度变化,结果表明在脑脊液外泌体降低组中,经过颅内化疗后的每种外泌体浓度(CD9 / CD63 / CD81)均显著降低,而脑脊液外泌体增加组的外泌体浓度没有显著改变(图C和D)。Exoview检测脑脊液外泌体增加组和减少组的化疗前后外泌体的荧光强度和数量Cancers:脑脊液分泌的外泌体非编码RNA是潜在治疗软脑膜转移病的靶标 软脑膜转移病(LM)是一种致命的癌症并发症,其中癌症通过脑脊液扩散到大脑和脊髓周围的脑膜,因此脑脊液被认为是诊断LM细胞的新的生物标记物。研究显示microRNA-21被证实能在细胞间转移后维持基因调控功能,是癌症中有效的预后标志物和关键治疗靶标。Kyue-Yim Lee等通过无偏向多腺苷酸化smRNA文库的构建和NGS分析得到了来自LM患者脑脊液外泌体的全面smRNA谱,并验证了smRNA亚群偏向性表达的重要性。此外,作者使用了一种新的基于多功能慢病毒的microRNA-21监测系统和基于生理细胞的方法验证了microRNA-21的功能在与LM患者的脑脊液外泌体相关的smRNA中是重要的。其中,研究人员使用单个外泌体表型分析技术检测了来自LM患者和健康志愿者(HC)脑脊液外泌体,结果显示CD9 / CD63 / CD81抗体捕获的外泌体的荧光成像以及每个抗体结合外泌体的数量相似(图B),判断出外泌体存在于LM患者和HC的脑脊液中。Exoview检测LM患者和HS的脑脊液外泌体的荧光强度、数量在以上的研究中,ExoView系统以高的灵敏度和特异性地检测了脑脊液外泌体的含量并对其表面蛋白marker进行了准确表征,为脑脊液外泌体的研究提供了新的思路。外泌体对疾病的诊断和治疗显示出了深厚的潜力,具有高的研究价值。在今后的研究中,ExoView的表征,将帮助科学家更深入地了解各种疾病,助力疾病诊断和治疗方法的开发。全自动外泌体荧光检测分析系统(ExoView R100)简介Nanoview所开发的全自动外泌体荧光检测分析系统(ExoView R100)采用单粒子干涉反射成像传感器(SP-IRIS)技术,是一款无需纯化的全自动的新型外泌体表征设备。该设备能够提供全方位的外泌体表征信息,包括颗粒大小、计数、表型与生物标志物共定位等,提供多层次和全面的外泌体测量解决方案。ExoView R100允许研究者直接分析特定群体的外泌体或外囊泡。通过ExoView芯片,客户能够直接多分析9个不同的样本,节省成本、时间,并减少纯化所带来的偏差。为了更好的服务您的科研工作,Quantum Design中国也建立了样机演示实验室,可以为您提供为专业的售前、销售、售后技术支持,欢迎老师您通过拨打电话010-85120280参观试用!参考文献:[1] Scherr, S. M., Daaboul, G. G., Trueb, J., Sevenler, D., Fawcett, H., Goldberg, B., ... & Ünlü, M. S. (2016). Real-time capture and visualization of individual viruses in complex media. ACS nano, 10(2), 2827-2833.[2] Lee, K. Y., Im J. H, Lin W.W...&Lee C.J.Nanoparticles in 472 Human Cerebrospinal Fluid: Changes in Extracellular Vesicle Concentration and miR-21 Expression as a Biomarker for Leptomeningeal Metastasis during pregnancy. Cancers, 2020, 12(10):2745.[3] Lee, K. Y., Seo, Y., Im, J. H., Rhim, J., Baek, W., Kim, S., ... & Kim, J. H. Molecular Signature of Extracellular Vesicular Small Non-Coding RNAs Derived from Cerebrospinal Fluid of Leptomeningeal Metastasis Patients: Functional Implication of miR-21 and Other Small RNAs in Cancer Malignancy. Cancers, 2021, 13(2), 209.
  • 单个外泌体表征分析技术2021上半年亮点论文盘点
    单个外泌体表征分析是将免疫学与光学结合的一种新技术[1]。该技术先利用免疫识别将特定的外泌体进行捕获分离,然后再对目标外泌体的表面标志物及内容物(如携带的蛋白质、RNA、DNA及细胞因子)进行定量分析,从而更加全面地反映外泌体的特性。作为外泌体表征分析的倡导者,美国NanoView Biosciences于2018年推出了全自动外泌体荧光检测分析系统ExoView,该系统一经推出,便引起了外泌体领域科研工作者的广泛关注,仅两年在全球已有50多个实验室采用该技术,发表文献近百篇。进入2021年,使用ExoView发表的论文出现井喷性增长,短短数月已经发表了近30篇。本文将选取其中几篇比较有代表性的文章,来说明ExoView在肾脏再生、胎儿早产、miRNA等研究领域的具体应用。 ACS Nano:多聚脱氧核糖核苷酸和干细胞来源的细胞外囊泡的复合生物活性支架可用于肾脏再生 慢性肾病(CKD)已是一个严重的公共卫生问题,因为其治疗成本高,而且发病率和患病率在不断增加。目前CKD的治疗方法是肾脏替代疗法,包括腹膜透析、血液透析和肾脏移植,但可用肾脏的数量无法满足日益增长的需求。因此,肾脏组织工程和肾脏再生被认为是一种有前景的治疗方法。基于此,Kyoung-Won Ko等[2]研发了一种多孔气动微挤压复合支架(PME),它是由聚乳酸-乙醇酸共聚物(PLGA, P)、氢氧化镁(MH, M)和脱细胞猪肾细胞外基质 (kECM, E) 组成,并用多聚脱氧核糖核苷酸(PDRN)和肿瘤坏死因子-α(TNF-α)/干扰素-γ(IFN-γ)诱导的间充质干细胞来源的细胞外囊泡(TI-EV)进行功能化,以促进肾组织的再生和维持其功能。结果显示与现有的肾部分切除小鼠模型的 PME 支架相比,PME/PDRN/TI-EV支架可诱导有效的肾小球再生和肾功能恢复。 其中,研究人员使用ExoView对未处理的脐带组织间质干细胞的外泌体(UC-EV)和经过TNF-α/IFN-γ 预处理的脐带组织间质干细胞的外泌体(TI-EV)进行检测,结果显示CD9和CD81在UC-EV上显着表达,而CD63主要在TI-EV 上表达(图1)。由于CD63对内吞作用很重要,因此TI-EV比UC-EV更容易被细胞摄取。 图1 ExoView检测CD9、CD63、CD8在UC-EV和TI-EV中的表达Lab on a Chip:细胞外囊泡介导的母胎之间HMGB1信号诱导早产 早产(PTB,小于37周的妊娠)每年影响了全球约11%的孕妇,造成100万新生儿的死亡。高迁移率族蛋白B1(HMGB1)是一种警报素,是衰老羊膜细胞通过细胞外囊泡释放的炎症信号之一。羊水、脐带血和孕妇血液中的HMGB1水平升高与足月和早产有关。Enkhtuya Radnaa等[3]通过电穿孔把正常羊膜上皮细胞的外泌体改造为含有HMGB1的外泌体(eHMGB1)并对其进行表征,然后使用包含四个不同细胞类型(羊膜、绒毛膜间充质、绒毛膜滋养层和蜕膜细胞)的四腔微流控芯片器官设备(FMi-OOC)测试其在母-胎界面(FMi)中的传播力。结果显示导致PTB的eHMGB1与增加的FMi炎症有关。该研究证明了胎儿外泌体介导的旁分泌信号传导可以产生炎症并诱导分娩。 值得注意的是,研究人员对eCTRL与eHMGB1进行荧光染色标记并使用ExoView进行检测。基于ExoView可有效检测外泌体内容物的特性,研究结果显示eHMGB1的HMGB1阳性外泌体数量明显高于eCTRL,而CD9和 CD63阳性的外泌体在两个样本中数量接近,这表明HMGB1已成功装载到eHMGB1中(图2)。图2 ExoView检测改造的对照外泌体(eCTRL)与eHMGB1 Brain Behavior and Immunity:脊髓损伤导致血清神经炎症相关纳米颗粒中miRNA与CD81+外泌体水平的改变 脊髓损伤(SCI)会对机体产生系统性影响,导致呼吸、免疫、消化等功能异常,以及相关脑区产生神经炎症和退行性病变。有研究表明,SCI的病理发展可能与血液中外泌体的运输有关;而在中枢神经系统损伤模型中,外泌体可能参与了miRNA等炎性因子运输导致炎症扩散。Khan等[4]使用包括Exoview外泌体表型分析的多种技术详细表征了SCI建模的小鼠血浆外泌体,发现损伤后外泌体的数量、蛋白marker和内容物均有明显的变化,将SCI小鼠的外泌体注射入脑室还可诱发产生炎症。研究人员使用ExoView检测了SCI血浆外泌体的粒径、数量、荧光强度和共定位(图3A)。外泌体在CD81和CD9区域产生特异性结合而被捕获,而没有CD63捕获。根据干涉成像获得外泌体尺寸分布,其中在50nm多(图3B&C)。荧光成像则检测到了大量干涉成像检测不出的尺寸小于50nm的外泌体(图3D&E),CD81和CD9在大量外泌体上表型出荧光共定位,而CD63荧光则未被检测到,这与图3C结果一致(图3F-H)。图3 ExoView检测血浆外泌体的粒径、数量、荧光强度和共定位 研究人员进一步比较了SCI组和对照组的血浆外泌体变化,结果表明,在损伤后1d的时间点,CD81外泌体数量相对对照组更高,与Western Blot的结果一致;而CD9外泌体数量则没有统计学差异,与流式分析的结果一致(图4A&B)。基于图3H的CD81与CD9有大量的荧光共定位,检测CD9外泌体的CD81荧光强度,由1d的荧光强度中位数差异可知,CD81+外泌体数量与外泌体的CD81含量在损伤后1d有明显上升(图4C)。图4 ExoView检测血浆外泌体的粒径、数量、荧光强度和共定位 参考文献:[1] Scherr, S. M., Daaboul, G. G., Trueb, J., Sevenler, D., Fawcett, H., Goldberg, B., ... & Ünlü, M. S. (2016). Real-time capture and visualization of individual viruses in complex media. ACS nano, 10(2), 2827-2833.[2] Kyoung-Won Ko, So-Yeon Park, Eun Hye Lee, Yong-In Yoo, Da-Seul Kim, Jun Yong Kim, Tae Gyun Kwon and Dong Keun Han. (2021). Integrated Bioactive Scaffold with Polydeoxyribonucleotide and Stem-Cell-Derived Extracellular Vesicles for Kidney Regeneration. ACS Nano, 15(4): 7575−7585.[3] Enkhtuya Radnaa, Lauren S. Richardson, Samantha Sheller-Miller, Tuvshintugs Baljinnyam, ...& Ramkumar Menon. (2021). Extracellular vesicle mediated feto-maternal HMGB1 signaling induces preterm birth. Lab on a Chip, DOI: 10.1039/D0LC01323D.[4] Khan, N. Z., Cao, T., He, J., Ritzel, R. M., Li, Y., Henry, R. J., ... & Wu, J. (2021). Spinal cord injury alters microRNA and CD81+ exosome levels in plasma extracellular nanoparticles with neuroinflammatory potential. Brain, behavior, and immunity, Volume 92: 165-183.全自动外泌体荧光检测分析系统(ExoView R100)简介Nanoview所开发的全自动外泌体荧光检测分析系统(ExoView R100)采用单粒子干涉反射成像传感器(SP-IRIS)技术,是一款无需纯化的全自动的新型外泌体表征设备。该设备能够提供全方位的外泌体表征信息,包括颗粒大小、计数、表型与生物标志物共定位等,提供多层次和全面的外泌体测量解决方案。 为了更好的服务中国客户,Quantum Design中国子公司在北京建立了专业的客户服务中心,正式推出专业的全方位外泌体表征测试服务,您只需要少量样品即可获得全方位的外泌体表征数据。欢迎各位老师垂询:010-85120280。前10名订购服务的老师,可享受8折优惠!扫描上方二维码,即刻订购吧!
  • 权威发布来了!外泌体四大研究平台PK赛!
    目前用于外泌体单颗粒表征的平台众多,然而对各个平台间测定外泌体的效果对比却鲜有报道,这使得不同方法得出来的结果可能存在差异,影响结果的准确性。2020年8月5日来自约翰霍普金斯大学医学院的Kenneth W. Witwer教授团队在BioRxiv上在线发表了题为"Characterization of extracellular vesicles and artificialnanoparticles with four orthogonal single-particle analysis platforms"的文章,综合比较了外泌体单颗粒表征的四个平台,包括SP-IRIS(Single-particle interferometricreflectance imaging sensing)、NTA(Nanoparticle tracking analysis)、MRPS(Microfluidic resistive pulse sensing)、NFCM(Nanoflow cytometry measurement,NanoFCM)。通过不同方法对四个平台在颗粒粒径、浓度、荧光测定准确性等进行了深入对比,发现四个平台各自具有优缺点,供外泌体领域的研究者们参考。图1 四大外泌体研究平台NanoFCM外泌体表征平台的优势粒径检测对比纳米流式(Nano-flow cytometry, NFCM / NanoFCM)作为对比的平台之一,显示出其强大的功能和独特的优势。如在粒径检测方面,作者用4种不同粒径的二氧化硅(Silica)混合球和4种聚苯乙烯微球(Polystyrene, PS)的混合物在四个平台上测试,从图中可以看出不管是Silica还是PS混合球,NFCM都可以完美区分出4个峰;NTA基本就一个峰,无法分辨混合球;SP-IRIS也能较好对4个峰进行区分,但是从图可以看出其测定的点数相对较少,NFCM测定点更密集,通量更高,数据更具统计代表性(图2AD);MRPS分辨率较差,需要校正才能区分(图2C)。虽然SP-IRIS能够分辨出4个峰,但是文章最后作者提到SP-IRIS和MRPS需要用芯片检测样品,费用最高,而且上样浓度无法确定,往往一个样品需要多个芯片测试,并且芯片需要定制,芯片保存周期只有3周等缺点,所以作者认为SP-IRIS并不适合大规模应用。相反,NanoFCM基本无耗材,检测时间只要2-5 min,非常适用于样品大规模、快速检测。图2 四个平台对4种二氧化硅混合球表征图3 四个平台对4种聚苯乙烯混合球表征浓度检测对比除了对粒径进行对比,作者也对四个平台浓度测试准确性进行了对比。作者发现对于PS的浓度测试,NTA、MRPS、NFCM得出的浓度与理论值(图4D,虚线表示理论浓度)十分接近,能够准确测定出浓度信息。值得指出的是,SP-IRIS只能得到颗粒数的结果而无法提供颗粒浓度的信息。图4 四个平台对颗粒浓度的表征总结文章中作者还在其他方面对不同平台进行了对比,纳米流式(NFCM/NanoFCM)是唯一一个能在单颗粒水平同时提供粒径分布,颗粒浓度和荧光分析的平台。具体优势如下表:1.NanoFCM灵敏度在四个平台中是最高的,粒径检测低至40 nm;2.上样体积只需20μL,基本无耗材。3.粒径分布和浓度测试在四个平台中都是最优的;4.可以进行双荧光标记;当然作者对其他方面也进行了对比,感兴趣的读者可以通过点击文章左下方阅读原文了解。相信随着纳米流式的广泛应用,会大大加速外泌体领域的研究和产业化进程。 表1 四大外泌体研究平台对比结果本文作者简介:Kenneth W. Witwer教授是约翰霍普金斯大学医学院的分子、比较病理生物学和神经学副教授。他曾担任该领域领先的科学组织——国际细胞外囊泡学会(ISEV)的秘书长和科学及会议执行主席,MISEV发起人。曾任美国国立卫生研究院(胞外RNA通信联盟,第一阶段)和美国环境保护局(FIFRA SAP)的科学顾问,兼《细胞外囊泡杂志》副主编。
  • 我国科学家在肿瘤外泌体检测研究中取得进展
    外泌体作为一种直径约30-150 nm的脂质双层膜囊泡,几乎所有的细胞均可分泌,广泛分布于人体体液中。外泌体携带着起源细胞的多种物质,如膜蛋白、核酸、脂质等,在肿瘤的发生、发展和转移中起着至关重要的作用,是早期癌症临床诊断中的一类重要标志物。电化学方法具有稳定性强、灵敏度高、易操作等特点,使其在临床诊断、生物传感、环境监测等方面得到了广泛的应用。采用电化学生物传感技术实现外泌体的高灵敏精准检测对于癌症的早期诊断、疗效评价及预后分析具有重要意义。  近期,中国科学院苏州生物医学工程技术研究所与中科院重庆绿色智能技术研究院研究人员开发了一种基于二维过渡金属碳/氮化物MXene材料的新型电化学传感器,用于外泌体的识别与检测。MXene作为一种新兴的二维材料,具备大的比表面积、高的导电性以及较强的催化能力,针对该材料的研究丰富了其在催化、电容器、生物传感和成像等领域中的应用。  在该研究中,研究人员通过真空辅助的方法制备二维MXene平面膜,并利用电化学外加电位作用在二维膜表面负载金(Au)纳米阵列,得到Au-MXene二维复合膜。一方面,该方法利用了MXene二维材料构筑成膜,能够负载大量的上皮细胞粘附分子蛋白适配体,特异性识别捕获外泌体;另一方面,通过超速离心分离纯化肺癌细胞(A549)分泌的外泌体,对其进行溶酶体相关膜蛋白适配体修饰,能够填充复合膜表面未结合的活性位点,进一步放大检测信号。结果表明,所构建的电化学传感器对外泌体的检出限可以达到每毫升58个,具有良好的重复性、宽的检测范围以及高的灵敏度。该研究为外泌体的精准检测提供了一种高灵敏的新平台,也拓宽了二维材料在生物传感领域的应用。  相关研究成果以Hierarchical Au nanoarrays functionalized 2D Ti2CTx MXene membranes for the detection of exosomes isolated from human lung carcinoma cells为题发表在Biosensors and Bioelectronics上。研究工作获得了国家重点研发计划、国家自然科学基金委、江苏省自然科学基金等的资助。  论文链接
  • 生物样品的多维度精准纯化——从外泌体的分离纯化说起 (一)
    p  strongspan style="color: rgb(31, 73, 125) "超速离心的差速沉淀及等密度梯度离心法/span/strong/pp  无论是国际顶级杂志的文献统计,还是国内用户的私下调研,超速离心一直都是作为外泌体或者说胞外囊泡分离纯化的金标准而存在。伴随着外泌体的发现、研究深入和产业转化,不断有各种“替代”方法、试剂盒出现,试图挑战超离在外泌体分离纯化方式中的领导地位,但至今仍未有成功。究其原因,超速离心也许是唯一一个可以同时用两个不同维度对外泌体进行分离纯化的实验方法。/pp  每一种颗粒,例如外泌体,都会有其自身的一定特定属性,例如特定的大小区间、一定的密度范围、也许还有某些特别的表面标记物等等。以上每一种属性,只要能够与其他的颗粒存在足够的区分度,我们就可以相对应想办法进行识别和分离,这就构成了近百年来分子生物学的种种纯化手段。/pp  以超速离心为例,其核心原理为沉降平衡方程:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201806/insimg/0f433fe1-85c9-43f2-9e09-d27552a46652.jpg" title="1.png"/img src="http://img1.17img.cn/17img/images/201806/insimg/ac34f1d2-2ece-4c7e-939b-988f7f3f7ce1.jpg" title="2.png" width="300" height="366" border="0" hspace="0" vspace="0" style="float: right width: 300px height: 366px "/  /pp style="text-indent: 2em "v为每个颗粒在离心过程中的瞬时移动速度,d是颗粒直径, σ是颗粒密度,ρ介质液密度,?介质液年度,ω2r为转速及所处离心半径 /pp  当两个或多个颗粒的直径d有显著差异时,其离心沉降速度也将会有较明显差别。直径大的颗粒很快就可以沉淀下来,而更小的颗粒需要更大的离心力或者更长的离心时间才可完成沉降。这就是我们最常用的差速沉淀的基本原理。例如10万xg离心1-3小时,就是最常见的把100nm左右的颗粒沉淀下来的实验条件。/pp  但一种方法不可能是万能,当不同颗粒的大小比较接近时,基于大小的分离方法就会出现误差,把不同的颗粒都一起分离下来,虽然已经把过大或者过小的颗粒去除,但如果类似大小的杂质颗粒过多,实际上这也只能算是分离富集,而不能算作纯化。/pp  为此,离心专家们又开发了另一种实验方案,人为地制造不同的介质液密度区间。基于上述沉降速度方程,每一个颗粒最终将会停留在跟它本身密度相同的位置。由于介质液按实验需要铺设成连续或不连续分布,最终不同样品也会根据密度的差异,形成不同的区间性分布。外泌体由于其脂膜结构(密度~1g/ml)包裹了一定量的核酸(密度1.4~1.7g/ml)及蛋白(密度1.2~1.4g/ml),导致其平均密度区间为1.13~1.19g/ml左右(实测值)。通过铺设不同的介质液分层,例如通过不同浓度的OptiPrep/蔗糖/TE Buffer,我们就可以人为的仅把符合此密度区间的颗粒给筛选出来。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201806/insimg/d813137b-fb44-4826-b814-626f12a8d2ec.jpg" title="3.png"//pp  不同的胞外囊泡,拥有不同的大小和密度分布区间,这类物理属性是我们在研究生物颗粒时最直观也是最准确的表观参数。超速离心法,正式通过大小和密度两个不同的维度,根据实验的需要,一步步地把我们所要重点研究的外泌体颗粒,从纷繁复杂的体液环境中、从不同的胞外囊泡中分离、富集和纯化下来。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201806/insimg/4f8ecfd3-926d-4a24-9385-f9f77097ef19.jpg" title="3.jpg"//pp  下一期,我们将进一步对比分析其他基于试剂盒或其他实验原理的外泌体分离纯化方法,从中找出最适合我们不同实验所需的实验方案,以及超速离心为什么始终被认为是金标准的原因,敬请期待!/p
  • 邀请函丨全自动外泌体荧光检测分析系统,邀您免费体验试用
    NanoView全自动外泌体荧光检测分析系统将于8月迎来大规模路演,现诚邀各位老师免费试用! 单粒子干涉反射成像传感器(SP-IRIS)技术是将免疫学与光学结合的一种新技术。该技术先利用免疫识别将特定的外泌体进行捕获分离,然后再对目标外泌体的表面标志物及内容物(如携带的蛋白质、RNA、DNA及细胞因子)进行定量分析,从而更加全面地反映外泌体的特性。短短两年时间,该技术在全球已有50多个实验室采用该技术,发表重要文献近百篇,备受广大科研工作者的关注。NanoView全自动外泌体荧光检测分析系统的主要特点有:☛ 特异性捕获:芯片上可包被多达6 种捕获抗体,特异性捕获含特定蛋白标记物的外泌体。☛ 阳性外泌体计数:芯片捕获外泌体后,可通过SP-IRIS 技术直接检测样品中外泌体的数量。☛ 单个外泌体蛋白共定位分析:检测每个外泌体的荧光信号并进行统计,可获得荧光共定位信息,用于分析样品中不同表型外泌体的比例。☛ 无需纯化:使用抗体捕获模式,防止样品中杂质影响结果,可直接检测血液、尿液和细胞培养液中的外泌体,未纯化样品的测量结果与纯化后基本一致。☛ 粒径分辨率高:高精度SP-IRIS技术,可检测≥50 nm的外泌体,测量结果与电子显微镜检测结果基本一致,并统计生成外泌体的粒径分布结果。☛ 可检测外泌体内容物:试剂盒配套相应的穿膜剂,可穿透外泌体并对外泌体内容物进行染色并检测。 典型案例:外泌体荧光数量统计外泌体粒径检测荧光强度与粒径关系荧光共定位分析样机测试数据(部分):肿瘤细胞外泌体的粒径分布肿瘤细胞外泌体的荧光成像图目前,全自动外泌体荧光检测分析系统样机正在华南区域集中路演,包括南方医科大学等知名高校,欢迎各位老师联系试用! 联系电话:010-85120277/78 邮箱:info@qd-china.com, 期待与您的合作! 扫描下方二维码,即刻联系试用!
  • Scientific Reports:使用单外泌体表征分析技术与蛋白组学检测乏氧状态的肾细胞癌外泌体
    肾细胞癌(RCC)是常见的一种肾脏癌症。RCC现在仍然缺少有效的医学诊断指标,已经成为RCC治疗方法开发的大挑战。外泌体是一种潜在的癌症诊断指标,细胞分泌的外泌体的组成会因细胞的生理状态不同而发生变化。肿瘤内乏氧是癌症发生、发展及扩散的一个关键因素。研究表明,处于乏氧状态的细胞分泌的外泌体会影响癌细胞的增殖、扩散以及肿瘤血管生成,且与外泌体的内容物有关。外泌体内容物的表型可以通过蛋白组学和转录组学方法检测,但这些方法过于繁琐,难以用于医学诊断。单个外泌体表型分析是将免疫学与光学结合的一种新技术。该技术先利用免疫识别将特定的外泌体进行捕获分离,然后再对目标外泌体的表面标志物及内容物(如携带的蛋白质、RNA、DNA及细胞因子)进行定量分析,从而更加全面地反映外泌体的特性。该技术在短短两年时间,备受广大科研工作者的关注。本文将为大家分享使用单外泌体表征分析技术与蛋白组学检测乏氧状态的肾细胞癌外泌体,以供参考。研究人员先分离了鼠RCC细胞的细胞培养上清液,使用基于单个外泌体表型分析技术的全自动外泌体荧光检测分析系统Exoview检测了在乏氧和正常状态下分泌的外泌体中CD81和CD9亚群的含量。图1结果表明,乏氧状态下分泌的含CD81与含CD9外泌体均为正常状态下的3.1-3.6倍。图1 ExoView检测乏氧与正常RCC细胞外泌体表型接下来使用Western Blot检测上清液以及不同纯化方法获得的外泌体的蛋白含量。由图2结果可知,WB无法检测到上清液(左列)中的蛋白,而Exo-spin排阻色谱法(中列)和梯度超速离心法(右列)获得的外泌体中,乏氧RCC的CD81和CD9低于正常组,与Exoview的结果相一致。 图2 Western Blot检测不同纯化方法获得的外泌体的蛋白含量确定了不同状态条件下细胞分泌的外泌体表面标志物有差别后,研究人员使用了SERS,TG-RS(图3)和TG-SERS(图4)检测不同纯化方法获得的外泌体的谱线。由谱线可知,TG-RS和TG-SERS法检测Exo-spin法纯化的外泌体,可以分辨出乏氧和正常外泌体的不同谱峰。后,研究人员使用质谱检测了Exo-spin法纯化的外泌体。蛋白组学分析结果表明,乏氧外泌体的CD9的表达量高于正常,这与Exoview和WB结果一致。图3 TG-RS与一般SERS检测不同纯化方法获得的外泌体的谱线图4 TG-SERS检测Exo-spin法纯化获得的外泌体的谱线本研究的TG-RS结果中,不同纯化方法的结果也有不同,这既说明了TG-RS方法检测的高灵敏度,也说明纯化确实影响了外泌体样品的组成。Exoview使用细胞上清液或其他体液的原液直接进行检测,通过芯片上的抗体特异性结合外泌体,可以排除杂质的影响,无需对样品进行纯化,而WB等方法由于浓度限制无法直接检测。也说明,Exoview可以作为一种标准的外泌体表型检测方法,作为其他检测和诊断方法开发的有效参照。作为外泌体表征分析的倡导者,美国NanoView Biosciences于2018年推出了全自动外泌体荧光检测分析系统ExoView,该系统一经推出,便引起了外泌体领域科研工作者的广泛关注,凭借其稳定、出色的性能,短短几年在全球已有近百个客户,发表文献100多篇。ExoView的表征,能够帮助科学家更深入地了解外泌体与疾病之间的关系,助力疾病诊断和新药开发。参考文献: [1] Samoylenko, A., Kögler, M., Zhyvolozhnyi, A., Makieieva, O., Bart, G., Andoh, S. S., ... & Hiltunen, J. (2021). Time-gated Raman spectroscopy and proteomics analyses of hypoxic and normoxic renal carcinoma extracellular vesicles. Scientific reports, 11(1), 1-14.全自动外泌体荧光检测分析系统(ExoView R100)简介Nanoview所开发的全自动外泌体荧光检测分析系统(ExoView R100)采用单粒子干涉反射成像传感器(SP-IRIS)技术,是一款无需纯化的全自动的新型外泌体表征设备。该设备能够提供全方位的外泌体表征信息,包括颗粒大小、计数、表型与生物标志物共定位等,提供多层次和全面的外泌体测量解决方案。为了更好的服务中国客户,Quantum Design中国子公司在北京建立了专业的客户服务中心,正式推出专业的全方位外泌体表征测试服务,您只需要少量样品即可获得全方位的外泌体表征数据。欢迎各位老师垂询:010-85120280。前10名订购服务的老师,可享受8折优惠!扫描上方二维码,即刻订购吧!
  • 直播 | 深入外泌体: 冷冻电镜下的新一代药物递送载体
    细胞排出废物的“垃圾桶”,到如今科研界热度居高不下的宠儿,外泌体在某种意义上完成了质的飞跃。外泌体是细胞分泌到胞外的一种囊泡(Extracellular Vesicles,EVs),其大小为30-150nm,具有双层磷脂膜结构,含有丰富的内含物(包含蛋白质、核酸等多种活性生物分子)。外泌体应用于疾病诊断、药物装载及做为治疗药物等方面,它穿透性极强、吸收更佳、低免疫原性,使得它成为了非常优质的“活性物质递送系统”。外泌体由蛋白质、核酸、脂质组成,含有较高水平的胆固醇、鞘磷脂及饱和脂肪酸。相比其他载体,外泌体在递送药物方面有着显而易见的优势:①外泌体的安全性非常高;②外泌体有非常好的靶向性潜力;③外泌体具备工程改造潜力;④外泌体有优秀的多分子装载能力。药物递送系统(DDS)的表征是新药研发致关重要的一个环节,反应DDS 的特性。冷冻电镜是外泌体直观表征的不二利器,通过将外泌体样本快速冷冻,可以获得外泌体近生理状态下形貌信息细节,直接表征多项指标;还可以通过冷冻电子断层扫描技术获得外泌体近生理状态下的3D结构,为新药开发打开纳米世界的大门。随着冷冻电镜技术的不断发展,已经突破分辨率极限,达到原子级别。冷冻电镜技术对外泌体的探究越来越细致,为了更深入的走进外泌体,了解冷冻电镜下的新一代药物递送载体,药融圈联合赛默飞共同邀请到苏州唯思尔康科技有限公司SVP何新军以及赛默飞世尔科技材料与结构分析业务拓展经理刘靖怡2位行业专家,于2023年5月18日做客线上直播间,揭开外泌体的神秘面纱。
  • ExoView® 外泌体全面表征试剂盒测试服务正式上线,少量样品即可一次性完成外泌体全面分析!
    外泌体是包含了复杂RNA和蛋白质的小膜泡,是细胞间信号传输的载体。多种细胞在正常及病理状态下均可分泌外泌体,它们广泛存在于血液、唾液、尿液、脑脊液和乳汁等体液中,参与细胞间通讯。近年来,外泌体的研究热度持续攀升,在2019年自然科学基金获批项目中,外泌体研究相关项目的总数突破500个,立项的总金额突破2亿元。由于外泌体的尺寸很小仅为30~200 nm,目前很少有技术能够在单个外泌体水平同时提供物理表征和蛋白表型分析。单个外泌体表征分析是将免疫学与光学结合的一种新技术。该技术先利用免疫识别将特定的外泌体进行捕获分离,然后再对目标外泌体的表面标志物及内容物(如携带的蛋白质、RNA、DNA及细胞因子)进行定量分析,从而更加全面地反映外泌体的特性。 作为外泌体表征分析的倡导者,美国NanoView Biosciences于2018年推出了全自动外泌体荧光检测分析系统ExoView,该系统一经推出,便引起了外泌体领域科研工作者的广泛关注,仅两年在全球已有100多个实验室采用该技术,发表文献近百篇,刊载在Cell, Cell Biology, Journal of Extracellular Vesicles等期刊。基于中国外泌体研究的快速发展,Quantum Design中国在北京建立了专业的客户服务中心,正式推出ExoView外泌体全面表征试剂盒测试服务,只需要少量样品即可一次完成外泌体计数、粒径、蛋白表达、蛋白共定位、亚群分布的分析。 ExoView外泌体全面表征试剂盒可对细胞培养上清、血浆、血清、尿液、脑脊液、唾液等生物样本中的外泌体直接进行分析,仅需50 µl稀释样本。试剂盒的捕获抗体为anti-CD81, anti-CD9, anti-CD63, 同型 IgG 对照,也可自定义。此外,试剂盒的荧光抗体分为CD9(Blue)、CD81(Green)、 CD63(Red)。ExoView外泌体全面表征试剂盒的优势包括: • 特异性捕获:芯片上可包被多达6 种捕获抗体,特异性捕获含特定蛋白标记物的外泌体。 • 阳性外泌体计数:芯片捕获外泌体后,可通过单粒子干涉反射成像传感器(SP-IRIS)技术直接检测样品中外泌体的数量。 • 单个外泌体蛋白共定位分析:检测每个外泌体的荧光信号并进行统计,可获得荧光共定位信息,用于分析样品中不同表型外泌体的比例。 • 无需纯化:使用抗体捕获模式,防止样品中杂质影响结果,可直接检测血液、尿液和细胞培养液中的外泌体,未纯化样品的测量结果与纯化后基本一致。 • 粒径分辨率高:高精度SP-IRIS技术,可检测≥50 nm的外泌体,测量结果与电子显微镜检测结果基本一致,并统计生成外泌体的粒径分布结果。 • 可检测外泌体内容物:试剂盒配套相应的穿膜剂,可穿透外泌体并对外泌体内容物进行染色并检测,如下图所示,Non-permeabilized时只能检测到跨膜蛋白CD9的荧光信号, Permeabilized后即可检测到外泌体内容物(如PD-L1、P-tau等)的表达。 检测流程:试剂盒检测结果示例: • 不同外泌体亚群数量统计• 外泌体粒径检测 • 荧光共定位分析 • 单个外泌体成像图 部分文献:[1]. Characterization of extracellular vesicles and synthetic nanoparticles with four orthogonal single‐particle analysis platforms. Journal of Extracellular Vesicles. 2021[2]. WJMSC‐derived small extracellular vesicle enhance T cell suppression through PD‐L1. Journal of Extracellular Vesicles. 2021[3]. Isolation and characterization of extracellular vesicle subpopulations from tissues. Nature protocols. 2021[4]. Targeting tumor-derived exosomes using a lectin affinity hemofiltration device. Cancer Research. 2021[5]. Small RNA Sequencing across Diverse Biofluids Identifies Optimal Methods for exRNA Isolation. Cell. 2019 部分应用单位:产品类别:欢迎您垂询010-85120280或扫描下方二维码。前10名订购服务的老师,可享受8折优惠!扫描上方二维码,即刻订购测试服务!
  • 中国科大在超冷原子体系实现理想外尔半金属态
    外尔半金属(Weyl semimetal)是一类重要的拓扑物态,其能带中的外尔点结构具有许多奇异的性质:它是一种拓扑磁单极子,且总是成对出现,在其附近的低能激发的运动模式符合“外尔费米子”的方程,最早于1929年由德国科学家赫尔曼外尔提出。有且仅有两个外尔点的外尔半金属—理想外尔半金属,是外尔半金属“家族”中最为基础的一员,由其衍生的有相互作用关联相总是拓扑非平庸的。在凝聚态材料中,尽管近几年外尔半金属材料取得诸多重要进展,这种仅有两个外尔点的外尔半金属尚未实现。图一A:三维自旋轨道耦合装置示意图。B:实验构造的三维拉曼势结构,导致原子在格点之间的自旋翻转隧穿。超冷原子体系具有环境干净,高度可控等重要特性,通过超冷原子研究拓扑量子物态目前是量子模拟领域中一个活跃的方向,其中人工合成自旋轨道耦合是实现拓扑物相的一项重要技术。实现外尔半金属等高维拓扑物态的模拟,三维自旋轨道耦合是其必要条件。这意味着需要构建更加复杂的三维非阿贝尔规范势,一直是超冷原子量子模拟领域的重大挑战。在超冷原子自旋轨道耦合的研究方面,中国科大通过和北大合作一直处于研究前沿。2016年,实验团队就和北大理论组合作,提出并构建了二维拉曼耦合光晶格,实现了二维自旋轨道耦合拓扑量子气[Science 354,83-88, (2016)]。近期,北大的理论团队在原二维系统的基础上提出了三维自旋轨道耦合和理想外尔半金属的新型拉曼光晶格方案[Science Bulletin 65, 2080-2085 (2020)]。实现三维自旋轨道耦合和理想外尔半金属能带,实验上面临两个技术难题,一是怎样把二维形式的拉曼耦合拓展到三维结构;二是怎样利用传统的二维成像进行三维动量空间的探测。为此,联合研究团队设计了巧妙的光路,通过将光晶格“旋转”45°,并将相位锁定,准确构造出理论方案中三维结构的拉曼势,合成三维自旋轨道耦合(图一),同时通过调节实验参量合成了有且仅有两个外尔点的能带结构。图二 A:通过虚拟断层成像法重构三维自旋纹理,找到两个外尔点的位置。B:通过量子淬火动力学对外尔点位置的标定。在探测方面,研究团队借鉴了北大组和香港科技大学G.-B. Jo组合作提出的虚拟断层成像法[Nat. Phys. 15, 911 (2019)],并应用到当前的三维光晶格体系。利用体系的对称性,通过调节拉曼失谐等效得到z方向不同动量平面上的自旋纹理,再重构出三维动量空间的自旋纹理,找到外尔点;随后利用量子淬火动力学提取出该平面能带的拓扑特征,进而确定外尔点的位置。两种方法互相佐证,印证了理想外尔半金属能带的实现。实验中所使用的CCD(如图一)为牛津仪器ANDOR的iKon CCD相机,在动态模式下连续拍摄三张照片,通过对三张照片的处理得到原子的时间飞行吸收成像照片。图三iKon CCD相机iKon CCD相机真空密封,制冷温度可以低至 -100℃。采用BEX2-DD芯片抑制近红外干涉条纹,全波段量子效率达 90%,动态模式下具有微秒级时间分辨率。《科学》杂志的审稿人对这一工作给予高度评价,认为这项工作“为冷原子体系研究外尔物理中的新奇现象打开了新的方向”(...a very interesting work which opens a new direction of investigating exotic phenomena associated with the Weyl physics for ultracold atoms)“作为三维自旋轨道耦合在冷原子体系的首次实现,是领域中的重要进展,并为冷原子研究提供了新的工具”(...this is the first time that 3D spin-orbit coupling was ever achieved in a cold atom experiment. This, in itself represents a significant progress and an important addition to the cold atom toolbox.)“对理想外尔点的实现是非常有价值的结果,为固体系统提供了起到互补作用的研究方向”(Realizing ideal Weyl cones in cold atom systems is thus an extremely valuable objective and will provide an angle of attack that is complementary to solid-state systems.)在该研究工作的基础上,研究团队将进一步开展外尔半金属中更奇特的现象和物理过程的探索。本工作的技术方案也可以推广到费米子体系,开展强关联拓扑物理的研究。该成果有望极大推动量子模拟领域的发展。
  • 临床进展!福流纳米流式助力外泌体候选药物进入临床Ⅰ期!
    p style="text-align: justify text-indent: 2em line-height: 1.5em "2020年9月15日——科迪亚克生物科学公司(CodiakBioSciences,Inc.)宣布开始外泌体治疗候选药物exoIL-12 Ⅰ期临床试验。exoIL-12通过Codiak专有的engEx™ 外泌体平台进行基因改造,在外泌体表面携带IL-12,将IL-12递送到肿瘤微环境(TME)中来增强IL-12的剂量控制,并限制全身暴露和相关毒性。该试验是Codiak的第一项人体临床试验,也是Codiak预期于2020年启动的两个临床开发计划中的第一项。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 339px height: 75px " src="https://img1.17img.cn/17img/images/202012/uepic/828302fd-8dc7-4287-a32c-cf03769854cc.jpg" title="福流生物logo.jpg" alt="福流生物logo.jpg" width="339" height="75"//pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/51afeb67-be12-40d3-8b69-f238995ec23f.jpg" title="002.png" alt="002.png"//ppbr//pp style="text-align: justify text-indent: 2em line-height: 1.5em "strong关于engEx™ 平台/strong/pp style="text-align: justify text-indent: 2em line-height: 1.5em "在Codiak开发的engEx™ 外泌体药物递送平台可广泛应用于药物传递和蛋白表达,通过对外泌体进行基因改造,在外泌体表面表达“脚手架蛋白”span style="color: rgb(0, 112, 192) "strongPTGFRN/strong/span进而可实现多种蛋白的融合表达。本次临床一期的exoIL-12外泌体就是通过将IL-12基因与PTGFRN蛋白融合,使其表达在外泌体表面,将外泌体递送至所需的细胞和组织。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "“据我们所知,strongspan style="color: rgb(0, 112, 192) "exoIL-12是第一个进入临床开发的工程化外泌体/span/strong,这使该试验的启动不仅对Codiak而且对于整个外泌体治疗领域都是一个真正的里程碑,”Codiak首席执行官Douglas E.Williams博士说。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/e2bfb26d-bd3c-45ad-9a00-058eee958244.jpg" title="003.jpg" alt="003.jpg"//pp style="text-align: justify text-indent: 2em line-height: 1.5em "strong福流生物与engEx™ 平台/strong/pp style="text-align: justify text-indent: 2em line-height: 1.5em "福流的纳米流式(NanoAnalyzer)对Codiak开发engEx™ 平台时的脚手架蛋白确定发挥了建设性作用。如在Codiak公司2020专利(专利号US20200222556 A1)中提到,他们发现span style="color: rgb(0, 112, 192) "strongPTGFRN蛋白/strong/span在外泌体中高表达,是其他蛋白融合表达的最佳选择。如下图,对PTGFRN广泛表达于外泌体表面进行验证时,作者检测了融合表达GFP的CD9、CD81、PTGFRN三个蛋白的外泌体,发现CD9阳性率为48%,CD81阳性率为81%,而PTGFRN的阳性率高达97%(Figure38 图左);并且PTGFRN的荧光强度是CD81的两倍多(Figure38 图右);这表明,应用基因工程技术可以在外泌体上几乎100%表达PTGFRN,这也意味着可以将目的蛋白表达于所有外泌体表面,这样就能大大提高蛋白的表达效率,另外也可以用PTGFRN特异抗体对所有外泌体进行高效率纯化回收,最终实现提高治疗效果和外泌体产量的巨大经济效益。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/e0619320-7d99-4c0c-ac1d-6fb86daa6be0.jpg" title="004.png" alt="004.png"//pp style="text-align: justify text-indent: 2em line-height: 1.5em "值得指出的是,span style="color: rgb(0, 112, 192) "strong这是首次在外泌体水平对基因改造后的PTGFRN外泌体进行单颗粒检测/strong/span,相较于传统Western Blot只能在总量上对蛋白进行定量,纳米流式可以在单个外泌体水平对蛋白的表达量进行鉴定和分析,与CD9和CD81蛋白相比,PTGFRN几乎在每一个外泌体上都有表达,为目的蛋白高效率表达和外泌体高效率纯化回收奠定了理论基础,显示出纳米流式无可比拟的单颗粒检测优势。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/44235c80-0bf0-4489-9dea-8b6956f1e8f3.jpg" title="005.png" alt="005.png"//pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="color: rgb(0, 112, 192) "strong关于福流/strong/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="font-size: 14px "厦门福流生物科技有限公司致力于纳米流式检测技术(NanoAnalyzer)的研发,目前研发的纳米流式是一个高通量、多参数分析检测平台,可在单颗粒水平上对颗粒的粒径、浓度、生化性质进行高通量、多参数的分析,为生命科学和生物医学打开了通往纳米世界的大门。详细参数如下:/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="font-size: 14px "1.检测范围涵盖整个外泌体粒径(30-150nm);/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="font-size: 14px "2.荧光灵敏度可达单分子水平(PE分子);/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="font-size: 14px "3.分辨率与冷冻透射电镜媲美;/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="font-size: 14px "4.前所未有的检测灵敏度:低至7nm纳米金颗粒散射光检测,检测范围7-1000nm;/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="font-size: 14px "5.世界首台纳米颗粒( 100 nm)多参数定量表征流式设备;/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="font-size: 14px color: rgb(165, 165, 165) "(文源:福流生物)/span/pp style="text-align: center line-height: 1.5em text-indent: 0em "span style="font-size: 14px "更多生命科学资讯讲座请扫码/span/pp style="line-height: 1.5em text-indent: 0em "span style="font-size: 14px "/span/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 126px height: 126px " src="https://img1.17img.cn/17img/images/202012/uepic/7136a341-7127-41e1-81d4-0d5851c810d4.jpg" title="3i生仪社 二维码.jpg" alt="3i生仪社 二维码.jpg" width="126" height="126"//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制