当前位置: 仪器信息网 > 行业主题 > >

体积百分比

仪器信息网体积百分比专题为您整合体积百分比相关的最新文章,在体积百分比专题,您不仅可以免费浏览体积百分比的资讯, 同时您还可以浏览体积百分比的相关资料、解决方案,参与社区体积百分比话题讨论。

体积百分比相关的资讯

  • 艾德姆发布艾德姆Solis百分之一精密天平新品
    Solis分析天平拥有高清晰显示屏,外形直观,为各种实验室应用提供 完美的解决方案。Solis多才多艺且品质坚韧,是对数据结果的精确度 有非常高要求的科研和质检实验室、科学教学、精确计数、生产制作 等应用的理想选择。Solis的键盘上有简单易读的按钮和导向箭头,使 用方便,操作简单。一、主要功能:• 高分辨率图形显示器清晰显示数据• 水平仪和调节脚便于调整天平水平位置,以获得最佳的称量结果• 下装金仕顿锁孔以防止天平被盗• 304不锈钢大秤盘方便清洁• RS-232 接口用于连接到计算机和打印机• 可用砝码对天平进行外部校准• 可选数字滤波控制振动的影响和干扰• 安全密码控制功能可以防止未经授权的访问• 打印结果显示日期和时间,方便数据追踪,符合GLP良好的实验室操作规范• 有多种语言选择• 自动累计所有结果• 检测称重带有声光报警• 零件计数功能可预先设置样品大小• 配有电源适配器二、主要参数内部校准型号STB3202iSTB6202i外部校准型号STB3202eSTB6202eSTB8202e量程3200g6200g8200g可读性0.01g重复性误差0.02g线性误差(±)0.03g0.04g稳定时间(s)3称量单位g, mg, ct, GN, lb, oz, ozt, dwt, mm, tl.T, tl.H, tl.S, T, 自定义单位接口RS-232工作温度10oC - 30oC电源24VDC,50/60Hz, 500mA 适配器校准i型号为全自动内部校准,e型号为外部校准显示15mm高数字图形显示外壳材料ABS塑料外壳称盘尺寸185mm×185mm ?整体尺寸224mm×374 mm×95mm(宽×深×高)净重i型号6.4kg, e型号6.7kg功能模式称重、零件计数、百分比称重、检测称量、动物/动态称量、密度称量、配方功能、显示锁定创新点:Solis分析天平拥有高清晰显示屏,外形直观,为各种实验室应用提供 完美的解决方案。Solis多才多艺且品质坚韧,是对数据结果的精确度 有非常高要求的科研和质检实验室、科学教学、精确计数、生产制作 等应用的理想选择。Solis的键盘上有简单易读的按钮和导向箭头,使用方便,操作简单。艾德姆Solis百分之一精密天平
  • 艾德姆发布艾德姆Solis百分之一精密天平新品
    Solis分析天平拥有高清晰显示屏,外形直观,为各种实验室应用提供 完美的解决方案。Solis多才多艺且品质坚韧,是对数据结果的精确度 有非常高要求的科研和质检实验室、科学教学、精确计数、生产制作 等应用的理想选择。Solis的键盘上有简单易读的按钮和导向箭头,使 用方便,操作简单。一、主要功能:• 高分辨率图形显示器清晰显示数据• 水平仪和调节脚便于调整天平水平位置,以获得最佳的称量结果• 下装金仕顿锁孔以防止天平被盗• 304不锈钢大秤盘方便清洁• RS-232 接口用于连接到计算机和打印机• 可用砝码对天平进行外部校准• 可选数字滤波控制振动的影响和干扰• 安全密码控制功能可以防止未经授权的访问• 打印结果显示日期和时间,方便数据追踪,符合GLP良好的实验室操作规范• 有多种语言选择• 自动累计所有结果• 检测称重带有声光报警• 零件计数功能可预先设置样品大小• 配有电源适配器二、主要参数内部校准型号STB3202iSTB6202i外部校准型号STB3202eSTB6202eSTB8202e量程3200g6200g8200g可读性0.01g重复性误差0.02g线性误差(±)0.03g0.04g稳定时间(s)3称量单位g, mg, ct, GN, lb, oz, ozt, dwt, mm, tl.T, tl.H, tl.S, T, 自定义单位接口RS-232工作温度10oC - 30oC电源24VDC,50/60Hz, 500mA 适配器校准i型号为全自动内部校准,e型号为外部校准显示15mm高数字图形显示外壳材料ABS塑料外壳称盘尺寸185mm×185mm ?整体尺寸224mm×374 mm×95mm(宽×深×高)净重i型号6.4kg, e型号6.7kg功能模式称重、零件计数、百分比称重、检测称量、动物/动态称量、密度称量、配方功能、显示锁定创新点:Solis分析天平拥有高清晰显示屏,外形直观,为各种实验室应用提供 完美的解决方案。Solis多才多艺且品质坚韧,是对数据结果的精确度 有非常高要求的科研和质检实验室、科学教学、精确计数、生产制作 等应用的理想选择。Solis的键盘上有简单易读的按钮和导向箭头,使 用方便,操作简单。艾德姆Solis百分之一精密天平
  • 2021年第二季度农产品抽检总体合格率为97.8% 比去年同期上升0.7个百分点
    日前,农业农村部发布2021年第二季度国家农产品质量安全例行监测(风险监测)结果,监测数据显示,今年第二季度抽检蔬菜、水果、茶叶、畜禽产品和水产品等5大类产品92个品种130项参数7596个样品,总体合格率为97.8%,同比上升0.7个百分点。  据介绍,农业农村部组织开展第二季度国家农产品质量安全例行监测工作,共监测了31个省份的109个大中城市的735个菜果茶生产基地、460辆蔬菜和水果运输车、245个屠宰场、166个养殖场、623辆(个)水产品运输车或暂养池、727个农产品批发(农贸)市场。监测结果显示,蔬菜、水果、茶叶、畜禽产品和水产品合格率分别为97.6%、95.4%、98%、99%和96.7%。  从监测品种看,抽检的蔬菜中,水生蔬菜全部合格,瓜类、甘蓝类、白菜类、根菜类和食用菌合格率分别为99.8%、99.7%、99.4%、98.9%和98.4%。抽检的畜禽产品中,猪肉、猪肝、牛肉、羊肉、禽肉和禽蛋的抽检合格率分别为99.5%、99.6%、98.5%、99.3%、98.7%和98.4%。抽检的大宗养殖水产品中,鳙鱼、鲢鱼、对虾、大菱鲆、鳜鱼和罗非鱼等6个品种全部合格。在监测的品种中,大葱、山药、鳊鱼、鲶鱼等合格率不够高。  农业农村部已及时将监测结果通报各地。针对发现的问题,要求地方农业农村部门开展风险隐患排查,查处问题产品,防范问题隐患。组织开展监督抽查,在重点区域和重点环节查处并公布一批农产品质量安全违法案件,严厉打击农产品质量安全领域的违法违规行为,确保农产品质量安全。
  • 桶装水应如何让国人百分百放心
    水是生活必备品,对于水的质量监管重中之重。目前,我国瓶装和桶装饮用水质量如何?国家食品药品监督管理总局29日公布了新的抽检结果,不合格率为23.83%。  本次专项抽检共抽检样品1863批次,样品涉及全国31个省(区、市)1197家生产企业,抽检项目包括菌落总数、致病菌、铅、镉、亚硝酸盐、溴酸盐等36项;共检出不合格样品444批次,抽检不合格率23.83%,涉及22项不合格项目,主要不合格项目为菌落总数、大肠菌群、酵母菌、霉菌等微生物指标和溴酸盐超标,微生物指标不合格样品大多是大桶水。 东南科仪小编看到,在总局公布的抽检不合格名单中,乐百氏等品牌名列其中,不合格项目被标明为“菌落总数”方面。 在桶装水的菌落总数检测中,我们从微生物检验国家标准可以了解到,实验过程中,高压灭菌器是一个必备仪器,然而选择安全性高、性能好的高压灭菌器非常重要。目前市面上质量口碑最好的是日本ALP高压灭菌器。 桶装水应如何让国人百分百放心呢?对于桶装水微生物超标情况,须加大桶装水质量检查力度,严格管理生产流程、加强包装容器和设备设施的清洗消毒;按要求存放桶装水,避免产品露天堆放或在阳光下暴晒;严格控制桶装水包装盖密封性,避免在运输、流通环节中可能导致的微生物污染等。 更多了解高压灭菌器的应用,请登录东南科仪www.sinoinstrument.com
  • 使用粉体流变技术研究粉末固结的情况
    粉层发生固结的原因很多,例如运输或加工过程中的固结多数由于振动造成,此时粉体受到法向和侧向的应力。一般使用自动振实仪进行模拟,振动敲击量筒中的粉体,致使颗粒的堆积状态重排。存储过程中也会发生固结,粉体主要受到与自身重量相关的正应力。可以使用透气压头对粉体材料直接施压,模拟正应力作用引发固结来实现测试。通常使用豪斯纳比率比较堆密度和振实密度,评价粉体的流动性,计算方法如下:豪斯纳比率=振实密度/堆密度粉体流动性的等级分类如下:流动性豪斯纳比率极好1.10-1.11好1.12-1.18一般1.19-1.25尚可1.26-1.34差1.35-1.45非常差1.46-1.59不流动1.6FT4粉体流变仪™ 粉体流动性测试仪FT4粉体流变仪™ 作为通用粉体测试仪,提供自动、可靠、全面的粉体性质表征。该信息可与加工经验进行关联,提高生产效率并有助于质量控制。FT4专注于测量粉体的动态流动特性,还可提供剪切盒测试,具有密度、可压性和透气性等整体特性的测试能力,全面表征与工艺相关的粉体性能。动态测试采用独特的测量技术来确定粉体的流动阻力。特殊形状的桨叶沿着既定的路径穿越精确体积的粉体。当桨叶轴向移动和旋转时,作用于其的阻力和扭矩,组合产生总流动能值[1]。实验方法评估多个行业中使用的十种粉体,采用两种方法评估不同固结方法的影响。方法1基于粉体振实,模拟运输过程。方法2直接压缩粉体,模拟长期储存。每次测试前进行预处理,确保样品处于均质、松散的堆积状态。值得注意的是,标准的豪斯纳比率测试中,测量堆密度时不需要预处理,因此重复性容易受到操作人员的影响。方法1:进行两项测试,第一步使用螺旋桨叶测量基本流动能(BFE),如上所述。测试同时提供了粉体松散状态的密度,即预处理松装密度(CBD)。第二步使用Copley振实仪振动粉体50次,采用与BFE相同的方法测量固结能。测试还提供固结粉体的密度(BDTap50)。方法2:使用透气压头施加15kPa的正应力,并且测量体积变化百分比。所有测试均重复3次,固结指数的计算公式如下:固结指数=固结能/基本流动分别选择CBD和BDTap50作为堆密度和振实密度来计算豪斯纳比率。使用四分位距(IQR)量化数据的离散情况。IQR表示数据的中位(50%)离散。较低的IQR值说明轻微离散,样本之间的差异有限。为了确保具有一定的代表性,计算IQR前需要将数据标准化。方法1:固结指数和豪斯纳比率比较10个不同的样品,固结指数(IQR=1.0)相比豪斯纳比率(IQR=0.1)的变化更大。这说明使用豪斯纳比率来比较不同类型的材料,缺乏敏感性。根据豪斯纳比率,滑石、乳糖和面粉三种样品的流动性“一般”,玉米淀粉、微晶纤维素和氧化铝三种样品的流动性“好”,余下四种样品(水泥、马铃薯淀粉、洗衣粉1和2)的流动性“极好”。比较固结指数,乳糖、面粉、玉米淀粉和微晶纤维素四种样品对于振动或敲击都非常敏感,固结指数2。通常,比较相同固结方法的不同指标,都能达到预期的趋势,比如乳糖的豪斯纳比最高,固结指数也最大。然而也有例外,滑石的豪斯纳比相对较高,固结指数却较低。所研究的材料中,密度增量无一超过25%,然而某些样品的流动能增量却大于200%。对于乳糖等材料,堆积状态的变化使得颗粒间相互作用增加,因此颗粒形貌将主导流动行为。仅仅密度的变化不足以反应特定过程中固结材料的流动性能。方法2:固结方法的差异比较不同的固结方法,固结指数(振实)和压缩百分比(直压)的排序不同。例如滑石对直压更敏感,代表长期储存时可能发生问题,然而乳糖对振实最敏感,模拟了运输或加工过程中的振动。这些不同的响应可能是由于颗粒性能和堆积结构的变化:微细、粘性的粉体可能团聚,夹带更多的空气,因此对压缩更敏感。粗糙、不规则的颗粒能够有效堆积,因此不会受到明显的压缩,但当颗粒重排时,其形貌则抑制了流动性。也突出了使用与加工过程和暴露条件相关的方法来表征样品的必要性。结论粉体流动性不是材料的固有属性,而是粉体在特定设备中以其所需要的方式流动的能力。成功的加工需要粉体与过程的完美匹配,相同的粉体在一个加工过程中表现良好,而在另一个过程中却不佳的情况并不罕见。多元特性表征为理解粉体的行为变化提供了必要的基础,能够识别并量化任何单位操作中与加工性能最相关的粉体特性。更多信息欢迎联系应用团队。[1] Freeman R., Measuring the flow properties of consolidated, conditioned and aerated powders – A comparative study using a powder rheometer and a rotational shear cell. Powder Technology, 25-33, 174, 1-2, 2007
  • 恒天然:个别批次奶粉检出双氰胺含量不到欧盟标准的百分之一
    中国经济网北京1月27日讯 最近几天,关于新西兰少量奶粉检测出微量双氰胺的消息被媒体广泛报道,部分消费者也感觉无所适从,不知道应该如何选择奶粉。  记者就消费者关心的相关问题查阅了众多资料和报道,并对相关乳企进行了问询。中国食品安全经历过几次大的事件,民众和媒体对本次新西兰奶粉少量批次检测到微量双氰胺一事表示关注和担忧是可以理解的,记者认为正确理性看待新西兰乳品乃至国内品牌奶粉对消费者和公众来说,似乎更加有益。  针对媒体有关报道,新西兰官员有话说  最近媒体报道关于新西兰奶粉事件的标题结论新西兰政府有不同的声音:媒体称含有极微量双氰胺的个别新西兰奶粉批次是毒奶粉,而新西兰官员称有科学依据证明无毒无害。  部分媒体还称,问题奶粉未向中国停止销售。新西兰第一产业部官员韦恩. 麦克尼介绍,该国去年9月仅在少量奶粉中检测到微量双氰胺残留物。目前,新西兰生产的所有乳制品也不会再存在双氰胺残留。  所谓的“问题奶粉瞒报三个月”,新西兰官员称去年9月就做了风险提示,最近中国国内转炒,只是因为《华尔街日报》转载而已。  恒天然有关人员:新西兰乳品可放心食用。本次个别批次奶粉检出双氰胺含量不到欧盟标准的百分之一,“毒性比食盐还低”。  据凤凰卫视新闻报道,新西兰本国及销往全球各地的乳制品均没有安全问题,可以放心食用。记者今天亦从恒天然有关人员获悉:新西兰个别批次奶粉被检测出含有少量双氰胺(简称DCD),其含量不到欧盟规定标准的百分之一。新西兰第一产业部声明称,本次检测出的双氰胺“毒性比食盐还低”,民众无需过度紧张。按照欧盟制订的每日摄入限值,拿这次新西兰检出的双氰胺最高值来折算,一个60公斤的成人每日要喝130升牛奶或者进食60公斤冲调的奶粉,才有可能达到欧盟限值,如果要导致健康问题还得喝更多。  新西兰政府并称:所有的新西兰奶粉在新西兰本国内部都在正常销售,不存在因质量问题下架。  相关国家、地区政府管理部门表态  台湾食品药物管理局公告称:不必恐慌,无毒无害。根据台湾食品药物管理局的公告,依目前所收集之资料显示,双氰胺急毒性很低,不具生殖、基因、致癌等毒性,经实验动物急性毒性试验、重复性试验及慢性毒性试验结果,估算双氰胺之无不良反应剂量(No observable adverse effect, NOAEL)约为1000 mg/kg bw。本次检测的含量远远低于这一剂量。目前没有任何证据显示新西兰奶粉对人体健康造成危害,无需下架。  香港卫生管理署:高枕无忧,未有表态。香港市面新西兰奶粉都在正常销售,没有产品下架的任何报道。  印度政府、美国政府、日本政府、东南亚国家政府均没有表态,也没有产品下架的任何报道,没有受到影响。  乳企纷纷表态  主要的知名乳企均对在中国所销售的产品充满信心,并表示不会受此事件影响。据悉,雅士利、雅培两家乳企均表态所购买的原料奶粉不涉及相关批次。雅士利销售人员表示,雅士利销售也没有受到任何影响。另,新西兰相关部门及世界最大的乳品供应商都确认供应给中国的产品完全符合中国相关生产和检测标准,也完全符合中国食品安全标准,并通过了中国监管机构规定的检测 向中国出售的所有批次的乳制品都不存在任何食品安全风险或对人体、动物造成健康威胁。美赞臣、多美滋、雀巢也都表示,其产品不受影响。(原标题:权威:新西兰乳品是安全的 微量双氰胺毒性比食盐还低)
  • 近红外控制的两个百分点就是好几百万的收益——访晨光生物科技集团股份有限公司质量主管石文杰
    2012-2021,由仪器信息网主办的光谱网络会议(iCS)走过了十年的历程。在过去的十年间,iCS 见证了光谱技术的发展与进步:拉曼、近红外、激光诱导击穿光谱、太赫兹、高光谱、超快光谱、光谱成像......这十年间,光谱仪器及技术突飞猛进,不仅给科研注入了新的活力,更是给企业带来了客观的经济效益。  为了更深入的了解光谱技术在生产生活中所起到的作用,并倾听用户的声音,仪器信息网特别策划《光谱十年》系列采访活动。本期我们特别采访到了晨光生物科技集团股份有限公司质量主管石文杰,听一听他们使用光谱仪器的感受!  晨光生物科技集团股份有限公司是以农产品为原料进行天然植物有效组分提取的高新技术企业,主要研制和生产四大系列共80多种产品,包括天然色素、天然香辛料肯精油、天然营养及药用提取物、油脂和蛋白等,从原料筛选鉴别开始,到收购现场质量控制、生产过程质量控制、收率核算、调配控制等都与光谱仪器有着密不可分的关系。  据石文杰介绍,他们最早使用分光光度计,后陆续用到ICP、原子荧光、原子吸收,最近开始用红外和近红外光谱技术,同时也开始了解调研拉曼光谱技术。石文杰在报告中曾指出,在过程质量控制环节,小型化、微型化近红外光谱仪更具有性价比,甚至将来探针式、传感器式光谱设备将有更大的应用空间。据悉,目前,晨光生物拥有21台近红外光谱仪,其中在线12台、离线8台、手持3台,并建立了包括辣椒、叶黄素、甜菊糖、葡萄籽等十多个品种共计55个相关模型。  对于光谱仪器在生产研发以及质控方面的价值体现,石文杰说,“由于近红外光谱仪检测速度非常快,给质量保证提供了很大的的优势,给我们企业也带来了很大的效益。”采访中,石文杰还以晨光生物为例给大家算了一笔账:“之前我们的产品质量波动非常大,为了让客户满意,只能把含量调整上去,比如为了避免出现不合格的情况,蛋白含量高于50%的产品需要把含量调整到53%客户才会满意。而有了近红外光谱技术之后我们的产品质控就非常稳定了,同样要求50%的蛋白我们可以控制在50±0.5%,这前后相比就差了两个百分点,一年几亿的产品销售百分之几就是好几百万!”  从企业用户的角度出发,石文杰还谈到了其对光谱仪器未来发展的期待,据其介绍,晨光生物目前特别注重数字化、智能化的发展,对先进仪器技术的需求也非常明显。不过,由于植物提取过程钟质量控制需要的监控点多,仪器的成本也在一定程度上制约了在线应用的进度。石文杰表示,希望未来可以降低仪器的使用成本,并且希望仪器企业能从容易应用的角度出发为客户提供定制化的服务。
  • 开发用于分离和纯化的聚焦梯度
    Jo-Ann M. Jablonski、Thomas E. Wheat and Diane M. Diehl;Waters Corporation, Milford, MA, U.S.引言用于进行分离和纯化的色谱分离方法与分析型分离方法受到相同物理和化学原理的制约。然而,在制备型试验中,科学家通常在大型柱上和高质量负载下分离化合物,并需要更高的分离度以提高所收集组分的纯度和回收率。虽然设计更缓的梯度是提高分离度的一种较好的首选方法,但改变整个分离过程的梯度斜率可导致峰宽加大和总运行时间增加。可替代普通更缓梯度的聚焦梯度仅对需要增加分离度的色谱图部分减小梯度斜率,从而可在不增加总运行时间的情况下提高对洗脱时间接近的色谱峰的分离度。聚焦梯度可根据搜索运行或者直接从第一次制备运行进行定义。试验方法梯度开发步骤■ 确定制备规模的系统体积■ 运行搜索梯度■ 设计聚焦梯度■ 在制备柱上运行聚焦梯度试验条件仪器液相色谱系统: 沃特世 2525型二元梯度模块、2767型样品管理系统、系统流路组织器、2996型光电二极管阵列检测器、AutoPurification&trade 流通池色谱柱: XBridge&trade 制备型OBD&trade C18柱19 x 50 mm、5&mu m(货号186002977)流速: 25mL/分钟流动相A: 0.1%的甲酸水溶液流动相B: 0.1%甲酸-乙腈溶液波长: 260 nm样品混合物磺胺: 10 mg/mL磺胺噻唑: 10 mg/mL磺胺二甲嘧啶: 20 mg/mL*磺胺甲二唑: 10 mg/mL磺胺甲唑: 10 mg/mL磺胺二甲异唑: 4 mg/mL总浓度: 64 mg/mL(溶于二甲基亚砜)*选定用于聚焦梯度的色谱峰结果和讨论确定制备规模的系统体积■ 取下色谱柱并更换成两通。■ 流动相A使用乙腈,流动相B使用包含0.05 mg/mL尿嘧啶的乙腈(解决了非加成性混合和粘滞问题)。■ 在254 nm下进行监测。■ 采集100% A的基线数据5分钟。■ 在5.01分钟时,将梯度设置为100% B并再采集5分钟数据。■ 测定100% A和100% B之间的吸光度差异。■ 计算存在50%吸光度差异时的时间。■ 计算步骤开始时(5.01分钟)和50%时间点之间的时间差异。■ 将时间差异乘以流速。 系统体积被定义为从梯度形成点到色谱柱前端的体积。系统体积用于聚焦梯度的设计。如图1所示,本试验所用仪器配置下的系统体积是3.0 mL。设计聚焦梯度第1步在2.47分钟洗脱3号色谱峰的溶剂浓度在较早的时间点上形成。如图3所示,检测器和梯度形成点之间的偏移量等于系统体积加上柱体积。用于这台特定系统的偏移量等于早期确定的3 mL系统体积再加上19 x 50 mm制备柱的体积(11.9 mL),即14.9 mL。在25 mL/分钟的流速下,溶剂浓度到达检测器需要0.59分钟。2.47分钟的洗脱时间减去0.59分钟的偏移时间等于1.88分钟。由于初始大规模梯度有0.39分钟的保留时间,因此形成洗脱色谱峰的乙腈百分比的时间是1.88分钟减去0.39分钟,即1.49分钟。 第2步计算在2.47分钟洗脱色谱峰的乙腈百分比。原始大规模梯度在5分钟内洗脱 5-50% B,最初梯度的驻留时间为0.39分钟。根据在2.47分钟洗脱出色谱峰的梯度计算得到的乙腈百分比是13.4%,但由于梯度开始于5%乙腈,因此洗脱该峰的乙腈实际浓度是13.4% + 5%,或者说18.4%乙腈。第3步旨在分离梯度中部洗脱时间接近的色谱峰的聚焦梯度应开始于原始小规模试验条件,通常为0-5% B。进样开始后立即将梯度快速增加至比能洗脱目标峰的预期乙腈百分比浓度低5%的乙腈百分比。在搜索梯度中所用的1/5斜率下继续进行缓的聚焦梯度部分。预计一个五倍的更缓梯度可为洗脱时间接近的色谱峰提供更高的分离度。终止高出可洗脱目标峰的预期乙腈百分比浓度5%的聚焦梯度部分。原始梯度在5分钟内洗脱5-50% B,或者说在5分钟内梯度变化45%。这样,乙腈浓度每分钟变化9%(从9%-10%左右简化得到)。然后,新的梯度斜率应为10%的1/5,或者说每分钟变化2%。10%的乙腈浓度改变通过每分钟变化2%而达到,说明用于分离3号和4号峰的聚焦梯度时间片段应持续5分钟。一旦梯度的聚焦部分完成,乙腈百分比快速增加至95% B,以清洗色谱柱。平衡色谱柱后,终止初始条件下的梯度。5-45% B = 每分钟9%(舍入至每分钟10%)梯度斜率每分钟变化2%。 聚焦梯度可明显提高图4所示色谱图中3号峰和4号峰的分离度。5号峰和6号峰因受到梯度聚焦部分的影响而出现移位,梯度部分继续在较缓的斜率下洗脱化合物,直至设定用于进行柱清洗的较高百分比的乙腈进入色谱柱。较缓的聚焦梯度能在不增加运行时间的情况下对天然混合组分提供更高的分离度,因而使色谱分析师能够获得更纯的产物和更好的回收率。结论当科学家为后续试验进行产物纯化时,需要在高质量负载下分离化合物。聚焦梯度可在不增加运行时间的情况下提高对洗脱时间接近色谱峰的分离度,从而改善分离效果。系统体积信息可以对制备型梯度进行直接优化。使用聚焦梯度可提高产物产率和纯度,同时不会增加溶剂消耗量和废液生成量。聚焦梯度方法可实现分离,因而有助于控制纯化成本。关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。
  • 沃特世推出适用于蛋白类生物治疗药物分析的体积排阻色谱(SEC)柱
    新型分析柱采用杂化颗粒技术,具有很长的使用寿命,可提供良好的批次间一致性和可重现的分析结果 马萨诸塞州米尔福德——(美国商业资讯)——沃特世公司(纽约证券交易所代码:WAT)今日隆重推出了全新的体积排阻色谱(SEC)柱,可用于蛋白的分析表征。XBridge Protein BEH SEC色谱柱可与Waters Alliance HPLC、Waters ACQUITY UPLC H-Class系统以及其它HPLC/UHPLC仪器联用,能够为按照尺寸大小进行的蛋白类生物治疗药物分离提供最大的样品通量和最高的分离度。沃特世全球各分公司现已开始供应此类色谱柱。 沃特世XBridge Protein BEH SEC色谱柱适用于蛋白类治疗药物的色谱分析。(图片:美国商业资讯) XBridge Protein BEH SEC色谱柱采用3.5μm颗粒填充,提供有200或450 埃孔径可选,可用于分析分子量在10,000至1,500,000 Da范围内的蛋白质和其它生物分子。与传统硅胶基质SEC色谱柱相比,此类色谱柱的设计可承受更高的流速和压力条件。这些性能优势均可提高样品通量,或将多个色谱柱串联使用,实现更高的组分分离度。 XBridge Protein BEH SEC色谱柱采用了沃特世的BEH(亚乙基桥杂化颗粒技术)二醇基键合颗粒,具有相当长的使用寿命,同时,沃特世的专利生产工艺可确保其具有无可比拟的批次间和柱间一致性,从而提供可重现的分析结果。这些新产品进一步丰富了沃特世ACQUITY Protein BEH SEC色谱柱系列,现在,分析人员通过仅有粒径差异的色谱柱即可将分析方法从UPLC无缝转换至HPLC。每个批次的XBridge Protein BEH SEC 200 埃和450 埃,3.5μm填料都经过全面检测,从而确保了无可比拟的批次间一致性。每根色谱柱都随附有一瓶BEH200或BEH450 SEC蛋白质标准品混合物,可用于色谱柱和液相色谱系统的基准测试、方法开发或故障排除。这些标准品与XBridge Protein BEH SEC批次质量控制检测所使用的标准品相同,用户可在收到色谱柱后使用这些标准品验证色谱柱性能,以及监测色谱柱性能随时间发生的变化。 更多信息:XBridge Protein BEH SEC色谱柱产品信息:www.waters.com/hplcsec 关于沃特世公司(www.waters.com)50多年来,沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2013年沃特世拥有19亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。Waters、ACQUITY、ACQUITY UPLC、Alliance和XBridge是沃特世公司的商标。
  • 【热点应用】高级多检测器SEC表征腺相关病毒载体的方法
    #本文由马尔文帕纳科应用专家冯慧庆供稿# 基因治疗是生物制药行业中一个快速增长的领域,通过基因治疗可实现疾病的治疗或预防。其中,重组腺相关病毒(rAAV)是目前基因治疗领域研究较多的一类病毒载体。腺相关病毒(adeno-associated virus, AAV)是微小病毒科(Parvoviridae)家族的成员之一,一般,研究中采用的重组腺相关病毒载体(Recombination adeno-associated virus, rAAV)是在非致病的野生型AAV基础上改造而成的基因载体,由于其种类多样、免疫原性极低、安全性高、宿主细胞范围广、扩散能力强、体内表达基因时间长等,rAAV被视为最有前途的基因研究和基因治疗载体之一。目前,rAAV的准确定量分析和表征的难度是阻碍基因治疗快速发展的关键因素。我们常常需要对rAAV进行综合全面表征,比如衣壳数量、实心率、颗粒尺寸、聚集体比例等。传统情况,rAAV滴度和病毒载量采用ELISA、ddPCR、AUC和EM等技术进行测量。但这些方法通常费时费力,而且精确度不高。本文通过GPC/SEC和多角度动态光散射(MADLS)两种分析技术分析rAAV5样品,展示了快速、准确和可靠地定量测量AAV的病毒滴度(AAV Titer)和实心率(% full AAV)的方法。 01仪器参数OMNISEC GPC/SEC多检测器系统非常适合于生物医药行业,可用于全面表征rAAV样品。OMNISEC包含一个示差折光检测器(RI),紫外线全波长阵列检测器(UV-Vis 190-900 nm)和光散射检测器,仅需一次进样,可精确测量绝对分子量、聚集体比例、病毒滴度和实心率。与传统HPLC不同,测量过程不依赖柱保留体积,也不需要一系列标样进行色谱柱校正。图1显示了使用OMNISEC测量的CQA关键质量参数。02检测方法我们采用Empty和Full rAAV5两个样品作为分析案例。Full rAAV5 载有已知分子量为785 kg/mol的PFB-GFP ssDNA。经qPCR和ELISA测量方式可知,该样本的病毒滴度为2.5x1013。采用色谱柱P4000和P3000串联,对rAAV样品的进行色谱分离。由OMNISEC软件采集分析测试结果,其中硬件系统包含OMNISEC RESOLVE(包含泵、自动进样器和柱温箱)和OMNISEC REVEAL(包含示差、UV/PDA和直角90°/小角7°光散射检测器)。样品经过分离洗脱后,使用共聚物分析方法确定样品两种不同组分的浓度和分子量。计算方法如下:其中,ConcCapsid是衣壳浓度(mg/mL),NA是阿伏伽德罗数,Mwcapsid是衣壳的分子量(g/mol),ConcDNA是DNA浓度(mg/mL),MwSeqDNA是来自序列的ssDNA的分子量。因此,通过计算出的颗粒浓度,可以很容易地得出样品实心率的百分比。 03检测结果案例一:图2显示了Empty rAAV5的三检测色谱图。RI信号由红色曲线表示,260 nm紫外信号由紫色曲线表示,直角光散射(RALS)信号由绿色曲线表示。样品包含四个部分:单体峰保留体积(RV)在12.5ml,碎片在16ml ,二聚体在10.5ml ,聚集体在8.5ml 。使用共聚物分析方法,可以得到表1结果。单体的分子量为3.84×106g/mol。衣壳的理论分子量为3.8×106g/mol,证实分析结果与预期相符。MW/Mn为分子量分布,描述了样品的分散性,单体和二聚体的值接近1,而聚集体和片段均显着高于1,表明在同一峰内有多个不同分子量的组分。Fraction of Sample表示样品组分百分含量,单体所占百分比为84.7%。Fraction of Protein显示了样品中衣壳的百分比,单体包含99.8%的衣壳。这证实了样本确实是Empty rAAV5。最后Empty rAAV5样品总滴度为5.91x1013Vp/ml。 案例二:第二个样品Full rAAV5的三检测器色谱图如图3所示。图中显示了与Empty rAAV5截然不同的色谱峰。分析色谱图可以看出,只包含两个不同的组分,其中单体峰,大概12.5ml RV处,包含Full 和Empty rAAV5的混合物,而聚集体出现在8ml RV处。测试结果见表2。对于主体的单体峰,计算出其混合物分子量为4.49×106g/mol,其中86%为衣壳。rAAV5的蛋白质组分的分子量为3.89×106g/mol,这与表1中Empty rAAV5 的数据一致。单体是总体的93.2%,样本的总滴度为7.48x1013VP/ml。其中单体包含78% Full rAAV5,22% Empty rAAV5。需要注意的是,这种分析方法假设样品要么是Full ,要么是Empty ,忽略部分装载或过度装载情况。Zetasizer Ultra纳米粒度及电位仪可以使用MADLS方式快速确定病毒滴度。从OMNISEC获得的数据与Zetasizer Ultra的粒子滴度进行了比较,两种技术之间有很好的相关性,见图4。另外,本文将Full rAAV5和Empty rAAV5以确定比例混合,来对Full rAAV5样品进行分析。表3显示了每个样品的预期值和实际值Full rAAV百分比。图5显示了期望值和实际值之间有很强的相关性,证实了OMNISEC确定样品实心率结果的可靠性。为了进一步评估OMNISEC对rAAV样品准确表征能力,我们进行了rAAV5样品的热应力稳定性研究,同时,基于ZS Ultra对聚集体的极高灵敏度,我们利用了ZS Ultra表征rAAV5聚集体的微小变化。测试条件是将rAAV5样品置于25oC到80oC之间进行测试。在不断加热过程中,在每个温度下测量rAAV5样品的粒径。在25oC和35oC之间,没有观察到粒径的变化。从35oC开始,可以观察到粒径开始增大,这表明样品开始发生变化(图6A)。30oC和45oC下的数据比较清楚地显示了这些样品之间的大小差异(图6B)。我们选择45oC条件,对OMNISEC进行进一步稳定性研究。将rAAV5样品在稳定在45oC,分别在2min 、5min、10min和15min后,取样品到OMNISEC上测试。图7色谱叠加图显示样品发生了明显的变化,聚集体百分含量增加,单体浓度含量降低。表4显示MW在此潜伏期内保持稳定,单体峰中的AAV百分比也保持稳定。结论:在这项研究中,我们展示了OMNISEC和Zetasizer Ultra在综合分析表征rAAV5样品的能力,以及将两者联合使用的应用价值。 OMNISEC多检测SEC系统将示差折光检测器、紫外全波长检测器、光散射检测器集成一体化设计,具有更高的灵敏度和准确度,通过一次进样分析,可提供各种血清型AAV样品的绝对分子量、衣壳大小、滴度、实心率、聚集体、片段和样品稳定性等关键质量属性。虽然这些参数中很多都可以使用传统的生物化学方法来确定,但OMNISEC提供了更为简单、可靠的方法,正逐渐成为一种表征分析AAV通用的技术工具。
  • 好消息,骨质疏松症患者的福音来啦! --CT助力研究骨质疏松椎体压缩性
    随着全球人口的老龄化,骨质疏松症的发病率正在增加。骨质疏松症是一种具有骨质减少和骨质流失的全身性多因素疾病,可损害骨骼的微结构并增加骨脆性,使之易受全身性骨折和骨病的侵害,而骨质疏松椎体压缩性骨折是其最常见的骨折。聚甲基丙烯酸甲酯(pmma)骨水泥是增强/稳定骨质疏松性椎体压缩骨折(ovcfs)最常用的生物材料之一,如经皮椎体成形术(pvp)和球囊后凸成形术(bkp)。但由于其压缩模量高、与骨结合弱等缺点,限制了其临床应用。 骨质疏松椎体压缩性骨质修复新材料 有了重大进展! 现在,针对骨质疏松椎体压缩性骨折的修复新材料研究有了重大进展。清华大学材料学院王秀梅教授、浙江大学医学院附属邵逸夫医院方向前教授以及宁波大学医学院附属医院蒋国强教授和岛津公司分析中心工程师黄军飞先生合作,利用岛津公司inspexiosmx-225ct fpd hr设备研制了一种生物活性复合骨水泥(mc-pmma),用于治疗骨质疏松性椎体压缩骨折。通过岛津ct不仅直观的观察出两种材料(pmma和mc-pmma)的物理特性无差异,并且使用ct彩色渲染三维图像的特殊方法分析使用了mc-pmma骨水泥的骨头再生更为显著。这种彩色渲染方法在骨科材料研究中属于开创性的,并发表在国际著名期刊,theranostics刊上,影响因子8.063分,中科院分区1区。 pmma和mc-pmma物理特性基本无异 图1 pmma 和mc-pmma的孔隙率及ct值 图1通过岛津公司inspexiosmx-225ct fpd hr扫描pmma和mc-pmma两种材料的孔隙率,发现基本上是一致的,差别不大,说明mc(矿化胶原蛋白)的加入,使材料本身的孔隙率发生改变;再分析这两种材料的ct值,差别也不大,说明mc(矿化胶原蛋白)的加入,对于材料本身的结构特性没有发生改变。因此从材料的物理特性上来说,两种材料基本无异,可相互替代。 mc-pmma明显有助于骨骼吸收和生长 x射线显微ct图像显示两组标本均牢固地结合在宿主骨上,没有明显的缝隙。显微ct三维渲染显示了缺损和骨水泥的位置。在图2a中,骨水泥具有高的ct值,以红色和黄色表示,而骨头为黑色。随着骨水泥被骨头取代,颜色逐渐变为绿色、蓝色,最后变为黑色,表明ct值逐渐降低。两组标本在第4周时的骨水泥的ct值和骨头体积都相似。在第8周时,mc-pmma组的ct值下降,而pmma组几乎和以前相同。在第12周时,mc-pmma组中的ct值和骨头相似的区域比以前更多,而pmma组的ct值始终保持不变。 图2 骨水泥的界面外观和ct值的差异表明,mc-pmma组比pmma组有更多的物质被吸收和有利骨骼生长。椎体三维图像显示,在术后4、8和12周,mc-pmma骨水泥组的骨形成比pmma骨水泥组更多(图2b-e)。在术后4周,与pmma对照组相比(bv/ tv,12.67±1.84%,tb.n,0.71土0.12mm,n = 6),mc-pmma组有骨体积百分比较高(bv / tv,24.24±3.27%,p= 0.001,n = 6),骨小梁厚度较高(tb.n,0.93±0.21mm,p = 0.001,n = 6)。两组样本之间的小梁厚度(tb.th,0.14士0.02mm,tb.th,0.15±0.02 mm,p = 0.599,n = 6)或小梁间距(tb.sp,0.76±0.11 mm,tb.sp,0.78±0.14mm-1,p = 0.683,n = 6)无明显差异。术后8周和12周,小梁厚度明显更高(tb.th,0.17±0.01 mm,0.23±0.03 mm,p= 0.001,n = 6),骨体积百分比更高(bv / tv,34.89) ±4.06%,37.33±1.65%,p = 0.001,n = 6),骨小梁数比较高(tb.n,1.57±0.11mm,2.12±0.09 mm,p = 0.001,n = 6),与pmma组相比,mc-pmma组的骨小梁间距较小(tb.sp,0.41±0.02 mm,0.30±0.01mm,p = 0.007,n = 6), mc-pmma组的骨骼随着时间增长。 岛津ct产品是您的科研好助手 通过使用岛津公司inspexiosmx-225ct fpd hr扫描分析,结果显示:在pmma骨水泥的应用价值方面,mc-pmma骨水泥的处理性能无显著差异。然而,抗压强度和抗压模量均显著降低。在兔模型研究中,术后8周和12周,mc-pmma骨水泥的骨再生更为显著(皮质骨厚度、成骨细胞面积、新骨面积和骨内生长百分比均显著升高)。mc-pmma骨水泥表现出良好的适应性力学性能和生物相容性,在临床上可用于替代商业pmma骨水泥治疗骨质疏松性椎体骨折。 岛津公司inspexiosmx-225ct fpd hr相比其他工业及医疗ct,不仅扫描速度快(最快43秒得到ct图像),而且图像清晰(ct图像最大可分辨4微米),适合科研机构筛查处理大批量的样品。通过多种后处理软件,精确的展示出感兴趣区域及分析统计数据,为科研人员节省宝贵的时间和提供详实的图片资料。 参考文献zhu j, yang s, cai k, wang s, qiu z, huang j, jiang g, wang x, fang x. bioactive poly (methyl methacrylate) bone cement for the treatment of osteoporotic vertebral compression fractures. theranostics 2020 10(14):6544-6560.doi:10.7150/thno.44428. 撰稿人:黄军飞
  • 海能技术获40家机构调研:布局色谱领域成效凸显 系列产品收入飙升近90%毛利增加13.46百分点
    4月4日消息,海能技术(430476)近日接待开源证券、中信证券等40家机构网络调研。近年,公司重点布局色谱领域成效显著,色谱光谱系列产品销售收入同比增长近90%,毛利率增加13.46个百分点,成为业绩新增长点。海能技术表示,公司未来将持续加码色谱领域高效液相色谱仪、气相色谱-离子迁移谱联用仪等产品研发和市场投入,助推产品收入持续攀升。资料显示,海能技术是一家专业从事科学仪器及分析方法的研发、生产及销售的高新技术企业,为广大科研工作者和质量控制从业人员提供生产工具和分析检测方法。目前,公司已拥有有机元素分析和样品前处理两大成熟系列产品。近年来,海能技术持续拓宽业务增长空间和产品领域,产品向系统复杂、技术含量更高、应用范围广、市场空间大的色谱领域拓展,重点布局高效液相色谱仪、气相色谱-离子迁移谱联用仪两大产品,打开新业务增长空间,成为业绩增长主要动力。2022年,公司色谱光谱系列产品销售收入6339.76万元,同比增长89.23%;毛利率63.86%,同比增加增加13.46个百分点。此次调研中,海能技术称,公司去年色谱光谱系列产品收入大幅攀升,主要原因是2022年度合并海能吉富及其控制的子公司,以及前期重点布局的气相色谱-离子迁移谱联用仪与高效液相色谱仪为代表的色谱光谱系列产品收入大幅增长所致。未来,公司将重点加大高效液相色谱仪、气相色谱-离子迁移谱联用仪等产品研发和市场投入力度,进而推动产品收入持续增长。据了解,海能技术于2021年末完成对联营企业海能吉富75%的认缴出资额的收购,主要是为有效提升GC-IMS(气相色谱-离子迁移谱联用)相关产品及技术研发和运营服务,进一步优化产业布局,丰富产品线,发挥各产业板块协同效应。值得注意的是,在购买日前海能技术已直接持有海能吉富25%的出资份额及直接持有海能吉富下属公司G.A.S.30.01%股权,按照公允价值重新计量产生利得1359.72万元。资料显示,海能吉富主要从事对外投资业务,子公司G.A.S主要从事气相色谱-离子迁移谱联用仪的研发、生产及销售。除此之外,海能技术在调研期间还详细介绍了投资天津海胜能光科技有限责任公司、控股济南海森分析仪器有限公司、增资白小白未来科技(北京)有限公司、投资上海安杰智创科技股份有限公司的背景及目的,以及在上海新设全资子公司的目的和规划等方面问题。
  • 单分子蛋白质测序、单细胞代谢组学及体积电镜等上榜2023 年值得关注的七项技术 |《自然》长文
    《自然》选出将在未来一年对科学产生巨大影响的工具和技术。从蛋白质测序到电子显微镜,从考古学到天文学,本文将讲述七项有可能会在未来一年震动科学界的技术。  单分子蛋白质测序  蛋白质组体现了细胞或生物体制造的一整套蛋白质,可以提供关于健康和疾病的深入信息,但对蛋白质组的表征仍然是一项挑战性的工作。  相对于核酸来说,蛋白质是由更多的分子砌块(building blocks)组成的,约有20种天然存在的氨基酸(相比之下,组成DNA和信使RNA等分子的只有4种核苷酸) 因此,蛋白质具有更大的化学多样性。有些蛋白质在细胞中的含量较少 并且与核酸不同,蛋白质不能被扩增 ——这意味着蛋白质分析方法必须使用任何能用的材料。  大多数蛋白质组学分析使用质谱法,这是一种根据蛋白质的质量和电荷来分析蛋白质混合物的技术。这些谱图可以同时量化数千种蛋白质,但检测到的分子并不总能明确识别,并且混合物中的低丰度蛋白质常常被忽视。现在,能对样本中的许多(甚至全部)蛋白质进行测序的单分子技术可能即将问世,其中许多技术类似于用于DNA的技术。  德克萨斯大学奥斯汀分校的生物化学家Edward Marcotte正在研究一种这样的技术,称为荧光测序(fluorosequencing)[1]。Marcotte的技术报道于2018年,该技术基于一种逐步的化学过程,在此过程中,单个氨基酸被荧光标记,然后从表面偶联蛋白的末端逐个被剪切下来,此时摄像机会捕捉到所产生的荧光信号。Marcotte解释道:“我们可以用不同的荧光染料标记蛋白质,然后在切割时逐个分子地观察。”去年,位于康涅狄格州的生物技术公司Quantum Si的研究人员描述了一种荧光测序的替代方法,该方法使用荧光标记的“粘合剂”蛋白来识别蛋白质末端的特定氨基酸(或多肽)序列[2]。  其他研究人员正在开发模仿基于纳米孔的DNA测序技术,根据多肽通过微小通道时引起的电流变化来分析多肽。荷兰代尔夫特理工大学的生物物理学家Cees Dekker及其同事于2021年展示了这样一种方法,他们利用蛋白质制成纳米孔,并能够区分通过纳米孔的多肽中的单个氨基酸[3]。在以色列理工学院,生物医学工程师Amit Meller的团队正在研究由硅基材料制成的固态纳米孔器件,该器件可以同时对许多不同的蛋白质分子进行高通量分析。他说:“你可能可以同时观察数万甚至数百万个纳米孔。”  尽管目前单分子蛋白质测序只是概念上的验证,但其商业化正在迅速推进。例如,Quantum Si公司已宣布计划今年推出第一代仪器,并且Meller指出,2022年11月在代尔夫特举行的蛋白质测序会议上有一个专门针对该领域初创企业的讨论组。他说:“这让我想起了第二代DNA测序技术面世前的那些日子。”  Marcotte是德克萨斯州奥斯汀市蛋白质测序公司Erisyon的联合创始人,他对此持乐观态度。他说:“这已经不是个行不行的问题,而是这项技术几时能送到人们手上。”  詹姆斯韦勃太空望远镜  天文学家们从去年开始就翘首以盼,兴奋不已。经过20多年的精心设计和建造,美国国家航空航天局(NASA)与欧洲航天局和加拿大航天局合作,于2021年12月25日成功将詹姆斯韦布太空望远镜(James Webb Space Telescope,缩写JWST)送入轨道。因为仪器设备需要展开并确定第一轮观测的位置,全世界不得不等待了近七个月,JWST才开始正常工作。  等待是值得的。马里兰州巴尔的摩市太空望远镜科学研究所天文学家、JWST的望远镜科学家Matt Mountain表示,最初传来的图像超出了他的最高预期。“实际上天空并不空旷——到处都是星系,”他说,“理论上我们知道这一点,但真正看到这一景象带来了别样的情感冲击。”  詹姆斯韦布太空望远镜(James Webb Space Telescope)的6.5米主镜片(图中展示了18片镜片中的6片)可以探测数十亿光年外的物体。资料来源:NASA/MSFC/David Higginbotham  JWST的设计是为了接替哈勃太空望远镜的工作。哈勃望远镜可以看到令人惊叹的宇宙景象,但也有盲点:它基本上无法看见在红外范围内具有光信号的古老恒星和星系。要弥补这一点,需要一台高灵敏度的仪器,其灵敏度要能够探测到数十亿光年外发出的极为微弱的红外信号。  JWST的最终设计包括18个完全光滑的铍质镜片阵列,当其完全展开时,直径为6.5米。Mountain说,这些反射镜的设计非常精密,“要是把一块镜面等比放大到美国那么大,上面的隆起也不超过几英寸(高)。”这些反射镜配有最先进的近红外和中红外探测器。  这一设计使JWST能够填补哈勃望远镜的空白,包括捕获来自一个有135亿年历史的星系发出的信号,该星系产生了宇宙中最早的一些氧和氖原子。JWST也带来了一些惊喜,例如,它能够测量某些类型的系外行星的大气组成。  世界各地的研究人员都在排队等待观察时间。英国卡迪夫大学的天体物理学家Mikako Matsuura正在用JWST进行两项研究,调查宇宙尘埃的产生和破坏,这些尘埃可能会导致恒星和行星的形成。Matsuura说,与她所在小组过去使用的望远镜相比,“JWST拥有完全不同的灵敏度和清晰度等级”。她说:“我们看到了这些天体内部正在发生的完全不同的现象——这真令人叹为观止。”  体积电子显微镜  电子显微镜(Electron microscopy,EM)以其卓越的分辨率而闻名,但观察的主要是样本的表面。深入研究样本的内部需要将样本切成非常薄的切片,这对于生物学家来说往往不够。伦敦弗朗西斯克里克研究所(Francis Crick Institute)的电子显微镜学家Lucy Collinson解释说,仅覆盖单个细胞的体积就需要200个切片。她说:“如果你只有一个[切片],你就是在玩统计把戏。”  现在,研究人员正在将EM的分辨率应用于包含多个立方毫米体积的3D组织样本上。  此前,从2D的EM图像重建这样体积的样本(例如,绘制大脑的神经连接图)需要经历艰苦的样本准备、成像和计算过程,才能将这些图像转换为多图像堆叠。现在,最新的“体积电子显微镜”技术大大简化了这一过程。  这些技术有各种优点和局限性。连续切面成像(Serial block-face imaging)是一种相对快速的方法,它使用金刚石刀片在树脂包埋样品上切下一系列薄片,并进行成像,可以处理约1立方毫米大小的样品。然而,它的深度分辨率较差,这意味着生成的体积重建将相对模糊。聚焦离子束扫描电子显微镜(Focused ion beam scanning electron microscopy,FIB-SEM)能制备更薄的薄片样品,因此深度分辨率更高,但更适用于体积较小的样品。  Collinson将体积电子显微镜的兴起描述为一场“安静的革命”,因为研究人员专注于用这种方法得到的结果,而不是生成这些结果的技术。但这正在改变。例如,2021年,弗吉尼亚州珍利亚研究园区(Janelia Research Campus)从事电子显微镜中细胞器分割(Cell Organelle Segmentation in Electron Microscopy,COSEM)计划的研究人员在《自然》上发表了两篇论文,聚焦了在绘制细胞内部结构方面取得的重大进展[4,5]。“这是一个绝佳的原理论证。”Collinson说。  COSEM研究计划使用精密的定制FIB-SEM显微镜,在保持良好空间分辨率的同时,可将单个实验中可成像的体积增加约200倍。将这些仪器与深度学习算法结合使用,该团队能够在各种细胞类型的完整3D体积中定义各种细胞器和其他亚细胞结构。  这种样品制备方法费力且难以掌握,并且由此产生的数据集非常庞大。但这一努力是值得的:Collinson已经看到了该技术在传染病研究和癌症生物学方面产生的见解。她现在正在与同事们合作,探索以高分辨率重建整个小鼠大脑的可行性。她预计这项工作将需要十多年的时间,花费数十亿美元,并产生5亿GB左右的数据。她说:“这可能与绘制第一个人类基因组工作的数据量在一个数量级。”  CRISPR无限可能  基因组编辑工具CRISPR–Cas9作为在整个基因组的目标位点引入特定变化的首选方法,在基因治疗、疾病建模和其他研究领域取得了突破,无可非议地享有盛誉。但它的用途多受限制。现在,研究人员正在寻找规避这些限制的方法。  CRISPR编辑由短链向导RNA(short guide RNA,sgRNA)协调,sgRNA将相关的Cas核酸酶导向其目标基因组序列。但这种酶发挥作用还需要在靶点附近有一种叫做原间隔序列邻近基序(protospacer adjacent motif,PAM)的序列 如果没有PAM,基因编辑很可能会失败。  在波士顿的马萨诸塞州总医院,基因组工程师Benjamin Kleinstover利用蛋白质工程技术,从化脓性链球菌中制造出常用Cas9酶的“近乎不受PAM序列限制的(near-PAMless)”Cas变体。一个Cas变体需要由三个连续核苷酸碱基组成的PAM,其中腺嘌呤(A)或鸟嘌呤(G)核苷酸位于中间位置[6]。“这些酶现在几乎可以读取整个基因组,而传统的CRISPR酶只读取1%到10%的基因组。”Kleinstover说。  这种对PAM序列不太严格的要求,增加了编辑“脱靶”的机会,但进一步的蛋白质工程设计可以提高其特异性。作为一种替代方法,Kleinstiver的团队正在设计和测试大量Cas9变体,每个变体对不同的PAM序列表现出高度的特异性。  还有许多天然存在的Cas变体有待发现。自然条件下,CRISPR–Cas9系统是一种针对病毒感染的细菌防御机制,不同的微生物进化出了具有不同PAM序列偏好的各种酶。意大利特伦托大学的病毒学家Anna Cereseto和微生物组研究人员Nicola Segata梳理了100多万个微生物基因组,鉴定和表征了一组多样的Cas9变体,他们估计这些变体可能总共可以针对98%以上的已知人类致病突变[7]。  然而,其中只有少数能在哺乳动物细胞中发挥作用。Cereseto说:“我们的想法是测试许多种酶,看看是什么决定因素使这些酶正常工作。”从这些天然酶库和高通量蛋白质工程工作中获得的见解来看,Kleinstiver说,“我认为我们最终会有一个相当完整的编辑工具箱,能让我们编辑任何我们想要的碱基。”  高精度放射性碳测年  去年,考古学家利用放射性碳测年技术的进步,对维京探险家首次抵达美洲的确切年份——甚至是季节——进行了研究。荷兰格罗宁根大学的同位素分析专家Michael Dee和他的博士后Margot Kuitems带领的一个团队在加拿大纽芬兰岛北岸的一个聚落中发现了一些被砍伐的木材,通过对这些木材的研究,确定这棵树很可能在1021年被砍伐,而且可能是在春天[8]。  自20世纪40年代以来,科学家一直在利用有机人工制品的放射性碳测年法来缩小历史事件发生的时间范围。他们通过测量同位素碳-14的痕迹来做到这一点,碳-14是宇宙射线与地球大气相互作用的结果,在数千年中缓慢衰变。但这种技术的精确度通常仅为几十年左右。  加拿大纽芬兰省兰塞奥兹牧草地(L'Anse aux Meadows)木材的精确放射性碳年代测定显示,维京人于1021年在此地砍倒了一棵树。图片来源:All Canada Photos/Alamy  2012年,情况发生了变化,日本名古屋大学物理学家三宅芙沙(Fusa Miyake)领导的研究小组发现[9],公元774到775年之间,日本雪松年轮中碳-14含量显著升高。随后的研究[10]不仅证实了这一时期世界各地的木材样本中都存在这种碳-14含量的显著升高,而且还发现历史上存在至少五次这样的碳-14含量上升,最早的一次可以追溯到公元前7176年。有研究人员将这些碳-14峰值与太阳风暴活动联系起来,但这一假设仍在探索中。  无论其原因是什么,这些“三宅事件”的存在,能让研究人员通过检测一个特定的三宅事件,然后对此后形成的年轮进行计数,从而准确地确定木制文物的制造年份。Kuitems说,研究人员甚至可以根据最外圈年轮的厚度来确定树木被砍伐的季节。  考古学家现在正在将这种方法应用于新石器时代聚落和火山爆发遗址的研究,Dee希望用它来研究中美洲的玛雅帝国。在接下来的十年左右,Dee乐观地认为,“我们将对这些古老文明中的许多历史事件有真正精确到年代的完全记录,我们将能够以相当精细的时间尺度谈论这些历史发展。”  至于三宅,则还在继续寻找历史中的时间标尺。她说:“我们现在正在寻找过去一万年中与公元774到775年的事件相当的其他碳-14升高。”  单细胞代谢组学  代谢组学是研究驱动细胞的脂质、碳水化合物和其他小分子的科学,它最初是一套表征细胞或组织中代谢产物的方法,但现在正在转向单细胞水平。科学家们可以利用这些细胞水平的数据,理清大量看似相同的细胞的功能复杂性。但这一转变带来了艰巨的挑战。  代谢组包含大量具有不同化学性质的分子。欧洲分子生物学实验室的代谢组学研究人员Theodore Alexandrov说,其中一些分子存在的时间非常短暂,代谢周转率为亚秒级别。它们可能很难检测:尽管单细胞RNA测序可以捕获细胞或生物体中产生的近一半的RNA分子(转录组),但大多数代谢分析仅涵盖细胞代谢产物的一小部分。这些缺失的信息里可能包含了重要的生物学奥秘。  “代谢组实际上是细胞的活性部分。”伊利诺伊大学厄巴纳-香槟分校的分析化学家Jonathan Sweedler说,“在疾病状态下,如果你想知道细胞状态,你真的要研究代谢产物。”  许多代谢组学实验室使用分离的细胞,这些细胞被捕获在毛细管中,使用质谱法单独分析。相比之下,“成像质谱”方法获取了样本中不同位置的细胞代谢产物发生变化的空间信息。例如,研究人员可以使用一种称为基质辅助激光解吸/电离(MALDI)的技术,其中激光束扫过经特殊处理的组织切片,释放出代谢产物,用于随后的质谱分析。这种方法也能捕获样本中代谢物来源的空间坐标。  Sweedler说,理论上,这两种方法都可以量化数千个细胞中的数百种化合物,但要实现这一目标通常需要顶级的定制硬件设备,成本在百万美元左右。  现在,研究人员正在普及这项技术。2021年,Alexandrov团队报道了SpaceM,这是一种开源软件工具,它能用光学显微镜成像数据,使用标准商用质谱仪对培养的细胞进行空间代谢组学分析[11]。他说:“我们算是做了数据分析部分的体力活。”  Alexandrov的团队使用SpaceM对数以万计人和小鼠细胞中的数百种代谢产物进行了分析,并转向标准的单细胞转录组学方法将这些细胞分类。Alexandrov表示,他尤为热情的是后一项工作,以及构建“代谢组学图谱”的想法——类似于为转录组学开发的图谱,以加速该领域的进展。他说:“这绝对是一个前沿领域,并将对科学起到巨大的推动作用。”  体外胚胎模型  研究人员现在可以在实验室中制造出人工合成胚胎(下图),它与8天大的自然胚胎(上图)类似。来源:Magdalena Zernicka Goetz实验室  科学家们已经在小鼠和人类的细胞水平上详细描绘了从受精卵到完全形成的胚胎这一过程。但驱动这一过程早期阶段的分子机制仍不清楚。现在,“胚状体”模型的一系列活动有助于填补这些知识空白,让研究人员更清楚地了解可以决定胎儿发育成败的重要早期事件。  该领域一些最精细的模型,来自加州理工学院和英国剑桥大学的发育生物学家Magdalena Zernicka Goetz的实验室。2022年,她和她的团队证明,他们可以完全从胚胎干细胞(embryonic stem cells,ES细胞)中产生植入期的小鼠胚胎[12,13]。  与所有多能干细胞一样,ES细胞可以形成任何细胞或组织类型,但它们需要与两种类型的胚外细胞密切相互作用才能完成正常的胚胎发育。Zernicka-Goetz团队研究出了诱导ES细胞形成这些胚外细胞的方法,并表明这些细胞可以与ES细胞共培养,以产生胚胎模型,该模型的成熟度是以前的体外实验无法达到的。“它就如你能想象的胚胎模型那样。”Zernicka Goetz说,“我们的胚胎模型发育出一个头部和心脏——而且还在跳动。”她的团队能够利用这个模型来揭示个别基因的改变如何破坏正常的胚胎发育。  经过工程设计用于模拟胚胎8细胞期的细胞构成的胚状体。来源:M.A Mazid et al./Nature  在中国科学院广州生物医药与健康研究院,干细胞生物学家Miguel Esteban和同事们正在采取一种不同的策略:重新编程人类干细胞,以模拟最早的发育阶段。  Esteban说:“我们最初的想法是,实际上甚至制造合子也是可能的。”该团队没能完全实现这一点,但他们的确发现了一种培养策略,能使这些干细胞回到类似于8细胞期人类胚胎的状态[14]。这是一个至关重要的发育期里程碑,与基因表达的巨大变化相关,最终产生不同的胚胎细胞和胚外细胞谱系。  尽管还不完美,但Esteban的模型展示了自然状态下8细胞期胚胎中细胞的关键特征,并凸显了人类和小鼠胚胎如何启动向8细胞期阶段转变之间的重要差异。Esteban说:“我们发现,一种甚至在小鼠体内都没有表达的转录因子,调节着整个转化过程。”  结合起来,这些模型可以帮助研究人员描绘出仅仅几个细胞是如何发育为高度复杂的脊椎动物躯体的。  在许多国家,对人类胚胎的研究只能在发育14天以内进行,但在这些限制条件下,研究人员仍有许多工作可做。Esteban说,非人类灵长类动物模型提供了一种可能的替代方案,而Zernicka-Goetz说,她的小鼠胚胎策略也可以产生发育到第12天的人类胚胎。她说:“在这个我们能研究的胚胎阶段,仍有很多问题有待提出。”  参考文献:  1. Swaminathan, J. et al. Nature Biotechnol.36, 1076–1082 (2018).  2. Reed, B. D. et al. Science 378, 186–192 (2022).  3. Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A. & Dekker, C. Science 374, 1509–1513 (2021).  4. Heinrich, L. et al. Nature 599, 141–146 (2021).  5. Xu, C. S. et al. Nature 599, 147–151 (2021).  6. Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. et al. Science 368, 290–296 (2020).  7. Ciciani, M. et al. Nature Commun. 13, 6474 (2022).  8. Kuitems, M. et al. Nature 601, 388–391 (2022).  9. Miyake, F., Nagaya, K., Masuda, K. & Nakamura, T. Nature 486, 240–242 (2012).  10. Brehm, N. et al. Nature Commun. 13, 1196 (2022).  11. Rappez, L. et al. Nature Methods 18, 799–805 (2021).  12. Amadei, G. et al. Nature 610, 143–153 (2022).  13. Lau, K. Y. C. et al. Cell Stem Cell 29, 1445–1458 (2022).  14. Mazid, M. A. et al. Nature 605, 315–324 (2022).  原文以Seven technologies to watch in 2023为标题发表在2023年1月23日《自然》的技术特写版块上
  • 麦克仪器:药物粉体密度及孔隙度测定-why and how?
    p style="text-align: justify text-indent: 2em "在药物制剂的研发及生产过程中,往往都会涉及到相关的药物粉体。这些粉体及其片剂的理化性质会影响其混合均匀度、压缩成型过程,以及最终制剂的生物利用度和疗效等,因此,在粉碎、混合、压片、制粒等过程中需要对其相关物理特性进行调控以确保最终制剂质量。除了关注度较高的粒度粒形,比表面积,流动性等性质外,密度及孔隙度的表征也是药物质量的重要指标,并且在研发及生产的众多环节都有所涉及。因而在美国药典USP 267 、USP 699 ,日本药典JP 3.03,欧洲药典Ph. Eur. 2.9.32、Ph. Eur. 2.2.42和2020年版《中国药典》通用技术0992中,都明确规定了药物粉体相关的密度、孔隙度测定方法。!--699--!--267--!--699--!--267--!--699--!--267--/pp style="text-align: justify text-indent: 2em "密度主要会影响粉体的流动性,均匀性,压缩性以及离析度、结晶度等等。由片料包裹密度除以骨架密度算得的片料固相分数(Solid Fraction)是辊压过程中的关键工艺参数,测定固相分数可了解药物中固体含量百分比等相关信息,从而提高辊压过程的有效性,并建立可控的辊压速度、辊压压力等工艺操作参数,对工艺过程的参数设置及优化制剂质量具有重要意义。此外,药物材料的骨架密度还可以作为其结晶状态以及二元混合物比例的标志。/pp style="text-align: justify text-indent: 2em "孔隙度(Porosity)会影响药物的辊压制粒、崩解等过程,以及片剂强度、压实度、含量均匀度及溶出度等性质,是药物崩解、溶出和生物利用度的一个关键质量属性。此外,孔隙度测量还可以预测评估压缩过程中颗粒的变形特性,测量辊压后片料的总孔体积和固相分数,以及评估药物包衣的完整性,帮助确定包衣过程中物料流的参数设置等。/pp style="text-align: justify text-indent: 2em "综上所述,掌握和控制药物制剂的密度及孔隙度对药物的最终疗效及生产稳定性非常重要。本文将介绍药物粉体密度及孔隙度的定义及测试原理,并举例说明相关测试结果。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strongspan style="text-indent: 32px "密度测试/span/strong/span/pp style="text-align: justify text-indent: 2em "密度是单位体积粉体的质量。由于粉体的颗粒内部和颗粒间会存在空隙,所以粉体所占有的体积会因测量方法不同而有所差异,并由此产生如骨架密度、包裹密度等不同的密度概念。/pp style="text-align: justify text-indent: 2em "(1)真密度和骨架密度(颗粒密度)/pp style="text-align: justify text-indent: 2em "真密度也称绝对密度,所对应的真体积是指不包含开孔和闭孔的体积。骨架密度(颗粒密度)对应的骨架体积是样品的真实体积与闭孔体积之和,即不包括与外界连通的开孔体积。/pp style="text-align: justify text-indent: 2em "骨架密度的测定方法一般采用基于阿基米德原理的气体置换法测定,该法是目前世界公认的测真密度、骨架密度最可靠的技术之一,并为无损测量。图1所示为麦克仪器的AccuPyc II全自动气体置换法真密度仪,测试采用惰性气体如氦气或氮气作为置换介质取代材料的孔隙体积,根据理想气体定律PV=nRT确定样品体积,结合样品质量可算得骨架密度。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/2664b594-14e3-4eef-bb84-11a6fe859c65.jpg" title="图片1.jpg" alt="图片1.jpg"//pp style="text-align: center text-indent: 0em "a href="https://www.instrument.com.cn/netshow/SH100677/C222910.htm" target="_self"strong图1 AccuPyc II全自动气体置换法真密度仪/strong/a/pp style="text-align: justify text-indent: 2em "(2)包裹密度/pp style="text-align: justify text-indent: 2em "包裹密度所对应的包裹体积包含颗粒的骨架体积和开孔、闭孔体积,以及颗粒外表面的一些粗糙空隙。/pp style="text-align: justify text-indent: 2em "图2所示为麦克仪器的GeoPyc 1365全自动包裹密度分析仪。包裹密度的测试原理是使用一种独特的替代测试技术,通常采用一种具备高流动性的微小刚性球状准流体介质作为替代介质将样品包裹起来。这种替代介质的颗粒很小,在混合过程中可与样品表面紧密贴合,但不会进入样品的孔隙中。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/1d69e4af-3ac4-4276-b882-bcbeeba43019.jpg" title="图片2.jpg" alt="图片2.jpg"//pp style="text-align: center text-indent: 0em "a href="https://www.instrument.com.cn/netshow/SH100677/C12222.htm" target="_self"strong图2 GeoPyc 1365全自动包裹密度分析仪/strong/a/pp style="line-height: 150% text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strong孔隙度测试/strong/span/pp style="text-align: justify text-indent: 2em "孔隙度指的是颗粒内的孔隙以及样品间隙所占体积与粉体体积之比,通常可通过压汞法和密度计算法等获得。孔隙度越高则表明药物中的总孔体积越大,对应的固体分数就越低。/pp style="text-align: justify text-indent: 2em "(1)压汞法/pp style="text-align: justify text-indent: 2em "压汞法是测量药物孔隙度特性常用的方法,可测得样品中与外界连通的开孔体积占总体积的百分比。压汞法的原理是基于汞对大多数固体材料不润湿,界面张力会抵抗汞进入孔中,要使得汞进入材料的开孔中则需要施加外部压力。汞压入的孔半径与所受外压成反比,根据Washburn方程可算出汞压入的孔半径与所受外力的对应关系。图3所示为麦克仪器的AutoPore V全自动压汞仪,其分析技术就是在精确控制的压力下将汞压入材料的多孔结构中,通过测量不同外压下进入孔隙中汞的量,就可知道相应孔体积的大小。压汞法具有快速、高分辨率及分析范围广等优点,除了可测得孔隙度外,该表征还可获得样品的众多特性,例如:孔径分布、总孔体积、总孔比表面积、中值孔径等等。/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 150px height: 321px " src="https://img1.17img.cn/17img/images/202007/uepic/178f7a4e-5000-496a-916d-eca9b6ca290f.jpg" title="图片3.jpg" alt="图片3.jpg" width="150" height="321" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "a href="https://www.instrument.com.cn/netshow/SH100677/C222916.htm" target="_self"strong图3 AutoPore V全自动压汞仪/strong/a/pp style="text-align: justify text-indent: 2em "(2)密度计算法/pp style="text-align: justify text-indent: 2em "除了压汞法外,通过将气体置换法真密度仪与包裹密度分析仪联用,结合材料的骨架密度和包裹密度,由式①也可直接计算出孔隙度。同时,由式②还可以算出片料的固体分数。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/f07054e4-3ce8-4391-8f9b-055fb8a21a43.jpg" title="微信图片_20200730153431.png" alt="微信图片_20200730153431.png"//pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 300px height: 300px " src="https://img1.17img.cn/17img/images/202007/uepic/5f5355a4-3750-4a8b-8217-0d32b592540a.jpg" title="图片4.jpg" alt="图片4.jpg" width="300" height="300" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong图4 AccuPyc II全自动气体置换法真密度仪及GeoPyc 1365全自动包裹密度分析仪/strong/pp style="line-height: 150% text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strong密度及孔隙度测试举例/strong/span/pp style="text-align: justify text-indent: 2em "(1)药物辅料硬脂酸镁的骨架密度测定/pp style="text-align: justify text-indent: 2em "硬脂酸镁是新型药用辅料,可作固体制剂的成膜包衣材料、胶体液体制剂的增稠剂、混悬剂等。使用麦克仪器的AccuPyc II全自动气体置换法真密度仪对其进行骨架密度测试,结果表明,仪器在约16分钟内完成了10个测试循环,该硬脂酸镁样品的密度平均值为1.5157 g/cm3,标准偏差仅为0.0006 g/cm3,密度结果均围绕其平均值波动,结果非常稳定,实现了药物材料快速、高精度的体积测量和密度计算。/pp style="text-align: justify text-indent: 2em "(2)药物的压汞法孔隙度测定/pp style="text-align: justify text-indent: 2em "使用麦克仪器公司的AutoPore V 全自动压汞仪对某药物进行压汞测试。其堆积密度为1.1639 g/ml,骨架密度为1.5382 g/ml,由此计算得到的孔隙度为24.3332%。/pp style="text-align: justify text-indent: 2em "(3)药物片料的密度计算法孔隙度及固相分数测定/pp style="text-align: justify text-indent: 2em "使用麦克仪器的GeoPyc 1365全自动包裹密度分析仪对辊压后得到的某药物片料进行孔隙度测试。测得该药物的包裹密度为1.3409 g/cm3,其标准偏差为0.0007 g/cm3,结合由AccuPyc II全自动气体置换法真密度仪测得的骨架密度1.4630 g/cm3,最后算得孔隙率为8.35 %。根据上文公式②,由骨架密度除以包裹密度可算得其固相分数为91.65 % 。/pp style="line-height: 150% text-align: justify text-indent: 2em "strong总结/strong/pp style="text-align: justify text-indent: 2em "药物粉体及相关制剂的密度及孔隙度表征对其处方设计、制备、质量控制等都具有重要指导意义。密度和孔隙度不仅是辊压和压片等过程的关键工艺参数,也是硬度、崩解度、溶出度、生物利用度等的关键质量属性,会直接影响和制约药物的性质及疗效。因而研究和掌握药物粉体及制剂的密度、孔隙度对获得高质量的药物至关重要。采用气体置换法真密度仪和包裹密度分析仪可分别获得药物粉体的骨架密度和包裹密度,通过压汞法或者结合两种密度仪的密度计算法可测得药物的孔隙度及片料的固体分数。借助这些性质表征有助于掌握及预测原料药及辅料在配方中的特性,评估药物制剂的批次变化及药物相关性能,从而优化制造过程和提升产品质量。/pp style="text-align: right text-indent: 2em "strong作者:林宇彤/strong/pp style="text-align: right text-indent: 2em "strong麦克仪器应用工程师/strong/p
  • 张福根专栏|激光粒度仪应用导论之报告解读篇
    粒度分析报告是激光粒度仪测量颗粒样品后输出的测量结果。本文对报告的内容进行解释,以便读者能够更好地理解和运用仪器的输出结果。粒度分布的物理意义粒度分布是指被测的颗粒样品中各种尺寸颗粒占总颗粒的百分比。它是颗粒测量结果的详尽描述。在表达粒度分布时,涉及两个带有主观性的处置:一是粒径的分段,二是计算相对含量时所用的计量单位。从理论上说,一个颗粒样品在一定的粒径范围内存在各种大小的颗粒,即粒径的分布应该是连续的。但在实际的处理中,我们只能把粒径表示为若干个分立的粒径段,然后计算各个粒径段上的颗粒含量。最简单的分档方法是均匀分档,即各个粒径段的长度是相等的,例如1-2,2-3,3-4(单位µ m)。在激光粒度仪中,通常用等比原则对粒径分段。这是因为激光粒度仪测量的动态范围大,例如0.1-1000µ m。如果按等长原则分段,则难以同时照顾小颗粒端和大颗粒端。比如,为了照顾小颗粒端,最小间隔最多只能取0.1µ m(从0.1µ m到0.2µ m,跨度已经很大),这时对最后一个粒径段来说,就是999.9µ m-1000µ m,这样处理粒径段的数量就会非常多,数据处理变得非常麻烦,也没有必要分这么细。表1是一个粒度分布表的示例,其分段就是按照等比原则,比例是1.128。表中第1个粒径点是0.109µ m(即x0,其余类推),第2个粒径点就是0.109× 1.128?0.123µ m,第3个粒径点是0.123× 1.128?0.139µ m??另一个主观性的处理是百分含量的计量单位。激光粒度仪中常用体积含量,即用每个粒径段内颗粒的体积占所有颗粒的总体积的百分比来表征粒度分布。有时会用颗粒数或颗粒表面积含量来表达粒度分布。计量的单位不同,会造成粒度分布结果形式上的巨大变化(详见进阶知识4)。【进阶知识3】设激光粒度仪设定的粒径分档如“进阶知识2”所示。第i档的平均粒径为:设第i档范围内,即粒径处在x(i-1)至xi的颗粒个数为Ni,则所有颗粒的总体积为(此处省略了常数π?6。以体积计算的第i档的颗粒相对含量为式中i=1,2,?,n.如此,数列(v1,v2,?vn)就组成了以体积计量的粒度分布。同理,按数量计的粒度分布为按表面积计的粒度分布为粒度分布表在激光粒度仪输出的测量报告中,粒度分布通常以粒度分布表或/及粒度分布曲线的形式给出。表1是粒度分布表的示例。表1粒度分布表示例粒径(µ m)微分(V%)累积(V%)粒径(µ m)微分(V%)累积(V%)粒径(µ m)微分(V%)累积(V%)0.10902.530.632.1658.8201000.123002.8560.812.9766.3801000.139003.2231.033.9974.9201000.157003.6371.35.2984.5501000.177004.1051.646.9495.4301000.199004.6332.069107.701000.225005.2292.5611.56121.501000.254005.9023.1514.71137.201000.287006.6613.8118.51154.801000.324007.5184.5323.04174.701000.365008.4855.2728.31197.201000.412009.5775.9934.3222.601000.4650010.816.6340.93251.201000.5250012.27.1448.07283.501000.5920013.777.4655.53319.901000.6690015.547.5563.08361.101000.7550017.547.3670.44407.501000.8520019.796.9177.35459.901000.9610022.346.283.55519.101001.0850.020.0225.215.388.86585.801001.2240.070.0928.464.2993.15661.201001.3820.130.2232.123.2596.4746.201001.5590.190.4136.252.2498.64842.201001.760.270.6840.911.1499.78950.501001.9860.371.0546.180.221001072.701002.2420.491.5352.1101001210.60100表中,黄色栏为粒径,紫色栏为微分分布数值,灰色栏为累积分布数值。微分分布表示一个粒径段上的颗粒占总颗粒的百分比,累积分布表示某一粒径以细颗粒占总颗粒的百分含量。微分分布和累积分布之间很容易转换:设微分分布为(v1,v2,?vn),累积分布为(c1,c2,?cn),则微分分布栏的每一格内的数值表示本格左边所示粒径(即xi)与上一行所示粒径(xi-1)之间的颗粒百分含量。例如表1第二栏(黄色)底部的数值为0.49,表示粒径为1.986到2.242µ m之间的颗粒含量为0.49%。黄色栏的顶部有“微分(V%)”字样,表示“微分分布,以颗粒体积计量,含量为百分含量”。灰色栏给出的累积分布数值,则表示从表中的最小粒径开始累积到该行左边隔一栏的位置所示的粒径的颗粒百分含量的总和。以表1第3栏底部的数值为例,1.53表示2.242µ m以细的颗粒总含量为1.53%。粒度分布曲线粒度分布曲线是粒度分布的图像法表达。相较于粒度分布表格,曲线具有形象、直观、一目了然的优点。粒度分布曲线也分为微分分布曲线与累积分布曲线两种,其物理意义与粒度分布表相同。下图是与表1对应的粒度分布曲线。粒度分布曲线示例【进阶知识4】以上给出的粒度分布是体积粒度分布(激光粒度仪最常用的表达形式),如果改为表面积分布或颗粒数分布,则同样的样品的测量结果,分布形式会有很大的不同(见下图)。同样的样品以不同计量单位显示的粒度分布平均粒径平均粒径的含义很容易理解,就是一个颗粒样品中所有颗粒直径的平均值。需要注意的是,平均值的计算是要经过加权的。同样的粒度分布,加权的方式不同,得出的结果也不同。最常用的是体积加权:式中,xi平均和vi的含义如“进阶知识3”所示。D[4,3]是体积加权平均(简称“体积平均”)的另一种说法,因为在体积加权的公式中,分子和分母分别有段平均粒径的4次方和3次方。在表1所示的粒度分布中,D[4,3]=14.17µ m类似地,对表面积加权的平均粒径和对颗粒个数加权的平均粒径分别为在表1所示的粒度分布中,D[3,2]=9.25µ m,D(1,0)=3.05µ m。可见D[4,3]>D[3,2]>D(1,0),这是普遍规律。对用户来说,究竟用哪一种平均粒径表征待测样品的平均粒径,要看用户的关注点。比如参与化学反应的颗粒,例如催化剂,就比较关注表面积平均径,即D[3,2]。激光粒度仪的输出报告中D[4,3]和D[3,2]一般都同时给出。D50又称“中位径”,也是平均粒径的一种表示。它的含义是粒度分布的累积百分比达到50%的点所对应的粒径(见下图)。换个通俗的话说,D50就是个头排在中间的那个颗粒的粒径,比它大和比它小的颗粒各占50%,所以可以代表平均粒径。当然,所谓各占50%也是跟计量的物理单位有关的,可以是体积各占50%,也可以是表面积各占50%,也可以是个数各占50%。计量单位不同,D50值也不同。如果粒度分布用的是体积分布,那么D50指的是体积各占50%。激光粒度仪一般默认体积分布。在表1所示的粒度分布中,D50=12.57µ m,这个数值与D[4,3](=14.17µ m)接近。当粒度分布曲线形状很对称时,D50与D[4,3]几乎相等。累积粒径的物理意义示意图粒度分布范围粒度分布范围是表征一个颗粒样品粒径均匀度的指标。在激光粒度仪中,一般默认用D10和D90分别表示粒度分布的下边界和上边界。D10的物理意义是:被测样品中小于D10的颗粒含量占10%。同理,D90表示小于D90的颗粒含量占90%,或者大于D90的颗粒含量占10%。D10偏离D50越多,表示小颗粒往细的方向延展越多;D90偏离D50越大,则表示大颗粒往粗的方向延展越多。在有些应用行业,也有用其他的累积粒径表示粒度分布的展宽情况的,比如在磨料行业,用D6(磨料行业习惯于从大往小累积,原始表述是D94,等于从小往大累积的D6,下同)表示下限,用D97表示上限。一般而言,累积粒径越靠近分布的边缘,其稳定性就越差。关于D100和D0的重要提醒:(1)激光粒度仪给出的D100(或称Dmax)并不代表被测的粉体产品中的最大颗粒的尺寸。这可以从两个层面去理解:从取样层面理解,测量所取样品量大约是毫克级的,而它所代表的产品量大约是千克至吨级的,取样比例低于百万分之一,因此一次取样要取到那个最大的颗粒的概率是百万分之一(理论上说最大的那个是唯一的,否则就不叫最大)量级,几乎不可能被取到。从测量的层面考虑,即使那个最大的颗粒被取到,以较典型的分布宽度(最大最小比)为10的样品为例,假设粒度分布在对数坐标(即粒径段等比划分)上是对称的,则最大粒与D50之比约为3.16,最大粒一个单位体积的消光面积是一个单位体积的平均大小颗粒的3.16分之一。设最大粒的体积含量是1000分之一(最大粒处在粒度分布右侧的末端,理论上含量占比比这个还要低得多),则最大粒产生的散射光大约是全部散射光的3000分之一。这么低的光能很容易被仪器的各种噪声(比如激光功率波动就大于千分之一,此外还有样品浓度的波动,电子噪声等)所淹没。(2)从激光粒度仪给出的粒度分布数据计算小颗粒的个数是不太靠谱的。这是因为激光粒度仪给出的原始粒度分布是体积分布。小颗粒端的体积的微小波动会引起颗粒数的巨大变化。设颗粒的平均粒径为5µ m,其粒度分布的尾端在0.5µ m,二者粒径比为10,体积比为1000。假设尾端的体积出现1000分之一的波动,则颗粒个数就会出现1倍的波动,1倍就是100%,是极大的波动,是难以接受的。在激光粒度仪给出的测试报告中,会给出两个参数表征颗粒的均匀性。最常用的参数有:宽度系数以及变异系数。它是用均方差形式表征的分布宽度,公式如下:编者按:本文无异于是激光粒度仪初阶使用者的必备宝典,然而激光粒度仪分析报告中提供的可不止是粒径和粒度分布的解析,你知道还有激光粒度仪还会提供哪些重要参数吗?对这些参数又该如何分析?请期待张福根博士系列专栏——激光粒度仪应用导论之参数拾遗篇。(作者:张福根)
  • 百分之一的R&D100 百分百的中国创造
    ——RIGOL荣获R&D100大奖  2011年6月22日,普源精电(英文名:RIGOL)DS6104数字示波器荣获美国R&D100年度产品奖。R&D100自设立49年来,已成为全球高科技领域极为推崇的大奖,被誉为科技界的“创新奥斯卡奖”。2011年, RIGOL与安捷伦、赛默飞世尔、戴安、日立、卡尔蔡司、戴尔、英特尔、麻省理工大学、3M等多家国际公司和著名实验室共同分享了R&D100 年度产品奖。在这一百名获奖者中, RIGOL是唯一一家来自于中国的仪器厂商,这也是近年来中国仪器首次获得R&D100大奖的青睐。  RIGOL本次获奖,不仅是对RIGOL一款仪器产品的肯定,更是对于RIGOL公司科技创新能力与产品开发能力的认可,同时也标志着一个来源于中国创造的高技术测试测量仪器跨入了世界主流产品行列。  RIGOL作为一家坚持自主创新的中国仪器公司,秉承持续为客户创造价值的理念,专注于电子测试测量和化学分析领域的技术研发,通过先进的精密加工和严谨的质量控制,向全球客户提供高性能和高稳定性的仪器产品。RIGOL的技术专家通过深入了解行业需求,为电子、化工、环保、医药、食品等多领域客户提供整套测试测量解决方案,其产品及一站式的服务为客户带来超值的使用体验。目前,RIGOL的产品已销往全球60多个国家和地区,并在亚太、欧洲以及北美建立了本土化的服务体系。RIGOL希望充分发挥公司在测试测量领域的优势积累,在更广泛的领域为客户提供更优质的产品及服务。R&D100奖介绍: R&D 杂志创刊于1959年,是一份工业研究领域的权威杂志,为全世界的科学家、工程师和研发队伍服务,为他们提供及时的信息和技术文章,致力于扩大研究与开发的知识面、提高他们的工作效率。 从1963年开始,R&D 100奖项专门授予具有革命性的技术。R&D 100大奖被誉为科技界的“创新奥斯卡奖”,是由R&D杂志为当年最具创新和技术意义的100个上市产品颁发的奖项。所有的“R&D 100大奖”入围产品最终都由独立专家评审。独立专家选自专业顾问、大学教授和工业界的研发人员,他们在其评审领域具有出色的专业技术和经验。他们必须公正,与评审的入围产品没有利益关系。每年有50多位独立评审专家参加。很多曾获得R&D 100大奖的技术现在已家喻户晓,进入了人们的日常生活。例如闪光灯(1965),自动对讲机(1973),卤素灯(1974),传真机(1975),液晶显示屏(1980),打印机(1986),Kodak相片光盘(1991),紫杉醇抗癌剂(1993),实验室芯片(1996),高清晰电视(1998)等。 RIGOL公司介绍 RIGOL是业界领先从事电子测量和分析仪器研发、生产和销售的多元化高新技术企业,产品已销往全球60多个国家和地区,并在全球50个国家注册了RIGOL商标,已成为世界级的供应商和客户首选伙伴之一。  RIGOL科技园区占地约120亩,是国内技术领先的生产、研发基地,其中技术人员占40%。RIGOL拥有世界领先的SMT产线、精密的CNC数控机床加工中心和注塑车间、先进的影像分析系统及多种生产线设备,建立了一流的生产工艺及严格的质量保证体系,已通过ISO9001:2000 质量管理体系认证和ISO14001:2004 环保管理体系认证。  RIGOL秉承为客户创造价值、持续创新的公司理念,为客户提供具备国际领先技术水准,更高性价比的产品、系统、服务以及一站式的解决方案。RIGOL致力于成为分析仪器行业技术领先的革新者,其产品正在化学、环保、食品、医药和生命科学领域中广泛使用。  RIGOL自主研制的L-3000高效液相色谱系统,已获得8项专利。该仪器耐压高达8000psi,具有2.5AU的线性范围及最高100Hz的采样率,整机性能稳定,自上市以来受到广大用户的一致好评。业界专家评价RIGOLL-3000整机性能已经达到同类仪器的国际先进水平。RIGOL科学仪器介绍 L-3000高效液相色谱系统 Ultra-6000系列紫外可见分光光度计
  • 首张蛋白粉备案凭证发放 蛋白粉保健食品迎来“备案时代”
    近日,保健食品蛋白粉首张备案凭证、蛋白粉复配产品首张备案凭证相继发放。这是自2023年6月市场监管总局发布保健食品原料目录以来,以大豆分离蛋白、乳清蛋白为原料的产品获得的首批国产保健食品备案凭证。此次将植物蛋白和动物蛋白同时纳入保健食品原料目录,主要面向蛋白质缺乏免疫力低下人群,提升了保健食品人群使用的针对性,有效限制产品夸大宣传。此外,针对这两种蛋白类原料设定的技术要求,在严格遵守食品安全底线的同时,提高了其中的蛋白质含量指标,均达到了优质蛋白原料标准,确保为蛋白质缺乏的人群提供优质蛋白产品。2023年,市场监管总局密集出台多项保健食品相关新法规新政策,激发了产业创新发展活力。据了解,为推动保健食品原料目录制定工作,市场监管总局会同国家卫生健康委、国家中医药局发布的《保健食品原料目录 大豆分离蛋白》《保健食品原料目录 乳清蛋白》自2023年10月1日起施行。于是,也就出现了当前的以大豆分离蛋白、乳清蛋白为原料的产品获得首批国产保健食品备案凭证这一现象。若是具体到成分,乳清蛋白是从牛奶中分离出的氨基酸中浓缩而成的,氨基酸含量和比例高,备受运动营养界推崇,它也成了市场上抗阻训练补充剂的明星产品。这也使得“蛋白粉”至今都被默认为是乳清蛋白。和乳清蛋白是相比,大豆蛋白是植物蛋白和全草本提取物。两个原料目录的发布是市场监管总局对保健食品行业规范化的引领和支持,既为企业提供了更多的备案选择,也为行业创新发展注入了新的动力,突破了以往单一原料备案的模式,允许蛋白质与营养物质复配备案,为企业提供更广泛的研发空间,推动市场上的蛋白粉类保健食品品种变得更加丰富,消费者的选择也更为多元。市场监管总局表示,截至2023年11月底,我国具有国家标准的补充营养素类产品已基本纳入备案管理,有1500余家企业获得保健食品备案登录账号,备案企业已覆盖了国内31个省、自治区、直辖市和新疆生产建设兵团。获得了保健食品备案凭证的产品已达到17000余个,其中功能类产品3300余个,满足了消费者对维生素C、辅酶Q10类产品的需求,为消费者带来了更多质高价优的保健食品。
  • 欧洲钛白粉供应紧缺 钛白粉出口利好延续
    p style="text-indent: 2em "近来,面对澳大利亚、加拿大和南非等主要生产商高品位金红石和钛渣的产量下降,欧洲颜料生产厂商面临着钛原料短缺的问题。/pp style="text-indent: 2em "其中,ILUKA关闭Murray Basin已经导致今年市场减少20000吨金红石和白钛石的供给,而这也反映在了钛白粉生产商Tronox所公布的业绩之中。并且Sibelco的Stradbroke Island项目也即将关闭,由此,截至2020年市场上又将减少35000吨金红石的供应量。/pp style="text-indent: 2em "供应紧张引发了今年第三季度金红石价格的上涨。据《工业矿物》(Industrial Minerals)公布数据, 7月5日到7月中旬,来自中国出口最低含量95%的散装钛白粉CIF(到港)价已经从每吨850-950美元涨到了950-1100美元;而来自澳大利亚的FOB(到岸)价也从每吨800-900美元涨到了930-1020美元。/pp style="text-indent: 2em "高端原材料如金红石的供应吃紧继而推高钛白粉溢价,毕竟只有少数企业有技术实力采用或是切换其他材料生产。比如,世界第二大钛白粉生产商康诺斯(Kronos),去年购买了全球38%的金红石,受目前原材料紧缺影响,其钛白粉交货期正在延后,甚至达到8周之久。/p
  • 文献解读丨生物活性聚甲基丙烯酸甲酯骨水泥治疗骨质疏松性椎体压缩性骨折
    研究背景 目前全球骨缺损手术每年约为2000万例,为保持原有骨骼的结构与功能的完整,骨修复就必须依赖于移植材料,因而临床治疗中对于具有支撑作用的骨植入材料需求量巨大。植入材料的特性对于骨修复具有重要影响,是再生医学研究中的关键问题,也是临床骨修复的核心要点。聚甲基丙烯酸甲酯 (PMMA) 骨水泥是临床上出现很早、使用非常广泛的骨水泥制品,其安全性和临床效果已经得到普遍认可。但是过高的弹性模量、相对较低的生物活性都限制了它在临床使用上的进一步应用和发展。骨组织的修复和再生是一个动态过程,始于骨祖细的增殖和迁移,最终分化为成熟骨细胞。虽然骨组织具有较强的再生能力,但是当大段骨组织损伤造成大范围骨缺损时,为保持原有骨骼的结构和功能,骨的修复就必须依赖于移植材料。植入材料的特性对于骨修复具有重要影响,该过程的影响成为再生医学研究中的关键问题,也是临床骨修复的核心要点。骨植入材料主要有自体骨、异体骨(同种异体骨、异种骨)和合成材料等。自体骨一直被认为是骨移植材料的金标准,但来源有限,取骨后容易出现穿孔、伤口感染、脓肿、出血等相关并发症,植入困难、创伤大等,也使其在临床上的应用受到限制。随着组织工程技术的不断发展,人工骨不仅可以实现大批量生产,而且往往具有新的研究不断赋予的生物相容性、成骨诱导性等特点,使得人工骨普遍应用于临床骨修复以及作为骨外科填充材料。 鉴于上述缺点,材料和医学科学家尝试了多种PMMA骨水泥改性策略,通过改变单体、添加生物活性材料或有机材料等策略来优化PMMA骨水泥的生物机械性能和生物学活性。 方法与结果 本研究以PMMA骨水泥作为支持材料,在其中添加具有生物活性的矿化胶原(MC)材料,通过基础实验研究复合骨水泥的材料学表征以及体内外活性,通过将该材料应用于临床,探究临床的实用性以及价值。采用兔骨质疏松模型对复合骨水泥材料MC-PMMA在体内的生物相容性及成骨性能进行评价。 采用岛津InspeXio SMX-225 CT FPD HR对骨水泥进行扫描重建,统计骨水泥的孔隙率。如图1所示,PMMA骨水泥的孔隙率与MC-PMMA骨水泥的孔隙率几乎相同(5.61±0.16%比7.22±0.53%)。与PMMA骨水泥相比,MC-PMMA具有较低的CT值(9.36±0.13对5.46±0.22)。图1 岛津micro-CT扫描材料结果 体内实验中,更重要的评价环节为影像学评价。在4周,8周,12周时处死兔子,选择有材料的椎体,在Micro-CT定位下确定材料的位置,并进行硬组织切片和染色。采用岛津InspeXio SMX-225 CT FPD HR扫描样品,扫描后经三维等值画图软件重建并进行成骨体积分析测定。通过X线透视及CT扫描影像评估样品植入前后的形状、骨密度,并通过成骨体积的测量进行定量分析。 术后各组在各个时间点的典型扫描三维重建结果如图2A所示,骨水泥材料牢固地结合到骨组织上,没有明显的间隙。通过显微CT进行的三维渲染显示了缺损和骨水泥的位置。在图2A中,骨水泥具有以红色和黄色显示的高CT值,而骨是黑色的。随着骨水泥被骨替代,颜色变为绿色,蓝色,最后变为黑色,表明CT值逐渐降低。在4周时,两组标本的骨水泥CT值和体积相似。在8周时,MC-PMMA组的CT值下降,但在PMMA组中几乎相同。在12周时,MC-PMMA组的CT值与以前相似的区域更多。然而,PMMA组的CT值保持不变。骨水泥的界面外观和CT值的差异表明MC-PMMA组中的材料吸收和骨再生比PMMA组更多。在手术后4,8和12周,MC-PMMA骨水泥组的椎体重建三维图像的定量显示比PMMA骨水泥组有更多的骨形成(图2B-E)。手术后4周,MC-PMMA组的骨量百分比和骨小梁厚度较高。然而,骨小梁厚度或骨小梁分离没有差异。手术后8周和12周,与PMMA组相比,MC-PMMA组的骨小梁厚度显着增加,骨量百分比增加,骨小梁数较高,骨小梁分离度较低,表明随着时间的推移MC-PMMA组的骨生长增加。图2 micro-CT三维重建结果和计算结果 总结与讨论 本研究通过向广泛用于PVP和BKP的PMMA骨水泥品牌的粉末中添加矿化胶原来开发基于生物活性PMMA的骨水泥。与PMMA骨水泥相比,MC-PMMA骨水泥的压缩模量显着降低,而处理时间大致相同。MC-PMMA骨水泥促进细胞增殖和分化,并加速骨质疏松兔模型中椎骨的修复和小规模临床试验中患者的OVCF。我们的研究结果表明,MC-PMMA骨水泥有望用于临床转化。 微焦点X射线CT装置inspeXio SMX-225CT FPD HR Plus高分辨率,图像清晰擅长复合材料的拍摄操作简单、试验速度快 文献题目《Bioactive poly (methyl methacrylate) bone cement for the treatment of osteoporotic vertebral compression fractures》 使用仪器岛津inspeXio SMX-225CT FPD HR Plus 第一作者诸进晋,杨淑慧 原文链接:https://doi.org/10.7150/thno.44276
  • 【行业应用】赛默飞发布大体积进样技术气质联用测定五氯苯酚解决方案
    赛默飞世尔科技(以下简称:赛默飞)近日发布测定五氯苯酚的解决方案,通过使用Thermo ScientificTM TRACETM 1310 气相色谱和Thermo ScientificTM ISQTM 系列四极杆 GC-MS 系统,实现检测效率和精度的显著提升。 五氯苯酚(PCP)是一种使用广泛,毒性很大,污染严重的化合物,作为一种防腐、防霉、防蛀剂使用于染料、纺织品、皮革等行业中。它会通过皮肤在人体内产生生物积蓄而危害人体健康,具有致畸致癌性。此外,五氯苯酚十分稳定,自然降解过程长,对环境有害。 目前,国内颁布了GB/T 24166-2009 对染料中的五氯苯酚的检测方法。然而,有些染料,尤其应用于婴幼儿用品的染料中五氯苯酚含量低,且方法前处理又有稀释过程,这样容易导致假阴性或者检测结果不准确。对此,可采用大体积进样技术,通过提高样品的进样量来提高五氯苯酚的灵敏度。赛默飞发布一种新的大体积进样技术——同时溶剂浓缩进样技术(Concurrent Solvent Recondensation)。通过在衬管和分析柱之间连接一段预柱,其中衬管可以保留高沸点干扰基质,使其不进入色谱柱系统,且预柱可以承载大体积进样的所有溶剂及目标物,然后缓慢蒸发溶剂通过色谱柱到达检测器并放空,比溶剂沸点略高的目标物在溶剂之后到达检测器被检测,从而保证了所有沸程的目标组分均由色谱柱分离达到检测器,因此可以保证较高的检测灵敏度。 在进样体积为30μ L 时,体现了较高的灵敏度及较低的检出限,因此可使样品前处理步骤简化,与传统方法相比,大大减少了样品量,减少了溶剂使用量,减少了溶剂浓缩蒸发等过程,大大减少了前处理带入的误差;更重要的是仪器检出限为0.01μ g/L,极大满足了Oko-Tex Standard 100 对纺织品中的五氯苯酚残留限量规定不得超过0.5mg/kg, 尤其对于婴幼儿用品不得超过0.05mg/kg的要求。更多产品信息,请查看:TRACETM 1310 气相色谱www.thermoscientific.cn/product/trace-1310-gas-chromatograph.html ISQTM 系列四极杆 GC-MS 系统www.thermoscientific.cn/product/isq-series-single-quadrupole-gc-ms-systems.html 解决方案下载:www.thermoscientific.com/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/Chrom/environment/documents/Measurements%20of%20pentachlorophenol%20using%20large%20volume%20injection%20technique%20GC-MS.pdf ---------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com 请扫码关注:赛默飞世尔科技中国官方微信
  • sp-icpTOF-MS评估单细胞级应激反应
    今日热点NEWS2023.9.25 应用单细胞ICP−TOF-MS评估细胞的应激反应TOFWERKicpTOF 单细胞-电感耦合等离子体-飞行时间质谱法(sc-ICP-TOF-MS)是一种能自动且直接检测单个人体细胞中蛋白质相对浓度的分析方法。也可以进一步采用金属纳米簇(Metal Nanocluster, MNC)标记目标蛋白抗体和钌红(RR)染色来确定单细胞数量以及评估细胞的相对体积。作者通过sc-ICP-TOF-MS对人体ARPE-19细胞进行系统性研究,以探究这些细胞中经过IrNCs、PtNCs和AuNCs标记的特异性抗体铁调素(HP)、金属硫蛋白-2(MT2)和铁蛋白(FPN)的表达情况。考虑到APRE-19细胞在悬浮液中呈球形且RR与细胞表面结合,则细胞体积与Ru信号强度的二分之三次方成正比。这样不仅可以确定每个细胞中目标蛋白质的质量,有了体积信息后,还可以推导出相对浓度。研究人员比较了高血糖应激和氧化应激两种模型下的ARPE-19培养物,对照组与实验组细胞显示了分析物的质量、细胞体积和目标蛋白质浓度的相对变化,从而可以清楚地识别出经过相应处理后的细胞亚群。01简介 细胞的个体异质性意味着族群的细胞中金属和生物大分子的表达水平可以相差2到3个数量级。据报道,这种细胞间的显著差异可能是多种病症的根源。因此想正确解释细胞群中目标分析物表达必须能够对单个细胞进行定量分析。因为细胞转录组还受到细胞体积的影响,所以在分析细胞群中的目标分析物时,还需要评估单个细胞体积。此外,了解每个细胞的蛋白质量和特定蛋白浓度也是非常重要的。单细胞电感耦合等离子体质谱法(sc-ICP-MS)是一种应用较为广泛的技术,可用于研究细胞中的内源性无机元素和特定生物分子,新一代的飞行时间质谱仪(TOF)已经可以同时检测单个细胞内多个目标分析物。在以往报道中,这种技术被用于藻类元素指纹图谱、酵母对金属的吸收和对精子进行多元素分析。蛋白质质量通常在单个细胞中数量级为fg(飞克,10-15克)或ag(阿克,10-18克),因此抗体(Ab)标签必须有尽可能高的灵敏度。通常选用Maxpar聚合物作为抗体标记金属原子的载体(100-140个原子每Ab)。本文使用的金属纳米团簇(MNCs)可以提供更高的信号放大率,比如AuNCs和IrNCs中分别含有579和1760个Au和Ir金属原子。为了用sc-ICP-TOF-MS测定单个细胞中蛋白质浓度,需要选择合适体积标记物。以往的研究表明,Mg和Ca等内源性元素与细胞体积相关,然而同时测量极低浓度的Mg和Ca和金属标记物是一项极具挑战的工作(小编注:原文中解释为质荷比相差较多,这不是因为文中icpTOF仪器的TOF检测器所限制。更准确解读是因前端CCT模式下优化参数所限,不一定能对处于低浓度区间的低质量数和高质量数元素做到同时高灵敏度检测)。Rapsomaniki等人提出了一种方法,使用能与蛋白质氨基共价结合的Ru复合物,理想情况下,体积标记物只结合细胞膜,这样就能将金属信号强度与细胞体积相关联。 为了比较在不同补充剂条件下的细胞培养效果,获取每个细胞的相对体积至关重要。本研究首次提出了一种使用sc-ICP-TOF-MS直接测定人体单细胞中蛋白质相关浓度的方法。作者使用MNC标记的特异性抗体来检测目标蛋白,并使用RR染色来标记细胞体积。通过测量标记蛋白和101Ru+的信号强度,本文建立了一个简洁的自动化检测方法,用于比较不同细胞群体和评估应激细胞模型。本案例通过sc-ICP-TOF-MS对人类ARPE-19细胞的三种目标蛋白质表达情况进行了研究。这三种蛋白质HP,MT2,FPN分别被IrNCs、PtNCs和AuNCs标记,并随后进行 RR 染色。通过sc-ICP-TOF-MS对这些目标蛋白进行定量检测,作者为体外细胞研究带来了对细胞异质性的新认识。02实验方法 使用人类ARPE-19细胞和MNC标记的免疫探针进行免疫测定:研究人员使用MNC标记的免疫探针同时标记了固定细胞悬浮液中的三种蛋白质。用于在ARPE-19细胞中标记HP、MT2和FPN的免疫测定流程在免疫探针浓度方面已经进行了优化。优化可以确保蛋白质的完全识别,以及足够的清洗步骤以避免非特异性相互作用。此项流程是独立地使用三种免疫探针(Anti-h-HP:IrNCs、Anti-h-MT2:PtNCs 或 Anti-h-FPN:AuNCs)进行的。优化后的抗体浓度分别为 4 μg mL−1、10 μg mL−1 和 4 μg mL−1。为了对ARPE-19细胞进行RR标记,悬浮液中的细胞被浸泡在50 μg mL−1 的RR溶液中30分钟。之后,使用磷酸盐缓冲溶液(PBS 浓度0.1M,pH值7.4)将细胞颗粒洗涤两次,以去除多余的RR。 实验先将ARPE-19细胞以1 × 105 cells mL−1 浓度悬浮在50 mM Trizma缓冲液中(pH值7.4),再进行sc-ICP-TOF-MS分析。作者经过连续稀释和测量对照组细胞来选择合适的细胞浓度。为进行离子校准,使用了含有Pt、Ir、Au和Ru的多元素标准溶液。每天分析两组悬浮液以确定sc-ICP-TOF-MS实验设置的传输效率。使用的两组悬浮液分别是商用含PtNP的标准试样以及含有ARPE-19细胞的对照组溶液。数据处理使用了TOFpilot、Excel和JASP软件。在STDS模式下优化ICP-TOF-MS参数,用于测量不同的细胞标签,而在CCTS模式下优化参数则用于检测细胞内源性元素。为确认基于MNC标记的免疫探针和RR标签的sc-ICP-TOF-MS方法,还使用商用ELISA试剂盒测定了对照组和高血糖处理的ARPE-19细胞中HP和FPN蛋白的平均浓度。 本文的sc-ICP-TOF方法中采用的是TOFWERK icpTOF 2R和ESI microFAST SC系统。ARPE-19细胞悬浮液的细胞计数通过BD Accuri C6细胞计数仪完成,同时使用Leica DM IL LED光学显微镜捕获细胞悬浮液的图像。使用Bandelin sonoplus HD2070探头进行超声处理,以配合ELISA试剂盒进行蛋白质测定。03钌红(RR)标记ARPE-19细胞:细胞区分和体积标记 为了更好地使用金属标记抗体对生物分子进行sc-ICP-MS分析,科研人员需要同步观测元素标签和细胞内源性元素(Ca, Cu, Fe, P等),从而确认细胞的完整性和抗体的正确识别。但由于内源性细胞元素和标签金属的质量差异,这种同时检测可能会受到限制。为了解决这一问题,研究人员使用RR来检测单个ARPE-19细胞,而其与MNC标签之间的相近的质量允许同时以高灵敏度检测。实验中,科研人员注意到纯RR信号可能与ARPE-19细胞的膜片段相对应,而MNC标签信号可能来自未结合到蛋白质的自由MNC标记免疫探针。此外,使用RR不仅可以确定细胞事件的数量,还可以评估细胞的相对体积,从而允许在每个细胞中确定目标蛋白的质量和相对浓度(小编注:具体计算公式和过程请参考原文)。最后,结合同期的光学显微镜观察到的细胞体积差异,RR信号范围还被用来识别多个细胞事件,从而确保单细胞数据评估的准确性。04压力下ARPE-19细胞的蛋白质水平 研究探讨了在两种不同条件下培养的ARPE-19细胞中三种蛋白质的表达:一种使用高血糖模型(100 mmol 葡萄糖,48小时)培养,另一种使用诱导氧化应激模型(5 mmol AAPH 1小时)培养。通过sc-ICP-TOF-MS分析实现了对单细胞中HP、MT2和FPN蛋白质的同时检测以及它们相对浓度的确定。为此,通过应用选定的阈值从背景中鉴别出细胞事件后,将193Ir+、195Pt+和197Au+的强度信号转化为Ir、Pt和Au的绝对质量。然后,将每个细胞的金属质量转化为相应的蛋白质含量(小编注:具体计算公式和过程请参考原文)。最后,使用单细胞测量的101Ru+信号强度计算出单细胞体积从而得到蛋白质的相对浓度。研究中使用单细胞ICP-TOF-MS得到三种蛋白质的检测限分别为HP是3.8 ± 0.4 ag/细胞,MT2是9 ± 1 ag/细胞,FPN是4.4 ± 0.6 fg/细胞。05高血糖对ARPE-19细胞的影响 利用 sc-ICP-TOF-MS 测定对照组和高血糖处理的 ARPE-19 细胞中 HP、MT2 和 FPN的水平,研究人员评估了高血糖对三种蛋白质产生的影响。如原文中表1中结果所示,高血糖(GL)处理影响了全部三种蛋白质的平均质量,它们均发生了过表达。但在比较相对蛋白质浓度时,平均值没有明显差异。图1的A-C比较了对照组和高血糖组HP、MT2和FPN的质量分布,高血糖组的细胞平均值明显较大(注意图中y轴是对数坐标),而中值不受影响,高血糖处理的细胞蛋白质量在中位数上下分布更为分散。因此,如果只比较群体平均值(如使用传统的ELISA试剂盒法),可能会影响到诊断和治疗效果。高血糖处理扩大了两极分布,表面上看HP、MT2和FPN在细胞群里质量变化较大,而相对浓度(图1 D-F)差异有所减小。此外,每个细胞的蛋白质分布直方图(图1 A-C)呈倾斜状,中位数以上的离散度大于中位数以下的离散度,当考虑到细胞体积时(图1 D-F),峰形不再倾斜,表示蛋白质质量较大的浓度体积也较大,但在直方图里可以观测到两组细胞群。图 1. 用sc-ICP-TOF-MS测定对照组(绿色)和高血糖处理(橙色)的 ARPE-19 细胞中的HP、MT2和FPN的质量的箱形图和直方图(百分比表示)(A-C)以及相对蛋白质浓度(D-F)。(A、D)HP(B、E)MT-2(C、F)FPN。数据包括四组生物重复的对照组和高血糖处理的 ARPE-19 细胞的分析结果,每次重复都进行了三次仪器测量。 图2研究了蛋白质质量和细胞体积之间的相关性,蛋白质质量较大的细胞群在散点图上半部分用红色标出,质量较小的细胞在底部用绿色标出。图2的B、C显示的红色圈部分的细胞群中的细胞体积与蛋白质量之间呈线性增长关系,即细胞体积越大,蛋白质量越高。高血糖组(图2 D-F)也观测到了相同的趋势,但MT2和FPN中红色标记组的比例更高,意味着经过高血糖处理后,有更多细胞的体积与这两种蛋白质质量成线性关系。图2 用sc-ICP-TOF测定的对照组和高血糖处理组的HP、MT2和FPN蛋白质质量与细胞体积的散点图。A-C为对照组,D-F为高血糖组。101Ru+信号是和金属纳米簇免疫探针的金属信号同时被测量的。红色椭圆代表蛋白质质量较大的细胞群,绿色椭圆代表蛋白质质量较小的细胞群。 为了评估细胞体积是否受到处理方法的影响,研究人员对101Ru+信号强度也 进行了研究(原文图S4)。对于较大的细胞,对照组和高血糖处理组观察到相同的分布,然而对较小的细胞,明显有不同的趋势:低于65cts3/2的细胞中,只观察到对照组细胞(即此区间未发现高血糖处理的细胞),而在65-140cts3/2范围,对照组细胞比高血糖处理的细胞数要多,平均101Ru+信号强度明显大于高血糖处理的细胞(p=0.04),表明高血糖会增大细胞体积,与文献中对应酵母细胞结果一致。此外,高血糖会诱发氧化应激、脂质过氧化和细胞凋亡,并抑制细胞增殖,这可能会改变抗氧化剂和控制金属稳态的蛋白质水平。 为了验证该方法的有效性,研究人员使用商用ELISA试剂盒进行了对比实验。在高血糖处理过的细胞中,HP和FPN的平均质量均出现过表达,两者变化倍数均为1.4。在95%置信度下的t检验显示,对照组和高血糖处理的细胞之间存在显著差异(p值分别为5 x 10-4和2 x 10-6),在sc-ICP-TOF-MS结果中也发现了同样的趋势,HP和FPN的变化倍数分别为1.4和1.3。因此,sc-ICP-TOF-MS获得了与细胞生物学常用技术很高一致性的结果。不过需要强调的是,ELISA分析只能获得细胞培养物中蛋白质的平均含量,而sc-ICP-TOF-MS可以获得每个细胞的蛋白质质量,并考虑细胞体积,而不是整体细胞群的平均值,从而能够更好地理解细胞应激反应背后的生物机制。06诱导氧化应激对APRE-19的影响 作者使用同样方法研究了对照组和AAPH处理的氧化应激APRE-19细胞中HP、MT2和FPN的含量。图3描述了比较蛋白质质量分布(图3 A-C)和蛋白质相对浓度分布(图3 D-F)。从图3 A-C可以看出,氧化应激状态下单细胞的HP和FPN平均蛋白质质量增加,而MT2无明显变化。每个细胞HP蛋白质量的中位数无明显变化,而MT2和FPN中位数却有所下降,分别从 1.41 ag/cell 降至 1.23 ag/cell 和 从0.81 fg/cell 降至 0.69 fg/cell),这些差异都有统计学显著性。三种蛋白质的平均相对浓度都有所下降(图4 D-F),但对照组和氧化应激组细胞之间的FPN浓度差异并不明显。图3 用sc-ICP-TOF-MS测定对照组(绿色)和氧化应激组(橙色)的ARPE-19细胞中的HP、MT2和FPN的质量的箱形图和直方图(百分比表示)(A-C)以及相对蛋白质浓度(D-F)。(A、D)HP(B、E)MT-2(C、F)FPN。数据包括四组生物重复的对照组和氧化应激处理的 ARPE-19 细胞的分析结果,每次重复都进行了三次仪器测量。 图3 A-C中三种蛋白质的直方图显示了两种处理方式的细胞都属于一个大细胞群。然而考虑到细胞体积时,图3 D-F可以识别出几个大小不同的细胞群。对照组HP的相对蛋白浓度直方图(图3 D)有一个最大值,而氧化应激组细胞有两个不同的细胞群。图3 E中,氧化应激组中低蛋白质浓度的细胞比例比对照组更高。图3 F显示,两组都有两个不同细胞群,但是中浓度和低浓度FPN蛋白质浓度下细胞的百分比不同。 最后,图4展示了通过sc-ICP-TOF-MS得到的对照组和使用AAPH进行氧化应激处理的具有特定体积细胞的频率直方图。实验结果显示,与对照组的细胞相比,经氧化应激处理的细胞中具有高Ru信号(超过65 cts3/2)的细胞百分比更高,这意味着这些细胞的体积更大。AAPH是一种过氧自由基化合物,能增加活性氧种类的产生和通过改变细胞膜的透性增加细胞体积。因此,这种对比使我们能够得到关于AAPH处理的有趣发现,这些发现只能通过逐细胞研究细胞群体并考虑每个细胞的体积来得到。例如,与对照组细胞相比,AAPH处理的细胞中HP和FPN的质量更高,但该处理也显著增加了细胞体积;因此,这些蛋白质的质量增加不仅意味着处理后细胞内蛋白质浓度增加,也意味着细胞大小的增加。图4 使用sc-ICP-TOF-MS获得的对照组(灰色,4635个细胞)和经过氧化应激处理(黑色,3505个细胞)的ARPE-19细胞体积频率直方图。06结论 研究人员需要了解每个细胞的目标物质质量、浓度和细胞体积的变化,才能评估细胞在不同外部刺激作用下的反应和相应机理。本文介绍的方法是通过sc-ICP-TOF-MS检测经金属纳米簇(MNC)标记的抗体作为蛋白质测定的特异性标签,以及使用钌红染(RR)作为体积标签,从而以高灵敏度定量测量单细胞中的特定蛋白质的质量,单细胞的相对体积和目标蛋白质的相对浓度。实验提出的自动化且简单的检测和数据处理方法可以处理大量数据并有效地比较对照组和处理过的细胞培养物,以获得可靠的结论。实验还可以评估每个单细胞中的蛋白质总质量,从而更深入了解细胞内发生的生化过程。备注:翻译仅供学习和参考,内容以英文原文为准。文中图片版权均归ACS杂志社所有。TOFWERK icpTOF让离子再飞一会儿!‍TOFWERK icpTOF电感耦合等离子体-飞行时间质谱耦合了Thermo 公司的 iCAP RQ平台和TOFWERK高性能飞行时间质谱。iCAP RQ平台提供了高强度并稳固的ICP进样和离子源,简单可靠的椎体和离子电镜和Q-cell科技。飞行时间质谱分析仪在保证跟四级管(QMS)同等灵敏度的同时,为icpTOF增加了快速全谱分析,更宽的线性动态范围和高达6000的质量分辨率,提供了快速全谱图采集和所有元素同位素的同步分析能力。◾搭配激光剥蚀,生物、地质样品快速成像案例◾单细胞多元素组分同时分析◾大气颗粒物、单颗粒、海洋环境、土壤、固废无机多组分分析;◾极地冰芯、合金材料、玻璃陶瓷中多元素分析
  • 重庆引进蔡司超高精度检测仪器 可达头发丝直径五百分之一
    p  头发丝的直径是多少?一般来说有150微米,高精度的测量设备可达头发丝直径的百分之一,而超高精度意味着什么?测量最大范围为一立方米,设备的精度可达头发丝直径的五百分之一!近日,卡尔· 蔡司就带着这样一台测量设备入驻重庆,服务整个西部工业市场。/pp  8日上午,沙坪坝区重庆大学城科技产业园重点项目集中签约仪式举行,蔡司-开物精密测量工程中心、广州云从智能应用技术研究院等8个项目签约,总投资额达40亿元,完全达产后产值将超过50亿元。/pp  “我们的产值不会特别高,但是能带动重庆乃至整个西部工业检测质量的提高。”卡尔· 蔡司(上海)管理有限公司首席运营官谢磊介绍到,此次签约的蔡司-开物精密测量工程中心引进了一台超高精度的测量设备,可达0.3微米。蔡司工业测量仪器部市场总监王寅打了个形象的比喻:0.3微米意味着测量精度可达头发丝直径的五百分之一,而且测量的最大范围有近一立方米。/pp  汽车领域的工业测量一直是蔡司的最大客户,奔驰宝马奥迪等都是其忠实客户,王寅透露,重庆的测量工程中心已经和本地汽车整车、零部件,乃至电子、医疗等厂商展开合作,“将会助力重庆本地及西部汽车整车、零配件以及电子行业、航空等各工业企业提档升级。”/p
  • 实用建议:如何合理设计稳定的冻干蛋白配方(一)
    为什么要用冻干的方法制备稳定的蛋白药物产品?在蛋白药物治疗的早期研发中,有必要设计一种在运输和长期储存期间稳定的配方。显然,水溶剂的液体产品对于生产来说是很容易且经济的,对于终端使用者也是十分方便的。水溶剂的液体产品存在的问题1. 大多数的蛋白以液体状态存在时,易于化学(脱酰胺或氧化)和/或物理降解(聚合,沉淀) 2. 如果严格控制水溶剂蛋白的储存条件,并且对配方进行合理设计,可以减缓其降解,但是在实际的运输过程中,精确控制储存条件通常是行不通的,蛋白会因受到多种应力的作用而变性,包括摇动,高低温,冷冻等 3. 尽管会设计配方和运输条件尽可能规避这些应力导致的损害,但是仍然不能足够阻止在长期储存过程中造成的损害。例如,在某些情况下,尽量减少化学降解的条件会导致物理损伤,反之亦然,那么就无法找到提供必要的长期稳定性的折衷条件。解决方案:冻干配方设计合理的冻干配方,理论上可以解决以上存在的所有这些问题。在干燥的样品中,降解反应可以得到充分的抑制或减缓,蛋白产品在室温状态可以仍然维持其稳定性,保存期可达到数月或数年的时间。而且,在运输过程中,短期的温控偏离,冻干的蛋白样品通常也不会受到损害。即使在两种或多种降解途径需要不同条件才能实现最大热力学稳定性的情况下,干燥产品中反应速率的降低也可以实现长期的稳定性。因此,一般来说,当配方前研究表明在液体配方中不能获得足够的蛋白稳定性时,冷冻干燥提供了颇有吸引力的替代方案。冻干蛋白配方可能遇到的问题然而,相对水针剂产品,只需要简单灌装即可来说,冻干过程较为复杂,且耗时、成本高,再有,一个十分关心的问题,如果配方中没有合适的稳定赋形剂,大多数蛋白制剂在冻干的过程中至少部分会因冻结应力和脱水应力而变性,结果通常是不可逆的聚合,通常是在冻结之后立即聚合或在储存过程中,小部分蛋白分子发生聚合。因为大多数的蛋白药物是非肠道给药,即使只有百分之几的蛋白聚合也是不可以接受的。因此,只是简单的设计一个配方,允许蛋白能承受冻干过程中的应力,但是无法确保冻干后的样品能有长期的稳定性。一个较差的冻干配方,蛋白很容易发生反应,须要求在零度以下储存,这样的配方应当认为是不成功的。本文将提供一些实践的指导,用于配方的设计,可以在冻结和干燥过程中保护蛋白,并且在室温条件下长期储存和运输过程中具有很好的稳定性。再有,会简要地讨论,配方设计须考虑到工艺条件的物理限制,已获得最终低水分含量的良好蛋糕。我们将不讨论冻干工艺的设计和优化,也不会偏离关于赋形剂选择的实用建议,以解决关于这些化合物稳定蛋白质的机制的争论。有丰富经验的药物科学家可能跟这篇文章的内容也没有很大的关系,但是可以将蛋白药物产品推向市场,然而,我们的目标主要是针对对于稳定的冻干蛋白配方设计还不太了解以及具有很大挑战的那些研发人员提供一个很好的开始。 配方设计的主要制约因素有哪些?当合理设计冻干配方时,需要考虑的因素很多,从整体来看,工作会比较复杂,但如果能很好的理解决定最终成功的主要限制因素,那么就会容易很多。01蛋白的稳定性首先记住蛋白产品选择冻干方法的主要原因是其不稳定性,整个配方中最敏感的成分也是蛋白质,那么在配方设计中首要关心的是赋形剂的选择,能够提供蛋白好的稳定性。02最终药物配置在配方研发开始之前,须确定好最终药物的配置,需要考虑的问题包括给药途径(常为非肠道给药),共同给药的其他物质,产品体积,蛋白浓度,冻干盛装容器(西林瓶、预充针或其它)等,如果最终药物需要多次使用,在配方中需要加入防腐剂,这个可能会降低蛋白的稳定性。03配方张力在选择赋形剂时,可能会考虑设计等张溶液,甘露醇和甘氨酸通常是良好的张力调节剂,这些赋形剂经常优于NaCl,因为NaCl具有较低的共晶融化温度和玻璃态转变温度,使得冻干更难进行。另外,如果样品中含有相对低的蛋白量,经常会加入填充剂,避免在冻干的过程中蛋白损失,甘露醇和甘氨酸同时也可以充当这个角色,因为他们会最大程度的结晶并且形成机械强度较高的蛋糕结构。然而,须意识到单独使用晶体类的赋形剂通常不能够在冻干过程和储存期间给蛋白提供足够的稳定性。04产品的蛋糕结构最终冻干的样品须具有优雅的外观结构,较强的机械强度并且没有出现任何塌陷和/或共晶融化,水分残留要相对较低(1g水/100g 干物质),如果产品发生塌陷,不仅外观不能接受,而且会导致样品最终的水分含量较高,复水时间延长。05产品玻璃化转变温度为了确保干燥后蛋白具有长期稳定性,非晶态成分(包含蛋白)的玻璃转化温度要高于计划的储存温度。水是无定形相的增塑剂,需要保持较低的水分含量确保样品的Tg 要高于运输和储存的最高温度。06产品塌陷温度一般来说,达到最终的目标,在整个冻干过程中,需要维持产品温度在其玻璃转化温度以下。在干燥过程中,当冰晶升华时,对于非晶态样品,产品温度须维持在其塌陷温度以下,塌陷温度通常与热致相变温度(也就是最大冻结浓缩无定形相的玻璃态转变温度Tg’)一致,同时,也有必要维持产品温度在任何晶体成分的共晶融化温度以下。在实际中,这些温度可以通过差示扫描量热仪DSC或冻干显微镜来测定。在配方开发中有必要测定产品的塌陷温度。 冻干显微镜Lyostat5及搭配使用的DSC模块为什么要测定塌陷温度?在低于产品的塌陷温度下干燥是需要付出代价的,产品的温度越低,干燥的速度越慢,干燥的成本就越高。通常,在-40℃以下干燥是不实际的,同时样品能降低到的温度还受一些物理条件的限制,比如冻干机的性能以及产品的配方。在配方开发过程中,药物研发人员应该与工艺工程师(设计冻干工艺人员)紧密配合,并且清楚了解放大化生产型冻干机与实验室研发冻干机的区别是非常重要的,通常情况下,生产型冻干机和实验室冻干机在工艺参数控制方面会有所不同,一部分原因是生产型冻干机较大,在冻干过程中每瓶样品的产品温度差异较大。因此,如果对冻干过程熟悉的研发人员可以提供有用的信息帮助配方科学家做出正确的判断,避免由于误判导致将较好的配方排除在外。对于塌陷温度较低的产品,也有一些方法,如可以通过控制过程参数来实现短时快速干燥。配方设计需平衡蛋白稳定性和塌陷温度很明显,配方设计的一个目标是保证蛋白稳定性的前提下提供较高的塌陷温度,产品的塌陷温度主要取决于配方的组成,如果蛋白的含量超过所有溶质的20%,会对Tg’有较大的的影响。尽管单纯的蛋白溶液通常用DSC很难测出Tg’,根据实验得出,增加蛋白含量,对于大多数的配方来说,均可以提高Tg’。通过外推法得到纯的蛋白溶液的Tg’,大约为-10℃,远远高于大多数的单一赋形剂的Tg’(如蔗糖的Tg’为-32℃),因此,从工艺过程的经济角度考虑,更期望配方中较高的蛋白质和稳定剂比例,然而,蛋白的稳定性通常随着稳定剂与蛋白含量比例的增加而提高,因此须在高的塌陷温度和较好的稳定性方面做出平衡。并且,如下文讨论的内容,随着蛋白浓度的增加,蛋白质在预冻过程中抵抗冻结应力损伤的能力就会得到改善,那么在高蛋白浓度和高稳定剂和蛋白重量比的情况下,稳定性是最好的,这样,就会导致整个配方较高的固形物浓度,给工艺带来困难,总浓度超过10%的配方将比较难冻干。如何改变Tg'?在升华之前对配方进行一些处理可以改变Tg’,如经常使用的退火处理,在退火处理过程中,会从无定形相中移走一小部分成分,如使用甘氨酸作为晶体的填充剂,取决于预冻的方法,可能一部分的甘氨酸分子会保留在样品的无定形相中,甘氨酸具有相对较低的Tg’(-42℃),因此让甘氨酸尽可能的结晶是非常重要的,这样可以提高样品中无定形相的Tg’,加快干燥,节省成本。对于赋形剂结晶,设计理想完善的方案,可以用DSC模仿冻结和退火工艺的条件来进行,这个方法可以参考Carpenter 和 Chang的文章内容。 在哪些步骤蛋白需要维持稳定性?实际上,从灌装到最终干燥的产品复水,每一步均会对蛋白造成损伤,并且要求配方的成分能够抑制蛋白的降解。在快速处理步骤(如灌装,预冻,干燥和复水等)中,主要的问题通常是物理损害,如低聚物的形成和/或蛋白沉淀;通常,蛋白从液体到固体的转变,相对与减缓化学变化,更多的会减缓蛋白的物理变化的速率,因此,储存过程中的化学降解经常是更严重的稳定性问题。在储存期间或复水时,蛋白也会发生聚合。在预冻和干燥过程中,受到冻结和干燥应力的作用,蛋白的结构很容易遭到破坏,如果在这些过程中,能够抑制蛋白去折叠(变性),那么降解过程就会达到最小化,因此,配方设计主要的关注点就是在这些过程中能够保护蛋白,在干燥后的样品中具有较高的Tg及较低的含水量,能阻止样品内部发生化学反应,更好的保持蛋白的天然性能。01在预冻过程中的蛋白的稳定性特定的蛋白是否易受冷冻破坏的影响取决于许多因素,除了在配方中包含适当的稳定剂外。一般来说,会考虑三个很重要的参数:蛋白浓度,缓冲液的种类以及预冻方法。蛋白浓度增加蛋白质的浓度能够提高蛋白对冻结变性的抵抗力,可以通过简单地测定冻融后蛋白聚合的百分比,该百分比与蛋白质浓度呈反比。通常,如果预冻过程中去折叠的蛋白分子部分与浓度无关,那么预计增加蛋白浓度会增加蛋白聚合。然而,现在人们认为,增加蛋白质浓度会直接减少冷冻诱导的蛋白质去折叠。据推测,冻结阶段的损伤包括蛋白在冰水界面的变性,假设只有有限数量的蛋白分子在这个界面变性,增加蛋白的初始浓度会导致较低比例的变性蛋白。处于实际的目的,将蛋白浓度作为一个重要的考虑因素,在配方开发过程中尽可能保持较高的浓度,就显得特别简单了。缓冲液种类缓冲液的选择也是非常关键,主要引起问题的是磷酸钠和磷酸钾,在预冻和退火过程中,二者的pH值会有明显的变化。对于磷酸钠,其二元碱形式的容易结晶,导致在冷冻样品中,剩余的无定形相中的pH会降到4或更低。对于磷酸钾,其二氢盐结晶后,pH会变到接近9. pH改变的风险以及对蛋白的损害可以通过提高最初的冷却速度,限制退火步骤的时间,降低缓冲液的浓度等来控制,所有这些措施可以降低盐类结晶的机会。快速冷冻,不进行退火也限制了蛋白质在暴露在冷冻状态下的时间。尽管其他的赋形剂能够辅助抑制pH的改变,较好的方法是避免使用磷酸钠和磷酸钾。在预冻阶段pH有较小变化的缓冲液包括柠檬酸盐,组氨酸,Tris溶液等。预冻方法排除由于pH变化造成的问题,在实验中发现,预冻过程中,蛋白质受破坏的程度跟冷却的速率有关系,较快的冷却速度形成的冰晶体较小,冰的比表面积越大,受破坏的程度越大,这个推测是由于蛋白在冰水界面变性导致。冷却的速度通常受冻干机设备本身性能的限制,然而,一些对冷冻敏感的蛋白,即使慢速冷却也会导致其变性。02、在干燥和储存过程中蛋白的稳定性尽管整个蛋白分子在预冻过程中保持了其原有的结构,然而,在后续的脱水干燥过程中如果不加入合适的稳定剂也会面临变性的风险。简单的说,当去除蛋白分子的水合外层时,蛋白质天然的结构便遭到破坏。对多个蛋白的红外光谱研究表明:无合适的稳定剂存在时,在干燥的蛋白样品中,其结构将会遭到去折叠。如果样品迅速复水,损伤的程度(如,聚合百分比)与干燥蛋白质的红外光谱的非天然表现直接相关。因此,降低复水后结构的破坏需要减小预冻和主干燥过程中蛋白结构的去折叠。而且,即使样品立即复水后100%的天然蛋白分子被恢复,干燥的固体中也会有相当一部分去折叠的分子。在复水过程中分子内的再折叠可以主导分子间的相互作用,从而导致聚集,在复水后表现为100%的天然分子。适当的赋形剂可以阻止或至少减轻蛋白结构的去折叠,配方是否成功可以通过红外光谱检查干燥后蛋白的二级结构来立即判断,更重要的是,发表的一些研究显示,干燥样品的长期稳定性取决于干燥过程中天然蛋白的保留量,如果干燥后的蛋白样品存在结构上的去折叠,即使样品在低于其Tg温度以下储存,蛋白也会很快被破坏,因此,红外光谱法可作为蛋白配方的另外一种工具,研发人员可以在冻干后对样品进行检测,确定其结构是否遭到破坏。欢迎先关注我们,下一期内容将继续为大家带来“实用建议:如何合理设计稳定的冻干蛋白配方(二)”,详细分享:蛋白样品冻干的首选赋形剂有哪些、基于成功蛋白冻干配方会导致最终失败的一些细节问题等。莱奥德创冻干技术分享关注“莱奥德创冻干工场“,立即获取冻干线上技术分享内容。基于对于冻干研发的一些考量,莱奥德创创建了金字塔冻干技术分享平台:包含了从冻干理论基础,到配方和工艺开发,再到放大及生产,以及进阶的设备管理和线上线下专题内容分享。内容结合了来自Biopharma的冻干理论指导体系、来自于莱奥德创产品经理及应用工程师的实践经验总结及国内外专家的专题内容。获取方式Step 1:关注公众号 扫码关注莱奥德创公众号Step 2:点击菜单栏“冻干讲堂” Step 3:点击你感兴趣的内容Banner Step 4:开始学习 更多关于冻干技术分享平台的介绍请点击下方阅读:● 冻干免费技术内容获取-莱奥德创金字塔冻干技术分享平台► 点击阅读如果您对上述设备或冻干服务感兴趣,欢迎随时联系德祥科技/莱奥德创,可拨打热线400-006-9696或点击下方链接咨询。译自:《Rational Design of Stable Lyophilized Protein Formulations:Some Practical Advice》 John F.Carpenter,Michael J.Pikal,Byeong S.Chang,Theodore W.RandolpH pHarmaceutical Research, Vol.14,No.8,1997* 如有理解错误之处,还请参考原文关于莱奥德创冻干工场上海莱奥德创生物科技有限公司专注于提供前沿的冻干设备应用和制剂开发相关服务,依托于合作伙伴加拿大ATS集团SP品牌和英国Biopharma Group等的紧密合作,致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。莱奥德创在上海及广州设有实验室,拥有专业的技术团队及国内外专家支持体系。莱奥德创面向生物制药、食品科学等各个领域行业客户,提供冻干研发、放大、委托生产及培训等服务。前期研发● 产品配方特征研究:共晶点温度(Te)、塌陷温度(Tc)、玻璃态转化温度(Tg'、Tg)测定等;● 实验室工艺开发:冻干工艺开发:冻干制剂配方开发,工艺确定,申报材料撰写;● 冻干工艺优化:利用中试冻干机上PAT工具优化及缩短工艺;● 冻干产品质量指标测试:水分含量,冻干饼韧度分析;● 咨询服务:如产品外观问题、产品质量问题、其他troubleshooting等;工艺放大/技术转移● 冻干工艺转移/放大: 远程技术指导+现场服务;● 小批量冻干生产(NON-GMP),临床一期生产(GMP);其他业务● 企业小团队线上线下培训服务:冻干原理,工艺开发,设备使用维护等;● 冻干设备租赁服务。400-006-9696www.lyoinnovation.com莱奥德创冻干工场中国(上海)自由贸易试验区富特南路215号自贸壹号生命科技产业园4号楼1单元1层1002室德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 揭密清洁验证中的最大残留限值(MCL)计算
    药品生产中清洗过程的主要目的之一,是去除产品或洗涤剂残留,以防止潜在污染转移到生产的下一产品中。确保不会出现这种情况的一个必要程序,是建立经科学证明的合格标准限值。本文专为使用TOC建立合格标准进行逐步讲解。合格标准的Sievers推导合格标准的Sievers推导是一个多步计算,并将碳和API贡献系数应用到最终的合格标准结果上。每一步骤的说明如下:1每日容许摄入量每日容许摄入量(ADI)被认为是安全水平,通常与毒性水平一起用于合格标准计算,以减少各批次之间的残留风险。根据生产的产品,通过应用安全系数,从未观察到作用剂量NOEL(Non-observed Effect Level)值计算至ADI 值。2后续产品中的最大残留限值(MCL, MaximumCarryover Limit)可计算MCL以显示后续产品B中产品A浓度的绝对量。此计算中的大多数系数可在法规档案、产品标签和公司规定的验证文件(如主计划、协议、认证或步骤)中非常容易找到。以下修正的公式(原来由Foreman和Mullen开发)给出允许的最大残留浓度。其中:MCL = 最大残留限值(mg)ADI = 每日允许摄入量(mg)B batch = 后续产品B的批量(mg)B max dose = 产品B的最大剂量(mg)3单位表面积的绝对限值计算MCL之后,下一步是确定共用生产设备的表面积上可能污染含量的残留限值。其中:MCL = 最大残留限值(mg)SSA = 用于生产产品A和B的设备的共用表面积(cm2)有时无法确定MCL计算中的某些系数。例如,在开发阶段,确定产品A和B的剂量规定可能太早。因此建议使用体积计算以确定正常运行时设备的处理容量。其中:MCL = 最大残留限值(mg)ADI = 每日允许摄入量(mg)矩形设备的容积=长 x 宽 x 深(cm3)圆柱形设备的容积=圆形面积 x 深(cm3)圆锥形设备(如V型混合器)的容积=圆形面积 x深/3(cm3)SSA = 用于生产产品A和B的设备的共用表面积(cm2)务必认识到此系数的推导,是假设所有产品残留体积均匀分布在设备的共用表面积。推导的下一步提供一种解决方案,通过验证的TOC分析方法确定所分析的擦拭或漂洗样品中的限值。4每个样品分析响应的绝对限值当为通过直接(擦拭)和间接(漂洗)样品的分析响应计算清洁验证样品中的绝对限值时,有两种选择。其中:SSA的限值 = 根据设备的共用表面积计算的MAC限值(mg/cm2)SA = 如果使用棉签,所擦拭的面积(cm2)V = 用于脱附棉签的体积,(从棉签顶部提取化合物)或漂洗的样品体积(mL)5API和碳贡献回收系数(专用于TOC分析)API和碳贡献回收系数可使用化合物的分子量进行计算。碳百分比(%C)从化合物的经验公式推导。其中:产品API% = 产品中API的浓度mg C = 分子式中的碳的量乘以12MW = 化合物的分子量每个样品的限值 = 样品中的浓度(mg/L,ppm)考虑到TOC是专用于测定溶液中碳浓度的分析方法,此步骤对于确定使用TOC清洁验证的合格标准至关重要。使用TOC合格标准进行产品分组在评测多个产品以及被认为是“最恶劣组份”的潜在化合物的合格标准之后,产品分组表和TOC一起使用,以确定适当的合适水平。在合格标准计算时,更改产品、批次、API和碳贡献,很容易实现。在计算出以不同的顺序分批的各产品组的结果后,应通过科学判断选择合格标准。表1显示在批次产品B之后的产品D,导致最恶劣的情况。因此,提倡基于最恶劣的情况,选择的合格限值。进一步说明科学地说,MCL定义为在最后批次产品“B”中产品“A”的总浓度。这只是假定产品“A”的所有残留将在产品“B”的指定批次均匀混合。最重要的是,产品知识、工艺、清洗剂、清洗过程和分析方法,为建立最好地显示清洗过程能力的标准,提供有力的支持,并确保后续的产品不会受到污染。使用包含碳百分比系数的Sievers推导,使得MCL公式可用于计算可量化的TOC限值;没有碳百分比系数时,MCL得到的是可量化的化合物浓度,而不是TOC浓度。参考资料:1. FDA网址:http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.Search_Drug_Name◆ ◆ ◆联系我们,了解更多!
  • FDA批准在蒸馏酒内使用新色素添加剂
    美国食品药品监督管理局(FDA)正在修订于7月12日生效的色素添加剂法规,以确保安全使用二氧化钛和云母制作的云母钛珠光颜料(mica-based pearlescent pigments)作为色素添加剂用于制作酒精体积百分比18%至23%的蒸馏酒,但是不包括含有超过5%标准酒精度的蒸馏酒混合物。FDA还得出结论,当上述产品中使用的云母钛珠光颜料含量按重量计不高于0.07%时,对人类食用而言是安全的。  据悉,使用二氧化钛和云母制作的云母钛珠光颜料目前根据《美国联邦法规》(Code of Federal Regulations, CFR)第73.350节,标题21作为色素添加剂准许在多种食品中使用,使用量按重量计不得超过1.25%,这些食品包括谷物食品、糕点、糖霜、明胶甜点、硬糖和软糖(包括含片)、营养补充药片、明胶胶囊和口香糖等。此外,二氧化钛、铁氧化物和云母制作的云母钛珠光颜料分别根据21 CFR 73.1350和21 CFR 73.3128还被允许作为色素添加剂在吞咽药物和隐形眼镜中使用。
  • 【NIFDC经典文献系列赏析】融合蛋白电荷变异体表征先进技术
    蛋白新药的设计得益于重组DNA技术的发展。融合蛋白是指通过基因融合两个或更多蛋白质结构域来创造一个具有新功能的嵌合蛋白。每个融合体的功能通常分为一个载体结构域和一个效应结构域,前者有助于提高稳定性和药代动力学,后者具有从细胞毒性到识别和结合等不同的功能。截至2019年,已有11种Fc融合蛋白疗法被FDA批准。 生物制药的电荷变异体(电荷异质性)来自翻译后修饰,如磷酸化、糖基化和脱酰胺化,须在整个生产过程中密切监测,因为它可能影响产品的安全性和有效性。全柱成像毛细管等电聚焦(icIEF)已被证明有诸多良好检测性能特征,如高分辨率、自动化、定量准确、重现性好和易用性。凭借这些优势,它已成为生物制品,特别是单克隆抗体电荷变异体表征的主流技术。 与单克隆抗体等传统生物药相比,融合蛋白的电荷异质性差异更大,这使得表征融合蛋白成为一个挑战。建立一种适用于分析多种融合蛋白的平台方法可以方便方法开发并且简化生产流程。2021年,中国食品药品鉴定研究院(NIFDC)利用全柱成像毛细管等电聚焦电泳技术的双通道(紫外&自发荧光)表征9种融合蛋白药物的电荷异质性,其中6种蛋白为商业化蛋白。紫外吸收UV280nm是经典icIEF等电聚焦电泳检测通道。自发荧光(NIF:Native Fluorescence)是指利用芳香族氨基酸(色氨酸、酪氨酸、苯丙氨酸)的自发荧光来实现检测,无需添加染料。 结果表明,icIEF方法可用于重组蛋白类药物电荷异质性及等电点分析。该方法快速、准确、重复性好,为保障融合蛋白类产品生产工艺的稳定性及质量控制提供了一种可靠的平台分析方法。9种融合蛋白9种融合蛋白治疗剂(在本研究中被命名为样品1-9),其中6种已商业化,包括:样品1:安进公司的依那西普;样品2:百时美施贵宝公司的阿巴泰普;样品3:再生元公司的阿夫利贝特;样品5:重组人肿瘤坏死因子-α受体II:海正药业的IgG Fc融合蛋白;样品6:嘉宏药业的康柏西肽;样品7:百时美施贵宝的贝拉塔塞普;三个样品正处于不同临床试验阶段,包括VEGFR-Fc融合蛋白样品4,血小板生成素模拟肽-Fc融合蛋白样品8和胰高血糖素样肽-1-Fc融合蛋白样品9。结果通用稳定剂SimpleSol 大多数融合蛋白在传统电聚焦凝胶电泳(IEF)分析过程中会聚集或沉淀,需要添加剂来保持稳定性。尿素已被证明可以减少蛋白质聚集,并提高IEF分析的重复性。因为本研究的目的是开发一个平台方法,所以需要确定一种能在多种融合蛋白中发挥作用的稳定剂。为此,研究人员比较了尿素和商业稳定剂SimpleSol(来自ProteinSimple)对三种不同的融合蛋白治疗剂(样品1-3)的影响。 在没有稳定剂的情况下,样品1在电泳分析过程中发生聚集,形成不可重复的峰型(图1)。在加入2M尿素的情况下,样品1的峰型重复性得到提升。然而,在有尿素的情况下,峰高明显降低,约为无尿素情况的25%。相比之下,当样品1在含50%的SimpleSol的体系下进行分析时,峰型变得可重复,而且峰高和分辨率都保持不变(图1)。因此,对于样品1,SimpleSol比尿素更适合作为icIEF分析的稳定剂。图1 对于样品2,在没有添加稳定剂的情况下也观察到了聚集现象,导致了峰型的不可重复(图2)。与样品1不同,加入2M尿素并没有改善峰型的分离。只有当加入4M尿素时,峰型才变得可重现。然而,在这两种条件下,峰高和分辨率也都明显降低。在SimpleSol的存在下,峰高和分辨率都得到了保持(图2),再次证明SimpleSol在稳定样品方面优于尿素。对于样品2,SimpleSol同样比尿素更适合作为icIEF分析的稳定剂。数据表明,SimpleSol可以作为一种通用的蛋白质稳定剂用于融合蛋白的icIEF分析方法。图2紫外吸收和自发荧光双通道检测 在紫外吸收检测模式下研究人员分析样品1,样品峰从嘈杂的基线中区分不明显(图3)。为了克服这一挑战,研究人员同时利用自发荧光通道检测。与紫外吸收检测相比,荧光检测的每个峰组都显示出更高的信号,并且荧光检测的基线噪音更小。图3与传统IEF方法对比 icIEF方法与平板凝胶IEF方法产生了相似的峰型(图4)。然而,icIEF方法的每个峰的分辨率均得到了改善。此外,icIEF方法的灵敏度明显高于IEF方法;在获得凝胶IEF结果时,每个泳道要上样大约20μg的蛋白质,而利用icIEF分析时,最终样品溶液进样浓度为0.225μg/μL至0.45μg/μL。每次进样量约为5μL。相当于2.25μg-4.5μg的蛋白质,极大节约了样品。图4. icIEF方法与平板IEF方法检测融合蛋白对比图总结 NIFDC利用ProteinSimple全柱成像毛细管等电聚焦电泳技术建立并证明了用于融合蛋白电荷异质性表征的方法平台。该平台有如下特点: 使用了通用的蛋白质稳定剂SimpleSol,可以有效避免融合蛋白发生聚集或沉淀。对于一些样品,无需任何添加剂就能获得可重复峰型,与没有稳定剂的相同蛋白质的峰型相比,添加这种稳定剂对蛋白质的峰型的不利影响很小。使得该方法可以广泛用于分析多种融合蛋白,而不需要根据不同的样品更换稳定剂。同时可通过紫外和自发荧光双通道来检测蛋白质。自发荧光检测模式利用芳香族氨基酸(色氨酸、酪氨酸、苯丙氨酸)的自发荧光来实现且无需染料,可以提高灵敏度,减少由载体两性电解质引起的背景噪音。通过icIEF分离得到的每个峰组分的峰面积百分比和表观pI值,重复性好。总共对9种融合蛋白药物进行表征,每个组分的峰面积百分比和表观PI值的定量分析都有极佳的重复性。扫描下方二维码,获取ProteinSimple融合蛋白表征解决方案参考文献:1. Wu, Gang et al. “A platform method for charge heterogeneity characterization of fusion proteins by icIEF.” Analytical biochemistry vol. 638 (2022): 114505.关于我们ProteinSimple是美国纳斯达克上市公司Bio-Techne集团(NASDAQ:TECH)旗下行业领先的蛋白质分析品牌。我们致力于研发和生产更精准、更快速、更灵敏的创新性蛋白质分析工具,包括蛋白质电荷表征、蛋白质纯度分析、蛋白质翻译后修饰定量检测、蛋白质免疫实验如Western和ELISA定量检测蛋白质表达等技术,帮助疫苗研发、生物制药、细胞治疗、基因治疗、生物医学和生命科学等领域科学家解决蛋白质分析问题,深度解析蛋白质和疾病相互关系。联系我们地址:上海市长宁路1193号来福士广场3幢1901室 电话:021-60276091热线:4000-863-973邮箱:PS-Marketing.CN@bio-techne.com网址:www.bio-techne.com
  • 葛瑛团队成果:自上而下蛋白质组学表征人类心脏中肌球蛋白特异性表达
    大家好,本周为大家分享一篇预发表的文章,Top-down Proteomics of Myosin Light Chain Isoforms Define Chamber-Specific Expression in the Human Heart ,文章的通讯作者是威斯康星大学麦迪逊分校的葛瑛教授。  肌球蛋白作为肌节的“分子马达”,产生心肌收缩所必需的收缩力。肌球蛋白轻链1和2 (MLC-1和-2)在调节六聚体肌蛋白分子结构中起着重要的功能作用。轻链中存在“心房”和“心室”亚型,在心脏中呈现出腔限表达。然而,近年来MLC亚型在人心脏的腔室特异性表达受到了质疑。在本文中,作者使用自上而下蛋白质组学质谱分析了成人非衰竭供体心脏的四个心脏腔室中MLC-1和-2心房和心室亚型的表达。  MLC-1v和MLC-2a是在所有供体心脏中呈现出腔限表达模式的MLC异构体。重要的是,作者的结果明确地表明,MLC-1v,而不是MLC-2v,在成年人心脏中是心室特异性的。图1展示了LV(left ventricle)、RV(right ventricle)、LA(left atrium)和RA(right atrium)中MLC异构体的检测和定量。作者发现MLC-1v存在心室特异性表达,而MLC-2v没有特异性,并在心房组织中发现了与MLC-2v和pMLC-2v分子质量相匹配的峰。此外,在所有(n=17)无心脏疾病的捐赠者的每颗心脏的心房组织中都能检测到MLC-2v。MLC-2v占总MLC-2含量的百分比采用单因素方差分析(one-way ANOVA)进行定量分析,认为MLC-2v占总MLC-2含量的百分比具有统计学意义,心室和心房间差异显著,LA和RA间横向差异显著。  图1. MLCs Top-down MS分析  接下来作者使用串联质谱(MS/MS)鉴定了MLC-2v蛋白质序列。位于心房组织MLC-2v上的去酰胺化翻译后修饰(PTM)被定位到氨基酸N13。去酰胺化位点与调控磷酸化位点Ser14相邻。磷酸化位点附近的脱酰胺基团所带来的额外负电荷模拟了MLC-2a在Ser22/23位点的双磷酸化模式(图2C)。心房特异性的MLC-2v去酰胺化可能与心房内心力的产生有关。磷酸化诱导了MLC-2的构象变化,而第二负电荷的加入可能有助于提高钙敏感性并诱导蛋白质进一步的构象变化。  图2. Top-down MS/MS 鉴定  总的来说,自上而下蛋白质组学对整个人类心脏的MLC亚型表达进行了无偏差分析,揭示了之前意想不到的亚型表达模式和PTMs。  撰稿:张颖  编辑:李惠琳  文章引用:Bayne EF, Rossler KJ, Gregorich ZR, Aballo TJ, Roberts DS, Chapman EA, Guo W, Ralphe JC, Kamp TJ, Ge Y. Top-down Proteomics of Myosin Light Chain Isoforms Define Chamber-Specific Expression in the Human Heart. bioRxiv [Preprint]. 2023 Feb 26:2023.01.26.525767. doi: 10.1101/2023.01.26.525767.  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  1. Bayne EF, Rossler KJ, Gregorich ZR, Aballo TJ, Roberts DS, Chapman EA, Guo W, Ralphe JC, Kamp TJ, Ge Y. Top-down Proteomics of Myosin Light Chain Isoforms Define Chamber-Specific Expression in the Human Heart. bioRxiv [Preprint]. 2023 Feb 26:2023.01.26.525767. doi: 10.1101/2023.01.26.525767.
  • Ultrapyc系列固体真密度分析 | 一种新的水泥泥浆的固含和密度测定方法
    建筑行业水泥泥浆真密度测试方法 Density and Percent Solids of a Slurry钢筋混凝土铸就如今的高楼耸立,应用在不同工业方向上的泥浆差异很大,需要一种可靠的表征方法来测量这类混合物的密度。安东帕康塔的Ultrapyc系列固体真密度分析仪可以精准的测试泥浆的真实密度,而且还可以确定泥浆中固体含量的百分比。01介绍泥浆是一种混合物,由致密固体分散在液相中得到。其应用领域十分广泛:电池水泥、混凝土陶瓷其他领域密度是泥浆的重要性质,它受悬浮在液体中的固体量的影响。使用气体比重法可以简单精准地对泥浆的密度进行表征。安东帕康塔的Ultrapyc系列真密度测试仪,是理想的表征泥浆密度的分析仪器。在测试过程中,浆体内液体成分产生的蒸汽会影响测试结果的准确性。而Ultrapyc独有的粉末保护模式,即气体从参考池扩散到样品池,会最大限度地减少这种影响,从而提高测试的精准度。另外,通过对泥浆单个组分以及泥浆整体的密度测量,可以得到泥浆中固体含量百分比。02密度测量气体比重法一般用于固体骨架密度的测量,而本次实验对象是有一定蒸汽压的浆体/液体。对此我们将测试条件进行了优化。为了展示Ultrapyc仪器的测量过程,我们测试了蒸馏水的密度。因为水是浆体的主要液体成分,而且水的密度我们也非常熟悉。01测参数介绍02测试结果展示表2是Ultrapyc 5000系列的双向测试结果,测试温度为20℃。其中,参比池优先的扩散模式结果十分接近水在20℃下的密度值,0.9982 cm3/g。03泥浆中固体含量百分比如果泥浆中的固体及液体的密度是已知的,或者已经测量出来了,我们就可以用它们和泥浆的密度来计算其固体含量百分比。为了示范整个过程,我们制作一批已知成分含量(黏土/水)的泥浆,并且测量了一下其密度。所有样品的测量都是按照上面的测试条件进行测试。黏土的密度为2.6576 cm3/g,水的密度为0.9966 cm3/g,不同配比的泥浆密度如表3所示。计算泥浆中固体含量百分比的公式为:其中,ρS是固体密度,ρL是液体密度,ρY是泥浆密度。实际测试结果如下表所示。03测试计算固含结果展示从结果中可以看出,配方的理论值和计算的结果十分接近。这种双组分的百分比计算模式还可以进行扩展应用。基本要求是,轻组分和重组分的密度相差至少为10%,差别越大,分辨率越高。这种计算模式,可以用于塑料中的填料或者颜料、无水组分中的含水量(比如无水碳酸钠中水含量)、氢氧化物中的氧化物含量、焊料中的锡、液体中的固体含量的计算。如果蒸汽压相对较低,甚至可以测量液体混合物中液体的比例,比如乳剂中的油、水中的酒精。04结论Ultrapyc 5000系列非常适合测量泥浆的密度。仪器的粉末保护模式,扩散方向由参比池到样品池,降低了蒸汽压的影响。而且如果有泥浆中固体和液体的密度,再结合泥浆的密度,就可以得到泥浆中固体含量百分比。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 硝酸钠和肥料中氮的测定
    硝酸钠和肥料中氮的测定devarda 蒸馏法测定硝酸钠和肥料中的氮1介绍本文介绍了一种简便、快速、灵敏的测定硝酸钠中氮含量的 Devarda 方法。采用 K-365 MultiKjel 进行 Devarda 蒸馏,然后在万通 Eco 滴定仪上进行硼酸滴定。Devarda 金属与氢氧化钠反应生成氢。产生的氢将硝酸盐和亚硝酸盐还原为氨。然后氨被硼酸溶液吸收,用标准硫酸滴定。2设备MultiKjel 和 万通 Eco 滴定仪 (11K36531211)300 mL 玻璃样品管 (11059690)分析天平(精度 ± 0.1 mg)Devarda 防溅保护器 (11071014)3试剂与材料试剂:NaOH 32%, VWR (9913.9010)硼酸 (H3BO3) 4%:200 g 硼酸, 稀释至 5L 蒸馏水, pH 调节到 4.65硫酸 0.1 mol/L 滴定液硝酸钠 ≥ 99.5% Devarda’s 合金粉末样品:在当地市场购买的化肥,含 15% 的硝酸盐 + 氨氮和微量尿素安全操作请参考所有相应的 MSDS!4步骤直接蒸馏然后硼酸滴定 —— 采用硼酸滴定法测定 Devarda 蒸馏过程中氨的蒸馏量。氨和硼酸形成硼酸络合物,直接用已知浓度的硫酸滴定。过量的硼酸保证了氨能够被完全吸收。氮的测定包括以下步骤:在碱性条件下,德瓦达合金将硝酸盐/亚硝酸盐还原为氨。用蒸汽蒸馏法将氨蒸馏到硼酸接收。硼酸滴定法测定氮含量。系统准备:先进行预热,然后进行启动步骤(选择相同的方法作为启动方法进行分析),或者在主屏幕上使用准备功能。在保持自动蒸馏模式上,即使间断性的中断之间的测定,也不需要进一步的预热或启动。空白制剂:本实验用一个空的 300ml 样品管,内含 2g 的 Devarda 合金作为空白。每个空白用一个新的样管。将样品管安装在蒸馏装置上,进行蒸馏和滴定。参考标准准备:小心地在每个 300ml 样品管中称量±0.2 g 硝酸钠,并在蒸馏前加入 2g 德瓦达合金。把准确的记下来。样品称重,将样品管安装在蒸馏装置上,进行蒸馏,然后进行自动/手动滴定。样品制备:仔细称量每个 300ml 样品管中 ±0.2 g 的样品,并在蒸馏前加入 2g 德瓦达合金。记下样品的确切重量。将样品管安装在蒸馏装置上,进行蒸馏,然后进行自动/手动滴定。注意事项:Devarda 合金由 ~ 45% 铝、~ 50% 铜和 ~ 5% 锌的混合物组成。在碱性条件下,铝和锌被还原,产生氢气。氢气在原地将硝酸盐还原为氨。这是一个放热反应,因此在反应过程中,液体温度升高,反应混合物产生泡沫。催化剂应准确称量。反应时间应保持足够长的时间,以使反应完全和强烈的反应平息下来。排空程序应该关闭,因为 Devarda 合金的残留物会堵塞管路!Devarda 合金的残留物对环境有潜在威胁!蒸馏后不要将样管中的废物倒入水槽中!一定要把它安全地处理掉。在样品测定前,先进行 5 次空白测定,再进行 5 次标准品蒸馏。所有蒸馏参数列于表 1。Table 1:蒸馏和滴定的参数(点击放大查看)计算 —— 结果是按氮的百分比计算的。用式 (1) 和 (2) 计算结果。对于对照品,其纯度如式 (3) 所示。wN:氮的重量分数VSample :样品消耗滴定酸的体积[mL]VBlank :空白消耗滴定酸的平均体积[mL]z :摩尔系数(1 for HCl, 2 for H2SO4)c:滴定液浓度[mol/L]f:滴定系数(商业溶液一般为 1.000 参照产品合格证)MN:氮的分子量 (14.007 g/mol)mSample:样品重量 [g]1000:转化因子 [mL to L]%N :氮的重量百分比%NNaNO3:为 NaNO3 纯度校正的氮的重量百分比[%]P:对照品 NaNO3 的纯度[%]5结果硝酸钠回收 —— 硝酸钠(纯度或含量 = 99.5%) 的氮测定和回收率的结果见表 3。硝酸钠含氮量为 16.48%。Table 2:空白测定结果Table 3:硝酸钠中氮的回收结果(点击放大查看)Table 4:标记 N % = 15 的肥料样品中氮的测定结果(点击放大查看)6结论用该方法测定硝酸钠和化肥中的氮,结果可靠,重现性好。这些结果与给定的硝酸钠值吻合得很好。加样回收率为 100.296 % (RSD = 0.049%),在 98 ~ 102% 的标准范围内。
  • 沃特世推出全新紧凑型台式TQMS 体积更小灵敏度更高
    近日,沃特世宣布推出全新台式串联四极杆质谱仪 Xevo TQ Absolute系统,该产品体积大幅减少的基础上在灵敏度上还进行了进一步提升。新品Xevo TQ Absolute的主要创新点包括:分析负离子化合物的灵敏度比上一代产品提高15倍相较于市面上其他同类产品,体积减少45%,耗电量和氮气消耗量也少50%,产生的热量也减少 50%Xevo TQ Absolute旨在帮助制药、食品饮料以及环境分析等领域实验室,满足他们对于广泛应用进行痕量水平质谱定量分析的法规要求。沃特世公司高级副总裁Jon Pratt表示:“Xevo TQ Absolute适用于那些追求行业领先的定量灵敏度、准确性、重现性、效率及可持续性的实验室。相较于其他同类别质谱仪,这款仪器在更小的占地面积内可以提供更强的分析能力,不仅能达到相当低的定量限,还能帮助实验室管理人员更有效地优化设备利用率和分析产出。”为了让Xevo TQ Absolute质谱仪获得更佳性能,沃特世将其与基于MaxPeak HPS技术的ACQUITY Premier UPLC系统相结合,这套UPLC系统消除了含有磷酸根及羧酸根基团的化合物的非特异性吸附,从而提升它们的回收率。在这套集成LC-MS/MS系统的助力下,许多应用的定量限都将降至极低的水平,包括:定量分析药物中的受监管杂质寡聚核苷酸生物分析在临床领域的大型队列研究中测定内源性代谢物浓度定量分析食品和环境样品中的残留物和污染物测定生物基质中的低水平药物和毒物检测食品包装中的痕量可浸出物此外,Xevo TQ Absolute还经过精心设计,可实现一致且可重复的分析体验,使实验室能够在常规清洁和维修之间,保持更长的、性能稳定的正常运行时间。这主要得益于该仪器新增的优化探头位置导引装置和全新的源外壳设计,前者使得灵敏度和耐用性大幅提升,后者则能尽量避免样品基质或流动相中的盐类污染离子源。Xevo TQ Absolute 还针对 waters_connect™ 软件平台的使用进行了优化,并且还与 Waters MassLynx™ 质谱软件兼容。对于需要煞费苦心审查大量样品结果的实验室,或者在一次运行中对数百个小分子成分和污染物进行定量的实验室,waters_connect 上的 MS Quan 应用程序及其独特的异常聚焦审查 (XFR) 功能,让科学家可以将审查数据的时间减少一半。Xevo TQ Absolute预计将于今年5月开始向全球用户供货。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制