当前位置: 仪器信息网 > 行业主题 > >

条件研究

仪器信息网条件研究专题为您整合条件研究相关的最新文章,在条件研究专题,您不仅可以免费浏览条件研究的资讯, 同时您还可以浏览条件研究的相关资料、解决方案,参与社区条件研究话题讨论。

条件研究相关的论坛

  • 在职研究生报考条件与要求详解,报考研究生的条件不难,关键是流程!

    [font=Roboto][color=#111111]报考在职研究生不仅可以提高学历,还可以拓宽知识和视野,但是在职研究生报考条件与要求是什么呢?本文为你详细分析报考研究生的条件和流程,让你顺利通过考试,实现自我提升![/color][/font][font=Roboto][color=#111111]一、在职研究生报考条件与要求[/color][/font][font=Roboto][color=#111111]在职研究生是指在工作期间参加研究生招生考试,并以在职身份攻读研究生学位的人员。在职研究生分为两种类型:专业学位在职研究生和学术型在职研究生。专业学位在职研究生主要培养高层次的专业技术人才,学术型在职研究生主要培养高层次的科学研究人才。[/color][/font][font=Roboto][color=#111111]报考在职研究生需要满足以下几个条件:[/color][/font][font=Symbol][color=#111111] [/color][/font][font=Roboto][color=#111111]具有国家承认的本科毕业证书或同等学力;[/color][/font][font=Symbol][color=#111111] [/color][/font][font=Roboto][color=#111111]在工作单位有一定的工作经验和业绩;[/color][/font][font=Symbol][color=#111111] [/color][/font][font=Roboto][color=#111111]获得工作单位和招生单位的同意和推荐;[/color][/font][font=Symbol][color=#111111] [/color][/font][font=Roboto][color=#111111]符合招生单位的专业要求和其他条件;[/color][/font][font=Symbol][color=#111111] [/color][/font][font=Roboto][color=#111111]参加全国统一的研究生入学考试,并达到录取分数线。[/color][/font][font=Roboto][color=#111111]具体的报考条件和要求可能因不同的招生单位和专业而有所差异,建议报考者提前查询相关信息,做好准备。[/color][/font][font=Roboto][color=#111111]二、在职研究生报考流程[/color][/font][font=Roboto][color=#111111]报考在职研究生需要经过以下几个步骤:[/color][/font][font=Symbol][color=#111111] [/color][/font][font=Roboto][color=#111111][font=Roboto]网上报名:一般在每年[/font]9月份左右,通过中国研究生招生信息网进行网上报名,填写个人信息、选择招生单位和专业、上传证件照等;[/color][/font][font=Symbol][color=#111111] [/color][/font][font=Roboto][color=#111111][font=Roboto]现场确认:一般在[/font]10月份左右,按照招生单位的安排,携带相关材料到指定地点进行现场确认,领取准考证等;[/color][/font][font=Symbol][color=#111111] [/color][/font][font=Roboto][color=#111111][font=Roboto]考试:一般在次年[/font]1月份左右,参加全国统一的研究生入学考试,包括公共课和专业课两部分;[/color][/font][font=Symbol][color=#111111] [/color][/font][font=Roboto][color=#111111][font=Roboto]初试成绩公布:一般在[/font]3月份左右,通过中国研究生招生信息网查询初试成绩,并根据分数线判断是否进入复试阶段;[/color][/font][font=Symbol][color=#111111] [/color][/font][font=Roboto][color=#111111][font=Roboto]复试:一般在[/font]4月份左右,按照招生单位的安排,参加复试,包括面试、笔试、政审等环节;[/color][/font][font=Symbol][color=#111111] [/color][/font][font=Roboto][color=#111111][font=Roboto]录取:一般在[/font]5月份左右,通过中国研究生招生信息网查询录取结果,并按要求办理入学手续。[/color][/font][font=Roboto][color=#111111]具体的报考流程可能因不同的招生单位和专业而有所差异,建议报考者及时关注相关通知,按时完成各项事宜。[/color][/font][font=Roboto][color=#111111]三、小结[/color][/font][font=Roboto][color=#111111]报考在职研究生是一种提升自己的有效途径,但是需要了解清楚[/color][/font][url=http://www.dengtakaoyan.com/][u][font=Roboto][color=#0000ff]在职研究生报考条件与要求[/color][/font][/u][/url][font=Roboto][color=#111111],并按照规定的流程进行操作。本文为你详细介绍了在职研究生报考条件与要求及流程,希望对你有所帮助。如果你想了解更多关于在职研究生的信息,请继续关注[/color][/font][font=宋体][color=#111111]([/color][/font][font=宋体][color=#111111][font=宋体]灯塔考研[/font][font=Roboto]dengtakaoyan.com[/font][/color][/font][font=宋体][color=#111111])[/color][/font][font=宋体][color=#111111],了解更多考研信息[/color][/font][font=Roboto][color=#111111]![/color][/font]

  • 【求助】矿石U4+转化为U6+的条件研究

    [color=#DC143C]我们要求写个综述,不要求很好,只是本科生的水平,题目是:矿石U4+转化为U6+的条件的研究,希望朋友们能够提供一些文献,谢谢谢谢啦.....[/color]

  • 【资料】紫外分光光度法测定水样中的总氮最佳条件的研究

    【篇名】 紫外分光光度法测定水样中的总氮最佳条件的研究【摘要】 经实验证明,用碱性过硫酸钾氧化-紫外分光光度法测定水样中的总N,以一次蒸馏水代替重蒸馏无氨水,既减少了实验操作程序,又不影响测定结果,同时本文确定了最佳实验条件,并对标准样品进行分析,结果理想。 [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=35117]紫外分光光度法测定水样中的总氮最佳条件的研究.pdf[/url]

  • 【资料】紫外分光光度法测定水样中的总氮最佳条件的研究

    【篇名】 紫外分光光度法测定水样中的总氮最佳条件的研究【摘要】 经实验证明,用碱性过硫酸钾氧化-紫外分光光度法测定水样中的总N,以一次蒸馏水代替重蒸馏无氨水,既减少了实验操作程序,又不影响测定结果,同时本文确定了最佳实验条件,并对标准样品进行分析,结果理想。

  • 活性氧化铜粉的工艺条件研究

    [font=&]【序号】:1[/font][font=&]【作者】:[font=宋体]符飞燕,王龙彪,周仲承,杨盟辉[/font][/font][font=&]【题名】:[font=宋体]活性氧化铜粉的工艺条件研究[/font][/font][font=&]【期刊】:[font=宋体]印制电路信息[/font][/font][font=&]【年、卷、期、起止页码】:2012年,第5期,23-25+65[/font]

  • 47.2 醋制延胡索微粉提取条件的研究

    47.2 醋制延胡索微粉提取条件的研究

    作者:张永欣,张颖,张启伟(中国中医研究院中药研究所 北京 100700)摘要: 目的:对影响醋制延胡索微粉提取的诸因素进行考察,为醋制延胡索微粉的应用奠定基础。方法:采用单因素试验方法,以活性成分延胡索乙素为指标,高效液相色谱法测定其含量。Diamonsil C18色谱柱;流动相乙腈三乙胺-磷酸盐缓冲溶液(pH7.0)(50:50):检测波长280nm。结果:实验得出醋制延胡索微粉提取条件为:温度为60℃,提取时间30min,加水量20倍。结论:微粉的提取效率比饮片煎煮的要高约10%。但微粉提取用水量少,提取时间短,温度低。在工业化生产中可以降低能耗,提高经济效益。谱图:http://ng1.17img.cn/bbsfiles/images/2012/08/201208141941_383833_1609970_3.jpg

  • 【杨美华专家系列讲座】:11月3日 第二讲:基于“毒-效”的中药材储存条件研究

    【专家讲座】:第二讲:基于“毒-效”的中药材储存条件研究【讲座时间】:2015年11月3日 10:00【主讲人】:杨美华:持或参与国家科技部重大新药创制专项、中医药行业科研专项、国家科技支撑计划、国家自然科学基金、北京市自然科学基金等课题20多项。荣获2009、2010、2012年药植所突出贡献奖。2014年度被评为药植所先进个人。在国内外杂志发表论文200多篇。研究成果“中药中真菌及真菌毒素污染分析及应用研究”荣获2013年北京市科学技术三等奖。【会议简介】从黄曲霉侵染对中药材有效成分影响的角度评价有害真菌污染过程及其对中药材质量的影响,并考察中药材的最佳贮藏条件,为建立中药贮藏过程防霉变体系提供依据。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名截止时间:2015年11月3日9:303、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/16024、报名及参会咨询:QQ群—379196738

  • 【原创大赛】浸泡条件对绿茶茶汤主要成分影响研究

    【原创大赛】浸泡条件对绿茶茶汤主要成分影响研究

    浸泡条件对绿茶茶汤主要成分影响研究 摘要:针对绿茶水变质现象,采用正交实验法对影响绿茶水变质实验因素进行了研究,优化得出了最佳的泡茶条件,并对绿茶茶汤主要成分的影响因素进行了研究,通过测定不同条件下的茶多酚与咖啡因的含量研究茶水变质现象。第一章概述1.1绿茶简介 绿茶具有叶片厚实、香气浓且不散、耐冲泡、茶汤黄绿而明亮、栗香浓郁、回味甘醇绵长等独特品质。绿茶既是一种健康的天然有机饮品,又具有很好的保健功效。经科学分析和实验证明,茶中含有多种营养和药效成分、其中氨基酸、维生素矿物质、多酚类化合物和生物碱的含量较高,具有清心明目,杀菌消炎降血脂、降胆固醇,减少心血管疾病等功效。1.2茶叶中成分分析 茶叶中主要含有茶多酚、咖啡因等物质,其中茶多酚占茶叶干重的22%~30%,是多种酚类衍生物的总称,是茶叶中主要的显现色泽和滋味的物质。由于它们具有酚的性质,含有多羟基,所以它们具有显著的药理作用,如能防止动脉硬化、降血糖与血脂;能与人体中的伤寒、霍乱等病源菌蛋白质结合并使之沉淀,从而抑制细菌的生长,使多种细菌活性丧失;还能使人体中的脱水吗啡、尼古丁等有毒物质和钴、银、铅等对人体有严重危害的重金属产生沉淀,消除或减弱重金属离子的危害性。目前,用于茶多酚含量的测定方法主要有酒石酸亚铁比色法和高锰酸钾滴定法等。茶叶中含有较多的咖啡碱,咖啡碱亦称咖啡因。咖啡因约占茶叶干重的2%~5%,具有利尿、强心、解毒作用,也具有兴奋神经中枢、舒张血管,预防高血压、心肌梗塞、促进血液循环等生理和药理作用。因为在各类植物中含量比较少,加之提取较困难,所以它是医用咖啡因的重要来源,是一种紧销的医药原料。此外茶叶中还含有其他一些微量的物质,例如:碳水化合物、多种维生素、果胶、芳香族化合物、烟碱、蛋白质、和多种人体必需的元素如、铁、钙等(钙、铜、钠、铁、铝、锌、氟、次氯酸根、硫酸根、硝酸根)含量泡茶,探讨不同离子对绿茶茶汤中主要成分的影响来研究茶水变质的现象。第二章实验部分2.1仪器与试剂2.1.1仪器 KDM型可调控温电热套(山东甄城华鲁电热仪器有限公司)、可调万用电炉(龙口市电炉制造厂)、电热恒温水浴锅(北京泰克仪器有限公司)、752紫外可见分光光度计(上海精密科学仪器有限公司);电炉(龙口市电炉制造厂);AL-104型电子天平(Metter-ToLedo Group);石英比色皿;直型冷凝管;橡胶管;洗瓶;500mL圆底烧瓶;锥形瓶;玻璃漏斗;玻璃棒;滤纸;小试管;胶头滴管;50mL量筒;烧杯;铁架台(带铁夹铁圈);试管夹;25.0mL、[/font

  • 物理学家通过研究光量子发现制约时空新条件

    http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20120113/2c27d720c896107a1fef0f.jpg两个十分特殊的光量子【搜狐科学消息】据国外媒体报道,来自美国密歇根州科技大学的罗伯特-雷米洛夫(Robert Nemiroff )和他的同事组成的研究小组,近日一直在致力于研究一种光量子,它已随着一束名为“GRB”γ射线(科学家在1989年有过跟踪记录)的出现,在宇宙中穿梭了有70亿光年之远的距离。而恰是这些光量子,成为了新的制约时空的关键要素。据了解,“GRB”射线在爆发时释放出了一些高能量光量子,继而这些光量子就以光的速度开始了在宇宙中的穿梭旅行。而这些光量子的其中两个吸引了物理学家的关注,物理学家认为,这两个光量子几乎在相同的时间中留下了同一个空间,也就是说这两个光量子在同样的时间点到达了同一个地方。而这并不是因为时空的团块结构,或者它们穿梭了很长的距离,因此十分神秘。研究人员从理论上对此现象进行解释,他们认为,这种现象也许是因为一种光量子的高能时标,而随着光量子在宇宙中的分散,对速度和光的能量依赖就恰好出现了一个新的上限。与此同时,研究人员在研究中发现,由于对这两个光量子抵达时间的测量存在差别,因此实际上会给时空团块结构的新制约条件带来了一定的影响。正是因为如此,当光量子仅有普朗克长度的500分之一时,时空的结块结构就变得十分有意义了。因为,这样就会给量子重力理论加上一些新限制。而耶鲁大学的研究人员根据最近研究表示,,虽然这些光量子的体积非常的小,但是它们在宇宙中穿梭的速度却与事实上所记录的速度有很大差别。由于关于科学家对光量子现象的不同研究,因此来自不同领域的科学家也推理出不同观点,有些科学家认为,也许随着光量子的逐渐清晰,事实上时空也不会再继续。而相反,这些光量子的体积却小的惊人,它们的组成元素则就更加微小了,经研究测量,它们的组成元素也许仅有10-35普朗克长度。从该理论来看,光量子不仅拥有着十分高的能量,同时还有着近似普朗克长度的波长。这就意味着,这些光量子更易于同所谓的时空“团块”相混合。虽然这些光量子的速度有微小的下降幅度,但是由于它们已经穿梭了很长的距离,因此所带来的效果仍然是非常引人注目的。而罗伯特—雷米洛夫和他的同事也将会在今年的美国天文社会的会议上探讨所谓的时空结块的新制约条件。(尚力)

  • 【分享】一篇文章《320μm内径毛细管电色谱柱的分离条件研究》

    320μm内径毛细管电色谱柱的分离条件研究尤慧艳 张维冰 阎 超 张玉奎(中国科学院大连化学物理研究所国家色谱研究分析中心,大连116011)摘 要:在毛细管电色谱中,随着柱径的加粗,焦耳热效应使柱效急剧降低,甚至产生气泡,导致断流现象;采用有机盐缓冲溶液作为流动相,在320μm内径反相毛细管柱中成功地使几种苯取代物得到较好的分离,并且可以在较高的电压下操作,得到了比加压电色谱法更高的柱效。通过对选择缓冲溶液的讨论,说明了大内径毛细管柱中调节流动相组成的一般原则。关键词:大内径毛细管柱,流动相,电色谱下载链接:http://www.instrument.com.cn/download/shtml/155609.shtml

  • 紫外分光光度法测定水样中的总氮最佳条件的研究

    【作者】: 【题名】:紫外分光光度法测定水样中的总氮最佳条件的研究【期刊】:【年、卷、期、起止页码】:【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?filename=HXGC200608012&dbcode=CJFQ&dbname=cjfd2006&v=G5fLx7blvyG2pNyQhUs_DOJjJxuv57e23OyPZ5U2NK6nobQexXktFhFsKfkXarRj

  • 46.4 清风痛胶囊液相色谱指纹图谱测定条件的研究

    46.4 清风痛胶囊液相色谱指纹图谱测定条件的研究

    【作者中文名】张永欣; 杨华; 张启伟; 易红; 陈贵品;【作者英文名】ZHANG Yong-xin1; YANG Hua1; ZHANG QI-wei1; YI Hong1; CHEN Gui-pin2(1.Institute of Chinese Materia Medica; China Academy of Chinese Medical Sciences; Beijing 100700; China; 2.Beijing Zichenxuan Pharmaceutical Deal Co.Ltd.; Beijing 100075; China);【作者单位】中国中医科学院中药研究所; 北京紫辰宣医药经营有限公司 北京;【摘要】目的:建立清风痛胶囊的色谱指纹图谱测定方法。方法:采用高效液相色谱梯度洗脱法,色谱柱为Diamonsil C18柱(4.6 mm×250 mm,5μm);流动相A0.1 mol.L-1磷酸二氢钾,流动相B甲醇,线性梯度洗脱:0~2min,10%B;2~42 min;10%~90%B。流速1 mL.min-1;检测波长262 nm。结果:在上述色谱条件下测定的色谱指纹图谱各色谱峰分离较好,方法学考察基本达到指纹图谱要求。结论:所建指纹图谱测定条件可用于产品的检测,但用于质量控制尚需作进一步的工作。http://ng1.17img.cn/bbsfiles/images/2012/08/201208131738_383596_2379123_3.jpg

  • 【原创大赛】正交法优化车用金属催化器中贵金属前处理条件研究

    【原创大赛】正交法优化车用金属催化器中贵金属前处理条件研究

    引言随着国内经济的快速发展,机动车辆的保有量迅速增加,机动车的废气污染导致环境空气质量的恶化,已经开始影响人们的身体健康,并引起了广泛的关注。为此为了减少机动车废气对环境空气的污染以满足日益严格的排放法规,加载车用催化转化器成为降低尾气污染物排放的一种有效措施。由于陶瓷载体生产成本低,容易制造成型,且具有抗冲击、抗压力、抗磨损、抗高温等优点,目前国内市场应用最广泛的主要以陶瓷为载体的催化转化器,但它的抗震性和热传导性差,而金属载体恰好可弥补这一缺点,安装金属载体催化转化器的机动车可快速起燃,能显著改善冷启动性能和废气排放。无论陶瓷载体还是金属载体的催化转化器,减少机动车废气排放的有效活性组分多采用贵金属元素,因而准确测定催化转化器的贵金属含量对于保证其催化性能满足国家法规具有重要的意义。目前,对于陶瓷载体的催化转化器中贵金属分析的相关研究较多,消解方法主要是酸溶法、碱熔融法、火试金法、湿法冶金等,分离富集方法包括共沉淀法、萃取法、离子交换法、吸附法、液膜法、生物吸附等,仪器分析方法有火焰原子吸收光谱法、但以电感耦合等离子体发射光谱法(ICP-OES)和电感耦合等离子体质谱法(ICP-MS)为主。对于金属载体的催化转化器中贵金属的检测研究很少,催化器生产企业多以间接的方法测量(测定金属载体经过涂层浆料后剩余浆料中贵金属含量的变化),对很少对金属载体催化化器中的贵金属含量进行直接测定。为此,本文对金属载体催化器中贵金属含量的直接测定进行了研究,通过碱熔融法对金属载体催化转化器不同溶解条件及碲共沉淀条件进行试验比较,用ICP-MS作为最后分析测定,选出最佳的试验条件。1 实验部分1.1 仪器及工作条件美国安捷伦科技有限公司生产的电感耦合等离子体质谱仪ICP-MS 7500a型;马弗炉;美国Millipore公司生产的Milli-Q Academic超纯水系统;莱伯泰科EH45A plus型电加热板。ICP-MS7500a工作条件:入射功率1.38kw,工作气体为氩气(体积分数不小于99.9996%),冷却气流量15L/min,载气流量1.2L/min,辅助气流量0.0L/min,采样深度7.6,雾化室温度2℃,蠕动泵转速0.1rps,质谱扫描方式跳峰。1.2 试剂材料单元素标准储备溶液:Pt、Pd、Rh、In、Tl均为1000mg/L(国家有色金属及电子材料分析测试中心提供)。氯化亚锡溶液(1mol/L):22.56g氯化亚锡溶于25mL盐酸,用水稀释到100mL。碲溶液(5g/L):0.625g二氧化碲溶于20mL 盐酸,用水稀释到100mL。盐酸、硝酸为优级纯,氢氟酸、过氧化钠为分析纯,实验用水为去超纯水。1.3 实验方法1.3.1分析样品制备将金属载体(带有催化器外壳)放入烧杯中,加入盐酸与水体积比为1:1的盐酸,多次添加盐酸直至催化器内芯体全部溶解,然后进行负压抽滤溶解有样品的酸液,将滤饼和残渣收集在蒸发皿至于加热板上蒸干驱赶盐酸,再放入马弗炉中灰化。灰化样品放入研磨机中进行混合研磨,研磨后样品进行过筛(孔径75μm),研磨后样品在200℃烘箱内烘约2h后置于干燥器中冷却备用。1.3.2样品碱熔融处理称取一定量过氧化钠(是样品称样量的5倍~20倍)均匀铺在刚玉坩埚底部,称取0.5g(精确至0.0001g)样品平铺在其上,将样品与过氧化钠混合,然后盖上坩埚盖放入马弗炉中,从室温升温至设定温度600℃-900℃并在设定温度保持10min-40min,碱熔融结束后,待马弗炉温度冷却至室温后取出坩埚。再将坩埚放入1000mL大烧杯中,倒入200mL盐酸与水体积比为1:3的盐酸,在加热板上加热至沸腾10min,取下冷却后洗出坩埚。1.3.3碲共沉淀加入一定量盐酸调节酸度(0mL-40mL),加入10mL 碲溶液到烧杯中,再加入5mL氯化亚锡溶液,放在加热板上微沸15min,再加入10mL 碲溶液和5mL 氯化亚锡溶液,煮沸一定时间(15min-60min)后,加入2mL氯化亚锡溶液看是否还有沉淀,如不再产生沉淀放置冷却,冷却后共沉淀颗粒变大。将共沉淀用溶剂过滤器过滤,用盐酸与水体积比为1:5盐酸洗涤沉淀及滤膜至无色。将沉淀和滤膜一起转入原烧杯中,加入王水10mL,加热溶解沉淀,冷却后将滤膜取出,将溶液倒入塑料瓶中定量待测。1.3.4空白试验和验证试验 随同样品作空白试验和同类型标准物质的验证试验。1.3.5测定方法依次测定标准溶液后,根据标准溶液系列浓度绘制成标准曲线。分别测定空白溶液和样品溶液,根据校准曲线测定样品中各元素的浓度,然后计算出样品中相应各元素的含量。1.4 正交试验设计以上进行的是单因素试验,得出的结果只是单个因素对回收率的影响,不能确定多个因素同时作用下哪个因素对回收率的影响最大。在上述单因素试验的基础上,选取过氧化钠加入量、熔融温度、加入盐酸体积、碲沉淀时间这四个因素进行正交试验。设计正交实验L9(34)见表1。表1 正交试验因素水平表Table 1 Factors

  • 【原创大赛】运动粘度检测最佳条件研究

    【原创大赛】运动粘度检测最佳条件研究

    [align=center][b]运动粘度检测最佳条件研究[/b][/align][align=center]西安国联质量检测技术股份有限公司[/align][align=center]综合部:冯莉[/align]本试验主要是使用品氏粘度计在不同条件下对硅油的运动粘度进行检测,通过多组结果对比以确定出最佳的检测条件。粘度是流体物质的一种物理特性,它反映流体受外力作用时分子间呈现的内部摩擦力,物质的粘度与其化学成分密切相关。在工业生产和科学研究中,常通过测量粘度来监控物质的成分或品质。粘度检测一般分为运动粘度、动力粘度、条件粘度,运动粘度是在温度t℃时,运动粘度用符号γ表示,在国际单位制中,运动粘度单位为斯,即每秒平方米(m[sup]2[/sup]/s),实际测定中常用厘斯(cst)表示厘斯的单位为每秒平方毫米(即 1 cst=1 mm[sup]2[/sup]/s)。一般:工业上动力粘度单位用泊来表示;条件粘度指采用不同的特定粘度计所测得的以条件单位表示的粘度。根据产品性能,本研究主要使用品氏粘度计对硅油的运动粘度进行检测。[b][b]1 实验仪器及试剂1.1 实验仪器见表1。表1 主要实验仪器[/b][/b][table][tr][td][align=center]仪器名称[/align][/td][td][align=center]型号[/align][/td][td][align=center]生产厂家[/align][/td][/tr][tr][td][align=center]品氏粘度计[/align][/td][td][align=center]1833[/align][/td][td][align=center]上海隆拓仪器设备有限公司[/align][/td][/tr][tr][td][align=center]玻璃恒温水槽[/align][/td][td][align=center]76-1B[/align][/td][td][align=center]无锡沃信仪器有限公司[/align][/td][/tr][tr][td][align=center]电子秒表[/align][/td][td][align=center]12003-2[/align][/td][td][align=center]上海远略机电设备有限公司[/align][/td][/tr][tr][td][align=center]二等标准精密温度计[/align][/td][td][align=center]WLB-21[/align][/td][td][align=center]常州盛之源仪器仪表有限公司[/align][/td][/tr][tr][td][align=center]恒温烘箱[/align][/td][td][align=center]101-1AB[/align][/td][td][align=center]天津市泰斯特仪器有限公司[/align][/td][/tr][tr][td][align=center]其他[/align][/td][td][align=center]—[/align][/td][td][align=center]—[/align][/td][/tr][/table][b]1.2 实验试剂[/b]见表2。表2 主要实验试剂[table][tr][td][align=center]试剂名称[/align][/td][td][align=center]纯度[/align][/td][td][align=center]生产厂家[/align][/td][/tr][tr][td][align=center]超纯水[/align][/td][td][align=center]一级[/align][/td][td][align=center]自制[/align][/td][/tr][tr][td][align=center]乙醇[/align][/td][td][align=center]AR[/align][/td][td][align=center]国药集团化学试剂有限公司[/align][/td][/tr][tr][td][align=center]硅油[/align][/td][td][align=center]AR[/align][/td][td][align=center]自制[/align][/td][/tr][tr][td][align=center]其他[/align][/td][td][align=center]—[/align][/td][td][align=center]—[/align][/td][/tr][/table][b][b]2 实验部分[/b]2.1 准备工作[/b]1.确认恒温水浴是否充足;2.确认计量仪器有效性,是否符合检测要求;3.选择合适的粘度计:根据表3选取合适的粘度计;4.清洗粘度计,100℃烘干备用。表3 品氏粘度计的规格[table][tr][td][align=center]编号[/align][/td][td][align=center]毛细管内径/(mm)[/align][/td][td][align=center]粘度范围/(mm[sup]2[/sup]/s)[/align][/td][/tr][tr][td][align=center]1#[/align][/td][td][align=center]0.4[/align][/td][td][align=center]0.6~0.7[/align][/td][/tr][tr][td][align=center]2#[/align][/td][td][align=center]0.6[/align][/td][td][align=center]1.7~8.5[/align][/td][/tr][tr][td][align=center]3#[/align][/td][td][align=center]0.8[/align][/td][td][align=center]5.4~27[/align][/td][/tr][tr][td][align=center]4#[/align][/td][td][align=center]1.0[/align][/td][td][align=center]13~65[/align][/td][/tr][tr][td][align=center]5#[/align][/td][td][align=center]1.2[/align][/td][td][align=center]28~140[/align][/td][/tr][tr][td][align=center]6#[/align][/td][td][align=center]1.5[/align][/td][td][align=center]70~305[/align][/td][/tr][tr][td][align=center]7#[/align][/td][td][align=center]2.0[/align][/td][td][align=center]200~1000[/align][/td][/tr][tr][td][align=center]8#[/align][/td][td][align=center]2.5[/align][/td][td][align=center]520~2600[/align][/td][/tr][tr][td][align=center]9#[/align][/td][td][align=center]3.0[/align][/td][td][align=center]1060~5300[/align][/td][/tr][tr][td][align=center]10#[/align][/td][td][align=center]3.5[/align][/td][td][align=center]1980~9900[/align][/td][/tr][tr][td][align=center]11#[/align][/td][td][align=center]4.0[/align][/td][td][align=center]3400~17000[/align][/td][/tr][tr][td][align=center]12#[/align][/td][td][align=center]5.0[/align][/td][td][align=center]5000~20000[/align][/td][/tr][tr][td][align=center]13#[/align][/td][td][align=center]6.0[/align][/td][td][align=center]8000~30000[/align][/td][/tr][/table][b]2.2 实验步骤[/b]品氏粘度计装置如图2.1所示。[align=center][img=,476,605]http://ng1.17img.cn/bbsfiles/images/2017/09/201709111133_01_2904018_3.png[/img][/align][align=center]图2.1 品氏粘度计装置图[/align][b]2.2.1 温度对运动粘度的影响[/b]用移液管取一定量待测液放入粘度计(1.2 mm)中,然后把粘度计垂直固定在恒温(38.0 ℃、38.5 ℃、39.0 ℃、39.5 ℃、40.0 ℃、40.5 ℃、41.0 ℃、41.5 ℃、42. ℃)槽中,恒温15 min。用吸耳球由毛细管将溶液吸至中心线(无气泡),移去吸耳球,让溶液在自身重力的作用下自由流出。当液面到达标线a时,按秒表开始计时,当液面降至标线b时,按停秒表,测得在标线a、b之间的溶液流经毛细管的时间。反复操作三次,三次数据间相差应不大于1 s,取平均值,即为流出时间t。表3 温度对运动粘度的影响[table][tr][td][align=center]测量温度/℃[/align][/td][td][align=center]粘度计系数[/align][/td][td][align=center]流动时间/S[/align][/td][td][align=center]粘度/(mm[sup]2[/sup]/s)[/align][/td][td][align=center]相对误差/%[/align][/td][/tr][tr][td][align=center]38.0[/align][/td][td][align=center]0.1568[/align][/td][td][align=center]268.3[/align][/td][td][align=center]42.069[/align][/td][td][align=center]+5.13[/align][/td][/tr][tr][td][align=center]38.5[/align][/td][td][align=center]0.1568[/align][/td][td][align=center]263.8[/align][/td][td][align=center]41.364[/align][/td][td][align=center]+3.37[/align][/td][/tr][tr][td][align=center]39.0[/align][/td][td][align=center]0.1568[/align][/td][td][align=center]261.3[/align][/td][td][align=center]40.972[/align][/td][td][align=center]+2.39[/align][/td][/tr][tr][td][align=center]39.5[/align][/td][td][align=center]0.1568[/align][/td][td][align=center]258.4[/align][/td][td][align=center]40.517[/align][/td][td][align=center]+1.25[/align][/td][/tr][tr][td][align=center]40.0[/align][/td][td][align=center]0.1568[/align][/td][td][align=center]255.2[/align][/td][td][align=center]40.015[/align][/td][td][align=center]0.00[/align][/td][/tr][tr][td][align=center]40.5[/align][/td][td][align=center]0.1568[/align][/td][td][align=center]252.6[/align][/td][td][align=center]39.608[/align][/td][td][align=center]-1.02[/align][/td][/tr][tr][td][align=center]41.0[/align][/td][td][align=center]0.1568[/align][/td][td][align=center]249.6[/align][/td][td][align=center]39.137[/align][/td][td][align=center]-2.19[/align][/td][/tr][tr][td][align=center]41.5[/align][/td][td][align=center]0.1568[/align][/td][td][align=center]246.0[/align][/td][td][align=center]38.573[/align][/td][td][align=center]-3.60[/align][/td][/tr][tr][td][align=center]42.0[/align][/td][td][align=center]0.1568[/align][/td][td][align=center]242.4[/align][/td][td][align=center]38.008[/align][/td][td][align=center]-5.02[/align][/td][/tr][/table]由表3可知当实验温度发生变化时测定结果也随之发生变化,温度低于40 ℃时随温度的升高,粘度误差正向逐渐减小;当温度超过40 ℃之后,随温度的升高,粘度误差负向逐渐增加。当温度为40 ℃时,误差值为0,即在使用内径为1.2 mm的品氏粘度计时,40 ℃测试结果最准确。[b]2.2.2 粘度计常数对运动粘度的影响[/b]选取不同内径(1.0 mm、1.2 mm、1.5 mm、2.0 mm、2.5 mm、3.0 mm、3.5 mm)的品氏粘度计,用移液管取一定量待测液放入粘度计中,然后把粘度计垂直固定在恒温(40.0 ℃)槽中,恒温15 min。用吸耳球由毛细管将溶液吸至中心线(无气泡),移去吸耳球,让溶液在自身重力的作用下自由流出。当液面到达标线a时,按秒表开始计时,当液面降至标线b时,按停秒表,测得在标线a、b之间的溶液流经毛细管的时间。反复操作三次,三次数据间相差应不大于1 s,取平均值,即为流出时间t。表4 粘度计内径变化时粘度值的变化[table][tr][td][align=center]测量温度/℃[/align][/td][td][align=center]内径/mm[/align][/td][td][align=center]粘度计系数[/align][/td][td][align=center]流动时间/s[/align][/td][td][align=center]粘度/(mm[sup]2[/sup]/s)[/align][/td][td][align=center]结果误差/%[/align][/td][/tr][tr][td][align=center]40[/align][/td][td][align=center]0.8[/align][/td][td][align=center]0.02~0.04[/align][/td][td]100~2000[/td][td][align=center]39.983[/align][/td][td][align=center]-0.08[/align][/td][/tr][tr][td][align=center]40[/align][/td][td][align=center]1.0[/align][/td][td][align=center]0.05~0.08[/align][/td][td][align=center]500~800[/align][/td][td][align=center]40.007[/align][/td][td][align=center]-0.02[/align][/td][/tr][tr][td][align=center]40[/align][/td][td][align=center]1.2[/align][/td][td][align=center]0.10~0.15[/align][/td][td][align=center]200~400[/align][/td][td][align=center]40.015[/align][/td][td][align=center]0.00[/align][/td][/tr][tr][td][align=center]40[/align][/td][td][align=center]1.5[/align][/td][td][align=center]0.25~0.50[/align][/td][td][align=center]80~160[/align][/td][td][align=center]40.051[/align][/td][td][align=center]+0.09[/align][/td][/tr][tr][td][align=center]40[/align][/td][td][align=center]2.0[/align][/td][td][align=center]0.80~1.2[/align][/td][td][align=center]30~50[/align][/td][td][align=center]40.230[/align][/td][td][align=center]+0.54[/align][/td][/tr][tr][td][align=center]40[/align][/td][td][align=center]2.5[/align][/td][td][align=center]1.9~3.5[/align][/td][td][align=center]10~25[/align][/td][td][align=center]40.348[/align][/td][td][align=center]+0.83[/align][/td][/tr][tr][td][align=center]40[/align][/td][td][align=center]3.0[/align][/td][td][align=center]4.0~5.0[/align][/td][td][align=center]8~10[/align][/td][td][align=center]40.434[/align][/td][td][align=center]+1.05[/align][/td][/tr][tr][td][align=center]40[/align][/td][td][align=center]3.5[/align][/td][td][align=center]7.0~10.0[/align][/td][td][align=center]4~6[/align][/td][td][align=center]40.752[/align][/td][td][align=center]+1.84[/align][/td][/tr][/table]试验结果表明,粘度计内径在1.2 mm时,流动时间在200~400 s之间,符合试验方法要求,并用时较短,粘度测定结果为40.015 mm[sup]2[/sup]/s,此时可作为运动粘度的准确测定结果。粘度计内径在1.0 mm时,测定结果为40.007 mm[sup]2[/sup]/s,与使用1.2 mm内径粘度计的结果基本一致,准确性较高,但用时较长,粘度计内径在1.5 mm时,其流动时间大约在80~160 s,测定结果数值略高于准确值,而粘度计口径在2.0 mm以上时,流动间缩短,测定结果随流动时间的缩短迅速增大,远远偏离准确值。当使用粘度计内经偏大时,样品流动时间过短,测定结果偏大,造成了试样在毛细管中高速流动,液体内部产生紊流,从而增大了液体内部流动的摩擦阻力,使试验结果偏大。同时增加计时的相对误差。[b]2.2.3 粘度计位置对运动粘度的影响[/b]用移液管取一定量待测液放入粘度计(1.2 mm)中,改变品氏粘度计位置(垂直、倾斜5°),在恒温(40.0 ℃)槽中,恒温15 min。用吸耳球由毛细管将溶液吸至中心线(无气泡),移去吸耳球,让溶液在自身重力的作用下自由流出。当液面到达标线a时,按秒表开始计时,当液面降至标线b时,按停秒表,测得在标线a、b之间的溶液流经毛细管的时间。反复操作三次,三次数据间相差应不大于1 s,取平均值,即为流出时间t。由于毛细管的倾斜使测定结果产生误差,测定时必须沿铅垂线从两个相互垂直的方向检查毛细管的垂直状况。[b]2.2.4 气泡对运动粘度的影响[/b]用移液管取一定量待测液放入粘度计(1.2 mm)中,然后把粘度计垂直固定在恒温(40.0 ℃)槽中,恒温15 min。用吸耳球由毛细管将溶液吸至中心线(有气泡存在、无气泡存在),移去吸耳球,让溶液在自身重力的作用下自由流出。当液面到达标线a时,按秒表开始计时,当液面降至标线b时,按停秒表,测得在标线a、b之间的溶液流经毛细管的时间。反复操作三次,三次数据间相差应不大于1 s,取平均值,即为流出时间t。由于试样中存在的气泡使测定结果产生误差,故测定时必须保证所测试样品中无气泡存在。

  • 瞬态高速加热条件下航天复合材料热膨胀系数测试技术初步研究

    瞬态高速加热条件下航天复合材料热膨胀系数测试技术初步研究

    [size=16px][color=#cc0000][b]摘要:为准确测量航天复合材料快速加热过程中的热膨胀系数,本文介绍了热膨胀系数测试过程中加热速率、加热形式和位移测量形式对被测样品内外温度和热膨胀测量方向上温度梯度的影响,以及这些温度梯度与热膨胀系数测试结果之间的变化规律。在这些初步研究基础上,本文提出了高速加热过程中热膨胀系数测量装置的初步设计方案,即采用聚光辐射或电磁感应技术进行非接触快速高温加热,采用激光扫描或光学投影技术进行非接触应变测量。[/b][/color][/size][size=16px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [b][size=18px][color=#cc0000]1. 问题的提出[/color][/size][/b][size=16px] 比较典型的航天复合材料如碳碳和石墨复合材料、各种酚醛树脂基复合材料等,其热膨胀系数普遍还是采用加热速率较慢的各种热膨胀仪进行测试,而这种常规测试过程中的较低加热速率与航天复合材料的实际使用环境下的快速升温速率严重不符,低速加热时的热膨胀系数测试结果几乎对复合材料结构的热设计毫无用途,从而造成现有的热结构设计太过保守。为此,本文针对快速加热条件下的航天复合材料热膨胀系数测试,开展初步的测试技术研究,通过典型材料重点了解快速加热条件下的以下两方面的问题:[/size][size=16px] (1)快速加热条件下,样品或材料的内外内外温差对热膨胀系数的影响。[/size][size=16px] (2)快速加热条件下,样品或材料热膨胀测试方向上的温度均匀性影响。[/size][size=18px][color=#cc0000][b]2. 样品内外温差影响[/b][/color][/size][size=16px] 对于航天复合材料而言,由于其结构和热物理性能的不同,特别是热导率有着数量级上的差别,由此会在实际应用和取样测试过程中有时会存在严重的内外温差。热膨胀测试中,加热速率的不同会对测量结果产生明显的影响。[/size][size=16px] 为了直观了解这种内外温差对热膨胀系数测量的影响,我们选择了具有中等热导率(常温时约14W/mK)的不锈钢材料进行取样测试,测量温度范围为室温30~700℃,测试得到的平均热膨胀系数结果如图1所示。[/size][align=center][size=16px][color=#cc0000][b][img=不锈钢样品不同加速速率下的平均线性热膨胀系数测试结果,660,482]https://ng1.17img.cn/bbsfiles/images/2023/07/202307111012258135_6561_3221506_3.jpg!w690x504.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b]图1 不同加速速率下的不锈钢样品热膨胀系数测试结果[/b][/color][/size][/align][size=16px] 从图1所示的测量结果可以看出,在较低加热速率(5℃/min)下的热膨胀系数测试结果相差不大,只是随加热速率的升高热膨胀系数整体有很小的降低。而在加热速率超过10℃/min时,测试结果发生明显的偏差,热膨胀系数明显的偏低,特别是在低温范围内这种现象更为明显。[/size][size=16px] 由此可见,对于热导率较低的材料,较快的加热速率会在样品内外产生明显的温差,从而对热膨胀系数产生严重的影响,使得热膨胀系数测试结果严重偏低。具体应用到航天复合材料中,由于碳碳和石墨复合材料的热导率普遍较高,相关的测试研究表明石墨材料在1600℃温度以下的范围内测试时,加热速率几乎没有影响,对于碳碳复合材料,这个不受加热速率影响的温度范围可以扩展到1700℃。[/size][size=16px] 对于热导率普遍较低的酚醛树脂复合材料,其热膨胀对加热速率则非常敏感,且膨胀过程非常复杂。有测试观察到当碳酚醛或二氧化硅酚醛层压材料被缓慢加热时,在190℃左右发生一些快速膨胀,然后材料开始收缩,从膨胀到收缩的变化对应于热降解的开始。而在高加热速率下,热膨胀系数的急剧增加发生在与低速率下开始收缩时的大致相同温度区域。据信,在高加热速率下,树脂开始软化,然后发生气体的快速释放。这些气体不容易逸出,并在材料中产生压力,导致快速膨胀和裂缝的张开。除了热膨胀之外,因材料的结构受到影响,其他性能也会受到加热速率的影响。[/size][size=18px][color=#cc0000][b]3. 样品表面温度均匀性影响[/b][/color][/size][size=16px] 在快速加热形式的热膨胀测试设备中,往往还存在以下两方面的因素会给样品表面温度的均匀性带来影响,由此会给热膨胀系数测量带来误差:[/size][size=16px] (1)加热方式:热膨胀测试中的快速加热一般会采用聚光辐射加热、感应加热和直接通电三种形式,其中辐射加热适用于非导电材料样品,而感应加热和通电加热则适用于导电类材料样品。但不论采用哪一种加热方式,发光灯管和感应线圈都会是有限长度,从而使得样品轴向方向上的温度并不是均匀分布。特别是直接通电加热方式中的电极与被测样品直接接触,样品上的热量会通过电极散失而造成较严重的样品温度不均匀性。[/size][size=16px] (2)变形测量方式:热膨胀系数的测量一般会采用顶杆法和光学投影法,在顶杆法测试中,与样品接触的顶杆同样会对样品起到散热作用而影响样品的温度均匀性,而非接触形式的光学投影法则不存在样品散热问题,对样品的温度均匀性影响较小。[/size][size=16px] 为了研究样品表面温度不均匀性对快速加热过程中热膨胀系数测量的影响,有研究人员采用了感应加热式顶杆法热膨胀仪,如图2所示,对42CrMo超高强度钢进行了不同升温速率下的测试。样品被夹在两根熔融石英顶杆之间,其中一根顶杆固定,另一根连接到一个差动变压器(LVDT)进行样品的变形量测量。样品被放置在感应线圈的中心可实现高速加热,样品上焊接了两只S型热电偶,中心位置的热电偶用于控制样品温度,边缘位置热电偶用来测量温度均匀性。[/size][align=center][size=16px][color=#cc0000][b][img=02.感应加热式顶杆法热膨胀仪结构,500,344]https://ng1.17img.cn/bbsfiles/images/2023/07/202307111014018059_9517_3221506_3.jpg!w690x476.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b]图2 感应加热式顶杆法热膨胀仪结构[/b][/color][/size][/align][size=16px] 如图3所示为样品和感应线圈结构和尺寸示意图,样品为壁厚为0.5mm的薄壁圆柱,样品长度为10mm,熔融石英棒顶杆的外径和内径分别为2mm和1mm。[/size][align=center][size=16px][color=#cc0000][b][img=03.快速加热热膨胀测试中使用的样品和感应线圈几何形状,660,222]https://ng1.17img.cn/bbsfiles/images/2023/07/202307111014201830_7644_3221506_3.jpg!w690x233.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b]图3 快速加热线膨胀测试中使用的样品和感应线圈几何形状[/b][/color][/size][/align][size=16px] 对上述样品,在1℃/s~1200℃/s范围内一系列不同的速率下对样品进行了加热,不同加热速率下样品中心与边缘之间的温度差测试结果如图4所示,相应的应变测试结果如图5所示。[/size][align=center][size=16px][color=#cc0000][b][img=04.不同加热速率下的样品中部和边缘的实测温差,550,443]https://ng1.17img.cn/bbsfiles/images/2023/07/202307111014398184_2549_3221506_3.jpg!w690x557.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b]图4 不同加热速率下样品中部和边缘的实测温差[/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b][img=05.不同加热速率下的样品应变量-温度测试结果,550,443]https://ng1.17img.cn/bbsfiles/images/2023/07/202307111014595694_4159_3221506_3.jpg!w690x556.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b]图5 不同加热速率下样品应变量-温度测试结果[/b][/color][/size][/align][size=16px] 从图4所示的温差曲线可以看出,对于低于10℃/s的加热速率,样品中心和边缘之间的温差不会超过10℃。对于所有其他加热速率,温差随着中心温度快速增加,并在达到某一温度时开始变缓。从该温度开始,中心与边缘之间的温差随着样品中间温度变化几乎呈线性增加。对于最高加热速率1200℃/s,温差达到最大值160℃,边缘温度相当于中心温度的大约70%。[/size][size=16px] 如图5所示,比较不同加热速率下测得的应变-温度曲线,可以观察到加热速率越高,测得的应变越低,这也与图1所示的规律一致,但这也部分可能与加热速率增加时膨胀方向上的温度梯度的增加有关。从图5可以看出,最小和最大升温速率下应变测量值的相对偏差约为20 %。[/size][size=16px] 显然,在非常高的加热速率下使用变形信号对发生相变的动力学过程的研究将导致严重的误差,因为应变信号中的误差将通过不确定的传播影响描述相变动力学的所需参数的计算,同时,还取决于所应用的动力学模型的数学性质,最终误差甚至可能大于这里测量的应变的20%误差。[/size][size=16px] 另外,样品轴向上的温度梯度是由于样品和棒之间的接触带来的热损失,这导致靠近样品边缘的温度降低。在低加热速率下,从中心到边缘的热传导几乎使整个样品的温度相等,导致小的温度梯度,但随着加热速率的增加,由于热传导使得样品中心的温度上升较快,这导致轴向温度差的增加。[/size][size=16px] 造成温度梯度的另一个因素是样品与线圈磁场的相互作用,感应热在整个样品长度上并不是均匀和恒定的,对于膨胀计的感应线圈的规则螺旋状几何形状,沿着轴向方向上存在强烈的感应温度梯度。[/size][size=18px][color=#cc0000][b]4. 总结[/b][/color][/size][size=16px] 通过上述高加热速率条件下进行的金属材料热膨胀系数测试,可以明显看到加热速率对样品内外和样品轴向温度差的严重影响,因此在今后的各种高加热速率条件下的热膨胀测试,需要特别注意以下几个内容:[/size][size=16px] (1)测试前,首先要确定具体测试的是哪一种热膨胀系数,稳态热膨胀系数测试则选用低加热速率,瞬态热膨胀系数测试则根据实际应用场景选择相应的高加热速率,这在材料的相变过程研究中非常重要。[/size][size=16px] (2)对于稳态热膨胀的测试,需要在样品内外温度一致后进行测量,这是就需要尽可能采用尽可能低的加热速率才能保证相应的测量准确性,甚至可以采用台阶式温升方式,使样品在不同温度下恒定一段时间后再进行变形测量。[/size][size=16px] (3)由于材料固有的导热性能,对于符合实际变温速率应用场景的高加热速率下的热膨胀测试,样品内外的温差更能符合材料的实际温度环境,但在热膨胀系数的具体测试中需要尽可能避免样品轴向温度差带来的测量误差。具体采取的措施是分别采用非接触形式的加热技术和位移测量技术,使被测样品不与其他物体接触或最小接触,如采用均温场更长的聚光辐射加热装置或能提供更均匀温度场的异型感应线圈对样品进行非接触式快速加热,如采用激光线扫描或投影法光学变形测试技术非接触测量样品的长度。[/size][size=16px] 总之,通过对高速加热过程中热膨胀系数测试技术的初步研究,确定了非接触快速加热和非接触位移测量的总体技术方案,为后续航天复合材料高速热膨胀系数测试研究工作的开展奠定了基础。[/size][size=16px][color=#cc0000][b][/b][/color][/size][align=center][size=16px][b][color=#cc0000]~~~~~~~~~~~~~~~~~[/color][/b][/size][/align]

  • 计量发展研究现状及研究水平——测量对象复杂化、测量条件极端化

    [font=system-ui, -apple-system, BlinkMacSystemFont, &][size=17px][color=rgba(0, 0, 0, 0.9)]当前部分测量问题出现测量对象复杂化,测量条件极端化的趋势有时候需要测量的是整个机器或装置,参数多样且定义复杂;[/color][/size][/font][font=system-ui, -apple-system, BlinkMacSystemFont, &][size=17px][color=rgba(0, 0, 0, 0.9)]有时候需要在高温、高压、高速、高危场合等环境中进行测量,使得测量条件极端化。[/color][/size][/font]

  • 超声条件下季铵盐3-十二烷氧基-2-十八酰氧基丙基三甲基氯化铵的合成研究

    【序号】:2【作者】: 郭乃妮郑敏燕杨连利【题名】:超声条件下季铵盐3-十二烷氧基-2-十八酰氧基丙基三甲基氯化铵的合成研究【期刊】:皮革与化工. 【年、卷、期、起止页码】:2017,34(06)【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2018&filename=PGHG201706003&uniplatform=NZKPT&v=FWkDKY1K2RpbTCMi7HzpBtcfxqQrFRqm95YR3lJywpqICHhucEksIDY_X_QTFQWc

  • 【原创大赛】农产品中氨基甲酸酯类农药检测的液相色谱条件优化研究

    农产品中氨基甲酸酯类农药检测的液相色谱条件优化研究曾 艳摘要:本文在行业标准《NY/761-2008蔬菜和水果中有机磷、有机氯、拟除虫菊酯和氨基甲酸酯类农药多残留的测定》用高效液相色谱法测定农产品中氨基甲酸酯类农药的基础上对色谱条件进行了优化研究。通过更换流动相及比例,建立了更高效的检测10种氨基甲酸酯类农药条件。研究表明,优化色谱条件后,色谱图的基线更平稳,组分保留时间平均缩短3.54min;在0.05-0.5mg/L范围内线性良好,相关系数为1.0(除涕灭威亚砜为0.9975外),检出限为0.001-0.007 mg/Kg;组分响应大大提高,峰高是之前的1.65-4.14倍,峰面积是1.62-3.97倍,连续7次进样的保留时间、峰高、峰面积相对标准偏差比优化前均有降低。优化的检测方法,快速简便,灵敏度高,准确可靠,有效的提高了工作效率,能满足农产品中氨基甲酸酯类农药的液相检测要求。关键词:甲醇,乙腈,高效液相色谱,氨基甲酸酯类农药Optimization of the method of HPLC todeterminated Carbamate pesticide in agricultural products residuesZENG Yan Abstract:This research was based onthe《NY/T 761-2008》byHPLC method to determination of carbamate pesticides in agriculturalproducts. This study was developed for the optimized chromatographic conditionsby changing the mobile phases and proportions, established a more efficientdetection of 10 kinds of carbamate pesticides. Study shows that the optimizedchromatographic conditions, the chromatograms baseline more smoothly, componentaverage save the retention times of 3.54 mins. The proposed methods showed agood linearity in the range of 0.05~0.5mg/Kg, with the linear correlationcoefficients of 1.0 (except aldicarb sulfoxid0.9975 ) and limits of detection of 0.001-0.007 mg/Kg . Components of responses are greatlyincreased: the peak heights are 1.65-4.14 times that of before and the peakareas are 1.62-3.97 times, 7 consecutive samples of retention times, peakheights and peak areas RSDs were lower than before optimization. The method is rapid, high sensitivity,accurate, reliable and effective and can be used for determination carbamate pesticidesin agricultural products.Keywords: Alcohol, Acetonitrile,HPLC, Carbamate pesticide,相对于有机磷杀虫剂, 氨基甲酸酯类农药以其残效小、选择性强、对人畜毒性较低等特点而被国内外广泛应用于病虫害的防治, 但不合理的使用仍对生态环境和农产品产生了一定的影响,随着国家对食品安全的重视不断提升,以及《农产品质量安全法》的颁布,果蔬中的氨基甲酸酯类农药残留检测至关重要。目前,资料报道的蔬菜、水果中氨基甲酸酯类农药残留检测方法主要有气相色谱法(GC)、气相色谱-质谱法(GC-MS)、 高效液相色谱法(HPLC)和液相色谱-质谱法(LC-MS)等。现行行业标准《NY/T761-2008蔬菜和水果中有机磷、有机氯、拟除虫菊酯和氨基甲酸酯类农药多残留的测定》即是用的高效液相色谱法(HPLC)。利用高效液相色谱检测果蔬、食用菌等农产品样本的原则是要尽可能在较短的时间内使混合物完全的分离和定量。对于多农残的痕量分析还要求有较高的灵敏度,因此最佳的色谱条件对于待测组分进行定性和定量分析尤为必要。本试验采用高效液相色谱仪对蔬菜中10种氨基甲酸酯类进行检测,通过对色谱条件进行优化研究,对检测结果进行比较,得到了比前报道和行业标准更为准确高效、灵敏度更高的检测方法,提高了农产品中氨基甲酸酯类农药的检测效率。1 材料和方法1.1供试材料乙腈、甲醇为色谱级(美国天地公司),柱后衍生试剂为pickering公司提供(包含邻苯二甲醛,OPA,巯基乙醇、OPA稀释剂和氢氧化钠溶液),水为超纯水,10种农药标准品(涕灭威亚砜、涕灭威砜、灭多威、三羟基克百威、涕灭威、速灭威、克百威、甲萘威、异丙威、仲丁威)购自农业部环境保护科研监测所(100μg/mL),纯度均大于99%,以乙腈稀释成合适浓度。供试样本为包含蔬菜、水果等农产品为试验样本,具体有菜豆,茄子,莴苣,黄瓜,结球甘蓝,油桃,马铃薯,黄果柑,随机选择。1.2 仪器 Agilent 1260高效液相色谱仪(四元泵),配荧光检测器(FLD),柱后衍生系统为美国科学系统公司的斯威特柱后衍生系统 双通道 PCR-2型,色谱柱为美国科学系统公司的Alltima C18 5μm4.6×250mm 色谱柱。1.3 实验方法1.3.1 标准液的配制将以上10种氨基甲酸酯类农药配制成0.005、0.05、0.1、0.2、0.5μg /mL5个浓度梯度的混合标准溶液,为了消除基质响应,在配制中加入基质溶液进行配制。1.3.2样品前处理样品前处理按《NY/T 761-2008蔬菜和水果中有机磷、有机氯、拟除虫菊酯和氨基甲酸酯类农药多残留的测定法》中进行操作,将样本中加入0.05、0.1、0.2、0.5mg/Kg的混合标液,每个样本7个平行。1.3.3分离条件的选择有报道用乙腈-水、乙腈-乙酸溶液、甲醇-乙酸溶液和甲醇-水作为流动相进行氨基甲酸酯类的液相检测,结果显示:乙腈-乙酸铵溶液和甲醇-乙酸铵溶液体系对10种氨基农药的分离效果和离子化程度都不如乙腈-甲酸溶液。因此,本试验在前人的基础上提高了流动相中有机相的比列,考察了只用乙腈-水和甲醇-水作为流动相,同时调整了流动相的流速。将配制好的标准品,按从低到高的浓度上机检测,检测条件为:FLD激发波长λex 330nm,发射波长λem 465nm,柱温为42℃,进样量为20uL,柱后衍生系统NaOH溶液和OPA的流速为0.3mL/min,水解温度为100℃,衍生温度为室温。优化后的色谱洗脱程序如表1所示。表 01 优化的梯度洗脱程序Table1 Optimizationof the gradient elution conditions

  • 【原创大赛】实验研究卤素干燥法测定水煤浆浓度的最佳条件

    摘要 通过实验确定卤素干燥法测定水煤浆浓度时的最佳称样量、找出测定结果与干燥温度之间的关系,同时发现干燥温度设定在较高温度下测定结果明显低于干燥箱干燥法结果,进而将干燥温度设定在低温区进行实验,最终确定高低温结合的程序升温法的最佳测定条件。关键词 卤素干燥法 水煤浆 浓度 测定条件 水煤浆是由煤、水和少量添加剂经物理加工过程制成的具有一定细度、能流动的浆体,是一种经济的、洁净的、可代替石油和天然气的液体燃料和化工原料。我公司三十万吨合成氨装置以水煤浆为气化用原料制气生产合成氨和纯度99.5%以上氢气。水煤浆浓度是水煤浆重要的质量指标之一,表征水煤浆中固相含量的多少,是一定量的水煤浆试样去除全水份后的质量占试样原有质量的百分数。水煤浆浓度大小直接影响到水煤浆的流变性、稳定性、发热量和着火性能等技术指标。在国家标准GB/T18856.2-2002《水煤浆质量试验方法第2部分:水煤浆浓度测定方法》中推荐可采用干燥箱干燥法和红外干燥法任一方法测定水煤浆浓度。我们实验室采用瑞士梅特勒-托利多仪器有限公司生产的HR83水份测定仪测定水煤浆浓度,该仪器根据热重原理,自动化程度高,升温速度快及可使用高温,大大缩短了分析时间。但如果对温度、关机模式、干燥程序等条件设置不当则对测定准确性和分析时间长短有重大影响。本文通过系列实验确定卤素干燥法测定水煤浆浓度时的最佳称样量,找出测定结果与干燥温度之间的变化关系,并发现干燥温度设定在较高温度下的测定结果明显低于干燥箱干燥法,进而将干燥温度设定在低温区进行实验,最终确定了高低温结合的程序升温法的最佳测定条件。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制