当前位置: 仪器信息网 > 行业主题 > >

调制酒

仪器信息网调制酒专题为您整合调制酒相关的最新文章,在调制酒专题,您不仅可以免费浏览调制酒的资讯, 同时您还可以浏览调制酒的相关资料、解决方案,参与社区调制酒话题讨论。

调制酒相关的资讯

  • 纯相位空间光调制器(SLM)零级光的产生及消除方法
    引言:空间光调制器(一般指相位型SLM)可以对光的振幅、相位、偏振态等进行调制,在光学研究领域拥有广泛和悠久的历史。目前相位型空间光调制器在全息光学,全息光镊,激光并行加工,自适应光学,双光子/三光子/多光子显微成像,散射或浑浊介质中的成像,脉冲整形,光学加密,量子计算,光通信,湍流模拟等领域应用广泛。很多的科研人员在使用空间光调制器时,往往会受到零级光的困扰,零级光对研究结果也产生了非常大的影响。可以说大家苦零级光久矣。本文对液晶空间光调制器零级光的产生原因及其消除方法进行了阐述。Meadowlark Optics公司拥有40年纯相位SLM研发经验,可以提供模拟寻址的纯相位空间光调制器(1920x1200 & 1024x1024分辨率),产品工作波段可以覆盖400-1700nm,相位稳定性可以达到0.1%,帧频可以到1436Hz,损伤阈值可以达到200W/cm2以上。 关键词:空间光调制器、SLM,液晶空间光调制器,纯相位,LCOS,零级光,一级衍射空间光调制器零级光产生的原因?要想了解SLM零级光产生的原因,我们需要先了解下空间光调制器的结构构成。如下图所示,LC-SLM光学头主要由:保护玻璃,透明电极,液晶层,像素电极层(Wafer)构成。1) 保护玻璃的透过率窗口片保护玻璃的透过率在相应的工作波段(400-800nm,500-1200nm,850-1650nm)内通常在98.5-99.5%范围内,因此有少量的光被直接反射回去。2)透明电极的透过率透明电极的透过率一般都在99%以上,该部分造成的零级光基本可以忽略。3)空间光调制器填充率像素电极层(Wafer)由一个个的独立像元构成,从而SLM可以实现针对单个像元的独立调制。相邻像元之间会有微小的缝隙,缝隙部分无法加载电压,因此对应的液晶层无法加载相位,这部分未被调制的光会反射回去,产生零级光。4)入射光照射到非工作区域如果入射光照射到了非工作区域,则这部分光也会不被调制,直接反射回光路,产生零级光。5)入射光的偏振态或者偏振方向错误目前市面上所有的相位型空间光调制器(SLM)均要求线偏光入射,线偏方向与液晶的e轴平行(extraordinary axis)。如果入射光与e轴存在夹角,或者入射光的偏振态不是线偏光,则会有一部分分量的光不被调制,从而产生零级光。Meadowlark公司SLM零级光消除方法?硬件方面:1)提高空间光调制器的填充率,蕞小化缝隙影响。Meadowlark Optics公司可以提供1024x1024的纯相位空间光调制器,填充因子可以达到目前世界蕞高的97.2%,大大减小了缝隙产生的影响。2)提高空间光调制器的线性度。1920x1200的液晶空间光调制器,MLO公司在出厂前会对每一台SLM进行高精度的校准,保证每一台空间光调制器都具有高度的线性准确性,从而提高相位调制精度,达到蕞优的调制效果。软件方面:a)叠加闪耀光栅Meadowlark公司的SLM控制软件提供生成任意周期闪耀光栅的功能,该光栅可以方便的与客户的全息图进行叠加,从而把结果偏转到1级位置,客户只需要用光阑将零级光滤掉,只让一级光通过即可。b)叠加菲涅尔透镜MLO公司的调制器控制软件提供生成任意焦距菲涅尔透镜的功能,用户可以将全息图与该菲涅尔灰度图进行叠加,从而零级光与衍射光的焦平面会发生错位,零级光在衍射光的焦平面上会发散掉,从而减小零级光的影响。光路方面:1)光路中添加偏振片和半波片,提高入射光的偏振态准确性为了使用SLM作为相位调制器,入射偏振必须是线性的,并且与LC分子对齐。为了确保入射光的偏振是线性的,建议在激光光源后放置一个偏振器。为了确保偏振与LC分子对齐,建议在偏振器和SLM之间放置半波片,通过半波片的旋转可以将0级光调到最小。2)光路中添加使用0阶块(0th order block),阻挡零级光上海昊量光电设备有限公司可以提供什么样的空间光调制器?1)1920x1200纯相位空间光调制器(标准速度) 2)1024x1024纯相位空间光调制器(超高速度)关于昊量光电:昊量光电可以给客户提供SLM样品试用,以及全面的技术支持。上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、先进激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。您可以通过昊量光电的官方网站了解更多的产品信息,或直接来电咨询。
  • 【解析】空调制冷难的原因
    p style="text-align: justify text-indent: 2em "随着天气越来越热,用空调“续命”的日子又开始了,但是有人却发现空调竟然不制冷!如果空调不制冷该怎么办,最先想到的就是缺氟,加氟之后仍旧不制冷,这是什么原因呢? /pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 32, 96) "strong空调制冷难的原因/strong/span/pp style="text-align: justify text-indent: 2em "空调不制冷从空调本身来说,主要原因有以下几点: /pp style="text-align: justify text-indent: 2em "strong1、氟利昂不足/strong/pp style="text-align: justify text-indent: 2em "空调使用三四年之后都容易因为氟利昂不足而导致空调不制冷。/pp style="text-align: justify text-indent: 2em "strong2、空调内部线路问题/strong/pp style="text-align: justify text-indent: 2em "空调主机的稳定运行是空调制冷的重要保障,因此需要检查接点(空调和总电源开关的)是否打火烧蚀,接触不良,总电源开关内部是否接触良好,耐电流能力是否满足,总电源线是否过长过细等。/pp style="text-align: justify text-indent: 2em "strong3、外界温度太高/strong/pp style="text-align: justify text-indent: 2em "外界温度太高引起的空调不制冷,一般是因为用户将室外机安装在封闭的空间内,也可能是空调外机处在高温的环境下。当室外温度达到43℃时,许多空调都无法通过外机将室内的热量传至室外,因此导致空调不制冷。/pp style="text-align: justify text-indent: 2em "strong4、长期不清洗空调/strong/pp style="text-align: justify text-indent: 2em "众所周知,空调需要定期进行清洗和保养,但许多人会忽略空调外机,导致外机的散热器上积累过多的灰尘,从而影响到空调的散热效果,导致空调外机温度过高。/pp style="text-align: center " img style="max-width: 100% max-height: 100% width: 300px height: 400px " src="https://img1.17img.cn/17img/images/202006/uepic/539b1d6d-ea18-4755-b6a4-c4baebab460e.jpg" title="图片1.png" alt="图片1.png" width="300" height="400" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "空调不制冷,有时跟房屋密封性也有一定的关系,当空调制冷的时候,其实是把室内的热量搬到室外去,所以空调外机特别热,而空调搬运的热量主要分为两种:一个是室内物体发出的热量,比如你身上的热气还有电器发出的热量等;另一个就是外界进入室内的热量了,比如从门缝溜进来的热空气,所以这时候你就需要好好检查下房屋的密封性了。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 32, 96) "strong解决制冷难的问题/strong/span/pp style="text-align: justify text-indent: 2em "strong借助红外热像仪,找到问题的根本/strong/pp style="text-align: justify text-indent: 2em "想要解决问题,首先要找到问题的根源。比如缺少氟利昂,及时添加就可以了,但是像空调主机线路问题、外机温度太高,灰尘过多导致散热差以及房间密封性差等,都需要得心应手的工具去确定问题的所在。近些年,红外热像仪在暖通行业的应用甚是如鱼得水,想要解决空调制冷难的问题,选择它是个不错的主意!/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 450px height: 300px " src="https://img1.17img.cn/17img/images/202006/uepic/8269c784-7ae3-4de8-b3a4-f29d91be59f5.jpg" title="图片2.png" alt="图片2.png" width="450" height="300" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "红外热像仪不一定要选贵的,适合自己的才是最好的,比如超高性价比的FLIR Cx系列红外热像仪,就非常适合暖通行业的基本检测。以本次空调不制冷为例:/pp style="text-align: justify text-indent: 2em "strong当空调内外部线路或接点出现问题时/strong,span style="text-indent: 2em "众所周知,空调设备的电路系统复杂,接点和线路繁多,并且往往不容许停机检修,而温度是直接反映负载和线路质量的外在效标,FLIR Cx系列红外热像仪搭载FLIR专有的Lepton® 微型红外热像仪机芯,分辨率高达4800像素,搭配FLIR专有的MSX® 实时热图像增强技术,能捕获并显示细微的热像图细节和极微小的温差,使用它,就可以让空调内部的线路问题在不关机的情况下,快速准确地被发现,这样你就可以及时处理保证空调的正常运行。/span/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/624aa8f5-04eb-490f-b5fc-b55140fe58c7.jpg" title="图片3.png" alt="图片3.png"//pp style="text-align: justify text-indent: 2em "strong当空调外机过热时/strong,FLIR Cx系列红外热像仪尺寸小巧,用户可随身携带,这样你就可以随时随地使用它监测空调外机的温度,一旦超过43℃,就及时采取降温措施,比如将外机转移到通风较好的地方,或者及时清理空调外机上的灰尘等。/pp style="text-align: justify text-indent: 2em "strong当房屋的密闭性过差时/strong,使用FLIR Cx系列红外热像仪可以对窗户、关闭的门、施工接缝(如:楼板底面、水泥和构架墙的过渡区)等进行全面的温场分布检测,因为它具有宽广的45° 视场角(FOV),这样你就可以检测更详尽的场景图像,它还配备内置照明灯和闪光灯,让您即使在光线昏暗的区域也可以检测。通过对热异常和空气流动性差异,来判断房屋的密闭性。如果房屋密闭性过差,你需要及时加固保温层或修补缝隙大的地方。/pp style="text-align: center text-indent: 0em " img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/d9c163b3-89bd-4a28-8573-13f8e161fac8.jpg" title="图片4.png" alt="图片4.png"//pp style="text-align: justify text-indent: 2em "FLIR Cx系列红外热像仪在暖通行业,除了可以检测空调问题,在寻找地暖漏水点方面也是颇有建树,想要了解更多信息,可点击公司页面了解更多。/pp style="text-align: justify text-indent: 2em "京东618全网大促,FLIR Cx系列红外热像仪也参与其中,据悉,凡是在京东任意店铺(带有618标识)购买FLIR Cx系列红外热像仪的客户,不仅可以享受官方平台的满减优惠,还可以额外获得菲力尔专属车载手机支架,此等优惠,快去参加吧~/ppbr//p
  • 仅细菌大小 迄今世界最小电光调制器问世
    p  据最新一期《纳米快报》报道,美国研究人员设计并制造出了目前世界上最小的电光调制器,这或许意味着未来数据中心和超级计算机所使用的能源将得到大幅削减。/pp  电光调制器在光纤网络中起着关键作用。就像晶体管作为电信号的开关一样,电光调制器可用作光信号的开关。光通信使用光,所以调制器用于打开和关闭在光纤中发送二进制信号流的光。/pp  俄勒冈州立大学电子与计算机学院副教授王小龙在接受科技日报记者采访时称,此项技术的创新点是在光子晶体的微腔里集成了透明氧化物—硅基MOS(金属氧化物半导体)结构。微腔调制器可以把光场压缩到很小的范围,通过载流子富集形成很强的电光调制效应,从而在很小的区间内实现很大的电光调制。/pp  王小龙表示,新研制的电光调制器可极大降低光互联器件的功耗。目前全球数据中心和超级计算机所使用的能源占据了全球电力使用量的4%—5%,数据中心的大部分功耗主要由互联产生,通过光取代电来降低系统功耗是今后的研究方向。但光互联研究的一个瓶颈在于电光转换,电光转换同样需要消耗大量能源。/pp  此项设计结合了材料和器件的创新,增强电子和光子之间的相互作用,从而使研究人员能够创建出一个更小的电光调制器。新调制器相比主流硅基微环电光调制器在尺寸上缩小了10倍,仅为一个细菌大小(8微米× 0.6微米),有源区更是缩小到了0.06立方微米(仅仅是波长立方尺寸的2%),在理论上可将电光转换的能耗降低2—3个数量级。/pp/p
  • 波长调制光谱(WMS)技术简介
    可调谐半导体激光吸收光谱(Tunable Diode Laser Absorption Spectroscopy, 即TDLAS)是一种红外吸收光谱分析技术,利用分子“选频”吸收形成吸收光谱的原理,实现高分辨率的分子浓度定量分析技术。TDLAS能够进行原位非接触式测量,并且具有高精度、高选择性等特性,结合波长调制光谱(WMS)和锁相放大等抑制噪声的技术,可以实现ppm甚至ppb量级的痕量气体分子浓度测量。 之前我们已经介绍过锁相放大的工作原理和其在TDLAS中的应用,今天小编就跟大家聊聊WMS背后的科学还有实际的应用方式吧! TDLAS基本原理及Beer-Lambert定律 了解WMS技术之前,我们先简单复习一下TDLAS的原理:基本方法是通过调谐特定的半导体激光器波长,扫过被测气体分子的特定吸收光谱线,被气体吸收后的透射光由光电探测器接收,经锁相放大模块提取透射光谱的谐波分量,反演出待测气体浓度信息。 为了确定与于目标分子浓度相关的吸收,必须将透射光强度I与入射光强度I0进行比较。这个定量分析的依据来自Beer-Lambert定律: 其中L为光程,α(v) 是由入射光波长和样品中目标分子浓度同时决定的吸收系数。TDLAS技术通过使用Beer-Lambert定律分析吸收光谱的数据,便可以获得分子浓度信息。 图一 TDLAS技术示意图 直接吸收光谱(DAS) 接着,我们来看一下直观的直接吸收光谱(Direct Absorption Spectroscopy, DAS)技术。顾名思义,DAS技术通过检测入射光和透射光强度直接获得光吸收量(如图二),并根据两个信号的比例直接推断出气体特性,典型的DAS方法得到的信号如图三。 图二 DAS示意图:调谐激光器波长扫过被测气体分子的特定吸收光谱线,在吸收峰可以直接看到的投射光强度衰减 图三 直接吸收光谱(DAS)技术的典型透射光强度信号 图三也显示了DAS的潜在问题,其相对简易直接的性质使得DAS对许多噪声源敏感。各种高强度的噪声可能源于激光强度波动、激光波长波动(如果激光波长在吸收曲线内波动,也会导致透射光的强度波动)、探测器噪声、散粒噪声(光子噪声)和其他技术噪声。如果吸收谱线足够强,即吸收物质的浓度足够高、提供足够的信噪比 (SNR),则可以使用DAS进行准确测量。然而,检测低浓度的气体分子需要进一步减少吸收接收信号中的噪声,WMS就是一种在TDLAS技术中广为应用来抑制噪声的方法。 波长调制光谱(WMS) WMS能够改善DAS在信噪比较差的环境中的局限性。将入射激光的波长用一个相对较高频率的载波(通常约为10 kHz)进行调制(如图四),并且将吸收光谱信号以调制频率或该频率的谐波进行解调评估分析,获取特异但有规律可循的谐波波形,从而获取分子浓度信息。由于噪声的影响主要存在于低频,例如二极管的1/f噪声或机械噪声,WMS技术将吸收光谱的检测转移到到了信噪比较优的高频,以此达到抑制噪声的目的。 图四 WMS示意图:调制入射激光的波长至较高频率,将接收端信号以调制频率的谐波进行解调分析 WMS的实现是通过调制可调谐半导体激光器的注入电流,以达到对激光输出的波长和强度的高频调制,并将吸收信号移到了更高的频率。其中,TDLAS系统的线性响应(激光器的线性强度调谐)以调制频率的一次谐波为中心,系统的非线性响应(例如吸收和非线性强度调谐)则反应在调制频率的二次及更高次谐波,因此可以透过对高次谐波信号的分析来提取光谱吸收信息。一般来说,二次谐波分析足以满足大多数的气体分析要求。 要提取并分析在已知载波频率的高频信号,锁相放大器是一个十分强大的工具。利用锁相放大器可以用来创建指定频率的带通滤波器,如果带宽足够窄,便能抑制宽带噪声,所以用于调制的频率必须避开主要的噪声频率。(点击这里了解锁相放大器在TDLAS系统中的功用) 除此之外,WMS技术还提供了另外一种选择,能够通过频分复用的方法同时发射传播多个不同波长的激光。多个激光以不同的频率调制并收集在单个探测器上,谨慎选择的调制频率能够尽量避免谐波重叠或拍频干扰,最终每个激光信号都可以由独立的锁相放大通道器提取。利用昕虹光电数字电路实现的双通道锁相放大器,使得实现这样的一个多组分分子一体化探测系统变得经济而简单,实现对多个目标分子(如多种温室气体N2O,CH4,CO2等)同时进行测量。 参考文献:1. “Absorption spectroscopy”, http://www.atomic.physics.lu.se/fileadmin/atomfysik/Education/Elective_courses/FAF080_AtomoMolekylSpektr/Lab_absorption_spectroscopy_2017.pdf2. Christopher Lyle Strand, 2014, ‘Scanned Wavelength-Modulation Absorption Spectroscopy with Application to Hypersonic Impulse Flow Facilities’, PhD thesis, Standford University, USA.
  • 美设计出太赫兹多像素光波调制器
    据《每日科学》网站2009年5月31日报道,美国科学家首次设计出一款多像素太赫兹频率(THz)光波调制器,将来有望广泛应用于生物光谱学和半导体结构成像研究。  太赫兹辐射是指频率从0.37THz到10THz,波长介于无线波中的毫米波与红外线之间的电磁辐射区域,所产生的T射线在物体成像、医疗诊断、环境检测、通讯等方面具有广阔的应用前景。对太赫兹辐射的正式研究,可以追溯到很多年前,但直到1990年高效生成和检测辐射的方法成为可能后,该研究才变得越来越普遍。  美国莱斯大学物理学家丹尼尔米特尔曼和他在桑迪亚和洛斯阿拉莫斯国家实验室的同事,使用一种特异材料来控制太赫兹波束的流出。之所以称之为特异材料,是因为它包含数组微观分裂的金属环,这些圆环可由附近的电极控制。通过调节圆环的电容来调整辐射水平。也就是说,赫兹光(即T射线)可以通过调制器进行转换,由调制器决定光线能否通过。该调制器由16个像素组成,呈4×4阵列。  米特尔曼称,第一次对太赫兹波束进行电控非常重要。要使光束能够穿过整个平面,而不呈现线性爆裂状态,进而促成光波成像,这是第一步。调制器的切换速度大约为1兆赫,与现今数据传输的最快速率相比并不算快。但他认为,对许多T射线成像任务来说,高带宽并不是必需的。目前他们正在设计一个较大的32×32像素阵。  该研究成果将在2009年激光与电学/国际量子电子学会议(CLEO/IQEC)上提出。该会议将于5月31日至6月5日在美国巴尔的摩召开。
  • 纯相位空间光调制器在PSF工程中的应用
    纯相位空间光调制器在PSF工程中的应用一、引言2014年诺贝尔化学奖揭晓,美国及德国三位科学家Eric Betzig、Stefan W. Hell和William E. Moerner获奖。获奖理由是“研制出超分辨率荧光显微镜”,从此人们对点扩散函数 (PSF) 工程的认识有了显着提高。Moerner 展示了 PSF 工程与 Meadowlark Optics SLM 的使用案例,用于荧光发射器的超分辨率成像和 3D 定位。 PSF工程已被证明使显微镜能够使用多种成像模式对样本进行成像,同时以非机械方式在模式之间变化。这允许对具有弱折射率的结构进行成像,以及对相位结构进行定量测量。 已证明的成像方式包括:螺旋相位成像、暗场成像、相位对比成像、微分干涉对比成像和扩展景深成像。美国Meadowlark Optics 公司专注于模拟寻址纯相位空间光调制器的设 计、开发和制造,有40多年的历史,该公司空间光调制器产品广泛应用于自适应光学,散射或浑浊介质中的成像,双光子/三光子显微成像,光遗传学,全息光镊(HOT),脉冲整形,光学加密,量子计算,光通信,湍流模拟等领域。其高分辨率、高刷新率、高填充因子的特点适用于PSF工程应用中。图1. Meadowlark 2022年蕞新推出 1024 x 1024 1K刷新率SLM二、空间光调制器在PSF工程中的技术介绍在单分子定位显微镜(SMLM)中,通过从相机视场中稀疏分布的发射点来估计单个分子的位置,从而克服了分辨率的衍射限制。可实现的分辨率受到定位精度和荧光标签密度的限制,在实践中可能是几十纳米的数量级。有科研团队已经将这种技术扩展到三维定位。通过在光路中加入一个圆柱形透镜或使用双平面或多焦点成像,可以估算出分子的轴向位置。光斑的拉长(散光)或光斑大小的差异(双平面成像)对轴向位置进行编码。将空间光调制器(SLM)与4F中继系统结合到成像光路中,可以设计更广泛的点扩散函数(PSF),为优化显微镜的定位性能提供了可能。利用空间光调制器(SLM)对荧光显微镜进行校准,可以建立一个远低于衍射极限的波前误差,SIEMONS团队就利用Meadowlark空间光调制器实现了高精度的波前控制。原理证明和实验显示,在1微米的轴向范围内,在x、y和λ的精度低于10纳米,在z的精度低于20纳米。对这篇文献感兴趣的话可以联系我们查阅文献原文《High precision wavefront control in point spread function engineering for single emitter localization 》下面我们来具体看看是如何应用的,以及应用效果如何。图2. A)SLM校准分支和通过光路的偏振传输示意图。额外的线性偏振滤波器没有被画出来,因为它们与偏振分光器对齐。B)相机上的强度响应作为λ/2-板不同方向α的SLM的相位延迟的函数。C) 光学装置的示意图。一个带有SLM的中继系统被添加到显微镜的发射路径中(红色),一个单独的SLM校准路径(绿色)被纳入发射中继系统中。这允许在实验之间进行SLM校准。BE:扩束器,DM:分色镜,L:镜头,LPF:线性偏振滤镜,M:镜子。OL:物镜,PBS:偏振分光镜,TL:管镜。光路如上图2所示,包括一台尼康Ti-E显微镜,带有TIRF APO物镜(NA = 1.49,M = 100),一个200毫米的管状镜头,一个带有SLM的中继系统被建立在显微镜的一个出口端口。中继系统包括两个消色差透镜,一个向列型液晶空间光调制器(LCOS)SLM(Meadowlark,XY系列,512x512像素,像素大小=15微米,设计波长=532纳米)和一个偏振分光器,用于过滤未被SLM调制的X偏振光。di一个消色差透镜在SLM上转发光束。第二个中继镜头确保在EMCCD上对荧光物体进行奈奎斯特采样。显微镜配备了一套波长为405nm、488nm、561nm和642nm的合束激光器。 这个配置增加了一个用于校准SLM的第二个光路。这个空降光调制器校准光路是为测量入射到SLM上的X和Y偏振光之间的延迟差而设计的,为了测量某个SLM像素的调制,需要将SLM映射到校准路径的相机上。这种映射是通过在SLM上施加一个电压增加的棋盘图案来获得的。平均捕获的图像和没有施加电压时的图像之间的差异被用作角落检测算法(来自Matlab - Mathworks的findcheckerboard)的输入,以找到角落点。对这些点进行仿生变换,并用于找到对应于每个SLM像素的CMOS像素。图3. SLM校准程序。A) 单个SLM像素的测量强度响应作为应用电压的函数。每一个极值都对应于等于π的整数倍的相位变化,并拟合一个二阶多项式以提高寻找极值的精度。强度被分割成四个部分,它们被缩放为[0 1]。这个归一化的强度(B)被转换为相位(C),并反转以创建该特定电压段和像素的LUT(D)。E)20个随机选择的SLM像素的归一化强度响应,显示像素间的变化。F) 测量的波前均方根误差是校准后立即使用校准LUT的相位的函数,45分钟后,以及制造商提供的LUT。G) 在不同的恒定相位下,用于成像光路的SLM部分的LUTs。暗点表示没有3个蕞大值的像素。H) 测量的平均相位和预定相位之间的差异作为预定相位的函数。 图3解释了SLM像素的校准程序。首先,以256步测量作为应用电压函数的强度响应,产生一连串的蕞小值和蕞大值,它们对应于π或2π的迟滞。在被照亮的SLM平面内的所有像素似乎有三个蕞大值,这意味着总的相位调制为4π或1094纳米。这些极值出现的电压是通过对极值附近的三个点进行拟合抛物线来找到的,这增加了精度,并充分利用了SLM的16位控制。然后,强度被分为四段,用公式(11)的逆值对这些段进行缩放并转换为相位。相位响应被用来为每个SLM像素构建一个单独的查找表(LUT),以补偿SLM的非均匀性。LUT参数在SLM上平滑变化,并与肉眼可见的法布里-珀罗条纹大致对应,表明相位响应的差异是由于液晶层厚度的变化造成的。额外的像素与像素之间的变化可能来自底层硅开关电路的像素与像素之间的变化。完整的校准需要大约5分钟(在四核3.3GHz i7处理器上的3分钟扫描和2分钟计算时间),但原则上可以优化到运行更快。实验结果:图4 测量的PSF与矢量PSF模型拟合之间的PSF比较。G-I)平均测量的PSF是由大约108个光子携带的信号通过上采样(3×)和覆盖所有获得的斑点编制而成。比例尺表示1μm。 图4显示PSF模型的预测结果。通过这种方式,实验的PSF是由∼108个光子的累积信号建立起来的。实验和理论上的矢量PSF之间的一致性通常是非常好的,甚至在蕞大的离焦值的边缘结构也是非常匹配的。剩下的差异,主要是光斑的轻微变宽,是由于入射到相机上的光的非零光谱宽度,由于发射光谱的宽度和四带分色器的带通区域的宽度。边缘结构中也有一个小的不对称性,这可能是由光学系统中残留的高阶球差造成的。 所有工程PSF的一个共同特点是,与简单的二维聚焦斑点相比,它们的复杂性必须在PSF模型中得到体现,该模型被用于估计三维位置(可能还有发射颜色或分子方向)的参数拟合算法。简化的PSF模型,如高斯模型、基于标量衍射的Airy模型、Gibson-Lanni模型,或基于Hermite函数的有效模型都不能满足这一要求。一个解决方案是使用实验参考PSF,或用花样拟合这样的PSF作为模型PSF,或者使用一个或多个查找表(LUTs)来估计Z-位置。矢量PSF模型也可以用于复杂的3D和3D+λ工程PSF。众所周知,矢量PSF模型是高NA荧光成像系统中图像形成的物理正确模型。复杂的工程PSF的另一个共同特点是对扰乱设计的PSF形状的像差的敏感性,并以这种方式对精度和准确性产生负面影响。为了实现精确到Cramér-Rao下限(CRLB),即无偏估计器的蕞佳精度,光学系统的像差水平应该被控制在衍射极限(0.072λ均方根波前像差),这个条件在实践中往往无法满足。因此,需要使用可变形镜或为产生工程PSF而存在的SLM对像差进行校正。自适应光学元件的控制参数可以使用基于图像的指标或通过测量待校正的像差来设置。后者可以通过基于引入相位多样性的相位检索算法来完成,通常采用通焦珠扫描的形式。这已经在高数值孔径显微镜系统、定位显微镜中实现,并用于提高STED激光聚焦的质量。三、PSF应用对液晶空间光调制器的要求1.光利用率 对于这个应用来说,SLM将光学损失降到蕞低是很重要的。PSF工程使用SLM来操纵显微镜发射路径上的波前。在不增加损失的情况下,荧光成像中缺乏信号。使用具有高填充系数的SLM可以蕞大限度地减少衍射的损失。 Meadowlark公司能提供标速版95.6%的空间光调制器,分辨率达1920x1200,高刷新率版像素1024x1024,填充因子97.2%和dielectric mirror coated版本(100%填充率)。镀介电膜版本的SLM反射率可以做到100%,一级衍射效率可以做到98%。高分辨率能在满足创建复杂相位函数的同时,能够提升系统的光利用率。2.刷新率(蕞高可达1K Hz)高速度可以实现实时的深层组织超分辨率成像。可见光波段蕞高可达1K Hz刷新速度(@532nm)。3.分辨率(1920x1200) 高分辨率的SLM是创建三维定位所需的复杂相位函数的理想选择,如此能够对每个小像元区域的光场进行自由调控。 上海昊量光电作为Medowlark在中国大陆地区总代理商,为您提供专业的选型以及技术服务。对于Meadowlark SLM有兴趣或者任何问题,都欢迎通过电话、电子邮件或者微信与我们联系。欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。 关于昊量光电:昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
  • 40℃极端高温“超长待机”,空调制冷效果太差怎么办?
    连日来全国多地出现高温预警甚至部分地区出现超40℃的极端现象这时空调就成了我们的必备设施但有时空调制冷动力明明很足但房间内制冷效果却很差这是怎么回事呢?空调制冷系统出现问题在炎热的夏季,空调管道系统一旦出现问题,冷气会明显供应不足,导致空调的制冷效果大大降低。而通过FLIR ONE PRO手机红外热像仪扫描管道系统就能轻松发现冷气的损耗点,让客户能够及时处理管道系统的损耗问题,使得空调冷气恢复正常供应,从而减少因冷气不足加大风速或者整体维修带来的不必要的经济损失。使用FLIR ONE PRO检测空调系统案例分析:诀窍 | 一招告诉你如何判断空调是否有问题!不仅仅是炎热的夏季在寒冷的冬天空调暖气供应不足时同样也可以使用FLIR ONE PRO来解决哦~房屋气密封差当我们检测空调系统后并无异常时,可以使用FLIR ONE PRO检查下房屋的隔热层的状态。因为房屋中缺失的隔热层会让热气或冷气渗透进来,渗透进来的热气,需要空调制造更多的冷气才能抵消掉,从而导致空调制冷变慢了!使用FLIR ONE PRO检测房屋气密性通过FLIR ONE PRO手机红外热像仪,您可能会发现缺少隔热层的常见区域一般包括:出口和开关周围的地方,外墙与屋顶相接的阁楼边缘,以及未完工的车库,这些车库如果与房屋的其他部分相连,会导致大量的热气涌入或冷气的输出。案例分析:小菲课堂 | 如何检查房屋的隔热层问题?FLIR ONE PRO手机红外热像仪,作为FLIR的“明星款”产品,一直都颇受用户们的喜爱。它不仅机身小巧,Android和IOS版本手机均可即插即用,而且其功能还很强大:配备高分辨率的热传感器,具有超前的VividIR图像处理功能,红外分辨率高达160*120,测温范围从-20℃至400℃,可以观察到更多的细节和隐藏的问题。Teledyne FLIR热像仪在暖通行业的经验丰富,应用广泛FLIR ONE PRO手机红外热像仪更是暖通工程师们的“心头好”目前京东、天猫官方旗舰店均有售
  • 全二维气相色谱热调制技术的发展与最新进展
    热调制技术是全二维气相色谱中使用较多的一种调制方式,在第一根色谱柱和第二根色谱柱之间以固定频率反复施加高温和低温,使一维的馏出物在该段位置产生周期性的冷聚和释放,从而实现对一维峰的调制过程。热调制技术相对于气流调制,调制效果更好,分辨率更高,而且载气流量保持不变,适合连接质谱检测器,另外冷聚过程中可以对分析物进行浓缩,灵敏度也有所提高。热调制技术已经成为应用最广泛的一种全二维气相色谱调制方法。  目前的热调制技术经历了一系列的技术革新。John Philips和Zaiyou Liu最先于1991年提出热调制技术并申请了专利。当时是在一根石英毛细柱上利用导电涂料的电阻加热和自然冷却来完成调制过程。由于导电涂料反复加热后容易剥落,而且自然冷却速度较慢,这种阻热式的调制方式被淘汰,但它却奠定了当今经典的两级热调制的技术基础。  上世纪90年代末,澳大利亚的Phillip Marriott教授发明了纵向调制冷却系统(Longitudinally Modulated Cryogenic System, LMCS)。LMCS将一个移动的冷阱(Cryo Trap)套在需要调制的色谱柱上,冷阱内可用液态二氧化碳对局部色谱柱进行制冷,冷阱套以外的色谱柱放置在色谱仪的炉膛内部,被炉膛加热。通过冷阱套的上下移动,对不同部位的色谱柱进行反复加热制冷从而完成调制(图1)。这种方式加热和制冷都十分快速有效,能产生非常理想的调制峰宽,大大增加了全二维气相色谱的实用性。LMCS的出现让众多色谱学者开始应用全二维气相色谱技术,发表了大量以此技术为基础的分析应用,对全二维气相色谱的发展产生了深远的影响。不过,由于LMCS的运动部件自外向内伸入炉膛,其两端存在很大的温差,因此易产生变形和失效,其长期稳定性一直存在问题,最终也没有商业化。不过随后发展的商业调制器均沿袭了这种思路,采用色谱仪炉膛直接加热,相比于阻热式调制器,这种方法简单稳定,可靠性大大加强,但为了在加热的炉膛内实现快速冷却,必须大量使用液态制冷剂,所以被称为制冷式热调制器。  图1. LMCS热调制器技术原理示意图  经过一系列探索与改进后,采用固定冷热喷嘴的调制器开始慢慢盛行,例如ZOEX公司的环形调制器,LECO公司的四喷嘴调制器,和Thermo Scientific公司的双喷嘴调制器。这些调制器利用喷嘴喷出的冷热气体对调制柱进行加热冷却(图2),温度变化速率快,可靠性高,该技术现已实现商品化,成为目前学术界和工业界大量使用的主流热调制器。    图2. 冷热喷嘴调制器技术原理示意图  与此同时,随着不锈钢毛细色谱柱的问世和商业化,已经消失很久的阻热式调制技术在几年前重新获得发展。其代表是美国密西根大学Richard Sacks教授的研究团队和加拿大滑铁卢大学的Tadeusz Gorécki教授的研究团队。其共同特点就是长期将调制柱放置在低温环境中,以周期性的电流直接加热需要调制的不锈钢毛细柱。这种方式利用不锈钢的导电性质,不用依赖导电涂料,稳定性显著提高。而且电加热方式简单灵活,可以产生非常窄的脉冲,实现快速释放。他们两个团队在冷却系统上稍有区别。  密西根大学的调制器核心部件安装于色谱仪炉膛内,将金属毛细管浸泡在被一个制冷机循环冷却的聚乙二醇液态腔体里来完成调制全过程。密西根大学首创的这种通过制冷机形成充足冷量的技术方案被ZOEX等公司随后纷纷采用和改进,并形成了商业化的不使用液氮的喷嘴式热调制器。但是,这些调制器仍然需要消耗大量的用于热交换的干燥的氮气或空气,并没有将全二维色谱技术真正从高端实验室或研究机构中解放出来。  滑铁卢大学的调制器核心部件最初安装于炉膛之外,并利用蜗旋管冷却技术来完成调制。蜗旋管需要消耗大量的压缩空气,因此一般也只能在实验室中使用。近年来,改进的调制器核心部件重新安装于炉膛之内,并利用一端伸出炉膛的导热铜块来实现风冷降温。这项改进终于让人看到了不消耗任何制冷剂的曙光。但是,它也牺牲了一定的调制范围,尤其是在低沸点化合物一端。  无论哪种方案,只要采用不锈钢色谱柱作为调制柱,必须同时解决电的良好接触和避免在接触点产生冷点,这样才能保证正常的色谱过程。然而。这两点往往是矛盾的。因此可以看到上述两个团队最终还是选择了直接或间接在炉膛内完成调制全过程,并由此在其它方面做出了牺牲。另外,不锈钢本身比熔融石英的热质量大了近四倍,因此在没有强制冷的条件下,降温速度很慢,例如滑铁卢大学的调制器,调制周期无法做到4秒以下 然而,目前全二维色谱的运行趋势是将调制周期优化在2秒到4秒之间,从而更好地保持第一维的色谱分离效果和节省整体分析时间。最后,不锈钢色谱调制柱必须具有不同膜厚的内部固定相才能完成对相应沸点范围化合物的调制,但是因其固定方式对良好电接触的要求,更换起来并不灵活。综上所述,采用不锈钢色谱柱电阻加热的调制器目前还有很多技术问题没有解决,在短期内难有大的突破,目前只停留在研究阶段,尚未实现商业化。  随着本世纪初微加工工艺和微机电系统(MEMS)的兴起,第一个微型固态热调制器在美国密西根大学诞生。它在一片硅晶片上集成了微色谱柱和金属丝线,利用后者脉冲式电阻加热和一块半导体制冷元件的持续冷却完成对微色谱柱的调制(图3)。这项发明由于整体设备的热质量非常微小,从而省去了制冷剂的使用,极大简化了日常操作。但是由于其微机电系统和外部宏观尺寸的设备难以实现完美的无缝连接,实际性能并不理想。此外由于分析测试市场规模比较小,不足于降低微系统的开发制造成本。经过多年的研发,该技术始终不能商业化。  图3. 基于MEMS的微型热调制器技术原理示意图  借鉴了LMCS移动式系统和微型热调制器的优势后,Guan和Xu将它们以崭新的方式结合起来,发明一种不依赖微加工工艺但又能成功使用半导体制冷的固态热调制器。这种调制器在整体上摈弃了业界一直流行的对色谱仪炉膛加热的依赖,构建了独立的冷却与加热环节以实现炉膛外的完全调制。由于不再需要大量的制冷以抵消炉膛的加热,另外冷却与加热区域进一步在空间上相互隔绝,大大增加了制冷效率。这样只依靠半导体制冷就能实现优异的调制效果,完全避免了制冷剂的使用(图4)。这种技术目前已经成功商业化。  图4. 无需制冷剂的商业化固态热调制器
  • 梅特勒托利多在南京举办热分析技术交流会,深入讨论温度调制DSC技术
    2008年12月23日,梅特勒托利多(中国)在南京大学成功举办了&ldquo 热分析技术交流会&rdquo ,来自南京高校、研究所和各公司的近90位专家和来宾参加了交流会。除了一般热分析技术外,与会者就温度调制DSC技术及其应用进行了深入的交流讨论。南京大学化学化工学院高分子系胡文兵教授作了主题报告《温度调制DSC的非Fourier数据处理方法》。报告首先讨论了标准DSC的稳态热流条件,热流速率对温度变化速率线性响应的问题。接着讨论了正弦温度调制DSC,由于对调制热流所进行的Fourier数学处理是关于离散Fourier转换的第一谐波的分析,所以会将高频信号的贡献过滤掉。然后,介绍了他在美国作访问学者期间的工作:锯齿形温度调制DSC的非Fourier数据处理方法。对于在满足线性和稳态条件下的加热段和冷却段的不可逆热流引入了一个描述它们热容不平衡的新物理量Cp,imbalance:以PET(聚对苯二甲酸乙二醇酯)为例,锯齿形温度调制DSC的非Fourier数据处理方法的实验结果表明,熔融曲线部分不存在任何再结晶的信号!从而纠正了正弦调制DSC对熔融温区可逆热容的过度扣除而产生的不正确测试结果。(参看下图)最后,胡文兵教授总结了锯齿形温度调制DSC的非Fourier数据处理方法的优点:不需要硬件驱动正弦波温度调制;标准DSC数据处理简单明白;反映快速热转变更加直观;避免了Fourier处理的信号过滤和变形;有效避免相滞后(phase lag);等等。 梅特勒托利多(中国)热分析仪器部经理陆立明先生也在此次会议上作了《随机温度调制DSC技术TOPEM的应用》的报告,从热力学分析的角度,介绍和讨论了TOPEM实验的线性行为测试和稳态测试(一致性检查),用TOPEM测试研究聚苯乙烯的玻璃化转变的频率依赖性、环氧树脂等温固化的瞬时玻璃化转变(Vitrification)、硝酸钠的固-固转变、PET的可逆熔融和不可逆熔融等。 对于PET的熔融,随机温度调制DSC技术TOPEM和锯齿形温度调制DSC的非Fourier数据处理方法得到的结果完全一致。 胡文兵教授及陆立明经理的报告引起了与会者的很大兴趣。专家表示对温度调制DSC的深入讨论将有助于同行们和其他热分析应用者充分了解和准确把握这方面的技术,正确应用热分析。 需进一步了解胡文兵教授介绍的《温度调制DSC的非Fourier数据处理方法》,请查阅 W. Hu and B. Wunderlich, J. Thermal Anal. & Calorimetry, 66 (2001) 677。
  • Meadowlark公司收购CRi空间光调制器业务
    Meadowlark公司收购CRi空间光调制器业务 近日,美国Meadowlark Optics公司与Cambridge Research & Instrumentation(CRi)公司发布联合声明,宣布双方就Meadowlark Optics公司正式收购CRi公司液晶空间光调制器产品线达成协议。 Meadowlark Optics公司总裁兼CEO Garry Gorsuch先生表示,纳入CRi SLM产品,进一步丰富了美国Meadowlark Optics公司的产品线,充分证明了公司要发展和扩大更多SLM市场的决心,以及公司在空间光调制器生产核心技术方面的信心。作为美国Meadowlark Optics公司在空间光调制器产品线的中国地区独家代理商,昊量光电将一如既往地为客户(包括CRi SLM客户)提供优质的服务与技术支持!关于CRI:CRi公司的P128 SLM和 P640透射式液晶SLM在超快脉冲整形方面具有独特的技术优势,持有多项技术专利。目前CRI公司的SLM产品线已经加入到Meadowlark现有的透射和反射SLM产品线中。 关于Meadowlark Optics公司:2014年7月,Meadowlark收购了Boulder Nonlinear Systems 的商业产品部分,BNS公司的产品包括了SLMs、光学快门,偏振旋转器,可变波片和立体光学镊子系统。截止目前,Meadowlark的SLM产品线已经涵盖了美国原BNS公司的SLM,CRi的的SLM,以及Meadowlark公司原有的SLM生产线。目前Meadowlark公司的液晶空间光调制器的研发技术、生产工艺及拥有的专利技术数量,均处于全球领先地位。 关于上海昊量光电设备有限公司:上海昊量光电设备有限公司作为Meadowlark Optics公司空间光调制器产品线中国地区的独家代理,深耕SLM行业多年。上海昊量光电设备有限公司拥有专业的销售团队及售后技术团队,多年来坚持为客户提供一流的产品和售后服务,在SLM的应用领域得到了客户高度的认可和好评。 调制器 空间光调制器超高速液晶空间光调制器透射式液晶空间光调制器 ? 美国BNS公司(Boulder Nonlinear Systems, Inc.)生产销售适用于各种光电应用的液晶空间光调制器(liquid crystal spatial light modulator),能够根据指定的像素图案对光在空间的分布进行调制,在需要pixel-by-pixel光束控制以优化产品性能的应用领域正扮演着 越来越重要的角色。BNS公司能够提供基于LCoS(liquid crystal on silicon)技术的各种反射式空间光调制器,包括纯相位调制,纯振幅调制,及振幅相位混合调制。其XY(512X512)面阵及 linear(1X4096)线阵空间光调制器被广泛应用于激光光束偏转与可编程相位掩模等热点领域。 BNS公司的空间光调制器具有相位或振幅调制速率高、透过效率高、图形软件操作界面友好等特点。调制器 空间光调制器XY系列偏振无关液晶空间光调制器1x12,288线阵相位型液晶调制器XY系列铁电液晶空间光调制器XY系列向列液晶空间光调制器 专用实验设备 CUBE-便携式光镊系统全息光镊系统
  • 雪景科技推出全球首款无需制冷剂的商业化热调制器
    全二维气相色谱(comprehensive two-dimensional GC, or GC×GC)作为一种全新的色谱分离手段,具有分离能力强,峰容量大,定性有规律等优点。目前已经开始应用在石油化工、环境监测、天然产物分析、食品卫生、生物医药等行业,是复杂样品和痕量样品分析的强大武器。全二维色谱最核心的部件调制器可分为气流式调制器(flow modulator)和热调制器(thermal modulator)。相比气流式调制器,热调制器调制性能更加优异,而且可以直接连接质谱,是当前最主流的调制技术。市场上的热调制器普遍采用气流喷射调制方式,利用液氮或压缩空气以及热空气对色谱炉膛内的调制色谱柱进行冷却和加热,附属设备较多,运行和维护费用较高。加上居高不下的系统价格,使全二维气相色谱技术目前仅限于一些高端实验室和较前沿的科研应用,难以向广大中低端用户和常规检测普及。  雪景科技经过多年的研发,成功推出了全球首款采用半导体制冷元件的商业化固态热调制器(SSM),使全二维气相色谱(GC×GC)彻底摆脱了液氮和其他制冷剂的使用。独特的机械和热管理设计保证了产品与目前主流热调制器相当的调制性能。其小巧的结构和方便的操作极大地简化了GC×GC技术的使用难度和运营成本。由于采用了模块化设计,用户可以方便地将该调制器安装到任意气相色谱平台上,配合专业的全二维色谱数据处理软件,将常规的一维气相色谱升级成全二维气相色谱系统,极大提高现有系统对复杂样品的分析能力。另外,由于该热调制器体积小巧能耗低,可以和其他在线式或者便携式色谱进行联用甚至集成,第一次实现全二维气相色谱在在线监测和野外分析中的应用,为我国日益增长的环境、食品和化工检测需求提供一种全新的技术手段。固态热调制器  雪景科技是一家致力于推广和普及全二维气相色谱技术的公司。主要产品包括全二维气相色谱调制器、全二维色谱数据处理软件、以及全二维气相色谱系统构建和维护、应用解决方案和技术支持等。全二维气相色谱系统
  • 盛志高研究团队成功研发出一种主动智能化的太赫兹电光调制器
    近日,中科院合肥研究院强磁场中心盛志高研究团队依托稳态强磁场实验装置成功研发了一种主动智能化的太赫兹电光调制器。相关研究成果发表在国际期刊 ACS Applied Materials & Interfaces 上。虽然太赫兹技术具有优越的波谱特性和广泛的应用前景,但其工程应用还严重受制于太赫兹材料与太赫兹元器件的开发。其中,围绕智能化场景应用,采用外场对太赫兹波进行主动、智能化的控制是这一领域的重要研究方向。瞄准太赫兹核心元器件这一前沿研究方向,强磁场中心磁光团队继2018年发明一种基于二维材料石墨烯的太赫兹应力调制器[Adv. Optical Mater. 6, 1700877(2018)]、2020年发明一种基于强关联氧化物的太赫兹宽带光控调制器[ACS Appl. Mater. Inter. 12, 48811(2020)]、2021年发明一种基于声子的新型单频磁控太赫兹源[Advanced Science 9, 2103229(2021)]之后,选择关联电子氧化物二氧化钒薄膜作为功能层,采用多层结构设计和电控方法,实现了太赫兹透射、反射和吸收多功能主动调制(图a)。研究结果表明,除了透射率和吸收率,反射率和反射相位也可被电场主动调控,其中反射率调制深度可以达到99.9%、反射相位可达~180o调制(图b)。更为有趣的是,为了实现智能化的太赫兹电控,研究人员设计了一种具有新型“太赫兹-电-太赫兹”的反馈回路的器件(图c)。不管起始条件和外界环境如何变化,该智能器件可以在30秒左右自动达到太赫兹的设定(预期)调制值。(a)基于VO2的电光调制器示意图(b)透射率、反射率、吸收率和反射相位随外加电流变化(c)智能化控制原理图这一基于关联电子材料的主动、智能化太赫兹电光调制器的研发为太赫兹智能化控制的实现提供了新的思路。该工作获得了国家重点研发计划、国家自然科学基金、强磁场安徽省实验室方向基金的支持。文章链接:https://pubs.acs.org/doi/10.1021/acsami.2c04736
  • 德图邀您参加免费的锅炉采暖和空调制冷培训课程
    2017 年德图经典的免费“锅炉采暖”和“空调制冷”培训课程将再次拉开帷幕!与去年类似,今年仍将采取“精品小班”的授课形式,保持较高的实践与样机操作的比重!现诚邀您的参加!空调制冷培训内容: 空调通风及制冷理论知识;测量调控实践;德图产品系列培训对象: 空调制冷工程商、生产厂家、安装及售后维修人员培训时间: 2017 年5 月16- 17 日,为期两天锅炉采暖培训内容: 燃气壁挂炉,燃气落地锅炉和燃气燃烧机,燃气采暖系统,德图产品系列培训对象: 民用锅炉、商用锅炉、或是壁挂炉,以及其他燃气锅炉的生产厂家、安装及售后维修人员。培训时间: 2017 年9 月7- 8 日,为期两天。每班满员人数为30 人;如报名人数超出此限额,我们将安排第二期,时间顺延至2017 年10月17-18 日,届时德图人员将另行通知您。培训地点均为北京建筑大学-中法能源培训中心(北京市西城区展览馆路1 号),本次培训由北京建筑大学与法国马克西米利尔佩雷学院合作创办,汇集了目前欧洲最先进的能源设备及先进的能源培训技术,在国内能源设备专业领域处于领先地位。本次培训为免费课程,每个公司每期培训限1 个免费参加的名额(如有2 个或以上的参加人员需求,德图将对免费名额以外的人员,另行收取1500 元/人)。德图公司将承担培训学费,并为北京地区以外的参会人员免费提供两晚的住宿(即培训开始的前一晚和培训首日当晚的住宿),并提供培训期间的膳食!参加培训的来回交通费用,须由贵司自行承担!如有疑问,欢迎拨打400-882-7833 咨询。本次锅炉培训是针对较小型的民用和商用锅炉,不适合大型/工业锅炉用户,报名前请确认!参加培训请点击
  • 基于步进扫描的光调制反射光谱方法及装置获国家专利授权
    近日,一种“基于步进扫描的光调制反射光谱方法及装置”近日获得国家知识产权局专利授权。该专利由中科院上海技术物理研究所邵军、陆卫等科研人员发明。该装置包括傅立叶变换红外光谱测量系统、作为泵浦光源的激光器、以及联结傅立叶变换红外光谱仪中探测器与电路控制板的锁相放大器和低通滤波器,置于样品与激光器之间光路上的斩波器,从而使连续泵浦激光变为调制激光,并馈入锁相放大器的输入参考端来控制锁相。该方法使用上述装置进行光调制反射光谱测量,包括消除泵浦光的漫反射信号以及泵浦光产生的光致发光信号的干扰;消除傅立叶频率和增强中、远红外波段微弱光信号的探测能力三个功能。经过对分子束外延生长GaNxAs1-x/GaAs 单量子阱样品和Ga1-xInxP/AlGaInP多量子阱材料的光调制反射光谱实际测试。表明本发明显著提高探测灵敏度和光谱信噪比,并具有快速、便捷的优点,特别适用于中、远红外光电材料微弱光特性的检测。
  • 滨松推出1550nm光利用率98%的新型空间光调制器
    在光通信的研究中,所涉及的波段除了可见光中的多个波长(如780nm)外,在红外波段,1550nm是最多被选择的。由于光纤中使用的玻璃材料的吸收特性,1550nm光在传输过程中能量损失是最小的,这样就能达成更远距离的光通信。除了对光本身性能的利用外,光通信还要求光路中的每一个元件,在保证功能的前提下,最大程度地控制光能损失。光通信研究典型光路空间光调制器中的光能损失想要光携带信息传输向远方,需要对其进行编码。空间光调制器(LCOS-SLM)就是可以通过相位调制来实现这一操作的元件。待编码的激光束穿过空间光调制器透明的玻璃基板层和ITO电极层,到达液晶层完成相位的调制(电压→液晶分子排列方向→折射率→光程→相位)后,经过反射面的反射进行输出。这时候的光,就已经是满载信息的了。 当然,作为光路中的其中一环,"高性能、低光能损失"也是光通信对空间光调制器提出的苛刻要求。光在空间光调制器的透明的玻璃基板层和ITO电极层其实损失都较小,而液晶层为主要的的工作层,调制带来的损耗难以避免。在这种情况下,提高反射面的反射率,便是控制元件整体光能损失的最有效方法。目前空间光调制器反射层主要有两类:传统的铝制反射层和介质镜。其中,后者的反射率是明显高于前者的。虽然在可见光波段高反射率介质镜已经得以应用,但受材料限制,适用于1550nm的介质镜始终是业界的技术瓶颈。因此,大部分针对此波长的空间光调制器,一直以来采用的都是传统材料(铝)的反射层,光利用率也只在80%左右。155nm处光利用率达98%的新型空间光调制器滨松成功突破了材料和工艺难题,自主开发出了可应用于1500nm-1600nm波段的介质镜。利用此项独家的专利技术,研发了在1550nm附近超高光利用率(97%)的全新空间光调制。 目前市面上1550nm附近各主要SLM产品的光利用率对比除了1550nm高反射率外,滨松此款新型空间光调制器在上升和下降时间方面,较以往产品也有了明显的提升,灵敏度进一步改善。新品现在可以接受预定咨询,而针对光通信用可见光波段,滨松同样可以提供丰富的产品选择。 滨松1550nm高反射率空间光调制器基本参数一览整体方案提供:InGaAs红外相机+空间光调制器针对调制后的光斑观察和分析,滨松也可提供针对1550nm附近波段的高灵敏InGaAs红外相机,可搭配空间光调制器,应用于光通信研究中。
  • 基于177.3nm激光的真空紫外光调制反射光谱仪
    CPB仪器与测量栏目最新发文:基于177.3nm激光的真空紫外光调制反射光谱仪,此装置将有望成为高效无损地探测宽禁带半导体材料电子能带结构高阶临界点的有效光学表征手段,并广泛用于超宽禁带半导体材料及其异质结的电子能带结构研究。光调制反射光谱是通过斩波器周期性地改变泵浦光源对样品的照射来测量半导体材料反射率相对变化的一种光谱分析技术。由于所测差分反射率作为能量的函数在材料电子能带结构的联合态密度奇点附近表现出明显的特征,光调制反射光谱已成为研究具有显著电子能带结构的半导体、金属、半金属及其微纳结构和异质结等材料联合态密度临界点的重要实验技术之一。光调制反射光谱中所使用的泵浦激光的光子能量一般要高于被研究材料的带隙,随着第三代宽禁带与超宽禁带半导体材料相关研究和应用的不断深入,需要更高能量的紫外激光作为光调制反射光谱的泵浦光源。目前国际上已报道的光调制反射光谱系统中,配备的泵浦光最大光子能量约5 eV,尚未到达真空紫外波段。因此,迫切需要发展新一代配备高光子能量和高光通量的泵浦光源的光调制反射光谱仪,使其具备探测超宽带隙材料的带隙和一般材料的超高能量临界点的能力。中科院理化所研制的深紫外固态激光源使我国成为世界上唯一一个能够制造实用化深紫外全固态激光器的国家,已成功与多种尖端科研设备相结合并取得重要成果。此文详细介绍了由中科院半导体所谭平恒研究员课题组利用该深紫外固态激光源搭建的国际上首台真空紫外光调制反射光谱仪(图1)的系统设计和构造,将光谱仪器技术、真空技术、低温技术与中科院理化所研制的177.3 nm深紫外激光源相结合,同时采用双单色仪扫描技术和双调制探测技术,有效避免了光调制反射光谱采集中的荧光信号的干扰,提高了采集灵敏度。该系统将光调制反射技术的能量探测范围从常规的近红外至可见光波段扩展至深紫外波段,光谱分辨率优于0.06 nm,控温范围8 K~300 K,真空度低至10-6 hPa, 光调制反射信号强度可达10-4。通过对典型半导体材料GaAs和GaN在近红外波段至深紫外波段的光调制反射信号的测量对其探测能力进行了性能验证(图2)。此装置将有望成为高效无损地探测宽禁带半导体材料电子能带结构高阶临界点的有效光学表征手段,并广泛用于超宽禁带半导体材料及其异质结的电子能带结构研究。该系统基于中科院半导体所承担的国家重大科研装备研制项目“深紫外固态激光源前沿装备研制(二期)”子项目“深紫外激光调制反射光谱仪”,目前已经初步应用于多种半导体材料在深紫外能量范围内的能带结构和物性研究,并入选《中国科学院自主研制科学仪器》产品名录,将有望在推动超宽禁带半导体材料的电子能带结构研究、优化超宽禁带光电子器件的性能方面发挥重要作用。图1. 深紫外激光调制反射光谱仪图2. 177.3 nm(7.0 eV)激光泵浦下的GaAs在1.2 eV至6 eV内的双调制反射光谱及对应能级跃迁
  • 美国Meadowlark公司推出亚毫秒响应速度的纯相位液晶空间光调制器!
    美国Meadowlark公司推出亚毫秒液晶空间光调制器!目前市面上的纯相位液晶空间光调制器的液晶响应速度均处于50Hz以内(0-2π),无法满足高速调制客户的使用要求。 为满足自适应、通信等领域的用户高速调制的需求,美国Meadowlark公司(原BNS)于2016年推出了目前市面上唯一一款兼具有高液晶响应速度(0-2π)(285Hz-667Hz @ 532nm;166Hz-250Hz@1550nm)、高衍射效率(90-95%)、高填充因子(100%)、的纯相位液晶空间光调制器。 美国Meadowlark Optics公司的超高速液晶空间光调制器采用瞬态向列液晶效应技术(Transient Nematic Effects)、相位环绕技术(Phase Wrapping)、局部校准技术(Regional LUTs),实现了超高速的液晶响应速度。这三项技术均已申请专利。 瞬态向列液晶效应技术超高速液晶空间光调制器与高速型的空间光调制器响应速度对比上海昊量光电设备有限公司可以给客户提供样品试用,以及相关的技术支持。您可以通过我们的官方网站(http://www.auniontech.com/n/news/v_The_Fastest_Liquid_Crystal_Spatial_Light_Modulator.html)了解更多的液晶空间光调制器产品信息,或直接来电咨询021-34241962。
  • 合肥研究院采用超快技术构筑GHz高频光弹调制器
    近期,中国科学院合肥物质科学研究院强磁场科学中心盛志高研究团队等采用超快时间分辨泵浦探测技术,在SrTiO3晶体中实现了由超快相干声子诱导的GHz频率的双折射调制,其工作频率远超现今商业光弹调制器的截止频率。相关研究成果发表在《先进科学》(Advanced Science)上,并申请了发明专利。具有双折射效应的特定材料能塑造光。基于双折射调制技术工作的光弹调制器是现代光学技术的核心元件之一。目前的光弹调制器多借助压电材料提供的机械应力,来驱动光弹晶体实现双折射调制,其工作频率受限于光弹/压电晶体的谐振频率,一般为kHz量级。随着高频信号处理和高频光通信的需求不断涌现,亟需研发具有GHz工作频率的双折射材料与调制技术。针对这一现状,盛志高课题组与合作者经过大量材料筛选与技术探索,借助强磁场磁光实验室中的超快泵浦-探测系统,在钙钛矿SrTiO3晶体中发现了由超快相干声子诱导的GHz光学双折射效应,并实现了对其进行光学操控。研究团队在换能器/SrTiO3异质结构中,使用超快激光脉冲产生了具有低阻尼的相干声学声子。经过系列材料筛选,研究发现LaRhO3半导体薄膜作为换能器层能获得相对较高的光子-声子能量转换效率。进一步,研究在优化的异质结构中发现,超快相干声学声子可以在应力敏感的SrTiO3晶体中诱导出具有GHz频率的光学双折射。同时,研究团队通过双泵浦技术实现了对相干声子及其诱导的GHz双折射的光学操纵。这揭示了超快光学双折射调制的一种机制,并为GHz高频声光器件的应用奠定了技术基础。研究工作得到国家重点研发计划、国家自然科学基金、强磁场安徽省实验室方向基金和合肥大科学中心高端用户培育基金的支持。左图:激光诱导的声学声子激发SrTiO3晶体GHz双折射原理示意图;右图:不同晶体取向的SrTiO3晶体GHz双折射调制。
  • 雪景科技发布全二维气相色谱气流调制器产品
    2019年8月23日,雪景科技在第二届全二维色谱技术与应用大会上正式发布了全新的气流调制器 QFM1200 QFM1200系列气流调制器采用雪景科技发明的准止流调制技术(Quasi-stop flow modulation), 通过周期性将进样口直接联通二维柱,(近似)停止一维流动并产生较大的二维流量,将一维馏出物快速释放至二维,实现调制效果。 QFM1200开创了一种全新的气流调制原理,继承了气流调制的优势,包括体积小巧,无需制冷剂,沸点范围宽,运行稳定可靠,重复性好,无需维护等。同时进一步简化了结构和附属设备,省去了目前气流调制技术常用的额外气流控制组件和微流路元件,显著降低了系统复杂度。可以在常规色谱平台上更简便、更快捷、更经济地升级到全二维气相色谱系统。雪景科技同时推出了针对不同应用的多种柱系统配置和优化色谱方法,当方法确定后可长期不间断稳定运行,在常规分析及便携式现场分析领域具有广阔的应用前景。
  • 科学岛团队研发出一种光控太赫兹相位调制器
    近日,中科院合肥研究院强磁场中心磁光团队成功研发了一种主动的太赫兹相位调制器。相关研究成果发表在ACS Applied Electronic Materials 国际期刊上。   虽然具有优越的波谱特性和广泛的应用前景,太赫兹技术的工程应用还严重受制于太赫兹材料与太赫兹元器件的开发。为了满足不同的应用要求,太赫兹调制器件成为这一领域的研究重点。   强磁场中心磁光团队聚焦太赫兹核心元器件这一前沿研究方向,继2018年发明一种基于二维材料石墨烯的太赫兹应力调制器【Adv. Optical Mater. 6, 1700877(2018)】、2020年发明一种基于强关联氧化物的太赫兹宽带光控调制器【ACS Appl. Mater. Inter.12, 48811(2020)】、2022年发明一种基于关联电子材料的主动、智能化太赫兹电光调制器【ACS Appl. Mater. Inter. 14, 26923-26930, (2022)】之后,与固体所苏付海团队合作,经过大量材料筛选与技术探索,发现氧化物晶体NdGaO3可以使太赫兹发生明显相位移动。研究结果表明,NdGaO3晶体在100-400K下可以实现~94°的相位移动,相位移动大小几乎线性依赖于太赫兹频率,并且具有晶体各向异性。采用光控的方式,研究团队实现了太赫兹相位的主动调制,即在20 J/cm2的光照激发下,NdGaO3晶体可以实现稳定的相位调控~78°,通过改变光照激发强度,可以实现多态的太赫兹相位移动。该结果表明NdGaO3晶体是太赫兹移相器的合适候选材料,其灵敏度和稳定性有望在新型太赫兹光学器件中得到良好的应用。   该工作获得了国家重点研发计划、国家自然科学基金,省级重大科技专项计划中国科学院前沿科学重点研究项目的支持。(a)基于NdGaO3的光控相位调制器示意图(b)相位移动随太赫兹频率和光照开关的变化。
  • 雪景科技携固态热调制器亮相PEFTEC大会
    p  两年一度的石油环境检测技术大会(PEFTEC, Petroleum, Refining, Environment Monitoring Technologies Conference)于2017年11月29-30日在比利时著名港口城市安特卫普召开。本次大会主题包括实验室检测、石油化工产品分析,环境排放监测、便携式与在线采样技术、标准物质与方法、质量控制等。吸引了全球石化炼油、环境检测、以及分析仪器行业的数百名专家学者和仪器厂商参加。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/dc6bcff0-da1b-47f5-9948-ebbfc43c649f.jpg" style="" title="IMG_20171129_100536_副本.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/c619152a-5e82-4c70-9f7f-62dd0963efdd.jpg" style="" title="IMG_20171130_141622_副本.jpg"//pp  雪景科技作为唯一一家中国仪器厂商参加本次大会,展出了公司自主开发的基于半导体制冷技术的全二维气相色谱热调制器SSM1800。全二维气相色谱是一种具有强大分离能力的分析技术,可用于石油化工、环境检测、食品香料等行业中复杂样品的分离分析。相比传统气相色谱,全二维技术可极大提高峰容量和分辨率,一次可同时分析上千种化合物。这项技术在欧洲和北美应用较为广泛,很多实验室都有配备,积累了丰富的实用经验。但传统全二维技术需要使用液氮等制冷剂,运行成本较高,而且附属设备多,操作维护也比较复杂。主要集中于高端实验室。雪景科技开发的SSM1800采用革命性的调制方式,彻底摈弃了制冷剂使用,其独特的设计和方便简捷的操作颠覆了人们对全二维气相色谱技术的认知,吸引了广大参会的色谱应用者前来观看咨询。/pp  在了解了固态热调制器的工作原理和实际效果后,很多用户产生了浓厚的兴趣。他们表示,“SSM1800是一个令人兴奋的产品。它的出现极大简化了全二维分析的操作和维护过程,降低了这项高端分析手段的技术门槛。由于全二维技术在石化和环境行业中针对复杂体系出色的分析效果,固态热调制技术将对今后全二维气相色谱在相关应用中的普及推广起到了非常积极的作用。”/pp  strong雪景电子科技(上海)有限公司简介/strong/pp  雪景科技(J& X Technologies)是一家由海归博士创立的初创公司,致力于新型全二维气相色谱技术的设计、研发、生产、和应用。公司总部设在上海,另外在南京、北京设有分支机构。雪景科技自主开发的全球首款不使用制冷剂的固态热调制器SSM1800于2016年面世,目前已应用于国内多家高校、科研机构和企事业实验室,受到用户的广泛好评。同时雪景科技积极开拓海外市场,目前与一些国外知名分析实验室开展合作,共同推广方便易用的全二维气相色谱技术,实现其在普通实验室和常规分析上的普及应用。/p
  • 科学岛团队在时间分辨频率调制磁旋光谱探测技术方面取得新进展
    近日,中国科学院合肥物质院安光所张为俊研究员团队在时间分辨频率调制磁旋转光谱探测技术方面取得新进展,相关研究成果以《用于OH自由基时间分辨测量的高带宽中红外频率调制磁旋转光谱仪》为题发表于美国光学学会(OSA)出版的Optics Express上。   羟基(OH)自由基是大气中最重要的氧化剂,启动了对流层大气中绝大部分的氧化反应。OH自由基浓度低、寿命短,实现高灵敏快速检测对于深入研究其化学反应动力学和机理、厘清大气污染成因,具有极为重要的科学和应用意义。   团队赵卫雄研究员和程飞虎博士等人发展的用于OH自由基高灵敏快速测量的频率调制磁旋转光谱技术具有高时间分辨、高灵敏度、选择性好的特点,特别适合短寿命自由基和中间体的动力学研究。实验中,针对266nm脉冲激光产生OH自由基,研究人员使用该技术测量了2.8微米附近的时间分辨光谱信号,经过3次脉冲平均,OH的检测线达到6.8×10 8 分子/立方厘米 (1σ, 0.2 ms),100次平均后,检测线可进一步下降到8.0×10 7 分子/立方厘米。该技术不仅适用于OH自由基,也适用于其它顺磁性瞬态分子,将为自由基动力学研究提供一种新的重要测量手段。   本研究得到国家自然科学基金、中国科学院青年创新促进会、中国科学院合肥物质科学研究院院长基金资助。频率调制磁旋转光谱装置原理图OH自由基浓度时间衰减曲线(a)OH自由基浓度监测;(b)OH自由基浓度的艾伦偏差
  • 多频温度调制DSC技术TOPEM网络研讨会(Webinar)
    2010年06月21日 15:00[中文]  温度调制DSC技术(TMDSC)通常用于研究重叠的热效应,它不仅可以在大学或研究所中应用,而且可以用于工业研究。TMDSC方法可以将温度依赖性的过程和时间依赖性的过程进行分离。  TOPEM的基本思路是在等温或动态的温度程序上叠加不同周期的随机温度脉冲。目前TMDSC技术通常所使用的方法为在等温或升温程序上叠加正弦的温度调制,与之对比,TOPEM是一种新的高级多频温度调制技术,它使用许多不同的频率(多频)。  TOPEM的优点是:  1. 一次测试-在比较宽的频率范围内同时测试样品的性质随时间或温度变化的函数。  2. 从脉冲响应中测定cp-非常准确地测定准稳态比热容  3. 同步高灵敏度和高分辨率-可以进行低能转变测试和/或重叠的温度依赖性效应测试。  4. 分离可逆和不可逆过程-可以非常准确地测定热容,甚至在效应重叠的情况下。  5. 简化曲线解析-可以非常容易地将频率依赖性效应(例如玻璃化转变)和非频率依赖性效应(例如失水)进行分离。  6. 扩展PEM技术-消除仪器影响,扩大测试频率范围。  得益于频率信息,您可以很容易地将随频率变化的效应与非频率依赖的效应进行分离。这大大简化了具有重叠热效应的样品的曲线解析。同时,TOPEM可以测试非频率依赖的准稳态比热容。  网络研讨会(webinar)  您注册参加网络研讨会后,您将获得有关这种创新性技术的必要信息。  中文讲解之后,您可以与梅特勒托利多的热分析应用技术专家直接讨论您的问题。  注册参加网络研讨会
  • 111万!广西大学水下调制叶绿素荧光仪等采购项目
    项目编号:GXZC2022-J1-002014-KLZB项目名称:专用仪器设备采购采购方式:竞争性谈判预算金额:111.0000000 万元(人民币)最高限价(如有):111.0000000 万元(人民币)采购需求:水下调制叶绿素荧光仪1台(预算金额:人民币590000元),珊瑚原位呼吸代谢测量仪1台(预算金额:人民币520000元)。简要技术需求或者服务要求见附件(具体内容详见本竞争性谈判文件)。合同履行期限:自签订合同之日起90日内整体完成供货安装调试。本项目( 不接受 )联合体投标。
  • Angew成果|离子淌度调制提升空间脂质组分析的结构解析能力
    离子淌度调制提升空间脂质组分析的结构解析能力空间脂质组分析可揭示脂质在生物组织或器官中的含量及空间分布,是基础生物学和疾病研究的重要技术。空间脂质组分析的底层技术一般为质谱成像,其具有免标记、高空间分辨率和高灵敏度等优势,可同时表征大量脂质分子在生物组织中的空间分布。然而,脂质和代谢物的质谱成像主要依赖于质量测定,对分子结构的表征能力不足,常由于脂质和代谢物异构体的存在而导致分析偏差乃至错误。在质谱成像过程中,单个像素点的样品量和分析时间极为有限,对逐个离子串联分析会导致分析时间长和灵敏度降低等问题,因此如何在质谱成像的同时实现分子的结构解析一直是分析科学的挑战。此外,在成像过程中丰度、离子化效率各异的待分析离子同时进入质谱,存在显著离子抑制等问题,给中低丰度离子的检测和结构鉴定造成困难。近日,清华大学精密仪器系的欧阳证、马潇潇教授团队开发了一种多目标脂质结构质谱成像技术,通过离子淌度技术对待分析离子的快速时空聚焦和分离,在不增加质谱成像时间的情况下,显著提升了空间脂质组分析的结构解析能力。该技术采用数据非依赖采集方法,利用离子淌度分离对单像素点的母离子强度进行“调制”,将淌度分离后的母离子不经质量隔离而完全碎裂 (Mobility modulated sequential dissociation, MMSD)。根据母离子及相应子离子组成随淌度时间不断变化的特点,发展了智能谱图解卷积算法,实现40多种脂质的结构解析和20种脂质在组织上的空间可视化,包括磷脂酰胆碱、磷脂酰乙醇胺等。具备结构解析功能的质谱成像可实现传统空间脂质组分析难以实现的脂质异构体结构鉴定和空间可视化。在鼠脑组织中,该技术揭示了多种脂质异构体的差异性乃至互补性空间分布,如 PE O-18:2_20:4、PE O-16:0_22:6 和 PE 16:1_22:4、PE 16:0_22:5等。在对人肝癌的组织切片分析中,该方法揭示了磷脂酰乙醇胺 PE 36:2的一组异构体(PE 18:1_18:1、PE 18:0_18:2)在癌组织和癌旁组织中的特异性分布,并且PE 18:1_18:1集中分布于癌组织,可用于精准划分肿瘤组织边界,表明该技术可在更深层结构维度上揭示脂质癌症生物标志物。这项工作所提出的多目标脂质结构解析及空间成像方法,从原理上同样适用于多肽、代谢物等生物分子的空间可视化及结构解析。结构解析赋能的脂质质谱成像,是空间脂质组学技术发展的题中之义,也是精准脂质组分析和功能脂质组研究必不可少的技术基础。该技术的提出,为空间结构脂质组分析提出了一种解决方案,也有望促进质谱成像实现从质量测定到结构鉴定的研究范式转换。 论文作者:论文第一作者是清华大学博士研究生钱耀,通讯作者是清华大学精密仪器系欧阳证、马潇潇教授。清华大学郭翔宇博士和清华大学长庚医院王韫芳研究员对技术建立和生物医学应用做出了重要贡献。清华大学精仪系、清华大学精密测试技术与仪器国家重点实验室为第一作者单位。本项目得到国家自然科学基金委重点、面上项目及重点研发计划(前沿生物技术)青年科学家项目(2022YFC3401900)资助。 论文链接:https://onlinelibrary.wiley.com/doi/10.1002/anie.202312275
  • 科学家研制出稳定且双折射可调的深紫外液晶光调制器
    近日,中国科学院院士、中科院深圳先进技术研究院碳中和技术研究所(筹)所长成会明与副研究员丁宝福团队,联合清华大学深圳国际研究生院教授刘碧录团队、中科院半导体研究所研究员魏大海团队,首次发现了二维六方氮化硼(h-BN)液晶具有巨磁光效应,其磁光克顿-穆顿效应高出传统深紫外双折射介质近5个数量级,进而研制出稳定工作在深紫外日盲区的透射式液晶光调制器。   双折射是引起偏振光相位延迟的一个基本光学参数。有机液晶因双折射可受外场连续调制,而被广泛用作光调制器的核心材料。然而,传统有机液晶在深紫外光照射下吸收强且不稳定,液晶光调制器仅能工作在可见及部分红外光波段,无法工作在紫外及深紫外波段。同时,透射式深紫外光调制器在紫外医学成像、半导体光刻加工、日盲区光通讯等领域颇具应用前景。因此,发展一种在深紫外光谱区稳定、透明度高及具有场致双折射效应的新型液晶材料,有望推进透射式深紫外液晶光调制器的发展。   科研团队研制出一种基于二维六方氮化硼无机液晶的磁光调制器。研究采用的氮化硼二维材料具有极大的光学各向异性因子(6.5 × 10-12C2J-1m-1)、巨比磁光克顿-穆顿系数(8.0 × 106T-2m-1)、高循环工作稳定性(270次循环工作后性能保留率达99.7%)和超宽带隙等优点,同时二维六方氮化硼是通过“自上而下”的高粘度纯溶剂辅助研磨法剥离制备而成。由于超宽的带隙,二维六方氮化硼液晶在可见、紫外和部分深紫外光谱区具有颇高透明度。在磁场作用下,基于二维六方氮化硼液晶的磁光器件在正交偏振片下呈现出明显的磁控光开关效应。   科研人员通过观察入射光偏振态与磁场作用下液晶透射率关系的实验揭示了二维六方氮化硼在外场作用下顺磁场的排布方式。在入射光的偏振态被调整为平行和垂直于磁场的两种状态下,后者呈现较高的光透射率,间接印证了二维六方氮化硼纳米片平行于磁场方向排布。该研究针对层状二维六方氮化硼薄膜的磁化率各向异性测试揭示了面内易磁化方向,进一步证实了二维六方氮化硼纳米片顺磁场排布的物理机制。结合二维氮化硼纳米片的极大的光学各向异性,研究发现了二维六方氮化硼液晶的巨磁致双折射效应。   该研究选用波长处于深紫外UV-C日盲区的266 nm激光,测试二维氮化硼液晶在该光谱区的光学调制性能。通过开启和关闭0.8特斯拉的磁场,研究实现了该调制器在深紫外光波段的透明与不透明两种状态之间的切换。经过270个不间断开关循环测试后,性能的保持率达99.7%。   鉴于二维材料家族成员庞大、带隙覆盖宽,基于无机超宽带隙二维材料液晶的光调制器的光谱覆盖范围有望向更短深紫外波段延伸,促进液晶光调制器在深紫外光刻、高密度数据存储、深紫外光通讯和生物医疗成像重要领域的应用。   相关研究成果以Magnetically tunable and stable deep-ultraviolet birefringent optics using two-dimensional hexagonal boron nitride为题,发表在Nature Nanotechnology上。研究工作得到国家自然科学基金、科技部、广东省科学技术厅、深圳市科技创新委员会等的支持。六方氮化硼无机二维液晶及其磁控光开关效应 六方氮化硼无机二维液晶的磁致排列和磁致双折射效应表征基于六方氮化硼无机二维液晶的深紫外光调制器性能研究及对比
  • 法国JY推出新型MM-16相调制型椭圆偏振光谱仪
    HORIBA Jobin Yvon, 薄膜部推出了新型MM16高精度,高灵敏,低价格的相调制椭圆偏振光谱仪。 其采用液晶调制技术,2048CCD采集光谱,全谱采集时间仅2s钟,同时椭偏仪在可见光波段采用4× 4的Mueller 矩阵进行数据分析,可以精确的对测量复杂折射率材料进行分析,可广泛应用在平板显示,生物,包装和半导体领域。 目前HORIBA Jobin Yvon 在ex-situ和in-situ领域有着一系列的椭偏仪产品,UVISEL,MM16,DigiSel,PZ2000。其组成了一个高性能的椭偏家族。同时HJY公司还有多种配件可选以扩展椭偏仪的功能,如自动样品台,微光斑反射仪,液体池,高低温样品台等。基于Windows的强大软件工作平台DeltaPsi2使椭偏的数据分析变得更加的简单直观, 具体情况请查阅网站 www.jobinyvon.com 电话:021-64479785传真:021-64479480E-Mail:jjhjy@jobinyvon.cn
  • GB 19644《食品安全国家标准 乳粉和调制乳粉》(征求意见稿)与2010版比对
    2023年5月10日,国家卫生健康委员会食品安全标准审评委员会秘书处发布《食品安全国家标准 食品营养强化剂 (6S)-5-甲基四氢叶酸,氨基葡萄糖盐》等5项食品安全国家标准(征求意见稿)意见的函,其中包含了《食品安全国家标准 乳粉和调制乳粉》(征求意见稿)(以下简称《征求意见稿》)。《征求意见稿》是对《食品安全国家标准 乳粉》(GB 19644-2010)(以下简称“2010版”)的修订,《征求意见稿》修订情况如下:1. 修改了标准名称标准名称由《食品安全国家标准 乳粉》修改为《食品安全国家标准 乳粉和调制乳粉》,在标准名称中增加了调制乳粉,更有利于调制乳粉适用标准的查找,在新标准中删除了规范性引用文件。2.术语与定义乳粉的定义中,将“以生牛(羊)”改为“以单一品种的生乳”,增加特色奶畜乳来源。“单一品种的”的限定,防止产品掺假。对乳固体含量提出了更高的要求,明确说明是“来自主要原料”中的。在调制乳粉的定义也改变为:以单一品种的生牛乳和(或)其全乳(或脱脂及部分脱脂)加工制品为主要原料,添加其他原料(不包含其他品种的全乳、脱脂及部分脱脂乳)、食品添加剂、营养强化剂中的一种或多种,经过加工制成的乳粉状产品,其中来自主要原料的乳固体含量不低于70%。3 .修订乳原料技术要求和检测方法感官要求:增加乳粉色泽要求“乳白色”;对乳粉的滋味、气味进行了修改,由“乳香味”修改为“乳滋味、气味”;将乳粉和调制乳粉的检验方法“取适量试样置于50mL烧杯中”改为“取适量试样置于干燥、洁净的白色盘(瓷盘或同类容器)中”,便于实际检验操作,同时增加“冲调后”的表述。理化指标:增加牦牛乳粉、调制牦牛乳粉、骆驼乳粉、调制骆驼乳粉、驴乳粉、调制驴乳粉、马乳粉和调制马乳粉的理化指标要求;将蛋白质、脂肪、水分的单位由“%”调整为“g/100g”;脂肪、复原乳酸度的检测方法更新。微生物限量:将原标准中的金黄色葡萄球菌、沙门氏菌等致病菌的限量要求修订为“致病菌限量应符合GB 29921的规定”;扩大微生物限量要求到牦牛乳粉、调制牦牛乳粉、骆驼乳粉、调制骆驼乳粉、驴乳粉、调制驴乳粉、马乳粉、调制马乳粉产品;菌落总数注释部分增加“如添加活菌,产品中活菌数应≥106CFU/g”的要求。此次征求意见稿没有再体现益生菌。此次修订后的标准文本,理化指标中乳粉杂质度指标要求≤16mg/kg;理化指标有效数字需要进行更正:调制驴乳粉蛋白质指标要求≥11.0g/100g;牛乳粉脂肪指标要求≥26.0g/100g,羊乳粉脂肪指标要求≥26.0g/100g,牦牛乳粉脂肪指标要求≥33.0g/100g,骆驼乳粉脂肪指标要求≥28.0g/100g,马乳粉脂肪指标要求≥10.0g/100g。4.新增产品标识要求产品应标明“乳粉”或“调制乳粉”。牛乳粉标识为“乳粉”或“奶粉”,其他奶畜来源的乳粉应标识奶畜品种;调制牛乳粉可标识为“调制乳粉”或“调制奶粉”,其他奶畜为主要来源的调制乳粉应标识奶畜品种。
  • 汽车空调制冷效果差?FLIR ONE Pro一招精准定位故障
    FLIR ONE Pro作为配合智能手机使用的专业级红外热像仪广泛应用在电气、暖通、汽车等行业今天小菲就来给大家说一个汽修师傅使用FLIR ONE Pro查找汽车设备中难以察觉的小故障案例!汽车空调外循环效果差本次案例是一辆2011款菲亚特博悦车,搭载1.4T发动机,累计行驶里程约为14.5万km。据车主反映,该车空调内循环制冷正常,但外循环制冷效果差。接车后测试发现外循环模式时的出风温度约为15℃,且无法降低,制冷效果差。切换至内循环模式,出风口温度逐渐降低,且能降低至3.4℃,制冷效果恢复正常。再切换至外循环模式,出风口温度逐渐升高至15℃左右。分析认为,正常情况下,内外循环相互切换时,只有内外循环控制风门动作,改变的只是进风方式,此时温度控制风门并不工作,可能是进风温度差别过大或空调风门控制混乱?为验证猜想,决定首先检查外循环模式时的进风温度。用FLIR红外热成像仪测量风窗玻璃下方,两侧车外进风口的进风温度,发现发动机室内的热量与驾驶人侧车外进风口处的热量相通,由此推断发动机室内的热空气被左侧车外进风口吸入了车内,使空调蒸发器处的热负荷过大,以致空调制冷效果差。车外进风口的温度状况根据温度异常处,找到故障原因打开发动机室盖,检查两侧车外进风口,对比发现左侧车外进风口附近的发动机室盖密封条破损,缺失了一部分,由此可知发动机室内的热空气是通过此处的缺口经由左侧车外进风口被吸入车内的。右侧车外进风口左侧车外进风口更换发动机室盖密封条后试车,空调外循环模式时的制冷效果恢复正常,故障排除。更换发动机室盖密封条FLIR ONE Pro:让故障检测更简单 汽车空调制冷出现问题,一般人很容易觉得是空调零部件出现问题,幸好通过FLIR ONE Pro,发现左侧车外进风口处的温度异常,及时更换发动机室盖密封条,避免造成更大的损失!FLIR ONE Pro手机红外热像仪小巧轻便,配合智能手机即插即用,非常方便!它能够测量介于-20°至400°C之间的温度,热灵敏度可检测到70mk的温差,支持最多3个点温仪和最多6个温度区域。FLIR ONE Pro的热分辨率高达19200,其采用VividIR图像处理技术,使您能够看到更多重要细节,因此可广泛应用在我们的日常工作生活中,比如检查电气面板、查找暖通空调故障、检测房屋水损问题等。
  • 美国MeadowlarkOptics公司推出全球响应速度最快的纯相位液晶空间光调制器
    摘 要:传统的液晶空间光调制器作为一种高单元密度的新型波前矫正器件, 一直受限于液晶的刷新速度,在许多的应用领域无法满足科研人员的需求。美国Meadowlark Optics公司20多年以来一直致力于研发高响应速度的空间光调制器,近期Meadowlark Optics宣布推出液晶刷新速度(0-2π)高达600Hz@532nm 500Hz@635nm的高速型SLM,其控制器的帧频为833Hz。 引 言:这款高速型液晶空间光调制器的分辨率为512x512,像素25um,开孔率:96%,通光口径:12.8x12.8mm 相信这款空间光调制器的出现,可以为天文自适应,生物显微自适应等对空间光调制器的刷新速度有较高要求的客户带来便利。此款产品由上海昊量光电独家代理。 液晶空间光调制器的工作原理Meadowlark Optics公司使用的液晶材料为超高速液晶,利用液晶的双折射效应及扭曲特性,当光进入双频液晶空间光调制器后,对应的O光和e光的折射率不同导致光束中的o光和e光分离。o光和e光在液晶空间光调制器中的传输速度不同,同时利用液晶的扭曲效应,在SLM两端施加不同的电压时液晶分子会发生不同角度的偏转,因此液晶空间光调制器可以对每一个像素点实现不同的相位调制(如下图所示)。 结论 高速型液晶空间光调制器以其液晶响应速度快,校正单元多(512*512)等特点受到越来越多的科研人员的青睐。目前在天文望远镜观测、大气湍流模拟、自适应光学算法模拟、眼底成像、双光子显微镜、超分辨显微成像等领域发挥着越来越重要的作用。此款产品由上海昊量光电独家代理。 关于我们:上海昊量光电设备有限公司专注于光电领域的技术服务与产品经销,致力于引进国外顶级光电器件制造商的技术与产品,为国内客户提供优质的产品与服务。我们力争在原产厂商与客户之间搭建起沟通的桥梁与合作的平台。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制