当前位置: 仪器信息网 > 行业主题 > >

铁磁颗粒

仪器信息网铁磁颗粒专题为您整合铁磁颗粒相关的最新文章,在铁磁颗粒专题,您不仅可以免费浏览铁磁颗粒的资讯, 同时您还可以浏览铁磁颗粒的相关资料、解决方案,参与社区铁磁颗粒话题讨论。

铁磁颗粒相关的资讯

  • 单颗粒ICP-MS应用 | 通用池技术消除铁纳米颗粒质谱干扰
    随着纳米颗粒在工业上的广泛应用,采用单颗粒模式电感耦合等离子体质谱法(SP-ICP-MS)分析金属纳米颗粒成为最有前途的技术之一。由于其高灵敏度、易用性和分析速度快等特点,ICP-MS是一种理想的技术,用于检测纳米颗粒的特性:无机成分、浓度、尺寸大小、粒度分布和聚集等。除了金和银纳米颗粒以外,零价铁纳米颗粒具有独特的化学特性和相对大的比表面积,更广泛应用于环境修复项目中,用于取出有机溶剂中氯、转化废料中有害化合物、降解杀虫剂和固定金属等。但不同于金和银纳米颗粒未受到基体干扰或常规质谱干扰问题,等离子体产生的信号ArO+对同样质量数(56)铁的最高丰度同位素(56Fe+丰度91.72%)形成严重干扰。消除这种干扰的最有效方式是采用氨气作为反应气的反应模式ICP-MS。已有的大多数SP-ICP-MS报道聚焦于无干扰的纳米颗粒,而这种反应模式SP-ICP-MS还未被广泛使用。本文将证明在反应模式SP-ICP-MS下,NexION通用池技术应用于测定纳米颗粒。实验所有分析采用NexION 350D型 ICP-MS (珀金埃尔默公司,谢尔顿,CT),操作条件见表1。用去离子水稀释金和铁纳米颗粒标准,分别在质量数197和56处测定。实验结果实验首先在标准模式下运行。接下来,为评价加入反应气对SP-ICP-MS分析的影响,相同溶液在反应模式下运行。图1显示了标准和反应模式SP-ICP-MS测定100nm金颗粒谱图。两个图相似结果表明,反应模式并未改善纳米颗粒测定能力,因为金可能与氨气不发生反应。图1.反应(a)和碰撞(b)模式下SP-ICP-MS测定100nm金粒子两种模式下实际金颗粒检测数量比较列于表2。该数据表明,两种模式下颗粒具有同样数量,表明使用反应模式对测量颗粒并不偏差。存在的高背景掩盖了铁纳米颗粒中56Fe+,标准模式下铁测量不能完成。反应模式下测定60nm氧化铁纳米颗粒溶液,结果列于图2。与图1a中反应模式下金谱图相比,二者相似。尽管碰撞模式同样具有去除干扰能力,但在不严重损失仪器灵敏度前提下,不能完全消除ArO+对56Fe+干扰,意味着纳米颗粒检测限将大大降低。碰撞模式下使用其它低丰度铁同位素是有可能的,但低丰度意味着纳米颗粒将不能被检测到。因此,高信噪比的氨气反应模式测定m/z56是铁纳米颗粒最佳选择。图2.SP-ICP-MS反应模式下测定60nm的铁氧化物颗粒谱图结论本工作证实了珀金埃尔默NexION系列ICP-MS反应模式具有测定铁纳米颗粒能力。因为,铁受到来源于等离子体的干扰,必须采用反应模式测定铁纳米颗粒,具有远超碰撞模式的优势。该工作可以扩展为其它受干扰的金属纳米颗粒,如钛、铬、锌或硅。想要了解更多详情,请扫描二维码下载完整的应用报告。
  • 西安交大《自然通讯》:百纳米级金刚石颗粒自驱动进入钢铁晶体
    近日,西安交通大学材料学院单智伟教授团队与材料创新设计中心团队合作,研究发现数十、甚至百纳米级别的金刚石颗粒可以在远低于钢铁熔点的温度下,以颗粒而非单个原子的形式,自驱动地进入钢铁晶体内部并且持续向内“行走”,最大行程可达数毫米且主体部分始终保持金刚石晶体结构。关于这一发现及其背后的物理机制的文章,以《纳米金刚石颗粒在铁晶体内部中的运动》(“Inward motion of diamond nanoparticles inside an iron crystal”)为题发表在《自然通讯》杂志上。西安交通大学为该工作的第一作者单位和唯一通讯单位,西安交通大学王悦存副教授、王旭东博士、丁俊教授为共同第一作者;西安交通大学单智伟教授和马恩教授为本文通讯作者;为该研究作出重要贡献的还有美国麻省理工学院李巨教授、西安交通大学张伟教授、沈阳理工大学段占强教授、贾春德教授和西安交通大学的梁倍铭硕士、黄龙超博士,范传伟工程师及博士研究生徐伟、刘章、郑芮,硕士研究生左玲玲等。该研究得到了国家自然科学基金委、西安交大青年拔尖人才计划、西安交通大学王宽诚青年学者等项目的支持。钢铁渗碳的历史可以追溯到两千年多年前,其主要过程是:外界碳源(固/液/气)在高温下分解为活性碳原子并逐渐渗入进钢铁,从而使低碳钢工件拥有高碳表面,再经淬火、回火处理,获得高硬度、高耐磨的表面。传统认知中,渗碳所用的碳源必须要先分解成活性碳原子,然后才能在浓度梯度驱动下,以单个原子的形式扩散进入铁晶格并间隙固溶其中,过饱和后以碳化物或石墨的形式析出。然而,进入的碳无法以最理想的强化相——金刚石出现。由此引发了一个科学上的创新思考:金刚石小颗粒有没有可能整体进入钢铁晶体中,并且保留金刚石结构。为验证这一大胆设想,研究团队以金刚石纳米颗粒和高纯铁及低碳钢为对象(图1a, b),利用原位透射电子显微镜对加热过程中金刚石纳米颗粒的运动过程进行实时观察:当表面附着有金刚石颗粒的钢铁被加热到一定温度后,其表面氧化膜首先发生分解,暴露出新鲜的铁原子。然后这些铁原子迅速向上扩散覆盖金刚石颗粒的表面,金刚石颗粒在毛细应力驱动下被快速“吞没”进钢铁基底中。冷却至室温后观察发现:金刚石颗粒不仅能够大量进入到钢铁内部(图1c),并且沉入深度可达到纳米金刚石颗粒自身尺寸的数千倍以上(毫米级)。图1d示意了整个进入过程。结合第一性原理计算、蒙特卡洛模拟及多维度表征,进一步揭示了纳米金刚石颗粒在钢铁晶体内部运动的微观机制:在铁的催化作用下,金刚石颗粒表面发生石墨化并部分溶解,在钢铁基底中及纳米金刚石颗粒周围分别形成长程和局部的碳浓度暨化学势梯度。在与此伴生的铁化学势梯度驱动下,金刚石周围的铁沿着金刚石和铁基底的界面不断上涌并形成一个向下局部应力,“推动”着金刚石向下前进。铁原子在金刚石颗粒表面的石墨层内的界面扩散,恰好为其远程迁移提供了快速通道(铁原子沿此通道向上迁移的速率得以高于铁晶格中碳原子向下运动的速率)。图1 (a)研究中所用的纳米金刚石粉的透射电镜表征;(b)纳米金刚石颗粒进入纯铁基底中的原位扫描观察;(c)纳米金刚石颗粒在铁内部的透射表征;(d)纳米金刚石自驱动进入钢铁基底的全过程及原理示意。由于纳米金刚石具有超高强度、热导率、化学稳定性与低热膨胀系数、低摩擦系数、超高等特点,是一种理想的金属强化粒子。基于上述发现,将纳米金刚石渗入进钢铁材料中,形成钢铁和金刚石的梯度复合材料,有可能大幅改善钢铁的表面性能,如硬度、导热性和耐磨性等。中国是最大的人造金刚石制造国,生产了世界上90%以上的人造金刚石,其中作为副产品的纳米金刚石粉的价格仅为~2000元/公斤。初步估算显示1公斤纳米金刚石粉能处理10吨的钢材(形成mm级的硬化层)。中国的钢铁年产量超过10亿吨,占世界总产量的一半以上,同时,中国也是钢铁的最大使用国,应用需求非常旺盛。该研究为钢铁材料的表面强化提供了新的思路和方法。文章链接:https://www.nature.com/articles/s41467-024-48692-5#citeas
  • 钢铁与炼焦化学工业新标准大幅度降低细颗粒物排放
    环境保护部公告公告 2012年 第43号关于发布《铁矿采选工业污染物排放标准》等8项国家污染物排放标准的公告  为贯彻《中华人民共和国环境保护法》、《中华人民共和国水污染防治法》和《中华人民共和国大气污染防治法》,防治污染,保护环境,保障人体健康,现批准《铁矿采选工业污染物排放标准》等八项标准为国家污染物排放标准,并由我部与国家质量监督检验检疫总局联合发布。  标准名称、编号如下:  一、铁矿采选工业污染物排放标准(GB 28661-2012).pdf  二、钢铁烧结、球团工业大气污染物排放标准(GB 28662-2012).pdf  三、炼铁工业大气污染物排放标准(GB 28663-2012).pdf  四、炼钢工业大气污染物排放标准(GB 28664-2012).pdf  五、轧钢工业大气污染物排放标准(GB 28665—2012).pdf  六、铁合金工业污染物排放标准(GB 28666-2012).pdf  七、钢铁工业水污染物排放标准(GB 13456—2012代替GB 13456-1992).pdf  八、炼焦化学工业污染物排放标准(GB 16171-2012代替 GB16171-1996).pdf  按有关法律规定,以上标准具有强制执行的效力。  以上标准自2012年10月1日起实施。  以上标准由中国环境科学出版社出版,标准内容可在环境保护部网站(bz.mep.gov.cn)查询。  自以上标准实施之日起,下列标准废止:  一、《钢铁工业水污染物排放标准》(GB 13456-92)  二、《炼焦炉大气污染物排放标准》(GB 16171-1996)  特此公告。  (此公告业经国家质量监督检验检疫总局陈钢会签)  二○一二年六月二十七日  主题词:环保 排放标准 钢铁 焦化 公告钢铁与炼焦化学工业排放标准发布 标准实施将大幅度降低细颗粒物排放量  中国环境报讯 环境保护部日前发布了7项钢铁工业污染物排放系列标准与《炼焦化学工业污染物排放标准》,这是继2011年《火电厂大气污染物排放标准》(GB13223-2011)之后,环境保护部再次发布对环境空气质量有重大影响的行业排放标准。  我国的钢铁和焦炭生产量连续多年世界第一,2011年我国粗钢产量为6.83亿吨,占世界总产量的44.75% 焦炭产量约4.28亿吨,占全球焦炭总量的62%左右。同时,钢铁和焦炭产能过剩矛盾突出,落后产能仍占有相当大的比例,行业污染物排放量大,是影响环境空气质量的重点行业。  与现行标准相比较,新标准有如下特点:  一是以系统标准加强环境管理。钢铁工业系列排放标准覆盖了铁矿采选、烧结(球团)、焦化、炼铁、铁合金、炼钢和轧钢等排放环节的全过程环境控制,增强了标准的可操作性,形成了一个系统的钢铁工业污染物排放标准体系。《炼焦化学工业污染物排放标准》涵盖了对所有焦炉及生产过程排污环节的环境管理。  二是污染物项目设置更加科学、全面。考虑主要污染物总量与行业特征污染物控制要求,钢铁工业系列排放标准增加了总氮、总磷、总铅、总铬、总汞等14项水污染物指标,其中11项为重金属和有毒污染物项目,以及二恶英、氮氧化物等5项大气污染物指标。《炼焦化学工业污染物排放标准》增加了多环芳烃(PAHs)等15项行业特征污染物指标。  三是提高了污染物项目的控制要求。新标准均大幅收严了烟尘、二氧化硫和化学需氧量的排放限值,新增了氮氧化物等污染物的排放限值,针对环境敏感地区制定了更严格的水和大气污染物的特别排放限值。对焦化行业产生的苯、氰化氢、酚类以及多环芳烃(PAHs)等对人体健康危害严重的有毒有害物质进行了严格控制。  四是明确了分步实施新标准的管理要求。对新建企业要求自2012年10月1日起实施新标准,对现有企业设置了过渡期,要求在2015年1月1日达到新建企业的污染控制水平。既考虑了新老污染源的区别,又考虑了技术进步和产业优化升级,体现了以环境保护优化经济发展的指导思想。  作为行业准入的门槛,新标准的实施将会进一步加快淘汰落后产能和企业间兼并重组的步伐,必将促使一批生产装备落后、资源能源消耗高、环境污染严重、小而弱的企业被淘汰出局,对推动钢铁和焦化行业经济结构调整和经济增长方式转变,促进工业生产工艺和污染治理技术进步具有积极意义。同时,新标准的实施将大幅度降低烟粉尘的排放量,特别是可吸入颗粒物(PM10)和细颗粒物(PM2.5)的排放量,极大促进城市环境空气质量的改善。《炼焦化学工业污染物排放标准》有利于充分利用WTO规则,积极应对国际贸易争端,保护我国的正当贸易和环境权益。
  • 湿法脱硫产生二次颗粒物的机理与治理方法
    p  湿法脱硫是中国燃煤烟气主要的脱硫方法,中国绝大多数的燃煤电厂,工业燃煤锅炉、采暖热水锅炉、烧结机、玻璃窑使用这种方法脱硫,每年脱除的二氧化硫高达数千万吨,大大减少了大气中的二氧化硫浓度,因而减少了酸雨和在大气中碱性物质与二氧化硫合成的硫酸盐颗粒物。/pp  但是,近年来,各地逐渐发现,大气中硫酸盐颗粒物在PM2.5中所占的比例显著升高,经常成为非采暖季大气中PM2.5的主要成分,很可能就是采暖季大气污染的罪魁祸首。从逻辑上讲,因为燃煤烟气大规模地脱硫,使得大气中二氧化硫的浓度降低了,在大气中合成的硫酸盐会大大降低。那么大气中这么多的硫酸盐是哪里来的?莫非是什么设备把硫酸盐排到了大气中?/pp  我们在一个燃煤烟气污染治理可行性研究的调查工作中发现,湿法脱硫工艺产生了大量极细的硫酸盐,排放到大气中。而同一时期,很多专业人士也发现了这个问题。某省的一位专业环保官员告诉我,这种湿法脱硫工艺产生的烟气颗粒物,还有一个俗称,叫“钙烟”。/pp  那么湿法脱硫工艺是如何产生极细的硫酸盐的?我下面试图用科普方式来解释。/pp  燃煤烟气中的主要大气污染物是颗粒物、二氧化硫和氮氧化物。当然还有一些次要颗粒物,如汞等重金属。一些特殊的燃煤或固体燃料的燃烧过程如烧结机和垃圾焚烧,还会产生其它的污染物,如氟化氢、氯化氢、二恶英等,篇幅所限本文暂不涉及。/pp  大部分燃煤烟气污染物减排的主要任务就是除尘(去除颗粒物)、脱硫(去除二氧化硫)和脱硝(去除氮氧化物)。/pp  一般来说,在烟气污染物减排过程中脱硝是第一道工艺,因为除了低温脱硝工艺外,一般的脱硝工艺采用锅炉内(900~1100℃)的高温脱硝方法——非选择性催化还原法(SNCR),或者锅炉外(300~400℃)的中温选择性催化还原法(SCR)。这两种方法都需要加氨水或尿素水作为还原剂。氨逃逸就在此时发生,氨逃逸量与氨喷射和控制技术有关,同时也与要求氮氧化物脱除的排放上限成反比。在技术相同的情况下,要求排放的氮氧化物越少,氨的使用量就越多,逃逸量也就越多。氨逃逸会在湿法脱硫环节惹麻烦。/pp  脱硝后,就开始进行烟气的换热降温,以回收烟气中的热量。一般先通过省煤器,将锅炉的进水加热,而后再经过空气预热器,将准备进入到锅炉里燃烧煤炭的空气加热,经过这两道节能换热过程后,烟气的温度下降到100℃左右,就开始进入第二道工序,除尘,即去除颗粒物,一般采用静电除尘或袋式除尘工艺。如果设计合理,设备质量合格,一般情况下,静电除尘器可以将烟气中的颗粒物浓度降至5毫克/立方米以下,袋式除尘器甚至可以将烟气中的颗粒物浓度降至1毫克/立方米以下。今天,除尘技术已经非常成熟。/pp  烟气经过除尘后,就开始了第三道减排工艺,脱硫。湿法脱硫是现在中国普遍采用的脱硫方法。大部分湿法脱硫工艺是使用脱硫塔,把大量的水与石灰石(主要成分为碳酸钙)粉或生石灰粉(生石灰粉的主要成分是氧化钙,与水反应生成后的主要成分是氢氧化钙)混合,形成石灰石或熟石灰碱性乳液,从脱硫塔的上部喷洒,这些液滴向脱硫塔下滴落 在风机的作用下,含有大量二氧化硫的酸性烟气则从下向上流动,碱性乳液中的石灰石或熟石灰及其它少量的碱性元素(如镁、铝、铁和氨等)与二氧化硫的酸性烟气相遇,就生成了石膏(硫酸钙)及其它硫酸盐。由于石膏在水中的溶解率很低,因此,收集落到塔底的乳液,将其中的石膏分离出来,剩下的就是含有大量可溶性硫酸盐的污水,这些硫酸盐包括:硫酸镁、硫酸铁、硫酸铝和和硫酸铵等,需要去除这些硫酸盐后,污水才能排放或重新作为脱硫制备碱性乳液的水使用。/pp  中间插一段儿:恰恰这些含有硫酸盐的污水的处理现在存在很大的问题。因为这些污水的处理耗资巨大,因此有很多燃煤企业或将这些污水未经处理排放到河流中,或者不经处理重新作为制备脱硫碱性乳液的水使用 前者严重地污染了水体,后者则将这些可溶盐排放到了空中(原因在下面解释)。我曾经去过一家企业考察燃煤锅炉,锅炉的运行人员告诉我们,锅炉污水零排放。一同考察的专家们讽刺到,污水中的污染物都排放到空中了。这个燃煤企业实际的做法是不对湿法脱硫产生的废水中溶解的硫酸盐做去除处理,而是将溶有大量硫酸盐的废水反复使用,还美其名曰,废水零排放。废水是零排放了,可溶性的硫酸盐倒是全都撒到天上了,每立方米的燃煤烟气中,有好几百毫克的硫酸盐,全都变成PM2.5了。还不如不做烟气脱硫处理呢!这就是经过几年的大规模燃煤烟气处理,大气中的PM2.5没有大幅度下降的原因!/pp  接下来说:并不是所有的乳液都落到了塔底。因为进入到脱硫塔里的烟气温度很高,于是将大量的乳液液滴蒸发。越到脱硫塔的底部,烟气的温度就越高,乳液液滴的蒸发量就越大。不幸的的是,越到底部,乳液液滴中所含的硫酸盐也就越多(如果反复使用未经处理的含有大量硫酸盐的废水,则硫酸盐就更多了),由于乳液液滴的蒸发速度很快,一些微小液滴中的可溶性硫酸盐来不及结晶,液滴就完全蒸发,因此析出极细的硫酸盐固体颗粒,平均粒径很小,大量的颗粒物直径在1微米以下,即所谓的PM1.0。当然乳液中最大量的固体还是硫酸钙(石膏),不过其不溶于水,硫酸钙颗粒的平均粒径比较大。/pp  这些含有硫酸钙颗粒和可溶盐的盐乳液的蒸发量非常巨大。对应一台100万千瓦的燃煤发电机组,在烟气脱硫塔中这些盐溶液的蒸发量每小时会达到100吨左右。因此,析出的极细颗粒物数量巨大。/pp  这些极细的颗粒物随着烟气向脱硫塔上部流动,大部分被从上部滴落的液滴再次吸收和吸附(于是这些极细的颗粒物在脱硫塔中被反复地吸收/吸附和析出),但仍有可观的残留颗粒物随着烟气从塔顶排出。需要说明的是,颗粒物的粒径越小,残留的就越多。/pp  有人会有疑问,从塔顶喷洒的液滴密度很大,难道不能将这些极细颗粒物都洗掉?遗憾的是,不能。早先锅炉的烟气除尘就用过水膜法,即喷射水雾除尘,除尘效果很差。道理很简单,同样的颗粒物重量浓度,颗粒物的粒径越小,颗粒物的数量就越多,从水雾中逃逸的比例就越大。/pp  烟气出了脱硫塔后,在早先的燃煤烟气处理工艺中,就算完成烟气处理工艺了,烟气经过烟囱排放到大气中,当然,那些在湿法脱硫过程中产生的大量的二次颗粒物——硫酸盐们,也随着烟气排放到大气中。其中石膏颗粒物粒径较大,于是就跌落在距烟囱不远的周围,被称为石膏雨。那些粒径较小的可溶盐,则随风飘向远方,并逐渐沉降,提高了广大地区大气中颗粒物的浓度。烟气中的颗粒物浓度常常达到几百毫克/立方米,比起脱硫前烟气中的颗粒物,增加了好几倍甚至几十倍。所以有人讽刺,湿法脱硫把黑烟(烟尘)和黄烟(二氧化硫)变成了白烟(硫酸盐)。/p
  • 单颗粒ICP-MS助力复合氧化物铁酸锰(MnFe₂O₄) 纳米材料诱导番茄提早开花的分子机制研究
    原创 飞飞 赛默飞色谱与质谱中国关注我们,更多干货和惊喜好礼 刘莉ENMs 在农业生产中,开花时间直接控制着果实数量和质量,提早开花通常伴随着高授粉率,意味着营养周期更短,可以最大限度地减少非生物迫害(例如气候变化与干旱)对农业生产的不利影响。如何控制开花时间也被认为是“植物科学的100个重要问题”之一。人工纳米材料(ENMs)在提高农业生产方面显现出巨大潜力。ENMs的小尺寸效应能使它们跨越生物屏障(植物气孔大小约为10~100μm),通过叶面或根部扩散至植物脉管系统,从而提高作物水分利用、增加养分吸收、诱导抗氧化、增强光合作用和促进开花等代谢过程,最终显著提升农业生产力。目前已陆续有文章报道了ENMs对高等植物生殖生长,包括开花过程的影响,然而ENMs诱导作物生殖生长改变的机制,尤其是初始植物激素的信号传送和代谢机制仍不清楚。江南大学环境与土木工程学院Le Yue,Yan Feng等以复合铁酸锰(MnFe2O4)ENMs和番茄作为研究对象,围绕 ①MnFe2O4 ENMs进入番茄叶片并促进光合电子传递的潜力;② MnFe2O4 ENMs对赤霉素(GA)的调节作用和对开花基因表达的诱导作用;③ 番茄果实产量和品质的采后变化等方面展开了深入研究,为揭示ENMs对作物生殖生长的作用机制提供了重要认知。相关研究的成果发表在ACS NANO期刊。 (点击查看大图) 01单颗粒ICP-MS的应用单颗粒ICP-MS技术是一项新兴的纳米颗粒检测技术,可以用于ENMs在植物体内的富集转化和迁移研究。相对于TEM、SEM、DLS等ENMs的传统表征手段,单颗粒ICP-MS(SP-ICP-MS)可以快速、同时获得ENMs的成分、粒径分布、颗粒浓度及离子浓度等参数信息,目前已越来越多地被应用于各种ENMs的表征研究。 (点击查看大图) 本研究使用了赛默飞iCAP TQ SP-ICP-MS分析技术,测定了叶片表面、角质层和内部叶片片段中的MnFe2O4ENMs的含量,明确了ENMs的有效接触和吸收规律;测定了番茄果实中的ENMs的含量,探究了铁(Fe)在果实中可能的存在形式。 (点击查看大图) 02番茄叶片ENMs的测定通过去离子水浸泡和涡流的方式回收叶片表面的ENMs。收集的溶液用“surface”表示,将经过水洗的叶片转移到35%(v/v)HNO3中,静置15min,以溶解角质层,收集的溶液用“cuticle”表示,剩余的叶片组织以“interior”表示。对于叶片内部,取 25 mg 的叶片组织,用去离子水清洗3次,然后在 3 mL 20mM 2-(N-吗啉代) 乙烷磺酸 (MES) 缓冲液 (pH=5.0) 中均质。随后在每份均匀混合物中加入 2 mL 5% 的离析酶 R-10,在 37 ℃ 下将混合物振荡 24 小时。沉淀 1 小时后,将上清液通过 0.45 μm 的滤膜,并用去离子水稀释。surface和cuticle溶液经0.45 μm滤膜过滤并用去离子水稀释。研究发现,经过ENMs处理的叶片中,Fe 和 Mn 的含量均明显高于未经处理的对照组(喷洒等量的去离子水)(下图a和c)。虽然在角质层的分离过程中使用 HNO3 会减少角质层溶液中的ENMs数量,但经过 MnFe2O4 ENMs处理后的叶片表面、角质层和内部的ENMs数量还是明显高于对照组(下图d),这表明 MnFe2O4 ENMs会在番茄叶片中累积。 (点击查看大图) 03番茄果实中ENMs的测定利用SP-ICP-MS 测定了番茄果实中的ENMs,发现MnFe2O4 ENMs很少能进入番茄果实,说明MnFe2O4 ENMs处理不会造成果实的健康风险。 (点击查看大图) 04结论 // 通过iCAP TQ SP-ICP-MS分析技术准确分析了番茄植株叶片和果实中的MnFe2O4ENMs含量,可为探究ENMs在植物体内的转化、迁移和富集规律提供精确的数据支撑。 参考文献:[1] Yue L, Feng Y, Ma C, et al. Molecular mechanisms of early flowering in tomatoes induced by manganese ferrite (MnFe2O4) nanomaterials[J]. ACS nano, 2022, 16(4): 5636-5646.[2] Vidmar J. Detection and characterization of metal-based nanoparticles in environmental, biological and food samples by single particle inductively coupled plasma mass spectrometry[M]//Comprehensive analytical chemistry. Elsevier, 2021, 93: 345-380.如需合作转载本文,请文末留言。
  • 科研人员对热电厂排放有害颗粒进行再利用
    根据俄罗斯国家科学院西伯利亚分院网站报道,西伯利亚分院克拉斯诺亚尔斯克科学中心科研人员对热电厂排放出的煤灰中小于10微米的颗粒磁性进行表征,用其制造新型功能材料,减少排放物中气溶胶颗粒对环境的影响。研究成果发表在《ACS Omega》杂志上。  俄罗斯科研人员首次从埃基巴斯图兹煤(俄罗斯一种高灰分煤)的飞灰中分离出微球PM2.5、PM2.5-10、PM10的磁性部分,可用于制造具有核壳结构的新型复合吸附剂、磁性载体、亲和吸附剂或生物传感器等原材料。研究人员分离出的磁性粒子平均直径为1、2、3和7微米。其化学成分主要为铁、硅和铝的氧化物,相成分包括非晶成分,即玻璃态物质和结晶相,包括铁尖晶石、赤铁矿、莫来石和石英。此外,科研人员还发现了一种稀有且难以获得的亚稳态相——ε氧化铁的纳米级颗粒。根据科研人员介绍,灰分颗粒呈球形,随着颗粒直径的增加,组成成分中氧化铁、赤铁矿和玻璃相的比例增加,而莫来石和石英比例减少。颗粒具有磁性和高热稳定性,可用于研制基于微球的功能性材料。对热电厂排放物中磁性部分进行回收,可减轻对环境的污染。  注:本文摘自国外相关研究报道,文章内容不代表本网站观点和立场,仅供参考。
  • 微颗粒的电磁在线监测技术与仪器装备
    table width="614" cellspacing="0" cellpadding="0" border="1"tbodytr style=" height:25px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果名称/span/p/tdtd colspan="3" style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign="bottom" width="482" height="25"p style="text-align:center line-height:150%"strongspan style=" line-height:150% font-family:宋体"微颗粒的电磁在线监测技术与仪器装备/span/strong/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"单位名称/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="482" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"中国科学院大学/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系人/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="168" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"王晓东/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="161" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系邮箱/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="153" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"Xiaodong.wang@ucas.ac.cn/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果成熟度/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="482" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"□正在研发 √已有样机 □通过小试 □通过中试 □可以量产/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"合作方式/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="482" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"√技术转让 √技术入股 √合作开发 √其他/span/p/td/trtr style=" height:113px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="614" height="113"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"成果简介:/span/strong/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"微颗粒(金属非金属氧化物颗粒、夹杂物、裂纹、气泡、缺陷、溶质、催化剂、大气污染物等等)在固相、液相和气相中的动态监测问题相当广泛地存在于不同的科学技术和工业领域里。中国科学院大学王晓东教授课题组提出基于电磁场理论的新原理,并根据监测体系和应用场合的不同,开发了一系列的系统解决方案(如下图)。/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/3809cd5b-c3be-4592-9b68-234e6eadb6b2.jpg" title="4.png"//pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"/spanbr//pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"本项目新方法,主要有以下四方面的优势:1)原理上,测量量我们以矢量(如测力、第2磁场等代替标量(如阻抗),在测量精度上我们的新方法较传统涡流方法提高了1到2个数量级 2)并且由于测量量为矢量的原因,基本上消除了传统方法难以克服的“提离”效应,使检测精度大幅提高 3)检测速度大幅提高;4)可实现在线监测(传统方法为“线上”检测方式);5)检测信号易于解析。/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"相较已有技术,本项目具备实时、在线、连续、原位、定量、高速等六大特点;/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"测量精度高:探测对象为微米、亚微米级颗粒物;/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"适用范围广:从低温的弱导电溶液到高温的金属液(电导率:100-106S/m;温度:常温—1600/spanspan style=" font-family:宋体"℃/spanspan style=" font-family:宋体");/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"在化学化工、医药、环境领域,本技术大幅提高生产效率和质量、降低生产成本;/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"突破了高温金属液洁净度的在线测量技术(世界性难题,目前尚无竞争技术);/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"在无损检测领域,突破了传统标量测量量的极限,测量精度提高了1—2个数量级;/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"仪器特点:精度高、信号易于解析、微小型化(便携)、适应恶劣工业环境、可远程通讯监控。/span/p/td/trtr style=" height:75px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="614" height="75"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"应用前景:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"1/spanspan style=" line-height:150% font-family:宋体"、应用于无损检测领域——基于矢量测量的新涡流监测法/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"作为朝阳行业的无损检测在我国有着广阔的发展空间。按原理分可分为五大类,而无损检测设备器材可分为26类。应用无损检测技术的企业超过3万家,而且还在不断增长,检测与服务机构超过2000家,涉及到的无损检测器材制造商800多家。从业人员超过35万(铁路系统5万人以上,石油化工、油田、天然气、锅炉压力容器四个行业12万人以上,航空系统2万以上, 此外,航天、汽车、机械行业、电力、核电、军队、电子工业、食品医药卫生、轻工及其他行业领域未计算在内)。市场总容量超过100亿。国外某知名度和权威性很高的检测公司估计中国的第三方市场是一个超过500亿美元的巨大市场。 /span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"涡流检测方法是五大类(超声波、涡流、磁粉、渗透和射线)无损检测方法应用最广泛方法之二(另一个为超声),涡流检测设备涵盖数字化涡流探伤仪、脉冲涡流检测系统、阵列涡流检测系统、大型自动化涡流探伤系统、导电率仪、金属探测器等。相关涡流检测制造厂家超过47家(2013年数据)。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"2/spanspan style=" line-height:150% font-family:宋体"、应用于弱导电液中的(如电解质溶液、离子液体等)微颗粒监测/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"仪器应用对象:不仅适合于化学化工领域中的催化剂演化过程监测控、结晶工艺中控、化学提纯等领域,而且还可用于其他领域的工艺监控:磨料、墨粉、水质、稀土、化纤、陶瓷、滤材、材料、环境检测、化妆品、晶体、电子材料、食品工业、燃料、微球体、涂料和色素、造纸工业、石化、颜料、水污染检测等。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"3/spanspan style=" line-height:150% font-family:宋体"、应用于高温金属液洁净度的原位、在线、定量测量技术(冶金夹杂物监测)/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"冶金过程中的夹杂物在线监控(采用光学等实验室化验方法属于非在线手段,对生产实际意义不大)是世界性难题(类似于空气污染物的监测,难度高于此!)。其价值在于能有效监控由于原材料或工艺工程中带入的非金属夹杂物,是生产洁净钢和超高洁净钢必须的关键技术。目前,基于库尔特原理的LiMCA技术只能应用于低温(熔点温度低于700度)。如能在钢铁工业、铜工业上实现夹杂物的在线监控,将是冶金领域里世界范围内技术革新。而我们的技术完全可以涵盖从低熔点到高熔点的全部范围。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"4/spanspan style=" line-height:150% font-family:宋体"、应用于大气颗粒物的监测/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"大气环境监测是所有的大气环境工作的物质基础,无论是进行大气环境质量监测、大气污染治理,还是进行大气环境科学与工程的研究,都必须是在科学、准确测定大气环境参数的基础上进行。目前,大气中悬浮颗粒物的存在,已对环境产生了严重影响,检测与监测大气颗粒物成为研究热点。/span/p/td/trtr style=" height:72px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="614" height="72"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"知识产权及项目获奖情况:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"申请美、德、中专利20项、其中7项已获授权/span/p/td/tr/tbody/tablepbr//p
  • 2010年颗粒学术盛会在西安隆重开幕
    中国颗粒学会第七届学术年会暨海峡两岸颗粒技术研讨会在西安召开  仪器信息网讯 为了总结交流近年来我国颗粒技术方面的研究开发成果,探讨本领域国际上最新的研究进展和发展动向,2010年8月16日,“中国颗粒学会第七届(2010年)学术年会暨海峡两岸颗粒技术研讨会”在西安市陕西宾馆(陕西丈八沟宾馆)隆重开幕。  本届会议由中国颗粒学会、中科院地球环境研究所、西安建筑科技大学、台湾大学、大同大学主办,中国颗粒学会测试专业委员会、上海市颗粒学会、北京粉体技术协会、陕西省颗粒学会、中国科学院过程工程研究所协办。来自颗粒学及粉体技术领域的数百位专家学者、企业代表等参加了本次会议,仪器信息网作为特邀媒体应邀参加。会议现场  同时,大会还邀请了8位颗粒学及粉体技术领域的著名专家做了精彩的大会报告。西安建筑科技大学徐德龙教授报告题目:中国水泥工业的生态化  作为我国水泥工程领域惟一的院士,徐德龙教授首先向大家介绍了生态水泥工业的深刻含义、高固气比理论以及超细粉技术在中国的应用,同时,徐德龙教授还着重阐述了其在节能减排方面所取得的巨大成就,并表示十分看好水泥工业生态化的前景。辅仁大学姚永德教授报告题目:Formation of Fe and Pt nanorods on nanoporous anodic aluminum oxides by controlled nucleation sites  姚永德教授解释到,通过在纳米多孔型阳极氧化铝模板上形成铁/铂双层垂直对齐和类似倒锥结构的这项研究,磁性纳米粒子的磁化反转机制可以得到证实。另外,降低铁或(和)铂的指定厚度,可降低磁化程度,就可以得到独立旋转逆转相互作用的结果。香港理工大学李顺诚教授报告题目:Carbonaceous aerosol - Past, now and future  李顺诚教授首先简要回顾了碳气溶胶的国内外发展、碳气溶胶对环境、气候及人类健康的影响和碳元素分析仪器的研究进展情况,并指出:“环境问题日益严重,我们节能减排的挑战也将不断加大。但是,节能减排并不只针对二氧化碳和碳气溶胶,应该是控制所有污染物的排放量,对环境、气候、人类健康的保护起到协同作用。”北京化工大学陈建峰教授报告题目:纳米颗粒的工程及应用  陈建峰教授通过超重力法成功合成了纳米颗粒材料,在国内外引起了强烈反响。另外,陈建峰教授还表示:“目前,纳米颗粒材料制备工程的关键科学问题集中在分子热力学、纳米材料生成动力学、分子反应工程三方面。若采用纳米技术合成药物制剂,国际市场前景可高达3800亿美元。”英国Leeds大学王学重教授报告题目:Multivariate SPC of emulsion and nanoparticle slurry processes based on process tomography, dynamic light scattering and acoustic spectroscopic data  王学重教授通过过程层析成像、动态光散射以及超声波的数据,对悬浮液和纳米颗粒浆液过程的多变量进行了统计控制,同时,王学重教授还指出:“在线测量对于产品生产工艺的质量控制很重要,但是目前在线测量的应用工作还不普遍,需要我们做进一步的努力。”清华大学骆广生教授报告题目:粉体材料的可控制备及其工业应用  骆广生教授说到:“微化工系统的高效混合和传质性能可为纳米材料的大规模制备提供均一的反应环境,可较好地实现对成核和生长过程的控制。另外,多相微分散体系流型的有序性为调控粉体材料的样貌提供了好的手段。但是,这方面的研究还有待于进一步的研究。”国家纳米科学中心张忠研究员报告题目:兼备塑料和陶瓷优点的纳米复合材料  张忠研究员谈到:“纳米复合材料最重要特点之一是由于纳米颗粒在基体中引入了巨大的界面区域,因而纳米颗粒能够提高高分子材料的关键性能,其中包括抗疲劳、耐蠕变和耐摩损等特性,这些材料在汽车、生物材料、电子封装材料、造纸工业等领域有很强的应用前景。”宝洁(中国)研发中心粉体工艺研发首席工程师沈睿先生报告题目:Powder technology in consumer product industry  沈睿先生首先介绍了一些涉及到粉体工艺生产的日常消费品,如牙膏、肥皂、洗发水、电池、洗衣粉等,并指出了粉体工艺当前所面临的挑战。同时,沈睿先生还表示:“宝洁公司为开放式创新,追求‘联系+发展’,中国有着巨大的市场、技术与创新潜力,更应重视‘联系+发展’。”仪器设备展示会粉体技术及产业化交流会  为丰富年会内容,同时促进粉体行业产、学、研、投等领域更好的对接,本届年会还组织了“粉体加工设备、颗粒测试仪器及科技成果展”、“粉体技术及产业化交流会”,以期通过此平台更好地为行业企业服务。英国马尔文、贝克曼库尔特、瑞士华嘉、日本堀场、欧美克、日本岛津、丹东百特、济南微纳、上海福里茨、德国莱驰、成都精新等公司纷纷参展。  另外,会议同期还举办了中国颗粒学会第五次会员代表大会及理事会换届工作会议,并分别以“颗粒测试与应用”、“气溶胶”、“流态化基础研究与应用”、“颗粒制备与应用技术”以及“超微颗粒材料”为主题举办了分场报告会。  同时,会议还将评选并将在年会闭幕式上颁发“中国颗粒学会青年颗粒学奖”、“宝洁青年优秀论文奖”和“宝洁优秀研究生论文奖”。“中国颗粒学会青年颗粒学奖” 设立于1997年,与每2年一届的学会年会同步。 2007年8月初,经国家科学奖励办公室正式批准,“中国颗粒学会青年颗粒学奖” 已经成为国家承认的社会力量设立的科学技术奖。  备注:仪器信息网将跟踪报道中国颗粒学会第七届学术年会暨海峡两岸颗粒技术研讨会,敬请关注!
  • 中国颗粒学会第九届学术年会暨海峡两岸颗粒技术研讨会(第二轮通知)
    为交流国内外颗粒学研究与技术的最新进展,每两年一届的“中国颗粒学会学术年会暨海峡两岸颗粒技术研讨会”将于2016年8月12-14日(8月12日报到)在四川省成都市举办,会期2天。本届会议由中国颗粒学会主办,中国颗粒学会超微颗粒专委会协办。  本届年会学术交流形式包括大会特邀报告、分会邀请报告、口头报告以及墙报交流。年会面向广大颗粒学工作者征集学术论文及摘要,并将印制论文摘要集,论文全文收入会议论文U盘。衷心欢迎海峡两岸广大从事颗粒技术研究的学者、工程技术人员、企业界代表及研究生踊跃投稿,积极参会。  年会同期还将安排企业交流专场、专业技术培训班、仪器设备展览、新技术新产品与新设备推介会,欢迎相关企业、高校、科研院所积极参与。  中国颗粒学会第六届理事会会议暨第二届青年理事会会议、中国颗粒学会期刊(《颗粒学报》、《中国粉体技术》)编委会会议将同期举行。会议闭幕式上还将颁发学会各项奖励奖项。  一、 组织机构  主 席: 李静海  执行主席:陈运法、陈建峰、林鸿明*  学术委员会:(按音序排列,*为台湾代表)  主席: 李静海  委员:艾德生、蔡小舒、曹军骥、常津、岑可法、车慧正、陈宏勋、陈建峰、陈建民、陈胜利、陈文章*、陈晓东、陈运法、程国安、程易、崔福德、邓茂华*、邓雪娇、董青云、都有为、费广涛、傅彥培*、葛宝臻、葛广路、葛茂发、葛蔚、顾兆林、郭庆杰、韩鹏、胡敏、胡荣泽、胡淑芬*、胡宇光*、黃肇瑞*、金涌、李春忠、李峰、李泓、李洪钟、李顺诚、李星国、李增和、林鸿明*、林中魁*、刘如熹*、卢春喜、卢寿慈、吕森林、吕万良、骆广生、马光辉、骞伟中、邱郁菁*、任中京、任俊、邵刚勤、沈建琪、沈振兴、沈志刚、施力毅、宋少先、宋延林、苏党生、蘇程裕*、孙振海、唐星、王连军、王祖武、陶俊、铁学熙、王格慧、王勤辉、王体健、王孝平、王燕民、韦文成*、魏飞、吴澜尔、翁明壽*、向荣彪、徐德龙、徐锡金、颜 鹏、颜富士*、杨多兴、杨复沫、杨为佑、杨毅、要茂盛、于溯源、于志军、袁中新*、张忠、张福根、张立德、张连众、张仁健、张文阁、张志荣、赵跃民、郑水林、鄭憲清*、周定益、周素红、周涛、朱庆山、朱子新  组织委员会:  主席:费广涛、艾德生  委员:毛世瑞、高原、李少夫、孙浩、魏耀林、徐锡金、王军武、张强、周家茂、周素红、白蕴如、郭峰、韩秀芝、吴丽芳、徐菡、赵晓力  二、 学术分会  第1分会场:颗粒的测试与表征  (分会主席:葛宝臻、蔡小舒、张福根、董青云 学术秘书:魏耀林、高原)  (1) 颗粒性能表征和测试技术:几何性能、物理性能、表面性能、力学性能 (2) 在线测量与控制   (3) 颗粒特性对粉体产品性能的影响。  第2分会场:气溶胶  (分会主席:曹军骥、李顺诚、张仁健 学术秘书:周家茂)  (1) 气溶胶基本特性、监测与分析 (2) 气溶胶环境气候健康效应 (3) 气溶胶污染与控制。  第3分会场:流态化基础研究及应用  (分会主席:朱庆山、卢春喜、葛蔚、骞伟中 学术秘书:王军武)  (1) 流化床中的传热、传质和化学反应,特殊流化床(磁场、声场、超重力、振动等) (2) 计算机数值模拟与放大 (3) 多相流与旋风分离器、流化床的工业应用。  第4分会场:颗粒制备与应用技术  (分会主席:沈志刚、郑水林、王燕民、李春忠 学术秘书:孙浩)  (1) 颗粒制备技术、表面改性处理技术 (2) 颗粒应用技术 (3) 颗粒制备与应用技术中的新理论、新方法、新技术、新工艺、新产品等。  第5分会场:超微颗粒材料  (分会主席:林鸿明、费广涛、艾德生 学术秘书:徐锡金)  (1) 制备、表征及应用方面的新进展,特别是新思想、新材料、新技术 (2) 在环境、能源、保健等领域的应用 (3) 产业面临的市场和技术挑战,及其应对策略。  第6分会场:生物颗粒制备技术  (分会主席:崔福德、吕万良、常津、陈晓东 学术秘书:毛世瑞)  (1) 生物颗粒(药品,食品,环境等)的制备技术及其应用 (2) 生物颗粒的粉体技术在产业化中的应用 (3)药品的粉体性质对体内生物利用度及药效的影响 (4) 药用辅料在药物制剂中的重要性 (5) 粉体性质的表征在新药开发中的应用 (6) 难溶性药物的微粉(纳米)化技术与产业化  第7分会场:能源颗粒材料  (分会主席:魏飞、苏党生、李泓 学术秘书:张强)  (1) 能源材料(如锂电池、电容器、金属空气电池、燃料电池相关材料) (2) 能源催化转化材料(如煤、石油、天然气、生物质能源高效转化材料) (3) 能源颗粒的表征及产业化。  第8分会场:3D打印材料及技术  (分会主席:杨亚锋 学术秘书:李少夫)  (1) 3D打印粉体材料的制备技术(钢、医用材料、轻金属及高温合金) (2)金属的3D打印:材料、加工、组织性能及产品评价 (3)3D打印过程中加工模拟、缺陷检测及控制 (4)3D打印相关软件的开发及应用。  第9分会场:纳米涂层材料及防腐技术  (分会主席:张忠)  (1) 纳米颗粒改性聚合物复合材料研究与应用 (2) 纳米颗粒改性涂层材料研究与应用。  会场信息持续更新中??  三、 同期展览、企业交流会(8月12日上午布展,12-14日全天展览)  为了便于企业宣传、展示最新的产品,促进科研成果的转化,推动产、学、研的结合,将在会议同期举办颗粒/粉体技术、应用及设备展,展览内容包括:测试分析仪器、颗粒/粉体制备技术及设备、颗粒/粉体材料及产品、颗粒/粉体应用技术等。展期与会期同步,烦请计划参展者尽快与学会秘书处郭峰联系(电话:010-62647647,E-mail: fguo@ipe.ac.cn ),并沟通具体事宜。  此外,本次会议将专门安排“新技术、新产品、新设备推介及展示”区域,希望参与会上展示的企业,烦请于会前与学会秘书处郭峰联系,以便提前协调。热忱欢迎相关企业及单位积极参与。  四、 学会奖励奖项的评选与颁发  学会将启动、组织以下奖项的评选工作,并将在年会闭幕式上组织颁奖:  1. 中国颗粒学会“技术发明奖”、“科技进步奖”、“赢创颗粒学创新奖”和“青年颗粒学奖”  学会自2016年起设立“中国颗粒学会技术发明奖”和“中国颗粒学会科技进步奖”,旨在奖励在颗粒学研究及创新创业活动中做出突出贡献的团体或个人,每次各设立一等奖1?3项、二等奖5?10项。  学会自2012年起设立“赢创颗粒学创新奖”,旨在奖励在颗粒学研究及应用方面做出贡献的杰出人才,每次奖励优秀科学家和优秀青年科学家(45周岁以下)各2名。本奖项由德国赢创德固赛公司赞助。  “中国颗粒学会青年颗粒学奖”为国家承认的社会力量设立的科学技术奖,欢迎青年科技工作者积极申请(申请者年龄不得超过42周岁)。  注:以上奖项的申请截止日期为2016年5月31日。奖项详情及申请表下载请登陆中国颗粒学会网站(http://www.csp.org.cn/Awards/index.aspx )。  2. 中国颗粒学会“麦克仪器优秀论文奖”  学会自2012年起设立“麦克仪器优秀论文奖”,奖励在颗粒学基础研究或应用基础研究工作中取得成果、并在PARTICUOLOGY(颗粒学报)上正式发表的论文,每次奖励2篇论文。本奖项由美国麦克仪器公司赞助。  3. 中国颗粒学会年会优秀论文奖  年会将面向参会并参加论文宣读或墙报交流的在读学生设立 “年会优秀论文/墙报奖”。  五、 会议征文  1. 会议将出版论文摘要集,论文全文/详细摘要将收录入会议论文U盘。  2. 论文要求为详细摘要或全文投稿,稿件请采用Word排版,并直接投稿至会议网站(http://csp2016.csp.escience.cn )。投稿截止日期为2016年5月31日。  3. 投稿时务请指定论文希望交流的分会场及交流形式 (口头报告 或/及 墙报交流),同时请附上计划的论文宣读人(或墙报交流人)的简单个人信息(是否为在读学生)。  4. 会后将推荐部分优秀的论文至《中国粉体技术》(核心期刊),或《颗粒学报》(英文)(SCI与EI收录,IF=2.110)。  六、 参会指南  1. 广告服务:会议文集热诚为国内外企事业提供各种宣传专页(刊登单位自行设计)、LOGO及全称的宣传(手提袋、签字笔、U盘)、单页印刷品等,请有意企业或单位于2016年6月10日之前与会务组联系。  2. 会议重要时间节点  2016年3月 会议第二轮通知  2016年3~5月 会议网站注册、提交论文  2016年5月31日 会议论文接收截止、奖项申请材料截止  2016年6月 会议第三轮通知  2016年8月12日 年会报到  3. 会议注册费(不含代表住宿费)  提前缴费:1600元/人,学生800元/人,学会会员1400元/人   会场缴费:1800元/人,学生900元/人,学会会员1600元/人   开户行及账号:中国工商银行北京海淀西区支行 中国颗粒学会 0200004509014413416  (注:缴费时务请注明希望开具的发票抬头。需要办理会员证的代表,请登陆中国颗粒学会网站(www.csp.org.cn )下载会员报名表。)  4. 会议地点及住宿:成都家园国际酒店(成都机场路181号,电话:028-82936666)  住宿:成都家园国际酒店, 370元/标准间。住宿费用自理。  交通:  从成都火车北站  (1) 公交车:在北站东二路站乘坐16路公交车,至火车南站西路站换乘816、806、121、或304路公交车在美好家园站下车。  (2) 地 铁:乘地铁1号线至桐梓林站 (B出口),在人民南路南换乘806、304、或816路公交车在美好家园站下车。  (3) 出租车:全程约17公里(45元左右)。  从成都火车东站  (1) 公交车:在东广场乘坐121路公交车直接前往美好花园站下车。  (2) 地 铁:乘坐2号线至天府广场站下车,换乘地铁1号线至桐梓林站下车(B出口),在人民南路南乘坐806、304、或816路公交车在美好家园站下车。  (3) 出租车:全程约18公里(46元左右)。  从机场  (1)机场大巴:乘坐机场专线4号线到美好花园站下车即到。  (2)出租车:全程约6公里(20元左右)。  更多详情请见会议后续通知或请登陆学会网站(www.csp.org.cn )了解。  5. 会务组联系方式:  学会秘书处  地 址:北京海淀区中关村北二街1号(100190)  电 话:010-62647647/62647657 传真:010-82629146 E-mail: klxh@ipe.ac.cn  联系人:郭峰(15110169497)、韩秀芝(13521432868)、白蕴如(13520549676)  各分会场学术秘书  颗粒的测试与表征 魏耀林:ylwei163@163.com 高原:robin_gy@126.com  气溶胶 周家茂:zjm@ieecas.cn  流态化基础研究及应用 王军武:jwwang@ipe.ac.cn  颗粒制备与应用技术 孙 浩:hello_sunhao@aliyun.com  超微颗粒材料 徐锡金:sps_xuxj@ujn.edu.cn  生物颗粒制备技术 毛世瑞:maoshirui@vip.sina.com  能源颗粒材料 张 强:zhangqiangflotu@mail.tsinghua.edu.cn  3D打印材料及技术 李少夫:sfli@ipe.ac.cn  中国颗粒学会  2016年3月
  • 粒形医学新报:刺状颗粒或可增强免疫反应
    p style="text-indent: 2em "众所周知,疫苗和癌症免疫疗法是通过生物化学信号激活免疫系统来起到治疗作用的。而一项新的研究表明,免疫系统也能对物理线索做出反应,例如,刺状的纳米颗粒。这项研究结果,有望为癌症及其他疾病的治疗方法开辟崭新的设计途径。/pp style="text-indent: 0em text-align: center "img src="https://img1.17img.cn/17img/images/201811/uepic/7f8d41ef-d6fe-462c-ab07-512e2d9bace7.jpg" title="文章内图片.jpg" alt="文章内图片.jpg"//pp style="text-indent: 2em "包括流感病毒在内的许多病原体表面都有刺状结构,为了测试物理线索是否有助于激活免疫反应,来自麻省综合医院的Wu Mei X. Wu教授团队和中山大学的Xi Xie教授团队设计了一个实验,分离出了病原体的形状线索和生化线索。/pp style="text-indent: 2em "首先,他们用二氧化钛制造了两组纳米颗粒,这种化合物通常不会触发免疫系统。其中一部分颗粒的外形是尖锐的刺状,另一部分颗粒的表面则比较粗糙。他们在一些细菌细胞表面涂上脂质,作为免疫刺激物。然后,给老鼠注射了刺状纳米颗粒,同时还进行了癌症免疫治疗或注射了流感疫苗。实验结果表明,脂质包裹的刺状颗粒确实增强了小鼠的免疫反应,提高了癌症免疫治疗和流感疫苗的疗效,而注射粗糙颗粒的对照组则没有显著影响。/pp style="text-indent: 2em "有证据表明,注射了刺状颗粒的细胞,其细胞膜受到了机械压力,这些细胞中同时也激活了一种已知的在免疫治疗中可起到关键作用的信号通路。研究人员猜测,这两者之间是有因果关联的。Wu教授说,设计免疫疗法的研究人员应该利用这一效应。在治疗手段中结合物理和生化线索双管齐下,以得到更好的疗效。据南澳大利亚大学的John Hayball透露,目前,这项研究中所使用的材料已经用于医疗领域,因此它们可能很快就将得到官方的正式批准。/pp style="text-indent: 2em "北卡罗莱纳大学教堂山分校的Brandon M. Johnson也撰写文章发表了对这一研究的看法。他表示继续延展这项研究是一件很有趣的事,科学家们可以继续探究刺状颗粒与免疫反应之间的深度关联性,同时还可尝试用聚合物等质地更柔软的材料作为替换,看是否能达到类似的效果。/p
  • 颗粒测试技术的进展与展望--“2004中国颗粒学会年会”大会报告 任中京 本网录音整理
    近年来颗粒测试技术进展很快,主要表现在以下几个方面:  一、激光粒度测试技术更加成熟,激光衍射/散射技术现在已经成为颗粒测试的主流。其主要特点:测试速度快,重复性好,分辨率高,操作简便。激光粒度分析技术最近几年的主要进展在于提高分辨率和扩大测量范围:探测器尺寸增加,附加探头的使用扩大了测量范围;多种激光光源(例如:红光、绿光等)的使用、多镜头、会聚光路、多量程、可移动样品窗的使用提高了分辨率;采样速度的提高则进一步改善了仪器的重复性。比较具有代表性的如:英国马尔文公司GM2000系列激光粒度仪采用高能量蓝光辅助光源和汇聚光学系统,测量范围达到0.02~2000μm,不需更换透镜;贝克曼库尔特公司采用多波长偏振光双镜头技术将测量范围扩展到0.04~2000μm。国产的激光粒度仪在制作工艺和自动化程度上尚有欠缺,但大多数在重复性、准确度方面也达到了13320国际标准的要求。  此外,测试结果的优劣不仅取决于测试系统和计算模型,更加取决于样品的分散状态。激光粒度仪对样品的分散要求是,分散而不分离。仪器厂家应更加注意样品分散系统设计。尽量避免小颗粒团聚,大颗粒沉降,大小颗粒离析,样品输运过程的损耗,外界杂质的侵入。对于不同样品选用不同的分散剂和不同的分散操作应该引起测试者的注意。  任何原理的仪器测试范围都不是可以无限制扩展的。静态光散射原理的激光粒度分析向纳米颗粒的扩展和向毫米方向的扩展极限值得探讨。毫米级的颗粒只需光学成像技术就可以轻易解决的测量问题,采用激光散射原理则并不是优势所在。  二、图像颗粒分析技术东山再起。图像颗粒分析技术是一种传统的颗粒测试技术,是显微镜技术和图像处理技术的结合。由于样品制备操作较繁琐、代表性差、曾经作为一种辅助手段而存在,它的直观的特点没有发挥出来。为了解决采样代表性问题,有人使用图像拼接技术或者多幅图像数据累加技术可以有效提高分析粒子数量,采用标准分析处理模式的图像仪则可以将操作误差减小,这些改进取得了一定的效果。  最近几年动态图像处理技术的出现使传统颗粒图像分析仪倍受关注,大有东山再起之势。动态图像处理的核心是采用颗粒同步频闪捕捉技术,拍摄运动颗粒图像,因此减少了载玻片上样品制备的繁琐操作,提高了采样的代表性,而且可用于运动颗粒在线测量,这就大大扩展了图像分析技术的应用范围和可操作性。荷兰安米德公司的粒度粒形分析仪是有代表性的产品,它采用CCD+频闪技术测颗粒形状、采用光束扫描技术测颗粒大小,可测最大粒径为6mm。如果颗粒在光学采样过程不发生离析现象,此种仪器在微米与毫米级颗粒测量中可能会得到广泛的应用。  颗粒图像分析技术需要解决的另一个问题是三维测量。动态颗粒图像采集由于颗粒采集的各向同性,因此可以解决在载玻片上颗粒方位的偏析问题,但是仍然无法解决如片状颗粒厚度问题。厚度测量对于金属颜料、云母、特种石墨都是一个急需解决的实际问题。  三、颗粒计数器不可替代。颗粒本身是离散的个体,因此对颗粒分级计数是一种最好的测量方法。库尔特电阻法在生物等领域得到广泛应用,已经成为磨料和某些行业的测试标准。但是它受到导电介质的限制和小孔的约束,在某些行业(譬如:不导电油类当中的颗粒)推广受到阻力。最近光学计数器在市场上异军突起,它可对单个颗粒进行精确的测量计算,在高精度和极低浓度颗粒测量场合将发挥不可替代的作用。美国Haic Royco公司颗粒计数器/尘埃粒子计数器是才进中国不久的老产品;美国PSS(Particle Sizing Systems)公司采用单粒子光学传感(SPOS)技术生产的系列仪器可用于湿法、干法、油品等各种场合的颗粒计数。  国内颗粒计数器的研究工作起步并不晚,但是除了欧美克的电阻法计数器外,尚未见光学计数器商业化的产品。  四、纳米颗粒测试技术有待突破。纳米颗粒测试越来越受到重视,方法也很多,譬如电镜就是一种测试纳米颗粒粒度与形态最常用的方法。电镜样品制备对于测试结果有重要影响。北京科技大学在拍摄高质量电镜照片方面作了出色的工作。由于电镜昂贵的价格和严格的使用条件,以及取样代表性问题,电镜在企业推广不是最佳选择。  根据动态光散射原理设计的纳米级颗粒测试技术是一种新技术,近年来获得了快速发展。马尔文,布鲁克海文,贝克曼库尔特等公司提供了优秀的商品。马尔文公司已将动态光散射的测量范围扩展到亚纳米范围,HPPS高性能高浓度纳米粒度和Zeta电位分析仪测试范围0.6~6000nm,可以测量大分子溶液粒径。  国内开展此项技术研究的单位日益增多,上海理工大学、浙江大学、北京大学、清华大学、济南大学等许多高校都有学者和研究生在做工作。而相关的国产产品始终没有问世的原因在于数字相关器仍然是制约国产动态光散射仪器的瓶颈技术,如果数字相关器问题得到解决,中国自己的动态光散射纳米粒度仪出现在市场上将不会太远。  X射线的波长比纳米还要短,因此X射线小角散射是一种测量纳米颗粒的理想方法(类似于激光衍射原理),国外有商品仪器。国内,此方法已经列入国家开发计划,国家钢铁研究总院对此方法研究已经作了大量工作,但是尚未见商品问世。  五、颗粒在线测试技术正在兴起。在线颗粒测试的需求量将远远大于实验室,这是一个并不夸张的预测。颗粒制备过程的主要工艺参数是颗粒大小,以粉磨生产线为例,尽管有很多磨机检测方法,如负荷检测,电耳检测等等都属于间接检测,无法代替颗粒粒度的检测,因此颗粒在线测试必然受到广泛关注。  在线监测有on line, in line, at line几种方式,无论哪种方式与实验室检测相比应有如下特点:自动连续取样,报告显示实时,数据有代表性,抗干扰能力强,运行可靠,根据生产条件不同,可以采取湿法检测,也可以采取干法检测,原则是湿样湿测,干样干测。  国内研制的第一台气流磨在线干法监测仪1997年在上海投入使用,美国马尔文公司在线检测仪2004年在东海已经安装并投入在线检测。相信颗粒在线监测技术一定会在国内逐步推广并为颗粒行业带来巨大的效益。  颗粒测试技术的展望  1、 未来10年内激光散射/衍射技术仍然在颗粒测试技术中担任主角。但是由于颗粒测试需求的多样性,多种测试方法百花齐放将是未来的主要特征,颗粒市场细分已露出端倪;  2、 纳米颗粒测试技术有待突破。动态光散射技术急需数字相关器,国外的相关器产品价格不符合中国国情,电子行业的高手应该看到这个市场挺身而出。X射线小角散射技术也有技术瓶颈,如果瓶颈打开,纳米颗粒测试技术会有突飞猛进的发展;  3、 3年后在线颗粒测试技术将成为颗粒行业竞争的焦点,在线技术要求在线动态实时测试、在线取样分散、在线控制技术全面发展,因此未来的竞争首先是产品技术含量的竞争;  4、 综合性粒度分析仪器越来越多,每一原理测试范围是有限的,不同原理互补才可以满足用户的特殊需要。粒度粒形分析仪是激光扫描与频闪成像技术互补的例子;宽分布粒度仪采用激光衍射、静态散射和动态散射的互补;图像分析、重力沉降、离心沉淀也可以互补满足水利地质对颗粒分析的特殊要求;激光衍射与沉降法互补将可以产生颗粒形状分析新仪器。此类仪器的关键是解决不同原理测试结果的衔接问题;  5、 随着颗粒测试技术的普及,颗粒分散技术不可避免要成为各行业专家研究的另一个重点课题。
  • 德国RETSCH(莱驰)参加全国颗粒学术会议
    德国RETSCH(莱驰)参加全国颗粒学术会议报道 2008年6月18日,第七届全国颗粒测试学术会议暨2008年上海市颗粒学会年会在风景秀丽的湖南张家界隆重召开,来自全国各高校、质检机构、石化、研究所、标准协会、粒度仪制造厂家等一百多位专家、学者出席了此次盛会,德国RETSCH(莱驰)公司作为会员单位,也很荣幸地参与此次大会。 大会由珠海欧美克科技有限公司张福根博士和济南微纳颗粒技术有限公司任中京教授两位国内粒度分析资深专家主持,钢铁研究总院胡荣泽教授和上海市颗粒学会理事长蔡小舒教授分别致辞,他们指出,举办此学会会议的目的在于加强行业内和行业间的横向交流,推动粒度测试技术的发展和标准化,加强仪器制造厂家(尤其是进口仪器)和国内用户的沟通,加强科研院校与企事业单位的沟通,加快分析方法的研究和标准化的制定。随后,来自上海理工大学、华东理工大学、中山大学、同济大学、中南大学等十几位学者分别做了精彩的报告,会议的学术气氛非常浓厚。 会议期间,许多粒度仪供应商均借此机会宣传了其最新的产品和技术,RETSCH也和一些专家学者进行了交流,大家对RETSCH的粉碎研磨筛分设备表示了肯定和极大的兴趣,比如行星式球磨仪PM系列、混合球磨仪MM400、筛分仪AS200、击打式筛分仪AS200tap、自动分样仪PT100等。在谈到粒度分析技术时,专家们都肯定了激光粒度仪作为粒度测量的主流技术,应该还能在中国保持持续的增长,但是未来几年,用户对颗粒形态方面的研究也会越来越多,尤其是动态的粒径形态分析以及对非规则颗粒的形态表征。此外,粒度分析的取样代表性和测试重现性也会更多的引起关注和重视。 此次会议对RETSCH公司而言,是一次非常好的体验和交流,RETSCH公司的多功能粒径分析仪Camsizer正是一台以粒形分析为主的测试仪器,它采用了双镜头的专利设计,测量范围广,对于大颗粒也能进行测量,进样量大,具有代表性,可分析粒度大小、个数、分布、球形度、对称性、密度、表面积等综合信息,并实时保存图像,对非规则颗粒,有着更为正确的粒径表征。不同于激光粒度仪,它无需输入折射率;不同于筛分仪,它更省时省力;不同于显微图像法,它表征的是颗粒各个方向上的动态数据,因此Camsizer特别适用于催化剂、聚合物、玻璃准、标准物、食品、饲料、岩矿、地质等行业的应用。 如需详细资料,请联系:021-61506046 德国莱驰―――精于工,卓于质!
  • 第四届麦克-《颗粒学报》优秀论文奖揭晓
    p style="text-indent: 2em "8月10日晚,在第中国颗粒学会第十届学术年会颁奖典礼上,第四届麦克—《颗粒学报》优秀论文奖隆重揭晓。span style="text-indent: 2em "中国颗粒学会理事长朱庆山研究员、理事长陈运法研究员以及/spanspan style="text-indent: 2em "麦克默瑞提克(上海)仪器有限公司总经理许人良博士为获奖论文团队代表颁发了水晶质奖状以及奖金。/span/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201808/insimg/8df2820f-e894-4d20-84bb-7cbe53691e5f.jpg" title="IMG_0820.JPG"//pp style="text-align: center text-indent: 0em "span style="font-size: 14px "strong中国颗粒学会理事长朱庆山研究员致辞/strong/span/pp style="text-indent: 0em text-align: center "strongimg src="http://img1.17img.cn/17img/images/201808/insimg/e1ade182-57b8-4e21-b801-74c428d659ca.jpg" title="IMG_0830.JPG"//strong/pp style="text-indent: 0em text-align: center "span style="font-size: 14px "strong麦克默瑞提克(上海)仪器有限公司总经理许人良博士揭晓获奖论文/strong/span/pp style="text-indent: 2em "获奖论文需满足发奖前四年间在《颗粒学报》上发表的论文中引用次数最多,且作者中至少有一位是华人两个条件,评选规则公开、透明、公正。此次获奖的两篇论文分别题为Spatiotemporal variations of PM2.5 and PM 10 concentrations between 31 Chinese cities and their relationships with SO2,NO2,CO and O3和Magnetic nanoparticles for environmental andbiomedical applications:A review。清华大学建筑技术科学系赵彬教授和加拿大Western Unversity的Hassan G.Gommaa教授作为获奖论文团队的代表上台领奖。/pp style="text-indent: 0em text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/2fd6013f-cd05-48fd-b79e-c1d648e7233c.jpg" title="IMG_0873.JPG"//pp style="text-indent: 0em text-align: center "span style="font-size: 14px "strong图片专家从左向右:麦克默瑞提克(上海)仪器有限公司总经理许人良博士、中国颗粒学会理事长朱庆山研究员、加拿大Western UnversityHassan G.Gommaa教授、清华大学建筑技术科学系赵彬教授、中国颗粒学会理事长陈运法研究员/strong/span/pp style="text-indent: 2em "麦克-《颗粒学报》优秀论文奖由知名粉体表面表征仪器企业美国麦克仪器公司和《颗粒学报》共同设立,每两年评选一次,每次评选出两篇文章,旨在奖励在颗粒学科学基础及应用研究方面做出创新性研究成果的科研工作者,促进我国颗粒学学术水平的提高。span style="text-indent: 2em "该奖项于2012年在第八届全国颗粒科学大会上首次颁发,随后两届相继于2014年第七届世界颗粒科学大会和2016年第九届全国颗粒科学大会上颁发,获奖论文的作者包括了诺贝尔和评奖获得者铁学煕博士在内的多位业内知名专家。/span/p
  • 中国颗粒学会第九届学术年会暨海峡两岸颗粒技术研讨会第三轮通知
    为交流国内外颗粒学研究与技术的最新进展,每两年一届的“中国颗粒学会学术年会暨海峡两岸颗粒技术研讨会”将于2016年8月12-14日(8月12日报到)在四川省成都市举办,会期2天。中国颗粒学会第六届理事会会议暨第二届青年理事会会议、中国颗粒学会期刊(《颗粒学报》、《中国粉体技术》)编委会会议、中国颗粒学会团体标准工作委员会会议将同期举行。会议期间还将颁发学会各项奖励奖项。本次会议得到中国科学技术协会、粉末冶金产业技术创新战略联盟、丹东市百特仪器有限公司、英国马尔文仪器有限公司、北京赛克玛环保仪器有限公司、德国赢创德固赛公司、美国麦克仪器公司等单位的支持。  本届年会将设立分会场12个。学术交流形式包括大会特邀报告、分会邀请报告、口头报告以及墙报交流,会议同期还将举办“颗粒/粉体技术、应用及设备展”,并设置“新技术、新产品、新设备推介及展示”区域。会议预计规模500人。衷心欢迎海峡两岸广大从事颗粒技术研究的学者、工程技术人员、企业界代表及研究生踊跃投稿,积极参会。  一、 学术分会场(8月12日报到,13-14日全天会议)  第1分会场:颗粒的测试与表征  (1) 颗粒性能表征和测试技术:几何性能、物理性能、表面性能、力学性能 (2) 在线测量与控制   (3) 颗粒特性对粉体产品性能的影响。  第2分会场:气溶胶  (1) 气溶胶基本特性、监测与分析 (2) 气溶胶环境气候健康效应 (3) 气溶胶污染与控制。  第3分会场:流态化基础研究及应用  (1) 流化床中的传热、传质和化学反应,特殊流化床(磁场、声场、超重力、振动等) (2) 计算机数值模拟与放大 (3) 多相流与旋风分离器、流化床的工业应用。  第4分会场:颗粒制备与应用技术  (1) 颗粒制备技术、表面改性处理技术 (2) 颗粒应用技术 (3) 颗粒制备与应用技术中的新理论、新方法、新技术、新工艺、新产品等。  第5分会场:超微颗粒材料  (1) 制备、表征及应用方面的新进展,特别是新思想、新材料、新技术 (2) 在环境、能源、保健等领域的应用 (3) 产业面临的市场和技术挑战,及其应对策略。  第6分会场:生物颗粒制备技术  (1) 生物颗粒(药品,食品,环境等)的制备技术及其应用 (2) 生物颗粒的粉体技术在产业化中的应用 (3)药品的粉体性质对体内生物利用度及药效的影响 (4) 药用辅料在药物制剂中的重要性 (5) 粉体性质的表征在新药开发中的应用 (6) 难溶性药物的微粉(纳米)化技术与产业化  第7分会场:能源颗粒材料  (1) 能源材料(如锂电池、电容器、金属空气电池、燃料电池相关材料) (2) 能源催化转化材料(如煤、石油、天然气、生物质能源高效转化材料) (3) 能源颗粒的表征及产业化。  第8分会场:3D打印材料及技术  (1) 3D打印粉体材料的制备技术(钢、医用材料、轻金属及高温合金) (2)金属的3D打印:材料、加工、组织性能及产品评价 (3)3D打印过程中加工模拟、缺陷检测及控制 (4)3D打印相关软件的开发及应用。  第9分会场:纳米涂层材料及防腐技术  (1) 纳米颗粒改性聚合物复合材料研究与应用 (2) 纳米颗粒改性涂层材料研究与应用。  第10分会场:颗粒形貌调控  (1) 颗粒形貌调控的热力学和动力学基础 (2) 多级复杂形貌颗粒的制备与应用 (3) 颗粒形貌与材料性能关系 (4) 颗粒形貌演变过程的原位检测。  第11分会场:学会团体标准—颗粒与标准化  (1) 团体标准介绍 (2) 学会团体标准项目运行 (3) 颗粒标准立项建议 (4) 颗粒团体标准发展与探索。  第12分会场:生物气溶胶  (1)生物气溶胶来源、传播、感染机制及影响因素 (2) 生物气溶胶捕获、监测与灭活防护 (3) 生物气溶胶与大气颗粒物不同组分的协同健康效应。  二、 同期展览、企业交流会(8月12日上午布展,12-14日全天展览)  为了便于企业宣传、展示最新的产品,促进科研成果的转化,推动产、学、研的结合,将在会议同期举办“颗粒/粉体技术、应用及设备展”,展览内容包括:测试分析仪器、颗粒/粉体制备技术及设备、颗粒/粉体材料及产品、颗粒/粉体应用技术等。此外,本次会议将专门安排“新技术、新产品、新设备推介及展示”区域。展期与会期同步,烦请计划参展的单位尽快与学会秘书处郭峰联系(电话:010-62647647,E-mail: fguo@ipe.ac.cn),并沟通具体事宜。  三、 学会奖励奖项的评选与颁发  学会已启动、组织以下奖项的评选工作,并将在年会闭幕式上组织颁奖:  1. 中国颗粒学会“技术发明奖”、“科技进步奖”、“赢创颗粒学创新奖”和“青年颗粒学奖”  l 学会自2016年起设立“中国颗粒学会技术发明奖”和“中国颗粒学会科技进步奖”,旨在奖励在颗粒学研究及创新创业活动中做出突出贡献的团体或个人,每次各设立一等奖1?3项、二等奖5?10项。  l 学会自2012年起设立“赢创颗粒学创新奖”,旨在奖励在颗粒学研究及应用方面做出贡献的杰出人才,每次奖励优秀科学家和优秀青年科学家(45周岁以下)各2名。本奖项由德国赢创德固赛公司赞助。  l “中国颗粒学会青年颗粒学奖”为国家承认的社会力量设立的科学技术奖,欢迎青年科技工作者积极申请(申请者年龄不得超过42周岁)。  注:以上奖项的申请截止日期为2016年5月31日。奖项详情及申请表下载请登陆中国颗粒学会网站(http://www.csp.org.cn/Awards/index.aspx)。  2. 中国颗粒学会“麦克-《颗粒学报》优秀论文奖”  l 学会自2012年起设立“麦克-《颗粒学报》优秀论文奖”,奖励在颗粒学基础研究或应用基础研究工作中取得成果、并在PARTICUOLOGY(颗粒学报)上正式发表的论文,每次奖励2篇论文。本奖项由美国麦克仪器公司赞助。  3. 中国颗粒学会年会优秀论文奖  l 年会将面向参会并参加论文宣读或墙报交流的在读学生设立 “年会优秀论文/墙报奖”。  四、 会议征文  会议将出版论文摘要集,论文全文/详细摘要将收录入会议论文U盘。投稿时务请指定论文希望交流的分会场及交流形式 (口头报告 或/及 墙报交流),同时请附上计划的论文宣读人(或墙报交流人)的简单个人信息(是否为在读学生)。论文要求为详细摘要或全文投稿,稿件请采用Word排版,并直接投稿至会议网站(http://csp2016.csp.escience.cn)。投稿截止日期延长至2016年6月30日。  五、 参会指南  1. 广告服务:会议文集热诚为国内外企事业提供各种宣传专页(刊登单位自行设计)、LOGO及全称的宣传(手提袋、签字笔、U盘)、单页印刷品等,请有意企业或单位于2016年6月10日之前与会务组联系。  2. 会议重要时间节点  2016年3月会议第二轮通知  2016年3~6月会议网站注册、提交论文  2016年5月31日奖项申请材料截止  2016年6月会议第三轮通知  2016年6月30日会议论文接收截止  2016年8月12日年会报到  3. 会议注册费(不含代表住宿费)  提前缴费:1600元/人,学生800元/人,学会会员1400元/人   会场缴费:1800元/人,学生900元/人,学会会员1600元/人   开户行及账号:中国工商银行北京海淀西区支行 中国颗粒学会 0200004509014413416  (注:缴费时务请注明希望开具的发票抬头。需要办理会员证的代表,请登陆中国颗粒学会网站(www.csp.org.cn)下载会员报名表。)  4. 会议地点及住宿:成都家园国际酒店(成都机场路181号,电话:028-82936666)  住宿:成都家园国际酒店, 370元/标准间。住宿费用自理。  交通:  从成都火车北站  (1) 公交车:在北站东二路站乘坐16路公交车,至火车南站西路站换乘816、806、121、或304路公交车在美好家园站下车。  (2) 地 铁:乘地铁1号线至桐梓林站 (B出口),在人民南路南换乘806、304、或816路公交车在美好家园站下车。  (3) 出租车:全程约17公里(45元左右)。  从成都火车东站  (1) 公交车:在东广场乘坐121路公交车直接前往美好花园站下车。  (2) 地 铁:乘坐2号线至天府广场站下车,换乘地铁1号线至桐梓林站下车(B出口),在人民南路南乘坐806、304、或816路公交车在美好家园站下车。  (3) 出租车:全程约18公里(46元左右)。  从机场  (1)机场大巴:乘坐机场专线4号线到美好花园站下车即到。  (2)出租车:全程约6公里(20元左右)。  更多详情请见会议后续通知或请登陆学会网站(www.csp.org.cn)了解。  1. 会务组联系方式:  学会秘书处  地 址:北京海淀区中关村北二街1号(100190)  电 话:010-62647647/62647657 传真:010-82629146 E-mail: klxh@ipe.ac.cn  联系人:郭峰(15110169497)、韩秀芝(13521432868)、白蕴如(13520549676)  各分会场学术秘书中国颗粒学会
  • 斯派超推出同时进行颗粒自动计数、磨粒智能识别和铁磁性颗粒浓度和数量检测的LNF多功能磨粒分析仪
    Spectro- LNFQ200系列用于油液分析、状态监测和制定可靠性维护计划,是一个功能强大的分析平台。它分为颗粒计数器、磨粒形貌分类器和有铁磁性颗粒计数器三个模块,客户能自由搭配。LNF技术是与美国海军合作开发的,提供了颗粒计数与清洁代码,外来污染、异常磨损分类,铁磁性磨粒测量和游离水计算。Q200系列检测设备简单易用、检测速度快。 “LNF Q200系列能帮助使用者简单快速地进行设备状态监测。所有此系列仪器均无需校准,并具有直观、易于使用的图形用户界面(GUI),因此,操作人员培训可以在几小时内完成,而无需若干天。”公司首席执行官Brian Mitchell解释说。LNF Q200系列现已推出三种配置,力求最大限度地满足不同设备监测的需要。Q210是业界最好的颗粒计数器,并具有将磨粒与进入设备的外来污染物区别出来的独特能力,而Q220是在Q210的基础上添加了LNF自动磨粒形貌分类的功能。Q230的配置包括颗粒计数器、自动形貌分类器以及磁力计,其中磁力计能对铁磁性磨粒进行量化和趋势分析,以ppm为单位。所有型号均可选配粘度测量功能和自动进样器。Q200系列是专门为在用润滑油分析而设计的。该系统可检测高达500万颗粒/毫升很脏的油样或烟炱含量高达2%很黑的油液,也能区分水珠和气泡。商业实验室管理人员和PDM管理人员非常看重 Q200能够计算自由水,能区分污染物(二氧化硅)和设备磨损磨粒(金属),通过鉴定磨损类型、磨损模式以及潜在来源来对磨粒形貌进行分类。 关于斯派超科技公司斯派超科技公司及其全资子公司专门提供工业油液性能分析仪器和软件。斯派超科技是一家全球性润滑油、燃油和水处理分析仪器供应商,主要应用于工业和军事。行业客户包括石油石化、矿山、电力和水处理公司以及商业检测实验室。欲了解更多信息,请访问www.spectrosci.com
  • 【技术指导】油品颗粒度检测标准和内容(便携式颗粒度检测仪)
    得利特(北京)科技有限公司专注油品分析仪器领域的开发研制销售,致力于为国内企业提供高性能的自动化油品分析仪器。公司推出系列精品润滑油分析检测仪器、燃料油分析检测仪器、润滑脂分析检测仪器等。油品颗粒度检测范围和方法油品颗粒度检测,其实就是对油品的磨损性能进行评价。油品颗粒度也是油品污染物的重要检测指标。检测油品的颗粒含量,不仅可以帮助提高使用油品机组的可靠性,还可以延长其使用寿命,减少生产事故的发生,提高生产效率。由此可见油品颗粒度检测的重要性。油品颗粒度检测范围:汽油、柴油、煤油、刹车油等。油品颗粒度检测方法:油品颗粒度分析的方法主要有光学法、电磁法、电容法和显微图像分析法。其中,光学检测法因其检测速度快、灵敏度高和颗粒形状分析能力强,被广泛应用于微小颗粒的计数检测。光阻法是光学检测方法中广泛检测和发展的一种颗粒计数测量方法。油品颗粒度检测标准DL/T 432-2018电力用油中颗粒度测定方法GB/T 30507-2014船舶和海上技术润滑油系统和液压油系统颗粒污染物取样和清洁度判定导则QC/T 29105.3-2013专用汽车液压系统液压油固体颗粒污染度测试方法取样QC/T 29105.4-1992专用汽车液压系统液压油固体污染度测试方法显微镜颗粒计数法JB/T 10560-2017滚动轴承防锈油、清洗剂清洁度及评定方法JB/T 9591.3-2015燃气轮机油系统清洁度测试用显微镜计数法测定油液中固体颗粒污染度SH/T 0573-1993在用润滑油磨损颗粒试验法(分析式铁谱法)QC/T 29104-2013专用汽车液压系统液压油固体颗粒污染度的限值JB/T 9737-2013流动式起重机液压油固体颗粒污染等级、测量和选用JB/T 12895-2016内燃机润滑油污染物颗粒分级和检测方法相关仪器A1030便携式油液污染度检测仪使用方便,用于液压油、润滑油及水乙二醇抗燃液清洁度的现场检测,检测清洁度直观易读,并能帮助维护工程师判断油品污染物的性质,判断污染物的来源,是现代工厂维护的常用检测设备。适应标准:DL432(显微镜对比法) NAS1638(美国航空航天工业联合会制定),ISO 4406(国际标准化组织制定)仪器特点1、可目测5~150μm颗粒污染情况2、颗粒成份一目了然,快速分析污染级3、操作方便,快捷实用技术参数• 显微镜:100倍• 检测颗粒:5μm~150μm• 检测等级:NAS等级00-12,ISO等级1-24• 滤膜:1.2μm、5μm• 精 准 度:±0.5个污染度等级• 小进样量:12.5ml• 环境温度 15℃~55℃• 尺寸:540mm*400mm*340• 重量:10.2kgA1031油液颗粒污染度检测仪是依据GB/T 18854-2002、ISO11171-1999、DL/T432-2007、GJB 420B、NAS1638、ISO4406等标准研制的用于油液中污染粒子的分布大小尺寸及等级检测的仪器。油液颗粒计数器采用光阻法(遮光法)原理研制,适用于液压油、润滑油、抗燃油、绝缘油和透平油等颗粒污染度的检测。可提供快速、准确、可靠、可重复的检测结果及完整的污染监测分析报告。广泛应用于航空、航天、电力、石油、化工、交通、港口、冶金、机械、汽车制造等领域。仪器特点1.采用国际液压标准光阻(遮光)法计数原理。2.高精度激光传感器,测试范围宽,性能稳定,噪声低,分辨率高。3.采用精密注射泵取样方式,可自行设定取样体积,进样速度稳定,取样精度高。4.采用了正负压结合的进样系统,可实现样品脱气,适合不同粘稠度的检品测试。5.内置空气净化系统,保证测试不受污染。6.内置多重校准曲线,可兼容国内外常用标准进行校准。7.内置GJB-420B、NAS1638、ISO4406和ГOCT17216-71等8种常用标准,支持自定义标准测试,并可根据客户需求设置所需标准。8.可采用标准取样瓶或取样杯等多种取样容器,满足不同行业的检测要求。9.彩色触摸屏操作,内置打印机,结构简洁大方,操作简单方便。10.全功能自动操作,中文输入,具有数据存储、打印功能。11.内置数据分析系统,可根据标准自动判定样品等级。12.具有RS232接口,可连接电脑或实验室平台进行数据处理。13.可有偿提供颗粒度计量测试站“中国航空工业颗粒度计量测试站”校验报告。技术参数• 光源:半导体激光器• 粒径范围:0.8um~500um• 检测通道:8通道任意设置粒径尺寸• 分辨力:优于10%• 重复性:RSD2% • 粘度范围:大350mm2/s(cSt)• 取样体积:0.2~1000ml • 取样精度:优于±1%• 取样速度:5mL/min ~80mL/min• 气压舱真空:0.08MPa• 气压舱正压:0.8MPa • 极限重合误差:10000粒/mL• 工作电源:AC220V±10%,50Hz
  • 中国颗粒学会第七届(2010年)学术年会暨海峡两岸颗粒技术研讨会(第二轮会议通知)
    为了总结交流近年来我国颗粒技术方面的研究开发成果,探讨本领域国际上最新的研究进展和发展动向,“中国颗粒学会第七届(2010年)学术年会暨海峡两岸颗粒技术研讨会”将于2010年8月15-18日(8月15日会议报到)在西安举办。中国颗粒学会第五次会员代表大会及理事会换届工作将与此次会议同时举行。上海颗粒学会年会及北京粉体技术协会年会将于本次会议同期举办。会议同期还将安排企业交流专场、仪器设备展示会。  一、部分大会及分会特邀报告(初定,按报告人姓氏笔画排序)报告题目报告人运用跨尺度颗粒进行过程强化 丁玉龙,英国Leeds大学/中科院过程所,教授以皮克宁乳液为基础纳米复合材料的制备 毋 伟,北京化工大学,教授 Multivariate SPC of emulsion and nanoparticle slurry processes based on process tomography, dynamic light scattering and acoustic spectroscopic data王学中,英国Leeds大学,教授颗粒功能的力激发及应用 王树林,上海理工大学,教授 高山有机气溶胶来源、组成和形成机制 王格慧,中科院地球环境所,研究员 铝土矿脱硅的浮选组装表面化学 王淀佐,北京有色金属研究总院,工程院院士 超细,超硬,超纯 粉体制备设备成功开发及工艺 设计 冯平仓,北京瑞驰拓维科技有限公司,博士 基于动态光散射原理的纳米激光粒度仪的研究进展 任中京,济南大学,教授 苏州地区一次灰霾过程的数值模拟研究 刘红年,南京大学,副教授 ZnO nanowires-array photoelectrodes sensitized with quantum dots: Enhancement for water splitting reaction刘如熹,台湾大学,教授 亚微米与纳米颗粒表征技术进展 许人良,贝克曼库尔特公司颗粒部全球技术总监 Oxygen storage capacity of nanocrystalline Tb1-XZrXO2-d three way catalysts synthesized by ultrasound assisting precipitation张建旗,内蒙古科技大学,教授 静态光散射粒度测量的理论下限及实现极限测量的技术方案 张福根,欧美克科技有限公司,博士 Carbonaceous aerosol - Past, now and future李顺诚,何健辉,香港理工大学,教授 废印刷电路板非金属材料粉的再利用 沈志刚,北京航空航天大学,教授 Powder technology in consumer product industry沈 睿,宝洁(中国)研发中心, 粉体工艺研发首席工程师纳米颗粒的工程及应用 陈建峰,北京化工大学,教授 纳米颗粒聚团流态化研究新进展 周 涛,中南大学,教授工业丙烯聚合反应器的多尺度模型 罗正鸿,厦门大学,副教授 无机矿物粉体表面改性技术 郑水林,中国矿业大学,教授 Formation of Fe and Pt nanorods on nanoporous anodic aluminum oxides by controlled nucleation sites姚永德,辅仁大学,教授 粉体材料的可控制备及其工业应用 骆广生,清华大学,教授 中国水泥工业的生态化 徐德龙,西安建筑科技大学,工程院院士 载氧体颗粒制备及化学链燃烧技术进展 郭庆杰,青岛科技大学,教授 街谷流动及污染物传输的实验及数值模拟 顾兆林,西安交通大学,教授 药物混悬剂的结晶大小对稳定性及生物利用度的影响 崔福德,沈阳药科大学,教授 多相复杂系统的多尺度并行计算-走向实时模拟葛 蔚,中科院过程工程研究所,研究员二、粉体技术及产业化交流内容   粉体技术在能源材料制备过程中的应用(锰酸锂、磷酸铁锂等正极材料超微细加工中对粉碎设备的要求)   ☆大型超细加工设备在非金属矿深加工中的应用   ☆粉体技术在磨料行业中的应用   ☆颗粒制备技术在医药行业中的应用   ☆高档颜料制备与粉体技术   ☆微米轻钙及纳米碳酸钙的产业化最新进展   ☆我国超微细铜粉工业化生产与应用技术   ☆纳米氧化铁红项目应用推介等。  三、粉体加工设备、颗粒测试仪器及科技成果展  为丰富年会内容,同时促进粉体行业产、学、研、投等领域更好的对接,拟在年会同期举办“粉体加工设备、颗粒测试仪器及科技成果展”、“粉体技术及产业化交流会”,以期通过此平台更好地为行业企业服务。欢迎粉体加工设备企业 颗粒测试仪器生产商、代理商 从事粉体技术研究的高校及科研院所及相关领域的有关单位,踊跃报名参展。  四、评选并颁发“中国颗粒学会青年颗粒学奖” 、“青年优秀论文奖”和“优秀研究生论文奖”  “中国颗粒学会青年颗粒学奖” 设立于1997年,与每2年一届的学会年会同步,在年会筹办的同时评选该奖,颁奖仪式在年会闭幕式上举行。2007年8月初,经国家科学奖励办公室正式批准,“中国颗粒学会青年颗粒学奖” 已经成为国家承认的社会力量设立的科学技术奖,欢迎青年科技工作者积极申请(申请者年龄不得超过42周岁),详情请登陆中国颗粒学会网站www.csp.org.cn。本奖报名截止日期为2010年6月30日。 在本次会议上,还将评选“青年优秀论文奖”(40岁以下)和“优秀研究生论文奖”,请青年颗粒技术工作者和研究生踊跃投稿。  五、会议征文  所有投稿论文或摘要将收录进会前出版的会议论文集中。投稿者请直接投寄全文或摘要(email:klxh@home.ipe.ac.cn),截止日期为2010年6月30日。  六、广告服务  会议论文集将热诚为国内外企事业刊登各种宣传专页(刊登单位自行设计):黑白印刷,3000元/A4页 彩色印刷,6000元/A4页。在会上散发广告资料收费3000元/份(代装入资料袋,含1人注册费)。 具体事宜请与学会秘书处联系。  七、会议报到时间、地点  报到时间:2010年8月15日  地 点:陕西宾馆(陕西丈八沟宾馆)12号楼: 西安市丈八北路1号  (邮编:710065 电话:029-88812020)  注册费:包括资料费、专题讲座费、会议费、参观等,不含代表住宿费。  提前注册:1400元/人(不含住宿费),学生800元/人,学会会员1200元/人   会场注册:1500元/人(不含住宿费),学生900元/人,学会会员1300元/人   开户行及账号:北京工商银行海淀西区支行 中国颗粒学会 0200004509014413416  (注:需要办理会员证的代表,请从中国颗粒学会网站www.csp.org.cn下载会员报名表。)  住 宿:陕西宾馆(陕西丈八沟宾馆),住宿费用自理。  12#楼(五星级):440元/标准间 7#、8#、11#楼(三星级):320元/标准间。  交 通:  从火车站至陕西宾馆(陕西丈八沟宾馆)  (1)公交车:乘公交车251路,在终点站丈八沟宾馆下车 乘公交车 608路,茶张村站下车,向南100米。票价1元/人,  一个小时左右到达。  (2)出租车:费用约40元。  从咸阳国际机场至陕西宾馆(陕西丈八沟宾馆):机场大巴25元/人  (1)机场大巴:17:00前乘机场大巴西高新线路到西高新站(志诚丽柏酒店门口)下车后,转乘出租车费用约15元   17:00后乘机场大巴到西稍门站下车后,转乘出租车费用约25元。  (2)出租车:费用约130元。  八、回 执  本次会议的会务费将对本会会员及学生实行优惠。欢迎大家参加会议,并请于7月15日前将回执返回学会秘书处,  以便安排住宿等事宜。会议详情敬请关注中国颗粒学会网站:www.csp.org.cn。已将第一轮会议回执返回的老师,  不用再次提交。  会务秘书处联系方式 :  地 址:北京中关村北二条1号(100190) 中国颗粒学会秘书处  联系人:韩秀芝  电 话:010-62647647/62647657 传真:010-82629146 E-mail: klxh@home.ipe.ac.cn  中国颗粒学会  2010年6月 【回执】下载
  • 扫描电镜下的雾霾颗粒
    硫酸盐颗粒富钛合包壳颗粒烟尘集合体颗粒铁氧化物颗粒未知颗粒附着的超细颗粒铁氧化物颗粒群含铬、铅颗粒  星球?胶囊?果冻?不,都不对,这些其实是扫描电子显微镜下的雾霾颗粒。昨日,西安交通大学师生将收集的西安雾霾颗粒,放大数十万倍呈现在记者眼前,复杂的形貌和成分令人震惊。  好奇 雾霾到底是什么 师生研究了两个月  &ldquo 很多人都知道雾霾,但雾霾到底是什么?&rdquo 今年春季雾霾困扰时,西安交大微纳中心执行主任单智伟教授提出了这个问题,但周围没人能回答他。  &ldquo 雾霾是什么成分?长什么样?&rdquo 在单智伟指导下,研究生丁明帅和同学开始了一项特殊研究。他们3月至4月连续两个月,每天用硅片收集空气中沉降的颗粒物,然后通过扫描电子显微镜放大数万至数十万倍。  丁明帅说,他们从中选取了1081个颗粒分析,其中PM2.5颗粒494个。显微镜下的雾霾颗粒令他大开眼界。  分析 扬尘颗粒占比最高 主要是汽车尾气  根据形貌和成分,他们把空气颗粒分为七大类。占比最高的是扬尘颗粒,达到33.4%,主要成分是硅铝酸盐、富钙颗粒,形状极不规则。  其次是含硫颗粒,占14.8%。外形有的像盐粒,有的像绒球。&ldquo 主要来源是汽车尾气。其中的硫酸物一旦进入空气中和水蒸气结合,易生成弱酸性物质,有腐蚀作用。&rdquo 单智伟说。  燃煤飞灰和烟尘集合体的比例,分别占9.5%、6.1%。燃煤飞灰的形貌大多是规则的球形。他们认为,这两种成分应与煤炭和天然气燃烧有关。  还有一些成分来源很难确定,如硅氧化物、铁氧化物。  惊叹 外貌好奇特 含锌颗粒像一串葡萄  含微量元素颗粒最为奇特。其中含钛颗粒是半透明的球体,内部装满了钛氧化物微粒 含碲颗粒像长满枝杈的竹子,来源不明 含锌颗粒则像一串葡萄。  最让单智伟担心的是含铅、铬颗粒。&ldquo 这种颗粒多次观察到。铅本身比重比较大,但与其他物质结合后,就像坐了小飞机,悬浮在空气中到处传播,对健康的危害尤其严重。&rdquo   他们还测试了一些颗粒的力学性能,发现部分颗粒硬度达到钢铁的5~10倍。颗粒内部也很奇特,把燃煤飞灰颗粒切开,内部全是泡状。  建议 锁定雾霾来源 采取措施降低危害  &ldquo 明白了雾霾成分,就便于锁定来源,有针对性采取措施。&rdquo 单智伟说。  他建议,对于扬尘颗粒,要通过立法规范建设行为 对于汽车尾气,可以加装装置进行有效过滤 对于燃煤飞灰和烟尘集合体,可采取新技术和调整能源结构加以解决。  单智伟还提醒,在关注健康危害的同时,也不要忽视PM2.5对工业的影响。&ldquo 高硬度的颗粒可能给高精度机械设备带来损害,造成损失。要改进封装工艺、封装环境,降低雾霾对工业的影响。&rdquo
  • 用于协同破坏肿瘤线粒体的光响应型颗粒研究取得进展
    线粒体是细胞的能量工厂,破坏肿瘤细胞中的线粒体是抗肿瘤治疗的新策略。基于线粒体破坏的抗肿瘤治疗新策略得到越来越多的关注。而如何在肿瘤组织内高效且特异性启动线粒体的破坏是实现安全有效抗肿瘤治疗的前提。  光激活肿瘤疗法由于具有治疗部位精确可控、毒副作用小等优点,尤其是光照条件下能够激活光致产酸分子释放氢离子,酸化胞内微环境。近日,中国科学院过程工程研究所生化工程国家重点实验室研究员马光辉、魏炜,与中国科学院大学化学科学学院教授田志远受此启发,并结合多年的抗肿瘤剂型工程的研究经验,构建出光响应型颗粒剂型,实现递送光致产酸分子,在肿瘤细胞内促使大量自由基产生和大量钙离子内流,以此造成线粒体氧化应激与钙离子过载。通过上述破坏线粒体的协同机制实现肿瘤细胞的高效杀伤,在多种小鼠模型上均显著抑制了肿瘤进展,为肿瘤的高效治疗带来了新思路。相关研究成果发表在Nature Communications上。  研究将叶酸、上转换颗粒、光致产酸分子,通过“一锅法”负载于金属有机框架中,形成FMUP颗粒剂型。静脉注射后,FMUP借助叶酸分子选择性地靶向到肿瘤部位。在近红外光照射下,上转换颗粒发出的紫外光可酸化肿瘤胞内环境并释放二价铁离子,并通过芬顿反应产生更多的羟基自由基攻击线粒体。同时,胞内酸性环境可引起大量钙离子内流,导致线粒体钙离子过载。上述协同机制可以显著破坏肿瘤细胞内线粒体,进而高效杀伤肿瘤细胞并抑制肿瘤的生长。上述研究已在肝癌患者来源的异种移植瘤等模型上证明其显著疗效,但处于动物水平的临床前研究,实际临床疗效有待进一步确认。  近年来,过程工程所发现和创制了一系列药物和疫苗递送新剂型,在动物模型上用于肿瘤、传染病、炎症性疾病的防治,部分剂型已通过医院伦理批准进入个体化临床前和临床研究。相关成果相继发表在Nature Materials、Nature Nanotechnology、Science Translational Medicine、Nature Biomedical Engineering、Science Advances、Nature Communications等上。  研究工作得到国家自然科学基金面上项目与创新群体项目、国家重点研发计划和中科院战略性先导科技专项的支持。
  • 第三届麦克-《颗粒学报》优秀论文奖举行隆重颁奖仪式
    2016年8月13日,第三届麦克-《颗粒学报》优秀论文奖颁奖典礼在中国颗粒学会第九届年会晚宴中隆重举行。美国麦克仪器公司中国区总经理许人良博士为700多位来宾介绍了享誉业界54年的美国麦克仪器公司的成立情况、现有仪器的种类和数量、在中国的发展历史以及在中国的市场分布,并说明了mic-particuology最佳论文奖的评选办法以及历届的获奖人员,表达了麦克仪器公司全力为中国科研企业服务的美好愿望。许人良博士并与中国颗粒学会理事长陈运发博士一起为获得此届优秀论文奖的两篇论文作者颁发了奖牌与奖金。此次获奖的两篇文章以及获奖团队为:1. pm2.5 in china: measurements, sources, visibility and health effects, and mitigation (vol. 13, 2014)david y.h. pui*, sheng-chieh chen, zhilizuo david y.h. pui教授是国际著名气溶胶学者及过滤技术领域专家,目前是明尼苏达大学颗粒技术实验室和过滤技术研究中心主任,曾担任美国气溶胶学会主席、国际气溶学会主席,并获得过多项重要的奖励,包括国际气溶胶学届最高奖fuchs memorial award。 裴教授于2013年被中科院聘为“爱因斯坦讲席教授”。2016年当选美国国家工程院院士。2. evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations (vol. 11, no. 1, 2013)jiannongquan, yang gao, qiang zhang, xuexi tie*, junji cao, suqin han, junwangmeng, pengfei chen, delong zhao 铁学煕教授现任中科院地球环境研究所研究员(国家千人计划特聘专家),并为美国大气科学研究中心的终身科学家,并为北京大学、南开大学,中科院大气物理所兼职教授。是国际上从事全球气溶胶数值模拟的著名科学家之一。他于1977年本科毕业于北京大学,1983年获得中科院大气所大气物理硕士学位,1989年获得美国佐治亚理工学院地球物理博士学位。他开发了数个全球及区域三维化学动力模式,在全球温室气体、臭氧、气溶胶分布规律及对全球环境及气候的影响方面起着先驱者的作用。发表了sci文章170多篇,引用次数7000多次,高引指数(h-index)为47。 铁学煕教授作为联合国气候变化政府间专家委员会(ipcc)小组成员共享了2007年诺贝尔和平奖。许人良博士与中国颗粒学会理事长陈运发博士一起为获奖者颁奖 麦克-《颗粒学报》优秀论文奖为美国麦克仪器公司和《颗粒学报》共同设立,旨在奖励在颗粒学科学基础研究和应用基础研究做出创新性研究成果的颗粒学科研工作者,提高我国颗粒学学术水平,促进学科发展。参与评选的论文范围为:前4年发表在《颗粒学报》上的所有文章,评选的依据为sci数据库,根据所有参选论文的年均被引用次数顺序选出候选文章。
  • 镁、镱等超硬颗粒的研磨方法
    研磨对象:镁、镨、镱等颗粒,粒度级别5mm及以下研磨目的:金属基材料制备、机械合金化研磨难度:超硬性、延展性、氧化性所用仪器:天昶科技 D-Vibrate Miller三维震荡研磨仪研磨原理:研磨罐带动物料,做上下左右三维式旋转摆动、振动、冲击运动,运动幅度是:上下60mm,左右20mm,前后20mm,震动频率为:Speed Max=2800rpm,磨球和罐壁对物料的三维无序撞击摩擦,撞击能远远高于常规行星球磨仪,使得微纳米颗粒成为可能。该仪器自重120kg,空载噪音75dB,连续运转时间72h,可供您选择的研磨罐体容积50~250ml,同时3个罐体运转,可以获得3种不同实验材料。可提供高分子、PTFE、玛瑙、氧化锆、碳化钨等多种类罐体材质,适应无铁研磨、干法研磨、湿法研磨,可通N2、Ar等惰性气体气氛保护。研磨罐方便拆卸,可在真空手套箱中装卸物料,防止超细金属自燃。 研磨方法:将磨球25mm 1粒,5mm 5粒,3mm 20粒,一定质量初始直径5mm的镁颗粒,放入50ml不锈钢研磨罐中,研磨罐为椭球形结构,如图示。加入溶剂,或者加无水乙醇并通入惰性气氛保护,利用上下左右三维式震击研磨仪,研磨时间2h,即可得细度微米级的悬浊液。
  • 梅赛德斯-奔驰联合研究:减少锂电生产过程中杂质颗粒的 4 种方法
    Nature Energy|梅赛德斯-奔驰联合研究成果:减少锂电池生产过程中杂质颗粒的 4 种方法目前,尽管在实验室研究的锂离子电池材料的研发已经取得巨大进展,但是从实验室几克材料的合成,到千克、以及吨级大规模生产,还存在许多质量控制的盲点。本文作者重点关注下一代锂离子和锂金属电池,分别从电池的原材料、正负极加工工艺、超轻量集流体、以及电池生产过程中的清洁度把控(锂电池清洁度分析)等方面出发,给出了锂电池大规模量产的机遇和挑战。这一研究成果《锂电池从实验室研究到大规模量产》,由太平洋西北国家实验室、华盛顿大学、宾夕法尼亚州立大学和梅赛德斯 - 奔驰北美研发公司以及赛默飞世尔科技共同完成,并发表在国际顶级期刊《nature energy》上。原文链接:https://doi.org/10.1038/s41560-023-01221-y文章解读文中在“对锂电池原材料和生产过程的表征”部分指出,为了实现可控且高品质的电池材料生产,先进的表征手段在这个过程中非常关键。品质把控包括原材料、电极形貌和成分、以及表面处理等众多步骤。在品质把控的过程中,来料中有 2 类金属杂质对于电池性能危害最为严重。一种是非磁性颗粒,比如铜 (Cu)、锌 (Zn) 类。另一种是磁性颗粒,比如铁 (Fe)、铬 (Cr)、镍 (Ni) 以及合金颗粒。目前电池制造商们主要采用以下 4 种策略来减少生产过程中的杂质颗粒。对原料进行严格的品质把控 策略一 这一过程可以借助电感耦合等离子体发射光谱仪、光学显微镜和扫描电镜(ParticleX Battery 锂电清洁度检测系统),来识别原材料的杂质颗粒并分析其成分,这些方法对于磁性颗粒和非磁性颗粒都具有适用性。使用 ParticleX Battery 锂电清洁度检测系统,识别到的磁性和非磁性异物颗粒某些生产环节加入除磁步骤策略二生产工艺中(如搅拌池),添加除磁工艺,以去除磁性颗粒物。监测生产车间的环境清洁度 策略三 生产车间中任何金属零件的磨损,都有可能产生异物颗粒,都会影响生产环境的清洁度。这一过程可以使用光学显微镜和扫描电镜(PaticleX Battery 锂电清洁度检测系统)来追溯污染来源。生产设备的金属表面涂覆防护涂层 策略四 比如在金属储罐表面涂覆聚四氟乙烯涂层,以减少浆料中混入金属碎片的风险。/ ParticleX Battery 全自动锂电清洁度检测系统 /文中使用扫描电镜进行的清洁度检测,正是使用飞纳电镜的 ParticleX Battery 锂电清洁度系统完成的。锂电池中金属异物可能导致严重的安全事故,对金属异物的管控也已经成为行业共识。飞纳电镜 ParticleX Battery 全自动锂电清洁度分析系统,从异物颗粒的图像出发,结合颗粒的能谱(成分)信息,可以自动识别、分析和统计铜(Cu)、锌(Zn)、铁(Fe)等金属异物,进而帮助准确分析异物来源,改善生产条件,减少安全事故的发生。- 自动杂质颗粒识别- 自动高清图像采集- 自动能谱成分分析- 自动杂质颗粒分类
  • 磷酸铁锂迎发展“第二春”,欧美克高性能激光粒度仪需求强劲
    近日,在北京召开的第七届中国电动汽车百人会论坛(2021)上,比亚迪股份有限公司董事长王传福表示,“按照规划,到2025年,我国新能源汽车新车销售量将达到汽车新车销售总量的20%左右。”这意味着接下来5年,新能源汽车行业年复合增长率将达37%以上。结合前期“特斯拉Model Y低价发售”、“宁德时代逼近万亿股价”、“蔚来包下宁德时代磷酸铁锂电池生产线!”等新闻发酵,不难发现随着磷酸铁锂电池以其低成本高安全性的优势在中低端市场不断渗透,特别是相关技术的进步也助推磷酸铁锂电池自2020年起重新扩展市场空间,其需求快速反转向上。中国汽车动力电池产业创新联盟日前发布的数据显示,2020年我国动力电池累计销量达65.9GWh,同比累计下降12.9%。其中,三元锂电池累计销售34.8GWh,同比累计下降34.4%;磷酸铁锂电池累计销售30.8GWh,同比累计增长49.2%,是唯一实现同比正增长产品。中信证券指出,目前,特斯拉、戴姆勒等海外新能源汽车主流企业均明确了磷酸铁锂电池技术路线,预计宝马、大众等其他海外车企也将在其动力电池技术路线中选择磷酸铁锂方案。而国内无论是宁德时代的CTP电池管理控制技术还是比亚迪的“刀片电池”,磷酸铁锂的高安全性助力了其在乘用车领域的回暖,都让磷酸铁锂电池开始经历第二春!伴随着宁德时代年产8万吨磷酸铁锂投资项目签署,磷酸铁锂第二春的帷幕已然拉开,大规模的量产也必将刺激高性能激光粒度仪的市场需求。众所周知,激光粒度分析仪在锂离子电池行业有着广泛的应用需求,主要应用于正极材料、三元前驱体材料、负极材料、导电剂、隔膜涂覆用氧化铝等材料的粒度测试。从大量的制浆经验以及行业交流反馈来看,诸如钴酸锂(LiCoO2)、锰酸锂(LiMn2O4)、镍酸锂(LiNiO2)、镍钴锰酸锂(LiNiCoMnO2)和磷酸铁锂(LiFePO4)等多种不同的正极材料,通常采用中值粒径D50、代表大颗粒的D90作为关键质控指标。不同材料不同工艺的产品对原材料的粒径要求也不尽相同,以分布在1-20μm范围内居多。负极材料以石墨为例,当其平均粒径为16-18μm,且粒度分布较为集中时,电池有较好的初放容量及首次效率。此外,随着电池隔膜的厚度要求不断提高,对其中添加阻燃材料的粒径要求也随之不断提高,常使用的隔膜氧化铝粒径从微米级逐渐发展到亚微米甚至是纳米级。随着电池性能提高对原材料的粒度要求不断提高,激光粒度仪发挥着不可替代的作用,同时对粒度测量仪器的重复性、重现性、分辨能力提出了更高的要求。锂离子电池正、负极材料标准中的粒度分布要求激光粒度仪的高分辨能力在电池材料的检验中,对测试样本中少量的大颗粒或小颗粒的准确识别有着重要的意义。比如说在电池材料活性物质中如果存在少量的大颗粒,可能会对涂布、滚压造成负面影响。如果在原材料检测时就发现,则可以避免后续不良品的产生。另一个典型的例子是粒径过小的石墨粉在粉碎过程中更易于使其晶型结构发生改变,小颗粒石墨粉中菱形晶数量相对较多,而菱方结构的石墨具有较小的储锂容量,使电池的充放电容量有所降低。另外颗粒直径太小,单位重量总表面积就会很大,需要的包覆材料越多,导致电极材料的堆积密度减小而体积能量密度下降。如果能准确的对各种原材料进行粒度测试,在一定程度上有助于预判后续产品性能、防范风险… … 可见,电池性能的诸多方面都与正负极材料和隔膜材料等的粒径息息相关。欧美克Topsizer激光粒度分析仪对少量的大/小颗粒及样品各个粒径组分的准确识别,需要仪器制造商在无盲区光学设计、高品质高精度元器件、装配工艺、算法及软件智能控制上不断优化,提高产品分辨能力。例如早先的激光粒度仪将多个光电转换元件探测通道放置在一块或两块平面上,然而傅立叶透镜的聚焦面通常呈弧形分布,平面布置的探测器很难将所有角度的散射光信号都精确地聚焦获取,通过精准的独立探测器焦点曲面排布设计和一致性定位工装提高粒度仪分辨能力和仪器之间的重现性。欧美克Topsizer激光粒度分析仪和Topsizer Plus激光粒分析仪是在锂离子电池行业被广泛应用的高性能激光粒度分析仪。量程宽、重现性好、分辨能力强、自动化程度高、故障率低等优异性能保证了测试结果和分析能力,而且与国内外、行业上下游黄金标准保持一致,不仅为用户节省了方法开发和方法转移上的时间和成本,更重要的是可以避免粒径检测不准带来的经济损失和风险,无论在产品研发、过程控制还是质量控制上,都能够为用户带来真正的价值。欧美克LS-609激光粒度分析仪而欧美克LS-609激光粒度分析仪就采用了先进的激光粒度仪散射光能探测的设计,将常见的失焦影响较大的多个大角探测器通道以分个独立的方式精确放置于与其散射角相对应的傅立叶透镜焦点位置,以保证所有散射光角度的信号都是无混杂的,提高了散射光分布角度分辨能力。与此同时,各个独立的探测器有利于在探测器上布置杂散光屏蔽装置,同时也防止了散射光在不同探测器上的相互干扰,进一步降低系统的噪声,提高细微差异的分辨能力。我们以具体的电池材料样品来看欧美克激光粒度分析仪的测试性能对材料准确表征的案例。1. 欧美克Topsizer激光粒度仪测试含有少量大颗粒的石墨原材料的粒度分布图和粒度分布表如下图所示,可以看到对于体积含量在0.5%以下的极少量60-100μm的颗粒,以及体积含量在1%左右的2μm以下颗粒,均能够灵敏的检测出来其详尽的粒度分布。显示了Topsizer对粉体材料的大、小颗粒具有高超的分辨能力,对于最终下游应用中电池产品的安全性能和容量性能有更准确的指导意义。如果对于对少量小颗粒特别关注,在软件上,甚至可以采用数量分布替代体积分布的计算方法,进一步放大小颗粒的权重,对小颗粒数量上的变化进行更易识别的测试和生产质控。但需要注意的是,对于分布较宽的样品,由于大小颗粒在尺寸上差异本身就很大,同样体积的大小颗粒的数量相差将会异常巨大,取样和分散测量上的少许波动会导致测试结果数量分布上较大的偏差。2. 下图是欧美克LS-609激光粒度仪对磷酸亚铁锂3次取样分散测试粒度分布的叠加图,及特征粒径的统计结果,显示该仪器对磷酸亚铁锂的测试拥有优良的重现性。由此可见高分辨能力和重现性的激光粒度分析仪在电池原材料粒度检测领域能带来更好的质控效益。正如中国科学院院士、中国电动汽车百人会副理事长欧阳明高所说,中国动力电池技术创新模式已经从政府主导向市场驱动转型,目前中国电池材料研究处于国际先进行列。而在中国动力电池的快速创新发展必然也离不开高分辨能力和重现性的激光粒度分析仪作为质控的好帮手。通过给动力电池行业提供更专业优化的粒度检测方案,欧美克激光粒度仪的行业销售也在持续高速增长。欧美克必将一如既往不断探索,与中国动力电池行业并行快速发展,携手创造中国奇迹,助力新能源引领世界美好未来!参考资料:1. 沈兴志,珠海欧美克仪器有限公司,《高性能激光粒度分析仪在电池材料测试中的应用》2. 经济日报,《第七届中国电动汽车百人会论坛举办》3. 腾讯网,《磷酸铁锂厂家齐涨价,2021年将回潮迎来“第二春”?》4. 中国证券报,《磷酸铁锂电池迎来发展“第二春” 2020年累计销售同比增长近
  • 2012年颗粒学术盛会将在杭州召开
    中国颗粒学会第八届学术年会暨海峡两岸颗粒技术研讨会(第一轮通知)  为交流国内外颗粒学研究与技术的最新进展,“中国颗粒学会第八届学术年会暨海峡两岸颗粒技术研讨会”将于2012年9月5-8日在浙江省杭州市举办。本届会议由中国颗粒学会主办,中国科学院地球环境研究所、浙江大学承办,中国颗粒学会气溶胶专委会、中国科学院过程工程研究所、杭州市环境监测站协办。会期3天,9月5日报到。  本届年会将设立分会场9个,专业课程培训班2个。学术交流形式包括大会特邀报告、分会邀请报告、口头报告以及墙报。年会面向广大颗粒学工作者征集学术论文及摘要,并印制论文摘要集,论文全文收入会议论文光盘。会议预计规模500人。衷心欢迎海峡两岸广大从事颗粒技术研究的学者、工程技术人员、企业界代表及研究生踊跃投稿,积极参会。  年会同期还将安排企业交流专场、仪器设备展览、新技术新产品与新设备推介会。欢迎相关企业、高校、科研院所积极参与。  中国颗粒学会第五届理事会会议暨第二届青年理事会会议、中国颗粒学会期刊(《颗粒学报》、《中国粉体技术》)编委会会议将同期举行。  一、 组织机构  名誉主席:郭慕孙  主 席:李静海  执行主席:陈运法、张仁健、林鸿明*  学术委员会:(按音序排列,*为台湾代表)  主 席: 李静海  委 员: 艾德生、白志鹏、蔡小舒、曹军骥、岑可法、陈宏勋、陈建峰、陈建民、陈良富、陈文章*、陈晓东、程 易、崔福德、戴明凤*、邓茂华*、丁玉龙、董青云、都有为、冯连芳、顾兆林、郭庆杰、郭新彪、胡 敏、胡荣泽、胡宇光*、黄建平、简淑华*、金 涌、李伯耿、李春忠、李 泓、李洪钟、李经民*、李顺诚、李星国、刘如熹*、卢春喜、卢寿慈、骆广生、马光辉、任中京、沈志刚、宋延林、苏党生、陶 俊、铁学熙、王 丹、王格慧、王勤辉、王体健、王燕民、韦文成*、魏 飞、吴溪煌*、徐德龙、许光文、颜 鹏、颜富士*、杨 辉、杨 毅、叶君棣*、叶旭初、袁中新*、张 忠、张福根、张立德、张连众、张美根、张仁健、张文阁、张晓山、赵跃民、郑水林、周素红、周 涛、朱庆山、卓清松*  组织委员会:  主 席:曹军骥、吴忠标、马光辉  委 员:王 丹、周素红、白蕴如、周家茂、韩秀芝、郭 峰、杨 志  二、 学术分会  第1分会:颗粒的测试与表征 分会主席:任中京、周素红  (1)颗粒性能表征和测试技术:几何性能、物理性能、表面性能、力学性能 (2)在线测量与控制 (3)颗粒特性对粉体产品性能的影响。  第2分会:气溶胶 分会主席:张仁健、曹军骥  (1)气溶胶基本特性、监测与分析 (2)气溶胶环境气候健康效应 (3)气溶胶污染与控制。  第3分会:流态化基础研究及应用 分会主席:魏 飞、朱庆山  (1)流化床中的传热、传质和化学反应,特殊流化床(磁场、声场、超重力、振动等) (2)计算机数值模拟与放大 (3)多相流与旋风分离器、流化床的工业应用。  第4分会:颗粒制备与应用技术 分会主席:沈志刚、郑水林  (1)颗粒制备技术、表面改性处理技术 (2)颗粒应用技术 (3)颗粒制备与应用技术中的新理论、新方法、新技术、新工艺、新产品等。  第5分会:超微颗粒材料 分会主席:张立德、林鸿明  (1)制备、表征及应用方面的新进展,特别是新思想、新材料、新技术 (2)在环境、能源、保健等领域的应用 (3)产业面临的市场和技术挑战,及其应对策略。  第6分会:生物颗粒材料 分会主席:马光辉、崔福德  (1)工业生物技术颗粒材料的制备及应用 (2)医药生物技术颗粒材料的制备及应用 (3)农业、食品和环境生物技术颗粒材料的制备及应用。  第7分会:能源颗粒材料 分会主席:苏党生、丁玉龙  (1)新型能源颗粒材料(电池材料、超级电容器材料和多晶硅等)的制备及应用技术 (2)碳纳米相关材料的能源应用 (3)能源转化催化剂。  第8分会:纳米颗粒复合材料及其应用 分会主席:张 忠、宋延林  (1)纳米颗粒改性聚合物复合材料研究与应用 (2)纳米颗粒改性涂层材料研究与应用 (3)绿色印刷中的纳米复合材料研究与应用。  第9分会:聚合物颗粒材料 分会主席:李伯耿、骆广生  (1)聚合物颗粒材料的制备与调控、改性与应用 (2)聚合物颗粒材料的制备新方法和新理论。  三、 专业课程培训(9月4日报到,5日全天上课)  大气PM2.5专业课程培训 主席:曹军骥  伴随国务院颁布新的PM2.5标准,PM2.5污染在全国范围内引起广泛关注,各地环保、气象、高校等部门纷纷采取行动,加强PM2.5监测与研究。为此,本课程将邀请国内外PM2.5领域著名专家,向与会者讲解国际上最前沿的PM2.5污染监测、研究和控制技术。  培训的主要内容:(1)PM2.5采样与分析 (2)PM2.5来源解析 (3)PM2.5与灰霾及能见度 (4)PM2.5的健康影响 (5)PM2.5的数值模拟 (6)PM2.5污染控制对策与技术。  能源颗粒材料专业课程培训 主席:苏党生  能源颗粒材料不仅可作为催化材料催化能源转化过程、也可作为储能材料参与能源存储与转化。能源颗粒材料在二次电池、超级电容器、光伏转化、燃料电池、可再生能源等领域具有广泛应用前景。为此,特邀请该领域的国内著名科学家围绕能源颗粒的处理、加工、表征及应用技术等进行讲解。  主要内容及主讲人:(1)能源颗粒(清华大学魏飞教授) (2)能源颗粒的制备和加工(厦门大学陈晓东教授) (3)能源颗粒的表征(中科院过程所丁玉龙研究员) (4)能源颗粒在储能中的应用(中科院物理所李泓研究员)。  四、 同期展览、企业交流会  为了便于企业宣传、展示最新的产品,促进科研成果的转化,推动产、学、研的结合,将在会议同期举办颗粒/粉体技术及设备展,展览内容包括:测试分析仪器、颗粒/粉体制备技术及设备、颗粒/粉体材料及产品、颗粒/粉体应用技术等。展期与会期同步,烦请计划参展者尽快与学会秘书处郭峰联系(电话:010-62647647,E-mail:fguo@home.ipe.ac.cn),并沟通具体事宜。  届时还计划举办“新技术、新产品、新设备推介会及企业交流会”,希望参与会上交流的企业若需解决哪些问题,烦请于会前告知会务组,以便提前协调、联系相关专家及单位。热忱欢迎相关企业及单位积极参与。  五、 学会奖励奖项的评选与颁发  年会闭幕式上将颁发“中国颗粒学会青年颗粒学奖”、“中国颗粒学会–赢创颗粒技术成果奖”、年会“青年优秀论文奖”和“研究生优秀论文奖”。  1、中国颗粒学会“青年颗粒学奖”和“颗粒技术创新奖”  (1)学会将自本届年会起(2012年)设立“颗粒技术创新奖”,计划每次奖励2位在颗粒学研究及应用方面做出贡献的杰出人才。本奖项由德国赢创德固赛公司赞助。  (2)“中国颗粒学会青年颗粒学奖”为国家承认的社会力量设立的科学技术奖,欢迎青年科技工作者积极申请(申请者年龄不得超过42周岁)。  注:以上两奖项的申请截止日期为2012年6月30日。奖项详情及申请表下载请登陆中国颗粒学会网站(www.csp.org.cn)。  2、青年优秀论文奖和研究生优秀论文奖  本次年会继续面向参会并宣读论文的青年学者及研究生设立“青年优秀论文奖”(40岁以下)和“研究生优秀论文奖”。  六、 会议征文  1、本次会议出版的文集将被中国学术期刊(光盘版)电子杂志社出版的《中国重要会议论文全文数据库》和CNKI系列数据库网络,以及北京万方数据电子出版社出版的《中国学术会议速递联盟》和“万方数据”全文收录并网络出版。以上数据库将同步提供检索和全文服务。不希望所投文章被以上数据库收录及出版的作者,务请在投稿时注明。  2、会议将出版论文摘要集,论文全文将收录入会议论文光盘。  3、论文要求为全文投稿或详细摘要,稿件请采用Word排版,下载年会论文模板请登陆学会网站。论文投稿请注明分会场,并直接发送电子邮件至学会秘书处:Email:klxh@home.ipe.ac.cn,或直接投稿至会议网站(www.csp.org.cn,点击第八届学术年会进入会议网站)。投稿截止日期为2012年6月15日。  4、会后将推荐部分优秀的论文至《中国粉体技术》(核心期刊),或《颗粒学报》(英文)(SCI与EI收录,IF=1.317)。  七、 参会指南  1、广告服务:会议文集热诚为国内外企事业提供各种宣传专页(刊登单位自行设计)、LOGO及全称的宣传(手提袋、签字笔和纸质笔记本)、单页印刷品等,请有意企业或单位于2012年6月30日之前与会务组联系。  2、会议重要时间节点 2012年3月 会议第一轮通知 2012年6月15日 会议论文接收截止 2012年6月 会议第二轮通知 2012年9月4日 专业课程培训班报到 2012年9月5日 年会报到、专业课程培训班上课 2012年9月6-8日 会议进行、考察   3、会议注册费(不含代表住宿费)  开户行及账号:北京工商银行海淀西区支行 中国颗粒学会 0200004509014413416  (注:需要办理会员证的代表,请登陆中国颗粒学会网站(www.csp.org.cn)下载会员报名表。)  4、会议地点及住宿:杭州花港海航度假酒店(杭州市杨公堤1号,电话:0571-87998899,紧邻西湖)  详情请见会议第二轮通知或请登陆学会网站(www.csp.org.cn)了解。  5、会务组联系方式:  地 址:北京海淀区中关村北二条1号(100190) 中国颗粒学会秘书处  电 话:010-62647647/62647657 传真:010-82629146 E-mail: klxh@home.ipe.ac.cn  联系人:郭峰(15110169497)、杨志(15210502004)、韩秀芝(13521432868)中国颗粒学会2012 年3月  下载:中国颗粒学会第八届学术年会回执     中国颗粒学会第八届学术年会论文模板
  • 第七届世界颗粒学大会(WCPT7)第一轮会议通知
    (大陆会议代表 第一轮会议通知)  第七届世界颗粒学大会(The 7th World Congress of Particle Technology,简称WCPT7)将于2014年5月19~22日(18日报到)在北京国际会议中心召开。大会由中国颗粒学会、中科院过程工程研究所承办,中科院副院长、中国颗粒学会理事长李静海院士担任会议主席。  &ldquo 世界颗粒学大会&rdquo 是由美国、英国、德国、日本、澳大利亚等多国科学家联合发起的世界颗粒学研究及技术领域最主要的会议之一,自1990年开始举办,每四年举办一次,分别在欧洲/非洲、亚洲/澳洲、美洲三个地区轮流举办。本次会议为该系列会议首次在中国举办。  本次大会将以大会特邀报告、专题研讨会、分会场报告等多种形式进行交流,并专门安排墙报交流时段。会议将围绕包括颗粒粉体制备的各种物理、化学、机械方法 超微及纳米颗粒的制备工艺、应用技术及其有关的物理、化学问题 流态化现象和流态化技术 粉体处理各单元操作 气溶胶及其对环境、天气、气候的影响 颗粒和气溶胶的性能测试和表征等安排15个左右的分会场。同期还将组织会议附展&mdash &mdash 粉体/颗粒技术、应用及产业展。  预计本次会议的参会代表将达到1000余人。衷心欢迎广大从事颗粒学和颗粒技术研究与开发的学者、工程技术人员、企业界代表及研究生踊跃投稿,积极参会、参展!  一、时间及地点  1.会议时间:2014年5月19~22日,5月18日报到  2.会议地点:北京国际会议中心(地址:北京市朝阳区北辰东路8号,电话:010-84985588)  二、报到与注册  1.报到时间:5月18日全天(9:00-22:00),5月19日上午(7:30&ndash 10:00)  2.报到地点:北京国际会议中心一层报到台  3.注册费用:大陆参会代表的注册费用为: 2014年4月18日前汇款2014年4月18日后汇款现场注册参会代表2500元2800元2900元学会会员2200元2500元2600元学生1500元1800元1900元  备注:注册费包括会议期间的午餐、欢迎酒会、宴会、茶歇和相关资料费(论文摘要集及全文光盘等)。  4. 交费方式:银行汇款  户 名:中国颗粒学会  帐 号:0200004509014413416  开户行:中国工商银行北京海淀西区支行  备注:注册费用以汇款时间为准。汇款时敬请注明您的姓名、单位全称,以便核对 款项汇出后烦请务必将汇款凭证通过传真(010-82629146)或邮件(wcpt7@home.ipe.ac.cn)发送至大会秘书处,以确保您的款项准确及时入账。  5.参会回执: 见附件,也可自大会网站下载电子参会回执,通过邮件或传真发送至大会秘书处。  三、初定大会日程安排时 间日 程5月18日全天会议注册晚上欢迎酒会5月19日上午会议开幕式及大会特邀报告下午分会场报告、专题研讨会、墙报交流晚上自由活动5月20日上午分会场报告、专题研讨会下午分会场报告、专题研讨会、墙报交流晚上宴会5月21日上午分会场报告、专题研讨会下午分会场报告、专题研讨会、墙报交流晚上自由活动5月22日上午会议闭幕式及大会特邀报告  四、会议出版物 (全部为英文,论文摘要及全文请通过大会网站在线提交)  1.纸质版摘要集及光盘版全文集:将在会议报到时一并发放,供大会交流。摘要集将包含所有被接受的论文摘要(模板及详细要求请见附件或登录大会网站下载) 全文集光盘将收录所有参会作者投稿的论文全文。摘要投稿截止日期为2013年10月31日。  2.正式出版文集:会议收集到的全文论文,通过审稿后将在 Procedia Engineering 上正式出版。Procedia Engineering 是Elsevier出版集团旗下出版的会议论文集的电子期刊,为正式出版物,其所有论文均以 Open Access 的形式在 ScienceDirect 上在线公开发表,读者可免费阅读并下载。该文集出版后将申请被EI,Scopus,以及CPCI索引。  五.会议附展&mdash &mdash 粉体/颗粒技术、应用及产业展  参展范围:粉体(粗、中、细及超微)制备、散料输送及其配套设备 气溶胶环境监测,除尘、空气净化等安全环保设备与技术 颗粒分析与表征仪器,颗粒流体系统的测量和控制技术 工业粉体材料、生物医药材料、纳米颗粒材料及其测试设备。更多详细内容请见会议附展网站(http://zhanlan.csp.org.cn)或与大会秘书处联系。  六、住宿安排  1. 会议住宿:住宿费用自理。  北辰五洲大酒店 (四星,标准间660元/间):北京市朝阳区北辰东路8号,电话:010-84985588   北京北辰汇园酒店公寓 (四星,标准间460 元/间):朝阳区北辰东路8号,电话:010- 64992788   北京亚运村宾馆 (三星,标准间380 元/间):北京市朝阳区北辰东路8号,电话:010-64991199。  2. 酒店交通:  北京火车站:距离北京火车站约16公里:  (1)地 铁:乘地铁2号线,至鼓楼大街站换乘地铁8号线,到奥体中心站下车(B2东北口出),步行约1200米到达。  (2)公交车:北京站前街乘坐特2路到达安慧桥北站,步行约800米到达。  北京南站:距离北京南站约14公里:  (1)地 铁:乘坐地铁4号线,至宣武门站换乘地铁2号线,至鼓楼大街站换乘地铁8号线,到奥体中心站下车(B2东北口出),步行约1200米到达。  北京西站:距离北京西站约19公里:  (1)地 铁:乘坐地铁9号线,至国家图书馆站换乘地铁4号线,至海淀黄庄站换乘地铁10号线,至北土城站换乘地铁8号线,到奥体中心站下车(B2东北口出),步行约1200米到达。  (2)公交车:乘坐694路(或特2路) 到达安慧桥北站,步行约800米到达。  机场:距离北京首都国际机场约20公里:  (1)机场大巴:乘坐机场巴士5线(北京首都机场&rarr 中关村),在亚运村(安慧桥)站下车,步行约200米到达。  (2)地 铁:乘坐机场快轨,至三元桥站换乘地铁10号线,至北土城站换乘地铁8号线,到奥体中心站下车(B2东北口出),步行约1200米到达。  七、联系方式  大会秘书处:  地址:北京中关村北二条1号,中国颗粒学会 邮编:100190  电话:010-62647647/57,传真:010-82629146,E-mail:wcpt7@home.ipe.ac.cn  大陆会议代表的注册与住宿信息以此会议通知为准,更多会议详细信息,请登录大会网站(http://www.wcpt7.org)。  中国颗粒学会  2013年
  • 关于举办第十二届中国颗粒大会的通知 (第五轮)
    关于举办第十二届中国颗粒大会的通知(第五轮)各有关单位和科技工作者:为促进颗粒与粉体相关领域学术交流、推动学科发展和技术创新及助力人才成长,由中国科学技术协会指导,中国颗粒学会主办,中国颗粒学会能源颗粒材料专业委员会、海南大学承办,由广州大学、华南理工大学、北京海岸鸿蒙标准物质技术有限责任公司等共同协办的第十二届中国颗粒大会(The 12th China Congress on Particle Technology(CCPT12))将于2023年4月21-24日在海南省海口市举办。第十二届中国颗粒大会会议主题为“创新助力双碳,绿色赋能发展”。本届大会是应我会发展需要、继承我会历届学术年会的全国性高层次的颗粒学领域大型综合性学术会议。大会围绕颗粒学相关领域的科研进展、产业发展和人才成长等展开交流,面向广大颗粒学与粉体行业及其化工、能源、材料、医药和环境等相关领域科技工作者征集科技论文(摘要)。2022年度中国颗粒学会奖励将在大会上组织颁奖。大会还将评选青年报告奖及优秀墙报奖,欢迎投稿参会。中国颗粒大会同期将举办颗粒/粉体仪器、设备、产品和应用展,包括颗粒/粉体测试分析仪器、制备设备、产品及其在化工、能源、材料、医药和环境等中的应用等内容,欢迎相关单位积极报名参展。中国颗粒学会颗粒学奖的相关信息也将在大会期间展出,敬请关注。一、学术委员会(*为中国台湾代表)(1)学术委员会主席:李静海(2)学术委员会执行主席:朱庆山 陈运法 林鴻明* 彭 峰 (3)学术委员会顾问:李 灿 孙世刚 马光辉 陈建峰 陈晓东 郭 雷 郭烈锦 何鸣元 胡 英 李洪钟 刘中民 彭 峰 王静康 谢在库 徐春明 余艾冰 袁 权 张锁江 Jesse Zhu(4)学术委员会委员(按音序排列)艾德生 安太成 安希忠 白博峰 蔡 挺 蔡小舒 曹军骥 曹少文 曹学武 常 津 陈 诚 陈嘉媚 陈建峰 陈建新 陈 岚 陈明君 陈 鹏 陈前进 陈巧艳 陈胜利 陈填烽 陈晓东 陈学元 陈永奇 陈 煜 陈运法 程国安 程义云 程振民 楚锡华 褚良银 崔福德 邓德会 邓茂华* 董青云 费广涛 冯 春 冯立纲 冯 胜 付信涛 付 艳 傅晓伟 傅彦培* 高思田 高 峡 高 原 戈 钧 葛宝臻 葛广路 葛 蔚 宫厚军 龚湘君 谷海峰 顾卫国 顾兆林 顾 臻 桂 南 郭 雷 郭烈锦 郭庆杰 郭少军 韩 鹏 韩永生 韩 召 郝红勋 郝新友 何鸣元 何 勤 何羽薇 何玉荣 侯曙光 胡富强 胡 钧 胡小晔 胡晓林 胡 英 胡宇光* 胡子平 胡宗定 皇凡生 黄 挺 黄肇瑞* 纪红兵 季顺迎 季松涛 贾春满 江燕斌 姜晓斌 金一政 靳海波 康毅力 库晓珂 李朝升 李 春 李春忠 李 泓 李江涛 李 力 李 攀 李 旗 李顺诚 李铁军 李 霞 李相臣 李星国 李亚平 李亚伟 李映伟 李永旺 李增和 李兆军 梁海伟 廖永红 林 冲 林鸿明 林中魁* 刘宝丹 刘道银 刘福胜 刘 刚 刘俊杰 刘明言 刘潜峰 刘如熹* 刘 涛 刘 伟 刘亚男 刘 宇 刘岳峰 刘兆清 刘 铮 刘中民 刘忠文 刘钟馨 卢春喜 卢寿慈 陆 杰 陆 明 罗 坤 罗 勇 罗正鸿 骆广生 吕且妮 吕万良 吕友军 马光辉 马建民 马学虎 毛世瑞 梅其良 倪木一 聂广军 潘良明 潘勤鹤 彭 峰 彭 威 平 渊 秦和义 秦明礼 邱郁菁* 任 飞 任国宾 邵刚勤 佘继平 沈建琪 沈少华 沈义俊 沈志刚 宋宏伟 宋少先 宋锡滨 宋兴福 蘇程裕* 苏 敏 苏明旭 孙世刚 孙学军 孙 逊 孙 彦 孙中宁 谈玲华 谭援强 陶东平 陶绪堂 田庆国 佟立丽 王 丹 王德忠 王等明 王海龙 王 昊 王 辉 王静康 王利民 王 亮 王勤辉 王铁峰 王 伟 王孝平 王辛龙 王新明 王兴亚 王学重 王彦飞 王燕民 王 勇 王玉金 王玉军 王远航 王兆霖 王震宇 韦文诚* 魏 飞 魏进家 魏 炜 魏严凇 魏永杰 文利雄 吴传斌 吴汉平 吴立敏 吴 伟 毋 伟 伍志鲲 席广成 夏宝玉 向中华 解荣军 谢在库 谢志鹏 徐春明 徐 林 徐 强 徐维林 徐文杰 徐锡金 徐喜庆 许成元 许传龙 许人良 许文祥 薛冬峰 薛 琨 颜富士 杨 柏 杨 斌 杨 超 杨多兴 杨 芳 杨 军 杨 宁 杨世亮 杨为佑 杨 文 杨晓钢 杨艳辉 杨 毅 杨正红 杨志义 杨治华 杨组金 要茂盛 叶 茂 尹大川 尹秋响 尹诗斌 游利军 于明州 于秋硕 于溯源 于新民 余 方 余 皓 元一单 袁 权 袁友珠 臧双全 曾海波 曾宇平 占昌友 张炳森 张 灿 张春桃 张福根 张国诚 张国军 张 浩 张 洁 张立娟 张 强 张仁健 张铁锐 张伟儒 张文阁 张香平 张现仁 张幸红 张亚培 张永民 张振杰 张志炳 赵吉东 赵晓宁 赵永志 郑耿锋 郑水林 郑宪清* 钟 超 周 强 周素红 周 涛 周文刚 周已欣 周长灵 周志伟 朱华旭 朱 亮 朱庆山 朱晓阳 朱子新 邹晓新 Cheng Lixin Zhao Qi二、 组织委员会(1)组织委员会主席:朱庆山 彭 峰(2)组织委员会执行主席:王体壮(3)组织委员会委员(按音序排列)安太成 白红存 蔡楚江 蔡 建 曹永海 陈常祝 陈 诚 陈 磊 陈鲁海 陈 琦 陈 杨 程新兵 程 源 褚良银 邓培林 邓意达 丁良鑫 董 顺 杜 斌 杜 磊 段洁雯 冯广波 高 原 古霖蛟 管小平 郭 昆 韩秀芝 韩 召 洪长青 黄 巧 黄 玮 黄 欣 贾春满 贾菲菲 江宏亮 经浩然 康振烨 兰清泉 雷小文 李 琛 李 华 李嘉诚 李江涛 李 杰 李 静 李京红 李 攀 李晓明 李鑫磊 李宇航 李兆军 刘宝丹 刘丹彤 刘吉轩 刘俊杰 刘潜峰 刘瑞祥 刘 涛 刘晓雯 刘永卓 刘雨昊 刘兆清 刘钟馨 楼宏铭 卢思宇 罗俊明 吕岩霖 吕页清 马晶晶 马永丽 毛世瑞 穆华仑 聂保杰 欧阳婷 潘勤鹤 彭 峰 彭新文 朴洪宇 乔明曦 任小平 邵 奇 申芳霞 沈丹蕾 石 凯 史晓磊 苏明旭 孙 臣 孙 婧 孙 伟 孙晓晖 唐 星 田红景 田庆国 田新龙 汪 伟 王 标 王春明 王崇太 王东凯 王浩帆 王 欢 王 辉 王军武 王利民 王林桂 王 娜 王 双 王 霆 王晓飞 王兴亚 王艺钧 魏严凇 魏永杰 武云飞 夏芸洁 夏志国 向茂乔 谢智超 熊德华 熊勤钢 徐 骥 徐锡金 徐 政 许传龙 杨光星 杨 丽 杨 柳 杨 宁 杨增朝 要茂盛 叶 茂 尹俊连 余 皓 于明锐 于明州 喻 鹏 岳 华 张 浩 张慧如 张立娟 张 巧 张晓静 张 宇 钟胜奎 周 兰 周丽娜 周 玲 周素红 周 骛 朱晓阳 三、 学术分会场第1分会场:颗粒计算组织单位:大连理工大学、中国科学院过程工程研究所、浙江大学、东北大学、东南大学、华南理工大学分会主席:季顺迎、王利民、罗坤、安希忠、刘道银学术秘书:刘晓雯,华南理工大学,liuxw2021@scut.edu.cn会场简介:聚焦颗粒力学理论及模型、计算分析方法、软件开发和工程应用中的关键问题和难点问题,开展广泛的学术交流和讨论。分会场为力学、化工、能源、冶金、海洋、岩土及土木工程等领域中从事颗粒计算方面专家学者提供一个开放的交流平台,促进多学科的交叉融合,推动颗粒计算在基础理论、数值方法和工程应用中的发展。征文范围:(1)颗粒计算基本理论及数值方法; (2)颗粒计算软件开发及算例验证; (3)颗粒计算在化工、能源、冶金等领域的应用。第2分会场:氢能与燃料电池组织单位:海南大学分会主席:孙世刚学术秘书:田新龙,海南大学,tianxl@hainanu.edu.cn,康振烨,海南大学,zkang@hainanu.edu.cn会场简介:氢能和燃料电池是我国清洁能源发展和研究的重要方向,实现我国“碳减排”和“碳中和”的宏大目标,氢能和燃料电池将发挥着举足轻重的作用。今年初,我国又把氢能技术列为国家未来六大产业之一,氢能和燃料电池都将迎来更好的发展机遇。本次会议将邀请协会(学会)领导、院士、行业知名专家学者及企业代表,就国家相关政策和技术发展、行业科技发展目标和任务进行全面深入的探讨,总结国内外近期开发的氢能与燃料电池先进生产工艺和关键技术,指导我国氢能与燃料电池产业升级,推动我国能源结构调整和可持续发展,期待专家老师和技术人员踊跃参加。征文范围:电催化、电解水、质子交换膜燃料电池、固体氧化物燃料电池、氢能制备及产业化装置等关键科学与技术。第3分会场:工业结晶与粒子过程组织单位:天津大学国家工业结晶工程技术研究中心、中国科学院过程工程研究所、海南大学化学工程与技术学院、大连理工大学分会主席:郝红勋、杨超、姜晓滨、潘勤鹤学术秘书:黄欣,天津大学,022-27403200,x_huang@tju.edu.cn会场简介:分会场聚焦医药、食品、精细化工品、新材料等领域的工业结晶基础理论、结晶过程模型与模拟、结晶工艺开发与放大、工业结晶过程强化与连续化等方向最新研究进展,旨在完善我国工业结晶领域整体理论基础,提升相关方向原始创新能力,促进产学研的合作创新,加速相关行业企业的转型升级。分论坛拟邀请高等院校、科研院所、企业研发部门等领域内知名专家学者,围绕分会场主题从理论、方法、技术、产品等方面分享研究成果与经验。征文范围:(1)工业结晶基础理论; (2)晶体产品形态调控、多晶型预测、筛选与精准制备; (3)结晶工艺开发与放大; (4)工业结晶过程强化及连续化; (5)结晶过程计算流体力学及多相混合过程研究等。第4分会场:多相反应过程中的介科学组织单位:中国科学院过程工程研究所、中国科学院大连化学物理研究所、四川大学分会主席:杨宁、叶茂、褚良银学术秘书:管小平,中国科学院过程工程研究所,xpguan@ipe.ac.cn;汪伟,四川大学,wangwei512@scu.edu.cn;李华,中国科学院大连化学物理研究所,lihua@dicp.ac.cn会场简介:介尺度行为是由大量单元组成的系统在全局与个体之间的尺度上形成的复杂时空结构。介科学是研究介于时空“微尺度”和“宏尺度”之间的介尺度非均匀结构演化规律的科学,在自然、工程和社会科学中具有普遍的理论研究价值和广阔的应用前景,有望开辟新的科学研究范式,探索认识传统学科的共性规律,孕育新的科学前沿;有助于综合整体论和还原论,探索不同知识体系中的共性原理,变革科研范式,揭示科学问题复杂性的根源,解决一系列从基础研究到工程应用的关键科学和技术问题。国际期刊《科学》指出,介科学是科学上的无人区,是科学史上的一个重大事件。多相反应过程的介尺度主要表现在分子到颗粒(包括气泡、液滴等)间的材料表界面时空尺度、以及颗粒到反应器整体间的颗粒聚团时空尺度。征文范围:能源、材料、化工、生物等涉及多相反应过程中材料表界面和反应器/设备等不同层次上的介尺度问题。第5分会场:双碳背景下的流态化技术及应用组织单位:中国颗粒学会流态化专业委员会分会主席:葛蔚、王勤辉学术秘书:王军武,中国科学院过程工程研究所,jwwang@ipe.ac.cn;熊勤钢,华南理工大学,qingangxiong@scut.edu.cn会场简介:流态化技术广泛应用于石油化工、循环流化床锅炉、煤化工、矿物加工等工业过程,在我国工业生产中占有极其重要的地位。国家“双碳”重大战略不但要求我国能源结构的重大调整,而且要求实现产业结构和工业过程的转型升级,这为流态化技术提供历史性发展机遇的同时也提出了重大挑战。本分会场将探讨“双碳”背景下流态化技术的新发展、新应用,为国内外高校、科研院所、企事业单位的同行提供交流平台,共同推动流态化技术的跨越式发展,为国家“双碳”目标的实现做出重要贡献。征文范围:(1)流化床中的流动、传热、传质和化学反应; (2)计算机数值模拟与放大; (3)流化床过程强化技术; (4)流态化及相关技术的工业应用。第6分会场:颗粒助力“双碳”:CO2捕集与催化转化新途径组织单位:宁夏大学、青岛科技大学分会主席:郭庆杰学术秘书:刘永卓,青岛科技大学,0532-84022506,yzliu@qust.edu.cn;马晶晶,宁夏大学,mjj_1022@163.com会场简介:“碳达峰、碳中和”是我国应对全球变暖提出的重大战略目标,而二氧化碳的捕集和利用是实现双碳目标的最直接方式。作为二氧化碳最大排放源,煤炭等化石能源燃烧CO2捕集技术有燃烧前捕集、燃烧中捕集和燃烧后捕集,它们的应用前景主要受制于其捕集成本,化学链、CO2吸附、膜分离等技术具有潜在优势。捕集的二氧化碳主要有封存和利用两种形式,而催化转化制备大宗化学品更具有应用前景。本分会场聚焦面向烟气源、工业源、空气源等不同来源二氧化碳的捕集和催化转化技术,追踪CO2吸附颗粒、催化颗粒、载体颗粒等捕集和转化颗粒最新进展,为我国双碳目标的实现贡献新技术、新思想和新模式。征文范围:(1)CO2吸附材料; (2)化学链技术; (3)CO2其他分离方法; (4)CO2活化技术; (5)CO2-FT合成; (6)CO2捕集-转化耦合技术; (7)多污染物联合脱除技术。第7分会场:微纳气泡特性及其应用组织单位:中国科学院过程工程研究所、中国科学院上海高等研究院、同济大学、北京化工大学、东南大学分会主席:胡钧、李兆军、李攀、张立娟学术秘书:张立娟,中国科学院上海高等研究院,zhanglijuan@sari.ac.cn会议秘书:王兴亚,中国科学院上海高等研究院,wangxingya@zjlab.org.cn;周兰,中国科学院过程工程研究所,010-62521688,lzhou19@ipe.ac.cn会场简介:微纳气泡基础研究和应用是近二十年来发展非常迅速的新兴领域。微纳米气泡技术在环境治理、农业生产、水产养殖、清洗、化工矿产业、消毒杀菌、医学成像以及医疗健康等领域的应用独树一帜、效果出色。微纳气泡专业委员会于2018年10月18日在苏州成立,旨在加强微纳气泡基础研究和应用的科学家和企业家的深入交流和合作,推动相关技术的高效研发和推广。专委会目前会员已经近300人,在国内汇集了一批兴趣浓厚、勇于钻研、乐于分享的科学家、工程师和企业家,共同为微纳气泡技术更好造福人类不懈奋斗!本次分会拟邀请相关领域专家、学者、技术人员、企业界代表围绕分会场主题从理论、方法、技术、产品等方面分享研究成果与成功经验。征文范围:(1)微纳气泡基本性质; (2)微纳米气泡产生技术; (3)微纳气泡检测技术; (4)微纳气泡在各个领域的重要应用; (5)企业家论坛。第8分会场:生物气溶胶组织单位:北京大学、广东工业大学分会主席:要茂盛、安太成学术秘书:申芳霞,北京航空航天大学,fxshen@buaa.edu.cn会场简介:新冠肺炎疫情爆发以来,新冠病毒经气溶胶传播的作用在国内外已形成共识,对其进行持续有效的快速监测和控制对于当前疫情防控有重要意义。空气中除了可能有新冠病毒,还悬浮着大量的其他类型的微生物和生物来源的物质,统称为生物气溶胶,在室外和室内环境空气中无处不在,对人体和环境健康的重要性也逐渐受到关注。对生物气溶胶开展全面深入的基础研究和应用研究,对于改善室内外环境空气质量和保护人体健康至关重要。征文范围:生物气溶胶(包括新冠病毒)采集、检测、灭活、分析及其在大气科学、室内环境和环境健康等方面的基础和应用研究。第9分会场:绿色低碳过程中的气液固多相流科学及应用组织单位:天津大学、中国科学院过程工程研究所、University of Nottingham Ningbo、清华大学分会主席:刘明言、杨宁、杨晓钢、王铁峰学术秘书:马永丽,天津大学,022-27404614,mayl@tju.edu.cn会场简介:气-液、液-固和气-液-固流动系统具有重要的工业应用。例如,气-液鼓泡塔、气-液(固)浆态床、液-固和气-液-固多相流反应装置系统等,可用作多相反应器;汽-液沸腾、汽-液冷凝、泥状颗粒污垢沉积和微纳材料功能表面等涉及到化工等过程工业;对于软物质颗粒,例如:乳状液、泡沫、液滴流等涉及食品、生物和医药等行业领域等。这些多相流的共同特征之一是都存在连续或离散的液相以及真实的相界面,从而形成了易变形、易聚并和易破碎的真实气泡和液滴等软物质颗粒流,使其在流动、混合、传递以及反应等方面表现出特有的规律性,涉及的科学及应用问题可加以详细探讨。征文范围:包括以绿色低碳过程工业为目标的气液固多相流基础及应用内容。具体涉及: (1)气液鼓泡流及浆态床; (2)液固和气液固多相流; (3)池沸腾和流动沸腾; (4)蒸汽冷凝; (5)泥状颗粒污垢表面上的沉积及微纳功能表面抑制; (6)乳状液、泡沫、液滴流等软物质颗粒流; (7)其他含液多相颗粒流。第10分会场:药物制剂与粒子设计组织单位:中国颗粒学会药物制剂与粒子设计专业委员会分会主席:崔福德学术秘书:石凯,pharmparticle@126.com会场简介:本会场交流主题以工业药剂学及高端制剂的研究为中心,广泛征集相关领域的国内外专家学者、企业技术工作者以及在校学生的学术论文,展示其研究成果及新进展、新动态和新成果等。非常欢迎粉体加工技术及设备、药用辅料、以及粉体表征仪器(晶形、粒子形状大小、流动性、压缩成形性等)方面的专家们及企业针对粉体技术在药物制剂中的应用进行广泛交流,以期提高药物制剂技术的科学性、实用性及可生产性。本次分会将是药物制剂领域与粉体技术沟通的盛会,企业与高校、科研院所广泛交流的盛会,理论联系实际的盛会,中国工业药剂学产业化交流的盛会。征文范围:(1)粉体技术在固体药物制剂中的应用; (2)粉体性质的测试技术与研究进展; (3)药用辅料的粉体性质对产品质量的影响; (4)新型制剂设备的应用与研究进展; (5)制剂颗粒质量表征与控制; (6)在固体制剂生产过程中粉体性质的在线测定与控制策略; (7)从实验室研究到产业化过渡的难点与关键问题; (8)药物制剂的新剂型与新技术的产业化前景与难点; (9)基于功能性粒子设计的高端制剂。第11分会场:能源存储颗粒创造美好未来组织单位:中国颗粒学会能源颗粒材料专业委员会分会主席:魏飞、张强学术秘书:程新兵,东南大学,chengxb@seu.edu.cn会场简介:能源存储颗粒分会场结合颗粒与能源存储领域中急需解决的关键科学问题和难点技术问题,开展广泛的学术交流和讨论。通过对当前颗粒与能源存储研究现状和发展趋势的交流,凝练颗粒与能源存储的前沿研究方向,确定相应的关键科学问题,推动颗粒与能源存储领域在基础理论、研究方法和工业应用中的发展。征文范围:(1)能源材料(如锂离子电池、电容器、锂硫电池、金属电池、空气电池、燃料电池相关材料); (2)能源颗粒的表征技术; (3)能源颗粒的应用及产业化。第12分会场:面向未来的能源催化颗粒组织单位:中国颗粒学会能源颗粒材料专业委员会分会主席:彭峰、余皓、刘兆清学术秘书:王浩帆,华南理工大学,whf@scut.edu.cn;杜磊,广州大学,lei.du@gzhu.edu.cn会场简介:面向未来的能源催化颗粒分会场聚焦双碳目标下的催化关键科学问题,围绕光、电、热催化的前沿理念和创新技术开展广泛的学术交流和讨论,凝练能源催化的前沿研究方向,推动基于颗粒材料的能源催化技术在能源高效利用、CO2催化转化、电化学合成等领域的科学研究和工业应用,通过学术思想的碰撞催生面向未来的能源催化新理念与新技术。征文范围:与能源转化、利用相关的: (1)光催化; (2)电催化; (3)热催化; (4)光电催化。第13分会场:发光颗粒照亮未来组织单位:中国颗粒学会发光颗粒专业委员会、南京理工大学、华南理工大学、郑州大学、海南大学分会主席:曾海波学术秘书:李晓明,南京理工大学,lixiaoming@njust.edu.cn会场简介:发光材料的应用在生活中已经随处可见,从照明显示到医疗诊断再到防伪探测等等,可以说和我们的生活息息相关。在大规模应用的基础上,新型发光颗粒的开发与完善依然是国际研究领域及应用行业的前沿热点,获得了全世界的广泛关注。近年来,以钙钛矿量子点、碳纳米颗粒和荧光金属团簇为代表的纳米发光颗粒取得了飞速的发展,稀土荧光粉在材料体系、波长范围、发光特性等的发展也有目共睹,此外,有机发光颗粒和无机金属卤化物及其在生物医学等领域的研究也获得了较大的关注。经过两年的发展,相关领域更是取得了较大的突破,本分会场将为这些领域提供一个良好的学术交流平台,分享最新研究成果的同时促进交叉合作,为领域的进一步发展提供动力。征文范围:(1)半导体发光颗粒(镉基、铟基、钙钛矿等量子点,及其他微纳米发光材料); (2)稀土发光颗粒(照明、显示用稀土发光颗粒、长余辉发光颗粒、特种功能发光颗粒等); (3)碳及有机发光材料(碳荧光纳米颗粒、聚合物纳米颗粒、有机发光材料等); (4)团簇发光颗粒; (5)发光光谱、发光器件、发光应用及产业化。第14分会场:超微颗粒材料及应用(能源、环保、生物医学等)组织单位:中国颗粒学会超微颗粒专业委员会分会主席:费广涛、林鴻明*、艾德生学术秘书:刘潜峰,清华大学,liuqianfeng@tsinghua.edu.cn;徐锡金,济南大学,sps_xuxj@ujn.edu.cn会场简介:超微颗粒材料及应用分会是海峡两岸超微颗粒学界及产业界一直致力于超微颗粒的制备、表征及其应用方面的研究工作。为定期系统性地总结学界和企业界在超微颗粒方面的最新研究成果,尤其是超微颗粒学科在能量转换与存储、环境修复、生物医学等领域中的应用,同时促进海峡两岸本领域同行之间的学术交流,以及增强产业界与学术界的产学研合作,超微颗粒材料及应用分会为2023年4月21-24日在海南省海口市举办的“第十二届中国颗粒大会”的分会场之一。我们竭诚欢迎海峡两岸从事超微颗粒制备、表征及应用开发研究的科技人员及企业界朋友们踊跃与会,交流研究成果,为本学科的发展集思广益,建言献策,共同持续促进海峡两岸相关领域学者的友谊,为提升海峡两岸的科技水平和经济繁荣做出贡献。征文范围:(1)超微纳颗粒的制备理论、工艺及改性技术(尤其是分散技术); (2)超微颗粒在能量转换与存储、环境修复、生物医学等领域中的应用; (3)超微颗粒测试、标准分析中的基础问题; (4)超微粉体产业化技术中的技术问题。第15分会场:氮化物粉体、制品及应用——制造业升级背景下的新机遇组织单位:中国科学院理化技术研究所、中材高新材料股份有限公司、中国科学院上海硅酸盐研究所、哈尔滨工业大学、安徽工业大学分会主席:李江涛、张伟儒学术秘书:韩召,安徽工业大学,authan@163.com;向茂乔,中国科学院过程工程研究所,mqxiang@ipe.ac.cn;陈常祝,山东工业陶瓷研究设计院有限公司,chzhchen@126.com会场简介:氮化物材料种类丰富,性能多样,在高端装备、集成电路、新能源、生物医学等诸多领域发挥着不可替代的关键作用。在我国“碳达峰”和“碳中和”战略目标驱动下,在制造业升级、不断向高端领域迈进的背景下,以氮化硅、氮化铝、氮化硼为代表的氮化物系列材料的研究和应用,面临众多新的挑战和新的机遇。本次会议邀请国内知名高校、科研院所以及相关企业的专家学者和企业家,共同探讨制造业升级背景下氮化物材料研究和应用的现状、挑战和机遇。征文范围:(1)氮化物粉体的制备、后处理与检测分析; (2)氮化物陶瓷的制备、应用与评价; (3)氮化物涂层和薄膜的制备、应用与评价; (4)氮化物领域的其他研究和应用。第16分会场:核电厂气溶胶行为研究组织单位:清华大学、中国核电工程有限公司、中国原子能科学研究院、东南大学核科学与技术系分会主席:于溯源、周涛、魏严凇、王辉学术秘书:孙婧,中国核电工程有限公司,010-88022429,sunjing@cnpe.cc会场简介:在“碳中和”和“碳达峰”背景下,核电作为一种清洁、低碳、安全和高效的基础性现代能源,具有广阔的发展前景。与一般工业设施相比,核电最主要的特征是具有放射性。在核电厂事故期间,放射性物质以气体、蒸汽、气溶胶的形式释放,其中气溶胶是放射性物质的主要载体。为实现核电“安全与高效”发展,需要对核电厂事故状态下的气溶胶行为进行深入研究。为此,“核电厂气溶胶行为研究”分会场邀请相关科研院所、设计单位及监管审评部门的专家学者及技术人员就核电厂的气溶胶行为进行研讨交流,推动核安全研究,促进核电厂持续发展。征文范围:(1)反应堆冷却剂系统内气溶胶的生成、生长及输运的实验与理论研究; (2)反应堆冷却剂系统内气溶胶的再悬浮和再汽化的实验与理论研究; (3)安全壳内气溶胶生长、输运及沉积的实验与理论研究; (4)放射性气溶胶去除措施研究; (5)气溶胶与安全系统的相互作用研究; (6)核电厂气溶胶行为计算分析程序开发与验证; (7)核电厂气溶胶行为先进数值算法研究。第17分会场:陶瓷粉体及其复合材料设计、评价与应用组织单位:哈尔滨工业大学、东华大学、山东工业陶瓷研究设计院有限公司分会主席:张幸红、张国军、王玉金、周长灵学术秘书:董顺,哈尔滨工业大学,0451-86412259,dongshun@hit.edu.cn;程源,哈尔滨工业大学,cy6810@hit.edu.cn会场简介:先进陶瓷基复合材料具有高比强度、高比模量、耐高温、耐腐蚀、抗疲劳等一系列优异的综合性能,在航空、航天以及发电、核能、化工等民用领域具有重要的应用价值和前景。近年来,国内外在陶瓷粉体及其复合材料的科学理论、技术开发以及产业应用等方面均取得了长足的进步与发展。为进一步提升陶瓷粉体及其复合材料的科学和战略地位,在未来陶瓷基复合材料研究和产业发展中抢占先机,本分会场将从陶瓷粉体、陶瓷基复合材料、超高温陶瓷基复合材料以及极端环境复合材料的设计、制备、评价与应用等技术角度出发,开展全方位、多角度的深入研讨,探索陶瓷粉体及其复合材料技术的未来发展趋势,稳步推动我国陶瓷基复合材料的创新发展。征文范围:(1)陶瓷粉体设计、评价与应用; (2)陶瓷基复合材料设计、评价与应用; (3)超高温陶瓷基复合材料设计、评价与应用; (4)极端环境复合材料设计、评价与应用。第18分会场:颗粒特性与测试组织单位:中国颗粒学会颗粒测试专业委员会、北京粉体技术协会分会主席:葛宝臻、董青云、沈建琪、张福根、周素红、张文阁、韩鹏学术秘书:魏永杰,河北工业大学机械工程学院,yj.wei@163.com;周骛,上海理工大学能源与动力工程学院,usst_wzhou@163.com会场简介:分会场面向颗粒测试方法研究、测试仪器开发与生产、测试技术与仪器应用、测试标准制定等领域,邀请和组织专家、技术人员针对我国粉体、液态和气态颗粒测试研究与应用开展研讨,促进科技创新与创业,实现成果转化,深化颗粒测试在工程实践中的应用,推动我国颗粒测试技术及相关领域标准化等工作。通过学术交流促进专业培训、科技咨询、产学研合作等活动,扶持以激光粒度测试仪器等为主导产品的国内颗粒测试品牌企业。征文范围:(1)微米、纳米颗粒测试理论及新进展; (2)颗粒测试新技术、新方法及创新成果; (3)颗粒关键参数的测试理论与验证; (4)颗粒测试在交叉学科中的应用; (5)颗粒在线测试技术及应用; (6)颗粒测试技术标准化; (7)颗粒标准物质的研制与开发; (8)其它颗粒测试技术与应用。第19分会场:石油与天然气工程颗粒物质力学组织单位:西南石油大学分会主席:康毅力、许成元、林冲学术秘书:郭昆,西南石油大学,02883032118,1459069176@qq.com会场简介:石油和天然气仍是未来经济社会发展必须依赖的主要能源,保证油气安全供给是国家重大战略需求,天然气作为最清洁低碳、灵活高效的化石能源,更是中国能源体系由高碳向低碳、零碳转型的重要抓手。石油与天然气勘探开发过程中,与颗粒物质相关的科学与技术问题普遍存在。颗粒物质力学与颗粒多相流理论是油气井工作液调控、钻井防漏堵漏、天然气水合物开采、水力铺砂压裂、暂堵转向压裂/酸化、地层出砂、煤粉运移、微粒运移等的理论基础之一。本会场围绕油气勘探开发中涉及的颗粒材料力学、颗粒体系结构与强度、颗粒多相流相关最新研究进展开展讨论交流,以期建立石油与天然气工程颗粒物质力学学科新方向,并石油与天然气高效开发提供理论支撑。征文范围:(1)油气井防漏堵漏颗粒材料; (2)水力压裂颗粒材料; (3)钻井岩屑床; (4)油气井工作液与储层保护颗粒材料; (5)油气井出砂与防砂; (6)油气层微粒与煤粉运移堵塞。第20分会场:碳中和目标下的气溶胶科学发展和未来趋势组织单位:中国颗粒学会气溶胶专业委员会、中国科学院大气物理研究所、中国科学院地球环境研究所分会主席:曹军骥、李顺诚、王新明、顾兆林、张仁健学术秘书:武云飞,中国科学院大气物理研究所,wuyf@mail.iap.ac.cn;夏芸洁,北京市气象探测中心,xiayunjie1992@163.com会场简介:国家领导人在第七十五届联合国大会向全世界郑重承诺:中国力争于2030年前实现二氧化碳排放量达到峰值,争取在2060年前实现碳中和,以主动承担应对气候变化的国际责任、推动构建人类命运共同体。实现碳中和必将给我国带来一场广泛而深刻的经济社会变革,也势必对气溶胶性质、气溶胶与天气气候相互作用产生重要影响。本分会场将聚焦碳中和目标下的气溶胶科学问题,展示最新科学研究成果与关键技术进展,探讨碳中和目标驱动下我国大气气溶胶工作面临的新机遇和新挑战,同时服务于我国减污降碳协同增效重大战略。征文范围:(1)碳气溶胶探测技术和新方法; (2)黑碳和棕碳气溶胶的环境影响及气候效应; (3)气溶胶理化特性、采样/监测/分析、源解析; (4)气溶胶生成机理、健康影响和污染控制技术等。第21分会场:吸入递送与疾病治疗组织单位:中国颗粒学会吸入颗粒专业委员会分会主席:王震宇、李旗、陈永奇、李铁军学术秘书:邵奇,上海上药信谊药厂有限公司;王晓飞,上海欧米尼医药科技有限公司,iddchina@126.com会场简介:中国颗粒学会吸入颗粒专业委员会成立于2018年,前身为2013年11月在中国南京成立的民间公益组织“全国吸入给药联盟”。吸入颗粒专委会成员主要包括吸入药物基础研究、药品研发、质量控制、制剂生产、安全性评价、临床药理、临床应用等领域的生产企业、高校院所、医疗机构的专业人士。吸入颗粒专委会以国家政府机关制定的相关药品法律法规政策为导向,以推进中国吸入给药行业的发展,提高国内吸入药物的研发,产品技术标准和临床应用,加快与国际同行业接轨作为创建目标。征文范围:(1)吸入疫苗; (2)大分子吸入颗粒技术; (3)干粉吸入颗粒新工艺; (4)吸入产品中颗粒的表征与质量; (5)吸入装置的开发及应用研究; (6)鼻用颗粒技术的研究; (7)吸入药物的临床研究; (8)吸入颗粒的安全性评价。第22分会场:颗粒制备、处理与应用前沿问题研讨——第十五届全国颗粒制备与处理学术研讨会组织单位:中国颗粒学会颗粒制备与处理专业委员会分会主席:沈志刚、骆广生、郑水林、王燕民、毋伟学术秘书:张晓静,北京航空航天大学,010-82317916,zhangxiaojing@buaa.edu.cn;蔡楚江,北京航空航天大学,010-82316642,ccj@buaa.edu.cn会场简介:为总结和交流近两年来我国颗粒制备与处理领域的最新研究进展,探讨颗粒制备、处理与应用前沿热点问题,促进同行之间的成果交流,同期举办第十五届全国颗粒制备与处理学术研讨会。本分会场主要涉及颗粒制备、处理与应用等方面(包括但不限于二维纳米颗粒、化工颗粒、矿物颗粒、功能性颗粒等各种颗粒的制备与后处理,以及颗粒在二维材料、能源、化工、环保等领域中的应用)。征文范围:(1)颗粒制备方法或理论的新进展(包括但不限于二维纳米颗粒、化工颗粒、矿物颗粒、功能性颗粒等各种颗粒的制备); (2)颗粒后处理方法或技术的新进展(包括但不限于采用物理或化学方式进行颗粒的表面改性、分散、球形化、分级等后处理工序); (3)颗粒在各领域应用的新进展(包括但不限于在能源、化工、环保等领域)。第23分会场:医药颗粒及标准化组织单位:江苏省颗粒学会、南京中医药大学分会主席:朱华旭学术秘书:王欢,江苏省颗粒学会,025-85509178,jskl_org@163.com会场简介:通过主题演讲、展位展示和交流等形式,解答医药颗粒制备工艺及实际生产难点,剖析医药时政热点及发展方向,展示最新医药颗粒艺设备,搭建以颗粒为契机的创新交流、项目对接、人才聚集平台,促进行业的创新发展。征文范围:(1)医药颗粒制备、表征及应用; (2)中医药颗粒研究新技术、新方法; (3)新型药物制剂的研究与应用; (4)制药工艺与设备智能化研究与应用; (5)颗粒标准化研究与应用。第24分会场:第二届天然和仿生颗粒论坛——向自然学习,造智能颗粒组织单位:中国科学院过程工程研究所生化工程国家重点实验室、清华大学、浙江大学分会主席:魏炜、戈钧、平渊、马光辉学术秘书:岳华,中国科学院过程工程研究所,hyue@ipe.ac.cn;吕岩霖,中国科学院过程工程研究所,lvyanlin@ipe.ac.cn;王双,中国科学院过程工程研究所,wangshuang@ipe.ac.cn会场简介:天然颗粒在催化、靶向递送和感染等方面具有独特的性能。而通过向天然学习,利用合成、组装等手段获得可以模拟自然界巧妙结构或者功能的仿生颗粒,也成为生物医药、能源化工等领域的前沿热点。然而,如何实现天然颗粒的高值化利用以及人造颗粒的高性能优化设计/功能模拟,离不开颗粒学与仿生学等基础学科巧妙融合以及高精尖技术手段的开发/应用,这也是本会场聚焦的关键问题。征文范围:天然和仿生颗粒的提取、合成、改造、表征和应用,包括但不限于固定化酶、病毒样颗粒等生物大分子基颗粒,细菌、酵母等微生物颗粒,囊泡、外泌体等细胞型颗粒,以及人工合成的各种理化性质仿生、合成过程仿生以及功能仿生颗粒。第25分会场:“双碳”目标下的未来颗粒技术组织单位:中国颗粒学会颗粒制备与处理专业委员会分会主席:李春忠、宋少先学术秘书:江宏亮,华东理工大学,jhlworld@ecust.edu.cn;李宇航,华东理工大学,yuhangli@ecust.edu.cn;贾菲菲,武汉理工大学,feifeijia@whut.edu.cn会场简介:实现双碳目标的关键是化石资源清洁高效利用与耦合替代以及可再生能源多能互补与规模应用,构建绿色低碳循环能源化工新体系。相关颗粒技术的发展对提高能源化工过程效率具有重要地位。面向双碳目标,对未来颗粒制备、表征及应用技术提出了更高的要求。本分会场面向“双碳”目标的未来颗粒技术中的关键挑战,开展广泛的学术交流和讨论。凝练基础前沿的关键科学问题以及产业中急需解决的技术难题,推动未来颗粒技术在基础理论、研究方法和产业应用中的发展。征文范围:(1)颗粒制备、表征及应用过程科学基础; (2)能源化工过程中颗粒技术新进展; (3)电化学能量存储与转化颗粒技术; (4)颗粒原位表征技术;颗粒应用过程强化; (5)清洁能源颗粒技术;碳储存颗粒技术; (6)环境矿物材料;二氧化碳矿化颗粒技术; (7)选矿和冶金过程中颗粒技术新进展。四、同期论坛及研讨会The International Multiphase Flow Technology ForumOrganization: China University of Petroleum-Beijing, Chinese Society of ParticuologyGeneral Chair: Raffaella Ocone IMFTF focus: The International Multiphase Flow Technology Forum (IMFTF) aims at facilitating the academic exchange and experience sharing worldwide. Its main objectives are promoting scientific and technical communication as well as fostering collaborations among researchers. IMFTF is dedicated to multiphase technologies that can be extended to wide scale knowledges and methodologies for fundamental research reference. It is known that there still are many potential contents hidden in multiphase flow. Meanwhile,with great progress of computation technology and experimental facilities, present problems of multiphase flow should be well addressed by computational and experimental method. IMFTF hopes to stimulate communication and make efforts in the future development directions of such an important scientific area. IMFTF welcomes discussion and aims at expanding the boundaries of knowledge that needed to solve challenging problems.Call for papers: IMFTF2023 will focus on the following topics (including but not limited to):Fundamental research in Computational and Experimental Methods for Multiphase Flows, Bubbly and Droplet Flows, Particle-laden Flows, Turbulence in Multiphase Flows.Industrial applications in Reactive Multiphase Flows, Granular Media, Fluidization, Cavitation, Nucleation, Mixing, Collision, Agglomeration and Breakup and Flow Instabilities. New version of multiphase flow in process engineeringAbstract Submission: https://imftf2022.scimeeting.cn/en/web/index/Secretariat: Jun Yao, College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Tel. +86-17710098569 E-mail: yaojun@cup.edu.cn中国颗粒学会团体标准工作委员会2022年度会议及标准审查会组织单位:中国颗粒学会团体标准工作委员会主席:李兆军、周素红会议内容:(1)年度工作报告;(2)团体标准审查;(3)讨论预立项标准;(4)会议总结及下一年度规划。学术秘书:朱晓阳,国家纳米科学中心,010-82545517,zhuxy@nanoctr.cn五、 会议征文中国颗粒大会各分会场同时征文,具体要求如下:1. 征文地址:https://www.csp.org.cn/meeting/CCPT12/2. 征文要求为详细摘要,稿件请采用Word排版并上传,格式见附件1。3. 征文截止日期为:2023年3月3日。投稿过程中有任何问题请随时联系会务组(黄巧,010-82544962,13718757572,klxh_meeting@ipe.ac.cn)。六、 会议日程时间/日期4月21日(星期五)4月22日(星期六)4月23日(星期日)4月24日(星期一)08:30-10:30会议注册(全天)开幕式大会报告分会场报告大会报告10:30-11:00茶歇茶歇茶歇11:00-12:30大会报告分会场报告闭幕式颁奖仪式12:30-13:30午餐午餐午餐13:30-15:30分会场报告分会场报告圆满离会15:30-16:00茶歇茶歇16:00-18:30分会场报告分会场报告18:30-21:30晚餐欢迎晚宴晚餐七、 注册费用请通过会议网站完成会议注册和缴费:https://www.csp.org.cn/meeting/CCPT12/会议注册费:学生会员1900元,普通会员2300元,非会员用户2400元会议代表可通过线上支付(微信、支付宝)、银行转账或者现场刷卡的形式付款。开户行及账号:中国工商银行北京海淀西区支行,中国颗粒学会,0200004509014413416团体参会(同一单位5人及以上)注册学会会员,每人可享有200元优惠!注:(1)烦请在网上注册并填写发票抬头及单位税号;(2)团队参会需要在会议网站逐一报名,优惠费用由会务组手动修改,详情咨询韩秀芝老师(xzhan@ipe.ac.cn,13269656065,010-62647647);(3)注册费支付若选择“银行转账”,请务必在会议网站登陆后上传缴费凭证照片或截图,缴费状态会在5~10个工作日内人工核对确认后更新,如长时间未更新,请直接联系韩秀芝老师。(4)请前往“中国颗粒学会”公众号或官网(www.csp.org.cn)查询或注册学会会员。八、 同期展览和赞助中国颗粒大会同期将举办颗粒/粉体仪器、设备、产品和应用展览,包括颗粒/粉体测试分析仪器、制备设备、产品及其在化工、能源、材料、医药和环境等中的应用等内容,欢迎相关单位积极报名参展。本届会议期间还设置钻石赞助、白金赞助、分会场独家赞助、金牌单项赞助(欢迎晚宴、青年报告奖和优秀墙报奖冠名、会议袋、代表证挂绳、会议用本和笔、茶歇、防疫物品等)和标准展位等赞助形式,欢迎各相关单位合作洽谈。中国颗粒学会颗粒学奖的相关信息也将在大会期间展出,敬请关注。详细赞助方案和更多信息请前往会议网站:https://www.csp.org.cn/meeting/CCPT12/a2136.html?sourceid=79联系人:李京红(010-62647647,13801242411,klxh@ipe.ac.cn)九、 大会奖项2022年度中国颗粒学会奖励将在大会上组织颁奖。大会期间还将评选出第十二届中国颗粒大会青年报告奖、优秀墙报奖,会后将推荐优秀摘要至如下期刊:《Particuology》(英文,SCI-E,EI,IF=3.067),联系人:姚金雨(010-82629146,particuology@ipe.ac.cn)《Frontiers in Energy》(英文,SCI-E,IF=2.709),联系人:刘瑞芹(021-62932006,rqliu@sjtu.edu.cn)《Journal of Energy Chemistry》(英文,SCI-E,EI,IF=9.676),联系人:张丽娟(13795136804,lijuanzh@dicp.ac.cn)《化工学报》(中文,EI),联系人:张丽芳(010-64519362,zhanglifang@cip.com.cn)《化工进展》(中文,EI,IF=1.403),联系人:奚志刚(010-64519500,hgjz@263.net)《Green Energy & Environment》(英文,SCI-E,EI,CSCD,IF=8.207,Q1),联系人:何宏艳(010-82627075,gee@ipe.ac.cn)《Green Chemical Engineering》(英文,中国科技期刊卓越行动计划高起点新刊),联系人:王薪薪(010-82544856,gce@ipe.ac.cn)《储能科学与技术》(中文核心),联系人:郗向丽(010-64519601,esst2012@cip.com.cn)《中国粉体技术》(中文,CSCD核心,IF=0.591),联系人:吴敬涛(0531-82765659,zgft@ujn.edu.cn)《过程工程学报》(中文,北大核心),联系人:齐超(010-62554658,gcgc@ipe.ac.cn)《现代技术陶瓷》(中文,山东省优秀期刊,IF=1.00),联系人:张萌(0533-3597423,xdjstc@126.com)《大气与环境光学学报》(中文,CSCD核心,IF=0.458),联系人:胡长进(0551-65591563,gk@aiofm.ac.cn)《原子能科学技术》(中文,EI),联系人:骆淑莉(010-69358586,yznkxjs7285@163.com)《Industrial Chemistry & Materials》(英文,RSC出版),联系人:编辑部(010-82612330,icm@rsc.org)十、 重要时间节点2023年2月会议第五轮通知2023年3月3日会议论文(摘要)接收截止2023年3月会议第六轮通知2023年4月21日会议注册2023年4月21-24日学术会议2023年4月24日圆满离会更多详情请关注 “中国颗粒学会”公众号或登陆学会官网(www.csp.org.cn)查阅。十一、 酒店预订请前往大会网站预订酒店:https://www.csp.org.cn/meeting/CCPT12/预定指南:https://www.csp.org.cn/meeting/CCPT12/a2190.html?sourceid=93请仔细阅读酒店预订指南,住宿费发票由北京合赢展业国际会议服务有限公司或酒店开具。若需刷公务卡支付房费,请先在预订系统中全额支付作为押金以便保留房间。在现场刷卡后,服务方将于会后统一安排退还相应押金。退订或变更请联系工作人员。会议注册费不包含酒店房间费。预订截止时间:2023年4月14日17:00酒店预订联系人:李佳,电话:010-86229050,13161675386;邮箱:csp_ccpt@163.com十二、 会议交通会议酒店:海南省海口市海口鲁能希尔顿酒店酒店地址:海南省海口市美兰区琼山大道2号交通枢纽距离(km)车程(min)海口美兰国际机场1831海口站3242海口东站1630十三、 联系我们中国颗粒学会地址:北京海淀区中关村北二街1号中国颗粒学会(100190)电话/传真:010-82544962会议网站:https://www.csp.org.cn/meeting/CCPT12/学会官网:https://www.csp.org.cn/微信公众平台:中国颗粒学会会议会场:黄 巧(010-82544962,13718757572,klxh_meeting@ipe.ac.cn)赞助展览:李京红(010-62647647,13801242411,klxh@ipe.ac.cn)财务发票:韩秀芝(010-62647647,13269656065,xzhan@ipe.ac.cn)第十二届中国颗粒大会组委会2023年2月
  • 全新升级|在线式颗粒计数器 现场测量油液污染度
    霍尔德上市新品啦!2024年01月09日上市了一款在线式颗粒计数器【在线式颗粒计数器←点击此处可直接转到产品界面,咨询更方便】配电变压器多暴露在露天环境中,其绝缘油(变压器油)受外部杂质、空气接触以及设备高温运行的影响,逐渐变质。一旦绝缘油变质,它原有的灭弧、冷却和绝缘功能就会丧失。为了防止因油质变差导致的安全运行问题,我们必须对正常运行的配电变压器定期进行油样化验分析,并根据分析结果采取相应的处理措施,确保油质的稳定,从而保障变压器的正常运行。在线式颗粒计数器是采用国际液压标准委员会指定的光阻(遮光)法计数原理,专门用于现场在线测量的、油液污染度等级检测装置。具有体积小、质量轻、检测速度快、精度高、重复性好等优点,可在高温高压等及其恶劣的条件下工作。适用于发动机油、齿轮油、变压器油(即绝缘油)、液压油、润滑油、合成油、水基类(水基液压油、水乙二醇等)、醇类、酮类等一切透光溶剂,可广泛应用于电力电厂、航空航天、石油化工、交通港口、钢铁冶金、汽车制造等领域。主要特点:1.采用光阻(遮光)法原理,使用高精度激光传感器,体积小、精度高、性能稳定;2.适用于现场的在线检测,可实时监测用油系统中的颗粒污染度;3.内置数据分析系统,能显示各通道粒径的真实数据并自动判定样品等级;4.标准款可直接耐压100公斤,可选配减压阀用于在线高压测量;5.具有体积冲洗和时长冲洗模式,方便用户对设备的使用和维护;6.内置ISO4406、NAS1638、SAE4059、GJB420A、GJB420B、ГOCT17216、GB/T14039等颗粒污染度等级标准;7.内置校准功能,可按GB/T21540、ISO4402、ISO11171、GB/T18854等标准进行校准,一次测试可以给出所有内置标准结果;8.可独立设定所有标准任意报警级别,实现污染度或洁净度检测;9.RS232或RS485接口,支持标准Modbus协议可连接电脑、上位机、打印机、PC系统或其它设备进行数据监控、处理;10.超大存储,可选择存储在仪器内部或外部存储设备中;11.坚固外型结构,适合复杂工作环境;12.下进上出的模式有利于限度减小在线气泡对测试结果的干扰;13.可连续测试也可任意设置测试时间间隔;14.中英文双系统,客户可自由切换,适合外销出口;15.触屏或者薄膜按键操作,可自由切换,仪器界面可自由控制远端打印机的开关;16.可选接4G/5G模块,支持手机或电脑端远程数据监控、历史数据、曲线查询(选配);17.内置水分和温度传感器模块,可同时输出四种参数信息(选配)技术指标:光源:半导体激光器;流速范围:5-500m/min;检测样品粘度:≤650cSt;在线检测压力:0.1~10Mpa(选配减压装置最高压力可达42Mpa);粒径范围:1~600μm;接口:USB接口、RS232接口、RS485接口;数据存储:提供1000组数据存储空间,并支持优盘存储;灵敏度:1μm或4μm(c);极限重合误差:40000粒/m;计数体积:1~999m;计数准确性:±0.5个污染度等级。
  • AAV基因治疗产品亚可见颗粒分析方法简述
    生物制药如治疗性蛋白质、疫苗、基因与细胞治疗是一个不断快速增长药物领域。生物制药原料药和药品中蛋白质聚集体和不溶性颗粒是需要充分评估和控制的杂质,因为它们有可能引发免疫原性反应,影响产品的安全性和有效性。中美药典中现行的颗粒定义是10-100 nm为蛋白寡聚体,0.1-1 μm为亚微米颗粒/纳米聚集体,1-100 μm是亚可见颗粒/微米聚集体,∽100 μm是可见颗粒。目前基因治疗产品亚可见颗粒分析方法可参考USP787、788和789对治疗性蛋白质注射液和眼科溶液中亚可见颗粒的规定。对于含量超过100mL容器中的治疗性蛋白质注射剂,总颗粒数≥10 μm的颗粒≤6000,对于≥25 μm颗粒≤600。 不同于治疗性蛋白质产品,基因治疗产品大多采用病毒作为载体包括腺病毒(AdV)、腺相关病毒(AAV)或慢病毒(LV)、溶瘤病毒等,所以细胞、病毒和脂质纳米颗粒等递送载体本身就是颗粒,可通过大小、形态、含量和浓度的分析技术来表征。这些基于病毒载体的基因治疗产品剂型主要是注射剂,相关质量标准可参考生物大分子药物不溶性颗粒技术要求。但由于病毒颗粒异质性和复杂性,以及对最终产品的有效性和安全性可能影响,如降低病毒的转导效率和诱发免疫原性反应等,所以需要多种不同技术和方法联合使用,实现更全面更准确的基因治疗产品颗粒表征。以rAAV载体的基因治疗产品为例,病毒颗粒本身是无包膜的,二十面体结构,直径约为25nm,可形成各种不同大小的变体和聚合形态。AAV大小变异体和聚集体可增加临床实验的免疫原性,较大的AAV聚集体在转导细胞效力方面可能降低,进而改变产品疗效。目前有多种技术来表征相关产品溶液中颗粒大小,从纳米级到肉眼可见级别,对于不同粒径大小的颗粒可采用不同技术进行分析表征。对于纳米级别颗粒,可采用动态或静态光散射(Dynamic or Static Light Scattering)、SEC-HPLC、电镜(EM)、原子力显微镜 (AFM)、分析型超速离心机(AUC)、纳米颗粒跟踪分析技术(NTA,Nanosight)和非对称流场流动分级(A4F)等;对于微米级别颗粒,可采用光阻法(LO)、微流成像颗粒分析技术(MFI)、库尔特颗粒计数(Coulter counter)等。可见颗粒可采用拉曼/红外显微镜、荧光显微镜或目测法等。可用于AAV颗粒分析的代表性方法参考下图。颗粒分类中亚可见颗粒是一种聚集形式,经历了相分离并变得不溶。多个国家药典规定注射剂亚可见颗粒物检测采用光阻法(LO)和显微计数法。其中光阻法只能计数颗粒大小和数目,不能看到颗粒形态。美国药典1787推荐了微流成像颗粒分析技术作为大小和形态表征重要的方法。同时推荐在保质期内应该评估产品中2-10 μm亚可见颗粒的范围和水平,10 μm以下颗粒总数分成两组≥2-5μm和≥5-10μm来统计。2021年中国食品药品检定研究院发表文章,详细比较了微流成像颗粒分析方法和光阻法对17种单克隆抗体的亚可见微粒分析结果,显示了微流成像颗粒分析技术在准确性方面具有优势,未来可能用于放行质量控制和稳定性研究。代表性亚可见颗粒分析方法介绍微流成像颗粒分析方法(MFI):技术原理是待测样本在流经样本检测池过程中,在固定的检测窗口处,采用高频成像检测器动态连续检测样本中颗粒物,获取一系列的数据照片,最终通过软件对所获取的颗粒物照片进行分类和计数分析。核心技术是通过精确地控制样本检测池中的流速,配合静态的图像捕获,使相邻两次成像检测液柱无重叠,从而避免对样本颗粒的重复计数,同时需要保证85%以上样本实现了颗粒成像检测,配合全景深立体成像,保证所有检测到的颗粒都在景深范围内,实现对颗粒大小检测准确性。该方法提供了样本中颗粒真实图像的原位条件,对捕获的数字图像进行分析,实现了颗粒的可视化、计数、大小调整和表征。还可根据颗粒图像、对比度和形状,可能指示颗粒的来源和类型如蛋白聚集、硅油、气泡和纤维等。与图像数据库联合使用,可识别一些颗粒,有助于了解污染源和产品性质。与光阻法和显微计数法相比,缩短了分析时间,具有更高重复性和分辨率。满足2-10 μm范围内亚可见颗粒分析需求。光阻法(LO)介绍:被检测的液体通过专门设计的流通室,与液体流向垂直的入射光束由于被液体中的粒子阻挡而减弱,从而使传感器输出的信号变化,这种信号变化与粒子通过光束时的截面积尺寸成正比。这种比例关系可以反映粒子的大小。每一个粒子通过光束时引起一个电压脉冲信号,脉冲信号的多少反映了粒子的数量。光阻法检测颗粒范围为1∽300 μm(USP 401787)。以光阻法为原理设计的微粒检测仪主要包括取样器、传感器和计算机控制的检测和数据处理系统。不同设备测量粒径范围涵盖了2∽100μm,检测粒径浓度为0∽10000个/ml,取样体积为0.2∽100 mL。符合药典对大小容量注射液和粉针剂不溶性微粒检测需求。其主要优势是可直接观察溶液中颗粒,具有大量历史数据的药典推荐方法。操作简单可进行中高通量检测。劣势是对比度低,可能会低估制剂配方中形成的不可见蛋白质颗粒,对气泡敏感,某些脱气技术会改变样本性质,更重要的只适合表征颗粒大小和分布,不能通过形态来分析颗粒。电感应区检测方法:基于库尔特原理检测颗粒,可检测0.4∽1600μm范围内的颗粒(不同商业化库尔特颗粒计数及粒度分析仪有变化)。稀释悬浮在电解液中的样本颗粒通过小孔管时,取代相同体积的电解液,在恒电流设计的电路中导致小孔管内外两电极间电阻发生瞬时变化,从而中断电场,产生电位脉冲。脉冲信号的大小和次数与颗粒的大小和数目成正比。 信号响应不受颗粒类型的影响(如颜色、硬度、不透明度和折射率变化)。本技术优势不受溶液光学特性的影响,可实现单孔中高通量样本检测。劣势是需要大样本体积,需要较低颗粒浓度,有时样品必须在电解质溶液中稀释获得足够电导率,可能会改变样品性质。同样也不能提供形态学参数。显微计数法:采用光学显微镜(LM)检测和分析颗粒,光在样品上透射或反射后通过一系列透镜,直接采用目镜观测,或数码相机采集信号成像。图像分析可使用软件系统,按照一定参数对颗粒群体进行分析。优势是可直接观察溶液中颗粒,可视化计数颗粒大小和数目,并鉴别颗粒形态。可与红外或拉曼计数整合来鉴定颗粒化学组成。但劣势是人工分析费时费力和通量低,难以看到低光学对比度颗粒,自动化程度低。颗粒鉴定表征可采用傅里叶红外光谱(FTIR)显微镜、显微拉曼光谱和扫描电镜-能谱分析(SEM-EDS)等技术,本文不做深入论述。基因治疗产品亚可见颗粒分析案例鉴于不溶性微粒研究在生物制品中重要性,有必要深入研究病毒为载体基因治疗产品中病毒颗粒聚集体和不溶性颗粒形成原因,并找到相应的解决方案来提高基因治疗产品的研发和质量控制水平。以下案例简要说明基因治疗产品亚可见微粒分析方案。AAV生产超滤工艺中颗粒监控AAV生产过程中超滤环节将AAV浓缩并置于最终制剂配方缓冲液中,作为生产工艺中关键步骤,需要深入研究和加深对AAV载体超滤的理解。美国Voyager Therapeutics公司研究超滤膜截留分子量和操作条件对复合再生纤维素(CRC)超滤膜的通量和传输的影响,采用AAV2和AAV9两个血清型病毒载体,以及对AAV超滤行为的定量理解,并指导工艺开发。利用微流成像颗粒分析方法(MFI)研究病毒浓缩超滤工艺开发过程中产生的亚可见颗粒,当通过CRC超滤膜时,膜截留分子量和操作条件对通量影响。下图结果展示1到10μm之间颗粒采用MFI检测时存在明显差异。两个批次A和B实验,对于特定的膜批次,当处理时间较长时,亚可见微粒浓度较高。与较低TMP 6.5 psig相比,当采用更高TMP(20 psig)进行超滤时,亚可见微粒浓度降低。这归因于较低TMP下超滤时,泵通过管道和通道次数增加导致。本研究可指导超滤工艺的条件设置。MFI系统具备自动进样系统,可一次自动检测多达90个样本,非常适合AAV生产过程中工艺优化。不同渗透率RC2A膜超滤的AAV2样本的不同大小颗粒评价,上图批号Lot A样本,下图Lot B样本AAV基因治疗产品稳定性研究制剂配方中AAV长期稳定性和密封容器封闭的完整性是冷冻产品两个关键方面。为了最大限度地减少化学和物理降解,也为了长期存储和运输,AAV原料药和产品制剂通常冷冻在≤-60 °C下,有时允许产品制剂短期存储在医院的2-8°C冰箱中。在制造、贴标签和临床使用过程中会在室温和冷藏条件下发生冻融循环。除了长期稳定性外,在外暴露期间AAV的稳定性也很重要。不同AAV血清型和制剂配方差异导致这期间的稳定性也会有所不同,所以在制剂配方早期开发过程中获得数据来确认AAV在制造、贴标签和临床使用期间将保持稳定是有意义的。为了研究温度、存储时间和冻融率对AAV8和AAV9稳定性的影响,美国REGENXBIO公司研究低浓度和高浓度AAV8和AAV9病毒在五个冻融循环中,预期存储以外时间的稳定性,考察病毒关键质量属性变化情况。下图是采用数字PCR检测病毒载体基因组浓度(GC/mL),结果显示病毒效力和浓度在方法误差范围内保持稳定。采用光阻法检测亚可见微粒(Particles/mL ≥10 μm)。左边第1列是配方F1中AAV8,第2列是配方F3中AAV8。每个小图中左边一对柱状图是低浓度结果和右边一对柱状图是高浓度结果。对照组标记为Cont.和累积预期存储时间外暴露样本标记为TOIS。实验结果显示TOIS后颗粒数非常低,≥2 μm的颗粒≤78个/mL,≥10μm的颗粒≤10个/mL,≥25μm的颗粒≤2个/mL,和≥50μm的颗粒0个/mL。在本研究设定实验条件下,结果表明AAV8和AAV9产品质量属性保持在可接受范围内,稳定性适合用于生产和临床使用。作者认为光阻法有局限,可能低估了半透明的蛋白质颗粒和病毒聚集体颗粒,后续研究需要采用微流成像技术对亚可见颗粒进行表征和稳定性研究。同样研究冻融条件对病毒载体稳定性影响,美国堪萨斯大学疫苗分析和制剂中心科学家(Vineet Gupta,2022,Journal of Virological Methods)研究了淋巴细胞性脉络丛脑膜炎病毒(LCMV)载体稳定性,使用TEM、NTA和MFI三种互补的病毒颗粒表征技术研究病毒载体在冻融应激下稳定性。4种不同制剂配方(Form 1-4)在0、3和6个冻融循环条件下亚可见颗粒变化,研究冻融对病毒载体稳定性影响。参考下图,结果证明了通过MFI可检测到样本中存在大量的亚可见微粒。揭示某些制剂(制剂F1和F3)病毒载体亚可见颗粒浓度与病毒载体滴度损失之间存在负相关,制剂配方2和4没有变化。与上述研究类似,Kumru等2015年观察到在冻融循环时,特定配方中溶瘤单纯疱疹病毒1的体外效力值和亚可见颗粒浓度之间呈现负相关。基于多项研究,不同制剂配方中观察到结果可能有所不同,所以在评估病毒感染能力和稳定性时,需要同步进行亚可见颗粒研究。综上所述,基因治疗产品在研发、生产、存储等多个工艺过程中需要持续监测样本中颗粒情况,从早期到晚期开发阶段都需要监测颗粒的动态变化过程,探索研究病毒聚集体和颗粒产生的原因。可采用多种不同分析检测技术联合使用,针对纳米级和微粒级颗粒进行全范围覆盖。特别是参考中美药典对不溶性颗粒检测规定,借鉴生物大分子蛋白质药物颗粒分析经验,不同方法优势互补,采用光阻法、显微计数法和微流成像颗粒分析方法(MFI)对亚可见微粒进行深入研究,分析基因治疗原料药和药品中颗粒形成原因,可用于优化病毒载体生产和纯化工艺、筛选合适制剂配方和存储条件,提高产品质量稳定性和安全性,保证产品疗效。索取资料请扫上方二维码参考文献:Alexandra Roesch, Sarah Zolls, et al. Particles in Biopharmaceutical Formulations, Part 2: An Update on Analytical Techniques and Applications for Therapeutic Proteins, Viruses, Vaccines and Cells. Journal of Pharmaceutical Sciences(2021) 1−18于雷,裴德宁等. 基因治疗产品中病毒颗粒的微粒特性研究. 药物分析杂志 Chin J Pharm Anal 2020,40(1)Andrew D.Tustian, Hanne Bak. Assessment of quality attributes for adeno‐associated viral vectors. Biotechnol Bioeng. 2021 1–18.United States Pharmacopeia 787.Subvisible particulate matter in therapeutic protein injections. 788. Particulate Matter in Injections. 789. Particulate Matter in ophthalmic solution. 1787. Measurement of subvisible particulate matter in therapeutic protein injections. 1788. Methods for the determination of subvisible particulate matter. Rockville, MD: United States Pharmacopeial Convention 2020年版药典,0903 不溶性微粒检查法Abhiram Arunkumar, Nripen Singh. Ultrafiltration behavior of recombinant adeno associated viral vectors used in gene therapy. Journal of Membrane Science, volume 620,2021Jared S. Bee, Yu (Zoe) Zhang, et al. Impact of Time Out of Intended Storage and Freeze-thaw Rates on the Stability of Adeno-associated Virus 8 and 9. Journal of Pharmaceutical Sciences (2022) 1−8 Vineet Gupta, Lorena R. Antunez, et al. Development of a high-throughput RT-PCR based viral infectivity assay for monitoring the stability of a replicating recombinant Lymphocytic Choriomeningitis viral vector. Journal of Virological Methods 301 (2022) 114440
  • 中国颗粒学会第十届学术年会暨海峡两岸颗粒技术研讨会 (第三轮通知)
    p style="text-indent: 2em "每两年一届的“中国颗粒学会学术年会暨海峡两岸颗粒技术研讨会”将于 2018 年 8 月 9-12 日span style="text-indent: 2em "(8 月 9 日报到)在辽宁省沈阳市举办,会期 3 天。本届会议由中国颗粒学会、中国科学院金属所、/spanspan style="text-indent: 2em "清华大学、大同大学(台北)共同主办,中国颗粒学会能源颗粒材料专委会、东北大学、沈阳化工/spanspan style="text-indent: 2em "大学协办,会议同时得到中国科学技术协会和沈阳市科学技术协会,以及美国麦克仪器公司、丹东/spanspan style="text-indent: 2em "百特仪器有限公司、马尔文帕纳科等单位的大力支持。/span/pp style="text-indent: 2em "本届年会学术交流形式包括大会特邀报告、分会邀请报告、口头报告以及墙报交流。年会面向span style="text-indent: 2em "广大颗粒学工作者征集学术论文摘要。衷心欢迎海峡两岸广大从事颗粒技术研究的学者、工程技术/spanspan style="text-indent: 2em "人员、企业界代表及研究生踊跃投稿,积极参会。/spanspan style="text-indent: 2em "年会同期还将安排企业交流专场、仪器设备展览、新技术新产品与新设备推介会,欢迎相关企/spanspan style="text-indent: 2em "业、高校、科研院所积极参与。/span/pp style="text-indent: 2em "中国颗粒学会第七次全国会员代表大会暨理事会、青年理事会会议、中国颗粒学会期刊(《颗粒span style="text-indent: 2em "学报》、《中国粉体技术》)编委会会议将同期举行。会议闭幕式上还将颁发学会各项奖励奖项。/span/pp style="text-indent: 2em "一、学术分会场/pp style="text-indent: 2em "第1分会场:颗粒的测试与表征 分会主席:葛宝臻、蔡小舒、张福根、董青云/pp style="text-indent: 2em "组织单位:中国颗粒学会颗粒测试专业委员会/pp style="text-indent: 2em "征文范围:(1) 颗粒性能表征和测试技术:几何性能、物理性能、表面性能、力学性能;(2) 在线测量与控制;(3) 颗粒特性对粉体产品性能的影响;(4) 颗粒形貌与材料性能关系、原位检测。/pp style="text-indent: 2em "学术秘书:魏永杰(工作单位:河北工业大学机械工程学院;联系电话:13012262260;电子邮箱:yj.wei@163.com)、span style="text-indent: 2em "高 原(工作单位:北京市理化分析测试中心;联系电话:13910812410;电子邮箱:robin_gy@126.com)/span/pp style="text-indent: 2em "第2分会场:气溶胶 分会主席:曹军骥、李顺诚、张仁健/pp style="text-indent: 2em "组织单位:中国颗粒学会气溶胶专业委员会/pp style="text-indent: 2em "征文范围:(1) 气溶胶基本特性、监测与分析;(2) 气溶胶环境气候健康效应;(3) 气溶胶污染与控制。/pp style="text-indent: 2em "学术秘书:武云飞(工作单位:中国科学院大气物理研究所;联系电话:18600167678;电子邮件:wuyf@mail.iap.ac.cn)、span style="text-indent: 2em "刘卉昆(工作单位:中国科学院地球环境研究所;联系电话:18629434582;电子邮件:liuhk@ieecas.cn)/span/pp style="text-indent: 2em "第3分会场:流态化基础研究及应用 分会主席:朱庆山、卢春喜、葛 蔚、骞伟中/pp style="text-indent: 2em "组织单位:中国颗粒学会流态化专业委员会/pp style="text-indent: 2em "征文范围:(1) 流化床中的流动、传热、传质和化学反应,特殊流化床(磁场、声场、超重力、振动等);(2) 计算机数值模拟与放大;(3) 多相流与旋风分离器、流化床的工业应用。/pp style="text-indent: 2em "学术秘书:王军武(工作单位:中国科学院过程工程研究所;联系电话:010-82544838;电子邮件:jwwang@ipe.ac.cn)/pp style="text-indent: 2em "第4分会场:颗粒制备与应用技术 分会主席:沈志刚、郑水林、王燕民、李春忠/pp style="text-indent: 2em "组织单位:中国颗粒学会颗粒制备与处理专业委员会/pp style="text-indent: 2em "主  题:粉体制备与处理的前沿问题研讨/pp style="text-indent: 2em "征文范围:(1) 粉碎制备、合成制备、表面改性处理、分散处理等;(2) 粉体技术在能源、环境保护、信息、生物、医药、食品、农业等领域中的应用;(3) 粉体制备与处理中辅助过程的最新进展:包括给料、分级、分散、输送、贮存、包装、计量等;(4) 新理论、新技术与新材料在颗粒制备与处理中的应用等。/pp style="text-indent: 2em "学术秘书:蔡楚江(工作单位:北京航空航天大学;联系电话:13671124196;电子邮箱:ccj@buaa.edu.cn)/pp style="text-indent: 2em "第5分会场:超微颗粒材料 分会主席:林鸿明、费广涛、艾德生/pp style="text-indent: 2em "组织单位:中国颗粒学会超微颗粒专业委员会/pp style="text-indent: 2em "主  题:超微颗粒基础理论及应用/pp style="text-indent: 2em "征文范围:(1) 超微、纳米颗粒的制备理论、工艺及改性技术(尤其是分散技术);(2) 超微颗粒在能源、环境、医学生物等领域中的应用;(3) 超微颗粒测试、标准分析中的基础问题;(4) 超微粉体产业化技术中的技术问题。/pp style="text-indent: 2em "学术秘书:徐锡金(工作单位:济南大学;联系电话:15965770166;电子邮箱:sps_xuxj@ujn.edu.cn)、span style="text-indent: 2em "刘潜锋(工作单位:清华大学;联系电话:13466783948;电子邮件:liuqianfeng@tsinghua.edu.cn)/span/pp style="text-indent: 2em "第6分会场:生物颗粒制备技术 分会主席:崔福德、唐 星、吕万良、常 津/pp style="text-indent: 2em "组织单位:中国颗粒学会生物颗粒专业委员会/pp style="text-indent: 2em "征文范围:(1) 粉体(颗粒)学与药剂学的相关科学问题;(2) 粉体(颗粒)科学在固体药物制剂中的应用与相关技术问题;(3) 药物新剂型与制剂新技术的产业化转化的关键问题与难点;(4) 固体制剂生产过程中粉体性质的控制策略与相关科学问题;(5) 固体制剂的制备过程中所需药用辅料与制剂设备介绍;(6) 固体药物口服制剂的一致性评价的相关技术问题;(7) 药物的粉体性质(粒径,形态,混合均匀性,流动性,压缩成形性等)对制剂质量的影响。/pp style="text-indent: 2em "学术秘书:唐 星(工作单位:沈阳药科大学;联系电话:13604029243;电子邮件:tangpharm@126.com)、span style="text-indent: 2em "毛世瑞(工作单位:沈阳药科大学;联系电话:13909823169;电子邮件:maoshirui@vip.sina.com)、/spanspan style="text-indent: 2em "崔福德(工作单位:沈阳药科大学;联系电话:15998860203;电子邮件:cuifude@163.com)/span/pp style="text-indent: 2em "第7分会场:能源颗粒材料 分会主席:魏 飞、苏党生、李 峰、张 强/pp style="text-indent: 2em "组织单位:中国颗粒学会能源颗粒材料专业委员会/pp style="text-indent: 2em "主  题:构建能源颗粒材料新时代/pp style="text-indent: 2em "征文范围:(1) 能源材料(如锂电池、电容器、金属空气电池、燃料电池相关材料);(2) 能源催化转化材料(如煤、石油、天然气、生物质能源高效转化材料);(3) 能源颗粒的表征及产业化。/pp style="text-indent: 2em "学术秘书:孔 龙(工作单位:清华大学;联系电话:15910937323;电子邮件:konglongwork@mail.tsinghua.edu.cn)、span style="text-indent: 2em "孙振华(工作单位:中科院金属所;联系电话:15940168700;电子邮件:zhsun@imr.ac.cn)、/spanspan style="text-indent: 2em "黄佳琦(工作单位:北京理工大学;联系电话:13810893955;电子邮件:jqhuang@bit.edu.cn)/span/pp style="text-indent: 2em "第8分会场:学会团体标准—颗粒与标准化 分会主席:李兆军、周素红/pp style="text-indent: 2em "组织单位:中国颗粒学会团体标准工作委员会/pp style="text-indent: 2em "征文范围:(1) 团体标准介绍;(2) 学会团体标准项目运行;(3) 颗粒标准立项建议;(4) 颗粒团体标准发展与探索。/pp style="text-indent: 2em "学术秘书:高原(工作单位:北京市理化分析测试中心;联系电话:13910812410;电子邮箱:robin_gy@126.com)/pp style="text-indent: 2em "第9分会场:地方学会联合论坛 分会主席:蔡小舒、王连军、于志军、刘宗明、高思田/pp style="text-indent: 2em "组织单位:上海/江苏/辽宁/山东颗粒学会、北京粉体技术协会/pp style="text-indent: 2em "主  题:地方颗粒学会发展/pp style="text-indent: 2em "学术秘书:李增和(工作单位:北京化工大学;联系电话:13511052617;电子邮件:lee_zenghe@sina.com)/pp style="text-indent: 2em "第10分会场:纳米颗粒结构表面及复合材料 分会主席:张 忠、张幸红/pp style="text-indent: 2em "组织单位:国家纳米科学技术中心、哈尔滨工业大学/pp style="text-indent: 2em "征文范围:(1) 颗粒及纤维表面纳米结构的构筑方法、形成机理及其对颗粒和纤维及其对复合材料宏观性能的影响;(2) 颗粒及纤维填充纳米复合材料的制备新方法、新工艺、多功能及其应用;(3) 其它新型纳米复合材料。/pp style="text-indent: 2em "学术秘书:赵军(工作单位:国家纳米科学技术中心;联系电话:15810548893;电子邮件:zhaoj@nanoctr.cn)/pp style="text-indent: 2em "第11分会场:颗粒形貌调控 分会主席:俞书宏、褚良银、王 丹/pp style="text-indent: 2em "组织单位:中国科学院过程工程研究所/pp style="text-indent: 2em "主  题:颗粒形貌调控与应用/pp style="text-indent: 2em "征文范围:(1) 颗粒形貌调控的热力学和动力学基础;(2) 多级复杂形貌颗粒的制备与应用;(3) 颗粒形貌与材料性能关系;(4) 颗粒形貌演变过程的原位检测。/pp style="text-indent: 2em "学术秘书:韩永生(工作单位:中国科学院过程工程研究所;联系电话:13466366530;电子邮件:yshan@ipe.ac.cn)/pp style="text-indent: 2em "第12分会场:吸入给药颗粒技术 分会主席:沈丹蕾/pp style="text-indent: 2em "组织单位:中国颗粒学会吸入颗粒专业委员会(筹),全国吸入给药联盟/pp style="text-indent: 2em "主  题:吸入给药的现状、发展、关键技术、产品开发和中国市场临床应用/pp style="text-indent: 2em "征文范围:(1) 吸入给药的发展、现状和临床应用需求;(2) 吸入药物颗粒的制造和吸入动力学研究;(3) 吸入给药递送技术和产品开发。/pp style="text-indent: 2em "学术秘书:邵奇(联系电话:电子邮件:shaoqi@sinepharm.com)/pp style="text-indent: 2em "第13分会场: 颗粒热化学与热转化 分会主席:许光文、王勤辉、孙绍增、沈来宏/pp style="text-indent: 2em "组织单位:沈阳化工大学、浙江大学、哈尔滨工业大学、东南大学/pp style="text-indent: 2em "主  题:先进能源与高端材料中的颗粒热化学转化科学与技术/pp style="text-indent: 2em "征文范围:(1) 燃料、原料颗粒的热化学动态行为及其监测表征,元素迁移及产物生成规律,转化过程动力学等;(2) 颗粒热化学转化的新方法、新手段的科学原理与技术,包括非常规介质及环境的颗粒热转化,颗粒热转化中的催化科学与催化剂等;(3) 高灰、高湿、超细、高能(爆炸)、高活性、含特殊元素(如卤素、放射)等的非常规燃料及原料颗粒的热加工、热转化、热表征、及定量评价等的科学与技术;(4) 颗粒热化学转化的过程工程技术,包括转化的工艺过程研究,预处理、反应、分离、后处理的技术与装备研发,过程与装备的放大集成研究,以及工业应用案例及其分析等;(5) 颗粒热化学转化过程、大规模流程与装备的模型化与定量预测;(6) 颗粒热化学转化过程的低碳与清洁化科学与技术。/pp style="text-indent: 2em "学术秘书:李盼盼(工作单位:沈阳化工大学,联系电话:18899598929;电子邮件:ppl_19910109@163.com)、span style="text-indent: 2em "解桂林(工作单位:浙江大学,联系电话:15869199194;电子邮件:xgl2500@zju.edu.cn)/span/pp style="text-indent: 2em "第14分会场:3D打印材料及技术 分会主席:杨亚锋/pp style="text-indent: 2em "组织单位:中国科学院过程工程研究所/pp style="text-indent: 2em "征文范围:(1) 3D打印粉体材料的制备技术(钢、医用材料、轻金属及高温合金);(2) 金属的3D打印:材料、加工、组织性能及产品评价;(3) 3D打印过程中加工模拟、缺陷检测及控制;(4) 3D打印相关软件的开发及应用。/pp style="text-indent: 2em "学术秘书:李少夫(中国科学院过程工程研究所,联系电话:13426137071;电子邮件:sfli@ipe.ac.cn)/pp style="text-indent: 2em "span style="text-indent: 2em "第15分会场:1st China-Japan Particuology Forum(第一届中日颗粒学会议)/span/pp style="text-indent: 2em "组织单位:中国科学院过程工程 分会主席:马光辉、Hidehiro Kamiya(神谷秀博)、刘祥/pp style="text-indent: 2em "征文范围:(1) 流化床;(2) 粉体加工;(3) 颗粒制剂;(4) 纳微材料和纳微加工技术;(5) 其他/pp style="text-indent: 2em "学术秘书:魏炜、span style="text-indent: 2em "岳华(工作单位:中科院过程工程研究所;联系电话:15101037210;电子邮箱:hyue@ipe.ac.cn)/span/pp style="text-indent: 2em "Session topics: (1) Fluidized bed (2) Powder processing (3) Particle formulation (4) Micro/nano material and manufacture technology (5) other/pp style="text-indent: 2em "Secretaries: Wei Wei (Affiliation: Institute of Process Engineering, CAS Mobile: 13581522959 Email: weiwei@ipe.ac.cn) Hua Yue (Affiliation: Institute of Process Engineering, CAS Mobile: 15101037210 Email: hyue@ipe.ac.cn)/pp style="text-indent: 2em "第16分会场:碳气溶胶 分会主席:黄汝锦,李 江/pp style="text-indent: 2em "组织单位:中国科学院地球环境研究所,中国科学院大气物理研究所/pp style="text-indent: 2em "征文范围:(1) 碳气溶胶探测技术和新方法;(2) 金有机气溶胶的成分、来源和生成机理;(3) 黑碳和棕碳气溶胶及气溶胶光学性质。/pp style="text-indent: 2em "学术秘书:刘卉昆(工作单位:中国科学院地球环境研究所;联系电话:18629434582;电子邮件:liuhk@ieecas.cn)、span style="text-indent: 2em "夏芸洁(工作单位:中科院大气物理研究所;联系电话:18510970720;电子邮件:xiayunjie@mail.iap.ac.cn)/span/pp style="text-indent: 2em "span style="text-indent: 2em "br//span/pp style="text-indent: 2em "会场信息持续更新中??/pp style="text-indent: 2em "br//pp style="text-indent: 2em "二、同期展览、企业交流会(8月9日布展,10-11日全天展览)/pp style="text-indent: 2em "为了便于企业宣传、展示最新的产品,促进科研成果的转化,推动产、学、研的结合,将在会议同期举办颗粒/粉体技术及设备展,展览内容包括:测试分析仪器、颗粒/粉体制备技术及设备、颗粒/粉体材料及产品、颗粒/粉体应用技术等。展期与会期同步,烦请计划参展者尽快与学会秘书处郭峰联系(电话:010-62647647,E-mail: fguo@ipe.ac.cn),并沟通具体事宜。/pp style="text-indent: 2em "此外,本次会议将专门安排 “新技术、新产品、新设备推介及展示” 区域,希望参与会上展示的企业,烦请于会前与学会秘书处郭峰联系,以便提前协调。热忱欢迎相关企业及单位积极参与。/pp style="text-indent: 2em "br//pp style="text-indent: 2em "三、学会奖励奖项的评选与颁发/pp style="text-indent: 2em "学会各项奖项的申报评选工作已经启动,并将在年会闭幕式上组织颁奖:/pp style="text-indent: 2em "1.中国颗粒学会“自然科学奖”、“技术发明奖”、“科技进步奖”/pp style="text-indent: 2em "● “中国颗粒学会自然科学奖”,旨在奖励在颗粒学基础研究和工程技术领域的应用基础研究中做出重要科学发现的研究人员,每次设立一等奖1?3项、二等奖5?10项。/pp style="text-indent: 2em "● “中国颗粒学会技术发明奖”,旨在奖励在颗粒学研究及创新创业活动中做出突出贡献的团体或个人,每次设立一等奖1?3项、二等奖5?10项。/pp style="text-indent: 2em "● “中国颗粒学会科技进步奖”,旨在奖励在颗粒学研究及创新创业活动中做出突出贡献的团体或个人,每次设立一等奖1?3项、二等奖5?10项。/pp style="text-indent: 2em "2.中国颗粒学会“青年颗粒学奖”/pp style="text-indent: 2em "● “中国颗粒学会青年颗粒学奖”,为国家承认的社会力量设立的科学技术奖,欢迎青年科技工作者积极申请(申请者年龄不得超过42周岁)。/pp style="text-indent: 2em "3.中国颗粒学会“优秀博士生论文奖”/pp style="text-indent: 2em "● 学会自2018年起设立“中国颗粒学会优秀博士学位论文奖”,旨在促进青年人才成长,每次奖励“优秀博士论文奖”不超过10篇,另有不超过5篇论文获提名奖。/pp style="text-indent: 2em "注:以上奖项的申请截止日期为2018年6月9日。奖项详情及填报奖项申请表请登陆中国颗粒学会网站: http://adward.csp.org.cn/award/login。/pp style="text-indent: 2em "4.中国颗粒学会“麦克仪器优秀论文奖”/pp style="text-indent: 2em "● “麦克仪器优秀论文奖”,奖励在颗粒学基础研究或应用基础研究工作中取得成果、并在PARTICUOLOGY(颗粒学报)上正式发表的论文,每次奖励2篇论文。本奖项由美国麦克仪器公司赞助。/pp style="text-indent: 2em "5.中国颗粒学会年会优秀论文奖/pp style="text-indent: 2em "● 年会将面向参会并参加论文宣读或墙报交流的在读学生/pp style="text-indent: 2em "● 设立“年会优秀论文/墙报奖”。/pp style="text-indent: 2em "br//pp style="text-indent: 2em "四、会议征文/pp style="text-indent: 2em "1.会议论文详细摘要将收入会议论文U盘。/pp style="text-indent: 2em "2.论文要求为详细摘要,稿件请采用Word排版,并直接投稿至会议网站(http://csp2018.csp.org.cn/)。投稿截止日期为2018年6月15日。/pp style="text-indent: 2em "3.投稿时务请指定论文希望交流的分会场及交流形式 (口头报告 或/及 墙报交流),同时请附上计划的论文宣读人(或墙报交流人)的简单个人信息(是否为在读学生)。/pp style="text-indent: 2em "4.会后将推荐部分优秀的论文至《中国粉体技术》(核心期刊),或《颗粒学报》(英文)(SCI与EI收录,IF=2.621)。/pp style="text-indent: 2em "br//pp style="text-indent: 2em "五、参会指南/pp style="text-indent: 2em "1.广告服务:会议文集热诚为国内外企、事业单位提供各种宣传专页(刊登单位自行设计)、LOGO及全称的宣传(手提袋、签字笔、U盘和纸质笔记本)、单页印刷品等,请有意企业或单位于2018年6月15日之前与会务组联系。/pp style="text-indent: 2em "2.会议重要时间节点/pp style="text-indent: 2em "  2018年4月 会议第二轮通知 /pp style="text-indent: 2em "  2018年4~5月 会议网站注册、提交论文 /pp style="text-indent: 2em "  2018年6月9日 奖项申请材料截止 /pp style="text-indent: 2em "  2018年6月 会议第三轮通知 /pp style="text-indent: 2em "  2018年6月15日 会议论文接收截止 /pp style="text-indent: 2em "  2018年7月5日 酒店住宿预定截止 /pp style="text-indent: 2em "  2018年8月10日 会议报到 /pp style="text-indent: 2em "3.会议注册费(不含代表住宿费)/pp style="text-indent: 2em "学生 学会会员 非会员参会代表 /pp style="text-indent: 2em "7月20日之前缴费 1300 1900 2100 /pp style="text-indent: 2em "7月20日之后缴费(含现场注册) 1500 2100 2300 /pp style="text-indent: 2em "开户行及账号:中国工商银行北京海淀西区支行;中国颗粒学会 0200004509014413416/pp style="text-indent: 2em "(注:(1)烦请在网上注册时填写希望开具的发票抬头及相应的单位税号;(2)注册费支付若选择银行转账或汇款,务请通过邮件通知会务组;(3)需要办理会员证的代表,请在学会网站下载会员申请表。)/pp style="text-indent: 2em "4.会议注册说明/pp style="text-indent: 2em "本次活动使用网上系统进行报名,敬请各位参会代表通过会议网站完成注册、投稿、缴费及酒店住宿预订等工作。会议网址为http://csp2018.csp.org.cn/。/pp style="text-indent: 2em "5.会议地点及住宿:/pp style="text-indent: 2em "会议地点:沈阳新都绿城喜来登酒店(沈阳浑南新区沈中大街101-1号,电话:024-31619999)/pp style="text-indent: 2em "会议住宿:沈阳新都绿城喜来登酒店(400元/标准间)/沈阳锦联豪生酒店(350元/标准间)。住宿费用自理。/pp style="text-indent: 2em "住宿预订:因与酒店的合同约定,请需要预订住宿的参会代表务必于7月5日前通过会议网站进行预订,此后酒店将不再为本次会议预留房间。/pp style="text-indent: 2em "交 通:/pp style="text-indent: 2em "● 至沈阳新都绿城喜来登酒店/pp style="text-indent: 2em "从桃仙国际机场/pp style="text-indent: 2em "(1)公交车:乘坐有轨电车2号线,经过7站到达国际软件园站,转乘108路,经过4站,到达绿城全运村站下车。/pp style="text-indent: 2em "(2)出租车:全程约9.8公里,出租车费约21元。/pp style="text-indent: 2em "从沈阳火车站/pp style="text-indent: 2em "(1)公交车:乘坐152路,经过10站到达五里河茂业中心站,转乘130路,经过9站到达沈中大街全运三路站下车。/pp style="text-indent: 2em "(2)地 铁:乘坐地铁1号线,在青年大街站转乘2号线地铁,至在世纪大厦站下车(C出口出),前行300米步行至世纪大厦站换乘有轨电车3号线至和鸿广场站下车,(左侧)前行150米至酒店。或/pp style="text-indent: 2em "乘1号线地铁,在青年大街站转乘2号线地铁,在白塔河站下车D口出站,乘坐绿城全运村业主巴士去酒店(每半点发车)。/pp style="text-indent: 2em "(3)出租车:全程约18.7公里,出租车费约50元。/pp style="text-indent: 2em "从沈阳火车南站/pp style="text-indent: 2em "(1)公交车:乘坐100复线至智慧四街全运三路站,转乘公交108路至绿城全运村站下车。/pp style="text-indent: 2em "(2)出租车:全程约7.2公里,出租车费约17元。/pp style="text-indent: 2em "从沈阳火车北站/pp style="text-indent: 2em "(1)地 铁:乘地铁2号线至在世纪大厦站下车(C出口出),前行300米步行至世纪大厦站换乘有轨电车3号线至和鸿广场站下车,(左侧)前行150米至酒店。或/pp style="text-indent: 2em "乘2号线地铁,在白塔河站下车D口出站,乘坐绿城全运村业主巴士去酒店(每半点发车)。/pp style="text-indent: 2em "(2)出租车:全程约18.2公里,出租车费约47元。/pp style="text-indent: 2em "● 至沈阳锦联豪生酒店/pp style="text-indent: 2em "从桃仙国际机场/pp style="text-indent: 2em "(1)出租车:全程约9.8公里,出租车费约21元。/pp style="text-indent: 2em "从沈阳火车站/pp style="text-indent: 2em "(1)出租车:全程约20.2公里,出租车费约44元。/pp style="text-indent: 2em "(2)地 铁:乘1号线地铁,在青年大街站转乘2号线地铁,在二十一世纪大厦站下车出站;而后,在二十一世纪大厦附近,乘坐酒店的免费摆渡车(沃尔沃55座大巴车)去酒店。或/pp style="text-indent: 2em "乘2号线地铁,在世纪大厦站C出口出站,前行300米换乘轻轨3号线至沈阳国家科技大学城下车,而后再西行300米到锦联豪生酒店。/pp style="text-indent: 2em "从沈阳火车南站/pp style="text-indent: 2em "(1)出租车:全程约5.1公里,出租车费约12元。/pp style="text-indent: 2em "从沈阳火车北站/pp style="text-indent: 2em "(1)出租车:全程约24.1公里,出租车费约55元。/pp style="text-indent: 2em "(2)地 铁:乘2号线地铁,在二十一世纪大厦站下车出站;而后,在二十一世纪大厦附近,乘坐酒店的免费摆渡车(沃尔沃55座大巴车)去酒店。/pp style="text-indent: 2em "更多详情请见会议后续通知或请登陆会议网站(http://csp2018.csp.org.cn/)了解。/pp style="text-indent: 2em "br//pp style="text-indent: 2em "六、会务组联系方式/pp style="text-indent: 2em "学会秘书处/pp style="text-indent: 2em "地 址:北京海淀区中关村北二街1号(100190) /pp style="text-indent: 2em "电 话:010-62647647/62647657;传真:010-82629146;E-mail: klxh@ipe.ac.cn/pp style="text-indent: 2em "联系人:郭峰(15110169497)、邢璐(17801023915)、韩秀芝(13521432868)、赵晓力(13041126007)/pp style="text-indent: 2em text-align: right "中国颗粒学会/pp style="text-indent: 2em text-align: right "2018年5月/pp style="text-indent: 2em "附件:img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style="line-height: 16px "/a href="http://img1.17img.cn/17img/files/201805/ueattachment/acae7364-1879-4191-8bf8-9c9c9a94e952.pdf" style="line-height: 16px "中国颗粒学会第十届学术年会暨海峡两岸颗粒技术研讨会 (第三轮通知).pdf/a/p
  • 李卫军:大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究
    p style="text-align: justify text-indent: 2em "传统全样分析方法包括离子色谱(IC)、气相色谱(GC)、高效液相色谱(HPLC)和电感耦合等离子质谱(ICP-MS)是气溶胶性质研究的最常用方法。然而,全样分析方法的局限性在于无法获得气溶胶颗粒的混合状态和表面等性质。气溶胶颗粒的混合状态对于理解颗粒的吸湿性、光学特性以及在大气中的老化过程等方面具有重要意义。为了弥补全样分析的这些局限性,以电子显微镜为代表的单颗粒分析方法在气溶胶性质研究中的应用越来越广泛。/pp style="text-align: justify text-indent: 2em "扫描电子显微镜(SEM)和透射电子显微镜(TEM)以及它们配备的X射线能谱仪(EDS)是单颗粒分析方法的主要仪器。SEM/TEM-EDS可用于获得颗粒的形貌、成分、粒径、混合状态和表面特征。基于这些信息我们可以分析颗粒的来源和老化过程,进而讨论颗粒对人体健康和气候变化的影响。/pp style="text-align: justify text-indent: 2em "颗粒物的大量排放是造成空气污染的直接因素之一。了解颗粒物的来源、组成及老化过程,对有效改善空气质量具有重要意义。本文主要介绍各类排放源(工业源、汽车尾气、生物质燃烧、家用燃煤和矿物颗粒等)排放的气溶胶颗粒在电子显微镜方面的研究进展。/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 500px height: 364px " src="https://img1.17img.cn/17img/images/202006/uepic/eb3f9ff3-cbb9-4bee-87d2-abd84618bba9.jpg" title="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究 5.jpg" alt="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究 5.jpg" width="500" height="364" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strong1.工业源span style="color: rgb(0, 0, 0) "/span/strongspan style="color: rgb(0, 0, 0) "。/span/span工业排放源主要包括燃煤电厂、钢铁厂、金属冶炼和炼油厂。飞灰(flyash,图1a)和金属颗粒(metal,图1b和c)是工业源排放的两种典型颗粒。飞灰颗粒由硅、铝及少量铁和锰等元素组成的球形颗粒,粒径小于200 nm。已有研究利用透射电镜在华北灰霾中发现大量飞灰颗粒。金属颗粒主要包括富铁、富锌、富铅和富锰颗粒,灰霾事件中观测到的金属颗粒的粒径小于500 nm。透射电镜观测发现污染大气中的飞灰和金属颗粒大多与二次气溶胶(例如硫酸盐、硝酸盐和有机物)内混。这些在传输过程中形成的酸性二次气溶胶促进飞灰和金属颗粒释放可溶性金属离子,危害人体健康和生态环境。/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 500px height: 298px " src="https://img1.17img.cn/17img/images/202006/uepic/27bed8be-d6c7-4599-93b0-61109d072cf6.jpg" title="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究 (21).jpg" alt="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究 (21).jpg" width="500" height="298" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 176, 240) "2.汽车尾气span style="color: rgb(0, 0, 0) "/span/span/strongspan style="color: rgb(0, 176, 240) "span style="color: rgb(0, 0, 0) "。/span/span汽车尾气是造成空气污染的重要来源,汽车尾气中近一半的一次颗粒中含有黑碳颗粒(soot或black carbon,图1d)。黑碳颗粒为含碳小球的链状聚合物。黑碳颗粒的混合状态可显著影响其光学吸收,进而影响地球辐射强迫。透射电镜可根据黑碳颗粒的特殊形貌区分黑碳颗粒的混合状态,对评估其对气候变化的影响有重要意义。/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 500px height: 334px " src="https://img1.17img.cn/17img/images/202006/uepic/66123eed-c584-4937-a4dd-07b36d48f876.jpg" title="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究8.jpg" alt="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究8.jpg" width="500" height="334" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strong3.生物质燃烧/strong/span。生物质燃烧是对流层气态和颗粒态污染物的重要来源。木柴和秸秆是世界各地取暖和烹饪的重要能源。同时,露天焚烧是处理农作物残留秸秆的普遍方式。自然的生物质燃烧(比如森林大火和草原大火)也会导致大量污染物排放。生物质燃烧的主要污染物包括:钾盐、一次有机物和黑碳。透射电镜研究发现,生物质明火燃烧排放的富钾颗粒主要成分为KCl,且与有机物和黑碳内混(图1e);在闷烧阶段,产生胶状有机物与富钾颗粒混合的内混颗粒(图1f)。在大气传输过程中,KCl可逐渐转化为K2SO4和KNO3,透射电镜可根据形貌、结构和成分确定其老化过程,进而反映其来源和吸湿性。焦油球(tar balls)是生物质燃烧排放的一类特殊有机物,具有较强的吸光能力。透射电镜表明焦油球是粒径为30至500 nm的无定形碳质球形颗粒。X射线能谱显示焦油球的主要成分为碳,并含有少量氧。/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 500px height: 270px " src="https://img1.17img.cn/17img/images/202006/uepic/80fb205b-b987-4d0a-8b69-7afe6f65f24e.jpg" title="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究7.jpg" alt="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究7.jpg" width="500" height="270" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 176, 240) "4.家用燃煤/span/strong。燃煤取暖和烹饪是发展中国家空气污染的又一重要来源。由于燃烧效率较低且缺乏排放控制措施,家用炉灶的排放因子是工业锅炉的一百倍。家用燃煤可排放大量气态污染物(二氧化硫和挥发性有机物)和一次颗粒物(有机物和黑碳)。家用燃煤排放是造成华北严重灰霾事件的重要原因。利用透射电镜可获得不同成熟度煤炭排放的一次颗粒的形貌、成分和混合状态。低成熟度煤明烧状态下主要排放有机物和黑碳内混颗粒(图1g),中等成熟度煤排放大量有机物颗粒(图1h),高成熟度煤排放有机物和硫酸盐混合颗粒(图1i)。另外,透射电镜还发现煤炭燃烧也可排放大量与焦油球相似的球形有机物。/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 500px height: 333px " src="https://img1.17img.cn/17img/images/202006/uepic/e178791a-ff3c-4d6b-b90d-f48a9054eee4.jpg" title="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究9.jpg" alt="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究9.jpg" width="500" height="333" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 176, 240) "5.矿物颗粒/span/strong。矿物颗粒主要来自沙漠、建筑和路边扬尘。扫描电镜和透射电镜均可直观观测到矿物颗粒的不规则形貌(图1j),且大多矿物颗粒的粒径大于2 μm。矿物颗粒的吸湿性对气候和大气环境有重要影响。大气传输过程中,矿物颗粒表面发生非均相反应,改变颗粒成分和形貌,进而改变混合状态和影响云凝结核活性。透射电镜研究发现,矿物颗粒内的碱性成分(例如方解石和白云石)可与污染大气中的酸性气体(例如二氧化硫和氮氧化物)反应,在表面生成CaSO4以及Ca(NO3)2和Mg(NO3)2的亲水包裹层,增强矿物颗粒的吸湿性。长距离传输过程中的老化作用还会降低颗粒pH增加铁的可溶性和生物可利用性。可溶性铁沉降到海洋表面可促进海洋浮游生物的生长,进而影响海洋对碳的吸收,间接影响气候。/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 500px height: 282px " src="https://img1.17img.cn/17img/images/202006/uepic/6e145833-188d-45d4-af38-3ffdcd288d57.jpg" title="timg.jpg" alt="timg.jpg" width="500" height="282" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 176, 240) "6.生物气溶胶/span/strong。自然源的生物气溶胶(图1k)普遍存在于地球大气中,其在森林、农村及海洋环境中所占比例较高。扫描电镜和透射电镜可获得各类生物气溶胶的形貌和粒径。/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 500px height: 375px " src="https://img1.17img.cn/17img/images/202006/uepic/9ce845fb-6a49-4565-bb45-0426f24adecf.jpg" title="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究 6.jpg" alt="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究 6.jpg" width="500" height="375" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 176, 240) "7.海盐气溶胶/span/strong。海盐气溶胶来自于海浪中的气泡破裂。利用透射电镜可发现海盐的主要成分为镁盐和钙盐包裹的NaCl(图1l)。SEM-EDS发现海盐颗粒是由NaCl核与C、O和Mg元素包裹层构成。/pp style="text-align: justify text-indent: 2em "目前,扫描电镜和透射电镜现已被广泛应用于各类大气环境中的气溶胶单颗粒研究,例如:城区-北京、济南、吉林、香港、仁川、墨西哥等,背景点-长岛、青藏高原、日本冲绳,高山站点-庐山、泰山,海洋大气-北大西洋、黄海、北冰洋。未来,单颗粒分析方法将应用于更多区域。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/02700f9c-eaba-4981-8ab9-12e040344aff.jpg" title="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究 (3).jpg" alt="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究 (3).jpg"//pp style="text-align: justify text-indent: 2em "图1. 不同来源颗粒的TEM图。工业生产排放的飞灰(a)、富铁(b)和富锌(c)颗粒;(d)柴油机尾气中的黑碳-有机物内混颗粒;(e)玉米秸秆明烧产生的黑碳-有机物-KCl内混颗粒;(f)玉米秸秆闷烧产生的胶状有机物和KCl的内混颗粒;(g)低成熟度煤明烧产生的有机物-黑碳内混颗粒;(h)中等成熟度煤明烧产生的球状有机物颗粒;(i)高成熟度煤明烧产生的有机物-硫酸盐内混颗粒;(j)不规则矿物颗粒;(k)森林区域采集的生物颗粒;(l)海盐颗粒。图表结果来自于参考文献。/pp style="text-align: justify text-indent: 2em "strong参考文献:/strong/pp style="text-align: justify text-indent: 2em "1. Zhang, J., Liu, L., Xu, L., Lin, Q., Zhao, H., Wang, Z., Guo, S., Hu, M., Liu, D., Shi, Z., Huang, D., and Li, W.: Exploring wintertime regional haze in northeast China: role of coal and biomass burning, Atmos. Chem. Phys., 20, 5355-5372, 10.5194/acp-20-5355-2020, 2020./pp style="text-align: justify text-indent: 2em "2. Li, W., Liu, L., Xu, L., Zhang, J., Yuan, Q., Ding, X., Hu, W., Fu, P., and Zhang, D.: Overview of primary biological aerosol particles from a Chinese boreal forest: Insight into morphology, size, and mixing state at microscopic scale, Science of The Total Environment, 719, 137520, https://doi.org/10.1016/j.scitotenv.2020.137520, 2020./pp style="text-align: justify text-indent: 2em "3. Yuan, Q., Xu, J., Wang, Y., Zhang, X., Pang, Y., Liu, L., Bi, L., Kang, S., and Li, W.: Mixing State and Fractal Dimension of Soot Particles at a Remote Site in the Southeastern Tibetan Plateau, Environmental Science & Technology, 53, 8227-8234, 10.1021/acs.est.9b01917, 2019./pp style="text-align: justify text-indent: 2em "4. Zhang, Y., Yuan, Q., Huang, D., Kong, S., Zhang, J., Wang, X., Lu, C., Shi, Z., Zhang, X., Sun, Y., Wang, Z., Shao, L., Zhu, J., and Li, W.: Direct Observations of Fine Primary Particles From Residential Coal Burning: Insights Into Their Morphology, Composition, and Hygroscopicity, Journal of Geophysical Research: Atmospheres, 123, 12,964-912,979, doi:10.1029/2018JD028988, 2018./pp style="text-align: justify text-indent: 2em "5. Liu, L., Kong, S., Zhang, Y., Wang, Y., Xu, L., Yan, Q., Lingaswamy, A. P., Shi, Z., Lv, S., Niu, H., Shao, L., Hu, M., Zhang, D., Chen, J., Zhang, X., and Li, W.: Morphology, composition, and mixing state of primary particles from combustion sources — crop residue, wood, and solid waste, Scientific Reports, 7, 5047, 10.1038/s41598-017-05357-2, 2017./pp style="text-align: justify text-indent: 2em "6. Li, W., Xu, L., Liu, X., Zhang, J., Lin, Y., Yao, X., Gao, H., Zhang, D., Chen, J., Wang, W., Harrison, R. M., Zhang, X., Shao, L., Fu, P., Nenes, A., and Shi, Z.: Air pollution–aerosol interactions produce more bioavailable iron for ocean ecosystems, Sci. Adv., 3, e1601749, 2017./pp style="text-align: justify text-indent: 2em "7. Li, W., Shao, L., Zhang, D., Ro, C.-U., Hu, M., Bi, X., Geng, H., Matsuki, A., Niu, H., and Chen, J.: A review of single aerosol particle studies in the atmosphere of East Asia: morphology, mixing state, source, and heterogeneous reactions, J. Clean. Prod., 112, Part 2, 1330-1349, 2016./pp style="text-align: justify text-indent: 2em "8. Chi, J. W., Li, W. J., Zhang, D. Z., Zhang, J. C., Lin, Y. T., Shen, X. J., Sun, J. Y., Chen, J. M., Zhang, X. Y., Zhang, Y. M., and Wang, W. X.: Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the Arctic troposphere, Atmos. Chem. Phys., 15, 11341-11353, 2015./pp style="text-align: justify text-indent: 2em "strong作者简介:/strong/pp style="text-align: justify text-indent: 2em "img style="max-width: 100% max-height: 100% float: left " src="https://img1.17img.cn/17img/images/202006/uepic/5ef00299-b5e7-46ff-ab5f-212e9a8e68f6.jpg" title="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究.jpg" alt="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究.jpg"/李卫军,浙江大学地球科学学院大气科学系研究员,国家优秀青年基金、中国化学学会环境化学青年科学奖和山东省杰青获得者。他主要应用透射电镜、扫描电镜和纳米二次离子质谱等手段研究我国大气雾-霾及沙尘暴期间大气气溶胶颗粒物,从微观角度揭示颗粒物表面及内部的物理化学特性。近年来促进了大气环境化学和地球科学的研究融合,已获仪器发明专利共5项,其中1项产业化。以第一作者或通讯发表成果在Science Advances, ES& T, JGR, ACP等大气相关领域的杂志上共40余篇,出版专著1部。/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制